
IBM i
7.3

Programming
ILE C/C++ Runtime Library Functions

IBM

SC41-5607-06

Note

Before using this information and the product it supports, read the information in Notices.

This edition applies to version IBM i 7.2 (product number 5770-SS1) and to all subsequent releases and modifications
until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC)
models nor does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 1998, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

About ILE C/C++ Runtime Library Functions

This information provides an overview of the C runtime behavior.

The information is intended for programmers who are familiar with the C/C++ programming language and
who want to write or maintain ILE C/C++ applications. You must have experience in using applicable IBM®

i menus, displays, or control language (CL) commands. You also need knowledge of Integrated Language
Environment® as explained in the ILE Concepts manual.

This information does not describe how to program in the C or C++ programming languages, nor does it
explain the concepts of ILE. Companion publications for this reference are:

• C/C++ Legacy Class Libraries Reference, SC09-7652-00
• ILE Concepts
• ILE C/C++ for AS/400 MI Library Reference, SC09-2418-00
• Standard C/C++ Library Reference, SC09-4949-01
• ILE C/C++ Compiler Reference
• ILE C/C++ Language Reference
• ILE C/C++ Programmer's Guide

For other prerequisite and related information, see “Related information” on page 621.

A note about examples
The examples in this information that illustrate the use of library functions are written in a simple style.
The examples do not demonstrate all possible uses of C/C++ language constructs. Some examples are
only code fragments and do not compile without additional code. The examples all assume that the C
locale is used.

All complete runnable examples for library functions and machine interface instructions are in library
QCPPLE, in source file QACSRC. Each example name is the same as the function name or instruction
name. For example, the source code for the example illustrating the use of the _Rcommit() function
in this information is in library QCPPLE, file QACSRC, member RCOMMIT. The QSYSINC library must be
installed.

© Copyright IBM Corp. 1998, 2015 iii

iv IBM i: ILE C/C++ Runtime Library Functions

Contents

About ILE C/C++ Runtime Library Functions.. iii

What's new...xiii

Include Files... 1
<assert.h>.. 1
<ctype.h>... 1
<decimal.h>... 1
<errno.h>..1
<except.h>..2
<float.h>... 4
<inttypes.h>... 4
<langinfo.h>... 5
<limits.h>... 5
<locale.h>...5
<math.h>.. 6
<mallocinfo.h>... 6
<monetary.h>...6
<nl_types.h>.. 6
<pointer.h>... 6
<recio.h>.. 7
<regex.h>... 10
<setjmp.h>... 11
<signal.h>...11
<stdarg.h>.. 11
<stddef.h>..11
<stdbool.h>..11
<stdint.h>...12
<stdio.h>.. 13
<stdlib.h>... 14
<string.h>... 15
<strings.h> .. 15
<time.h>... 15
<wchar.h>...16
<wctype.h>.. 16
<xxcvt.h>..16
<xxdtaa.h>... 17
<xxenv.h>...17
<xxfdbk.h>... 17
Machine Interface (MI) Include Files..17

Library Functions...19
The C/C++ Library.. 19

Error Handling.. 19
Searching and Sorting.. 20
Mathematical..20
Time Manipulation..26
Type Conversion... 28
Conversion..34
Record Input/Output..35

 v

Stream Input/Output..38
Handling Argument Lists.. 45
Pseudorandom Numbers... 45
Dynamic Memory Management... 46
Memory Objects... 47
Environment Interaction.. 48
String Operations..49
Character Testing... 52
Multibyte Character Testing... 53
Character Case Mapping.. 54
Multibyte Character Manipulation... 55
Data Areas.. 59
Message Catalogs...59
Regular Expression...60

abort() — Stop a Program...60
abs() — Calculate Integer Absolute Value...61
acos() — Calculate Arccosine...62
asctime() — Convert Time to Character String.. 63
asctime_r() — Convert Time to Character String (Restartable).. 65
asin() — Calculate Arcsine... 67
assert() — Verify Condition.. 68
atan() – atan2() — Calculate Arctangent... 69
atexit() — Record Program Ending Function..70
atof() — Convert Character String to Float.. 71
atoi() — Convert Character String to Integer...73
atol() – atoll() — Convert Character String to Long or Long Long Integer...74
Bessel Functions..75
bsearch() — Search Arrays...76
btowc() — Convert Single Byte to Wide Character.. 78
_C_Get_Ssn_Handle() — Handle to C Session.. 80
calloc() — Reserve and Initialize Storage.. 80
catclose() — Close Message Catalog... 82
catgets() — Retrieve a Message from a Message Catalog...83
catopen() — Open Message Catalog..84
ceil() — Find Integer >=Argument... 86
clearerr() — Reset Error Indicators..87
clock() — Determine Processor Time.. 88
cos() — Calculate Cosine..89
cosh() — Calculate Hyperbolic Cosine...90
_C_Quickpool_Debug() — Modify Quick Pool Memory Manager Characteristics..................................... 91
_C_Quickpool_Init() — Initialize Quick Pool Memory Manager.. 93
_C_Quickpool_Report() — Generate Quick Pool Memory Manager Report..95
ctime() — Convert Time to Character String..97
ctime64() — Convert Time to Character String... 98
ctime_r() — Convert Time to Character String (Restartable)..100
ctime64_r() — Convert Time to Character String (Restartable)... 102
_C_TS_malloc_debug() — Determine amount of teraspace memory used (with optional dumps

and verification)..103
_C_TS_malloc_info() — Determine amount of teraspace memory used..105
difftime() — Compute Time Difference..108
difftime64() — Compute Time Difference... 109
div() — Calculate Quotient and Remainder... 111
erf() – erfc() — Calculate Error Functions..112
exit() — End Program... 113
exp() — Calculate Exponential Function..114
fabs() — Calculate Floating-Point Absolute Value.. 115
fclose() — Close Stream...116
fdopen() — Associates Stream With File Descriptor... 117

vi

feof() — Test End-of-File Indicator..119
ferror() — Test for Read/Write Errors.. 120
fflush() — Write Buffer to File.. 121
fgetc() — Read a Character.. 123
fgetpos() — Get File Position... 124
fgets() — Read a String...126
fgetwc() — Read Wide Character from Stream ...127
fgetws() — Read Wide-Character String from Stream ... 129
fileno() — Determine File Handle.. 131
floor() — Find Integer <=Argument... 132
fmod() — Calculate Floating-Point Remainder..133
fopen() — Open Files..134
fprintf() — Write Formatted Data to a Stream... 141
fputc() — Write Character.. 143
_fputchar() — Write Character...144
fputs() — Write String...145
fputwc() — Write Wide Character.. 146
fputws() — Write Wide-Character String... 148
fread() — Read Items...150
free() — Release Storage Blocks... 152
freopen() — Redirect Open Files..154
frexp() — Separate Floating-Point Value... 155
fscanf() — Read Formatted Data... 156
fseek() – fseeko() — Reposition File Position..158
fsetpos() — Set File Position..160
ftell() – ftello() — Get Current Position..162
fwide() — Determine Stream Orientation..163
fwprintf() — Format Data as Wide Characters and Write to a Stream.. 166
fwrite() — Write Items..169
fwscanf() — Read Data from Stream Using Wide Character... 170
gamma() — Gamma Function.. 173
_gcvt() — Convert Floating-Point to String..174
getc() – getchar() — Read a Character.. 175
getenv() — Search for Environment Variables...177
_GetExcData() — Get Exception Data..177
gets() — Read a Line...179
getwc() — Read Wide Character from Stream...180
getwchar() — Get Wide Character from stdin..182
gmtime() — Convert Time.. 184
gmtime64() — Convert Time..186
gmtime_r() — Convert Time (Restartable).. 188
gmtime64_r() — Convert Time (Restartable)..190
hypot() — Calculate Hypotenuse... 192
isalnum() – isxdigit() — Test Integer Value... 193
isascii() — Test for Character Representable as ASCII Value...194
iswalnum() – iswxdigit() — Test Wide Integer Value...195
iswctype() — Test for Character Property... 197
_itoa() — Convert Integer to String..199
labs() – llabs() — Calculate Absolute Value of Long and Long Long Integer..200
ldexp() — Multiply by a Power® of Two.. 201
ldiv() – lldiv() — Perform Long and Long Long Division... 202
localeconv() — Retrieve Information from the Environment..203
localtime() — Convert Time... 208
localtime64() — Convert Time...210
localtime_r() — Convert Time (Restartable)..211
localtime64_r() — Convert Time (Restartable)... 213
log() — Calculate Natural Logarithm..214
log10() — Calculate Base 10 Logarithm..215

 vii

_ltoa() — Convert Long Integer to String...216
longjmp() — Restore Stack Environment.. 217
malloc() — Reserve Storage Block...219
mblen() — Determine Length of a Multibyte Character.. 221
mbrlen() — Determine Length of a Multibyte Character (Restartable)...223
mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)................................... 225
mbsinit() — Test State Object for Initial State...228
mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)........................... 229
mbstowcs() — Convert a Multibyte String to a Wide Character String... 231
mbtowc() — Convert Multibyte Character to a Wide Character..235
memchr() — Search Buffer.. 236
memcmp() — Compare Buffers... 237
memcpy() — Copy Bytes..238
memicmp() — Compare Bytes...239
memmove() — Copy Bytes...241
memset() — Set Bytes to Value... 242
mktime() — Convert Local Time...243
mktime64() — Convert Local Time.. 245
modf() — Separate Floating-Point Value...246
nextafter() – nextafterl() – nexttoward() – nexttowardl() — Calculate the Next Representable

Floating-Point Value... 247
nl_langinfo() — Retrieve Locale Information.. 248
perror() — Print Error Message.. 251
pow() — Compute Power... 253
printf() — Print Formatted Characters...254
putc() – putchar() — Write a Character... 266
putenv() — Change/Add Environment Variables... 267
puts() — Write a String... 268
putwc() — Write Wide Character... 269
putwchar() — Write Wide Character to stdout ... 271
quantexpd32() - quantexpd64() - quantexpd128() — Compute the Quantum Exponent.....................273
quantized32() - quantized64() - quantized128() — Set the Quantum Exponent of X to the

Quantum Exponent of Y... 274
qsort() — Sort Array... 275
QXXCHGDA() — Change Data Area..277
QXXDTOP() — Convert Double to Packed Decimal... 278
QXXDTOZ() — Convert Double to Zoned Decimal... 279
QXXITOP() — Convert Integer to Packed Decimal.. 280
QXXITOZ() — Convert Integer to Zoned Decimal..281
QXXPTOD() — Convert Packed Decimal to Double... 282
QXXPTOI() — Convert Packed Decimal to Integer..282
QXXRTVDA() — Retrieve Data Area... 283
QXXZTOD() — Convert Zoned Decimal to Double... 285
QXXZTOI() — Convert Zoned Decimal to Integer..285
raise() — Send Signal... 286
rand() – rand_r() — Generate Random Number..287
_Racquire() — Acquire a Program Device..288
_Rclose() — Close a File...289
_Rcommit() — Commit Current Record...290
_Rdelete() — Delete a Record..292
_Rdevatr() — Get Device Attributes...294
realloc() — Change Reserved Storage Block Size... 295
regcomp() — Compile Regular Expression ... 298
regerror() — Return Error Message for Regular Expression..300
regexec() — Execute Compiled Regular Expression .. 301
regfree() — Free Memory for Regular Expression .. 304
remove() — Delete File...305
rename() — Rename File... 306

viii

rewind() — Adjust Current File Position.. 307
_Rfeod() — Force the End-of-Data.. 308
_Rfeov() — Force the End-of-File.. 309
_Rformat() — Set the Record Format Name... 310
_Rindara() — Set Separate Indicator Area.. 312
_Riofbk() — Obtain I/O Feedback Information... 314
_Rlocate() — Position a Record... 316
_Ropen() — Open a Record File for I/O Operations.. 319
_Ropnfbk() — Obtain Open Feedback Information...323
_Rpgmdev() — Set Default Program Device..324
_Rreadd() — Read a Record by Relative Record Number... 326
_Rreadf() — Read the First Record.. 328
_Rreadindv() — Read from an Invited Device... 330
_Rreadk() — Read a Record by Key... 332
_Rreadl() — Read the Last Record...335
_Rreadn() — Read the Next Record...336
_Rreadnc() — Read the Next Changed Record in a Subfile...339
_Rreadp() — Read the Previous Record.. 340
_Rreads() — Read the Same Record... 342
_Rrelease() — Release a Program Device... 344
_Rrlslck() — Release a Record Lock.. 346
_Rrollbck() — Roll Back Commitment Control Changes... 347
_Rupdate() — Update a Record... 349
_Rupfb() — Provide Information on Last I/O Operation... 350
_Rwrite() — Write the Next Record..352
_Rwrited() — Write a Record Directly..354
_Rwriterd() — Write and Read a Record..357
_Rwrread() — Write and Read a Record (separate buffers)..358
samequantumd32() - samequantumd64() - samequantumd128() — Determine if Quantum

Exponents X and Y are the Same... 360
scanf() — Read Data...362
setbuf() — Control Buffering..368
setjmp() — Preserve Environment...369
setlocale() — Set Locale...370
setvbuf() — Control Buffering.. 376
signal() — Handle Interrupt Signals.. 378
sin() — Calculate Sine.. 380
sinh() — Calculate Hyperbolic Sine... 381
snprintf() — Print Formatted Data to Buffer.. 382
sprintf() — Print Formatted Data to Buffer.. 383
sqrt() — Calculate Square Root... 384
srand() — Set Seed for rand() Function... 385
sscanf() — Read Data... 386
strcasecmp() — Compare Strings without Case Sensitivity..388
strcat() — Concatenate Strings..389
strchr() — Search for Character... 390
strcmp() — Compare Strings..392
strcmpi() — Compare Strings Without Case Sensitivity.. 393
strcoll() — Compare Strings... 395
strcpy() — Copy Strings..396
strcspn() — Find Offset of First Character Match..397
strdup() — Duplicate String..399
strerror() — Set Pointer to Runtime Error Message.. 400
strfmon() — Convert Monetary Value to String... 400
strftime() — Convert Date/Time to String..403
stricmp() — Compare Strings without Case Sensitivity.. 407
strlen() — Determine String Length... 408
strncasecmp() — Compare Strings without Case Sensitivity..409

 ix

strncat() — Concatenate Strings..410
strncmp() — Compare Strings..412
strncpy() — Copy Strings..413
strnicmp() — Compare Substrings Without Case Sensitivity..415
strnset() – strset() — Set Characters in String.. 416
strpbrk() — Find Characters in String.. 417
strptime() — Convert String to Date/Time...418
strrchr() — Locate Last Occurrence of Character in String... 422
strspn() — Find Offset of First Non-matching Character.. 423
strstr() — Locate Substring.. 425
strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double.................426
strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point............... 429
strtok() — Tokenize String..432
strtok_r() — Tokenize String (Restartable)..433
strtol() – strtoll() — Convert Character String to Long and Long Long Integer.......................................435
strtoul() – strtoull() — Convert Character String to Unsigned Long and Unsigned Long Long Integer..437
strxfrm() — Transform String... 439
swprintf() — Format and Write Wide Characters to Buffer... 440
swscanf() — Read Wide Character Data.. 441
system() — Execute a Command...443
tan() — Calculate Tangent..444
tanh() — Calculate Hyperbolic Tangent...445
time() — Determine Current Time... 446
time64() — Determine Current Time...447
tmpfile() — Create Temporary File.. 448
tmpnam() — Produce Temporary File Name...449
toascii() — Convert Character to Character Representable by ASCII.. 450
tolower() – toupper() — Convert Character Case..451
towctrans() — Translate Wide Character...452
towlower() – towupper() — Convert Wide Character Case... 454
_ultoa() — Convert Unsigned Long Integer to String.. 455
ungetc() — Push Character onto Input Stream... 456
ungetwc() — Push Wide Character onto Input Stream .. 458
va_arg() – va_copy() – va_end() – va_start() — Handle Variable Argument List.................................... 459
vfprintf() — Print Argument Data to Stream.. 461
vfscanf() — Read Formatted Data..463
vfwprintf() — Format Argument Data as Wide Characters and Write to a Stream 464
vfwscanf() — Read Formatted Wide Character Data...466
vprintf() — Print Argument Data.. 469
vscanf() — Read Formatted Data...470
vsnprintf() — Print Argument Data to Buffer... 472
vsprintf() — Print Argument Data to Buffer... 473
vsscanf() — Read Formatted Data... 475
vswprintf() — Format and Write Wide Characters to Buffer... 476
vswscanf() — Read Formatted Wide Character Data.. 478
vwprintf() — Format Argument Data as Wide Characters and Print .. 480
vwscanf() — Read Formatted Wide Character Data..481
wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)................................... 483
wcscat() — Concatenate Wide-Character Strings...488
wcschr() — Search for Wide Character..489
wcscmp() — Compare Wide-Character Strings...490
wcscoll() — Language Collation String Comparison..492
wcscpy() — Copy Wide-Character Strings...493
wcscspn() — Find Offset of First Wide-Character Match..494
wcsftime() — Convert to Formatted Date and Time..495
__wcsicmp() — Compare Wide Character Strings without Case Sensitivity ... 497
wcslen() — Calculate Length of Wide-Character String..499
wcslocaleconv() — Retrieve Wide Locale Information... 500

x

wcsncat() — Concatenate Wide-Character Strings...501
wcsncmp() — Compare Wide-Character Strings...502
wcsncpy() — Copy Wide-Character Strings...504
__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity.. 505
wcspbrk() — Locate Wide Characters in String... 506
wcsptime() — Convert Wide Character String to Date/Time.. 507
wcsrchr() — Locate Last Occurrence of Wide Character in String.. 509
wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)................................. 510
wcsspn() — Find Offset of First Non-matching Wide Character... 512
wcsstr() — Locate Wide-Character Substring... 514
wcstod() - wcstof() - wcstold() — Convert Wide-Character String to Double, Float, and Long Double.515
wcstod32() - wcstod64() - wcstod128() — Convert Wide-Character String to Decimal Floating-

Point.. 517
wcstok() — Tokenize Wide-Character String...519
wcstol() – wcstoll() — Convert Wide Character String to Long and Long Long Integer..........................520
wcstombs() — Convert Wide-Character String to Multibyte String.. 522
wcstoul() – wcstoull() — Convert Wide Character String to Unsigned Long and Unsigned Long Long

Integer.. 525
wcswcs() — Locate Wide-Character Substring... 527
wcswidth() — Determine the Display Width of a Wide Character String.. 528
wcsxfrm() — Transform a Wide-Character String... 530
wctob() — Convert Wide Character to Byte...531
wctomb() — Convert Wide Character to Multibyte Character...532
wctrans() — Get Handle for Character Mapping... 533
wctype() — Get Handle for Character Property Classification..535
wcwidth() — Determine the Display Width of a Wide Character.. 536
wfopen() — Open Files...537
wmemchr() — Locate Wide Character in Wide-Character Buffer... 538
wmemcmp() — Compare Wide-Character Buffers... 539
wmemcpy() — Copy Wide-Character Buffer... 541
wmemmove() — Copy Wide-Character Buffer.. 542
wmemset() — Set Wide Character Buffer to a Value.. 543
wprintf() — Format Data as Wide Characters and Print.. 544
wscanf() — Read Data Using Wide-Character Format String..545

Runtime Considerations...549
errno Macros..549
errno Values for Integrated File System Enabled C Stream I/O...551
Record Input and Output Error Macro to Exception Mapping.. 553
Signal Handling Action Definitions.. 554

Signal to Exception Mapping..556
Cancel Handler Reason Codes.. 557
Exception Classes..559
Data Type Compatibility.. 560
Runtime Character Set.. 570
Understanding CCSIDs and Locales..571

CCSIDs of Characters and Character Strings.. 571
Character Literal CCSID..571
Job CCSID... 572
File CCSID... 572
Locale CCSID.. 573

Wide Characters... 574
Wide Character Conversions to and from Single-Byte or Multibyte Characters.........................574

LOCALETYPE(*CLD) and LOCALETYPE(*LOCALE) behavior... 574
LOCALETYPE(*LOCALEUCS2) and LOCALETYPE(*LOCALEUTF) behavior.............................575

Wide Characters and File I/O... 575
Wide character write functions...575

 xi

Non-wide character write functions... 575
Wide character read functions..576
Non-wide character read functions..576

Other ILE Languages.. 576
Asynchronous Signal Model.. 576
Unicode Support.. 577

Reasons to Use Unicode Support.. 578
Pseudo-CCSID Neutrality.. 578
Unicode from Other ILE Languages...579
Standard Files.. 581
Considerations... 581
Default File CCSID..582
Newline Character..583
Conversion Errors...583

Heap Memory...583
Heap Memory Overview...583
Heap Memory Manager..583
Default Memory Manager...584
Quick Pool Memory Manager... 586
Debug Memory Manager.. 588
Environment Variables... 591
Diagnosing C2M1211/C2M1212 Message Problems... 592

C2M1211 Message... 592
C2M1212 Message... 593
Stack Tracebacks..593

Library Functions and Extensions... 597
Standard C Library Functions Table, By Name..597
ILE C Library Extensions to C Library Functions Table... 615

Related information...621

Notices..623
Programming interface information..624
Trademarks.. 624

Index.. 627

xii

What's new

Here are the changes to this information for this edition.

• _Ropen() (See “_Ropen() — Open a Record File for I/O Operations” on page 319)
• regerror() (See “regerror() — Return Error Message for Regular Expression” on page 300)
• “Default Memory Manager” (See “Default Memory Manager” on page 584)
• “Environment Variables” (See “Environment Variables” on page 591)

© Copyright IBM Corp. 1998, 2015 xiii

xiv IBM i: ILE C/C++ Runtime Library Functions

Include Files

The include files that are provided with the runtime library contain macro and constant definitions, type
definitions, and function declarations. Some functions require definitions and declarations from include
files to work properly. The inclusion of files is optional, as long as the necessary statements from the files
are coded directly into the source.

This section describes each include file, explains its contents, and lists the functions that are declared in
the file.

The QSYSINC (system openness includes) library must be installed on your operating system. QSYSINC
contains include files useful for C/C++ users, such as system API, Dynamic Screen Manager (DSM), and
ILE header files. The QSYSINC library contains header files that include the prototypes and templates for
the machine interface (MI) built-ins and the ILE C/C++ MI functions. See the ILE C/C++ for AS/400 MI
Library Reference for more information about these header files.

<assert.h>
The <assert.h> include file defines the assert macro. You must include assert.h when you use
assert.

The definition of assert is in an #ifndef preprocessor block. If you have not defined the identifier
NDEBUG through a #define directive or on the compilation command, the assert macro tests the
assertion expression. If the assertion is false, the system prints a message to stderr, and raises an abort
signal for the program. The system also does a Dump Job (DMPJOB) OUTPUT(*PRINT) when the assertion
is false.

If NDEBUG is defined, assert is defined to do nothing. You can suppress program assertions by defining
NDEBUG.

<ctype.h>
The <ctype.h> include file defines functions that are used in character classification. The functions that
are defined in <ctype.h> are:

isascii1

isalnum
isalpha
isblank

iscntrl
isdigit
isgraph
islower

isprint
ispunct
isspace
isupper

isxdigit
toascii1

tolower
toupper

Note: 1 These functions are not available when LOCALETYPE(*CLD) is specified on the compilation
command.

<decimal.h>
The <decimal.h> include file contains definitions of constants that specify the ranges of the packed
decimal type and its attributes. The <decimal.h> file must be included with a #include directive in your
source code if you use the keywords decimal, digitsof, or precisionof.

<errno.h>
The <errno.h> include file defines macros that are set to the errno variable. The <errno.h> include
file defines macros for values that are used for error reporting in the C library functions and defines the
macro errno. An integer value can be assigned to errno, and its value can be tested during runtime.

© Copyright IBM Corp. 1998, 2015 1

See "Checking the Errno Value" in the ILE C/C++ Programmer's Guide for information about displaying the
current errno value.

Note: To test the value of errno after library function calls, set it to 0 before the call because its value
may not be reset during the call.

<except.h>
The <except.h> include file declares types and macros that are used in ILE C exception handling.

The definition of _INTRPT_Hndlr_Parms_T is:

typedef _Packed struct {
 unsigned int Block_Size;
 _INVFLAGS_T Tgt_Flags;
 char reserved[8];
 _INVPTR Target;
 _INVPTR Source;
 _SPCPTR Com_Area;
 char Compare_Data[32];
 char Msg_Id[7];
 char reserved1;
 _INTRPT_Mask_T Mask;
 unsigned int Msg_Ref_Key;
 unsigned short Exception_Id;
 unsigned short Compare_Data_Len;
 char Signal_Class;
 char Priority;
 short Severity;
 char reserved3[4];
 int Msg_Data_Len;
 char Mch_Dep_Data[10];
 char Tgt_Inv_Type;
 _SUSPENDPTR Tgt_Suspend;
 char Ex_Data[48];
} _INTRPT_Hndlr_Parms_T;

Element
Description

Block_Size
The size of the parameter block passed to the exception handler.

Tgt_Flags
Contains flags that are used by the system.

reserved
An eight byte reserved field.

Target
An invocation pointer to the call stack entry that enabled the exception handler.

Source
An invocation pointer to the call stack entry that caused the exception. If that call stack entry no
longer exists, then this is a pointer to the call stack entry where control resumes when the exception
is handled.

Com_Area
A pointer to the communications area variable specified as the second parameter on the #pragma
exception_handler. If a communication area was not specified, this value is NULL.

Compare_Data
The compare data consists of 4 bytes of message prefix, for example CPF, MCH, followed by 28 bytes
which are taken from the message data of the related message. In the case where the message data
is greater than 28 these are the first 28 bytes. For MCH messages, these are the first 28 bytes of the
exception related data that is returned by the system (substitution text).

Msg_Id
A message identifier, for example CPF123D. *STATUS message types are not updated in this field.

reserved1
A 1 byte pad.

2 IBM i: ILE C/C++ Runtime Library Functions

Mask
This is an 8-byte exception mask, identifying the type of the exception that occurred, for example a
decimal data error. The possible types are shown in Table 30 on page 559.

Msg_Ref_Key
A key used to uniquely identify the message.

Exception_Id
Binary value of the exception id, for example, 0x123D. To display value, use conversion specifier %x as
information is stored in hex value.

Compare_Data_Len
The length of the compare data.

Signal_Class
Internal signal class.

Priority
The handler priority.

Severity
The message severity.

reserved3
A 4-byte reserved field.

Msg_Data_Len
The length of available message data.

Mch_Dep_Data
Machine-dependent data.

Tgt_Inv_Type
Invocation type. Macros are defined in <mimchobs.h>.

Tgt_Suspend
Suspend pointer of the target.

Ex_Data
The first 48 bytes of exception data.

The definition of _CNL_Hndlr_Parms_T is:

typedef _Packed struct {
 unsigned int Block_Size;
 _INVFLAGS_T Inv_Flags;
 char reserved[8];
 _INVPTR Invocation;
 _SPCPTR Com_Area;
 _CNL_Mask_T Mask;
} _CNL_Hndlr_Parms_T;

Element
Description

Block_Size
The size of the parameter block passed to the cancel handler.

Inv_Flags
Contains flags that are used by the system.

reserved
An eight byte reserved field.

Invocation
An invocation pointer to the invocation that is being cancelled.

Com_Area
A pointer to the handler communications area defined by the cancel handler.

Mask
A 4 byte value indicating the cancel reason.

Include Files 3

The following built-ins are defined in <except.h>:

Built-in
Description

__EXBDY
The purpose of the __EXBDY built-in or _EXBDY macro is to act as a boundary for exception-sensitive
operations. An exception-sensitive operation is one that may signal an exception. An EXBDY enables
programmers to selectively suppress optimizations that do code motion. For example, a divide is an
exception-sensitive operation because it can signal a divide-by-zero. An execution path containing
both an EXBDY and a divide will perform the two in the same order with or without optimization. For
example:

b = exp1;
c = exp2;
...
_EXBDY();
a = b/c;

__VBDY
The purpose of a __VBDY built-in or _VBDY macro is to ensure the home storage locations are current
for variables that are potentially used on exception paths. This ensures the visibility of the current
values of variables in exception handlers. A VBDY enables programmers to selectively suppress
optimizations, such as redundant store elimination and forward store motion to enforce sequential
consistency of variable updates. In the following example, the VBDYs ensure that state is in it's
home storage location before each block of code that may signal an exception. A VBDY is often used
in combination with an EXBDY to ensure that earlier assignments to state variables really update
home storage locations and that later exception sensitive operations are not moved before these
assignments.

 state = 1;
 _VBDY();
 /* Do stuff that may signal an exception. */
 state = 2;
 _VBDY();
 /* More stuff that may signal an exception. */
state = 3;
_VBDY();

For more information about built-ins, see the ILE C/C++ for AS/400 MI Library Reference.

<float.h>
The <float.h> include file defines constants that specify the ranges of binary floating-point data types.
For example, the maximum number of digits for objects of type double or the minimum exponent for
objects of type float. In addition, if the macro variable __STDC_WANT_DEC_FP__ is defined, the include
file also defines constants that specify ranges of decimal floating-point data types. For example, the
maximum number of digits for objects of type _Decimal64 or the minimum exponent for objects of type
_Decimal32.

<inttypes.h>
The <inttypes.h> include file includes <stdint.h> and extends it with additional facilities.

The following macros are defined for format specifiers. These macros are defined for C programs. They
are defined for C++ only when __STDC_FORMAT_MACROS is defined before <inttypes.h> is included.

4 IBM i: ILE C/C++ Runtime Library Functions

PRId8
PRId16
PRId32
PRId64
PRIdFAST8
PRIdFAST16
PRIdFAST32
PRIdFAST64
PRIdLEAST8
PRIdLEAST16
PRIdLEAST32
PRIdLEAST64
PRIdMAX
PRIi8
PRIi16
PRIi32
PRIi64
PRIiFAST8
PRIiFAST16
PRIiFAST32
PRIiFAST64
PRIiLEAST8
PRIiLEAST16
PRIiLEAST32
PRIiLEAST64
PRIiMAX

PRIo8
PRIo16
PRIo32
PRIo64
PRIoFAST8
PRIoFAST16
PRIoFAST32
PRIoFAST64
PRIoLEAST8
PRIoLEAST16
PRIoLEAST32
PRIoLEAST64
PRIoMAX
PRIu8
PRIu16
PRIu32
PRIu64
PRIuFAST8
PRIuFAST16
PRIuFAST32
PRIuFAST64
PRIuLEAST8
PRIuLEAST16
PRIuLEAST32
PRIuLEAST64
PRIuMAX

PRIx8
PRIx16
PRIx32
PRIx64
PRIxFAST8
PRIxFAST16
PRIxFAST32
PRIxFAST64
PRIxLEAST8
PRIxLEAST16
PRIxLEAST32
PRIxLEAST64
PRIxMAX
PRIX8
PRIX16
PRIX32
PRIX64
PRIXFAST8
PRIXFAST16
PRIXFAST32
PRIXFAST64
PRIXLEAST8
PRIXLEAST16
PRIXLEAST32
PRIXLEAST64
PRIXMAX

SCnd16
SCnd32
SCnd64
SCndFAST16
SCndFAST32
SCndFAST64
SCndLEAST16
SCndLEAST32
SCndLEAST64
SCndMAX
SCNo16
SCNo32
SCNo64
SCNoFAST16
SCNoFAST32
SCNoFAST64
SCNoLEAST16
SCNoLEAST32
SCNoLEAST64
SCNoMAX
SCNu16
SCNu32
SCNu64
SCNuFAST16
SCNuFAST32
SCNuFAST64

SCnuLEAST16
SCnuLEAST32
SCnuLEAST64
SCnuMAX
SCnx16
SCnx32
SCnx64
SCnxFAST16
SCnxFAST32
SCnxFAST64
SCnxLEAST16
SCnxLEAST32
SCnxLEAST64
SCnxMAX

<langinfo.h>
The <langinfo.h> include file contains the declarations and definitions that are used by nl_langinfo.

<limits.h>
The <limits.h> include file defines constants that specify the ranges of integer and character data
types. For example, the maximum value for an object of type char.

<locale.h>
The <locale.h> include file declares the setlocale(), localeconv(), and wcslocaleconv()
library functions. These functions are useful for changing the C locale when you are creating applications
for international markets.

The <locale.h> include file also declares the type struct lconv and the following macro definitions:

NULL LC_ALL LC_C LC_C_FRANCE

LC_C_GERMANY LC_C_ITALY LC_C_SPAIN LC_C_UK

LC_C_USA LC_COLLATE LC_CTYPE LC_MESSAGES

LC_MONETARY LC_NUMERIC LC_TIME LC_TOD

LC_UCS2_ALL LC_UCS2_COLLATE LC_UCS2_CTYPE LC_UNI_ALL

LC_UNI_COLLATE LC_UNI_CTYPE LC_UNI_TIME LC_UNI_NUMERIC

LC_UNI_MESSAGES LC_UNI_MONITARY LC_UNI_TOD

Include Files 5

<math.h>
The <math.h> include file declares all the floating-point math functions:

acos
asin
atan
atan2
Bessel
ceil
cos

cosh
erf
erfc
exp
fabs
floor
fmod

frexp
gamma
hypot
ldexp
log
log10
modf

nextafter
nextafterl
nexttoward
nexttowardl
pow
quantexpd32
quantexpd64

quantexpd128
quantized32
quantized64
quantized128
samequantumd
32
samequantumd
64
samequantumd
128

sin
sinh
sqrt
tan
tanh

Note:

1. The Bessel functions are a group of functions named j0, j1, jn, y0, y1, and yn.
2. Floating-point numbers are only guaranteed 15 significant digits. This can greatly affect expected

results if multiple floating-point numbers are used in a calculation.

<math.h> defines the macro HUGE_VAL, which expands to a positive double expression, and possibly to
infinity on systems that support infinity.

For all mathematical functions, a domain error occurs when an input argument is outside the range of
values that are allowed for that function. In the event of a domain error, errno is set to the value of
EDOM.

A range error occurs if the result of the function cannot be represented in a double value. If the
magnitude of the result is too large (overflow), the function returns the positive or negative value of the
macro HUGE_VAL, and sets errno to ERANGE. If the result is too small (underflow), the function returns
zero.

<mallocinfo.h>
Include file with _C_TS_malloc_info and _C_TS_malloc_debug.

<monetary.h>
The <monetary.h> header file contains declarations and definitions that are related to the output
of monetary quantities. The following monetary functions are defined: strfmon() and wcsfmon().
The strfmon() function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. The wcsfmon() function is available only when LOCALETYPE(*LOCALEUTF) is specified on
the compilation command.

<nl_types.h>
The <nl_types.h> header file contains catalog definitions and the following catalog functions:
catclose(), catgets(), and catopen(). These definitions are not available when either
LOCALETYPE(*CLD) or SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

<pointer.h>
The <pointer.h> include file contains typedefs and pragma directives for the operating system pointer
types: space pointer, open pointer, invocation pointer, label pointer, system pointer, and suspend pointer.
The typedefs _ANYPTR and _SPCPTRCN are also defined in <pointer.h>.

6 IBM i: ILE C/C++ Runtime Library Functions

<recio.h>
The <recio.h> include file defines the types and macros, and prototypes functions for all the ILE C
record input and output (I/O) operations.

The following functions are defined in <recio.h>:

_Racquire _Rclose _Rcommit _Rdelete

_Rdevatr _Rfeod _Rfeov _Rformat

_Rindara _Riofbk _Rlocate _Ropen

_Ropnfbk _Rpgmdev _Rreadd _Rreadf

_Rreadindv _Rreadk _Rreadl _Rreadn

_Rreadnc _Rreadp _Rreads _Rrelease

_Rrlslck _Rrollbck _Rupdate _Rupfb

_Rwrite _Rwrited _Rwriterd _Rwrread

The following positioning macros are defined in recio.h:

__END __END_FRC __FIRST __KEY_EQ

__KEY_GE __KEY_GT __KEY_LE __KEY_LT

__KEY_NEXTEQ __KEY_NEXTUNQ __KEY_PREVEQ __KEY_PREVUNQ

__KEY_LAST __KEY_NEXT __NO_POSITION __PREVIOUS

__PRIOR __RRN_EQ __START __START_FRC

__LAST __NEXT

The following macros are defined in recio.h:

__DATA_ONLY __DFT __NO_LOCK __NULL_KEY_MAP

The following directional macros are defined in recio.h:

__READ_NEXT __READ_PREV

The following functions and macros support locate or move mode:

_Rreadd _Rreadf _Rreadindv _Rreadk

_Rreadl _Rreadn _Rreadnc _Rreadp

_Rreads _Rupdate _Rwrite _Rwrited

_Rwriterd _Rwrread

Any of the record I/O functions that include a buffer parameter may work in move mode or locate mode.
In move mode, data is moved between the user-supplied buffer and the system buffer. In locate mode,
the user must access the data in the system buffer. Pointers to the system buffers are exposed in the
_RFILE structure. To specify that locate mode is being used, the buffer parameter of the record I/O
function is coded as NULL.

A number of the functions include a size parameter. For move mode, this is the number of data bytes that
are copied between the user-supplied buffer and the system buffer. All of the record I/O functions work
with one record at a time regardless of the size that is specified. The size of this record is defined by the
file description. It may not be equal to the size parameter that is specified by the user on the call to the
record I/O functions. The amount of data that is moved between buffers is equal to the record length of

Include Files 7

the current record format or specified minimum size, whichever is smaller. The size parameter is ignored
for locate mode.

The following types are defined in recio.h:

Information for controlling opened record I/O operations

typedef _Packed struct {
 char reserved1[16];
 volatile void *const *const in_buf;
 volatile void *const *const out_buf;
 char reserved2[48];
 _RIOFB_T riofb;
 char reserved3[32];
 const unsigned int buf_length;
 char reserved4[28];
 volatile char *const in_null_map;
 volatile char *const out_null_map;
 volatile char *const null_key_map;
 char reserved5[48];
 const int min_length;
 short null_map_len;
 short null_key_map_len;
 char reserved6[8];
}_RFILE;

Element
Description

in_null_map
Specifies which fields are to be considered NULL when you read from a database file.

out_null_map
Specifies which fields are to be considered NULL when you write to a database file.

null_key_map
Specifies which fields contain NULL if you are reading a database by key.

null_map_len
Specifies the lengths of the in_null_map and out_null_map.

null_key_map_len
Specifies the length of the null_key_map.

Record I/O Feedback Information

typedef struct {
 unsigned char *key;
 _Sys_Struct_T *sysparm;
 unsigned long rrn;
 long num_bytes;
 short blk_count;
 char blk_filled_by;
 int dup_key :1;
 int icf_locate :1;
 int reserved1 :6;
 char reserved2[20];
}_RIOFB_T;

Element
Description

key
If you are processing a file using a keyed sequence access path, this field contains a pointer to the key
value of the record successfully positioned to, read or written.

sysparm
This field is a pointer to the major and minor return code for ICF, display, and printer files.

rrn
This field contains the relative record number of the record that was successfully positioned to, read
or written.

8 IBM i: ILE C/C++ Runtime Library Functions

num_bytes
This field contains the number of bytes that are read or are written.

blk_count
This field contains the number of records that remain in the block. If the file is open for input, blkrcd=y
is specified, and a read function is called, this field will be updated with the number of records
remaining in the block.

blk_filled_by
This field indicates the operation that filled the block. If the file is open for input, blkrcd=y is specified,
and a read function is called. This field will be set to the __READ_NEXT macro if the _Rreadn function
filled the block or to the __READ_PREV macro if the _Rreadp function filled the block.

System-Specific Information

typedef struct {
 void *sysparm_ext;
 _Maj_Min_rc_T _Maj_Min;
 char reserved1[12];
} _Sys_Struct_T;

Major and Minor Return Codes

 typedef struct {
 char major_rc[2];
 char minor_rc[2];
 } _Maj_Min_rc_T;

The following macros are defined in recio.h:
_FILENAME_MAX

Expands to an integral constant expression that is the size of a character array large enough to hold
the longest file name. This is the same as the stream I/O macro.

_ROPEN_MAX
Expands to an integral constant expression that is the maximum number of files that can be opened
simultaneously.

The following null field macros are defined in recio.h:
Element

Description
_CLEAR_NULL_MAP(file, type)

Clears the null output field map that indicates that there are no null fields in the record to be written
to file. type is a typedef that corresponds to the null field map for the current record format.

_CLEAR_UPDATE_NULL_MAP(file, type)
Clears the null input field map that indicates that no null fields are in the record to be written to file.
type is a typedef that corresponds to the null field map for the current record format.

_QRY_NULL_MAP(file, type)
Returns the number of fields that are null in the previously read record. type is a typedef that
corresponds to the null field map for the current record format.

_CLEAR_NULL_KEY_MAP(file, type)
Clears the null key field map so that it indicates no null key fields in the record to be written to file.
type is a typedef that corresponds to the null key field map for the current record format.

_SET_NULL_MAP_FIELD(file, type, field)
Sets the specified field in the output null field map so that field is considered NULL when the record is
written to file.

_SET_UPDATE_NULL_MAP_FIELD(file, type, field)
Sets the specified field in the input null field map so that field is considered null when the record is
written to file. type is a typedef that corresponds to the null key field map for the record format.

Include Files 9

_QRY_NULL_MAP_FIELD(file, type, field)
Returns 1 if the specified field in the null input field map indicates that the field is to be considered
null in the previously read record. If field is not null, it returns zero. type is a typedef that corresponds
to the NULL key field map for the current record format.

_SET_NULL_KEY_MAP_FIELD(file, type, field)
Sets the specified field map that indicates that the field will be considered null when the record is
read from file. type is a typedef that corresponds to the null key field map for the current record
format.

_QRY_NULL_KEY_MAP(file, type)
Returns the number of fields that are null in the key of the previously read record. type is a typedef
that corresponds to the null field map for the current record format.

_QRY_NULL_KEY_MAP_FIELD(file, type, field)
Returns 1 if the specified field in the null key field map indicates that field is to be considered null in
the previously read record. If field is not null, it returns zero. type is a typedef that corresponds to the
null key field map for the current record format.

<regex.h>
The <regex.h> include file defines the following regular expression functions:

regcomp() regerror() regexec() regfree()

The <regex.h> include file also declares the regmatch_t type, the regex_t type, which is capable of storing
a compiled regular expression, and the following macros:

Values of the cflags parameter of the regcomp() function:

REG_BASIC
REG_EXTENDED
REG_ICASE
REG_NEWLINE
REG_NOSUB

Values of the eflags parameter of the regexec() function:

REG_NOTBOL
REG_NOTEOL

Values of the errcode parameter of the regerror() function:

REG_NOMATCH
REG_BADPAT
REG_ECOLLATE
REG_ECTYPE
REG_EESCAPE
REG_ESUBREG
REG_EBRACK
REG_EPAREN
REG_EBRACE
REG_BADBR
REG_ERANGE
REG_ESPACE
REG_BADRPT
REG_ECHAR
REG_EBOL
REG_EEOL
REG_ECOMP
REG_EEXEC
REG_LAST

10 IBM i: ILE C/C++ Runtime Library Functions

These declarations and definitions are not available when LOCALETYPE(*CLD) is specified on the
compilation command.

Note: The regular expressions supported by regcomp() and regexec() follow the specification described
here: "http://www.opengroup.org/onlinepubs/007908799/xbd/re.html".

<setjmp.h>
The <setjmp.h> include file declares the setjmp() function and longjmp() function. It also defines a
buffer type, jmp_buf, that the setjmp() and longjmp() functions use to save and restore the program
state.

<signal.h>
The <signal.h> include file defines the values for signals and declares the signal() and raise()
functions.

The <signal.h> include file also defines the following macros:

SIGABRT
SIGALL
SIG_DFL

SIG_ERR
SIGFPE
SIG_IGN

SIGILL
SIGINT
SIGIO

SIGOTHER
SIGSEGV
SIGTERM

SIGUSR1
SIGUSR2

<signal.h> also declares the function _GetExcData, an IBM i extension to the C standard library.

<stdarg.h>
The <stdarg.h> include file defines macros that allow you access to arguments in functions with
variable-length argument lists: va_arg(), va_copy(), va_start(), and va_end(). The <stdarg.h>
include file also defines the type va_list.

<stddef.h>
The <stddef.h> include file declares the commonly used pointers, variables, and types as listed below:
ptrdiff_t

typedef for the type of the difference of two pointers
size_t

typedef for the type of the value that is returned by sizeof
wchar_t

typedef for a wide character constant.

The <stddef.h> include file also defines the macros NULL and offsetof. NULL is a pointer that is
guaranteed not to point to a data object. The offsetof macro expands to the number of bytes between a
structure member and the start of the structure. The offsetof macro has the form:

 offsetof(structure_type, member)

The <stddef.h> include file also declares the extern variable _EXCP_MSGID, an IBM i extension to C.

<stdbool.h>
The <stdbool.h> include file defines macros to make it easier to use the _Bool data type.

Include Files 11

http://www.opengroup.org/onlinepubs/007908799/xbd/re.html

<stdint.h>
The <stdint.h> include file declares sets of integer types that have specified widths and defines
corresponding sets of macros. It also defines macros that specify limits of integer types corresponding to
the types defined in other standard include files.

The following exact-width integer types are defined:

int8_t
int16_t

int32_t
int64_t

uint8_t
uint16_t

uint32_t
uint64_t

The following minimum-width integer types are defined:

int_least8_t
int_least16_t

int_least32_t
int_least64_t

uint_least8_t
uint_least16_t

uint_least32_t
uint_least64_t

The following fastest minimum-width integer types are defined:

int_fast8_t
int_fast16_t

int_fast32_t
int_fast64_t

uint_fast8_t
uint_fast16_t

uint_fast32_t
uint_fast64_t

The following greatest-width integer types are defined:

intmax_t
uintmax_t

The following macros are defined for limits of exact-width integer types (See note “1” on page 13):

INT8_MAX
INT8_MIN
INT16_MAX

INT16_MIN
INT32_MAX
INT32_MIN

INT64_MAX
INT64_MIN
UINT8_MAX

UINT16_MAX
UINT32_MAX
UINT64_MAX

The following macros are defined for limits of minimum-width integer types (See note “1” on page 13):

INT_LEAST8_MAX
INT_LEAST8_MIN
INT_LEAST16_MAX

INT_LEAST16_MIN
INT_LEAST32_MAX
INT_LEAST32_MIN

INT_LEAST64_MIN
INT_LEAST64_MIN
UINT_LEAST8_MAX

UINT_LEAST16_MAX
UINT_LEAST32_MAX
UINT_LEAST64_MAX

The following macros are defined for limits of fastest minimum-width integer types (See note “1” on page
13):

INT_FAST8_MAX
INT_FAST8_MIN
INT_FAST16_MAX

INT_FAST16_MIN
INT_FAST32_MAX
INT_FAST32_MIN

INT_FAST64_MIN
INT_FAST64_MIN
UINT_FAST8_MAX

UINT_FAST16_MAX
UINT_FAST32_MAX
UINT_FAST64_MAX

The following macros are defined for limits of greatest-width integer types (See note “1” on page 13):

INTMAX_MIN
INTMAX_MAX
UINTMAX_MAX

The following macros are defined for limits for other integer types (See note “1” on page 13):

12 IBM i: ILE C/C++ Runtime Library Functions

PTRDIFF_MAX
PTRDIFF_MIN
SIG_ATOMIC_MAX

SIG_ATOMIC_MIN
SIZE_MAX
WCHAR_MAX

WCHAR_MIN
WINT_MAX
WINT_MIN

The following macros are defined for minimum-width integer constant expressions (See note “2” on page
13):

INT8_C
INT16_C

INT32_C
INT64_C

UINT8_C
UINT16_C

UINT32_C
UINT64_C

The following macros are defined for greatest-width integer constant expressions (See note “2” on page
13):

INTMAX_C
UINTMAX_C

Note:

1. These macros are defined for C programs. They are defined for C++ only when
__STDC_LIMIT_MACROS is defined before <stdint.h> is included.

2. These macros are defined for C programs. They are defined for C++ only when
__STDC_CONSTANT_MACROS is defined before <stdint.h> is included.

<stdio.h>
The <stdio.h> include file defines constants, macros, and types, and declares stream input and output
functions. The stream I/O functions are:

_C_Get_Ssn_Handl
e
clearerr
fclose
fdopen2

feof
ferror
fflush
fgetc
fgetpos
fgets
fgetwc1
fgetws1
fileno2

fopen

fprintf
fputc
_fputchar
fputs
fputwc1
fputws1
fread
freopen
fscanf
fseek
fsetpos
ftell
fwide1
fwprintf1

fwrite
fwscanf1
getc
getchar
gets
getwc1
getwchar1
perror
printf
putc
putchar
puts
putwc1
putwchar1

remove
rename
rewind
scanf
setbuf
setvbuf
snprintf
sprintf
sscanf
tmpfile
tmpnam
ungetc
ungetwc1
vfprintf

vfscanf
vfwprintf1
vfwscanf1

vprintf
vscanf
vsscanf
vsnprintf
vsprintf
vwprintf1
vwscanf1

wfopen2

wprintf1
wscanf1

Note: 1 These functions are not available when either LOCALETYPE(*CLD) or
SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Note: 2 These functions are available when SYSIFCOPT(*IFSIO) is specified on
the compilation command.

The <stdio.h> include file also defines the macros that are listed below. You can use these constants in
your programs, but you should not alter their values.

Include Files 13

BUFSIZ
Specifies the buffer size that the setbuf library function will use when you are allocating buffers for
stream I/O. This value establishes the size of system-allocated buffers and is used with setbuf.

EOF
The value that is returned by an I/O function when the end of the file (or in some cases, an error) is
found.

FOPEN_MAX
The number of files that can be opened simultaneously.

FILENAME_MAX
The longest file name that is supported. If there is no reasonable limit, FILENAME_MAX will be the
recommended size.

L_tmpnam
The size of the longest temporary name that can be generated by the tmpnam function.

TMP_MAX
The minimum number of unique file names that can be generated by the tmpnam function.

NULL
A pointer guaranteed not to point to a data object.

The FILE structure type is defined in <stdio.h>. Stream I⁄O functions use a pointer to the FILE type
to get access to a given stream. The system uses the information in the FILE structure to maintain the
stream.

When integrated file system is enabled with a compilation parameter SYSIFCOPT(*IFSIO), ifs.h is
included into <stdio.h>.

The C standard streams stdin, stdout, and stderr are also defined in <stdio.h>.

The macros SEEK_CUR, SEEK_END, and SEEK_SET expand to integral constant expressions and can be
used as the third argument to fseek().

The macros _IOFBF, _IOLBF, and _IONBF expand to integral constant expressions with distinct values
suitable for use as the third argument to the setvbuf function.

The type fpos_t is defined in <stdio.h> for use with fgetpos() and fsetpos().

See “<stddef.h>” on page 11 for more information about NULL.

<stdlib.h>
The <stdlib.h> include file declares the following functions:

abort
abs
atexit
atof
atoi
atol
bsearch
calloc
_C_Quickpool_D
ebug
_C_Quickpool_I
nit

_C_Quickpool_R
eport
div
exit
free
_gcvt1

getenv
_itoa1

_ltoa1

labs
llabs

ldiv
lldiv
malloc
mblen
mbstowcs
mbtowc
putenv
qsort
rand
rand_r

realloc
srand
strtod
strtod32
strtod64
strtod128
strtof
strtol
strtold
strtoll

strtoul
strtoull
system
_ultoa1

wcstombs
wctomb

Note: 1 These functions are applicable to C++ only.

The <stdlib.h> include file also contains definitions for the following macros:

14 IBM i: ILE C/C++ Runtime Library Functions

NULL
The NULL pointer value.

EXIT_SUCCESS
Expands to 0; used by the atexit function.

EXIT_FAILURE
Expands to 8; used by the atexit function.

RAND_MAX
Expands to an integer that represents the largest number that the rand function can return.

MB_CUR_MAX
Expands to an integral expression to represent the maximum number of bytes in a multibyte character
for the current locale.

For more information about NULL and the types size_t and wchar_t, see “<stddef.h>” on page 11.

<string.h>
The <string.h> include file declares the string manipulation functions:

memchr
memcmp
memcpy
memicmp1

memmove
memset

strcat
strchr
strcmp
strcmpi1

strcoll
strcpy

strcspn
strdup1

strerror
stricmp1

strlen
strncat

strncmp
strncpy
strnicmp1

strnset1

strpbrk
strrchr

strset1

strspn
strstr
strtok
strtok_r
strxfrm

Note: 1 These functions are available for C++ programs. They are available for C only when the program
defines the __cplusplus__strings__ macro.

The <string.h> include file also defines the macro NULL, and the type size_t.

For more information about NULL and the type size_t, see “<stddef.h>” on page 11.

<strings.h>
Contains the functions strcasecmp and strncasecmp.

<time.h>
The <time.h> include file declares the time and date functions:

asctime
asctime_r
clock
ctime
ctime64

ctime_r
ctime64_r
difftime
difftime64
gmtime

gmtime64
gmtime_r
gmtime64_r
localtime
localtime64

localtime_r
localtime64_r
mktime
mktime64
strftime

strptime1

time
time64

Note: 1 These functions are not available when LOCALETYPE(*CLD) is specified on the compilation
command.

The <time.h> include file also provides:

• A structure tm that contains the components of a calendar time. See “gmtime() — Convert Time” on
page 184 for a list of the tm structure members.

• A macro CLOCKS_PER_SEC equal to the number per second of the value that is returned by the clock
function.

Include Files 15

• Types clock_t, time_t, time64_t, and size_t.
• The NULL pointer value.

For more information about NULL and the type size_t, see “<stddef.h>” on page 11.

<wchar.h>
The <wchar.h> header file contains declarations and definitions that are related to the manipulation
of wide character strings. Any functions which deal with files are accessible if SYSIFCOPT(*IFSIO) is
specified.

btowc1
fgetwc2
fgetws2
fputwc2
fputws2
fwide2
fwprintf2
fwscanf2
getwc2
getwchar2
mbrlen1
mbrtowc1
mbsinit1

mbsrtowcs1
putwc2
putwchar2
swprintf1
swscanf2
ungetwc2
vfwprintf2
vswscanf1
vswprintf1
vwprintf2
wcrtomb1
wcscat
wcschr

wcscmp
wcscoll1
wcscpy
wcscspn
wcsftime1
__wcsicmp1
wcslen
wcsncat
wcsncmp
wcsncpy
__wcsnicmp1
wcspbrk
wcsptime3

wcsrchr
wcsrtombs1
wcsspn
wcsstr
wcstod1
wcstod321
wcstod641
wcstod1281
wcstof1
wcstok
wcstol1
wcstold1
wcstoll1

wcstoul1
wcstoull1
wcswcs
wcswidth1
wcsxfrm1
wctob1
wcwidth1
wmemchr
wmemcmp
wmemcpy
wmemmove
wmemset
wprintf2

wscanf2

Note: 1 These functions are not available when LOCALETYPE(*CLD) is
specified on the compilation command.

Note: 2 These functions are available only when SYSIFCOPT(*IFSIO)
and LOCALETYPE(*LOCALE) are specified on the compilation
command.

Note: 3 These functions are available only when
LOCALETYPE(*LOCALEUTF) is specified on the compilation
command.

<wchar.h> also defines the macro NULL and the types size_t and wchar_t.

For more information about NULL and the types size_t and wchar_t, see “<stddef.h>” on page 11.

<wctype.h>
The <wctype.h> header file declares the following wide character functions:

iswalnum
iswalpha
iswblank
iswcntrl

iswdigit
iswgraph
iswlower
iswprint

iswpunct
iswspace
iswupper
iswxdigit

iswctype
towlower
towupper
towctrans

wctype
wctrans

The <wctype.h> header file also contains declarations and definitions for wide character classification.
These declarations and definitions are not available when LOCALETYPE(*CLD) is specified on the
compilation command.

<xxcvt.h>
The <xxcvt.h> include file contains the declarations that are used by the QXXDTOP, QXXDTOZ, QXXITOP,
QXXITOZ, QXXPTOI, QXXPTOD, QXXZTOD, and QXXZTOI conversion functions.

16 IBM i: ILE C/C++ Runtime Library Functions

<xxdtaa.h>
The <xxdtaa.h> include file contains the declarations for the data area interface functions QXXCHGDA,
QXXRTVDA, and the type _DTAA_NAME_T.

The definition of _DTAA_NAME_T is:

typedef struct _DTAA_NAME_T {
 char dtaa_name[10];
 char dtaa_lib[10];
}_DTAA_NAME_T;

<xxenv.h>
The <xxenv.h> include file contains the declarations for the QPXXCALL and QPXXDLTE EPM environment
handling program. ILE procedures cannot be called from this interface.

The definition of _ENVPGM_T is:

typedef struct _ENVPGM_T {
 char pgmname[10];
 char pgmlib[10];
} _ENVPGM_T;

<xxfdbk.h>
The <xxfdbk.h> include file contains the declarations that are used by the operating system feedback
areas. To retrieve information from feedback areas, see “_Riofbk() — Obtain I/O Feedback Information”
on page 314 and “_Ropnfbk() — Obtain Open Feedback Information” on page 323.

The following is an example of a type that is defined in the <xxfdbk.h> include file:

typedef _Packed struct _XXIOFB_T {
 short file_dep_fb_offset;
 int write_count;
 int read_count;
 int write_read_count;
 int other_io_count;
 char reserved1;
 char cur_operation;
 char rec_format[10];
 char dev_class[2];
 char dev_name[10];
 int last_io_rec_len;
 char reserved2[80];
 short num_recs_retrieved;
 short last_io_rec_len2;
 char reserved3[2];
 int cur_blk_count;
 char reserved4[8];
} _XXIOFB_T;

For further information about the open feedback areas, see the Files and file systems category in the
Information Center.

Machine Interface (MI) Include Files
See the ILE C/C++ for AS/400 MI Library Reference for a description of the MI header files.

Include Files 17

18 IBM i: ILE C/C++ Runtime Library Functions

Library Functions

This topic describes the standard C/C++ library functions and the ILE C/C++ extensions to the library
functions, except for the ILE C/C++ MI functions. See the ILE C/C++ for AS/400 MI Library Reference for
more information about the MI functions.

Each library function that is listed in this section contains:

• A format description that shows the include file that declares the function.
• The data type that is returned by the function.
• The required data types of the arguments to the function.

This example shows the format of the log() function:

 #include <math.h>
 double log(double x);

The example shows that:

• you must include the file math.h in the program.
• the log() function returns type double.
• the log() function requires an argument x of type double.

Examples throughout the section illustrate the use of library functions and are not necessarily complete.

This topic lists the library functions in alphabetic order. If you are unsure of the function you want to use,
see the summary of the library functions in “The C/C++ Library” on page 19.

Note: All functions are considered threadsafe unless noted otherwise.

The C/C++ Library
This topic summarizes the available C/C++ library functions and their location in this book. It also briefly
describes what the function does. Each library function is listed according to the type of function it
performs.

Error Handling
Function Header File Page Description

assert() assert.h “assert() — Verify
Condition” on page 68

Prints diagnostic messages.

atexit() stdlib.h “atexit() — Record
Program Ending
Function” on page 70

Registers a function to be
executed at program end.

clearerr() stdio.h “clearerr() — Reset Error
Indicators” on page 87

Resets error indicators.

feof() stdio.h “feof() — Test End-of-
File Indicator” on page
119

Tests end-of-file indicator for
stream input.

ferror() stdio.h “ferror() — Test for
Read/Write Errors” on
page 120

Tests the error indicator for a
specified stream.

© Copyright IBM Corp. 1998, 2015 19

Function Header File Page Description

_GetExcData() signal.h “_GetExcData() — Get
Exception Data” on
page 177

Retrieves information about
an exception from within
a C signal handler. This
function is not defined when
SYSIFCOPT(*SYNCSIGNAL) is
specified on the compilation
command.

perror() stdio.h “perror() — Print Error
Message” on page 251

Prints an error message to
stderr.

raise() signal.h “raise() — Send Signal”
on page 286

Initiates a signal.

signal() signal.h “signal() — Handle
Interrupt Signals” on
page 378

Allows handling of an interrupt
signal from the operating
system.

strerror() string.h “strerror() — Set Pointer
to Runtime Error
Message” on page 400

Retrieves pointer to system error
message.

Searching and Sorting
Function Header File Page Description

bsearch() stdlib.h “bsearch() —
Search Arrays”
on page 76

Performs a binary search of a sorted array.

qsort() stdlib.h “qsort() — Sort
Array” on page
275

Performs a quick sort on an array of
elements.

Mathematical
Function Header File Page Description

abs() stdlib.h “abs() —
Calculate
Integer
Absolute Value”
on page 61

Calculates the absolute value of an
integer.

ceil() math.h “ceil() — Find
Integer
>=Argument”
on page 86

Calculates the double value representing
the smallest integer that is greater than
or equal to a number.

div() stdlib.h “div() —
Calculate
Quotient and
Remainder” on
page 111

Calculates the quotient and remainder of
an integer.

erf() math.h “erf() – erfc() —
Calculate Error
Functions” on
page 112

Calculates the error function.

20 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

erfc() math.h “erf() – erfc() —
Calculate Error
Functions” on
page 112

Calculates the error function for large
numbers.

exp() math.h “exp() —
Calculate
Exponential
Function” on
page 114

Calculates an exponential function.

fabs() math.h “fabs() —
Calculate
Floating-Point
Absolute Value”
on page 115

Calculates the absolute value of a
floating-point number.

floor() math.h “floor() — Find
Integer
<=Argument”
on page 132

Calculates the double value representing
the largest integer that is less than or
equal to a number.

fmod() math.h “fmod() —
Calculate
Floating-Point
Remainder” on
page 133

Calculates the floating-point remainder of
one argument divided by another.

frexp() math.h “frexp() —
Separate
Floating-Point
Value” on page
155

Separates a floating-point number into its
mantissa and exponent.

gamma() math.h “gamma() —
Gamma
Function” on
page 173

Calculates the gamma function.

hypot() math.h “hypot() —
Calculate
Hypotenuse” on
page 192

Calculates the hypotenuse.

labs() stdlib.h “labs() – llabs()
— Calculate
Absolute Value
of Long and
Long Long
Integer” on
page 200

Calculates the absolute value of a long
integer.

llabs() stdlib.h “labs() – llabs()
— Calculate
Absolute Value
of Long and
Long Long
Integer” on
page 200

Calculates the absolute value of a long
long integer.

Library Functions 21

Function Header File Page Description

ldexp() math.h “ldexp() —
Multiply by a
Power of Two”
on page 201

Multiplies a floating-point number by an
integral power of 2.

ldiv() stdlib.h “ldiv() – lldiv() —
Perform Long
and Long Long
Division” on
page 202

Calculates the quotient and remainder of
a long integer.

lldiv() stdlib.h “ldiv() – lldiv() —
Perform Long
and Long Long
Division” on
page 202

Calculates the quotient and remainder of
a long long integer.

log() math.h “log() —
Calculate
Natural
Logarithm” on
page 214

Calculates natural logarithm.

log10() math.h “log10() —
Calculate Base
10 Logarithm”
on page 215

Calculates base 10 logarithm.

modf() math.h “modf() —
Separate
Floating-Point
Value” on page
246

Calculates the signed fractional portion of
the argument.

nextafter() math.h “nextafter() –
nextafterl() –
nexttoward() –
nexttowardl() —
Calculate the
Next
Representable
Floating-Point
Value” on page
247

Calculates the next representable
floating-point value.

nextafterl() math.h “nextafter() –
nextafterl() –
nexttoward() –
nexttowardl() —
Calculate the
Next
Representable
Floating-Point
Value” on page
247

Calculates the next representable
floating-point value.

22 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

nexttoward() math.h “nextafter() –
nextafterl() –
nexttoward() –
nexttowardl() —
Calculate the
Next
Representable
Floating-Point
Value” on page
247

Calculates the next representable
floating-point value.

nexttowardl() math.h “nextafter() –
nextafterl() –
nexttoward() –
nexttowardl() —
Calculate the
Next
Representable
Floating-Point
Value” on page
247

Calculates the next representable
floating-point value.

pow() math.h “pow() —
Compute
Power” on page
253

Calculates the value of an argument
raised to a power.

quantexpd32() math.h “quantexpd32()
- quantexpd64()
-
quantexpd128()
— Compute the
Quantum
Exponent” on
page 273

Compute the quantum exponent of a
single-precision decimal floating-point
value.

quantexpd64() math.h “quantexpd32()
- quantexpd64()
-
quantexpd128()
— Compute the
Quantum
Exponent” on
page 273

Compute the quantum exponent of a
double-precision decimal floating-point
value.

quantexpd128() math.h “quantexpd32()
- quantexpd64()
-
quantexpd128()
— Compute the
Quantum
Exponent” on
page 273

Compute the quantum exponent of
a quad-precision decimal floating-point
value.

Library Functions 23

Function Header File Page Description

quantized32() math.h “quantized32() -
quantized64() -
quantized128()
— Set the
Quantum
Exponent of X to
the Quantum
Exponent of Y”
on page 274

Set the quantum exponent of a single-
precision decimal floating-point value to
the quantum exponent of another single-
precision decimal floating-point value.

quantized64() math.h “quantized32() -
quantized64() -
quantized128()
— Set the
Quantum
Exponent of X to
the Quantum
Exponent of Y”
on page 274

Set the quantum exponent of a double-
precision decimal floating-point value
to the quantum exponent of another
double-precision decimal floating-point
value.

quantized128() math.h “quantized32() -
quantized64() -
quantized128()
— Set the
Quantum
Exponent of X to
the Quantum
Exponent of Y”
on page 274

Set the quantum exponent of a quad-
precision decimal floating-point value to
the quantum exponent of another quad-
precision decimal floating-point value.

samequantumd32() math.h “samequantum
d32() -
samequantumd
64() -
samequantumd
128() —
Determine if
Quantum
Exponents X
and Y are the
Same” on page
360

Determine if the quantum exponents
of two single-precision decimal floating-
point values are the same.

samequantumd64() math.h “samequantum
d32() -
samequantumd
64() -
samequantumd
128() —
Determine if
Quantum
Exponents X
and Y are the
Same” on page
360

Determine if the quantum exponents
of two double-precision decimal floating-
point values are the same.

24 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

samequantumd128() math.h “samequantum
d32() -
samequantumd
64() -
samequantumd
128() —
Determine if
Quantum
Exponents X
and Y are the
Same” on page
360

Determine if the quantum exponents
of two quad-precision decimal floating-
point values are the same.

sqrt() math.h “sqrt() —
Calculate
Square Root” on
page 384

Calculates the square root of a number.

Trigonometric Functions

Function Header File Page Description

acos() math.h “acos() —
Calculate
Arccosine” on
page 62

Calculates the arc cosine.

asin() math.h “asin() —
Calculate
Arcsine” on
page 67

Calculates the arc sine.

atan() math.h “atan() – atan2()
— Calculate
Arctangent” on
page 69

Calculates the arc tangent.

atan2() math.h “atan() – atan2()
— Calculate
Arctangent” on
page 69

Calculates the arc tangent.

cos() math.h “cos() —
Calculate
Cosine” on page
89

Calculates the cosine.

cosh() math.h “cosh() —
Calculate
Hyperbolic
Cosine” on page
90

Calculates the hyperbolic cosine.

sin() math.h “sin() —
Calculate Sine”
on page 380

Calculates the sine.

Library Functions 25

Function Header File Page Description

sinh() math.h “sinh() —
Calculate
Hyperbolic
Sine” on page
381

Calculates the hyperbolic sine.

tan() math.h “tan() —
Calculate
Tangent” on
page 444

Calculates the tangent.

tanh() math.h “tanh() —
Calculate
Hyperbolic
Tangent” on
page 445

Calculates the hyperbolic tangent.

Bessel Functions

Function Header File Page Description

j0() math.h “Bessel
Functions” on
page 75

0 order differential equation of the first
kind.

j1() math.h “Bessel
Functions” on
page 75

1st order differential equation of the first
kind.

jn() math.h “Bessel
Functions” on
page 75

nth order differential equation of the first
kind.

y0() math.h “Bessel
Functions” on
page 75

0 order differential equation of the
second kind.

y1() math.h “Bessel
Functions” on
page 75

1st order differential equation of the
second kind.

yn() math.h “Bessel
Functions” on
page 75

nth order differential equation of the
second kind.

Time Manipulation
Function Header File Page Description

asctime() time.h “asctime() —
Convert Time to
Character
String” on page
63

Converts time stored as a structure to a
character string in storage.

26 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

asctime_r() time.h “asctime_r() —
Convert Time to
Character
String
(Restartable)”
on page 65

Converts time stored as a structure to a
character string in storage. (Restartable
version of asctime())

clock() time.h “clock() —
Determine
Processor
Time” on page
88

Determines processor time.

ctime() time.h “ctime() —
Convert Time to
Character
String” on page
97

Converts time stored as a long value to a
character string.

ctime64() time.h “ctime64() —
Convert Time to
Character
String” on page
98

Converts time stored as a long long value
to a character string.

ctime_r() time.h “ctime_r() —
Convert Time to
Character
String
(Restartable)”
on page 100

Converts time stored as a long value to
a character string. (Restartable version of
ctime())

ctime64_r() time.h “ctime64_r() —
Convert Time to
Character
String
(Restartable)”
on page 102

Converts time stored as a long long value
to a character string. (Restartable version
of ctime64())

difftime() time.h “difftime() —
Compute Time
Difference” on
page 108

Calculates the difference between two
times.

difftime64() time.h “difftime64() —
Compute Time
Difference” on
page 109

Calculates the difference between two
times.

gmtime() time.h “gmtime() —
Convert Time”
on page 184

Converts time to Coordinated Universal
Time structure.

gmtime_r() time.h “gmtime_r() —
Convert Time
(Restartable)”
on page 188

Converts time to Coordinated Universal
Time structure. (Restartable version of
gmtime())

Library Functions 27

Function Header File Page Description

gmtime64() time.h “gmtime64() —
Convert Time”
on page 186

Converts time to Coordinated Universal
Time structure.

gmtime64_r() time.h “gmtime64_r()
— Convert Time
(Restartable)”
on page 190

Converts time to Coordinated Universal
Time structure. (Restartable version of
gmtime64())

localtime() time.h “localtime() —
Convert Time”
on page 208

Converts time to local time.

localtime64() time.h “localtime64()
— Convert
Time” on page
210

Converts time to local time.

localtime_r() time.h “localtime_r()
— Convert Time
(Restartable)”
on page 211

Converts time to local time. (Restartable
version of localtime())

localtime64_r() time.h “localtime64_r(
) — Convert
Time
(Restartable)”
on page 213

Converts time to local time. (Restartable
version of localtime64())

mktime() time.h “mktime() —
Convert Local
Time” on page
243

Converts local time into calendar time.

mktime64() time.h “mktime64() —
Convert Local
Time” on page
245

Converts local time into calendar time.

time() time.h “time() —
Determine
Current Time”
on page 446

Returns the time in seconds.

time64() time.h “time64() —
Determine
Current Time”
on page 447

Returns the time in seconds.

Type Conversion
Function Header File Page Description

atof() stdlib.h “atof() —
Convert
Character
String to Float”
on page 71

Converts a character string to a floating-
point value.

28 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

atoi() stdlib.h “atoi() —
Convert
Character
String to
Integer” on
page 73

Converts a character string to an integer.

atol() stdlib.h “atol() – atoll()
— Convert
Character
String to Long
or Long Long
Integer” on
page 74

Converts a character string to a long
integer.

atoll() stdlib.h “atol() – atoll()
— Convert
Character
String to Long
or Long Long
Integer” on
page 74

Converts a character string to a long
integer.

_gcvt() stdlib.h “_gcvt() —
Convert
Floating-Point
to String” on
page 174

Converts a floating-point value to a string.

_itoa() stdlib.h “_itoa() —
Convert Integer
to String” on
page 199

Converts an integer to a string.

_ltoa() stdlib.h “_ltoa() —
Convert Long
Integer to
String” on page
216

Converts a long integer to a string.

strtod() stdlib.h “strtod() -
strtof() -
strtold() —
Convert
Character
String to
Double, Float,
and Long
Double” on
page 426

Converts a character string to a double-
precision binary floating-point value.

Library Functions 29

Function Header File Page Description

strtod32() stblib.h “strtod32() -
strtod64() -
strtod128() —
Convert
Character
String to
Decimal
Floating-Point”
on page 429

Converts a character string to a single-
precision decimal floating-point value.

strtod64() stblib.h “strtod32() -
strtod64() -
strtod128() —
Convert
Character
String to
Decimal
Floating-Point”
on page 429

Converts a character string to a double-
precision decimal floating-point value.

strtod128() stblib.h “strtod32() -
strtod64() -
strtod128() —
Convert
Character
String to
Decimal
Floating-Point”
on page 429

Converts a character string to a quad-
precision decimal floating-point value.

strtof() stblib.h “strtod() -
strtof() -
strtold() —
Convert
Character
String to
Double, Float,
and Long
Double” on
page 426

Converts a character string to a binary
floating-point value.

strtol() stdlib.h “strtol() –
strtoll() —
Convert
Character
String to Long
and Long Long
Integer” on
page 435

Converts a character string to a long
integer.

30 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

strtold() stdlib.h “strtod() -
strtof() -
strtold() —
Convert
Character
String to
Double, Float,
and Long
Double” on
page 426

Converts a character string to a double-
precision binary floating-point value.

strtoll() stdlib.h “strtol() –
strtoll() —
Convert
Character
String to Long
and Long Long
Integer” on
page 435

Converts a character string to a long long
integer.

strtoul() stdlib.h “strtoul() –
strtoull() —
Convert
Character
String to
Unsigned Long
and Unsigned
Long Long
Integer” on
page 437

Converts a string to an unsigned long
integer.

strtoull() stdlib.h “strtoul() –
strtoull() —
Convert
Character
String to
Unsigned Long
and Unsigned
Long Long
Integer” on
page 437

Converts a string to an unsigned long long
integer.

toascii() ctype.h “toascii() —
Convert
Character to
Character
Representable
by ASCII” on
page 450

Converts a character to the corresponding
ASCII value.

_ultoa() stdlib.h “_ultoa() —
Convert
Unsigned Long
Integer to
String” on page
455

Converts an unsigned long integer to a
string.

Library Functions 31

Function Header File Page Description

wcstod() wchar.h “wcstod() -
wcstof() -
wcstold() —
Convert Wide-
Character
String to
Double, Float,
and Long
Double” on
page 515

Converts a wide-character string to
a double-precision binary floating-point
value.

wcstod32() wchar.h “wcstod32() -
wcstod64() -
wcstod128() —
Convert Wide-
Character
String to
Decimal
Floating-Point”
on page 517

Converts a wide-character string to a
single-precision decimal floating-point
value.

wcstod64() wchar.h “wcstod32() -
wcstod64() -
wcstod128() —
Convert Wide-
Character
String to
Decimal
Floating-Point”
on page 517

Converts a wide-character string to a
double-precision decimal floating-point
value.

wcstod128() wchar.h “wcstod32() -
wcstod64() -
wcstod128() —
Convert Wide-
Character
String to
Decimal
Floating-Point”
on page 517

Converts a wide-character string to
a quad-precision decimal floating-point
value.

wcstof() wchar.h “wcstod() -
wcstof() -
wcstold() —
Convert Wide-
Character
String to
Double, Float,
and Long
Double” on
page 515

Converts a wide-character string to a
binary floating-point value.

32 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

wcstol() wchar.h “wcstol() –
wcstoll() —
Convert Wide
Character
String to Long
and Long Long
Integer” on
page 520

Converts a wide-character string to a long
integer.

wcstold() wchar.h “wcstod() -
wcstof() -
wcstold() —
Convert Wide-
Character
String to
Double, Float,
and Long
Double” on
page 515

Converts a wide-character string to
a double-precision binary floating-point
value.

wcstoll() wchar.h “wcstol() –
wcstoll() —
Convert Wide
Character
String to Long
and Long Long
Integer” on
page 520

Converts a wide-character string to a long
long integer.

wcstoul() wchar.h “wcstoul() –
wcstoull() —
Convert Wide
Character
String to
Unsigned Long
and Unsigned
Long Long
Integer” on
page 525

Converts a wide-character string to an
unsigned long integer.

wcstoull() wchar.h “wcstoul() –
wcstoull() —
Convert Wide
Character
String to
Unsigned Long
and Unsigned
Long Long
Integer” on
page 525

Converts a wide-character string to an
unsigned long long integer.

Library Functions 33

Conversion
Function Header File Page Description

QXXDTOP() xxcvt.h “QXXDTOP() —
Convert Double
to Packed
Decimal” on
page 278

Converts a floating-point value to a
packed decimal value.

QXXDTOZ() xxcvt.h “QXXDTOZ() —
Convert Double
to Zoned
Decimal” on
page 279

Converts a floating-point value to a zoned
decimal value.

QXXITOP() xxcvt.h “QXXITOP() —
Convert Integer
to Packed
Decimal” on
page 280

Converts an integer value to a packed
decimal value.

QXXITOZ() xxcvt.h “QXXITOZ() —
Convert Integer
to Zoned
Decimal” on
page 281

Converts an integer value to a zoned
decimal value.

QXXPTOD() xxcvt.h “QXXPTOD() —
Convert Packed
Decimal to
Double” on page
282

Converts a packed decimal value to a
floating-point value.

QXXPTOI() xxcvt.h “QXXPTOI() —
Convert Packed
Decimal to
Integer” on
page 282

Converts a packed decimal value to an
integer value.

QXXZTOD() xxcvt.h “QXXZTOD() —
Convert Zoned
Decimal to
Double” on page
285

Converts a zoned decimal value to a
floating-point value.

QXXZTOI() xxcvt.h “QXXZTOI() —
Convert Zoned
Decimal to
Integer” on
page 285

Converts a zoned decimal value to an
integer value.

34 IBM i: ILE C/C++ Runtime Library Functions

Record Input/Output
Function Header File Page Description

_Racquire() recio.h “_Racquire() —
Acquire a
Program
Device” on
page 288

Prepares a device for record I/O
operations.

_Rclose() recio.h “_Rclose() —
Close a File” on
page 289

Closes a file that is opened for record I/O
operations.

_Rcommit() recio.h “_Rcommit() —
Commit Current
Record” on
page 290

Completes the current transaction, and
establishes a new commitment boundary.

_Rdelete() recio.h “_Rdelete() —
Delete a
Record” on
page 292

Deletes the currently locked record.

_Rdevatr() recio.h
xxfdbk.h

“_Rdevatr() —
Get Device
Attributes” on
page 294

Returns a pointer to a copy of the
device attributes feedback area for the file
reference by fp and the device pgmdev.

_Rfeod() recio.h “_Rfeod() —
Force the End-
of-Data” on
page 308

Forces an end-of-file condition for the file
referenced by fp.

_Rfeov() recio.h “_Rfeov() —
Force the End-
of-File” on page
309

Forces an end-of-volume condition for
tapes.

_Rformat() recio.h “_Rformat() —
Set the Record
Format Name”
on page 310

Sets the record format to fmt for the file
referenced by fp.

_Rindara() recio.h “_Rindara() —
Set Separate
Indicator Area”
on page 312

Sets up the separate indicator area
to be used for subsequent record I/O
operations.

_Riofbk() recio.h
xxfdbk.h

“_Riofbk() —
Obtain I/O
Feedback
Information” on
page 314

Returns a pointer to a copy of the I/O
feedback area for the file referenced by fp.

_Rlocate() recio.h “_Rlocate() —
Position a
Record” on
page 316

Positions to the record in the files
associated with fp and specified by the
key, klen_rrn and opt parameters.

Library Functions 35

Function Header File Page Description

_Ropen() recio.h “_Ropen() —
Open a Record
File for I/O
Operations” on
page 319

Opens a file for record I/O operations.

_Ropnfbk() recio.h
xxfdbk.h

“_Ropnfbk() —
Obtain Open
Feedback
Information” on
page 323

Returns a pointer to a copy of the open
feedback area for the file referenced by fp.

_Rpgmdev() recio.h “_Rpgmdev() —
Set Default
Program
Device” on
page 324

Sets the default program device.

_Rreadd() recio.h “_Rreadd() —
Read a Record
by Relative
Record
Number” on
page 326

Reads a record by relative record number.

_Rreadf() recio.h “_Rreadf() —
Read the First
Record” on
page 328

Reads the first record.

_Rreadindv() recio.h “_Rreadindv()
— Read from an
Invited Device”
on page 330

Reads data from an invited device.

_Rreadk() recio.h “_Rreadk() —
Read a Record
by Key” on
page 332

Reads a record by key.

_Rreadl() recio.h “_Rreadl() —
Read the Last
Record” on
page 335

Reads the last record.

_Rreadn() recio.h “_Rreadn() —
Read the Next
Record” on
page 336

Reads the next record.

_Rreadnc() recio.h “_Rreadnc() —
Read the Next
Changed
Record in a
Subfile” on
page 339

Reads the next changed record in the
subfile.

36 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

_Rreadp() recio.h “_Rreadp() —
Read the
Previous
Record” on
page 340

Reads the previous record.

_Rreads() recio.h “_Rreads() —
Read the Same
Record” on
page 342

Reads the same record.

_Rrelease() recio.h “_Rrelease() —
Release a
Program
Device” on
page 344

Makes the specified device ineligible for
record I/O operations.

_Rrlslck() recio.h “_Rrlslck() —
Release a
Record Lock”
on page 346

Releases the currently locked record.

_Rrollbck() recio.h “_Rrollbck() —
Roll Back
Commitment
Control
Changes” on
page 347

Reestablishes the last commitment
boundary as the current commitment
boundary.

_Rupdate() recio.h “_Rupdate() —
Update a
Record” on
page 349

Writes to the record that is currently
locked for update.

_Rupfb() recio.h “_Rupfb() —
Provide
Information on
Last I/O
Operation” on
page 350

Updates the feedback structure with
information about the last record I/O
operation.

_Rwrite() recio.h “_Rwrite() —
Write the Next
Record” on
page 352

Writes a record to the end of the file.

_Rwrited() recio.h “_Rwrited() —
Write a Record
Directly” on
page 354

Writes a record by relative record number.
It will only write over deleted records.

_Rwriterd() recio.h “_Rwriterd() —
Write and Read
a Record” on
page 357

Writes and reads a record.

Library Functions 37

Function Header File Page Description

_Rwrread() recio.h “_Rwrread() —
Write and Read
a Record
(separate
buffers)” on
page 358

Functions as _Rwriterd(), except
separate buffers can be specified for input
and output data.

Stream Input/Output
Formatted Input/Output

Function Header File Page Description

fprintf() stdio.h “fprintf() —
Write Formatted
Data to a
Stream” on
page 141

Formats and prints characters to the
output stream.

fscanf() stdio.h “fscanf() —
Read Formatted
Data” on page
156

Reads data from a stream into locations
given by arguments.

fwprintf() stdio.h “fwprintf() —
Format Data as
Wide Characters
and Write to a
Stream” on
page 166

Formats data as wide characters, and
writes to a stream.

fwscanf() stdio.h “fwscanf() —
Read Data from
Stream Using
Wide
Character” on
page 170

Reads wide data from stream into
locations given by arguments.

printf() stdio.h “printf() — Print
Formatted
Characters” on
page 254

Formats and prints characters to stdout.

scanf() stdio.h “scanf() — Read
Data” on page
362

Reads data from stdin into locations
given by arguments.

snprintf() stdio.h “snprintf() —
Print Formatted
Data to Buffer”
on page 382

Same as sprintf, except that the
snprintf() function will stop after n
characters have been written to a buffer.

sprintf() stdio.h “sprintf() —
Print Formatted
Data to Buffer”
on page 383

Formats and writes characters to a buffer.

38 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

sscanf() stdio.h “sscanf() —
Read Data” on
page 386

Reads data from a buffer into locations
given by arguments.

swprintf() wchar.h “swprintf() —
Format and
Write Wide
Characters to
Buffer” on page
440

Formats and writes wide characters to
buffer.

swscanf() wchar.h “swscanf() —
Read Wide
Character Data”
on page 441

Reads wide data from a buffer into
locations given by arguments.

vfprintf() stdio.h
stdarg.h

“vfprintf() —
Print Argument
Data to Stream”
on page 461

Formats and prints characters to the
output stream using a variable number of
arguments.

vfscanf() stdarg.h
stdio.h

“vfscanf() —
Read Formatted
Data” on page
463

Reads data from a specified stream into
locations given by a variable number of
arguments.

vfwprintf() stdio.h
stdarg.h

“vfwprintf() —
Format
Argument Data
as Wide
Characters and
Write to a
Stream ” on
page 464

Formats argument data as wide
characters and writes to a stream using a
variable number of arguments.

vfwscanf() stdarg.h
stdio.h

“vfwscanf() —
Read Formatted
Wide Character
Data” on page
466

Reads wide data from a specified stream
into locations given by a variable number
of arguments.

vprintf() stdarg.h
stdio.h

“vprintf() —
Print Argument
Data” on page
469

Formats and writes characters to stdout
using a variable number of arguments.

vscanf() stdarg.h
stdio.h

“vscanf() —
Read Formatted
Data” on page
470

Reads data from stdin into locations
given by a variable number of arguments.

vsnprintf() stdio.h
stdarg.h

“vsnprintf() —
Print Argument
Data to Buffer”
on page 472

Same as vsprintf, except that the
vsnprintf function will stop after n
characters have been written to a buffer.

vsprintf() stdarg.h
stdio.h

“vsprintf() —
Print Argument
Data to Buffer”
on page 473

Formats and writes characters to a buffer
using a variable number of arguments.

Library Functions 39

Function Header File Page Description

vsscanf() stdarg.h
stdio.h

“vsscanf() —
Read Formatted
Data” on page
475

Reads data from a buffer into locations
given by a variable number of arguments.

vswprintf() wchar.h
stdarg.h

“vswprintf() —
Format and
Write Wide
Characters to
Buffer” on page
476

Formats and writes wide characters
to buffer using a variable number of
arguments.

vswscanf() stdarg.h
wchar.h

“vswscanf() —
Read Formatted
Wide Character
Data” on page
478

Reads wide data from a buffer into
locations given by a variable number of
arguments.

vwprintf() wchar.h
stdarg.h

“vwprintf() —
Format
Argument Data
as Wide
Characters and
Print ” on page
480

Formats and writes wide characters to
stdout using a variable number of
arguments.

vwscanf() stdarg.h
stdio.h

“vwscanf() —
Read Formatted
Wide Character
Data” on page
481

Reads wide data from stdin into
locations given by a variable number of
arguments.

wprintf() stdio.h “wprintf() —
Format Data as
Wide Characters
and Print” on
page 544

Formats and writes wide characters to
stdout

wscanf() stdio.h “wscanf() —
Read Data Using
Wide-Character
Format String”
on page 545

Reads wide data from stdin into
locations given by arguments.

Character and String Input/Output

Function Header File Page Description

fgetc() stdio.h “fgetc() — Read
a Character” on
page 123

Reads a character from a specified input
stream.

fgets() stdio.h “fgets() — Read
a String” on
page 126

Reads a string from a specified input
stream.

40 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

fgetwc() stdio.h “fgetwc() —
Read Wide
Character from
Stream ” on
page 127

Reads a wide character from a specified
stream.

fgetws() stdio.h “fgetws() —
Read Wide-
Character
String from
Stream ” on
page 129

Reads a wide-character string from a
specified stream.

fputc() stdio.h “fputc() — Write
Character” on
page 143

Prints a character to a specified output
stream.

_fputchar() stdio.h “_fputchar() —
Write
Character” on
page 144

Writes a character to stdout.

fputs() stdio.h “fputs() — Write
String” on page
145

Prints a string to a specified output
stream.

fputwc() stdio.h “fputwc() —
Write Wide
Character” on
page 146

Writes a wide character to a specified
stream.

fputws() stdio.h “fputws() —
Write Wide-
Character
String” on page
148

Writes a wide-character string to a
specified stream.

getc() stdio.h “getc() –
getchar() —
Read a
Character” on
page 175

Reads a character from a specified input
stream.

getchar() stdio.h “getc() –
getchar() —
Read a
Character” on
page 175

Reads a character from stdin.

gets() stdio.h “gets() — Read
a Line” on page
179

Reads a line from stdin.

getwc() stdio.h “getwc() —
Read Wide
Character from
Stream” on
page 180

Reads a wide character from a specified
stream.

Library Functions 41

Function Header File Page Description

getwchar() stdio.h “getwchar() —
Get Wide
Character from
stdin” on page
182

Gets a wide character from stdin.

putc() stdio.h “putc() –
putchar() —
Write a
Character” on
page 266

Prints a character to a specified output
stream.

putchar() stdio.h “putc() –
putchar() —
Write a
Character” on
page 266

Prints a character to stdout.

puts() stdio.h “puts() — Write
a String” on
page 268

Prints a string to stdout.

putwc() stdio.h “putwc() —
Write Wide
Character” on
page 269

Writes a wide character to a specified
stream.

putwchar() stdio.h “putwchar() —
Write Wide
Character to
stdout ” on
page 271

Writes a wide character to stdout.

ungetc() stdio.h “ungetc() —
Push Character
onto Input
Stream” on
page 456

Pushes a character back onto a specified
input stream.

ungetwc() stdio.h “ungetwc() —
Push Wide
Character onto
Input Stream ”
on page 458

Pushes a wide character back onto a
specified input stream.

Direct Input/Output

Function Header File Page Description

fread() stdio.h “fread() — Read
Items” on page
150

Reads items from a specified input
stream.

fwrite() stdio.h “fwrite() —
Write Items” on
page 169

Writes items to a specified output stream.

File Positioning

42 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

fgetpos() stdio.h “fgetpos() —
Get File
Position” on
page 124

Gets the current position of the file
pointer.

fseek() stdio.h “fseek() –
fseeko() —
Reposition File
Position” on
page 158

Moves the file pointer to a new location.

fseeko() stdio.h “fseek() –
fseeko() —
Reposition File
Position” on
page 158

Same as fseek().

fsetpos() stdio.h “fsetpos() — Set
File Position” on
page 160

Moves the file pointer to a new location.

ftell() stdio.h “ftell() – ftello()
— Get Current
Position” on
page 162

Gets the current position of the file
pointer.

ftello() stdio.h “ftell() – ftello()
— Get Current
Position” on
page 162

Same as ftell().

rewind() stdio.h “rewind() —
Adjust Current
File Position” on
page 307

Repositions the file pointer to the
beginning of the file.

File Access

Function Header File Page Description

fclose() stdio.h “fclose() —
Close Stream”
on page 116

Closes a specified stream.

fdopen() stdio.h “fdopen() —
Associates
Stream With
File Descriptor”
on page 117

Associates an input or output stream with
a file.

fflush() stdio.h “fflush() — Write
Buffer to File”
on page 121

Causes the system to write the contents
of a buffer to a file.

fopen() stdio.h “fopen() —
Open Files” on
page 134

Opens a specified stream.

Library Functions 43

Function Header File Page Description

freopen() stdio.h “freopen() —
Redirect Open
Files” on page
154

Closes a file and reassigns a stream.

fwide() stdio.h “fwide() —
Determine
Stream
Orientation” on
page 163

Determines stream orientation.

setbuf() stdio.h “setbuf() —
Control
Buffering” on
page 368

Allows control of buffering.

setvbuf() stdio.h “setvbuf() —
Control
Buffering” on
page 376

Controls buffering and buffer size for a
specified stream.

wfopen() stdio.h “wfopen() —
Open Files” on
page 537

Opens a specified stream, accepting file
name and mode as wide characters.

File Operations

Function Header File Page Description

fileno() stdio.h “fileno() —
Determine File
Handle” on page
131

Determines the file handle.

remove() stdio.h “remove() —
Delete File” on
page 305

Deletes a specified file.

rename() stdio.h “rename() —
Rename File” on
page 306

Renames a specified file.

tmpfile() stdio.h “tmpfile() —
Create
Temporary File”
on page 448

Creates a temporary file and returns a
pointer to that file.

tmpnam() stdio.h “tmpnam() —
Produce
Temporary File
Name” on page
449

Produces a temporary file name.

44 IBM i: ILE C/C++ Runtime Library Functions

Handling Argument Lists
Function Header File Page Description

va_arg() stdarg.h “va_arg() –
va_copy() –
va_end() –
va_start() —
Handle Variable
Argument List”
on page 459

Allows access to variable number of
function arguments.

va_copy() stdarg.h “va_arg() –
va_copy() –
va_end() –
va_start() —
Handle Variable
Argument List”
on page 459

Allows access to variable number of
function arguments.

va_end() stdarg.h “va_arg() –
va_copy() –
va_end() –
va_start() —
Handle Variable
Argument List”
on page 459

Allows access to variable number of
function arguments.

va_start() stdarg.h “va_arg() –
va_copy() –
va_end() –
va_start() —
Handle Variable
Argument List”
on page 459

Allows access to variable number of
function arguments.

Pseudorandom Numbers
Function Header File Page Description

rand(), rand_r() stdlib.h “rand() –
rand_r() —
Generate
Random
Number” on
page 287

Returns a pseudorandom integer.
(rand_r() is the restartable version of
rand().)

srand() stdlib.h “srand() — Set
Seed for rand()
Function” on
page 385

Sets the starting point for pseudorandom
numbers.

Library Functions 45

Dynamic Memory Management
Function Header File Page Description

calloc() stdlib.h “calloc() — Reserve and
Initialize Storage” on
page 80

Reserves storage space
for an array and
initializes the values of
all elements to 0.

_C_Quickpool_Debu
g()

stdlib.h “_C_Quickpool_Debug()
— Modify Quick
Pool Memory Manager
Characteristics” on page
91

Modifies Quick Pool
memory manager
characteristics.

_C_Quickpool_Init(
)

stdlib.h “_C_Quickpool_Init() —
Initialize Quick Pool
Memory Manager” on
page 93

Initializes the use of
the Quick Pool memory
manager algorithm.

_C_Quickpool_Repor
t()

stdlib.h “_C_Quickpool_Report()
— Generate Quick
Pool Memory Manager
Report” on page 95

Generates a spooled file
that contains a snapshot
of the memory used by
the Quick Pool memory
manager algorithm in
the current activation
group.

_C_TS_malloc_debu
g()

mallocinfo.h “_C_TS_malloc_debug()
— Determine amount of
teraspace memory used
(with optional dumps
and verification)” on
page 103

Returns the same
information as
_C_TS_malloc_info,
plus produces a
spool file of detailed
information about the
memory structure used
by malloc functions
when compiled with
teraspace.

_C_TS_malloc_info(
)

mallocinfo.h “_C_TS_malloc_info() —
Determine amount
of teraspace memory
used” on page 105

Returns the current
memory usage
information.

free() stdlib.h “free() — Release
Storage Blocks” on page
152

Frees storage blocks.

malloc() stdlib.h “malloc() — Reserve
Storage Block” on page
219

Reserves storage blocks.

realloc() stdlib.h “realloc() — Change
Reserved Storage Block
Size” on page 295

Changes storage size
allocated for an object.

46 IBM i: ILE C/C++ Runtime Library Functions

Memory Objects
Function Header File Page Description

memchr() string.h “memchr() —
Search Buffer”
on page 236

Searches a buffer for the first occurrence
of a given character.

memcmp() string.h “memcmp() —
Compare
Buffers” on
page 237

Compares two buffers.

memcpy() string.h “memcpy() —
Copy Bytes” on
page 238

Copies a buffer.

memicmp() string.h “memicmp() —
Compare
Bytes” on page
239

Compare two buffers without regard to
case.

memmove() string.h “memmove() —
Copy Bytes” on
page 241

Moves a buffer.

memset() string.h “memset() —
Set Bytes to
Value” on page
242

Sets a buffer to a given value.

wmemchr() wchar.h “wmemchr() —
Locate Wide
Character in
Wide-Character
Buffer” on page
538

Locates a wide character in a wide-
character buffer.

wmemcmp() wchar.h “wmemcmp() —
Compare Wide-
Character
Buffers” on
page 539

Compares two wide-character buffers.

wmemcpy() wchar.h “wmemcpy() —
Copy Wide-
Character
Buffer” on page
541

Copies a wide-character buffer.

wmemmove() wchar.h “wmemmove()
— Copy Wide-
Character
Buffer” on page
542

Moves a wide-character buffer.

wmemset() wchar.h “wmemset() —
Set Wide
Character
Buffer to a
Value” on page
543

Sets a wide-character buffer to a given
value.

Library Functions 47

Environment Interaction
Function Header File Page Description

abort() stdlib.h “abort() — Stop a
Program” on page 60

Ends a program
abnormally.

_C_Get_Ssn_Handle(
)

stdio.h “_C_Get_Ssn_Handle()
— Handle to C Session”
on page 80

Returns a handle to the
C session for use with
DSM APIs.

exit() stdlib.h “exit() — End Program”
on page 113

Ends the program
normally if called in the
initial thread.

getenv() stdlib.h “getenv() — Search for
Environment Variables”
on page 177

Searches environment
variables for a specified
variable.

localeconv() locale.h “localeconv() — Retrieve
Information from the
Environment” on page
203

Formats numeric
quantities in struct lconv
according to the current
locale.

longjmp() setjmp.h “longjmp() — Restore
Stack Environment” on
page 217

Restores a stack
environment.

nl_langinfo() langinfo.h “nl_langinfo() — Retrieve
Locale Information” on
page 248

Retrieves information
from the current locale.

putenv() stdlib.h “putenv() — Change/Add
Environment Variables”
on page 267

Sets the value of an
environment variable
by altering an existing
variable or creating a
new one.

setjmp() setjmp.h “setjmp() — Preserve
Environment” on page
369

Saves a stack
environment.

setlocale() locale.h “setlocale() — Set
Locale” on page 370

Changes or queries
locale.

system() stdlib.h “system() — Execute a
Command” on page 443

Passes a string to
the operating system's
command interpreter.

wcslocaleconv() locale.h “wcslocaleconv() —
Retrieve Wide Locale
Information” on page
500

Formats numeric
quantities in struct
wcslconv according to
the current locale.

48 IBM i: ILE C/C++ Runtime Library Functions

String Operations
Function Header File Page Description

strcasecmp() strings.h “strcasecmp()
— Compare
Strings without
Case
Sensitivity” on
page 388

Compares strings without case sensitivity.

strcat() string.h “strcat() —
Concatenate
Strings” on
page 389

Concatenates two strings.

strchr() string.h “strchr() —
Search for
Character” on
page 390

Locates the first occurrence of a specified
character in a string.

strcmp() string.h “strcmp() —
Compare
Strings” on
page 392

Compares the value of two strings.

strcmpi() string.h “strcmpi() —
Compare
Strings Without
Case
Sensitivity” on
page 393

Compares the value of two strings without
regard to case.

strcoll() string.h “strcoll() —
Compare
Strings” on
page 395

Compares the locale-defined value of two
strings.

strcpy() string.h “strcpy() —
Copy Strings”
on page 396

Copies one string into another.

strcspn() string.h “strcspn() —
Find Offset of
First Character
Match” on page
397

Finds the length of the first substring in a
string of characters not in a second string.

strdup() string.h “strdup() —
Duplicate
String” on page
399

Duplicates a string.

strfmon() string.h “strfmon() —
Convert
Monetary Value
to String” on
page 400

Converts monetary value to string.

Library Functions 49

Function Header File Page Description

strftime() time.h “strftime() —
Convert Date/
Time to String”
on page 403

Converts date and time to a formatted
string.

stricmp() string.h “stricmp() —
Compare
Strings without
Case
Sensitivity” on
page 407

Compares the value of two strings without
regard to case.

strlen() string.h “strlen() —
Determine
String Length”
on page 408

Calculates the length of a string.

strncasecmp() strings.h “strncasecmp()
— Compare
Strings without
Case
Sensitivity” on
page 409

Compares strings without case sensitivity.

strncat() string.h “strncat() —
Concatenate
Strings” on
page 410

Adds a specified length of one string to
another string.

strncmp() string.h “strncmp() —
Compare
Strings” on
page 412

Compares two strings up to a specified
length.

strncpy() string.h “strncpy() —
Copy Strings”
on page 413

Copies a specified length of one string into
another.

strnicmp() string.h “strnicmp() —
Compare
Substrings
Without Case
Sensitivity” on
page 415

Compares the value of two substrings
without regard to case.

strnset() string.h “strnset() –
strset() — Set
Characters in
String” on page
416

Sets character in a string.

strpbrk() string.h “strpbrk() —
Find Characters
in String” on
page 417

Locates specified characters in a string.

strptime() time.h “strptime() —
Convert String
to Date/Time”
on page 418

Converts string to formatted time.

50 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

strrchr() string.h “strrchr() —
Locate Last
Occurrence of
Character in
String” on page
422

Locates the last occurrence of a character
within a string.

strspn() string.h “strspn() — Find
Offset of First
Non-matching
Character” on
page 423

Locates the first character in a string that
is not part of specified set of characters.

strstr() string.h “strstr() —
Locate
Substring” on
page 425

Locates the first occurrence of a string in
another string.

strtok() string.h “strtok() —
Tokenize
String” on page
432

Locates a specified token in a string.

strtok_r() string.h “strtok_r() —
Tokenize String
(Restartable)”
on page 433

Locates a specified token in a string.
(Restartable version of strtok()).

strxfrm() string.h “strxfrm() —
Transform
String” on page
439

Transforms strings according to locale.

wcsftime() wchar.h “wcsftime() —
Convert to
Formatted Date
and Time” on
page 495

Converts to formatted date and time.

wcsptime() wchar.h “wcsptime() —
Convert Wide
Character
String to Date/
Time” on page
507

Converts string to formatted time.

wcsstr() wchar.h “wcsstr() —
Locate Wide-
Character
Substring” on
page 514

Locates a wide-character substring.

wcstok() wchar.h “wcstok() —
Tokenize Wide-
Character
String” on page
519

Tokenizes a wide-character string.

Library Functions 51

Character Testing
Function Header File Page Description

isalnum() ctype.h “isalnum() –
isxdigit() — Test
Integer Value”
on page 193

Tests for alphanumeric characters.

isalpha() ctype.h “isalnum() –
isxdigit() — Test
Integer Value”
on page 193

Tests for alphabetic characters.

isascii() ctype.h “isascii() — Test
for Character
Representable
as ASCII Value”
on page 194

Tests for ASCII values.

isblank() ctype.h “isalnum() –
isxdigit() — Test
Integer Value”
on page 193

Tests for blank or tab characters.

iscntrl() ctype.h “isalnum() –
isxdigit() — Test
Integer Value”
on page 193

Tests for control characters.

isdigit() ctype.h “isalnum() –
isxdigit() — Test
Integer Value”
on page 193

Tests for decimal digits.

isgraph() ctype.h “isalnum() –
isxdigit() — Test
Integer Value”
on page 193

Tests for printable characters excluding
the space.

islower() ctype.h “isalnum() –
isxdigit() — Test
Integer Value”
on page 193

Tests for lowercase letters.

isprint() ctype.h “isalnum() –
isxdigit() — Test
Integer Value”
on page 193

Tests for printable characters including
the space.

ispunct() ctype.h “isalnum() –
isxdigit() — Test
Integer Value”
on page 193

Tests for punctuation characters as
defined in the locale.

isspace() ctype.h “isalnum() –
isxdigit() — Test
Integer Value”
on page 193

Tests for white-space characters.

52 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

isupper() ctype.h “isalnum() –
isxdigit() — Test
Integer Value”
on page 193

Tests for uppercase letters.

isxdigit() ctype.h “isalnum() –
isxdigit() — Test
Integer Value”
on page 193

Tests for wide hexadecimal digits 0
through 9, a through f, or A through F.

Multibyte Character Testing
Function Header File Page Description

iswalnum() wctype.h “iswalnum() –
iswxdigit() —
Test Wide
Integer Value”
on page 195

Tests for wide alphanumeric characters.

iswalpha() wctype.h “iswalnum() –
iswxdigit() —
Test Wide
Integer Value”
on page 195

Tests for wide alphabetic characters.

iswblank() wctype.h “iswalnum() –
iswxdigit() —
Test Wide
Integer Value”
on page 195

Tests for wide blank or tab characters.

iswcntrl() wctype.h “iswalnum() –
iswxdigit() —
Test Wide
Integer Value”
on page 195

Tests for wide control characters.

iswctype() wctype.h “iswctype() —
Test for
Character
Property” on
page 197

Tests for character property.

iswdigit() wctype.h “iswalnum() –
iswxdigit() —
Test Wide
Integer Value”
on page 195

Tests for wide decimal digits.

iswgraph() wctype.h “iswalnum() –
iswxdigit() —
Test Wide
Integer Value”
on page 195

Tests for wide printing characters
excluding the space.

Library Functions 53

Function Header File Page Description

iswlower() wctype.h “iswalnum() –
iswxdigit() —
Test Wide
Integer Value”
on page 195

Tests for wide lowercase letters.

iswprint() wctype.h “iswalnum() –
iswxdigit() —
Test Wide
Integer Value”
on page 195

Tests for wide printing characters.

iswpunct() wctype.h “iswalnum() –
iswxdigit() —
Test Wide
Integer Value”
on page 195

Tests for wide punctuation characters as
defined in the locale.

iswspace() wctype.h “iswalnum() –
iswxdigit() —
Test Wide
Integer Value”
on page 195

Tests for wide whitespace characters.

iswupper() wctype.h “iswalnum() –
iswxdigit() —
Test Wide
Integer Value”
on page 195

Tests for wide uppercase letters.

iswxdigit() wctype.h “iswalnum() –
iswxdigit() —
Test Wide
Integer Value”
on page 195

Tests for wide hexadecimal digits 0
through 9, a through f, or A through F.

Character Case Mapping
Function Header File Page Description

tolower() ctype.h “tolower() –
toupper() —
Convert
Character Case”
on page 451

Converts a character to lowercase.

toupper() ctype.h “tolower() –
toupper() —
Convert
Character Case”
on page 451

Converts a character to uppercase.

towlower() ctype.h “towlower() –
towupper() —
Convert Wide
Character Case”
on page 454

Converts a wide character to lowercase.

54 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

towupper() ctype.h “towlower() –
towupper() —
Convert Wide
Character Case”
on page 454

Converts a wide character to uppercase.

Multibyte Character Manipulation
Function Header File Page Description

btowc() stdio.h
wchar.h

“btowc() —
Convert Single
Byte to Wide
Character” on
page 78

Converts a single byte to a wide character.

mblen() stdlib.h “mblen() —
Determine
Length of a
Multibyte
Character” on
page 221

Determines the length of a multibyte
character.

mbrlen() stdlib.h “mbrlen() —
Determine
Length of a
Multibyte
Character
(Restartable)”
on page 223

Determines the length of a multibyte
character. (Restartable version of
mblen())

mbrtowc() stdlib.h “mbrtowc() —
Convert a
Multibyte
Character to a
Wide Character
(Restartable)”
on page 225

Converts a multibyte character to a
wide character. (Restartable version of
mbtowc())

mbsinit() stdlib.h “mbsinit() —
Test State
Object for
Initial State” on
page 228

Tests state object for initial state.

mbsrtowcs() stdlib.h “mbsrtowcs() —
Convert a
Multibyte String
to a Wide
Character
String
(Restartable)”
on page 229

Converts a multibyte string to a wide
character string. (Restartable version of
mbstowcs())

Library Functions 55

Function Header File Page Description

mbstowcs() stdlib.h “mbstowcs() —
Convert a
Multibyte String
to a Wide
Character
String” on page
231

Converts a multibyte string to a wide
character string.

mbtowc() stdlib.h “mbtowc() —
Convert
Multibyte
Character to a
Wide
Character” on
page 235

Converts multibyte characters to a wide
character.

towctrans() wctype.h “towctrans() —
Translate Wide
Character” on
page 452

Translates wide character.

wcrtomb() stdlib.h “wcrtomb() —
Convert a Wide
Character to a
Multibyte
Character
(Restartable)”
on page 483

Converts a wide character to a
multibyte character. (Restartable version
of wctomb()).

wcscat() wchar.h “wcscat() —
Concatenate
Wide-Character
Strings” on
page 488

Concatenates wide character strings.

wcschr() wchar.h “wcschr() —
Search for Wide
Character” on
page 489

Searches a wide character string for a
wide character.

wcscmp() wchar.h “wcscmp() —
Compare Wide-
Character
Strings” on
page 490

Compares two wide character strings.

wcscoll() wchar.h “wcscoll() —
Language
Collation String
Comparison”
on page 492

Compares the locale-defined value of two
wide-character strings.

wcscpy() wchar.h “wcscpy() —
Copy Wide-
Character
Strings” on
page 493

Copies a wide character string.

56 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

wcscspn() wchar.h “wcscspn() —
Find Offset of
First Wide-
Character
Match” on page
494

Searches a wide character string for
characters.

__wcsicmp() wchar.h “__wcsicmp() —
Compare Wide
Character
Strings without
Case
Sensitivity ” on
page 497

Compares two wide character strings
without regard to case.

wcslen() wchar.h “wcslen() —
Calculate
Length of Wide-
Character
String” on page
499

Finds length of a wide character string.

wcsncat() wchar.h “wcsncat() —
Concatenate
Wide-Character
Strings” on
page 501

Concatenates a wide character string
segment.

wcsncmp() wchar.h “wcsncmp() —
Compare Wide-
Character
Strings” on
page 502

Compares wide character string
segments.

wcsncpy() wchar.h “wcsncpy() —
Copy Wide-
Character
Strings” on
page 504

Copies wide character string segments.

__wcsnicmp() wchar.h “__wcsnicmp()
— Compare
Wide Character
Strings without
Case
Sensitivity” on
page 505

Compares two wide character substrings
without regard to case.

wcspbrk() wchar.h “wcspbrk() —
Locate Wide
Characters in
String” on page
506

Locates wide characters in string.

Library Functions 57

Function Header File Page Description

wcsrchr() wchar.h “wcsrchr() —
Locate Last
Occurrence of
Wide Character
in String” on
page 509

Locates wide character in string.

wcsrtombs() stdlib.h “wcsrtombs() —
Convert Wide
Character
String to
Multibyte String
(Restartable)”
on page 510

Converts a wide character string to a
multibyte character string. (Restartable
version of wcstombs()).

wcsspn() wchar.h “wcsspn() —
Find Offset of
First Non-
matching Wide
Character” on
page 512

Finds offset of first nonmatching wide
character.

wcstombs() stdlib.h “wcstombs() —
Convert Wide-
Character
String to
Multibyte
String” on page
522

Converts a wide character string to a
multibyte character string.

wcswcs() wchar.h “wcswcs() —
Locate Wide-
Character
Substring” on
page 527

Locates a wide character string in another
wide character string.

wcswidth() wchar.h “wcswidth() —
Determine the
Display Width
of a Wide
Character
String” on page
528

Determines the display width of a wide
character string.

wcsxfrm() wchar.h “wcsxfrm() —
Transform a
Wide-Character
String” on page
530

Transforms wide-character strings
according to locale.

wctob() stdlib.h “wctob() —
Convert Wide
Character to
Byte” on page
531

Converts a wide character to a single byte.

58 IBM i: ILE C/C++ Runtime Library Functions

Function Header File Page Description

wctomb() stdlib.h “wctomb() —
Convert Wide
Character to
Multibyte
Character” on
page 532

Converts a wide character to multibyte
characters.

wctrans() wctype.h “wctrans() —
Get Handle for
Character
Mapping” on
page 533

Gets a handle for character mapping.

wctype() wchar.h “wctype() —
Get Handle for
Character
Property
Classification”
on page 535

Obtains a handle for character property
classification.

wcwidth() wchar.h “wcwidth() —
Determine the
Display Width
of a Wide
Character” on
page 536

Determines the display width of a wide
character.

Data Areas
Function Header File Page Description

QXXCHGDA() xxdtaa.h “QXXCHGDA() —
Change Data
Area” on page
277

Changes the data area.

QXXRTVDA() xxdtaa.h “QXXRTVDA() —
Retrieve Data
Area” on page
283

Retrieves a copy of the data area
specified by dtaname.

Message Catalogs
Function Header File Page Description

catclose() nl_types.h “catclose() —
Close Message
Catalog” on
page 82

Closes a message catalog.

catgets() nl_types.h “catgets() —
Retrieve a
Message from a
Message
Catalog” on
page 83

Reads a message from an opened
message catalog.

Library Functions 59

Function Header File Page Description

catopen() nl_types.h “catopen() —
Open Message
Catalog” on
page 84

Opens a message catalog.

Regular Expression
Function Header File Page Description

regcomp() regex.h “regcomp() —
Compile
Regular
Expression ” on
page 298

Compiles a regular expression.

regerror() regex.h “regerror() —
Return Error
Message for
Regular
Expression” on
page 300

Returns error message for regular
expression.

regexec() regex.h “regexec() —
Execute
Compiled
Regular
Expression ” on
page 301

Executes a compiled regular expression.

regfree() regex.h “regfree() —
Free Memory
for Regular
Expression ” on
page 304

Frees memory for regular expression.

abort() — Stop a Program

Format
#include <stdlib.h>
void abort(void);

Language Level
ANSI

Threadsafe
Yes

Description
The abort() function causes an abnormal end of the program and returns control to the host
environment. Like the exit() function, the abort() function deletes buffers and closes open files
before ending the program.

60 IBM i: ILE C/C++ Runtime Library Functions

Calls to the abort() function raise the SIGABRT signal. The abort() function will not result in the
ending of the program if SIGABRT is caught by a signal handler, and the signal handler does not return.

Note: When compiled with SYSIFCOPT(*ASYNCSIGNAL), the abort() function cannot be called in a
signal handler.

Return Value
There is no return value.

Example
This example tests for successful opening of the file myfile. If an error occurs, an error message is printed,
and the program ends with a call to the abort() function.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *stream;

 if ((stream = fopen("mylib/myfile", "r")) == NULL)
 {
 perror("Could not open data file");
 abort();
 }
}

Related Information
• “exit() — End Program” on page 113
• “signal() — Handle Interrupt Signals” on page 378
• “<stdlib.h>” on page 14
• See the signal() API in the APIs topic in the Information Center.

abs() — Calculate Integer Absolute Value

Format
#include <stdlib.h>
int abs(int n);

Language Level
ANSI

Threadsafe
Yes

Description
The abs() function returns the absolute value of an integer argument n.

Return Value
There is no error return value. The result is undefined when the absolute value of the argument cannot
be represented as an integer. The value of the minimum allowable integer is defined by INT_MIN in the
<limits.h> include file.

Library Functions 61

Example
This example calculates the absolute value of an integer x and assigns it to y.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int x = -4, y;

 y = abs(x);

 printf("The absolute value of x is %d.\n", y);

 /********************* Output **************************
 The absolute value of x is 4.
 ***/
}

Related Information
• “fabs() — Calculate Floating-Point Absolute Value” on page 115
• “labs() – llabs() — Calculate Absolute Value of Long and Long Long Integer” on page 200
• “<limits.h>” on page 5
• “<stdlib.h>” on page 14

acos() — Calculate Arccosine

Format
#include <math.h>
double acos(double x);

Language Level
ANSI

Threadsafe
Yes

Description
The acos() function calculates the arccosine of x, expressed in radians, in the range 0 to π.

Return Value
The acos() function returns the arccosine of x. The value of x must be between -1 and 1 inclusive. If x is
less than -1 or greater than 1, acos() sets errno to EDOM and returns 0.

Example
This example prompts for a value for x. It prints an error message if x is greater than 1 or less than -1;
otherwise, it assigns the arccosine of x to y.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define MAX 1.0
#define MIN -1.0

62 IBM i: ILE C/C++ Runtime Library Functions

int main(void)
{
 double x, y;

 printf("Enter x\n");
 scanf("%lf", &x);

 /* Output error if not in range */
 if (x > MAX)
 printf("Error: %lf too large for acos\n", x);
 else if (x < MIN)
 printf("Error: %lf too small for acos\n", x);
 else {
 y = acos(x);
 printf("acos(%lf) = %lf\n", x, y);
 }
}

/******* Expected output if 0.4 is entered: *********

Enter x
acos(0.400000) = 1.159279
*/

Related Information
• “asin() — Calculate Arcsine” on page 67
• “atan() – atan2() — Calculate Arctangent” on page 69
• “cos() — Calculate Cosine” on page 89
• “cosh() — Calculate Hyperbolic Cosine” on page 90
• “sin() — Calculate Sine” on page 380
• “sinh() — Calculate Hyperbolic Sine” on page 381
• “tan() — Calculate Tangent” on page 444
• “tanh() — Calculate Hyperbolic Tangent” on page 445
• “<math.h>” on page 6

asctime() — Convert Time to Character String

Format
#include <time.h>
char *asctime(const struct tm *time);

Language Level
ANSI

Threadsafe
No

Use asctime_r() instead.

Description
The asctime() function converts time, stored as a structure pointed to by time, to a character string. You
can obtain the time value from a call to the gmtime(), gmtime64(), localtime(), or localtime64()
function.

Library Functions 63

The string result that asctime() produces contains exactly 26 characters and has the format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

The following are examples of the string returned:

 Sat Jul 16 02:03:55 1994\n\0
or
 Sat Jul 16 2:03:55 1994\n\0

The asctime() function uses a 24-hour-clock format. The days are abbreviated to: Sun, Mon, Tue, Wed,
Thu, Fri, and Sat. The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,
and Dec. All fields have constant width. Dates with only one digit are preceded either with a zero or a
blank space. The new-line character (\n) and the null character (\0) occupy the last two positions of the
string.

The time and date functions begin at 00:00:00 Universal Time, January 1, 1970.

Return Value
The asctime() function returns a pointer to the resulting character string. If the function is
unsuccessful, it returns NULL.

Note: The asctime(), ctime() functions, and other time functions can use a common, statically
allocated buffer to hold the return string. Each call to one of these functions might destroy the result
of the previous call. The asctime_r(), ctime_r(), gmtime_r(), and localtime_r() functions do
not use a common, statically allocated buffer to hold the return string. These functions can be used in
place of the asctime(), ctime(), gmtime(), and localtime() functions if reentrancy is desired.

Example
This example polls the system clock and prints a message that gives the current time.

#include <time.h>
#include <stdio.h>

int main(void)
{
 struct tm *newtime;
 time_t ltime;

/* Get the time in seconds */
 time(<ime);
/* Convert it to the structure tm */
 newtime = localtime(<ime);

 /* Print the local time as a string */
 printf("The current date and time are %s",
 asctime(newtime));
}

/**************** Output should be similar to: ******************
The current date and time are Fri Sep 16 13:29:51 1994
*/

Related Information
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186

64 IBM i: ILE C/C++ Runtime Library Functions

• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “strftime() — Convert Date/Time to String” on page 403
• “time() — Determine Current Time” on page 446
• “printf() — Print Formatted Characters” on page 254
• “setlocale() — Set Locale” on page 370
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

asctime_r() — Convert Time to Character String (Restartable)

Format
#include <time.h>
char *asctime_r(const struct tm *tm, char *buf);

Language Level
XPG4

Threadsafe
Yes

Description
This function is the restartable version of the asctime() function.

The asctime_r() function converts time, stored as a structure pointed to by tm, to a character
string. You can obtain the tm value from a call to gmtime_r(), gmtime64_r(), localtime_r(), or
localtime64_r().

The string result that asctime_r() produces contains exactly 26 characters and has the format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

The following are examples of the string returned:

 Sat Jul 16 02:03:55 1994\n\0
or
 Sat Jul 16 2:03:55 1994\n\0

The asctime_r() function uses a 24-hour-clock format. The days are abbreviated to: Sun, Mon, Tue,
Wed, Thu, Fri, and Sat. The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,
Nov, and Dec. All fields have constant width. Dates with only one digit are preceded either with a zero or
a blank space. The new-line character (\n) and the null character (\0) occupy the last two positions of the
string.

The time and date functions begin at 00:00:00 Universal Time, January 1, 1970.

Library Functions 65

Return Value
The asctime_r() function returns a pointer to the resulting character string. If the function is
unsuccessful, it returns NULL.

Example
This example polls the system clock and prints a message giving the current time.

#include <time.h>
#include <stdio.h>

int main(void)
{
 struct tm *newtime;
 time_t ltime;
 char mybuf[50];

/* Get the time in seconds */
 time(<ime);
/* Convert it to the structure tm */
 newtime = localtime_r(<ime());
/* Print the local time as a string */
 printf("The current date and time are %s",
 asctime_r(newtime, mybuf));
}

/**************** Output should be similar to ******************
The current date and time are Fri Sep 16 132951 1994
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “strftime() — Convert Date/Time to String” on page 403
• “time() — Determine Current Time” on page 446
• “printf() — Print Formatted Characters” on page 254
• “<time.h>” on page 15

66 IBM i: ILE C/C++ Runtime Library Functions

asin() — Calculate Arcsine

Format
#include <math.h>
double asin(double x);

Language Level
ANSI

Threadsafe
Yes

Description
The asin() function calculates the arcsine of x, in the range -π/2 to π/2 radians.

Return Value
The asin() function returns the arcsine of x. The value of x must be between -1 and 1. If x is less than -1
or greater than 1, the asin() function sets errno to EDOM, and returns a value of 0.

Example
This example prompts for a value for x. It prints an error message if x is greater than 1 or less than -1;
otherwise, it assigns the arcsine of x to y.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define MAX 1.0
#define MIN -1.0

int main(void)
{
 double x, y;

 printf("Enter x\n");
 scanf("%lf", &x);

 /* Output error if not in range */
 if (x > MAX)
 printf("Error: %lf too large for asin\n", x);
 else if (x < MIN)
 printf("Error: %lf too small for asin\n", x);
 else
 {
 y = asin(x);
 printf("asin(%lf) = %lf\n", x, y);
 }
}

/**************** Output should be similar to ******************
Enter x
asin(0.200000) = 0.201358
*/

Related Information
• “acos() — Calculate Arccosine” on page 62
• “atan() – atan2() — Calculate Arctangent” on page 69
• “cos() — Calculate Cosine” on page 89

Library Functions 67

• “cosh() — Calculate Hyperbolic Cosine” on page 90
• “sin() — Calculate Sine” on page 380
• “sinh() — Calculate Hyperbolic Sine” on page 381
• “tan() — Calculate Tangent” on page 444
• “tanh() — Calculate Hyperbolic Tangent” on page 445
• “<math.h>” on page 6

assert() — Verify Condition

Format
#include <assert.h>
void assert(int expression);

Language Level
ANSI

Threadsafe
No

Description
The assert() function prints a diagnostic message to stderr and aborts the program if expression is
false (zero). The diagnostic message has one of the following formats, depending on the language level
used during the compilation:

Assertion failed: expression, file filename, line line-number.

Assertion failed: expression, file filename, line line-number, function function-name.

The assert() function takes no action if the expression is true (nonzero).

Use the assert() function to identify program logic errors. Choose an expression that holds true only if
the program is operating as you intend. After you have debugged the program, you can use the special
no-debug identifier NDEBUG to remove the assert() calls from the program. If you define NDEBUG to
any value with a #define directive, the C preprocessor expands all assert calls to void expressions. If you
use NDEBUG, you must define it before you include <assert.h> in the program.

Return Value
There is no return value.

Note: The assert() function is defined as a macro. Do not use the #undef directive with assert().

Example
In this example, the assert() function tests string for a null string and an empty string, and verifies that
length is positive before processing these arguments.

#include <stdio.h>
#include <assert.h>

void analyze (char *, int);

int main(void)
{
 char *string = "ABC";

68 IBM i: ILE C/C++ Runtime Library Functions

 int length = 3;

 analyze(string, length);
 printf("The string %s is not null or empty, "
 "and has length %d \n", string, length);
}

void analyze(char *string, int length)
{
 assert(string != NULL); /* cannot be NULL */
 assert(*string != '\0'); /* cannot be empty */
 assert(length > 0); /* must be positive */
}

/**************** Output should be similar to ******************
The string ABC is not null or empty, and has length 3
***/

Related Information
• “abort() — Stop a Program” on page 60
• “<assert.h>” on page 1

atan() – atan2() — Calculate Arctangent

Format
#include <math.h>
double atan(double x);
double atan2(double y, double x);

Language Level
ANSI

Threadsafe
Yes

Description
The atan() and atan2() functions calculate the arctangent of x and y/x, respectively.

Return Value
The atan() function returns a value in the range -π/2 to π/2 radians. The atan2() function returns a
value in the range -π to π radians. If both arguments of the atan2() function are zero, the function sets
errno to EDOM, and returns a value of 0.

Example
This example calculates arctangents using the atan() and atan2() functions.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double a,b,c,d;

 c = 0.45;
 d = 0.23;

 a = atan(c);
 b = atan2(c,d);

Library Functions 69

 printf("atan(%lf) = %lf/n", c, a);
 printf("atan2(%lf, %lf) = %lf/n", c, d, b);

}

/**************** Output should be similar to ******************
atan(0.450000) = 0.422854
atan2(0.450000, 0.230000) = 1.098299
***/

Related Information
• “acos() — Calculate Arccosine” on page 62
• “asin() — Calculate Arcsine” on page 67
• “cos() — Calculate Cosine” on page 89
• “cosh() — Calculate Hyperbolic Cosine” on page 90
• “sin() — Calculate Sine” on page 380
• “sinh() — Calculate Hyperbolic Sine” on page 381
• “tan() — Calculate Tangent” on page 444
• “tanh() — Calculate Hyperbolic Tangent” on page 445
• “<math.h>” on page 6

atexit() — Record Program Ending Function

Format
#include <stdlib.h>
int atexit(void (*func)(void));

Language Level
ANSI

Threadsafe
Yes

Description
The atexit() function records the function, pointed to by func, that the system calls at normal program
end. For portability, you should use the atexit() function to register a maximum of 32 functions. The
functions are processed in a last-in, first-out order. The atexit() function cannot be called from the
OPM default activation group. Most functions can be used with the atexit function; however, if the exit
function is used the atexit function will fail.

Return Value
The atexit() function returns 0 if it is successful, and nonzero if it fails.

Example
This example uses the atexit() function to call goodbye() at program end.

#include <stdlib.h>
#include <stdio.h>

int main(void)

70 IBM i: ILE C/C++ Runtime Library Functions

{
 void goodbye(void);
 int rc;

 rc = atexit(goodbye);
 if (rc != 0)
 perror("Error in atexit");
 exit(0);
}

void goodbye(void)
 /* This function is called at normal program end */
{
 printf("The function goodbye was called at program end\n");
}

/**************** Output should be similar to: ******************

The function goodbye was called at program end
*/

Related Information
• “exit() — End Program” on page 113
• “signal() — Handle Interrupt Signals” on page 378
• “<stdlib.h>” on page 14

atof() — Convert Character String to Float

Format
#include <stdlib.h>
double atof(const char *string);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. For more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The atof() function converts a character string to a double-precision floating-point value.

The input string is a sequence of characters that can be interpreted as a numeric value of the specified
return type. The function stops reading the input string at the first character that it cannot recognize as
part of a number. This character can be the null character that ends the string.

The atof() function expects a string in the following form:

Library Functions 71

whitespace +
 –

digits
. digits

. digits

e

E +
 –

digits

The white space consists of the same characters for which the isspace() function is true, such as
spaces and tabs. The atof() function ignores leading white-space characters.

For the atof() function, digits is one or more decimal digits; if no digits appear before the decimal
point, at least one digit must appear after the decimal point. The decimal digits can precede an exponent,
introduced by the letter e or E. The exponent is a decimal integer, which might be signed.

The atof() function will not fail if a character other than a digit follows an E or if e is read in as an
exponent. For example, 100elf will be converted to the floating-point value 100.0. The accuracy is up to
17 significant character digits.

Return Value
The atof() function returns a double value that is produced by interpreting the input characters as a
number. The return value is 0 if the function cannot convert the input to a value of that type. In case of
overflow, the function sets errno to ERANGE and returns the value -HUGE_VAL or +HUGE_VAL.

Example
This example shows how to convert numbers that are stored as strings to numeric values.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 double x;
 char *s;

 s = " -2309.12E-15";
 x = atof(s); /* x = -2309.12E-15 */

 printf("x = %.4e\n",x);
}

/******************* Output should be similar to: ***************

x = -2.3091e-12
*/

Related Information
• “atoi() — Convert Character String to Integer” on page 73
• “atol() – atoll() — Convert Character String to Long or Long Long Integer” on page 74
• “strtol() – strtoll() — Convert Character String to Long and Long Long Integer” on page 435
• “strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double” on page 426
• “strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point” on page

429
• “<stdlib.h>” on page 14

72 IBM i: ILE C/C++ Runtime Library Functions

atoi() — Convert Character String to Integer

Format
#include <stdlib.h>
int atoi(const char *string);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The atoi() function converts a character string to an integer value. The input string is a sequence of
characters that can be interpreted as a numeric value of the specified return type. The function stops
reading the input string at the first character that it cannot recognize as part of a number. This character
can be the null character that ends the string.

The atoi() function does not recognize decimal points or exponents. The string argument for this
function has the form:

whitespace +
-

digits

where whitespace consists of the same characters for which the isspace() function is true, such
as spaces and tabs. The atoi() function ignores leading white-space characters. The value digits
represents one or more decimal digits.

Return Value
The atoi() function returns an int value that is produced by interpreting the input characters as a
number. The return value is 0 if the function cannot convert the input to a value of that type. The return
value is undefined in the case of an overflow.

Example
This example shows how to convert numbers that are stored as strings to numeric values.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int i;
 char *s;

 s = " -9885";
 i = atoi(s); /* i = -9885 */

 printf("i = %d\n",i);
}

Library Functions 73

/******************* Output should be similar to: ***************

i = -9885
*/

Related Information
• “atof() — Convert Character String to Float” on page 71
• “atol() – atoll() — Convert Character String to Long or Long Long Integer” on page 74
• “strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double” on page 426
• “strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point” on page

429
• “strtol() – strtoll() — Convert Character String to Long and Long Long Integer” on page 435
• “<stdlib.h>” on page 14

atol() – atoll() — Convert Character String to Long or Long Long
Integer

Format (atol())
#include <stdlib.h>
long int atol(const char *string);

Format (atoll())
#include <stdlib.h>
long long int atoll(const char *string);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of these functions might be affected by the LC_CTYPE category of the current locale. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The atol() function converts a character string to a long value. The atoll() function converts a
character string to a long long value.

The input string is a sequence of characters that can be interpreted as a numeric value of the specified
return type. The function stops reading the input string at the first character that it cannot recognize as
part of a number. This character can be the null character that ends the string.

The atol() and atoll() functions do not recognize decimal points or exponents. The string argument
for this function has the form:

74 IBM i: ILE C/C++ Runtime Library Functions

whitespace +
-

digits

where whitespace consists of the same characters for which the isspace() function is true, such as
spaces and tabs. The atol() and atoll() functions ignore leading white-space characters. The value
digits represents one or more decimal digits.

Return Value
The atol() and atoll() functions return a long or a long long value that is produced by interpreting the
input characters as a number. The return value is 0L if the function cannot convert the input to a value of
that type. The return value is undefined in case of overflow.

Example
This example shows how to convert numbers that are stored as strings to numeric values.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 long l;
 char *s;

 s = "98854 dollars";
 l = atol(s); /* l = 98854 */

 printf("l = %.ld\n",l);
}

/******************* Output should be similar to: ***************

l = 98854
*/

Related Information
• “atof() — Convert Character String to Float” on page 71
• “atoi() — Convert Character String to Integer” on page 73
• “strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double” on page 426
• “strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point” on page

429
• “strtol() – strtoll() — Convert Character String to Long and Long Long Integer” on page 435
• “<stdlib.h>” on page 14

Bessel Functions

Format
#include <math.h>
double j0(double x);
double j1(double x);
double jn(int n, double x);
double y0(double x);
double y1(double x);
double yn(int n, double x);

Library Functions 75

Language Level
ILE C Extension

Threadsafe
Yes

Description
Bessel functions solve certain types of differential equations. The j0(), j1(), and jn() functions are
Bessel functions of the first kind for orders 0, 1, and n, respectively. The y0(), y1(), and yn() functions
are Bessel functions of the second kind for orders 0, 1, and n, respectively.

The argument x must be positive. The argument n should be greater than or equal to zero. If n is less than
zero, it will be a negative exponent.

Return Value
For j0(), j1(), y0(), or y1(), if the absolute value of x is too large, the function sets errno to ERANGE,
and returns 0. For y0(), y1(), or yn(), if x is negative, the function sets errno to EDOM and returns the
value -HUGE_VAL. For y0, y1(), or yn(), if x causes overflow, the function sets errno to ERANGE and
returns the value -HUGE_VAL.

Example
This example computes y to be the order 0 Bessel function of the first kind for x. It also computes z to be
the order 3 Bessel function of the second kind for x.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, y, z;
 x = 4.27;

 y = j0(x); /* y = -0.3660 is the order 0 bessel */
 /* function of the first kind for x */
 z = yn(3,x); /* z = -0.0875 is the order 3 bessel */
 /* function of the second kind for x */

 printf("y = %lf\n", y);
 printf("z = %lf\n", z);
}
/***************** Output should be similar to: **********************

 y = -0.366022
 z = -0.087482
***/

Related Information
• “erf() – erfc() — Calculate Error Functions” on page 112
• “gamma() — Gamma Function” on page 173
• “<math.h>” on page 6

bsearch() — Search Arrays

Format
#include <stdlib.h>
void *bsearch(const void *key, const void *base,

76 IBM i: ILE C/C++ Runtime Library Functions

 size_t num, size_t size,
 int (*compare)(const void *key, const void *element));

Language Level
ANSI

Threadsafe
Yes

Description
The bsearch() function performs a binary search of an array of num elements, each of size bytes. The
array must be sorted in ascending order by the function pointed to by compare. The base is a pointer to
the base of the array to search, and key is the value being sought.

The compare argument is a pointer to a function you must supply that compares two items and returns
a value specifying their relationship. The first item in the argument list of the compare() function is
the pointer to the value of the item that is being searched for. The second item in the argument list of
the compare() function is a pointer to the array element being compared with the key. The compare()
function must compare the key value with the array element and then return one of the following values:

Value Meaning

Less than 0 key less than element

0 key identical to element

Greater than 0 key greater than element

Return Value
The bsearch() function returns a pointer to key in the array to which base points. If two keys are equal,
the element that key will point to is unspecified. If the bsearch() function cannot find the key, it returns
NULL.

Example
This example performs a binary search on the argv array of pointers to the program parameters and finds
the position of the argument PATH. It first removes the program name from argv, and then sorts the
array alphabetically before calling bsearch(). The compare1() and compare2() functions compare
the values pointed to by arg1 and arg2 and return the result to the bsearch() function.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int compare1(const void *, const void *);
int compare2(const void *, const void *);

main(int argc, char *argv[])
{ /* This program performs a binary */
 char **result; /* search on the argv array of pointers */
 char *key = "PATH"; /* to the program parameters. It first */
 int i; /* removes the program name from argv */
 /* then sorts the array alphabetically */
 argv++; /* before calling bsearch. */
 argc--;

 qsort((char *)argv, argc, sizeof(char *), compare1);

 result = (char**)bsearch(&key, (char *)argv, argc, sizeof(char *), compare2);
 if (result != NULL) {
 printf("result =<%s>\n",*result);
 }

Library Functions 77

 else printf("result is null\n");
}

 /*This function compares the values pointed to by arg1 */
 /*and arg2 and returns the result to qsort. arg1 and */
 /*arg2 are both pointers to elements of the argv array. */

int compare1(const void *arg1, const void *arg2)
{
 return (strcmp(*(char **)arg1, *(char **)arg2));
}

 /*This function compares the values pointed to by arg1 */
 /*and arg2 and returns the result to bsearch */
 /*arg1 is a pointer to the key value, arg2 points to */
 /*the element of argv that is being compared to the key */
 /*value. */

int compare2(const void *arg1, const void *arg2)
{
 return (strcmp(*(char **)arg1, *(char **)arg2));
}
/******************** Output should be similar to: *************

result = <PATH>

****************** When the input on the command line is ********

CALL BSEARCH PARM(WHERE IS PATH IN THIS PHRASE'?')

*/

Related Information
• “qsort() — Sort Array” on page 275
• “<stdlib.h>” on page 14

btowc() — Convert Single Byte to Wide Character

Format
#include <stdio.h>
#include <wchar.h>
wint_t btowc(int c);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

78 IBM i: ILE C/C++ Runtime Library Functions

Description
The btowc() function converts the single byte value c to the wide-character representation of c. If c does
not constitute a valid (1-byte) multibyte character in the initial shift state, the btowc() function returns
WEOF.

Return Value
The btowc() function returns WEOF if c has the value EOF, or if (unsigned char) c does not constitute
a valid (1-byte) multibyte character in the initial shift state. Otherwise, it returns the wide-character
representation of that character.

If a conversion error occurs, errno might be set to ECONVERT.

Example
This example scans various types of data.

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <local.h>

#define UPPER_LIMIT 0xFF

int main(void)
{
 int wc;
 int ch;
 if (NULL == setlocale(LC_ALL, "/QSYS.LIB/EN_US.LOCALE")) {
 printf("Locale could not be loaded\n");
 exit(1);
 }
 for (ch = 0; ch <= UPPER_LIMIT; ++ch) {
 wc = btowc(ch);
 if (wc==WEOF) {
 printf("%#04x is not a one-byte multibyte character\n", ch);
 } else {
 printf("%#04x has wide character representation: %#06x\n", ch, wc);
 }
 }
 wc = btowc(EOF);
 if (wc==WEOF) {
 printf("The character is EOF.\n", ch);
 } else {
 printf("EOF has wide character representation: %#06x\n", wc);
 }
 return 0;
 }
 /***
 If the locale is bound to SBCS, the output should be similar to:
 0000 has wide character representation: 000000
 0x01 has wide character representation: 0x0001
 ...
 0xfe has wide character representation: 0x00fe
 0xff has wide character representation: 0x00ff
 The character is EOF.

 **/

Related Information
• “mblen() — Determine Length of a Multibyte Character” on page 221
• “mbtowc() — Convert Multibyte Character to a Wide Character” on page 235
• “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 225
• “mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 229
• “setlocale() — Set Locale” on page 370
• “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 483

Library Functions 79

• “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 510
• “<stdio.h>” on page 13
• “<wchar.h>” on page 16

_C_Get_Ssn_Handle() — Handle to C Session

Format
#include <stdio.h>

_SSN_HANDLE_T _C_Get_Ssn_Handle (void)

Language Level
ILE C Extension

Threadsafe
Yes

Description
Returns a handle to the C session for use with Dynamic Screen Manager (DSM) APIs.

Return Value
The _C_Get_Ssn_Handle() function returns a handle to the C session. If an error occurs,
_SSN_HANDLE_T is set to zero. See the APIs topic in the Information Center for more information about
using the _C_Get_Ssn_Handle() function with DSM APIs.

calloc() — Reserve and Initialize Storage

Format
#include <stdlib.h>
void *calloc(size_t num, size_t size);

Language Level
ANSI

Threadsafe
Yes

Description
The calloc() function reserves storage space for an array of num elements, each of length size bytes.
The calloc() function then gives all the bits of each element an initial value of 0.

Return Value
The calloc() function returns a pointer to the reserved space. The storage space to which the return
value points is suitably aligned for storage of any type of object. To get a pointer to a type, use a type cast
on the return value. The return value is NULL if there is not enough storage, or if num or size is 0.

80 IBM i: ILE C/C++ Runtime Library Functions

Notes:

1. All heap storage is associated with the activation group of the calling function. As such, storage should
be allocated, deallocated, and reallocated within the same activation group. You cannot allocate heap
storage within one activation group and deallocate or reallocate that storage from a different activation
group. For more information about activation groups, see the ILE Concepts manual.

2. To use teraspace storage instead of single-level store storage without changing the C source code,
specify the TERASPACE(*YES *TSIFC) parameter on the compiler command. This maps the calloc()
library function to _C_TS_calloc(), its teraspace storage counterpart. The maximum amount
of teraspace storage that can be allocated by each call to _C_TS_calloc() is 2GB - 224, or
2147483424 bytes.

For more information about teraspace storage, see the ILE Concepts manual.
3. If the Quick Pool memory manager has been enabled in the current activation group, then the

storage is retrieved using Quick Pool memory manager. See“_C_Quickpool_Init() — Initialize Quick
Pool Memory Manager” on page 93 for more information.

Example
This example prompts for the number of array entries required, and then reserves enough space in
storage for the entries. If calloc() is successful, the example prints out each entry; otherwise, it prints
out an error.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 long * array; /* start of the array */
 long * index; /* index variable */
 int i; /* index variable */
 int num; /* number of entries of the array*/

 printf("Enter the size of the array\n");
 scanf("%i", &num);

 /* allocate num entries */
 if ((index = array = (long *) calloc(num, sizeof(long))) != NULL)
 {

 for (i = 0; i < num; ++i) /* put values in arr */
 index++ = i; / using pointer no */

 for (i = 0; i < num; ++i) /* print the array out */
 printf("array[%i] = %i\n", i, array[i]);
 }
 else
 { /* out of storage */
 perror("Out of storage");
 abort();
 }
}
/****************** Output should be similar to: **********************

Enter the size of the array
array[0] = 0
array[1] = 1
array[2] = 2
*/

Related Information
• “_C_Quickpool_Debug() — Modify Quick Pool Memory Manager Characteristics” on page 91
• “_C_Quickpool_Init() — Initialize Quick Pool Memory Manager” on page 93
• “_C_Quickpool_Report() — Generate Quick Pool Memory Manager Report” on page 95
• “Heap Memory” on page 583
• “free() — Release Storage Blocks” on page 152

Library Functions 81

• “malloc() — Reserve Storage Block” on page 219
• “realloc() — Change Reserved Storage Block Size” on page 295
• “<stdlib.h>” on page 14

catclose() — Close Message Catalog

Format
#include <nl_types.h>
int catclose (nl_catd catd);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Description
The catclose() function closes the previously opened message catalog that is identified by catd.

Return Value
If the close is performed successfully, 0 is returned. Otherwise, -1 is returned indicating failure, which
might happen if catd is not a valid message catalog descriptor.

The value of errno can be set to:
EBADF

The catalog descriptor is not valid.
EINTR

The function was interrupted by a signal.

82 IBM i: ILE C/C++ Runtime Library Functions

Example

#include <stdio.h>
#include <nl_types.h>
#include <locale.h>

/* Name of the message catalog is "/qsys.lib/mylib.lib/msgs.usrspc" */

int main(void) {

 nl_catd msg_file;
 char * my_msg;
 char * my_locale;

 setlocale(LC_ALL, NULL);
 msg_file = catopen("/qsys.lib/mylib.lib/msgs.usrspc", 0);

 if (msg_file != CATD_ERR) {

 my_msg = catgets(msg_file, 1, 2, "oops");

 printf("%s\n", my_msg);

 catclose(msg_file);
 }
}

Related Information
• “catopen() — Open Message Catalog” on page 84
• “catgets() — Retrieve a Message from a Message Catalog” on page 83

catgets() — Retrieve a Message from a Message Catalog

Format
#include <nl_types.h>
char *catgets(nl_catd catd, int set_id, int msg_id, char *s);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. This
function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Description
The catgets() function retrieves message msg_id, in set set_id from the message catalog that is
identified by catd. catd is a message catalog descriptor that is returned by a previous call to catopen().
The s argument points to a default message which will be returned by catgets() if the identified
message cannot be retrieved.

Library Functions 83

Return Value
If the message is retrieved successfully, then catgets() returns a pointer to the message string that
is contained in the message catalog. The CCSID of the retrieved message is determined by the flags
specified in the oflag parameter on the previous call to the catopen() function, when the message
catalog file was opened.

• If the NL_CAT_JOB_MODE flag was specified, then the retrieved message is in the CCSID of the job.
• If the NL_CAT_CTYPE_MODE flag was specified, then the retrieved message is in the CCSID of the

LC_CTYPE category of the current locale.
• If neither flag was specified, the CCSID of the retrieved message matches the CCSID of the message

catalog file.

If the message is retrieved unsuccessfully, then a pointer to the default string s is returned.

The value of errno can be set to the following:
EBADF

The catalog descriptor is not valid.
ECONVERT

A conversion error occurred.
EINTR

The function was interrupted by a signal.

Example

#include <stdio.h>
#include <nl_types.h>
#include <locale.h>

/* Name of the message catalog is "/qsys.lib/mylib.lib/msgs.usrspc" */

int main(void) {

 nl_catd msg_file;
 char * my_msg;
 char * my_locale;

 setlocale(LC_ALL, NULL);
 msg_file = catopen("/qsys.lib/mylib.lib/msgs.usrspc", 0);

 if (msg_file != CATD_ERR) {

 my_msg = catgets(msg_file, 1, 2, "oops");

 printf("%s\n", my_msg);

 catclose(msg_file);
 }
}

Related Information
• “catclose() — Close Message Catalog” on page 82
• “catopen() — Open Message Catalog” on page 84

catopen() — Open Message Catalog

Format
#include <nl_types.h>
nl_catd catopen(const char *name, int oflag);

84 IBM i: ILE C/C++ Runtime Library Functions

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_MESSAGES category of the current locale. This
function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Description
The catopen() function opens a message catalog, which must be done before a message can be
retrieved. The NLSPATH environment variable and the LC_MESSAGES category are used to find the
specified message catalog if no slash (/) characters are found in the name. If the name contains one or
more slash (/) characters, then the name is interpreted as a path name of the catalog to open.

If there is no NLSPATH environment variable, or if a message catalog cannot be found in the path
specified by NLSPATH, then a default path is used. The default path might be affected by the setting of
the LANG environment variable; if the NL_CAT_LOCALE flag is set in the oflag parameter or if the LANG
environment variable is not set, the default path might be affected by the LC_MESSAGES locale category.

Three values can be specified for the oflag parameter: NL_CAT_LOCALE, NL_CAT_JOB_MODE, and
NL_CAT_CTYPE_MODE. NL_CAT_JOB_MODE and NL_CAT_CTYPE_MODE are mutually exclusive. If the
NL_CAT_JOB_MODE and NL_CAT_CTYPE_MODE flags are both set in the oflag parameter, the catopen()
function will fail with a return value of CATD_ERR.

If you want the catalog messages to be converted to the job CCSID before they are returned by the
catgets() function, set the parameter to NL_CAT_JOB_MODE. If you want the catalog messages to
be converted to the LC_CTYPE CCSID before they are returned by catgets(), set the parameter to
NL_CAT_CTYPE_MODE. If you do not set the parameter to NL_CAT_JOB_MODE or NL_CAT_CTYPE_MODE,
the messages are returned without conversion and are in the CCSID of the message file.

The message catalog descriptor will remain valid until it is closed by a call to catclose(). If the
LC_MESSAGES locale category is changed, it might invalidate existing open message catalogs.

Note: The name of the message catalog must be a valid integrated file system file name.

Return Value
If the message catalog is opened successfully, then a valid catalog descriptor is returned. If catopen() is
unsuccessful, then it returns CATD_ERR ((nl_catd)-1).

The catopen() function might fail under the following conditions, and the value of errno can be set to:
EACCES

Insufficient authority to read the message catalog specified, or to search the component of the path
prefix of the message catalog specified.

ECONVERT
A conversion error occurred.

EMFILE
NL_MAXOPEN message catalogs are currently open.

Library Functions 85

ENAMETOOLONG
The length of the path name of the message catalog exceeds PATH_MAX, or a path name component
is longer than NAME_MAX.

ENFILE
Too many files are currently open in the system.

ENOENT
The message catalog does not exist, or the name argument points to an empty string.

Example

#include <stdio.h>
#include <nl_types.h>
#include <locale.h>

/* Name of the message catalog is "/qsys.lib/mylib.lib/msgs.usrspc" */

int main(void) {

 nl_catd msg_file;
 char * my_msg;
 char * my_locale;

 setlocale(LC_ALL, NULL);
 msg_file = catopen("/qsys.lib/mylib.lib/msgs.usrspc", 0);

 if (msg_file != CATD_ERR) {

 my_msg = catgets(msg_file, 1, 2, "oops");

 printf("%s\n", my_msg);

 catclose(msg_file);
 }
}

Related Information
• “catclose() — Close Message Catalog” on page 82
• “catgets() — Retrieve a Message from a Message Catalog” on page 83

ceil() — Find Integer >=Argument

Format
#include <math.h>
double ceil(double x);

Language Level
ANSI

Threadsafe
Yes

Description
The ceil() function computes the smallest integer that is greater than or equal to x.

Return Value
The ceil() function returns the integer as a double value.

86 IBM i: ILE C/C++ Runtime Library Functions

Example
This example sets y to the smallest integer greater than 1.05, and then to the smallest integer greater
than -1.05. The results are 2.0 and -1.0, respectively.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double y, z;

 y = ceil(1.05); /* y = 2.0 */
 z = ceil(-1.05); /* z = -1.0 */

 printf("y = %.2f ; z = %.2f\n", y, z);
}
/***************** Output should be similar to: ***********************

 y = 2.00 ; z = -1.00
**/

Related Information
• “floor() — Find Integer <=Argument” on page 132
• “fmod() — Calculate Floating-Point Remainder” on page 133
• “<math.h>” on page 6

clearerr() — Reset Error Indicators

Format
#include <stdio.h>
void clearerr (FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Description
The clearerr() function resets the error indicator and end-of-file indicator for the specified stream.
Once set, the indicators for a specified stream remain set until your program calls the clearerr()
function or the rewind() function. The fseek() function also clears the end-of-file indicator. The ILE
C/C++ runtime environment does not automatically clear error or end of file indicators.

Return Value
There is no return value.

The value of errno can be set to:
Value

Meaning
EBADF

The file pointer or descriptor is not valid.

Library Functions 87

ENOTOPEN
The file is not open.

ESTDIN
stdin cannot be opened.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

Example
This example reads a data stream, and then checks that a read error has not occurred.

#include <stdio.h>
#include <stdlib.h>

FILE *stream;
int c;

int main(void)
{
 if ((stream = fopen("mylib/myfile", "r")) != NULL)
 {
 if ((c=getc(stream)) == EOF)
 {
 if (ferror(stream))
 {
 perror("Read error");
 clearerr(stream);
 }
 }
 }
 else
 exit(0);
}

Related Information
• “feof() — Test End-of-File Indicator” on page 119
• “ferror() — Test for Read/Write Errors” on page 120
• “fseek() – fseeko() — Reposition File Position” on page 158
• “perror() — Print Error Message” on page 251
• “rewind() — Adjust Current File Position” on page 307
• “strerror() — Set Pointer to Runtime Error Message” on page 400
• “<stdio.h>” on page 13

clock() — Determine Processor Time

Format
#include <time.h>
clock_t clock(void);

Language Level
ANSI

Threadsafe
Yes

88 IBM i: ILE C/C++ Runtime Library Functions

Description
The clock() function returns an approximation of the processor time used by the program since
the beginning of an implementation-defined time-period that is related to the process invocation. To
obtain the time in seconds, divide the value that is returned by clock() by the value of the macro
CLOCKS_PER_SEC.

Return Value
If the value of the processor time is not available or cannot be represented, the clock() function returns
the value (clock_t)-1.

To measure the time spent in a program, call clock() at the start of the program, and subtract its return
value from the value returned by subsequent calls to clock(). On other platforms, you cannot always
rely on the clock() function because calls to the system() function might reset the clock.

Example
This example prints the time that has elapsed since the program was called.

#include <time.h>
#include <stdio.h>

double time1, timedif; /* use doubles to show small values */

int main(void)
{
 int i;

 time1 = (double) clock(); /* get initial time */
 time1 = time1 / CLOCKS_PER_SEC; /* in seconds */

 /* running the FOR loop 10000 times */
 for (i=0; i<10000; i++);

 /* call clock a second time */
 timedif = (((double) clock()) / CLOCKS_PER_SEC) - time1;
 printf("The elapsed time is %lf seconds\n", timedif);
}

Related Information
• “difftime() — Compute Time Difference” on page 108
• “difftime64() — Compute Time Difference” on page 109
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

cos() — Calculate Cosine

Format
#include <math.h>
double cos(double x);

Language Level
ANSI

Library Functions 89

Threadsafe
Yes

Description
The cos() function calculates the cosine of x. The value x is expressed in radians. If x is too large, a
partial loss of significance in the result might occur.

Return Value
The cos() function returns the cosine of x. The value of errno can be set to either EDOM or ERANGE.

Example
This example calculates y to be the cosine of x.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, y;

 x = 7.2;
 y = cos(x);

 printf("cos(%lf) = %lf\n", x, y);
}

/********************* Output should be similar to: *******************

cos(7.200000) = 0.608351
*/

Related Information
• “acos() — Calculate Arccosine” on page 62
• “cosh() — Calculate Hyperbolic Cosine” on page 90
• “sin() — Calculate Sine” on page 380
• “sinh() — Calculate Hyperbolic Sine” on page 381
• “tan() — Calculate Tangent” on page 444
• “tanh() — Calculate Hyperbolic Tangent” on page 445
• “<math.h>” on page 6

cosh() — Calculate Hyperbolic Cosine

Format
#include <math.h>
double cosh(double x);

Language Level
ANSI

Threadsafe
Yes

90 IBM i: ILE C/C++ Runtime Library Functions

Description
The cosh() function calculates the hyperbolic cosine of x. The value x is expressed in radians.

Return Value
The cosh() function returns the hyperbolic cosine of x. If the result is too large, cosh() returns the value
HUGE_VAL and sets errno to ERANGE.

Example
This example calculates y to be the hyperbolic cosine of x.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x,y;

 x = 7.2;
 y = cosh(x);

 printf("cosh(%lf) = %lf\n", x, y);
}

/********************* Output should be similar to: *******************

cosh(7.200000) = 669.715755
*/

Related Information
• “acos() — Calculate Arccosine” on page 62
• “cos() — Calculate Cosine” on page 89
• “sin() — Calculate Sine” on page 380
• “sinh() — Calculate Hyperbolic Sine” on page 381
• “tan() — Calculate Tangent” on page 444
• “tanh() — Calculate Hyperbolic Tangent” on page 445
• “<math.h>” on page 6

_C_Quickpool_Debug() — Modify Quick Pool Memory Manager
Characteristics

Format
#include <stdlib.h>
_C_Quickpool_Debug_T _C_Quickpool_Debug(_C_Quickpool_Debug_T *newval);

Language Level
Extended

Threadsafe
Yes

Library Functions 91

Description
The _C_Quickpool_Debug() function modifies Quick Pool memory manager characteristics.
Environment variables can also be used to configure this support (reference section “Environment
Variables” on page 591).

The parameters for _C_Quickpool_Debug() are as follows:

newval
A pointer to a _C_Quickpool_Debug_T structure. The structure contains the following fields:
flags

An unsigned integer value that indicates the characteristics to be modified. The flags field can
contain the following values (which can be used in any combination):
_C_INIT_MALLOC

Initializes all allocated storage to a specified value.
_C_INIT_FREE

Initializes all freed storage to a specified value.
_C_COLLECT_STATS

Collects statistics on the Quick Pool memory manager for use with the
_C_Quickpool_Report() function.

malloc_val
A 1-byte unsigned character value that is used to initialize each byte of allocated memory. This
field is in use only when the _C_INIT_MALLOC flag is specified.

free_val
A 1-byte unsigned character value that is used to initialize each byte of freed memory. This field is
in use only when the _C_INIT_FREE flag is specified.

If the value of newval is NULL, a structure containing the current Quick Pool memory manager
characteristics is returned and none of the Quick Pool memory manager characteristics are modified.

Return Value
The return value is a structure that contains the _C_Quickpool_Debug() values before the changes
requested by the current function call are made. This value can be used on a later call to restore the
_C_Quickpool_Debug() values to a prior state.

Example
The following example uses _C_Quickpool_Debug() with the _C_INIT_MALLOC and _C_INIT_FREE
flags to initialize memory on the malloc and free functions.

92 IBM i: ILE C/C++ Runtime Library Functions

#include <stdlib.h>
#include <stdio.h>
int main(void) {
 char *p;
 char *mtest = "AAAAAAAAAA";
 char *ftest = "BBBBBBBBBB";
 unsigned int cell_sizes[2] = { 16, 64 };
 unsigned int cells_per_extent[2] = { 16, 16 };
 _C_Quickpool_Debug_T dbgVals = { _C_INIT_MALLOC | _C_INIT_FREE, 'A', 'B' };

 if (_C_Quickpool_Init(2, cell_sizes, cells_per_extent)) {
 printf("Error initializing Quick Pool memory manager.\n");
 return -1;
 }

 _C_Quickpool_Debug(&dbgVals);

 if ((p = malloc(10)) == NULL) {
 printf("Error during malloc.\n");
 return -2;
 }
 if (memcmp(p, mtest, 10)) {
 printf("malloc test failed\n");
 }
 free(p);
 if (memcmp(p, ftest, 10)) {
 printf("free test failed\n");
 }
 printf("Test successful!\n");
 return 0;
}
/*****************Output should be similar to:*****************
Test successful!
***/

Related Information
• “_C_Quickpool_Init() — Initialize Quick Pool Memory Manager” on page 93
• “_C_Quickpool_Report() — Generate Quick Pool Memory Manager Report” on page 95
• “<stdlib.h>” on page 14
• “Heap Memory” on page 583

_C_Quickpool_Init() — Initialize Quick Pool Memory Manager

Format
#include <stdlib.h>
int _C_Quickpool_Init(unsigned int numpools, unsigned int *cell_sizes, unsigned int *num_cells);

Language Level
Extended

Threadsafe
Yes

Description
When the _C_Quickpool_Init() function is called, all subsequent calls to memory manager functions
(malloc, calloc, realloc, and free) in the same activation group use the Quick Pool memory
manager. This memory manager provides improved performance for some applications.

The Quick Pool memory manager breaks memory up into a series of pools. Each pool is broken up into a
number of cells with identical sizes. The number of pools, the size of cells in each pool, and the number

Library Functions 93

of cells in each pool extent is set using the _C_Quickpool_Init() function. Environment variables can
also be used to configure this support (reference section “Environment Variables” on page 591).

Suppose that a user wants to define four pools, each of which contains 64 cells. The first pool will have
cells which are 16 bytes in size; the second pool will have cells which are 256 bytes in size; the third pool
will have cells which are 1024 bytes in size; and the fourth pool will have cells which are 2048 bytes in
size. When a request for storage is made, the memory manager assigns the request to a pool first. The
memory manager compares the size of storage in the request with the size of the cells in a given pool.

In this example, the first pool satisfies requests between 1 and 16 bytes in size; the second pool satisfies
requests between 17 and 256 bytes in size; the third pool satisfies requests between 257 and 1024 bytes
in size, and the fourth pool satisfies requests between 1025 and 2048 bytes in size. Any requests larger
than the largest cell size are allocated through the default memory manager.

After the pool has been assigned, the free queue for the pool is examined. Each pool has a free queue that
contains cells that have been freed and have not yet been reallocated. If there is a cell on the free queue,
the cell is removed from the free queue and returned; otherwise, the cell is retrieved from the current
extent for the pool. An extent is a collection of cells that are allocated as one block. Initially, a pool has no
extents.

When the first request comes in for a pool, an extent is allocated for the pool and the request is satisfied
from that extent. Later requests for the pool are also satisfied by that extent until the extent is exhausted.
When an extent is exhausted, a new extent is allocated for the pool. If a new extent cannot be allocated, it
assumes that a memory problem exists. An attempt will be made to allocate the storage using the default
memory manager. If the attempt is not successful, the NULL value is returned.

numpools
The number of pools to use for the Quick Pool memory manager. This parameter can have a value
between 1 and 64.

cell_sizes
An array of unsigned integer values. The number of entries in the array is equal to the number
specified on the numpools parameter. Each entry specifies the number of bytes in a cell for a given
pool. These values must be multiples of 16 bytes. If a value is specified that is not a multiple of 16
bytes, the cell size is rounded up to the next larger multiple of 16 bytes. The minimum valid value is
16 bytes and the maximum valid value is 4096 bytes.

num_cells
An array of unsigned integer values. The number of entries in the array is equal to the number
specified on the numpools parameter. Each entry specifies the number of cells in a single extent for
the corresponding pool. Each value can be any non-negative number, but the total size of each extent
may be limited due to architecture constraints. A value of zero indicates that the implementation
should choose a large value.

Here is the call to _C_Quickpool_Init() for the preceding example:

unsigned int cell_sizes[4] = { 16, 256, 1024, 2048 };
unsigned int cells_per_extent[4] = { 64, 64, 64, 64 };
rc = _C_Quickpool_Init(4, /* number of pools */
 cell_sizes, /* cell sizes for each pool */
 cells_per_extent); /* extent sizes for each pool */

Return Value
The follow list shows the return values for the _C_Quickpool_Init() function:
0

Success
-1

An alternate memory manager has already been enabled for this activation group.
-2

Error allocating storage for control structures.

94 IBM i: ILE C/C++ Runtime Library Functions

-3
An invalid number of pools was specified.

-4
_C_Quickpool_Init() was called from an invalid activation group.

-5
An unexpected exception occurred when _C_Quickpool_Init() was running.

Example
The following example uses _C_Quickpool_Init() to enable Quick Pool memory allocation.

#include <stdlib.h>
#include <stdio.h>
int main(void) {
 char *p;
 unsigned int cell_sizes[2] = { 16, 64 };
 unsigned int cells_per_extent[2] = { 16, 16 };

 if (_C_Quickpool_Init(2, cell_sizes, cells_per_extent) {
 printf("Error initializing Quick Pool memory manager.\n");
 return -1;
 }
 if ((p = malloc(10)) == NULL) {
 printf("Error during malloc.\n");
 return -2;
 }
 free(p);
 printf("Test successful!\n");
 return 0;
}
/*****************Output should be similar to:*****************
Test successful!
***/

Related Information
• “_C_Quickpool_Debug() — Modify Quick Pool Memory Manager Characteristics” on page 91
• “_C_Quickpool_Report() — Generate Quick Pool Memory Manager Report” on page 95
• “<stdlib.h>” on page 14
• “Heap Memory” on page 583

_C_Quickpool_Report() — Generate Quick Pool Memory Manager
Report

Format
#include <stdlib.h>
void _C_Quickpool_Report(void);

Language Level
Extended

Threadsafe
Yes

Description
The _C_Quickpool_Report() function generates a spooled file that contains a snapshot of the memory
used by the Quick Pool memory manager in the current activation group. If the Quick Pool memory

Library Functions 95

manager has not been enabled for the current activation group or if statistics collection has not been
enabled, the report will be a message that indicates no data is collected.

If the Quick Pool memory manager has been enabled and statistics collection has been enabled, the
report that is generated indicates the number of allocation attempts for each 16 bytes of memory during
the time that statistics collection was enabled. In addition, the report indicates the maximum number
of outstanding allocations (peak allocations) that is reached for each pool. If no storage requests are
made for a given range of memory, that range of memory will not be included in the report. No output is
generated for allocations larger than the maximum cell size (4096 bytes).

Return Value
There is no return value for the function.

Example
The following example uses _C_Quickpool_Init() to enable Quick Pool memory manager. It
uses the _C_COLLECT_STATS flag to collect information. The collected information is printed using
_C_Quickpool_Report().

#include <stdlib.h>
#include <stdio.h>
int main(void) {
 char *p;
 int i;
 unsigned int cell_sizes[2] = { 16, 64 };
 unsigned int cells_per_extent[2] = { 16, 16 };
 _C_Quickpool_Debug_T dbgVals = { _C_COLLECT_STATS, 'A', 'B' };

 if (_C_Quickpool_Init(2, cell_sizes, cells_per_extent) {
 printf("Error initializing Quick Pool memory manager.\n");
 return -1;
 }

 _C_Quickpool_Debug(&dbgVals);

 for (i = 1; i <= 64; i++) {
 p = malloc(i);
 free(p);
 }
 p = malloc(128);
 free(p);
 _C_Quickpool_Report();
 return 0;
}
/*****************Spooled File Output should be similar to:**********
Pool 1 (16 bytes, 1 peak allocations):
1-16 bytes: 16 allocations
Pool 2 (64 bytes, 1 peak allocations):
17-32 bytes: 16 allocations
33-48 bytes: 16 allocations
49-64 bytes: 16 allocations
Remaining allocations smaller than the largest cell size (4096 bytes):
113-128 bytes: 1 allocations
***/

Related Information
• “_C_Quickpool_Debug() — Modify Quick Pool Memory Manager Characteristics” on page 91
• “_C_Quickpool_Init() — Initialize Quick Pool Memory Manager” on page 93
• “<stdlib.h>” on page 14
• “Heap Memory” on page 583

96 IBM i: ILE C/C++ Runtime Library Functions

ctime() — Convert Time to Character String

Format
#include <time.h>
char *ctime(const time_t *time);

Language Level
ANSI

Threadsafe
No

Use ctime_r() instead.

Locale Sensitive
The behavior of this function might be affected by the LC_TOD category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The ctime() function converts the time value pointed to by time to local time in the form of a character
string. A time value is usually obtained by a call to the time() function.

The string result that is produced by ctime() contains exactly 26 characters and has the format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

For example:

 Mon Jul 16 02:03:55 1987\n\0

The ctime() function uses a 24-hour clock format. The days are abbreviated to: Sun, Mon, Tue, Wed,
Thu, Fri, and Sat. The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,
and Dec. All fields have a constant width. Dates with only one digit are preceded with a zero. The new-line
character (\n) and the null character (\0) occupy the last two positions of the string.

Return Value
The ctime() function returns a pointer to the character string result. If the function is unsuccessful, it
returns NULL. A call to the ctime() function is equivalent to:

 asctime(localtime(&anytime))

Note: The asctime() and ctime() functions, and other time functions can use a common, statically
allocated buffer to hold the return string. Each call to one of these functions might destroy the result of
the previous call. The asctime_r(), ctime_r(), gmtime_r(), and localtime_r() functions do not
use a common, statically allocated buffer to hold the return string. These functions can be used in place of
asctime(), ctime(), gmtime(), and localtime() if reentrancy is desired.

Example
This example polls the system clock using time(). It then prints a message giving the current date and
time.

Library Functions 97

#include <time.h>
#include <stdio.h>

int main(void)
{
 time_t ltime;

 time(<ime);

 printf("the time is %s", ctime(<ime));
}

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “setlocale() — Set Locale” on page 370
• “strftime() — Convert Date/Time to String” on page 403
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “printf() — Print Formatted Characters” on page 254
• “<time.h>” on page 15

ctime64() — Convert Time to Character String

Format
#include <time.h>
char *ctime64(const time64_t *time);

Language Level
ILE C Extension

Threadsafe
No

Use ctime64_r() instead.

98 IBM i: ILE C/C++ Runtime Library Functions

Locale Sensitive
The behavior of this function might be affected by the LC_TOD category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The ctime64() function converts the time value pointed to by time to local time in the form of a
character string. A time value is usually obtained by a call to the time64() function.

The string result that is produced by the ctime64() function contains exactly 26 characters and has the
format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

For example:

 Mon Jul 16 02:03:55 1987\n\0

The ctime64() function uses a 24-hour clock format. The month and day abbreviations used are
retrieved from the locale. All fields have a constant width. Dates with only 1 digit are preceded with a
zero. The new-line character (\n) and the null character (\0) occupy the last two positions of the string.

Return Value
The ctime64() function returns a pointer to the character string result. If the function is unsuccessful, it
returns NULL. A call to the ctime64() function is equivalent to:

 asctime(localtime64(&anytime))

Note: The asctime() and ctime64() functions, and other time functions can use a common, statically
allocated buffer to hold the return string. Each call to one of these functions might destroy the result of
the previous call. The asctime_r(), ctime64_r(), gmtime64_r(), and localtime64_r() functions
do not use a common, statically allocated buffer to hold the return string. These functions can be used in
place of asctime(), ctime64(), gmtime64(), and localtime64(), if reentrancy is desired.

Example
This example polls the system clock using time64(). It then prints a message that gives the current date
and time.

#include <time.h>
#include <stdio.h>

int main(void)
{
 time64_t ltime;

 time64(<ime);

 printf("the time is %s", ctime64(<ime));
}

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “gmtime() — Convert Time” on page 184

Library Functions 99

• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “setlocale() — Set Locale” on page 370
• “strftime() — Convert Date/Time to String” on page 403
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “printf() — Print Formatted Characters” on page 254
• “<time.h>” on page 15

ctime_r() — Convert Time to Character String (Restartable)

Format
#include <time.h>
char *ctime_r(const time_t *time, char *buf);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_TOD category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
This function is the restartable version of the ctime() function.

The ctime_r() function converts the time value pointed to by time to local time in the form of a
character string. A time value is usually obtained by a call to the time() function.

The string result that is produced by the ctime_r() function contains exactly 26 characters and has the
format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

For example:

 Mon Jul 16 02:03:55 1987\n\0

The ctime_r() function uses a 24-hour clock format. The days are abbreviated to: Sun, Mon, Tue, Wed,
Thu, Fri, and Sat. The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,

100 IBM i: ILE C/C++ Runtime Library Functions

and Dec. All fields have a constant width. Dates with only one digit are preceded with a zero. The new-line
character (\n) and the null character (\0) occupy the last two positions of the string.

Return Value
The ctime_r() function returns a pointer to the character string result. If the function is unsuccessful, it
returns NULL. A call to ctime_r() is equivalent to:

 asctime_r(localtime_r(&anytime, buf2), buf)

where buf is a pointer to char.

Example
This example polls the system clock using ctime_r(). It then prints a message giving the current date
and time.

#include <time.h>
#include <stdio.h>

int main(void)
{
 time_t ltime;
 char buf[50];

 time(<ime);
 printf("the time is %s", ctime_r(<ime, buf));
}

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “strftime() — Convert Date/Time to String” on page 403
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

Library Functions 101

ctime64_r() — Convert Time to Character String (Restartable)

Format
#include <time.h>
char *ctime64_r(const time64_t *time, char *buf);

Language Level
ILE C Extension

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_TOD category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
This function is the restartable version of the ctime64() function.

The ctime64() function converts the time value pointed to by time to local time in the form of a
character string. A time value is usually obtained by a call to the time64() function.

The string result that is produced by the ctime64_r() function contains exactly 26 characters and has
the format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

For example:

 Mon Jul 16 02:03:55 1987\n\0

The ctime64_r() function uses a 24-hour clock format. The month and day abbreviation used are
retrieved from the locale. All fields have a constant width. Dates with only 1 digit are preceded with a zero.
The new-line character (\n) and the null character (\0) occupy the last two positions of the string.

Return Value
The ctime64_r() function returns a pointer to the character string result. If the function is unsuccessful,
it returns NULL. A call to the ctime64_r() function is equivalent to:

 asctime_r(localtime64_r(&anytime, buf2), buf)

Example
This example polls the system clock using time64(). It then prints a message, giving the current date
and time.

102 IBM i: ILE C/C++ Runtime Library Functions

#include <time.h>
#include <stdio.h>

int main(void)
{
 time64_t ltime;
 char buf[50];

 time64(<ime);
 printf("the time is %s", ctime64_r(<ime, buf));
}

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “strftime() — Convert Date/Time to String” on page 403
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

_C_TS_malloc_debug() — Determine amount of teraspace memory
used (with optional dumps and verification)

Format
#include <mallocinfo.h>
int _C_TS_malloc_debug(unsigned int dump_level, unsigned int verify_level,
 struct _C_mallinfo_t *output_record, size_t sizeofoutput);

Language Level
Extended

Threadsafe
Yes

Library Functions 103

Description
The _C_TS_malloc_debug() function determines the amount of teraspace memory used and returns
the information within the given output_record structure. If the given dump_level parameter is greater
than 0, it also dumps the internal memory structures used to stdout. If the given verify_level parameter
is greater than 0, it also performs verification checks for the internal memory structures. If a verification
fails, a message is generated to stdout indicating the failure. If both the dump_level and verify_level
parameters are 0, this function provides the same behavior as the _C_TS_malloc_info function.

The following macros are defined within the <mallocinfo.h> include file to be specified for the dump_level
parameter:

Macro Description

_C_NO_DUMPS No information is dumped

_C_DUMP_TOTALS Overall totals and totals for each chunk are printed

_C_DUMP_CHUNKS Additional information about each chunk is printed

_C_DUMP_NODES Additional information for all nodes within each
chunk is printed

_C_DUMP_TREE Additional information for the cartesian tree used
to track free nodes is printed

_C_DUMP_ALL All available information is printed

The following macros are defined within the <mallocinfo.h> include file to be specified for the verify_level
parameter:

Macro Description

_C_NO_CHECKS No verification checks are performed

_C_CHECK_TOTALS Totals are verified for correctness

_C_CHECK_CHUNKS Additional verifications are performed for each
chunk

_C_CHECK_NODES Additional verifications are performed for all nodes
within each chunk

_C_CHECK_TREE Additional verifications are performed for the
cartesian tree used to track free nodes

_C_CHECK_ALL All verifications are performed

_C_CHECK_ALL_AND_ABORT All verifications are performed, and if any
verification fails, the abort() function is called

Note: This function is for low-level debug of teraspace memory usage within an application.

Return Value
If successful, the function returns 0. If an error occurs, the function returns a negative value.

Example
This example prints the information returned from _C_TS_malloc_debug() to stdout . This program is
compiled with TERASPACE(*YES *TSIFC).

104 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <stdlib.h>
#include <mallocinfo.h>

int main (void)
{
 _C_mallinfo_t info;
 int rc;
 void *m;

 /* Allocate a small chunk of memory */
 m = malloc(500);

 rc = _C_TS_malloc_debug(_C_DUMP_TOTALS,
 _C_NO_CHECKS,
 &info, sizeof(info));

 if (rc == 0) {
 printf("_C_TS_malloc_debug successful\n");
 }
 else {
 printf("_C_TS_malloc_debug failed (rc = %d)\n", rc);
 }

 free(m);
}

/**
 The output should be similar to:

 total_bytes = 524288
 allocated_bytes = 688
 unallocated_bytes = 523600
 allocated_blocks = 1
 unallocated_blocks = 1
 requested_bytes = 500
 pad_bytes = 12
 overhead_bytes = 176
 Number of memory chunks = 1
 Total bytes = 524288
 Total allocated bytes = 688
 Total unallocated bytes = 523600
 Total allocated blocks = 1
 Total unallocated blocks = 1
 Total requested bytes = 500
 Total pad bytes = 12
 Total overhead bytes = 176
 _C_TS_malloc_debug successful
 **

Related Information
• “_C_TS_malloc_info() — Determine amount of teraspace memory used” on page 105
• “calloc() — Reserve and Initialize Storage” on page 80
• “free() — Release Storage Blocks” on page 152
• “malloc() — Reserve Storage Block” on page 219
• “realloc() — Change Reserved Storage Block Size” on page 295
• “<mallocinfo.h>” on page 6
• “Heap Memory” on page 583

_C_TS_malloc_info() — Determine amount of teraspace memory
used

Format
#include <mallocinfo.h>
int _C_TS_malloc_info(struct _C_mallinfo_t *output_record, size_t sizeofoutput);

Library Functions 105

Language Level
Extended

Threadsafe
Yes

Description
The _C_TS_malloc_info() function determines the amount of teraspace memory used and returns the
information within the given output_record structure.

Note: This function is for low-level debug of teraspace memory usage within an application.

Return Value
If successful, the function returns 0. If an error occurs, the function returns a negative value.

Example
This example prints the information returned from _C_TS_malloc_info() to stdout. This program is
compiled with TERASPACE(*YES *TSIFC).

106 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <stdlib.h>
#include <mallocinfo.h>

int main (void)
{
 _C_mallinfo_t info;
 int rc;
 void *m;

 /* Allocate a small chunk of memory */
 m = malloc(500);

 rc = _C_TS_malloc_info(&info, sizeof(info));

 if (rc == 0) {
 printf("Total bytes = %llu\n",
 info.total_bytes);
 printf("Total allocated bytes = %llu\n",
 info.allocated_bytes);
 printf("Total unallocated bytes = %llu\n",
 info.unallocated_bytes);
 printf("Total allocated blocks = %llu\n",
 info.allocated_blocks);
 printf("Total unallocated blocks = %llu\n",
 info.unallocated_blocks);
 printf("Total requested bytes = %llu\n",
 info.requested_bytes);
 printf("Total pad bytes = %llu\n",
 info.pad_bytes);
 printf("Total overhead bytes = %llu\n",
 info.overhead_bytes);
 }
 else {
 printf("_C_TS_malloc_info failed (rc = %d)\n", rc);
 }

 free(m);
}

/**
 The output should be similar to:

 Total bytes = 524288
 Total allocated bytes = 688
 Total unallocated bytes = 523600
 Total allocated blocks = 1
 Total unallocated blocks = 1
 Total requested bytes = 500
 Total pad bytes = 12
 Total overhead bytes = 176
 **

Related Information
• “_C_TS_malloc_debug() — Determine amount of teraspace memory used (with optional dumps and
verification)” on page 103

• “calloc() — Reserve and Initialize Storage” on page 80
• “free() — Release Storage Blocks” on page 152
• “malloc() — Reserve Storage Block” on page 219
• “realloc() — Change Reserved Storage Block Size” on page 295
• “<mallocinfo.h>” on page 6
• “Heap Memory” on page 583

Library Functions 107

difftime() — Compute Time Difference

Format
#include <time.h>
double difftime(time_t time2, time_t time1);

Language Level
ANSI

Threadsafe
Yes

Description
The difftime() function computes the difference in seconds between time2 and time1.

Return Value
The difftime() function returns the elapsed time in seconds from time1 to time2 as a double precision
number. Type time_t is defined in <time.h>.

Example
This example shows a timing application that uses difftime(). The example calculates how long, on
average, it takes to find the prime numbers from 2 to 10 000.

#include <time.h>
#include <stdio.h>

#define RUNS 1000
#define SIZE 10000

int mark[SIZE];

int main(void)
{
 time_t start, finish;
 int i, loop, n, num;

 time(&start);

 /* This loop finds the prime numbers between 2 and SIZE */
 for (loop = 0; loop < RUNS; ++loop)
 {
 for (n = 0; n < SIZE; ++n)
 mark [n] = 0;
 /* This loops marks all the composite numbers with -1 */
 for (num = 0, n = 2; n < SIZE; ++n)
 if (! mark[n])
 {
 for (i = 2 * n; i < SIZE; i += n)
 mark[i] = -1;
 ++num;
 }
 }
 time(&finish);
 printf("Program takes an average of %f seconds "
 "to find %d primes.\n",
 difftime(finish,start)/RUNS, num);
}

/******************** Output should be similar: *****************

The program takes an average of 0.106000 seconds to find 1229 primes.
*/

108 IBM i: ILE C/C++ Runtime Library Functions

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “difftime64() — Compute Time Difference” on page 109
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “strftime() — Convert Date/Time to String” on page 403
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

difftime64() — Compute Time Difference

Format
#include <time.h>
double difftime64(time64_t time2, time64_t time1);

Language Level
ILE C Extension

Threadsafe
Yes

Description
The difftime64() function computes the difference in seconds between time2 and time1.

Return Value
The difftime64() function returns the elapsed time in seconds from time1 to time2 as a double
precision number. Type time64_t is defined in <time.h>.

Library Functions 109

Example
This example shows a timing application that uses difftime64(). The example calculates how long, on
average, it takes to find the prime numbers from 2 to 10 000.

#include <time.h>
#include <stdio.h>

#define RUNS 1000
#define SIZE 10000

int mark[SIZE];

int main(void)
{
 time64_t start, finish;
 int i, loop, n, num;

 time64(&start);

 /* This loop finds the prime numbers between 2 and SIZE */
 for (loop = 0; loop < RUNS; ++loop)
 {
 for (n = 0; n < SIZE; ++n)
 mark [n] = 0;
 /* This loops marks all the composite numbers with -1 */
 for (num = 0, n = 2; n < SIZE; ++n)
 if (! mark[n])
 {
 for (i = 2 * n; i < SIZE; i += n)
 mark[i] = -1;
 ++num;
 }
 }
 time64(&finish);
 printf("Program takes an average of %f seconds "
 "to find %d primes.\n",
 difftime64(finish,start)/RUNS, num);
}

/******************** Output should be similar: *****************

The program takes an average of 0.106000 seconds to find 1229 primes.
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “difftime() — Compute Time Difference” on page 108
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245

110 IBM i: ILE C/C++ Runtime Library Functions

• “strftime() — Convert Date/Time to String” on page 403
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

div() — Calculate Quotient and Remainder

Format
#include <stdlib.h>
div_t div(int numerator, int denominator);

Language Level
ANSI

Threadsafe
Yes

However, only the function version is threadsafe. The macro version is NOT threadsafe.

Description
The div() function calculates the quotient and remainder of the division of numerator by denominator.

Return Value
The div() function returns a structure of type div_t, containing both the quotient int quot and the
remainder int rem. If the return value cannot be represented, its value is undefined. If denominator is 0,
an exception will be raised.

Example
This example uses div() to calculate the quotients and remainders for a set of two dividends and two
divisors.

Library Functions 111

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int num[2] = {45,-45};
 int den[2] = {7,-7};
 div_t ans; /* div_t is a struct type containing two ints:
 'quot' stores quotient; 'rem' stores remainder */
 short i,j;

 printf("Results of division:\n");
 for (i = 0; i < 2; i++)
 for (j = 0; j < 2; j++)
 {
 ans = div(num[i],den[j]);
 printf("Dividend: %6d Divisor: %6d", num[i], den[j]);
 printf(" Quotient: %6d Remainder: %6d\n", ans.quot, ans.rem);
 }
}

/***************** Output should be similar to: *****************

Results of division:
Dividend: 45 Divisor: 7 Quotient: 6 Remainder: 3
Dividend: 45 Divisor: -7 Quotient: -6 Remainder: 3
Dividend: -45 Divisor: 7 Quotient: -6 Remainder: -3
Dividend: -45 Divisor: -7 Quotient: 6 Remainder: -3

**/

Example
• “ldiv() – lldiv() — Perform Long and Long Long Division” on page 202
• “<stdlib.h>” on page 14

erf() – erfc() — Calculate Error Functions

Format
#include <math.h>
double erf(double x);
double erfc(double x);

Language Level
ANSI

Threadsafe
Yes

Description
The erf() function calculates the error function of:

The erfc() function computes the value of 1.0 - erf(x). The erfc() function is used in place of erf()
for large values of x.

112 IBM i: ILE C/C++ Runtime Library Functions

Return Value
The erf() function returns a double value that represents the error function. The erfc() function
returns a double value representing 1.0 - erf.

Example
This example uses erf() and erfc() to compute the error function of two numbers.

#include <stdio.h>
#include <math.h>

double smallx, largex, value;

int main(void)
{
 smallx = 0.1;
 largex = 10.0;

 value = erf(smallx); /* value = 0.112463 */
 printf("Error value for 0.1: %lf\n", value);

 value = erfc(largex); /* value = 2.088488e-45 */
 printf("Error value for 10.0: %le\n", value);
}

/***************** Output should be similar to: *****************

Error value for 0.1: 0.112463
Error value for 10.0: 2.088488e-45
*/

Related Information
• “Bessel Functions” on page 75
• “gamma() — Gamma Function” on page 173
• “<math.h>” on page 6

exit() — End Program

Format
#include <stdlib.h>
void exit(int status);

Language Level
ANSI

Threadsafe
Yes

Description
The exit() function returns control to the host environment from the program. It first calls all functions
that are registered with the atexit() function, in reverse order; that is, the last one that is registered is
the first one called. It deletes all buffers and closes all open files before ending the program.

The argument status can have a value from 0 to 255 inclusive, or be one of the macros EXIT_SUCCESS
or EXIT_FAILURE. A status value of EXIT_SUCCESS or 0 indicates a normal exit; otherwise, another status
value is returned.

Library Functions 113

Note: The exit() function cannot be called within an asynchronous signal handler. This means that
when compiled with SYSIFCOPT(*ASYNCSIGNAL), exit() cannot be called in a signal handler.

Return Value
The exit() function returns both control and the value of status to the operating system.

Example
This example ends the program after deleting buffers and closing any open files if it cannot open the file
myfile.

#include <stdio.h>
#include <stdlib.h>

FILE *stream;

int main(void)
{
 if ((stream = fopen("mylib/myfile", "r")) == NULL)
 {
 perror("Could not open data file");
 exit(EXIT_FAILURE);
 }
}

Related Information
• “abort() — Stop a Program” on page 60
• “atexit() — Record Program Ending Function” on page 70
• “signal() — Handle Interrupt Signals” on page 378
• “<stdlib.h>” on page 14

exp() — Calculate Exponential Function

Format
#include <math.h>
double exp(double x);

Language Level
ANSI

Threadsafe
Yes

Description
The exp() function calculates the exponential value of a floating-point argument x (ex , where e equals
2.17128128...).

Return Value
If an overflow occurs, the exp() function returns HUGE_VAL. If an underflow occurs, it returns 0. Both
overflow and underflow set errno to ERANGE. The value of errno can also be set to EDOM.

114 IBM i: ILE C/C++ Runtime Library Functions

Example
This example calculates y as the exponential function of x:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, y;

 x = 5.0;
 y = exp(x);

 printf("exp(%lf) = %lf\n", x, y);
}

/***************** Output should be similar to: *****************

exp(5.000000) = 148.413159
*/

Related Information
• “log() — Calculate Natural Logarithm” on page 214
• “log10() — Calculate Base 10 Logarithm” on page 215
• “<math.h>” on page 6

fabs() — Calculate Floating-Point Absolute Value

Format
#include <math.h>
double fabs(double x);

Language Level
ANSI

Threadsafe
Yes

Description
The fabs() function calculates the absolute value of the floating-point argument x.

Return Value
The fabs() function returns the absolute value. There is no error return value.

Example
This example calculates y as the absolute value of x:

Library Functions 115

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, y;

 x = -5.6798;
 y = fabs(x);

 printf("fabs(%lf) = %lf\n", x, y);
}

/******************* Output should be similar to: ***************

fabs(-5.679800) = 5.679800
*/

Related Information
• “abs() — Calculate Integer Absolute Value” on page 61
• “labs() – llabs() — Calculate Absolute Value of Long and Long Long Integer” on page 200
• “<math.h>” on page 6

fclose() — Close Stream

Format
#include <stdio.h>
int fclose(FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Description
The fclose() function closes a stream pointed to by stream. This function deletes all buffers that are
associated with the stream before closing it. When it closes the stream, the function releases any buffers
that the system reserved. When a binary stream is closed, the last record in the file is padded with null
characters (\0) to the end of the record.

Return Value
The fclose() function returns 0 if it successfully closes the stream, or EOF if any errors were detected.

The value of errno can be set to:
Value

Meaning
ENOTOPEN

The file is not open.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

116 IBM i: ILE C/C++ Runtime Library Functions

ESCANFAILURE
The file was marked with a scan failure.

Note: The storage pointed to by the FILE pointer is freed by the fclose() function. After the use of the
fclose() function, any attempt to use the FILE pointer is not valid.

Example
This example opens a file myfile for reading as a stream; then it closes this file.

#include <stdio.h>

#define NUM_ALPHA 26

int main(void)
{
 FILE *stream;
 char buffer[NUM_ALPHA];

 if ((stream = fopen("mylib/myfile", "r"))!= NULL)
 {
 fread(buffer, sizeof(char), NUM_ALPHA, stream);
 printf("buffer = %s\n", buffer);
 }

 if (fclose(stream)) /* Close the stream. */
 perror("fclose error");
 else printf("File mylib/myfile closed successfully.\n");
}

Related Information
• “fflush() — Write Buffer to File” on page 121
• “fopen() — Open Files” on page 134
• “freopen() — Redirect Open Files” on page 154
• “<stdio.h>” on page 13

fdopen() — Associates Stream With File Descriptor

Format
#include <stdio.h>
FILE *fdopen(int handle, char *type);

Language Level
XPG4

Threadsafe
Yes

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Description
The fdopen() function associates an input or output stream with the file that is identified by handle.
The type variable is a character string specifying the type of access that is requested for the stream. The
variable contains one positional parameter that is followed by optional keyword parameters.

Library Functions 117

The possible values for the positional parameters are:

Mode
Description

r
Create a stream to read a text file. The file pointer is set to the beginning of the file.

w
Create a stream to write to a text file. The file pointer is set to the beginning of the file.

a
Create a stream to write, in append mode, at the end of the text file. The file pointer is set to the end of
the file.

r+
Create a stream for reading and writing a text file. The file pointer is set to the beginning of the file.

w+
Create a stream for reading and writing a text file. The file pointer is set to the beginning of the file.

a+
Create a stream for reading or writing, in append mode, at the end of the text file. The file pointer is
set to the end of the file.

rb
Create a stream to read a binary file. The file pointer is set to the beginning of the file.

wb
Create a stream to write to a binary file. The file pointer is set to the beginning of the file.

ab
Create a stream to write to a binary file in append mode. The file pointer is set to the end of the file.

r+b or rb+
Create a stream for reading and writing a binary file. The file pointer is set to the beginning of the file.

w+b or wb+
Create a stream for reading and writing a binary file. The file pointer is set to the beginning of the file.

a+b or ab+
Create a stream for reading and writing to a binary file in append mode. The file pointer is set to the
end of the file.

Note: Use the w, w+, wb, wb+, and w+b modes with care; they can destroy existing files.

The specified type must be compatible with the access method you used to open the file. If the file was
opened with the O_APPEND flag, the stream mode must be a, a+, ab, a+b, or ab+. To use the fdopen()
function you need a file descriptor. To get a descriptor use the POSIX function open(). The O_APPEND
flag is a mode for open(). Modes for open() are defined in QSYSINC/H/FCNTL. For further information
see the APIs topic in the Information Center.

The keyword parameters allowed for fdopen() are the same as those documented in “fopen() — Open
Files” on page 134 that are for the integrated file system.

If fdopen() returns NULL, use close() to close the file. If fdopen() is successful, you must use
fclose() to close the stream and file.

Return Value
The fdopen() function returns a pointer to a file structure that can be used to access the open file. A
NULL pointer return value indicates an error.

Example
This example opens the file sample.dat and associates a stream with the file using fdopen(). It then
reads from the stream into the buffer.

118 IBM i: ILE C/C++ Runtime Library Functions

/* compile with SYSIFCOPT(*IFSIO) */
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>

int main(void)
{
 long length;
 int fh;
 char buffer[20];
 FILE *fp;

 printf("\nCreating sample.dat.\n");
 if ((fp= fopen("/sample.dat", "w")) == NULL) {
 perror(" File was not created: ");
 exit(1);
 }
 fputs("Sample Program", fp);
 fclose(fp);

 memset(buffer, '\0', 20); /* Initialize buffer*/

 if (-1 == (fh = open("/sample.dat", O_RDWR|O_APPEND))) {
 perror("Unable to open sample.dat");
 exit(1);
 }
 if (NULL == (fp = fdopen(fh, "r"))) {
 perror("fdopen failed");
 close(fh);
 exit(1);
 }
 if (14 != fread(buffer, 1, 14, fp)) {
 perror("fread failed");
 fclose(fp);
 exit(1);
 }
 printf("Successfully read from the stream the following:\n%s.\n", buffer);
 fclose(fp);
 return 1;

 /**
 * The output should be:
 *
 * Creating sample.dat.
 * Successfully read from the stream the following:
 * Sample Program.
 */
}

Related Information
• “fclose() — Close Stream” on page 116
• “fopen() — Open Files” on page 134
• “fseek() – fseeko() — Reposition File Position” on page 158
• “fsetpos() — Set File Position” on page 160
• “rewind() — Adjust Current File Position” on page 307
• “<stdio.h>” on page 13
• open API in the APIs topic in the Information Center.
• close API in the APIs topic in the Information Center.

feof() — Test End-of-File Indicator

Format
#include <stdio.h>
int feof(FILE *stream);

Library Functions 119

Language Level
ANSI

Threadsafe
Yes

Description
The feof() function indicates whether the end-of-file flag is set for the given stream. The end-of-file
flag is set by several functions to indicate the end of the file. The end-of-file flag is cleared by calling the
rewind(), fsetpos(), fseek(), or clearerr() functions for this stream.

Return Value
The feof() function returns a nonzero value if and only if the EOF flag is set; otherwise, it returns 0.

Example
This example scans the input stream until it reads an end-of-file character.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char string[100];
 FILE *stream;
 memset(string, 0, sizeof(string));
 stream = fopen("qcpple/qacsrc(feof)", "r");

 fscanf(stream, "%s", string);
 while (!feof(stream))
 {
 printf("%s\n", string);
 memset(string, 0, sizeof(string));
 fscanf(stream, "%s", string);
 }
}

Related Information
• “clearerr() — Reset Error Indicators” on page 87
• “ferror() — Test for Read/Write Errors” on page 120
• “fseek() – fseeko() — Reposition File Position” on page 158
• “fsetpos() — Set File Position” on page 160
• “perror() — Print Error Message” on page 251
• “rewind() — Adjust Current File Position” on page 307
• “<stdio.h>” on page 13

ferror() — Test for Read/Write Errors

Format
#include <stdio.h>
int ferror(FILE *stream);

120 IBM i: ILE C/C++ Runtime Library Functions

Language Level
ANSI

Threadsafe
Yes

Description
The ferror() function tests for an error in reading from or writing to the given stream. If an error occurs,
the error indicator for the stream remains set until you close stream, call the rewind() function, or call
the clearerr() function.

Return Value
The ferror() function returns a nonzero value to indicate an error on the given stream. A return value of
0 means that no error has occurred.

Example
This example puts data out to a stream, and then checks that a write error has not occurred.

#include <stdio.h>

int main(void)
{
 FILE *stream;
 char *string = "Important information";
 stream = fopen("mylib/myfile","w");

 fprintf(stream, "%s\n", string);
 if (ferror(stream))
 {
 printf("write error\n");
 clearerr(stream);
 }
 if (fclose(stream))
 perror("fclose error");
}

Related Information
• “clearerr() — Reset Error Indicators” on page 87
• “feof() — Test End-of-File Indicator” on page 119
• “fopen() — Open Files” on page 134
• “perror() — Print Error Message” on page 251
• “strerror() — Set Pointer to Runtime Error Message” on page 400
• “<stdio.h>” on page 13

fflush() — Write Buffer to File

Format
#include <stdio.h>
int fflush(FILE *stream);

Language Level
ANSI

Library Functions 121

Threadsafe
Yes

Description
The fflush() function causes the system to empty the buffer that is associated with the specified
output stream, if possible. If the stream is open for input, the fflush() function undoes the effect of any
ungetc() function. The stream remains open after the call.

If stream is NULL, the system flushes all open streams.

Note: The system automatically deletes buffers when you close the stream, or when a program ends
normally without closing the stream.

Return Value
The fflush() function returns the value 0 if it successfully deletes the buffer. It returns EOF if an error
occurs.

The value of errno can be set to:
Value

Meaning
ENOTOPEN

The file is not open.
ERECIO

The file is opened for record I/O.
ESTDIN

stdin cannot be opened.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

The fflush() function is not supported for files that are opened with type=record.

Example
This example deletes a stream buffer.

#include <stdio.h>

int main(void)
{
 FILE *stream;
 int ch;
 unsigned int result = 0;

 stream = fopen("mylib/myfile", "r");
 while ((ch = getc(stream)) != EOF && isdigit(ch))
 result = result * 10 + ch - '0';
 if (ch != EOF)
 ungetc(ch,stream);

 fflush(stream); /* fflush undoes the effect of ungetc function */
 printf("The result is: %d\n", result);
 if ((ch = getc(stream)) != EOF)
 printf("The character is: %c\n", ch);
}

Related Information
• “fclose() — Close Stream” on page 116

122 IBM i: ILE C/C++ Runtime Library Functions

• “fopen() — Open Files” on page 134
• “setbuf() — Control Buffering” on page 368
• “ungetc() — Push Character onto Input Stream” on page 456
• “<stdio.h>” on page 13

fgetc() — Read a Character

Format
#include <stdio.h>
int fgetc(FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Description
The fgetc() function reads a single unsigned character from the input stream at the current position and
increases the associated file pointer, if any, so that it points to the next character.

Note: The fgetc() function is identical to getc(), but it is always defined as a function call; it is never
replaced by a macro.

Return Value
The fgetc() function returns the character that is read as an integer. An EOF return value indicates an
error or an end-of-file condition. Use the feof() or the ferror() function to determine whether the
EOF value indicates an error or the end of the file.

The value of errno can be set to:
Value

Meaning
EBADF

The file pointer or descriptor is not valid.
ECONVERT

A conversion error occurred.
ENOTREAD

The file is not open for read operations.
EGETANDPUT

An read operation that was not allowed occurred after a write operation.
ERECIO

The file is open for record I/O.
ESTDIN

stdin cannot be opened.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

Library Functions 123

The fgetc() function is not supported for files that are opened with type=record.

Example
This example gathers a line of input from a stream.

#include <stdio.h>

#define MAX_LEN 80

int main(void)
{
 FILE *stream;
 char buffer[MAX_LEN + 1];
 int i, ch;

 stream = fopen("mylib/myfile","r");

 for (i = 0; (i < (sizeof(buffer)-1) &&
 ((ch = fgetc(stream)) != EOF) && (ch != '\n')); i++)
 buffer[i] = ch;

 buffer[i] = '\0';

 if (fclose(stream))
 perror("fclose error");

 printf("line: %s\n", buffer);
}

 /***
 If FILENAME contains: one two three
 The output should be:
 line: one two three
 **/

Related Information
• “feof() — Test End-of-File Indicator” on page 119
• “ferror() — Test for Read/Write Errors” on page 120
• “fgetwc() — Read Wide Character from Stream ” on page 127
• “fputc() — Write Character” on page 143
• “getc() – getchar() — Read a Character” on page 175
• “getwc() — Read Wide Character from Stream” on page 180
• “getwchar() — Get Wide Character from stdin” on page 182
• “<stdio.h>” on page 13

fgetpos() — Get File Position

Format
#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

Language Level
ANSI

Threadsafe
Yes

124 IBM i: ILE C/C++ Runtime Library Functions

Description
The fgetpos() function stores the current position of the file pointer that is associated with stream into
the object pointed to by pos. The value pointed to by pos can be used later in a call to fsetpos() to
reposition the stream.

Return Value
The fgetpos() function returns 0 if successful; on error, it returns nonzero and sets errno to a nonzero
value.

The value of errno can be set to:
Value

Meaning
EBADF

The file pointer or descriptor is not valid.
EBADSEEK

Bad offset for a seek operation.
ENODEV

Operation was attempted on a wrong device.
ENOTOPEN

The file is not open.
ERECIO

The file is open for record I/O.
ESTDERR

stderr cannot be opened.
ESTDIN

stdin cannot be opened.
ESTDOUT

stdout cannot be opened.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

The fgetpos() function is not supported for files that are opened with type=record.

Example
This example opens the file myfile for reading and stores the current file pointer position into the variable
pos.

#include <stdio.h>

FILE *stream;

int main(void)
{
 int retcode;
 fpos_t pos;

 stream = fopen("mylib/myfile", "rb");

 /* The value returned by fgetpos can be used by fsetpos */
 /* to set the file pointer if 'retcode' is 0 */

 if ((retcode = fgetpos(stream, &pos) == 0)
 printf("Current position of file pointer found\n");
 fclose(stream);
}

Library Functions 125

Related Information
• “fseek() – fseeko() — Reposition File Position” on page 158
• “fsetpos() — Set File Position” on page 160
• “ftell() – ftello() — Get Current Position” on page 162
• “<stdio.h>” on page 13

fgets() — Read a String

Format
#include <stdio.h>
char *fgets (char *string, int n, FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Description
The fgets() function reads characters from the current stream position up to and including the first
new-line character (\n), up to the end of the stream, or until the number of characters read is equal to
n-1, whichever comes first. The fgets() function stores the result in string and adds a null character (\0)
to the end of the string. The string includes the new-line character, if read. If n is equal to 1, the string is
empty.

Return Value
The fgets() function returns a pointer to the string buffer if successful. A NULL return value indicates an
error or an end-of-file condition. Use the feof() or ferror() functions to determine whether the NULL
value indicates an error or the end of the file. In either case, the value of the string is unchanged.

The fgets() function is not supported for files that are opened with type=record.

The value of errno can be set to:
Value

Meaning
EBADF

The file pointer or descriptor is not valid.
ECONVERT

A conversion error occurred.
ENOTREAD

The file is not open for read operations.
EGETANDPUT

An read operation that was not allowed occurred after a write operation.
ERECIO

The file is open for record I/O.
ESTDIN

stdin cannot be opened.

126 IBM i: ILE C/C++ Runtime Library Functions

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

Example
This example gets a line of input from a data stream. The example reads no more than MAX_LEN - 1
characters, or up to a new-line character from the stream.

#include <stdio.h>

#define MAX_LEN 100

int main(void)
{
 FILE *stream;
 char line[MAX_LEN], *result;

 stream = fopen("mylib/myfile","rb");

 if ((result = fgets(line,MAX_LEN,stream)) != NULL)
 printf("The string is %s\n", result);

 if (fclose(stream))
 perror("fclose error");
}

Related Information
• “feof() — Test End-of-File Indicator” on page 119
• “ferror() — Test for Read/Write Errors” on page 120
• “fgetws() — Read Wide-Character String from Stream ” on page 129
• “fputs() — Write String” on page 145
• “gets() — Read a Line” on page 179
• “puts() — Write a String” on page 268
• “<stdio.h>” on page 13

fgetwc() — Read Wide Character from Stream

Format
#include <wchar.h>
#include <stdio.h>
wint_t fgetwc(FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.

Library Functions 127

This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The fgetwc() reads the next multibyte character from the input stream pointed to by stream, converts it
to a wide character, and advances the associated file position indicator for the stream (if defined).

Using non-wide-character functions with fgetwc() on the same stream results in undefined behavior.
After calling fgetwc(), flush the buffer or reposition the stream pointer before calling a write function
for the stream, unless EOF has been reached. After a write operation on the stream, flush the buffer or
reposition the stream pointer before calling fgetwc().

Note: If the current locale is changed between subsequent read operations on the same stream,
undefined results can occur.

Return Value
The fgetwc() function returns the next wide character that corresponds to the multibyte character from
the input stream pointed to by stream. If the stream is at EOF, the EOF indicator for the stream is set, and
fgetwc() returns WEOF.

If a read error occurs, the error indicator for the stream is set, and the fgetwc() function returns
WEOF. If an encoding error occurs (an error converting the multibyte character into a wide character), the
fgetwc() function sets errno to EILSEQ and returns WEOF.

Use the ferror() and feof() functions to distinguish between a read error and an EOF. EOF is only
reached when an attempt is made to read past the last byte of data. Reading up to and including the last
byte of data does not turn on the EOF indicator.

The value of errno can be set to:
Value

Meaning
EBADF

The file pointer or descriptor is not valid.
ENOTREAD

The file is not open for read operations.
EGETANDPUT

An read operation that was not allowed occurred after a write operation.
ERECIO

The file is open for record I/O.
ESTDIN

stdin cannot be opened.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.
EILSEQ

An invalid multibyte character sequence was encountered.

128 IBM i: ILE C/C++ Runtime Library Functions

ECONVERT
A conversion error occurred.

Example
This example opens a file, reads in each wide character, and prints out the characters.

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <errno.h>

int main(void)
{
 FILE *stream;
 wint_t wc;

 if (NULL == (stream = fopen("fgetwc.dat", "r"))) {
 printf("Unable to open: \"fgetwc.dat\"\n");
 exit(1);
 }

 errno = 0;
 while (WEOF != (wc = fgetwc(stream)))
 printf("wc = %lc\n", wc);

 if (EILSEQ == errno) {
 printf("An invalid wide character was encountered.\n");
 exit(1);
 }
 fclose(stream);
 return 0;
}

Related Information
• “fgetc() — Read a Character” on page 123
• “fputwc() — Write Wide Character” on page 146
• “fgetws() — Read Wide-Character String from Stream ” on page 129
• “getc() – getchar() — Read a Character” on page 175
• “getwc() — Read Wide Character from Stream” on page 180
• “getwchar() — Get Wide Character from stdin” on page 182
• “<stdio.h>” on page 13
• “<wchar.h>” on page 16

fgetws() — Read Wide-Character String from Stream

Format
#include <wchar.h>
#include <stdio.h>
wchar_t *fgetws(wchar_t *wcs, int n, FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Library Functions 129

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The fgetws() function reads at most one less than the number of wide characters specified by n from
the stream pointed to by stream. The fgetws() function stops reading characters after WEOF, or after it
reads a new-line wide character (which is retained). It adds a null wide character immediately after the
last wide character read into the array. The fgetws() function advances the file position unless there is
an error. If an error occurs, the file position is undefined.

Using non-wide-character functions with the fgetws() function on the same stream results in undefined
behavior. After calling the fgetws() function, flush the buffer or reposition the stream pointer before
calling a write function for the stream, unless WEOF has been reached. After a write operation on the
stream, flush the buffer or reposition the stream pointer before calling the fgetws() function.

Note: If the current locale is changed between subsequent read operations on the same stream,
undefined results can occur.

Return Value
If successful, the fgetws() function returns a pointer to the wide-character string wcs. If WEOF is
encountered before any wide characters have been read into wcs, the contents of wcs remain unchanged
and the fgetws() function returns a null pointer. If WEOF is reached after data has already been read
into the string buffer, the fgetws() function returns a pointer to the string buffer to indicate success. A
subsequent call would return NULL because WEOF would be reached without any data being read.

If a read error occurs, the contents of wcs are indeterminate, and the fgetws() function returns NULL. If
an encoding error occurs (in converting a wide character to a multibyte character), the fgetws() function
sets errno to EILSEQ and returns NULL.

If n equals 1, the wcs buffer has only room for the ending null character, and nothing is read from the
stream. (Such an operation is still considered a read operation, so it cannot immediately follow a write
operation unless the buffer is flushed or the stream pointer repositioned first.) If n is greater than 1, the
fgetws() function fails only if an I/O error occurs, or if WEOF is reached before data is read from the
stream.

Use the ferror() and feof() functions to distinguish between a read error and a WEOF. A WEOF error
is only reached when an attempt is made to read past the last byte of data. Reading up to and including
the last byte of data does not turn on the WEOF indicator.

For information about errno values for fgetws(), see “fgetwc() — Read Wide Character from Stream ” on
page 127.

Example
This example opens a file, reads in the file contents, then prints the file contents.

130 IBM i: ILE C/C++ Runtime Library Functions

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>

int main(void)
{
 FILE *stream;
 wchar_t wcs[100];

 if (NULL == (stream = fopen("fgetws.dat", "r"))) {
 printf("Unable to open: \"fgetws.dat\"\n");
 exit(1);
 }

 errno = 0;
 if (NULL == fgetws(wcs, 100, stream)) {
 if (EILSEQ == errno) {
 printf("An invalid wide character was encountered.\n");
 exit(1);
 }
 else if (feof(stream))
 printf("End of file reached.\n");
 else
 perror("Read error.\n");
 }
 printf("wcs = \"%ls\"\n", wcs);
 fclose(stream);
 return 0;

 /**
 Assuming the file fgetws.dat contains:

 This test string should not return -1

 The output should be similar to:

 wcs = "This test string should not return -1"
 **/
}

Related Information
• “fgetc() — Read a Character” on page 123
• “fgets() — Read a String” on page 126
• “fgetwc() — Read Wide Character from Stream ” on page 127
• “fputws() — Write Wide-Character String” on page 148
• “<stdio.h>” on page 13
• “<wchar.h>” on page 16

fileno() — Determine File Handle

Format
#include <stdio.h>
int fileno(FILE *stream);

Language Level
XPG4

Threadsafe
Yes

Library Functions 131

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Description
The fileno() function determines the file handle that is currently associated with stream.

Return Value
If the environment variable QIBM_USE_DESCRIPTOR_STDIO is set to Yes, the fileno() function returns
0 for stdin, 1 for stdout, and 2 for stderr.

With QIBM_USE_DESCRIPTOR_STDIO set to No, the ILE C session files stdin, stdout, and stderr do
not have a file descriptor associated with them. The fileno() function will return a value of -1 in this
case.

The value of errno can be set to EBADF.

Example
This example determines the file handle of the stderr data stream.

/* Compile with SYSIFCOPT(*IFSIO) */
 #include <stdio.h>

 int main (void)
 {
 FILE *fp;
 int result;

 fp = fopen ("stderr","w");

 result = fileno(fp);
 printf("The file handle associated with stderr is %d.\n", result);
 return 0;

 /***
 * The output should be:
 *
 * The file handle associated with stderr is -1.
 **/
 }

Related Information
• “fopen() — Open Files” on page 134
• “freopen() — Redirect Open Files” on page 154
• “<stdio.h>” on page 13

floor() — Find Integer <=Argument

Format
#include <math.h>
double floor(double x);

Language Level
ANSI

132 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

Description
The floor() function calculates the largest integer that is less than or equal to x.

Return Value
The floor() function returns the floating-point result as a double value.

The result of floor() cannot have a range error.

Example
This example assigns y the value of the largest integer less than or equal to 2.8 and z the value of the
largest integer less than or equal to -2.8.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double y, z;

 y = floor(2.8);
 z = floor(-2.8);

 printf("floor(2.8) = %lf\n", y);
 printf("floor(-2.8) = %lf\n", z);
}
/******************* Output should be similar to: ***************

floor(2.8) = 2.000000
floor(-2.8) = -3.000000
*/

Related Information
• “ceil() — Find Integer >=Argument” on page 86
• “fmod() — Calculate Floating-Point Remainder” on page 133
• “<math.h>” on page 6

fmod() — Calculate Floating-Point Remainder

Format
#include <math.h>
double fmod(double x, double y);

Language Level
ANSI

Threadsafe
Yes

Library Functions 133

Description
The fmod() function calculates the floating-point remainder of x/y. The absolute value of the result is
always less than the absolute value of y. The result will have the same sign as x.

Return Value
The fmod() function returns the floating-point remainder of x/y. If y is zero or if x/y causes an overflow,
fmod() returns 0. The value of errno can be set to EDOM.

Example
This example computes z as the remainder of x/y; here, x/y is -3 with a remainder of -1.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, y, z;

 x = -10.0;
 y = 3.0;
 z = fmod(x,y); /* z = -1.0 */

 printf("fmod(%lf, %lf) = %lf\n", x, y, z);
}

/******************* Output should be similar to: ***************

fmod(-10.000000, 3.000000) = -1.000000
*/

Related Information
• “ceil() — Find Integer >=Argument” on page 86
• “fabs() — Calculate Floating-Point Absolute Value” on page 115
• “floor() — Find Integer <=Argument” on page 132
• “<math.h>” on page 6

fopen() — Open Files

Format
#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Language Level
ANSI

Threadsafe
Yes

Description
The fopen() function opens the file that is specified by filename. The mode parameter is a character
string specifying the type of access that is requested for the file. The mode variable contains one
positional parameter followed by optional keyword parameters.

134 IBM i: ILE C/C++ Runtime Library Functions

Note: When the program is compiled with SYSIFCOPT(*IFSIO) or SYSIFCOPT(*IFS64IO), and fopen()
creates a file in the integrated file system, the owner of the file, the owner's group, and public is given
read, write, and execute authority to the file.

The possible values for the positional parameters are:
Mode

Description
r

Open a text file for reading. The file must exist.
w

Create a text file for writing. If the given file exists, its contents are destroyed unless it is a logical file.
a

Open a text file in append mode for writing at the end of the file. The fopen() function creates the file
if it does not exist and is not a logical file.

r+
Open a text file for both reading and writing. The file must exist.

w+
Create a text file for both reading and writing. If the given file exists, its contents are cleared unless it
is a logical file.

a+
Open a text file in append mode for reading or updating at the end of the file. The fopen() function
creates the file if it does not exist.

rb
Open a binary file for reading. The file must exist.

wb
Create an empty binary file for writing. If the file exists, its contents are cleared unless it is a logical
file.

ab
Open a binary file in append mode for writing at the end of the file. The fopen function creates the file
if it does not exist.

r+b or rb+
Open a binary file for both reading and writing. The file must exist.

w+b or wb+
Create an empty binary file for both reading and writing. If the file exists, its contents will be cleared
unless it is a logical file.

a+b or ab+
Open a binary file in append mode for writing at the end of the file. The fopen() function creates the
file if it does not exist.

Note:

1. The fopen() function is not supported for files that are opened with the attributes type=record and
ab+, rb+, or wb+

2. Use the w, w+, wb, w+b, and wb+ parameters with care; data in existing files of the same name will be
lost.

Text files contain printable characters and control characters that are organized into lines. Each line ends
with a new-line character, except possibly the last line, depending on the compiler. The system can insert
or convert control characters in an output text stream. The fopen() function mode "a" and "a+" cannot
be used for the QSYS.LIB file system. There are implementation restrictions when using the QSYS.LIB
file system for text files in all modes. Seeking beyond the start of files cannot be relied on to work with
streams opened in text mode.

Note: When you use fopen() to create a file in the QSYS.LIB file system, specifying a library name of
*LIBL or blank causes the file to be created in QTEMP library.

Library Functions 135

If a text file does not exist, you can create one using the following command:

CRTSRCPF FILE(MYLIB/MYFILE) RCDLEN(LRECL) MBR(MYMBR) SYSTEM(*FILETYPE)

Note: Data output to a text stream might not compare as equal to the same data on input. The QSYS.LIB
file system treats database files as a directory of members. The database file must exist before a member
can be dynamically created when using the fopen() function.

See Large file support in the Integrated file system topic in the Information Center for the current file
system limit of the integrated file system. For files in the integrated file system that are larger than 2
GB, you need to allow your application programs access to 64-bit C runtime functions. You can use the
following methods to allow your program access:

• Specify SYSIFCOPT(*IFS64IO) on a compilation command, which causes the native C compiler to define
_IFS64_IO_. This causes the macros _LARGE_FILES and _LARGE_FILE_API to be defined.

• Define the macro _LARGE_FILES, either in the program source or by specifying
DEFINE('_LARGE_FILES') on a compilation command. The existing C runtime functions and the relevant
data types in the code will all be automatically mapped or redefined to their 64-bit versions.

• Define the macro _LARGE_FILE_API, either in the program source or by specifying
DEFINE('_LARGE_FILE_API') on a compilation command. This makes visible the set of of new 64-bit
C runtime functions and data types. The application must explicitly specify the name of the C runtime
functions, both existing version and 64-bit version, to use.

The 64-bit C runtime functions include the following: int fgetpos64(), FILE *fopen64(), FILE
*freopen64(), FILE *wfopen64(), int fsetpos64(FILE *, const fpost64_t *), FILE
*tmpfile64(), int fseeko(FILE *, off_t, int), int fseeko64(FILE *, off64_t, int),
off_t ftello(FILE *), and off64_t ftello64().

Binary files contain a series of characters. For binary files, the system does not translate control
characters on input or output.

If a binary file does not exist, you can create one using the following command:

CRTPF FILE(MYLIB/MYFILE) RCDLEN(LRECL) MBR(MYMBR) MAXMBRS(*NOMAX)
SYSTEM(*FILETYPE)

When you open a file with a, a+, ab, a+b or ab+ mode, all write operations take place at the end of the file.
Although you can reposition the file pointer using the fseek() function or the rewind() function, the
write functions move the file pointer back to the end of the file before they carry out any operation. This
action prevents you from overwriting existing data.

When you specify the update mode (using + in the second or third position), you can both read from
and write to the file. However, when switching between reading and writing, you must include an
intervening positioning function such as the fseek(), fsetpos(), rewind(), or fflush(). Output
can immediately follow input if the end-of-file was detected.

Keyword parameters for non-Integrated File System
blksize=value

Specifies the maximum length, in bytes, of a physical block of records.
lrecl=value

Specifies the length, in bytes, for fixed-length records and the maximum length for variable-length
records.

recfm=value
value can be:
F

fixed-length, deblocked records
FB

fixed-length, blocked records

136 IBM i: ILE C/C++ Runtime Library Functions

V
variable-length, deblocked records

VB
variable-length, blocked records

VBS
variable-length, blocked, spanned records for tape files

VS
variable-length, deblocked, spanned records for tape files

D
variable-length, deblocked, unspanned records for ASCII D format for tape files

DB
variable-length, blocked, unspanned records for ASCII D format for tape files

U
undefined format for tape files

FA
fixed-length that uses first character forms control data for printer files

Note: If the file is created using CTLCHAR(*FCFC), the first character form control will be used. If it is
created using CTLCHAR(*NONE), the first character form control will not be used.

commit=value
value can be:

N This parameter identifies that this file is not opened under commitment control. This is the default.

Y This parameter identifies that this file is opened under commitment control.

ccsid=value
If a CCSID that is not supported by the operating system is specified, it is ignored by data
management.

When LOCALETYPE(*LOCALEUTF) is specified on the compilation command, the default value is the
LC_CTYPE CCSID value, which is determined by your current locale setting. See “setlocale() — Set
Locale” on page 370 for further information about locale settings. When LOCALETYPE(*LOCALEUTF) is
not specified on the compilation command, the default value is the job CCSID value. See “File CCSID”
on page 572 for further information about file CCSID values.

arrseq=value
value can be:

N This parameter identifies that this file is processed in the way it was created. This is the default.

Y This parameter identifies that this file is processed in arrival sequence.

indicators=value
value can be:

N This parameter identifies that indicators in display, ICF, or printer files are stored in the file buffer.
This is the default.

Y This parameter identifies that indicators in display, ICF, or printer files are stored in a separate
indicator area, not in the file buffer. A file buffer is the area the system uses to transfer data to and
from the user program and the operating system when writing and reading. You must store indicators
in a separate indicator area when processing ICF files.

type=value
value can be:

memory This parameter identifies this file as a memory file that is available only from C programs.
This is the default.

Library Functions 137

record This parameter specifies that the file is to be opened for sequential record I/O. The file must
be opened as a binary file; otherwise, the fopen() function fails. Read and write operations are done
with the fread() function and the fwrite() functions.

Keyword parameters for Integrated File System only
type=value

value can be:

record The file is opened for sequential record I/O. (File has to be opened as binary stream.)

ccsid=value

ccsid is converted to a code page value. The default is to use the job CCSID value as the code page.
The CCSID and codepage option cannot both be specified. The CCSID option provides compatibility
with the operating system and Data management based stream I/O.

Note: Mixed data (the data contains both single and double-byte characters) is not supported for a file
data processing mode of text. Mixed data is supported for a file processing mode of binary.

If you specify the ccsid keyword, you cannot specify the o_ccsid keyword or the codepage keyword.

Because of the possible expansion or contraction of converted data, making assumptions about data
size and the current file offset is dangerous. For example, a file might have a physical size of 100
bytes, but after an application has read 100 bytes from the file, the current file offset might be
only 50. In order to read the whole file, the application might have to read 200 bytes or more,
depending on the CCSIDs involved. Therefore, file positioning functions, such as ftell(), fseek(),
fgetpos(), and fsetpos(), might not work. These functions might fail with error ENOTSUP. Read
functions also will not work if buffering is on, as it is by default. To turn buffering off, use the setvbuf
function with the _IONBF keyword.

The fopen() function might fail with the ECONVERT error when all of the following three conditions
occur:

• The file data processing mode is text.
• The code page is not specified.
• The CCSID of the job is 'mixed-data' (the data contains both single-byte and double-byte

characters).

o_ccsid=value

When LOCALETYPE(*LOCALEUTF) is specified on the compilation command, the default value is the
LC_CTYPE CCSID value, which is determined by your current locale setting. See “setlocale() — Set
Locale” on page 370 for further information about locale settings. When LOCALETYPE(*LOCALEUTF) is
not specified on the compilation command, the default value is the job CCSID value. See “File CCSID”
on page 572 for further information about file CCSID values.

This parameter is similar to the ccsid parameter, except that the value specified is not converted to a
code page. Also, mixed data is supported. If the file is created, it is tagged with the specified CCSID. If
the file already exists, data will be converted from the CCSID of the file to the specified CCSID on read
operations. On write operations, the data is assumed to be in the specified CCSID, and is converted to
the CCSID of the file.

Because of the possible expansion or contraction of converted data, making assumptions about data
size and the current file offset is dangerous. For example, a file might have a physical size of 100
bytes, but after an application has read 100 bytes from the file, the current file offset might be
only 50. In order to read the whole file, the application might have to read 200 bytes or more,
depending on the CCSIDs involved. Therefore, file positioning functions such as ftell(), fseek(),
fgetpos(), and fsetpos() will not work. These functions will fail with ENOTSUP. Read functions
also will not work if buffering is on, as it is by default. To turn buffering off, use the setvbuf function
with the _IONBF keyword.

Example that uses o_ccsid

138 IBM i: ILE C/C++ Runtime Library Functions

/* Create a file that is tagged with CCSID 37 */
if ((fp = fopen("/MYFILE" , "w, o_ccsid=37")) == NULL) {
 printf("Failed to open file with o_ccsid=37\n");
}

fclose(fp);

/* Now reopen the file with CCSID 13488, because your application
 wants to deal with the data in UNICODE */

if ((fp = fopen("/MYFILE" , "r+, o_ccsid=13488")) == NULL) {
 printf("Failed to open file with o_ccsid=13488\n");
}
/* Turn buffering off because read functions do not work when
buffering is on */

if (setbuf(fp, NULL, _IONBF, 0) != 0){
 printf("Unable to turn buffering off\n");
}
/* Because you opened with o_ccsid = 13488, you must provide
all input data as unicode.
If this program is compiled with LOCALETYPE(*LOCALEUCS2),
L constrants will be unicode. */

funcreturn = fputws(L"ABC", fp); /* Write a unicode ABC to the file. */

if (funcreturn < 0) {
 printf("Error with 'fputws' on line %d\n", __LINE__);
}
/* Because the file was tagged with CCSID 37, the unicode ABC was
converted to EBCDIC ABC when it was written to the file. */

codepage=value
The code page that is specified by value is used.

If you specify the codepage keyword, you cannot specify the ccsid keyword or the o_ccsid keyword.

If the file to be opened does not exist, and the open mode specifies that the file should be created, the
file is created and tagged with the calculated code page. If the file already exists, the data read from
the file is converted from the file's code page to the calculated code page during the read operation.
Data written to the file is assumed to be in the calculated code page and is converted to the code page
of the file during the write operation.

crln=value
value can be:

Y The line terminator to be used is carriage return [CR], new line [NL] combination. When data is
read, all carriage returns [CR] are stripped for string functions. When data is written to a file, carriage
returns [CR] are added before each new line [NL] character. Line terminator processing only occurs
when a file is open with text mode. This is the default.

N The line terminator to be used is new line [NL] only.

The keyword parameters are not case sensitive and should be separated by a comma.

The fopen() function generally fails if parameters are mismatched.

Return Value
The fopen() function returns a pointer to a FILE structure type that can be used to access the open file.

Note: To use stream files (type = record) with record I/O functions, you must cast the FILE pointer to an
RFILE pointer.

A NULL pointer return value indicates an error.

The value of errno can be set to:
Value

Meaning

Library Functions 139

EBADMODE
The file mode that is specified is not valid.

EBADNAME
The file name that is specified is not valid.

ECONEVRT
Conversion error.

ENOENT
No file or library.

ENOMEM
Storage allocation request failed.

ENOTOPEN
The file is not open.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

ESCANFAILURE
The file was marked with a scan failure.

If the mode string passed to fopen() is correct, fopen() will not set errno to EBADMODE, regardless of
the file type.

If the mode string that is passed to fopen() is not valid, fopen() will set errno to EBADMODE,
regardless of the file type.

If the mode string passed to fopen() is correct, but is invalid to that specific type of file, fopen() will
set errno to ENOTOPEN, EIOERROR, or EIORECERR, regardless of the file type.

Example
This example attempts to open a file for reading.

140 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#define MAX_LEN 60

int main(void)
{
 FILE *stream;
 fpos_t pos;
 char line1[MAX_LEN];
 char line2[MAX_LEN];
 char *result;
 char ch;
 int num;

 /* The following call opens a text file for reading. */
 if ((stream = fopen("mylib/myfile", "r")) == NULL)
 printf("Could not open data file\n");
 else if ((result = fgets(line1,MAX_LEN,stream)) != NULL)
 {
 printf("The string read from myfile: %s\n", result);
 fclose(stream);
 }

 /* The following call opens a fixed record length file */
 /* for reading and writing. */
 if ((stream = fopen("mylib/myfile2", "rb+, lrecl=80, \
 blksize=240, recfm=f")) == NULL)
 printf("Could not open data file\n");
 else {
 fgetpos(stream, &pos);
 if (!fread(line2,sizeof(line2),1,stream))
 perror("fread error");
 else printf("1st record read from myfile2: %s\n", line2);

 fsetpos(stream, &pos); /* Reset pointer to start of file */
 fputs(result, stream); /* The line read from myfile is */
 /* written to myfile2. */
 fclose(stream);
 }
}

Related Information
• “fclose() — Close Stream” on page 116
• “fflush() — Write Buffer to File” on page 121
• “fread() — Read Items” on page 150
• “freopen() — Redirect Open Files” on page 154
• “fseek() – fseeko() — Reposition File Position” on page 158
• “fsetpos() — Set File Position” on page 160
• “fwrite() — Write Items” on page 169
• “rewind() — Adjust Current File Position” on page 307
• “wfopen() — Open Files” on page 537
• “<stdio.h>” on page 13
• open() API in the APIs in the Information Center.

fprintf() — Write Formatted Data to a Stream

Format
#include <stdio.h>
int fprintf(FILE *stream, const char *format-string, argument-list);

Language Level
ANSI

Library Functions 141

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The fprintf() function formats and writes a series of characters and values to the output stream. The
fprintf() function converts each entry in argument-list, if any, and writes to the stream according to the
corresponding format specification in the format-string.

The format-string has the same form and function as the format-string argument for the printf()
function.

Return Value
The fprintf() function returns the number of bytes that are printed or a negative value if an output
error occurs.

For information about errno values for fprintf(), see “printf() — Print Formatted Characters” on page
254.

Example
This example sends a line of asterisks for each integer in the array count to the file myfile. The number of
asterisks that are printed on each line corresponds to an integer in the array.

#include <stdio.h>

int count [10] = {1, 5, 8, 3, 0, 3, 5, 6, 8, 10};

int main(void)
{
 int i,j;
 FILE *stream;

 stream = fopen("mylib/myfile", "w");
 /* Open the stream for writing */
 for (i=0; i < sizeof(count) / sizeof(count[0]); i++)
 {
 for (j = 0; j < count[i]; j++)
 fprintf(stream,"*");
 /* Print asterisk */
 fprintf(stream,"\n");
 /* Move to the next line */
 }
 fclose (stream);
}

/******************* Output should be similar to: ***************

*

*/

142 IBM i: ILE C/C++ Runtime Library Functions

Related Information
• “fscanf() — Read Formatted Data” on page 156
• “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 166
• “printf() — Print Formatted Characters” on page 254
• “sprintf() — Print Formatted Data to Buffer” on page 383
• “vfprintf() — Print Argument Data to Stream” on page 461
• “vprintf() — Print Argument Data” on page 469
• “vsprintf() — Print Argument Data to Buffer” on page 473
• “<stdio.h>” on page 13

fputc() — Write Character

Format
#include <stdio.h>
int fputc(int c, FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Description
The fputc() function converts c to an unsigned char and then writes c to the output stream at the
current position and advances the file position appropriately. If the stream is opened with one of the
append modes, the character is appended to the end of the stream.

The fputc() function is identical to putc(); it always is defined as a function call; it is never replaced by
a macro.

Return Value
The fputc() function returns the character that is written. A return value of EOF indicates an error.

The value of errno can be set to:
Value

Meaning
ECONVERT

A conversion error occurred.
ENOTWRITE

The file is not open for write operations.
EPUTANDGET

A write operation that was not permitted occurred after a read operation.
ERECIO

The file is open for record I/O.
ESTDERR

stderr cannot be opened.

Library Functions 143

ESTDOUT
stdout cannot be opened.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

The fputc() function is not supported for files that are opened with type=record.

Example
This example writes the contents of buffer to a file that is called myfile.

Note: Because the output occurs as a side effect within the second expression of the for statement, the
statement body is null.

#include <stdio.h>

#define NUM_ALPHA 26

int main(void)
{
 FILE * stream;
 int i;
 int ch;

 char buffer[NUM_ALPHA + 1] = "abcdefghijklmnopqrstuvwxyz";

 if ((stream = fopen("mylib/myfile", "w"))!= NULL)
 {
 /* Put buffer into file */
 for (i = 0; (i < sizeof(buffer)) &&
 ((ch = fputc(buffer[i], stream)) != EOF); ++i);
 fclose(stream);
 }
 else
 perror("Error opening myfile");

}

Related Information
• “fgetc() — Read a Character” on page 123
• “putc() – putchar() — Write a Character” on page 266
• “<stdio.h>” on page 13

_fputchar() — Write Character

Format
#include <stdio.h>
int _fputchar(int c);

Language Level
Extension

Threadsafe
Yes

144 IBM i: ILE C/C++ Runtime Library Functions

Description
_fputchar writes the single character c to the stdout stream at the current position. It is equivalent to
the following fputc call:

fputc(c, stdout);

For portability, use the ANSI/ISO fputc function instead of _fputchar.

Return Value
_fputchar returns the character written. A return value of EOF indicates that a write error has occurred.
Use ferror and feof to tell whether this is an error condition or the end of the file.

For information about errno values for _fputchar, see “fputc() — Write Character” on page 143.

Example
This example writes the contents of buffer to stdout:

#include <stdio.h>
int main(void)
{
 char buffer[80];
 int i,ch = 1;
 for (i = 0; i < 80; i++)
 buffer[i] = 'c';
 for (i = 0; (i < 80) && (ch != EOF); i++)
 ch = _fputchar(buffer[i]);
 printf("\n");
 return 0;
}

The output should be similar to:

ccc

Related Information
• “getc() – getchar() — Read a Character” on page 175
• “fputc() — Write Character” on page 143
• “putc() – putchar() — Write a Character” on page 266
• “<stdio.h>” on page 13

fputs() — Write String

Format
#include <stdio.h>
int fputs(const char *string, FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Library Functions 145

Description
The fputs() function copies string to the output stream at the current position. It does not copy the null
character (\0) at the end of the string.

Return Value
The fputs() function returns EOF if an error occurs; otherwise, it returns a non-negative value.

The fputs() function is not supported for files that are opened with type=record.

For information about errno values for fputs(), see “fputc() — Write Character” on page 143.

Example
This example writes a string to a stream.

#include <stdio.h>

#define NUM_ALPHA 26

int main(void)
{
 FILE * stream;
 int num;

 /* Do not forget that the '\0' char occupies one character */
 static char buffer[NUM_ALPHA + 1] = "abcdefghijklmnopqrstuvwxyz";

 if ((stream = fopen("mylib/myfile", "w")) != NULL)
 {
 /* Put buffer into file */
 if ((num = fputs(buffer, stream)) != EOF)
 {
 /* Note that fputs() does not copy the \0 character */
 printf("Total number of characters written to file = %i\n", num);
 fclose(stream);
 }
 else /* fputs failed */
 perror("fputs failed");
 }
 else
 perror("Error opening myfile");
}

Related Information
• “fgets() — Read a String” on page 126
• “fputws() — Write Wide-Character String” on page 148
• “gets() — Read a Line” on page 179
• “puts() — Write a String” on page 268
• “<stdio.h>” on page 13

fputwc() — Write Wide Character

Format
#include <wchar.h>
#include <stdio.h>
wint_t fputwc(wint_t wc, FILE *stream);

Language Level
ANSI

146 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. It might
also be affected by the LC_UNI_CTYPE category of the current locale if LOCALETYPE(*LOCALEUCS2) or
LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available when
LOCALETYPE(*CLD) is specified on the compilation command. For more information, see “Understanding
CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The fputwc() function writes the wide character wc to the output stream pointed to by stream at
the current position. It also advances the file position indicator appropriately. If the file cannot support
positioning requests, or if the stream was opened with append mode, the character is appended to the
stream.

Using non-wide-character functions with the fputwc() function on the same stream will result in
undefined behavior. After calling the fputwc() function, delete the buffer or reposition the stream
pointer before calling a read function for the stream. After reading from the stream, delete the buffer or
reposition the stream pointer before calling the fputwc() function, unless EOF has been reached.

Note: If the current locale is changed between subsequent operations on the same stream, undefined
results can occur.

Return Value
The fputwc() function returns the wide character that is written. If a write error occurs, the error
indicator for the stream is set, and the fputwc() function returns WEOF. If an encoding error occurs
during conversion from wide character to a multibyte character, fputwc() sets errno to EILSEQ and
returns WEOF.

For information about errno values for putwc(), see “fputc() — Write Character” on page 143.

Example
This example opens a file and uses the fputwc() function to write wide characters to the file.

Library Functions 147

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <errno.h>

int main(void)
{
 FILE *stream;
 wchar_t *wcs = L"A character string.";
 int i;

 if (NULL == (stream = fopen("fputwc.out", "w")))
 {
 printf("Unable to open: \"fputwc.out\".\n");
 exit(1);
 }

 for (i = 0; wcs[i] != L'\0'; i++) {
 errno = 0;
 if (WEOF == fputwc(wcs[i], stream)) {
 printf("Unable to fputwc() the wide character.\n"
 "wcs[%d] = 0x%.4lx\n", i, wcs[i]);
 if (EILSEQ == errno)
 printf("An invalid wide character was encountered.\n");
 exit(1);
 }
 }
 fclose(stream);
 return 0;

 /***
 The output file fputwc.out should contain:

 A character string.
 ***/
}

Related Information
• “fgetwc() — Read Wide Character from Stream ” on page 127
• “fputc() — Write Character” on page 143
• “fputwc() — Write Wide Character” on page 146
• “putc() – putchar() — Write a Character” on page 266
• “putwchar() — Write Wide Character to stdout ” on page 271
• “putwc() — Write Wide Character” on page 269
• “<stdio.h>” on page 13
• “<wchar.h>” on page 16

fputws() — Write Wide-Character String

Format
#include <wchar.h>
#include <stdio.h>
int fputws(const wchar_t *wcs, FILE *stream);

Language Level
XPG4

Threadsafe
Yes

148 IBM i: ILE C/C++ Runtime Library Functions

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. It might
also be affected by the LC_UNI_CTYPE category of the current locale if LOCALETYPE(*LOCALEUCS2) or
LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available when
LOCALETYPE(*CLD) is specified on the compilation command. For more information, see “Understanding
CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The fputws() function writes the wide-character string wcs to a stream. It does not write the ending null
wide characters.

Using non-wide-character functions with the fputws() function on the same stream will result in
undefined behavior. After calling the fputws() function, flush the buffer or reposition the stream pointer
before calling a read function for the stream. After a read operation, flush the buffer or reposition the
stream pointer before calling the fputws() function, unless EOF has been reached.

Note: If the current locale is changed between subsequent operations on the same stream, undefined
results can occur.

Return Value
The fputws() function returns a non-negative value if successful. If a write error occurs, the error
indicator for the stream is set, and the fputws() function returns -1. If an encoding error occurs in
converting the wide characters to multibyte characters, the fputws() function sets errno to EILSEQ and
returns -1.

For information about errno values for fputws(), see “fputc() — Write Character” on page 143.

Example
This example opens a file and writes a wide-character string to the file using the fgetws() function.

Library Functions 149

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <errno.h>

int main(void)
{
 FILE *stream;
 wchar_t *wcs = L"This test string should not return -1";

 if (NULL == (stream = fopen("fputws.out", "w"))) {
 printf("Unable to open: \"fputws.out\".\n");
 exit(1);
 }

 errno = 0;
 if (EOF == fputws(wcs, stream)) {
 printf("Unable to complete fputws() function.\n");
 if (EILSEQ == errno)
 printf("An invalid wide character was encountered.\n");
 exit(1);
 }
 fclose(stream);
 return 0;

 /**
 The output file fputws.out should contain:

 This test string should not return -1
 **/
}

Related Information
• “fgetws() — Read Wide-Character String from Stream ” on page 129
• “fputs() — Write String” on page 145
• “fputwc() — Write Wide Character” on page 146
• “puts() — Write a String” on page 268
• “<stdio.h>” on page 13
• “<wchar.h>” on page 16

fread() — Read Items

Format
#include <stdio.h>
size_t fread(void *buffer, size_t size, size_t count, FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Description
The fread() function reads up to count items of size length from the input stream and stores them in the
given buffer. The position in the file increases by the number of bytes read.

150 IBM i: ILE C/C++ Runtime Library Functions

Return Value
The fread() function returns the number of full items successfully read, which can be less than count
if an error occurs, or if the end-of-file is met before reaching count. If size or count is 0, the fread()
function returns zero, and the contents of the array and the state of the stream remain unchanged.

The value of errno can be set to:
Value

Meaning
EGETANDPUT

A read operation that was not permitted occurred after a write operation.
ENOREC

Record is not found.
ENOTREAD

The file is not open for read operations.
ERECIO

The file is open for record I/O.
ESTDIN

stdin cannot be opened.
ETRUNC

Truncation occurred on the operation.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

Use the ferror() and feof() functions to distinguish between a read error and an end-of-file.

When using fread() for record input, set size to 1 and count to the maximum expected length of the
record, to obtain the number of bytes. If you do not know the record length, you should set size to 1 and
count to a large value. You can read only one record at a time when using record I/O.

Example
This example attempts to read NUM_ALPHA characters from the file myfile. If there are any errors with
either fread() or fopen(), a message is printed.

Library Functions 151

#include <stdio.h>

#define NUM_ALPHA 26

int main(void)
{
 FILE * stream;
 int num; /* number of characters read from stream */

 /* Do not forget that the '\0' char occupies one character too! */
 char buffer[NUM_ALPHA + 1];

 if ((stream = fopen("mylib/myfile", "r"))!= NULL)
 {
 memset(buffer, 0, sizeof(buffer));
 num = fread(buffer, sizeof(char), NUM_ALPHA, stream);
 if (num) { /* fread success */
 printf("Number of characters has been read = %i\n", num);
 printf("buffer = %s\n", buffer);
 fclose(stream);
 }
 else { /* fread failed */
 if (ferror(stream)) /* possibility 1 */
 perror("Error reading myfile");
 else if (feof(stream)) /* possibility 2 */
 perror("EOF found");
 }
 }
 else
 perror("Error opening myfile");

}

Related Information
• “feof() — Test End-of-File Indicator” on page 119
• “ferror() — Test for Read/Write Errors” on page 120
• “fopen() — Open Files” on page 134
• “fwrite() — Write Items” on page 169
• “<stdio.h>” on page 13

free() — Release Storage Blocks

Format
#include <stdlib.h>
void free(void *ptr);

Language Level
ANSI

Threadsafe
Yes

Description
The free() function frees a block of storage. The ptr argument points to a block that is previously
reserved with a call to the calloc(), malloc(), realloc(), _C_TS_calloc(), _C_TS_malloc(),
_C_TS_realloc(), or _C_TS_malloc64() functions. The number of bytes freed is the number of bytes
specified when you reserved (or reallocated, in the case of the realloc() function) the block of storage.
If ptr is NULL, free() simply returns.

152 IBM i: ILE C/C++ Runtime Library Functions

Note:

1. All heap storage is associated with the activation group of the calling function. As such, storage should
be allocated, deallocated, and reallocated within the same activation group. It is not valid to allocate
heap storage within one activation group and deallocate or reallocate that storage from a different
activation group. For more information about activation groups, see the ILE Concepts manual.

2. Attempting to free a block of storage not allocated with calloc(), malloc(), or realloc() (or
previously freed storage) can affect the subsequent reserving of storage and lead to undefined results.
Storage that is allocated with the ILE bindable API CEEGTST can be freed with free().

To use teraspace storage instead of single-level store storage without changing the C source code,
specify the TERASPACE(*YES *TSIFC) parameter on the compiler command. This maps the free()
library function to _C_TS_free(), its teraspace storage counterpart.

Note: If a C2M1211 or C2M1212 message is generated from the free() function, refer to “Diagnosing
C2M1211/C2M1212 Message Problems” on page 592 for more information.

Return Value
There is no return value.

Example
This example uses the calloc() function to allocate storage for x array elements, and then calls the
free() function to free them.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 long * array; /* start of the array */
 long * index; /* index variable */
 int i; /* index variable */
 int num; /* number of entries of the array */

 printf("Enter the size of the array\n");
 scanf("%i", &num);

 /* allocate num entries */
 if ((index = array = calloc(num, sizeof(long))) != NULL)
 {
 for (i = 0; i < num; ++i) /* put values in array */
 index++ = i; / using pointer notation */

 free(array); /* deallocates array */
 }
 else
 { /* Out of storage */
 perror("Error: out of storage");
 abort();
 }
}

Related Information
• “calloc() — Reserve and Initialize Storage” on page 80
• “_C_Quickpool_Debug() — Modify Quick Pool Memory Manager Characteristics” on page 91
• “_C_Quickpool_Init() — Initialize Quick Pool Memory Manager” on page 93
• “_C_Quickpool_Report() — Generate Quick Pool Memory Manager Report” on page 95
• “Heap Memory” on page 583
• “malloc() — Reserve Storage Block” on page 219
• “realloc() — Change Reserved Storage Block Size” on page 295
• “<stdlib.h>” on page 14

Library Functions 153

freopen() — Redirect Open Files

Format
#include <stdio.h>
FILE *freopen(const char *filename, const char *mode, FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Description
The freopen() function closes the file that is currently associated with stream and reassigns stream to
the file that is specified by filename. The freopen() function opens the new file associated with stream
with the given mode, which is a character string specifying the type of access requested for the file. You
can also use the freopen() function to redirect the standard stream files stdin, stdout, and stderr
to files that you specify.

For database files, if filename is an empty string, the freopen() function closes and reopens the stream
to the new open mode, rather than reassigning it to a new file or device. You can use the freopen()
function with no file name specified to change the mode of a standard stream from text to binary without
redirecting the stream, for example:

 fp = freopen("", "rb", stdin);

You can use the same method to change the mode from binary back to text.

You cannot use the freopen() function with filename as an empty string in modules created with
SYSIFCOPT(*IFSIO).

Return Value
The freopen() function returns a pointer to the newly opened stream. If an error occurs, the
freopen() function closes the original file and returns a NULL pointer value.

The value of errno can be set to:
Value

Meaning
EBADF

The file pointer or descriptor is not valid.
EBADMODE

The file mode that is specified is not valid.
EBADNAME

The file name that is specified is not valid.
ENOENT

No file or library.
ENOTOPEN

The file is not open.
EIOERROR

A non-recoverable I/O error occurred.

154 IBM i: ILE C/C++ Runtime Library Functions

EIORECERR
A recoverable I/O error occurred.

Example
This example closes the stream1 data stream and reassigns its stream pointer. stream1 and stream2 will
have the same value, but they will not necessarily have the same value as stream.

#include <stdio.h>
#define MAX_LEN 100

int main(void)
{
 FILE *stream, *stream1, *stream2;
 char line[MAX_LEN], *result;
 int i;

 stream = fopen("mylib/myfile","r");
 if ((result = fgets(line,MAX_LEN,stream)) != NULL)
 printf("The string is %s\n", result);

 /* Change all spaces in the line to '*'. */
 for (i=0; i<=sizeof(line); i++)
 if (line[i] == ' ')
 line[i] = '*';

 stream1 = stream;
 stream2 = freopen("", "w+", stream1);
 fputs(line, stream2);
 fclose(stream2);
}

Related Information
• “fclose() — Close Stream” on page 116
• “fopen() — Open Files” on page 134
• “<stdio.h>” on page 13

frexp() — Separate Floating-Point Value

Format
#include <math.h>
double frexp(double x, int *expptr);

Language Level
ANSI

Threadsafe
Yes

Description
The frexp() function breaks down the floating-point value x into a term m for the mantissa and another
term n for the exponent. It is done such that x=m*2 n, and the absolute value of m is greater than or equal
to 0.5 and less than 1.0 or equal to 0. The frexp() function stores the integer exponent n at the location
to which expptr points.

Library Functions 155

Return Value
The frexp() function returns the mantissa term m. If x is 0, frexp() returns 0 for both the mantissa
and exponent. The mantissa has the same sign as the argument x. The result of the frexp() function
cannot have a range error.

Example
This example separates the floating-point value of x, 16.4, into its mantissa 0.5125, and its exponent 5. It
stores the mantissa in y and the exponent in n.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, m;
 int n;

 x = 16.4;
 m = frexp(x, n);

 printf("The mantissa is %lf and the exponent is %d\n", m, n);
}

/******************* Output should be similar to: ***************

The mantissa is 0.512500 and the exponent is 5
*/

Related Information
• “ldexp() — Multiply by a Power of Two” on page 201
• “modf() — Separate Floating-Point Value” on page 246
• “<math.h>” on page 6

fscanf() — Read Formatted Data

Format
#include <stdio.h>
int fscanf (FILE *stream, const char *format-string, argument-list);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

156 IBM i: ILE C/C++ Runtime Library Functions

Description
The fscanf() function reads data from the current position of the specified stream into the locations
that are given by the entries in argument-list, if any. Each entry in argument-list must be a pointer to a
variable with a type that corresponds to a type specifier in format-string.

The format-string controls the interpretation of the input fields and has the same form and function as the
format-string argument for the scanf() function.

Return Value
The fscanf() function returns the number of fields that it successfully converted and assigned. The
return value does not include fields that the fscanf() function read but did not assign.

The return value is EOF if an input failure occurs before any conversion, or the number of input items
assigned if successful.

Example
This example opens the file myfile for reading and then scans this file for a string, a long integer value, a
character, and a floating-point value.

#include <stdio.h>

#define MAX_LEN 80

int main(void)
{
 FILE *stream;
 long l;
 float fp;
 char s[MAX_LEN + 1];
 char c;

 stream = fopen("mylib/myfile", "r");

 /* Put in various data. */

 fscanf(stream, "%s", &s [0]);
 fscanf(stream, "%ld", &l);
 fscanf(stream, "%c", &c);
 fscanf(stream, "%f", &fp);

 printf("string = %s\n", s);
 printf("long double = %ld\n", l);
 printf("char = %c\n", c);
 printf("float = %f\n", fp);
}

/*************** If myfile contains ************************
**************** abcdefghijklmnopqrstuvwxyz 343.2 ***********
********************** expected output is: *********************

string = abcdefghijklmnopqrstuvwxyz
long double = 343
char = .
float = 2.000000
*/

Related Information
• “fprintf() — Write Formatted Data to a Stream” on page 141
• “fwscanf() — Read Data from Stream Using Wide Character” on page 170
• “scanf() — Read Data” on page 362
• “sscanf() — Read Data” on page 386
• “swscanf() — Read Wide Character Data” on page 441
• “wscanf() — Read Data Using Wide-Character Format String” on page 545

Library Functions 157

• “<stdio.h>” on page 13

fseek() – fseeko() — Reposition File Position

Format
#include <stdio.h>
int fseek(FILE *stream, long int offset, int origin);
int fseeko(FILE *stream, off_t offset, int origin);

Language Level
ANSI

Threadsafe
Yes

Integrated File System Interface
The fseeko() function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation
command.

Description
The fseek() and fseeko() functions change the current file position that is associated with stream to
a new location within the file. The next operation on stream takes place at the new location. On a stream
open for update, the next operation can be either a reading or a writing operation.

The fseeko() function is identical to fseek() except that the offset argument is of type off_t.

The origin must be one of the following constants that are defined in <stdio.h>:
Origin

Definition
SEEK_SET

Beginning of file
SEEK_CUR

Current position of file pointer
SEEK_END

End of file

For a binary stream, you can also change the position beyond the end of the file. An attempt to position
before the beginning of the file causes an error. If successful, the fseek() or fseeko() function clears
the end-of-file indicator, even when origin is SEEK_END, and undoes the effect of any preceding the
ungetc() function on the same stream.

Note: For streams opened in text mode, the fseek() and fseeko() functions have limited use because
some system translations (such as those between carriage-return-line-feed and new line) can produce
unexpected results. The only fseek() and fseeko() operations that can be relied upon to work on
streams opened in text mode are seeking with an offset of zero relative to any of the origin values,
or seeking from the beginning of the file with an offset value returned from a call to the ftell() or
ftello() functions. Calls to the ftell() and ftello() functions are subject to their restrictions.

Return Value
The fseek() or fseeko() function returns 0 if it successfully moves the pointer. A nonzero return
value indicates an error. On devices that cannot seek, such as terminals and printers, the return value is
nonzero.

158 IBM i: ILE C/C++ Runtime Library Functions

The value of errno can be set to:
Value

Meaning
EBADF

The file pointer or descriptor is invalid.
EBADSEEK

Bad offset for a seek operation.
ENODEV

Operation was attempted on a wrong device.
ENOTOPEN

The file is not open.
ERECIO

The file is open for record I/O.
ESTDERR

stderr cannot be opened.
ESTDIN

stdin cannot be opened.
ESTDOUT

stdout cannot be opened.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

The fseek() and fseeko() functions are not supported for files that are opened with type=record.

Example
This example opens a file myfile for reading. After performing input operations, fseek() moves the file
pointer to the beginning of the file.

#include <stdio.h>
#define MAX_LEN 10

int main(void)
{
 FILE *stream;
 char buffer[MAX_LEN + 1];
 int result;
 int i;
 char ch;

 stream = fopen("mylib/myfile", "r");
 for (i = 0; (i < (sizeof(buffer)-1) &&
 ((ch = fgetc(stream)) != EOF) && (ch != '\n')); i++)
 buffer[i] = ch;

 result = fseek(stream, 0L, SEEK_SET); /* moves the pointer to the */
 /* beginning of the file */
 if (result == 0)
 printf("Pointer successfully moved to the beginning of the file.\n");
 else
 printf("Failed moving pointer to the beginning of the file.\n");
}

Related Information
• “ftell() – ftello() — Get Current Position” on page 162
• “fgetpos() — Get File Position” on page 124
• “fsetpos() — Set File Position” on page 160

Library Functions 159

• “rewind() — Adjust Current File Position” on page 307
• “ungetc() — Push Character onto Input Stream” on page 456
• “fseek() – fseeko() — Reposition File Position” on page 158
• “<stdio.h>” on page 13

fsetpos() — Set File Position

Format
#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Language Level
ANSI

Threadsafe
Yes

Description
The fsetpos() function moves any file position that is associated with stream to a new location within
the file according to the value pointed to by pos. The value of pos was obtained by a previous call to the
fgetpos() library function.

If successful, fsetpos() clears the end-of-file indicator, and undoes the effect of any previous
ungetc() function on the same stream.

After the fsetpos() call, the next operation on a stream in update mode can be input or output.

Return Value
If fsetpos() successfully changes the current position of the file, it returns 0. A nonzero return value
indicates an error.

The value of errno can be set to:
Value

Meaning
EBADF

The file pointer or descriptor is invalid.
EBADPOS

The position that is specified is not valid.
EINVAL

The value specified for the argument is not correct. You might receive this errno when you compile
your program with *IFSIO, and you are working with a file in the QSYS file system. For example,
"/qsys.lib/qtemp.lib/myfile.file/mymem.mbr".

ENODEV
Operation was attempted on a wrong device.

ENOPOS
No record at the specified position.

ERECIO
The file is open for record I/O.

ESTDERR
stderr cannot be opened.

160 IBM i: ILE C/C++ Runtime Library Functions

ESTDIN
stdin cannot be opened.

ESTDOUT
stdout cannot be opened.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

The fsetpos() function cannot be used for files that are opened with type=record. Also, the fsetpos()
function can only support setting the position to the beginning of the file if:

• your program is compiled with *IFSIO, and
• you are working on a file in the QSYS file system.

Example
This example opens a file mylib/myfile for reading. After performing input operations, fsetpos() moves
the file pointer to the beginning of the file and rereads the first byte.

#include <stdio.h>

FILE *stream;

int main(void)
{
 int retcode;
 fpos_t pos;
 char ptr[20]; /* existing file 'mylib/myfile' has 20 byte records */
 int i;

 /* Open file, get position of file pointer, and read first record */

 stream = fopen("mylib/myfile", "rb");
 fgetpos(stream,&pos);
 if (!fread(ptr,sizeof(ptr),1,stream))
 perror("fread error");
 else printf("1st record: %s\n", ptr);

 /* Perform another read operation on the second record */
 /* - the value of 'pos' changes */
 if (!fread(ptr,sizeof(ptr),1,stream))
 perror("fread error");
 else printf("2nd record: %s\n", ptr);

 /* Re-set pointer to start of file and re-read first record */
 fsetpos(stream,&pos);
 if (!fread(ptr,sizeof(ptr),1,stream))
 perror("fread error");
 else printf("1st record again: %s\n", ptr);

 fclose(stream);
}

Related Information
• “fgetpos() — Get File Position” on page 124
• “fseek() – fseeko() — Reposition File Position” on page 158
• “ftell() – ftello() — Get Current Position” on page 162
• “rewind() — Adjust Current File Position” on page 307
• “<stdio.h>” on page 13

Library Functions 161

ftell() – ftello() — Get Current Position

Format
#include <stdio.h>
long int ftell(FILE *stream);
off_t ftello(FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Integrated File System Interface
The ftello() function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation
command.

Description
The ftell() and ftello() functions find the current position of the file associated with stream. For a
fixed-length binary file, the value that is returned is an offset relative to the beginning of the stream.

For files in the QSYS library system, the ftell() and ftello() functions return a relative value for
fixed-format binary files and an encoded value for other file types. This encoded value must be used in
calls to the fseek() and fseeko() functions to positions other than the beginning of the file.

Return Value
The ftell() and ftello() functions return the current file position. On error, ftell() and ftello()
return –1, cast to long and off_t respectively, and set errno to a nonzero value.

The value of errno can be set to:
Value

Meaning
ENODEV

Operation was attempted on a wrong device.
ENOTOPEN

The file is not open.
ENUMMBRS

The file is open for multi-member processing.
ENUMRECS

Too many records.
ERECIO

The file is open for record I/O.
ESTDERR

stderr cannot be opened.
ESTDIN

stdin cannot be opened.
ESTDOUT

stdout cannot be opened.

162 IBM i: ILE C/C++ Runtime Library Functions

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

The ftell() and ftello() functions are not supported for files that are opened with type=record.

Example
This example opens the file mylib/myfile for reading. It reads enough characters to fill half of the buffer
and prints out the position in the stream and the buffer.

#include <stdio.h>

#define NUM_ALPHA 26
#define NUM_CHAR 6

int main(void)
{
 FILE * stream;
 int i;
 char ch;

 char buffer[NUM_ALPHA];
 long position;

 if ((stream = fopen("mylib/myfile", "r")) != NULL)
 {
 /* read into buffer */
 for (i = 0; (i < NUM_ALPHA/2) && ((buffer[i] = fgetc(stream)) != EOF); ++i)
 if (i==NUM_CHAR-1) /* We want to be able to position the */
 /* file pointer to the character in */
 /* position NUM_CHAR */
 position = ftell(stream);

 buffer[i] = '\0';
 }
 printf("Current file position is %d\n", position);
 printf("Buffer contains: %s\n", buffer);
}

Related Information
• “fseek() – fseeko() — Reposition File Position” on page 158
• “fgetpos() — Get File Position” on page 124
• “fopen() — Open Files” on page 134
• “fsetpos() — Set File Position” on page 160
• “<stdio.h>” on page 13

fwide() — Determine Stream Orientation

Format
#include <stdio.h>
#include <wchar.h>
int fwide(FILE *stream, int mode);

Language Level
ANSI

Threadsafe
Yes

Library Functions 163

Locale Sensitive
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Description
The fwide() function determines the orientation of the stream pointed to by stream. If mode is greater
than 0, the fwide() function first attempts to make the stream wide oriented. If mode is less than 0,
the fwide() function first attempts to make the stream byte oriented. Otherwise, mode is 0, and the
fwide() function does not alter the orientation of the stream.

Note: If the orientation of the stream has already been determined, the fwide() function does not
change it.

Return Value
If, after the call, the stream has wide orientation, the fwide() function returns a value greater than 0. If
the stream has byte orientation, it returns a value less than 0. If the stream has no orientation, it returns
0.

164 IBM i: ILE C/C++ Runtime Library Functions

Example

#include <stdio.h>
#include <math.h>
#include <wchar.h>

void check_orientation(FILE *stream)
{
 int rc;
 rc = fwide(stream,0); /* check the orientation */
 if (rc<0) {
 printf("Stream has byte orientation.\n");
 } else if (rc>0) {
 printf("Stream has wide orientation.\n");
 } else {
 printf("Stream has no orientation.\n");
 }
 return;
}

int main(void)
{
 FILE *stream;
 /* Demonstrate that fwide can be used to set the orientation,
 but cannot change it once it has been set. */
 stream = fopen("test.dat","w");
 printf("After opening the file: ");
 check_orientation(stream);
 fwide(stream, -1); /* Make the stream byte oriented */
 printf("After fwide(stream, -1): ");
 check_orientation(stream);
 fwide(stream, 1); /* Try to make the stream wide oriented */
 printf("After fwide(stream, 1): ");
 check_orientation(stream);
 fclose(stream);
 printf("Close the stream\n");
 /* Check that a wide character output operation sets the orientation
 as expected. */
 stream = fopen("test.dat","w");
 printf("After opening the file: ");
 check_orientation(stream);
 fwprintf(stream, L"pi = %.5f\n", 4* atan(1.0));
 printf("After fwprintf(): ");
 check_orientation(stream);
 fclose(stream);
 return 0;
 /***
 The output should be similar to :
 After opening the file: Stream has no orientation.
 After fwide(stream, -1): Stream has byte orientation.
 After fwide(stream, 1): Stream has byte orientation.
 Close the stream
 After opening the file: Stream has no orientation.
 After fwprintf(): Stream has wide orientation.
 ***/
}

Related Information
• “fgetwc() — Read Wide Character from Stream ” on page 127
• “fgetws() — Read Wide-Character String from Stream ” on page 129
• “fputwc() — Write Wide Character” on page 146
• “fputws() — Write Wide-Character String” on page 148
• “<stdio.h>” on page 13
• “<wchar.h>” on page 16

Library Functions 165

fwprintf() — Format Data as Wide Characters and Write to a Stream

Format
#include <stdio.h>
#include <wchar.h>
int fwprintf(FILE *stream, const wchar_t *format, argument-list);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale, and might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC categories
of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the
compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The fwprintf() function writes output to the stream pointed to by stream, under control of the wide
string pointed to by format. The format string specifies how subsequent arguments are converted for
output.

The fwprintf() function converts each entry in argument-list according to the corresponding wide-
character format specifier in format.

If insufficient arguments exist for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the fwprintf() function evaluates the excess arguments, but otherwise ignores
them. The fwprintf() function returns when it encounters the end of the format string.

The format comprises zero or more directives: ordinary wide characters (not %) and conversion
specifications. Conversion specifications are processed as if they were replaced in the format string by
wide-character strings. The wide-character strings are the result of fetching zero or more subsequent
arguments and then converting them, if applicable, according to the corresponding conversion specifier.
The fwprintf() function then writes the expanded wide-character format string to the output stream.

The format for the fwprintf() function has the same form and function as the format string for
printf(), with the following exceptions:

• %c (without an l prefix) converts an integer argument to wchar_t, as if by calling the btowc() function.
• %s (without an l prefix) converts an array of multibyte characters to an array of wchar_t, as if by calling

the mbrtowc() function. The array is written up to, but not including, the terminating null character,
unless the precision specifies a shorter output.

166 IBM i: ILE C/C++ Runtime Library Functions

• %ls and %S write an array of wchar_t. The array is written up to, but not including, the ending null
character, unless the precision specifies a shorter output.

• Any width or precision specified for %c, %s, %ls, and %S indicates the number of characters rather than
the number of bytes.

If a conversion specification is invalid, the behavior is undefined.

If any argument is, or points to, a union or an aggregate (except for an array of char type using %s
conversion, an array of wchar_t type using %ls conversion, or a pointer using %p conversion), the
behavior is undefined.

In no case does a nonexistent, or small field width, cause truncation of a field; if the conversion result is
wider than the field width, the field is expanded to contain the conversion result.

Note: When you write wide characters, the file should be opened in binary mode, or opened with the
o_ccsid or codepage parameters. This ensures that no conversions occur on the wide characters.

Return Value
The fwprintf() function returns the number of wide characters transmitted. If an output error
occurred, it returns a negative value.

Example

#include <stdio.h>
#include <wchar.h>
#include <locale.h>
int count [10] = {1, 5, 8, 3, 0, 3, 5, 6, 8, 10};
int main(void)
{
 int i,j;
 FILE *stream; /* Open the stream for writing */
 if (NULL == (stream = fopen("/QSYS.LIB/LIB.LIB/WCHAR.FILE/WCHAR.MBR","wb")))
 perror("fopen error");
 for (i=0; i < sizeof(count) / sizeof(count[0]); i++)
 {
 for (j = 0; j < count[i]; j++)
 fwprintf(stream, L"*"); /* Print asterisk */
 fwprintf(stream, L"\n"); /* Move to the next line */
 }
 fclose (stream);
}
/* The member WCHAR of file WCHAR will contain:
 *

 */

Library Functions 167

Unicode example
#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
/* This program is compile LOCALETYPE(*LOCALEUCS2) and */
/* SYSIFCOPT(*IFSIO) */
int main(void)
{
 FILE *stream;
 wchar_t wc = 0x0058; /* UNICODE X */
 char c1 = 'c';
 char *s1 = "123";
 wchar_t ws[4];
 setlocale(LC_ALL,
 "/QSYS.LIB/EN_US.LOCALE"); /* a CCSID 37 locale */
 ws[0] = 0x0041; /* UNICODE A */
 ws[1] = (wchar_t)0x0042; /* UNICODE B */
 ws[2] = (wchar_t)0x0043; /* UNICODE C */
 ws[3] = (wchar_t)0x0000;

 stream = fopen("myfile.dat", "wb+");

 /* lc and ls take wide char as input and just copies then */
 /* to the file. So the file would look like this */
 /* after the below fwprintf statement: */
 /* 0058002000200020004100420043 */
 /* 0020 is UNICODE blank */

 fwprintf(stream, L"%lc %ls",wc,ws);
 /* c and s take multibyte as input and produce UNICODE */
 /* In this case c1 and s1 are CCSID 37 characters based */
 /* on the setlocale above. So the characters are */
 /* converted from CCSID 37 to UNICODE and will look */
 /* like this in hex after the following fwprintf */
 /* statement: 0063002000200020003100320033 */
 /* 0063 is a UNICODE c 0031 is a UNICODE 1 and so on */

 fwprintf(stream, L"%c %s",c1,s1);

 /* Now lets try width and precision. 6ls means write */
 /* 6 wide characters so we will pad with 3 UNICODE */
 /* blanks and %.2s means write no more then 2 wide */
 /* characters. So we get an output that looks like */
 /* this: 00200020002000410042004300310032 */

 fwprintf(stream, L"%6ls%.2s",ws,s1);
}

Related Information
• “fprintf() — Write Formatted Data to a Stream” on page 141
• “printf() — Print Formatted Characters” on page 254
• “vfprintf() — Print Argument Data to Stream” on page 461
• “vprintf() — Print Argument Data” on page 469
• “btowc() — Convert Single Byte to Wide Character” on page 78
• “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 225
• “vfwprintf() — Format Argument Data as Wide Characters and Write to a Stream ” on page 464
• “vswprintf() — Format and Write Wide Characters to Buffer” on page 476
• “wprintf() — Format Data as Wide Characters and Print” on page 544
• “<stdarg.h>” on page 11
• “<wchar.h>” on page 16

168 IBM i: ILE C/C++ Runtime Library Functions

fwrite() — Write Items

Format
#include <stdio.h>
size_t fwrite(const void *buffer, size_t size, size_t count,
 FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Description
The fwrite() function writes up to count items, each of size bytes in length, from buffer to the output
stream.

Return Value
The fwrite() function returns the number of full items successfully written, which can be fewer than
count if an error occurs.

When using fwrite() for record output, set size to 1 and count to the length of the record to obtain the
number of bytes written. You can only write one record at a time when using record I/O.

The value of errno can be set to:
Value

Meaning
ECONVERT

A conversion error occurred.
ENOTWRITE

The file is not open for write operations.
EPAD

Padding occurred on a write operation.
EPUTANDGET

An illegal write operation occurred after a read operation.
ESTDERR

stderr cannot be opened.
ESTDIN

stdin cannot be opened.
ESTDOUT

stdout cannot be opened.
ETRUNC

Truncation occurred on I/O operation.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

Library Functions 169

Example
This example writes NUM long integers to a stream in binary format.

#include <stdio.h>
#define NUM 100

int main(void)
{
 FILE *stream;
 long list[NUM];
 int numwritten;
 int i;

 stream = fopen("MYLIB/MYFILE", "w+b");

 /* assign values to list[] */
 for (i=0; i<=NUM; i++)
 list[i]=i;

 numwritten = fwrite(list, sizeof(long), NUM, stream);
 printf("Number of items successfully written = %d\n", numwritten);
}

Related Information
• “fopen() — Open Files” on page 134
• “fread() — Read Items” on page 150
• “<stdio.h>” on page 13

fwscanf() — Read Data from Stream Using Wide Character

Format
#include <stdio.h>
#include <wchar.h>
int fwscanf(FILE *stream, const wchar_t *format, argument-list);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of
the current locale. It might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC categories
of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the
compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

170 IBM i: ILE C/C++ Runtime Library Functions

Description
The fwscanf() function reads input from the stream pointed to by stream, under control of the wide
string pointed to by format. The format string specifies the admissible input sequences and how they are
to be converted for assignment. To receive the converted input, the fwscanf() function uses subsequent
arguments as pointers to the objects.

Each argument in argument-list must point to a variable with a type that corresponds to a type specifier in
format.

If insufficient arguments exist for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the fwscanf() function evaluates the excess arguments, but otherwise ignores them.

The format consists of zero or more directives: one or more white-space wide characters; an ordinary
wide character (neither % nor a white-space wide character); or a conversion specification. Each
conversion specification is introduced by a %.

The format has the same form and function as the format string for the scanf() function, with the
following exceptions:

• %c (with no l prefix) converts one or more wchar_t characters (depending on precision) to multibyte
characters, as if by calling wcrtomb().

• %lc and %C convert one or more wchar_t characters (depending on precision) to an array of wchar_t.
• %s (with no l prefix) converts a sequence of non-white-space wchar_t characters to multibyte

characters, as if by calling the wcrtomb() function. The array includes the ending null character.
• %ls and %S copy an array of wchar_t, including the ending null wide character, to an array of wchar_t.

If the data is from stdin, and stdin has not been overridden, the data is assumed to be in the CCSID of
the job. The data is converted as required by the format specifications. If the file that is being read is not
opened with file mode rb, then invalid conversion can occur.

If a conversion specification is invalid, the behavior is undefined. If the fwscanf() function encounters
end-of-file during input, conversion is ended. If end-of-file occurs before the fwscanf() function
reads any characters matching the current directive (other than leading white space, where permitted),
execution of the current directive ends with an input failure. Otherwise, unless execution of the current
directive terminates with a matching failure, execution of the following directive (other than %n, if any)
ends with an input failure.

The fwscanf() function leaves trailing white space (including new-line wide characters) unread, unless
matched by a directive. You cannot determine the success of literal matches and suppressed assignments
other than through the %n directive.

Return Value
The fwscanf() function returns the number of input items assigned, which can be fewer than provided
for, in the event of an early matching failure.

If an input failure occurs before any conversion, the fwscanf() function returns EOF.

Example
This example opens the file myfile.dat for input, and then scans this file for a string, a long integer value,
a character, and a floating-point value.

Library Functions 171

#include <stdio.h>
#include <wchar.h>

#define MAX_LEN 80

int main(void)
{
 FILE *stream;
 long l;
 float fp;
 char s[MAX_LEN+1];
 char c;

 stream = fopen("myfile.dat", "r");

 /* Read data from file. */

 fwscanf(stream, L"%s", &s[0]);
 fwscanf(stream, L"%ld", &l);
 fwscanf(stream, L"%c", &c);
 fwscanf(stream, L"%f", &fp);

 printf("string = %s\n", s);
 printf("long integer = %ld\n", l);
 printf("char = %c\n", c);
 printf("float = %f\n", fp);
 return 0;

 /***
 If myfile.dat contains:
 abcdefghijklmnopqrstuvwxyz 343.2.

 The output should be:

 string = abcdefghijklmnopqrstuvwxyz
 long integer = 343
 char = .
 float = 2.000000
 ***/
}

Unicode example
This example reads a Unicode string from unicode.dat and prints it to the screen. The example is
compiled with LOCALETYPE(*LOCALEUCS2) SYSIFCOPT(*IFSIO):

#include <stdio.h>
#include <wchar.h>
#include <locale.h>
void main(void)
{
FILE *stream;
wchar_t buffer[20];
stream=fopen("unicode.dat","rb");

fwscanf(stream,L"%ls", buffer);
wprintf(L"The string read was :%ls\n",buffer);

fclose(stream);
}

/* If the input in unicode.dat is :
 ABC
 and ABC is in unicode which in hex would be 0x0041, 0x0042, 0x0043
 then the output will be similar to:
 The string read was :ABC
*/

Related Information
• “fscanf() — Read Formatted Data” on page 156
• “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 166
• “scanf() — Read Data” on page 362

172 IBM i: ILE C/C++ Runtime Library Functions

• “swprintf() — Format and Write Wide Characters to Buffer” on page 440
• “swscanf() — Read Wide Character Data” on page 441
• “wscanf() — Read Data Using Wide-Character Format String” on page 545
• “<stdio.h>” on page 13
• “<wchar.h>” on page 16

gamma() — Gamma Function

Format
#include <math.h>
double gamma(double x);

Language Level
ILE C Extension

Threadsafe
Yes

Description
The gamma() function computes the natural logarithm of the absolute value of G(x) (ln(|G(x)|)), where

The argument x must be a positive real value.

Return Value
The gamma() function returns the value of ln(|G(x)|). If x is a negative value, errno is set to EDOM. If the
result causes an overflow, gamma() returns HUGE_VAL and sets errno to ERANGE.

Example
This example uses gamma() to calculate ln(|G(x)|), where x = 42.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x=42, g_at_x;

 g_at_x = exp(gamma(x)); /* g_at_x = 3.345253e+49 */
 printf ("The value of G(%4.2lf) is %7.2e\n", x, g_at_x);
}

/************************ Output should be similar to: **********

The value of G(42.00) is 3.35e+49
*/

Example
• “Bessel Functions” on page 75

Library Functions 173

• “erf() – erfc() — Calculate Error Functions” on page 112
• “<math.h>” on page 6

_gcvt() — Convert Floating-Point to String

Format
#include <stdlib.h>
char *_gcvt(double value, int ndec, char *buffer);

Note: The _gcvt function is supported only for C++, not for C.

Threadsafe
Yes

Language Level
Extension

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. For more information, see “Understanding CCSIDs and Locales” on page 571.

Description
_gcvt() converts a floating-point value to a character string pointed to by buffer. The buffer should be
large enough to hold the converted value and a null character (\0) that _gcvt() automatically adds to the
end of the string. There is no provision for overflow.

_gcvt() attempts to produce ndec significant digits in FORTRAN F format. Failing that, it produces ndec
significant digits in FORTRAN E format. Trailing zeros might be suppressed in the conversion if they are
insignificant.

A FORTRAN F number has the following format:

+
-

digit

digit

.

digit

A FORTRAN E number has the following format:

+
-

digit . digit E
+
-

digit

digit

_gcvt also converts infinity values to the string INFINITY.

Return Value
_gcvt() returns a pointer to the string of digits. If it cannot allocate memory to perform the conversion,
_gcvt() returns an empty string and sets errno to ENOMEM.

174 IBM i: ILE C/C++ Runtime Library Functions

Example
This example converts the value -3.1415e3 to a character string and places it in the character array
buffer1.

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
 char buffer1[10];
 _gcvt(-3.1415e3, 7, buffer1);
 printf("The first result is %s \n", buffer1);
 return 0;
}

The output should be:

 The first result is -3141.5

Related Information
• “<stdlib.h>” on page 14

getc() – getchar() — Read a Character

Format
#include <stdio.h>
int getc(FILE *stream);
int getchar(void);

Language Level
ANSI

Threadsafe
No

#undef getc or #undef getchar allows the getc or getchar function to be called instead of the
macro version of these functions. The functions are threadsafe.

Description
The getc() function reads a single character from the current stream position and advances the stream
position to the next character. The getchar() function is identical to getc(stdin).

The difference between the getc() and fgetc() functions is that getc() can be implemented so that
its arguments can be evaluated multiple times. Therefore, the stream argument to getc() should not be
an expression with side effects.

Return Value
The getc() and getchar() functions return the character read. A return value of EOF indicates an
error or end-of-file condition. Use ferror() or feof() to determine whether an error or an end-of-file
condition occurred.

The value of errno can be set to:
Value

Meaning

Library Functions 175

EBADF
The file pointer or descriptor is not valid.

ECONVERT
A conversion error occurred.

EGETANDPUT
An illegal read operation occurred after a write operation.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

The getc() and getchar() functions are not supported in record mode.

Example
This example gets a line of input from the stdin stream. You can also use getc(stdin) instead of
getchar() in the for statement to get a line of input from stdin.

#include <stdio.h>

#define LINE 80

int main(void)
{
 char buffer[LINE+1];
 int i;
 int ch;

 printf("Please enter string\n");

 /* Keep reading until either:
 1. the length of LINE is exceeded or
 2. the input character is EOF or
 3. the input character is a new-line character
 */

 for (i = 0; (i < LINE) && ((ch = getchar()) != EOF) &&
 (ch !='\n'); ++i)
 buffer[i] = ch;

 buffer[i] = '\0'; /* a string should always end with '\0' ! */

 printf("The string is %s\n", buffer);
}

Related Information
• “fgetc() — Read a Character” on page 123
• “fgetwc() — Read Wide Character from Stream ” on page 127
• “gets() — Read a Line” on page 179
• “getwc() — Read Wide Character from Stream” on page 180
• “getwchar() — Get Wide Character from stdin” on page 182
• “putc() – putchar() — Write a Character” on page 266
• “ungetc() — Push Character onto Input Stream” on page 456
• “<stdio.h>” on page 13

176 IBM i: ILE C/C++ Runtime Library Functions

getenv() — Search for Environment Variables

Format
#include <stdlib.h>
char *getenv(const char *varname);

Language Level
ANSI

Threadsafe
Yes

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

Description
The getenv() function searches the list of environment variables for an entry corresponding to varname.

Return Value
The getenv() function returns a pointer to the string containing the value for the specified varname in
the current environment. If getenv() cannot find the environment string, NULL is returned, and errno is
set to indicate the error.

Example

#include <stdlib.h>
#include <stdio.h>

/* Where the environment variable 'PATH' is set to a value. */

int main(void)
{
 char *pathvar;

 pathvar = getenv("PATH");
 printf("pathvar=%s",pathvar);
}

Related Information
• “<stdlib.h>” on page 14
• “putenv() — Change/Add Environment Variables” on page 267
• Environment Variable APIs in the APIs topic in the Information Center.

_GetExcData() — Get Exception Data

Format
#include <signal.h>
void _GetExcData(_INTRPT_Hndlr_Parms_T *parms);

Library Functions 177

Language Level
ILE C Extension

Threadsafe
Yes

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

Description
The _GetExcData() function returns information about the current exception from within a C signal
handler. The caller of the _GetExcData() function must allocate enough storage for a structure of type
_INTRPT_Hndlr_Parms_T. If the _GetExcData() function is called from outside a signal handler, the
storage pointed to by parms is not updated.

This function is not available when SYSIFCOPT(*ASYNCSIGNAL) is specified on the compilation
commands. When SYSIFCOPT(*ASYNCSIGNAL) is specified, a signal handler established with the ILE
C signal() function has no way to access any exception information that might have caused the signal
handler to be invoked. An extended signal handler established with the sigaction() function, however,
does have access to this exception information. The extended signal handler has the following function
prototype:

void func(int signo, siginfo_t *info, void *context)

The exception information is appended to the siginfo_t structure, which is then passed as the second
parameter to the extended signal handler.

The siginfo_t structure is defined in signal.h. The exception-related data follows the si_sigdata
field in the siginfo_t structure. You can address it from the se_data field of the sigdata_t structure.

The format of the exception data appended to the siginfo_t structure is defined by the
_INTRPT_Hndlr_Parms_T structure in except.h.

Return Value
There is no return value.

Example
This example shows how exceptions from MI library functions can be monitored and handled using
a signal handling function. The signal handler my_signal_handler is registered before the rslvsp()
function signals a 0x2201 exception. When a SIGSEGV signal is raised, the signal handler is called. If an
0x2201 exception occurred, the signal handler calls the QUSRCRTS API to create a space.

178 IBM i: ILE C/C++ Runtime Library Functions

#include <signal.h>
#include <QSYSINC/MIH/RSLVSP>
#include <QSYSINC/H/QUSCRTUS>
#include <string.h>

#define CREATION_SIZE 65500

void my_signal_handler(int sig) {

 _INTRPT_Hndlr_Parms_T excp_data;
 int error_code = 0;

 /* Check the message id for exception 0x2201 */
 _GetExcData(&excp_data);

 if (!memcmp(excp_data.Msg_Id, "MCH3401", 7))
 QUSCRTUS("MYSPACE QTEMP ",
 "MYSPACE ",
 CREATION_SIZE,
 "\0",
 "*ALL ",
 "MYSPACE example for Programmer's Reference ",
 "*YES ",
 &error_code);
}

Related Information
• “signal() — Handle Interrupt Signals” on page 378
• “<except.h>” on page 2

gets() — Read a Line

Format
#include <stdio.h>
char *gets(char *buffer);

Language Level
ANSI

Threadsafe
Yes

Description
The gets() function reads a line from the standard input stream stdin and stores it in buffer. The line
consists of all characters up to but not including the first new-line character (\n) or EOF. The gets()
function then replaces the new-line character, if read, with a null character (\0) before returning the line.

Return Value
If successful, the gets() function returns its argument. A NULL pointer return value indicates an error,
or an end-of-file condition with no characters read. Use the ferror() function or the feof() function
to determine which of these conditions occurred. If there is an error, the value that is stored in buffer is
undefined. If an end-of-file condition occurs, buffer is not changed.

Example
This example gets a line of input from stdin.

Library Functions 179

#include <stdio.h>

#define MAX_LINE 100

int main(void)
{
 char line[MAX_LINE];
 char *result;

 printf("Please enter a string:\n");
 if ((result = gets(line)) != NULL)
 printf("The string is: %s\n", line);
 else if (ferror(stdin))
 perror("Error");
}

Related Information
• “fgets() — Read a String” on page 126
• “fgetws() — Read Wide-Character String from Stream ” on page 129
• “feof() — Test End-of-File Indicator” on page 119
• “ferror() — Test for Read/Write Errors” on page 120
• “fputs() — Write String” on page 145
• “getc() – getchar() — Read a Character” on page 175
• “puts() — Write a String” on page 268
• “<stdio.h>” on page 13

getwc() — Read Wide Character from Stream

Format
 #include <stdio.h>
 #include <wchar.h>
 wint_t getwc(FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. It might
also be affected by the LC_UNI_CTYPE category of the current locale if LOCALETYPE(*LOCALEUCS2) or
LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available when
LOCALETYPE(*CLD) is specified on the compilation command. For more information, see “Understanding
CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

180 IBM i: ILE C/C++ Runtime Library Functions

Description
The getwc() function reads the next multibyte character from stream, converts it to a wide character,
and advances the associated file position indicator for stream.

The getwc() function is equivalent to the fgetwc() function except that, if it is implemented as a
macro, it can evaluate stream more than once. Therefore, the argument should never be an expression
with side effects.

If the current locale is changed between subsequent read operations on the same stream, undefined
results can occur. Using non-wide-character functions with the getwc() function on the same stream
results in undefined behavior.

After calling the getwc() function, flush the buffer or reposition the stream pointer before calling a write
function for the stream, unless EOF has been reached. After a write operation on the stream, flush the
buffer or reposition the stream pointer before calling the getwc() function.

Return Value
The getwc() function returns the next wide character from the input stream, or WEOF. If an error occurs,
the getwc() function sets the error indicator. If the getwc() function encounters the end-of-file, it sets
the EOF indicator. If an encoding error occurs during conversion of the multibyte character, the getwc()
function sets errno to EILSEQ.

Use the ferror() or feof() functions to determine whether an error or an EOF condition occurred. EOF
is only reached when an attempt is made to read past the last byte of data. Reading up to and including
the last byte of data does not turn on the EOF indicator.

For information about errno values for getwc(), see “fgetwc() — Read Wide Character from Stream ” on
page 127.

Library Functions 181

Example

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <errno.h>

int main(void)
{
 FILE *stream;
 wint_t wc;

 if (NULL == (stream = fopen("getwc.dat", "r"))) {
 printf("Unable to open: \"getwc.dat\"\n");
 exit(1);
 }

 errno = 0;
 while (WEOF != (wc = getwc(stream)))
 printf("wc = %lc\n", wc);

 if (EILSEQ == errno) {
 printf("An invalid wide character was encountered.\n");
 exit(1);
 }
 fclose(stream);
 return 0;

 /**
 Assuming the file getwc.dat contains:

 Hello world!

 The output should be similar to:

 wc = H
 wc = e
 wc = l
 wc = l
 wc = o
 :
 **/
}

Related Information
• “fgetwc() — Read Wide Character from Stream ” on page 127
• “getwchar() — Get Wide Character from stdin” on page 182
• “getc() – getchar() — Read a Character” on page 175
• “putwc() — Write Wide Character” on page 269
• “ungetwc() — Push Wide Character onto Input Stream ” on page 458
• “<stdio.h>” on page 13
• “<wchar.h>” on page 16

getwchar() — Get Wide Character from stdin

Format
 #include <wchar.h>
 wint_t getwchar(void);

Language Level
ANSI

182 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. It might
also be affected by the LC_UNI_CTYPE category of the current locale if LOCALETYPE(*LOCALEUCS2) or
LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available when
LOCALETYPE(*CLD) is specified on the compilation command. For more information, see “Understanding
CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The getwchar() function reads the next multibyte character from stdin, converts it to a wide character,
and advances the associated file position indicator for stdin. A call to the getwchar() function is
equivalent to a call to getwc(stdin).

If the current locale is changed between subsequent read operations on the same stream, undefined
results can occur. Using non-wide-character functions with the getwchar() function on stdin results in
undefined behavior.

Return Value
The getwchar() function returns the next wide character from stdin or WEOF. If the getwchar()
function encounters EOF, it sets the EOF indicator for the stream and returns WEOF. If a read error occurs,
the error indicator for the stream is set, and the getwchar() function returns WEOF. If an encoding error
occurs during the conversion of the multibyte character to a wide character, the getwchar() function
sets errno to EILSEQ and returns WEOF.

Use the ferror() or feof() functions to determine whether an error or an EOF condition occurred. EOF
is only reached when an attempt is made to read past the last byte of data. Reading up to and including
the last byte of data does not turn on the EOF indicator.

For information about errno values for getwchar(), see “fgetwc() — Read Wide Character from Stream ”
on page 127.

Example
This example uses the getwchar() to read wide characters from the keyboard, then prints the wide
characters.

Library Functions 183

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>

int main(void)
{
 wint_t wc;

 errno = 0;
 while (WEOF != (wc = getwchar()))
 printf("wc = %lc\n", wc);

 if (EILSEQ == errno) {
 printf("An invalid wide character was encountered.\n");
 exit(1);
 }
 return 0;

 /***
 Assuming you enter: abcde

 The output should be:

 wc = a
 wc = b
 wc = c
 wc = d
 wc = e
 ***/
}

Related Information
• “fgetc() — Read a Character” on page 123
• “fgetwc() — Read Wide Character from Stream ” on page 127
• “fgetws() — Read Wide-Character String from Stream ” on page 129
• “getc() – getchar() — Read a Character” on page 175
• “getwc() — Read Wide Character from Stream” on page 180
• “ungetwc() — Push Wide Character onto Input Stream ” on page 458
• “<wchar.h>” on page 16

gmtime() — Convert Time

Format
#include <time.h>
struct tm *gmtime(const time_t *time);

Language Level
ANSI

Threadsafe
No

Use gmtime_r() instead.

Description
The gmtime() function breaks down the time value, in seconds, and stores it in a tm structure, defined in
<time.h>. The value time is usually obtained by a call to the time() function.

184 IBM i: ILE C/C++ Runtime Library Functions

The fields of the tm structure include:
tm_sec

Seconds (0-61)
tm_min

Minutes (0-59)
tm_hour

Hours (0-23)
tm_mday

Day of month (1-31)
tm_mon

Month (0-11; January = 0)
tm_year

Year (current year minus 1900)
tm_wday

Day of week (0-6; Sunday = 0)
tm_yday

Day of year (0-365; January 1 = 0)
tm_isdst

Zero if daylight saving time is not in effect; positive if daylight saving time is in effect; negative if the
information is not available.

Return Value
The gmtime() function returns a pointer to the resulting tm structure.

Note:

1. The range (0-61) for tm_sec allows for as many as two leap seconds.
2. The gmtime() and localtime() functions can use a common, statically allocated buffer for the

conversion. Each call to one of these functions might alter the result of the previous call.
3. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,

1970 Universal Coordinate Time (UTC).

Example
This example uses the gmtime() function to adjust a time_t representation to a Coordinated Universal
Time character string, and then converts it to a printable string using the asctime() function.

#include <stdio.h>
#include <time.h>

int main(void)
{
 time_t ltime;

 time(<ime);
 printf ("Coordinated Universal Time is %s\n",
 asctime(gmtime(<ime)));
}

/************************ Output should be similar to: **********

Coordinated Universal Time is Wed Aug 18 21:01:44 1993
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65

Library Functions 185

• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “setlocale() — Set Locale” on page 370
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

gmtime64() — Convert Time

Format
#include <time.h>
struct tm *gmtime64(const time64_t *time);

Language Level
ILE C Extension

Threadsafe
No

Use gmtime64_r() instead.

Description
The gmtime64() function breaks down the time value, in seconds, and stores it in a tm structure, defined
in <time.h>. The value time is usually obtained by a call to the time64() function.

The fields of the tm structure include:
tm_sec

Seconds (0-61)
tm_min

Minutes (0-59)
tm_hour

Hours (0-23)
tm_mday

Day of month (1-31)
tm_mon

Month (0-11; January = 0)

186 IBM i: ILE C/C++ Runtime Library Functions

tm_year
Year (current year minus 1900)

tm_wday
Day of week (0-6; Sunday = 0)

tm_yday
Day of year (0-365; January 1 = 0)

tm_isdst
Zero if daylight saving time is not in effect; positive if daylight saving time is in effect; negative if the
information is not available.

Return Value
The gmtime64() function returns a pointer to the resulting tm structure.

Note:

1. The range (0-61) for tm_sec allows for as many as two leap seconds.
2. The gmtime64() and localtime64() functions can use a common, statically allocated buffer

for the conversion. Each call to one of these functions might alter the result of the previous call.
The asctime_r(), ctime64_r(), gmtime64_r(), and localtime64_r() functions do not use a
common statically allocated buffer to hold the return string. These functions can be used in place of
the asctime(), ctime64(), gmtime64(), and localtime64() functions if reentrancy is desired.

3. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

Example
This example uses the gmtime64() function to adjust a time64_t representation to a Universal
Coordinate Time character string and then converts it to a printable string using the asctime() function.

#include <stdio.h>
#include <time.h>

int main(void)
{
 time64_t ltime;

 time64(<ime);
 printf ("Universal Coordinate Time is %s",
 asctime(gmtime64(<ime)));
}

/************************ Output should be similar to: **********

Universal Coordinate Time is Wed Aug 18 21:01:44 1993
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “gmtime64_r() — Convert Time (Restartable)” on page 190

Library Functions 187

• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “setlocale() — Set Locale” on page 370
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

gmtime_r() — Convert Time (Restartable)

Format
#include <time.h>
struct tm *gmtime_r(const time_t *time, struct tm *result);

Language Level
XPG4

Threadsafe
Yes

Description
This function is the restartable version of gmtime().

The gmtime_r() function breaks down the time value, in seconds, and stores it in result. result is a
pointer to the tm structure, defined in <time.h>. The value time is usually obtained by a call to the time()
function.

The fields of the tm structure include:
tm_sec

Seconds (0-61)
tm_min

Minutes (0-59)
tm_hour

Hours (0-23)
tm_mday

Day of month (1-31)
tm_mon

Month (0-11; January = 0)
tm_year

Year (current year minus 1900)
tm_wday

Day of week (0-6; Sunday = 0)
tm_yday

Day of year (0-365; January 1 = 0)

188 IBM i: ILE C/C++ Runtime Library Functions

tm_isdst
Zero if daylight saving time is not in effect; positive if daylight saving time is in effect; negative if the
information is not available.

Return Value
The gmtime_r() function returns a pointer to the resulting tm structure.

Note:

1. The range (0-61) for tm_sec allows for as many as two leap seconds.
2. The gmtime() and localtime() functions can use a common, statically allocated buffer for the

conversion. Each call to one of these functions might alter the result of the previous call. The
asctime_r(), ctime_r(), gmtime_r(), and localtime_r() functions do not use a common,
statically allocated buffer to hold the return string. These functions can be used in place of the
asctime(), ctime(), gmtime(), and localtime() functions if reentrancy is desired.

3. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

Example
This example uses the gmtime_r() function to adjust a time_t representation to a Coordinated Universal
Time character string, and then converts it to a printable string using the asctime_r() function.

#include <stdio.h>
#include <time.h>

int main(void)
{
 time_t ltime;
 struct tm mytime;
 char buf[50];

 time(<ime)
 printf ("Coordinated Universal Time is %s\n",
 asctime_r(gmtime_r(<ime, &mytime), buf));
}

/************************ Output should be similar to: **********

Coordinated Universal Time is Wed Aug 18 21:01:44 1993
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243

Library Functions 189

• “mktime64() — Convert Local Time” on page 245
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

gmtime64_r() — Convert Time (Restartable)

Format
#include <time.h>
struct tm *gmtime64_r(const time64_t *time, struct tm *result);

Language Level
ILE C Extension

Threadsafe
Yes

Description
This function is the restartable version of gmtime64().

The gmtime64_r() function breaks down the time value, in seconds, and stores it in result. result is
a pointer to the tm structure, defined in <time.h>. The value time is usually obtained by a call to the
time64() function.

The fields of the tm structure include:
tm_sec

Seconds (0-61)
tm_min

Minutes (0-59)
tm_hour

Hours (0-23)
tm_mday

Day of month (1-31)
tm_mon

Month (0-11; January = 0)
tm_year

Year (current year minus 1900)
tm_wday

Day of week (0-6; Sunday = 0)
tm_yday

Day of year (0-365; January 1 = 0)
tm_isdst

Zero if daylight saving time is not in effect; positive if daylight saving time is in effect; negative if the
information is not available.

Return Value
The gmtime64_r() function returns a pointer to the resulting tm structure.

Note:

190 IBM i: ILE C/C++ Runtime Library Functions

1. The range (0-61) for tm_sec allows for as many as two leap seconds.
2. The gmtime64() and localtime64() functions might use a common, statically allocated buffer

for the conversion. Each call to one of these functions might alter the result of the previous call.
The asctime_r(), ctime64_r(), gmtime64_r(), and localtime64_r() functions do not use a
common, statically allocated buffer to hold the return string. These functions can be used in place of
the asctime(), ctime64(), gmtime64(), and localtime64() functions if reentrancy is desired.

3. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

Example
This example uses the gmtime64_r() function to adjust a time64_t representation to a Universal
Coordinate Time character string and then converts it to a printable string using the asctime_r()
function.

#include <stdio.h>
#include <time.h>

int main(void)
{
 time64_t ltime;
 struct tm mytime;
 char buf[50];

 time64(<ime)
 printf ("Universal Coordinate Time is %s",
 asctime_r(gmtime64_r(<ime, &mytime), buf));
}

/************************ Output should be similar to: **********

Universal Coordinate Time is Wed Aug 18 21:01:44 1993
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

Library Functions 191

hypot() — Calculate Hypotenuse

Format
#include <math.h>
double hypot(double side1, double side2);

Language Level
ANSI

Threadsafe
Yes

Description
The hypot() function calculates the length of the hypotenuse of a right-angled triangle based on the
lengths of two sides side1 and side2. A call to the hypot() function is equivalent to:

 sqrt(side1 * side1 + side2 * side2);

Return Value
The hypot() function returns the length of the hypotenuse. If an overflow results, hypot() sets errno
to ERANGE and returns the value HUGE_VAL. If an underflow results, hypot() sets errno to ERANGE and
returns zero. The value of errno can also be set to EDOM.

Example
This example calculates the hypotenuse of a right-angled triangle with sides of 3.0 and 4.0.

#include <math.h>

int main(void)
{
 double x, y, z;

 x = 3.0;
 y = 4.0;
 z = hypot(x,y);

 printf("The hypotenuse of the triangle with sides %lf and %lf"
 " is %lf\n", x, y, z);
}

/******************** Output should be similar to: **************

The hypotenuse of the triangle with sides 3.000000 and 4.000000 is 5.000000
*/

Related Information
• “sqrt() — Calculate Square Root” on page 384
• “<math.h>” on page 6

192 IBM i: ILE C/C++ Runtime Library Functions

isalnum() – isxdigit() — Test Integer Value

Format
#include <ctype.h>
int isalnum(int c);
/* Test for upper- or lowercase letters, or decimal digit */
int isalpha(int c);
/* Test for alphabetic character */
int isblank(int c);
/* Test for blank or tab character */
int iscntrl(int c);
/* Test for any control character */
int isdigit(int c);
/* Test for decimal digit */
int isgraph(int c);
/* Test for printable character excluding space */
int islower(int c);
/* Test for lowercase */
int isprint(int c);
/* Test for printable character including space */
int ispunct(int c);
/* Test for any nonalphanumeric printable character */
/* excluding space */
int isspace(int c);
/* Test for whitespace character */
int isupper(int c);
/* Test for uppercase */
int isxdigit(int c);
/* Test for hexadecimal digit */

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of these functions might be affected by the LC_CTYPE category of the current locale. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The <ctype.h> functions listed test a character with an integer value.

Return Value
These functions return a nonzero value if the integer satisfies the test condition, or a zero value if it does
not. The integer variable c must be representable as an unsigned char.

Note: EOF is a valid input value.

Example
This example analyzes all characters between code 0x0 and code UPPER_LIMIT, printing A for alphabetic
characters, AN for alphanumerics, B for blank or tab characters, U for uppercase, L for lowercase, D
for digits, X for hexadecimal digits, S for spaces, PU for punctuation, PR for printable characters, G for
graphics characters, and C for control characters. This example prints the code if printable.

The output of this example is a 256-line table showing the characters from 0 to 255 that possess the
attributes tested.

Library Functions 193

#include <stdio.h>
#include <ctype.h>

#define UPPER_LIMIT 0xFF

int main(void)
{
 int ch;

 for (ch = 0; ch <= UPPER_LIMIT; ++ch)
 {
 printf("%3d ", ch);
 printf("%#04x ", ch);
 printf("%3s ", isalnum(ch) ? "AN" : " ");
 printf("%2s ", isalpha(ch) ? "A" : " ");
 printf("%2s ", isblank(ch) ? "B" : " ");
 printf("%2s", iscntrl(ch) ? "C" : " ");
 printf("%2s", isdigit(ch) ? "D" : " ");
 printf("%2s", isgraph(ch) ? "G" : " ");
 printf("%2s", islower(ch) ? "L" : " ");
 printf(" %c", isprint(ch) ? ch : ' ');
 printf("%3s", ispunct(ch) ? "PU" : " ");
 printf("%2s", isspace(ch) ? "S" : " ");
 printf("%3s", isprint(ch) ? "PR" : " ");
 printf("%2s", isupper(ch) ? "U" : " ");
 printf("%2s", isxdigit(ch) ? "X" : " ");

 putchar('\n');
 }
}

Related Information
• “tolower() – toupper() — Convert Character Case” on page 451
• “<ctype.h>” on page 1

isascii() — Test for Character Representable as ASCII Value

Format
#include <ctype.h>
int isascii(int c);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. This
function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The isascii() function tests if a given character, in the current locale, can be represented as a valid
7–bit US-ASCII character.

194 IBM i: ILE C/C++ Runtime Library Functions

Return Value
The isascii() function returns nonzero if c, in the current locale, can be represented as a character in
the 7–bit US-ASCII character set. Otherwise, it returns 0.

Example
This example tests the integers from 0x7c to 0x82, and prints the corresponding character if the integer
can be represented as a character in the 7–bit US-ASCII character set.

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int ch;

 for (ch = 0x7c; ch <= 0x82; ch++) {
 printf("%#04x ", ch);
 if (isascii(ch))
 printf("The character is %c\n", ch);
 else
 printf("Cannot be represented by an ASCII character\n");
 }
 return 0;
}
 /**
 The output should be:

 0x7c The character is @
 0x7d The character is '
 0x7e The character is =
 0x7f The character is "
 0x80 Cannot be represented by an ASCII character
 0x81 The character is a
 0x82 The character is b

 **/

Related Information
• “isalnum() – isxdigit() — Test Integer Value” on page 193
• “iswalnum() – iswxdigit() — Test Wide Integer Value” on page 195
• “toascii() — Convert Character to Character Representable by ASCII” on page 450
• “tolower() – toupper() — Convert Character Case” on page 451
• “towlower() – towupper() — Convert Wide Character Case” on page 454
• “<ctype.h>” on page 1

iswalnum() – iswxdigit() — Test Wide Integer Value

Format
#include <wctype.h>
int iswalnum(wint_t wc);
int iswalpha(wint_t wc);
int iswblank(wint_t wc);
int iswcntrl(wint_t wc);
int iswdigit(wint_t wc);
int iswgraph(wint_t wc);
int iswlower(wint_t wc);
int iswprint(wint_t wc);
int iswpunct(wint_t wc);
int iswspace(wint_t wc);
int iswupper(wint_t wc);
int iswxdigit(wint_t wc);

Library Functions 195

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of these functions might be affected by the LC_CTYPE category of the current locale if
LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of these functions might
be affected by the LC_UNI_CTYPE category of the current locale if either the LOCALETYPE(*LOCALEUCS2)
option or the LOCALETYPE(*LOCALEUTF) option is specified on the compilation command. These
functions are not available when LOCALETYPE(*CLD) is specified on the compilation command. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The functions listed above, which are all declared in <wctype.h>, test a given wide integer value.

The value of wc must be a wide-character code corresponding to a valid character in the current locale, or
must equal the value of the macro WEOF. If the argument has any other value, the behavior is undefined.

Here are descriptions of each function in this group.
iswalnum()

Test for a wide alphanumeric character.
iswalpha()

Test for a wide alphabetic character, as defined in the alpha class of the current locale.
iswblank()

Test for a wide blank or tab character, as defined in the blank class of the current locale.
iswcntrl()

Test for a wide control character, as defined in the cntrl class of the current locale.
iswdigit()

Test for a wide decimal-digit character: 0 through 9, as defined in the digit class of the current locale.
iswgraph()

Test for a wide printing character, not a space, as defined in the graph class of the current locale.
iswlower()

Test for a wide lowercase character, as defined in the lower class of the current locale or for which
none of the iswcntrl(), iswdigit(), iswspace() functions are true.

iswprint()
Test for any wide printing character, as defined in the print class of the current locale.

iswpunct()
Test for a wide nonalphanumeric, nonspace character, as defined in the punct class of the current
locale.

iswspace()
Test for a wide whitespace character, as defined in the space class of the current locale.

iswupper()
Test for a wide uppercase character, as defined in the upper class of the current locale.

196 IBM i: ILE C/C++ Runtime Library Functions

iswxdigit()
Test for a wide hexadecimal digit 0 through 9, a through f, or A through F as defined in the xdigit class
of the current locale.

Returned Value
These functions return a nonzero value if the wide integer satisfies the test value, or a 0 value if it does
not. The value for wc must be representable as a wide unsigned char. WEOF is a valid input value.

Example
#include <stdio.h>
#include <wctype.h>

int main(void)
{
 int wc;

 for (wc=0; wc <= 0xFF; wc++) {
 printf("%3d", wc);
 printf(" %#4x ", wc);
 printf("%3s", iswalnum(wc) ? "AN" : " ");
 printf("%2s", iswalpha(wc) ? "A" : " ");
 printf("%2s", iswblank(wc) ? "B" : " ");
 printf("%2s", iswcntrl(wc) ? "C" : " ");
 printf("%2s", iswdigit(wc) ? "D" : " ");
 printf("%2s", iswgraph(wc) ? "G" : " ");
 printf("%2s", iswlower(wc) ? "L" : " ");
 printf(" %c", iswprint(wc) ? wc : ' ');
 printf("%3s", iswpunct(wc) ? "PU" : " ");
 printf("%2s", iswspace(wc) ? "S" : " ");
 printf("%3s", iswprint(wc) ? "PR" : " ");
 printf("%2s", iswupper(wc) ? "U" : " ");
 printf("%2s", iswxdigit(wc) ? "X" : " ");

 putchar('\n');
 }
}

Related Information
• “<wctype.h>” on page 16

iswctype() — Test for Character Property

Format
#include <wctype.h>
int iswctype(wint_t wc, wctype_t wc_prop);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale if
LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this function might
be affected by the LC_UNI_CTYPE category of the current locale if either the LOCALETYPE(*LOCALEUCS2)
option or the LOCALETYPE(*LOCALEUTF) option is specified on the compilation command. This function

Library Functions 197

is not available when LOCALETYPE(*CLD) is specified on the compilation command. For more information,
see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The iswctype() function determines whether the wide character wc has the property wc_prop. If
the value of wc is neither WEOF nor any value of the wide characters that corresponds to a multibyte
character, the behavior is undefined. If the value of wc_prop is incorrect (that is, it is not obtained by
a previous call to the wctype() function, or wc_prop has been invalidated by a subsequent call to the
setlocale() function), the behavior is undefined.

Return Value
The iswctype() function returns true if the value of the wide character wc has the property wc_prop.

The following strings, alnum through to xdigit are reserved for the standard character classes. The
functions are shown as follows with their equivalent isw*() function:

iswctype(wc, wctype("alnum")); /* is equivalent to */ iswalnum(wc);
iswctype(wc, wctype("alpha")); /* is equivalent to */ iswalpha(wc);
iswctype(wc, wctype("blank")); /* is equivalent to */ iswblank(wc);
iswctype(wc, wctype("cntrl")); /* is equivalent to */ iswcntrl(wc);
iswctype(wc, wctype("digit")); /* is equivalent to */ iswdigit(wc);
iswctype(wc, wctype("graph")); /* is equivalent to */ iswgraph(wc);
iswctype(wc, wctype("lower")); /* is equivalent to */ iswlower(wc);
iswctype(wc, wctype("print")); /* is equivalent to */ iswprint(wc);
iswctype(wc, wctype("punct")); /* is equivalent to */ iswpunct(wc);
iswctype(wc,wctype("space")); /* is equivalent to */ iswspace(wc);
iswctype(wc, wctype("upper")); /* is equivalent to */ iswupper(wc);
iswctype(wc, wctype("xdigit")); /* is equivalent to */ iswxdigit(wc);

Example
#include <stdio.h>
#include <wctype.h>

int main(void)
{
 int wc;

 for (wc=0; wc <= 0xFF; wc++) {
 printf("%3d", wc);
 printf(" %#4x ", wc);
 printf("%3s", iswctype(wc, wctype("alnum")) ? "AN" : " ");
 printf("%2s", iswctype(wc, wctype("alpha")) ? "A" : " ");
 printf("%2s", iswctype(wc, wctype("blank")) ? "B" : " ");
 printf("%2s", iswctype(wc, wctype("cntrl")) ? "C" : " ");
 printf("%2s", iswctype(wc, wctype("digit")) ? "D" : " ");
 printf("%2s", iswctype(wc, wctype("graph")) ? "G" : " ");
 printf("%2s", iswctype(wc, wctype("lower")) ? "L" : " ");
 printf(" %c", iswctype(wc, wctype("print")) ? wc : ' ');
 printf("%3s", iswctype(wc, wctype("punct")) ? "PU" : " ");
 printf("%2s", iswctype(wc, wctype("space")) ? "S" : " ");
 printf("%3s", iswctype(wc, wctype("print")) ? "PR" : " ");
 printf("%2s", iswctype(wc, wctype("upper")) ? "U" : " ");
 printf("%2s", iswctype(wc, wctype("xdigit")) ? "X" : " ");

 putchar('\n');
 }
}

Related Information
• “wctype() — Get Handle for Character Property Classification” on page 535

198 IBM i: ILE C/C++ Runtime Library Functions

• “iswalnum() – iswxdigit() — Test Wide Integer Value” on page 195
• “<wctype.h>” on page 16

_itoa() — Convert Integer to String

Format
#include <stdlib.h>
char *_itoa(int value, char *string, int radix);

Note: The _itoa function is supported only for C++, not for C.

Language Level
Extension

Threadsafe
Yes

Description
_itoa() converts the digits of the given value to a character string that ends with a null character and
stores the result in string. The radix argument specifies the base of value; it must be in the range 2 to 36.
If radix equals 10 and value is negative, the first character of the stored string is the minus sign (-).

Note: The space reserved for string must be large enough to hold the returned string. The function can
return up to 33 bytes including the null character (\0).

Return Value
_itoa returns a pointer to string. There is no error return value.

When the string argument is NULL or the radix is outside the range 2 to 36, errno will be set to EINVAL.

Example
This example converts the integer value -255 to a decimal, a binary, and a hex number, storing its
character representation in the array buffer.

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
 char buffer[35];
 char *p;
 p = _itoa(-255, buffer, 10);
 printf("The result of _itoa(-255) with radix of 10 is %s\n", p);
 p = _itoa(-255, buffer, 2);
 printf("The result of _itoa(-255) with radix of 2\n is %s\n", p);
 p = _itoa(-255, buffer, 16);
 printf("The result of _itoa(-255) with radix of 16 is %s\n", p);
 return 0;
}

The output should be:

 The result of _itoa(-255) with radix of 10 is -255
 The result of _itoa(-255) with radix of 2
 is 11111111111111111111111100000001
 The result of _itoa(-255) with radix of 16 is ffffff01

Library Functions 199

Related Information
• “_gcvt() — Convert Floating-Point to String” on page 174
• “_itoa() — Convert Integer to String” on page 199
• “_ltoa() — Convert Long Integer to String” on page 216
• “_ultoa() — Convert Unsigned Long Integer to String” on page 455
• “<stdlib.h>” on page 14

labs() – llabs() — Calculate Absolute Value of Long and Long Long
Integer

Format (labs())
#include <stdlib.h>
long int labs(long int n);

Format (llabs())
#include <stdlib.h>
long long int llabs(long long int i);

Language Level
ANSI

Threadsafe
Yes

Description
The labs() function produces the absolute value of its long integer argument n. The result might be
undefined when the argument is equal to LONG_MIN, the smallest available long integer. The value
LONG_MIN is defined in the <limits.h> include file.

The llabs() function returns the absolute value of its long long integer operand. The result might be
undefined when the argument is equal to LONG_LONG_MIN, the smallest available long integer. The value
LONG_LONG_MIN is defined in the <limits.h> include file.

Return Value
The labs() function returns the absolute value of n. There is no error return value.

The llabs() function returns the absolute value of i. There is no error return value.

Example
This example computes y as the absolute value of the long integer -41567.

200 IBM i: ILE C/C++ Runtime Library Functions

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 long x, y;

 x = -41567L;
 y = labs(x);

 printf("The absolute value of %ld is %ld\n", x, y);
}

/******************** Output should be similar to: **************

The absolute value of -41567 is 41567
*/

Related Information
• “abs() — Calculate Integer Absolute Value” on page 61
• “fabs() — Calculate Floating-Point Absolute Value” on page 115
• “<limits.h>” on page 5

ldexp() — Multiply by a Power® of Two

Format
#include <math.h>
double ldexp(double x, int exp);

Language Level
ANSI

Threadsafe
Yes

Description
The ldexp() function calculates the value of x * (2exp).

Return Value
The ldexp() function returns the value of x*(2exp). If an overflow results, the function returns
+HUGE_VAL for a large result or -HUGE_VAL for a small result, and sets errno to ERANGE.

Example
This example computes y as 1.5 times 2 to the fifth power (1.5*25):

Library Functions 201

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, y;
 int p;

 x = 1.5;
 p = 5;
 y = ldexp(x,p);

 printf("%lf times 2 to the power of %d is %lf\n", x, p, y);
}

/******************** Output should be similar to: **************

1.500000 times 2 to the power of 5 is 48.000000
*/

Related Information
• “exp() — Calculate Exponential Function” on page 114
• “frexp() — Separate Floating-Point Value” on page 155
• “modf() — Separate Floating-Point Value” on page 246
• “<math.h>” on page 6

ldiv() – lldiv() — Perform Long and Long Long Division

Format (ldiv())
#include <stdlib.h>
ldiv_t ldiv(long int numerator, long int denominator);

Format (lldiv())
#include <stdlib.h>
lldiv_t lldiv(long long int numerator, long long int denominator);

Language Level
ANSI

Threadsafe
Yes

However, only the function version is threadsafe. The macro version is NOT threadsafe.

Description
The ldiv() function calculates the quotient and remainder of the division of numerator by denominator.

Return Value
The ldiv() function returns a structure of type ldiv_t, containing both the quotient (long int quot) and the
remainder (long int rem). If the value cannot be represented, the return value is undefined. If denominator
is 0, an exception is raised.

The lldiv() function computes the quotient and remainder of the numerator parameter by the
denominator parameter.

202 IBM i: ILE C/C++ Runtime Library Functions

The lldiv() function returns a structure of type lldiv_t, containing both the quotient and the remainder.
The structure is defined as:

struct lldiv_t
{
long long int quot; /* quotient */
long long int rem; /* remainder */
};

If the division is inexact, the sign of the resulting quotient is that of the algebraic quotient, and magnitude
of the resulting quotient is the largest long long integer less than the magnitude of the algebraic quotient.
If the result cannot be represented (for example, if the denominator is 0), the behavior is undefined.

Example
This example uses ldiv() to calculate the quotients and remainders for a set of two dividends and two
divisors.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 long int num[2] = {45,-45};
 long int den[2] = {7,-7};
 ldiv_t ans; /* ldiv_t is a struct type containing two long ints:
 'quot' stores quotient; 'rem' stores remainder */
 short i,j;

 printf("Results of long division:\n");
 for (i = 0; i < 2; i++)
 for (j = 0; j < 2; j++)
 {
 ans = ldiv(num[i], den[j]);
 printf("Dividend: %6ld Divisor: %6ld", num[i], den[j]);
 printf(" Quotient: %6ld Remainder: %6ld\n", ans.quot, ans.rem);
 }
}

/******************** Expected output: **************************

Results of long division:
Dividend: 45 Divisor: 7 Quotient: 6 Remainder: 3
Dividend: 45 Divisor: -7 Quotient: -6 Remainder: 3
Dividend: -45 Divisor: 7 Quotient: -6 Remainder: -3
Dividend: -45 Divisor: -7 Quotient: 6 Remainder: -3
*/

Related Information
• “div() — Calculate Quotient and Remainder” on page 111
• “<stdlib.h>” on page 14

localeconv() — Retrieve Information from the Environment

Format
#include <locale.h>
struct lconv *localeconv(void);

Language Level
ANSI

Library Functions 203

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_NUMERIC and LC_MONETARY categories of the
current locale. For more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The localeconv() sets the components of a structure having type struct lconv to values appropriate for
the current locale. The structure might be overwritten by another call to localeconv(), or by calling the
setlocale() function.

The structure contains the following elements (defaults shown are for the C locale):

Element Purpose of Element Default

char *decimal_point Decimal-point character used to format non-
monetary quantities.

"."

char *thousands_sep Character used to separate groups of digits
to the left of the decimal-point character in
formatted non-monetary quantities.

""

char *grouping String indicating the size of each group of
digits in formatted non-monetary quantities.
Each character in the string specifies the
number of digits in a group. The initial
character represents the size of the group
immediately to the left of the decimal
delimiter. The characters following this
define succeeding groups to the left of the
previous group. If the last character is not
UCHAR_MAX, the grouping is repeated using
the last character as the size. If the last
character is UCHAR_MAX, grouping is only
performed for the groups already in the string
(no repetition). See Table 1 on page 206 for
an example of how grouping works.

""

char *int_curr_symbol International currency symbol for the current
locale. The first three characters contain the
alphabetic international currency symbol. The
fourth character (usually a space) is the
character used to separate the international
currency symbol from the monetary quantity.

""

char *currency_symbol Local currency symbol of the current locale. ""

char *mon_decimal_point Decimal-point character used to format
monetary quantities.

""

char *mon_thousands_sep Separator for digits in formatted monetary
quantities.

""

204 IBM i: ILE C/C++ Runtime Library Functions

Element Purpose of Element Default

char *mon_grouping String indicating the size of each group
of digits in formatted monetary quantities.
Each character in the string specifies the
number of digits in a group. The initial
character represents the size of the group
immediately to the left of the decimal
delimiter. The following characters define
succeeding groups to the left of the
previous group. If the last character is not
UCHAR_MAX, the grouping is repeated using
the last character as the size. If the last
character is UCHAR_MAX, grouping is only
performed for the groups already in the string
(no repetition). See Table 1 on page 206 for
an example of how grouping works.

""

char *positive_sign String indicating the positive sign used in
monetary quantities.

""

char *negative_sign String indicating the negative sign used in
monetary quantities.

""

char int_frac_digits The number of displayed digits to the right
of the decimal place for internationally
formatted monetary quantities.

UCHAR_MAX

char frac_digits Number of digits to the right of the decimal
place in monetary quantities.

UCHAR_MAX

char p_cs_precedes 1 if the currency_symbol precedes the
value for a nonnegative formatted monetary
quantity; 0 if it does not.

UCHAR_MAX

char p_sep_by_space 1 if the currency_symbol is separated by
a space from the value of a nonnegative
formatted monetary quantity; 0 if it does not.

UCHAR_MAX

char n_cs_precedes 1 if the currency_symbol precedes the value
for a negative formatted monetary quantity; 0
if it does not.

UCHAR_MAX

char n_sep_by_space 1 if the currency_symbol is separated by a
space from the value of a negative formatted
monetary quantity; 0 if it does not.

UCHAR_MAX

char p_sign_posn Value indicating the position of the
positive_sign for a nonnegative formatted
monetary quantity.

UCHAR_MAX

char n_sign_posn Value indicating the position of the
negative_sign for a negative formatted
monetary quantity.

UCHAR_MAX

Pointers to strings with a value of "" indicate that the value is not available in the C locale or is of zero
length. Elements with char types with a value of UCHAR_MAX indicate that the value is not available in
the current locale.

The n_sign_posn and p_sign_posn elements can have the following values:
Value

Meaning

Library Functions 205

0
The quantity and currency_symbol are enclosed in parentheses.

1
The sign precedes the quantity and currency_symbol.

2
The sign follows the quantity and currency_symbol.

3
The sign precedes the currency_symbol.

4
The sign follows the currency_symbol.

Table 1. Grouping Example

Locale Source Grouping String Number Formatted Number

-1 0x00 123456789 123456789

3 0x0300 123456789 123,456,789

3;-1 0x03FF00 123456789 123456,789

3;2;1 0x03020100 123456789 1,2,3,4,56,789

Table 2. Monetary Formatting Example

Country Positive Format Negative Format International Format

Italy L.1.230 -L.1.230 ITL.1.230

Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56

Norway kr1.234,56 kr1.234,56- NOK1.234,56

Switzerland SFRs.1,234.56 SFrx.1,234.56C CHF 1,234.56

The above table was generated by locales with the following monetary fields:

Table 3. Monetary Fields

Italy Netherlands Norway Switzerland

int_curr_symbol "ITL." "NLG" "NOK" "CHF"

currency_symbol "L." "F" "kr" "SFrs."

mon_decimal_point "" "," "," "."

mon_thousands_sep "." "." "." ","

mon_grouping "\3" "\3" "\3" "\3"

positive_sign "" "" "" ""

negative_sign "-" "-" "-" "C"

int_frac_digits 0 2 2 2

frac_digits 0 2 2 2

p_cs_precedes 1 1 1 1

p_sep_by_space 0 1 0 0

n_cs_preceds 1 1 1 1

n_sep_by_space 0 1 0 0

206 IBM i: ILE C/C++ Runtime Library Functions

Table 3. Monetary Fields (continued)

Italy Netherlands Norway Switzerland

p_sep_posn 1 1 1 1

n_sign_posn 1 4 2 2

Return Value
The localeconv() function returns a pointer to the structure.

Example that uses *CLD locale objects
This example prints out the default decimal point for your locale and then the decimal point for the
LC_C_FRANCE locale.

#include <stdio.h>
#include <locale.h>

int main(void) {

 char * string;
 struct lconv * mylocale;
 mylocale = localeconv();

 /* Display default decimal point */

 printf("Default decimal point is a %s\n", mylocale->decimal_point);

 if (NULL != (string = setlocale(LC_ALL, LC_C_FRANCE))) {
 mylocale = localeconv();

 /* A comma is set to be the decimal point when the locale is LC_C_FRANCE*/

 printf("France's decimal point is a %s\n", mylocale->decimal_point);

 } else {

 printf("setlocale(LC_ALL, LC_C_FRANCE) returned <NULL>\n");
 }
 return 0;
}

Library Functions 207

Example that uses *LOCALE objects
 /**
 This example prints out the default decimal point for
 the C locale and then the decimal point for the French
 locale using a *LOCALE object called
 "/QSYS.LIB/MYLIB.LIB/LC_FRANCE.LOCALE".

 Step 1: Create a French *LOCALE object by entering the command
 CRTLOCALE LOCALE('/QSYS.LIB/MYLIB.LIB/LC_FRANCE.LOCALE') +
 SRCFILE('/QSYS.LIB/QSYSLOCALE.LIB/QLOCALESRC.FILE/ +
 FR_FR.MBR') CCSID(297) *
 Step 2: Compile the following C source, specifying
 LOCALETYPE(*LOCALE) on the compilation command.
 Step 3: Run the program.
 **/

 #include <stdio.h>
 #include <locale.h>
 int main(void) {
 char * string;
 struct lconv * mylocale;
 mylocale = localeconv();

 /* Display default decimal point */
 printf("Default decimal point is a %s\n", mylocale->decimal_point);
 if (NULL != (string = setlocale(LC_ALL,
 "/QSYS.LIB/MYLIB.LIB/LC_FRANCE.LOCALE"))) {
 mylocale = localeconv();

 /* A comma is set to be the decimal point in the French locale */
 printf("France's decimal point is a %s\n", mylocale->decimal_point);
 } else {
 printf("setlocale(LC_ALL, \"/QSYS.LIB/MYLIB.LIB/LC_FRANCE.LOCALE\") \
 returned <NULL>\n");
 }
 return 0;
 }

Related Information
• “setlocale() — Set Locale” on page 370
• “<locale.h>” on page 5

localtime() — Convert Time

Format
#include <time.h>
struct tm *localtime(const time_t *timeval);

Language Level
ANSI

Threadsafe
No

Use localtime_r() instead.

Locale Sensitive
The behavior of this function might be affected by the LC_TOD category of the current locale.

208 IBM i: ILE C/C++ Runtime Library Functions

Description
The localtime() function converts a time value, in seconds, to a structure of type tm.

The localtime() function takes a timeval assumed to be Universal Coordinate Time (UTC) and converts
it to job locale time. For this conversion localtime() checks the current locale setting for local time
zone and daylight saving time (DST). If these values are not set in the current locale, localtime() gets
the local time zone and daylight saving time (DST) settings from the current job. Once converted, the time
is returned in a structure of type tm. If the DST is set in the locale but the time zone information is not, the
DST information in the locale is ignored.

The time value is usually obtained by a call to the time() function.

Note:

1. The gmtime() and localtime() functions can use a common, statically allocated buffer for
the conversion. Each call to one of these functions might destroy the result of the previous call.
The ctime_r(), gmtime_r(), and localtime_r() functions do not use a common, statically
allocated buffer. These functions can be used in place of the asctime(), ctime(), gmtime() and
localtime() functions if reentrancy is desired.

2. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

Return Value
The localtime() function returns a pointer to the structure result. There is no error return value.

Example
This example queries the system clock and displays the local time.

#include <time.h>
#include <stdio.h>

int main(void)
{
 struct tm *newtime;
 time_t ltime;

 ltime = time(<ime);
 newtime = localtime(<ime);
 printf("The date and time is %s", asctime(newtime));}

/************** If the local time is 3 p.m. February 15, 2008, **********
************************* the output should be: *********************

The date and time is Fri Feb 15 15:00:00 2008
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188

Library Functions 209

• “localtime_r() — Convert Time (Restartable)” on page 211
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “setlocale() — Set Locale” on page 370
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

localtime64() — Convert Time

Format
#include <time.h>
struct tm *localtime64(const time64_t *timeval);

Language Level
ILE C Extension

Threadsafe
No

Use localtime64_r() instead.

Locale Sensitive
The behavior of this function might be affected by the LC_TOD category of the current locale.

Description
The localtime64() function converts a time value, in seconds, to a structure of type tm.

The localtime64() function takes a timeval assumed to be Universal Coordinate Time (UTC) and
converts it to job locale time. For this conversion, localtime64() checks the current locale setting
for local time zone and daylight saving time (DST). If these values are not set in the current locale,
localtime64() gets the local time zone and daylight saving time (DST) settings from the current job.
Once converted, the time is returned in a structure of type tm. If the DST is set in the locale but the time
zone information is not, the DST information in the locale is ignored.

The time value is usually obtained by a call to the time64() function.

Note:

1. The gmtime64() and localtime64() functions might use a common, statically allocated buffer
for the conversion. Each call to one of these functions might alter the result of the previous call.
The asctime_r(), ctime64_r(), gmtime64_r() and localtime64_r() functions do not use
a common, statically allocated buffer. These functions can be used in place of the asctime(),
ctime64(), gmtime64(), and localtime64() functions if thread safety is desired.

2. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

3. The supported date and time range for this function is 01/01/0001 00:00: 00 through 12/31/9999 23:
59: 59.

210 IBM i: ILE C/C++ Runtime Library Functions

Return Value
The localtime64() function returns a pointer to the structure result. If the given timeval is out of range,
a NULL pointer is returned and errno is set to EOVERFLOW.

Example
This example queries the system clock and displays the local time.

#include <stdio.h>
#include <time.h>

int main(void)
{
 struct tm *newtime;
 time64_t ltime;

 ltime = time64(<ime);
 newtime = localtime64(<ime);
 printf("The date and time is %s", asctime(newtime));
}

/************** If the local time is 3 p.m. February 15, 2008, **********
************************* the output should be: *********************

The date and time is Fri Feb 15 15:00:00 2008
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “setlocale() — Set Locale” on page 370
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

localtime_r() — Convert Time (Restartable)

Format
#include <time.h>
struct tm *localtime_r(const time_t *timeval, struct tm *result);

Library Functions 211

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_TOD category of the current locale.

Description
This function is the restartable version of localtime(). It is the same as localtime() except that it
passes in the place to store the returned structure result.

Return Value
The localtime_r() returns a pointer to the structure result. There is no error return value.

Example
This example queries the system clock and displays the local time.

#include <time.h>
#include <stdio.h>

int main(void)
{
 struct tm newtime;
 time_t ltime;
 char buf[50];

 ltime=time(<ime);
 localtime_r(<ime, &newtime);
 printf("The date and time is %s", asctime_r(&newtime, buf));
}

/************** If the local time is 3 p.m. February 15, 2008, **********
************************* the output should be: *********************

The date and time is Fri Feb 15 15:00:00 2008
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “mktime() — Convert Local Time” on page 243
• “time() — Determine Current Time” on page 446
• “<time.h>” on page 15

212 IBM i: ILE C/C++ Runtime Library Functions

localtime64_r() — Convert Time (Restartable)

Format
#include <time.h>
struct tm *localtime64_r(const time64_t *timeval, struct tm *result);

Language Level
ILE C Extension

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_TOD category of the current locale.

Description
This function is the restartable version of localtime64(). It is the same as localtime64() except
that it passes in the place to store the returned structure result.

Note:

1. The gmtime64() and localtime64() functions might use a common, statically allocated buffer
for the conversion. Each call to one of these functions might alter the result of the previous call.
The asctime_r(), ctime64_r(), gmtime64_r(), and localtime64_r() functions do not use a
common statically allocated buffer to hold the return string. These functions can be used in place of
the asctime(), ctime64(), gmtime64(), and localtime64() functions if thread safety is desired.

2. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

3. The supported date and time range for this function is 01/01/0001 00:00:00 through 12/31/9999
23:59:59.

Return Value
The localtime64_r() function returns a pointer to the structure result. If the given timeval is out of
range, a NULL pointer is returned and errno is set to EOVERFLOW.

Example
This example queries the system clock and displays the local time.

Library Functions 213

#include <stdio.h>
#include <time.h>

int main(void)
{
 struct tm newtime;
 time64_t ltime;
 char buf[50];

 ltime = time64(<ime);
 localtime64_r(<ime, &newtime);
 printf("The date and time is %s\n", asctime_r(&newtime, buf));
}

/************** If the local time is 3 p.m. February 15, 2008, **********
************************* the output should be: *********************

The date and time is Fri Feb 15 15:00:00 2008
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “localtime64() — Convert Time” on page 210
• “mktime64() — Convert Local Time” on page 245
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

log() — Calculate Natural Logarithm

Format
#include <math.h>
double log(double x);

Language Level
ANSI

Threadsafe
Yes

Description
The log() function calculates the natural logarithm (base e) of x.

Return Value
The log() function returns the computed value. If x is negative, log() sets errno to EDOM and might
return the value -HUGE_VAL. If x is zero, log() returns the value -HUGE_VAL, and might set errno to
ERANGE.

214 IBM i: ILE C/C++ Runtime Library Functions

Example
This example calculates the natural logarithm of 1000.0.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 1000.0, y;

 y = log(x);

 printf("The natural logarithm of %lf is %lf\n", x, y);
}

/******************** Output should be similar to: **************

The natural logarithm of 1000.000000 is 6.907755
*/

Related Information
• “exp() — Calculate Exponential Function” on page 114
• “log10() — Calculate Base 10 Logarithm” on page 215
• “pow() — Compute Power” on page 253
• “<math.h>” on page 6

log10() — Calculate Base 10 Logarithm

Format
#include <math.h>
double log10(double x);

Language Level
ANSI

Threadsafe
Yes

Description
The log10() function calculates the base 10 logarithm of x.

Return Value
The log10() function returns the computed value. If x is negative, log10() sets errno to EDOM and
might return the value -HUGE_VAL. If x is zero, the log10() function returns the value -HUGE_VAL, and
might set errno to ERANGE.

Example
This example calculates the base 10 logarithm of 1000.0.

Library Functions 215

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 1000.0, y;

 y = log10(x);

 printf("The base 10 logarithm of %lf is %lf\n", x, y);
}

/******************** Output should be similar to: **************

The base 10 logarithm of 1000.000000 is 3.000000
*/

Related Information
• “exp() — Calculate Exponential Function” on page 114
• “log() — Calculate Natural Logarithm” on page 214
• “pow() — Compute Power” on page 253
• “<math.h>” on page 6

_ltoa() — Convert Long Integer to String

Format
#include <stdlib.h>
char *_ltoa(long value, char *string, int radix);

Note: The _ltoa function is supported only for C++, not for C.

Language Level
Extension

Threadsafe
Yes

Description
_ltoa converts the digits of the given long integer value to a character string that ends with a null
character and stores the result in string. The radix argument specifies the base of value; it must be in the
range 2 to 36. If radix equals 10 and value is negative, the first character of the stored string is the minus
sign (-).

Note: The space allocated for string must be large enough to hold the returned string. The function can
return up to 33 bytes including the null character (\0).

Return Value
_ltoa returns a pointer to string. There is no error return value.

When the string argument is NULL or the radix is outside the range 2 to 36, errno will be set to EINVAL.

216 IBM i: ILE C/C++ Runtime Library Functions

Example
This example converts the integer value -255L to a decimal, a binary, and a hex value, and stores its
character representation in the array buffer.

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
 char buffer[35];
 char *p;
 p = _ltoa(-255L, buffer, 10);
 printf("The result of _ltoa(-255) with radix of 10 is %s\n", p);
 p = _itoa(-255L, buffer, 2);
 printf("The result of _ltoa(-255) with radix of 2\n is %s\n", p);
 p = _itoa(-255L, buffer, 16);
 printf("The result of _ltoa(-255) with radix of 16 is %s\n", p);
 return 0;
}

The output should be:

 The result of _ltoa(-255) with radix of 10 is -255
 The result of _ltoa(-255) with radix of 2
 is 11111111111111111111111100000001
 The result of _ltoa(-255) with radix of 16 is ffffff01

Related Information
• “atol() – atoll() — Convert Character String to Long or Long Long Integer” on page 74
• “_gcvt() — Convert Floating-Point to String” on page 174
• “_itoa() — Convert Integer to String” on page 199
• “strtol() – strtoll() — Convert Character String to Long and Long Long Integer” on page 435
• “_ultoa() — Convert Unsigned Long Integer to String” on page 455
• “wcstol() – wcstoll() — Convert Wide Character String to Long and Long Long Integer” on page 520
• “<stdlib.h>” on page 14

longjmp() — Restore Stack Environment

Format
#include <setjmp.h>
void longjmp(jmp_buf env, int value);

Language Level
ANSI

Threadsafe
Yes

Description
The longjmp() function restores a stack environment previously saved in env by the setjmp() function.
The setjmp() and longjmp() functions provide a way to perform a non-local goto. They are often used
in signal handlers.

A call to the setjmp() function causes the current stack environment to be saved in env. A subsequent
call to longjmp() restores the saved environment and returns control to a point in the program

Library Functions 217

corresponding to the setjmp() call. Processing resumes as if the setjmp() call had just returned the
given value.

All variables (except register variables) that are available to the function that receives control contain
the values they had when longjmp() was called. The values of register variables are unpredictable.
Nonvolatile auto variables that are changed between calls to the setjmp() and longjmp() functions are
also unpredictable.

Note: Ensure that the function that calls the setjmp() function does not return before you call the
corresponding longjmp() function. Calling longjmp() after the function calling the setjmp() function
returns causes unpredictable program behavior.

The value argument must be nonzero. If you give a zero argument for value, longjmp() substitutes 1 in
its place.

Return Value
The longjmp() function does not use the normal function call and return mechanisms; it has no return
value.

Example
This example saves the stack environment at the statement:

 if (setjmp(mark) != 0) ...

When the system first performs the if statement, it saves the environment in mark and sets the condition
to FALSE because the setjmp() function returns a 0 when it saves the environment. The program prints
the message:

 setjmp has been called

The subsequent call to function p() causes it to call the longjmp() function. Control is transferred
to the point in the main() function immediately after the call to the setjmp() function using the
environment saved in the mark variable. This time, the condition is TRUE because -1 is specified in the
second parameter on the longjmp() function call as the return value to be placed on the stack. The
example then performs the statements in the block, prints the message "longjmp() has been called",
calls the recover() function, and leaves the program.

218 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf mark;

void p(void);
void recover(void);

int main(void)
{
 if (setjmp(mark) != 0)
 {
 printf("longjmp has been called\n");
 recover();
 exit(1);
 }
 printf("setjmp has been called\n");
 printf("Calling function p()\n");
 p();
 printf("This point should never be reached\n");
}

void p(void)
{
 printf("Calling longjmp() from inside function p()\n");
 longjmp(mark, -1);
 printf("This point should never be reached\n");
}

void recover(void)
{
 printf("Performing function recover()\n");
}
/*******************Output should be as follows: **********************
 setjmp has been called
 Calling function p()
 Calling longjmp() from inside function p()
 longjmp has been called
 Performing function recover()
**/

Related Information
• “setjmp() — Preserve Environment” on page 369
• “<setjmp.h>” on page 11

malloc() — Reserve Storage Block

Format
#include <stdlib.h>
void *malloc(size_t size);

Language Level
ANSI

Threadsafe
Yes

Description
The malloc() function reserves a block of storage of size bytes. Unlike the calloc() function,
malloc() does not initialize all elements to 0. The maximum size for a non-teraspace malloc() is
16711568 bytes.

Library Functions 219

Note:

1. All heap storage is associated with the activation group of the calling function. As such, storage should
be allocated, deallocated, and reallocated within the same activation group. You cannot allocate heap
storage within one activation group and deallocate or reallocate that storage from a different activation
group. For more information about activation groups, see the ILE Concepts manual.

2. To use teraspace storage instead of single-level store storage without changing the C source
code, specify the TERASPACE(*YES *TSIFC) parameter on the compiler command. This maps the
malloc() library function to _C_TS_malloc(), its teraspace storage counterpart. The maximum
amount of teraspace storage that can be allocated by each call to _C_TS_malloc() is 2GB -
224, or 2147483424 bytes. If more than 2147483408 bytes are needed on a single request, call
_C_TS_malloc64(unsigned long long int);.

For more information, see the ILE Concepts manual.
3. For current statistics on the teraspace storage being used by MI programs in an activation group, call

the _C_TS_malloc_info function. This function returns information including total bytes, allocated
bytes and blocks, unallocated bytes and blocks, requested bytes, pad bytes, and overhead bytes.
To get more detailed information about the memory structures used by the _C_TS_malloc()
and _C_TS_malloc64() functions, call the _C_TS_malloc_debug() function. You can use the
information this function returns to identify memory corruption problems.

4. If the Quick Pool memory manager has been enabled in the current activation group, then the storage
is retrieved using Quick Pool memory manager. See “_C_Quickpool_Init() — Initialize Quick Pool
Memory Manager” on page 93 for more information.

Return Value
The malloc() function returns a pointer to the reserved space. The storage space to which the return
value points is suitably aligned for storage of any type of object. The return value is NULL if not enough
storage is available, or if size was specified as zero.

Example
This example prompts for the number of array entries you want and then reserves enough space in
storage for the entries. If malloc() was successful, the example assigns values to the entries and prints
out each entry; otherwise, it prints out an error.

220 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 long * array; /* start of the array */
 long * index; /* index variable */
 int i; /* index variable */
 int num; /* number of entries of the array */

 printf("Enter the size of the array\n");
 scanf("%i", &num);

 /* allocate num entries */
 if ((index = array = (long *) malloc(num * sizeof(long))) != NULL)
 {

 for (i = 0; i < num; ++i) /* put values in array */
 index++ = i; / using pointer notation */

 for (i = 0; i < num; ++i) /* print the array out */
 printf("array[%i] = %i\n", i, array[i]);
 }
 else { /* malloc error */
 perror("Out of storage");
 abort();
 }
}

/******************** Output should be similar to: **************

Enter the size of the array
array[0] = 0
array[1] = 1
array[2] = 2
array[3] = 3
array[4] = 4
*/

Related Information
• “calloc() — Reserve and Initialize Storage” on page 80
• “_C_Quickpool_Debug() — Modify Quick Pool Memory Manager Characteristics” on page 91
• “_C_Quickpool_Init() — Initialize Quick Pool Memory Manager” on page 93
• “_C_Quickpool_Report() — Generate Quick Pool Memory Manager Report” on page 95
• “free() — Release Storage Blocks” on page 152
• “realloc() — Change Reserved Storage Block Size” on page 295
• “Heap Memory” on page 583
• “<stdlib.h>” on page 14

mblen() — Determine Length of a Multibyte Character

Format
#include <stdlib.h>
int mblen(const char *string, size_t n);

Language Level
ANSI

Threadsafe
No

Library Functions 221

Use mbrlen() instead.

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current
locale. This function might be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
For more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The mblen() function determines the length in bytes of the multibyte character pointed to by string. n
represents the maximum number of bytes examined.

Return Value
If string is NULL, the mblen() function returns:

• Non-zero if the active locale allows mixed-byte strings. The function initializes the state variable.
• Zero otherwise.

If string is not NULL, mblen() returns:

• Zero if string points to the null character.
• The number of bytes comprising the multibyte character.
• -1 if string does not point to a valid multibyte character.

Note: The mblen(), mbtowc(), and wctomb() functions use their own statically allocated storage and
are therefore not restartable. However, mbrlen(), mbrtowc(), and wcrtomb() are restartable.

Example
This example uses mblen() and mbtowc() to convert a multibyte character into a single wide character.

#include <stdio.h>
#include <stdlib.h>

int length, temp;
char string [6] = "w";
wchar_t arr[6];

int main(void)

{
 /* Initialize internal state variable */
 length = mblen(NULL, MB_CUR_MAX);

 /* Set string to point to a multibyte character */
 length = mblen(string, MB_CUR_MAX);
 temp = mbtowc(arr,string,length);
 arr[1] = L'\0';
 printf("wide character string: %ls\n", arr);
}

Related Information
• “mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 223
• “mbtowc() — Convert Multibyte Character to a Wide Character” on page 235
• “mbstowcs() — Convert a Multibyte String to a Wide Character String” on page 231
• “strlen() — Determine String Length” on page 408
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “wctomb() — Convert Wide Character to Multibyte Character” on page 532

222 IBM i: ILE C/C++ Runtime Library Functions

• “<stdlib.h>” on page 14

mbrlen() — Determine Length of a Multibyte Character
(Restartable)

Format
#include <wchar.h>
size_t mbrlen (const char *s, size_t n, mbstate_t *ps);

Language Level
ANSI

Threadsafe
Yes, if ps is not NULL.

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
This function might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
This function is the restartable version of mblen().

The mbrlen() function determines the length of a multibyte character.

n is the number of bytes (at most) of the multibyte string to examine.

This function differs from its corresponding internal-state multibyte character function in that it has an
extra parameter, ps of type pointer to mbstate_t that points to an object that can completely describe
the current conversion state of the associated multibyte character sequence. If ps is a NULL pointer,
mbrlen() behaves like mblen().

mbrlen() is a restartable version of mblen(). In other words, shift-state information is passed as one of
the arguments (ps represents the initial shift) and is updated on exit. With mbrlen(), you can switch from
one multibyte string to another, provided that you have kept the shift-state information.

Return Value
If s is a null pointer and if the active locale allows mixed-byte strings, the mbrlen() function returns
nonzero. If s is a null pointer and if the active locale does not allow mixed-byte strings, zero will be
returned.

If s is not a null pointer, the mbrlen() function returns one of the following:

0
If s is a NULL string (s points to the NULL character).

positive
If the next n or fewer bytes comprise a valid multibyte character. The value returned is the number of
bytes that comprise the multibyte character.

(size_t)-1
If s does not point to a valid multibyte character.

Library Functions 223

(size_t)-2
If the next n or fewer bytes contribute to an incomplete but potentially valid character and all n bytes
have been processed

Example
 /* This program is compiled with LOCALETYPE(*LOCALE) and */
 /* SYSIFCOPT(*IFSIO) */

 #include <stdio.h>
 #include <stdlib.h>
 #include <locale.h>
 #include <wchar.h>
 #include <errno.h>

 #define LOCNAME "/qsys.lib/JA_JP.locale"
 #define LOCNAME_EN "/qsys.lib/EN_US.locale"

 int main(void)
 {
 int length, sl = 0;
 char string[10];
 mbstate_t ps = 0;
 memset(string, '\0', 10);
 string[0] = 0xC1;
 string[1] = 0x0E;
 string[2] = 0x41;
 string[3] = 0x71;
 string[4] = 0x41;
 string[5] = 0x72;
 string[6] = 0x0F;
 string[7] = 0xC2;
 /* In this first example we will find the length of */
 /* of a multibyte character when the CCSID of locale */
 /* associated with LC_CTYPE is 37. */
 /* For single byte cases the state will always */
 /* remain in the initial state 0 */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)
 printf("setlocale failed.\n");

 length = mbrlen(string, MB_CUR_MAX, &ps);

 /* In this case length is 1, which is always the case for */
 /* single byte CCSID */

 printf("length = %d, state = %d\n\n", length, ps);
 printf("MB_CUR_MAX: %d\n\n", MB_CUR_MAX);

 /* Now let's try a multibyte example. We first must set the */
 /* locale to a multibyte locale. We choose a locale with */
 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)
 printf("setlocale failed.\n");

 length = mbrlen(string, MB_CUR_MAX, &ps);

 /* The first is single byte so length is 1 and */
 /* the state is still the initial state 0 */

 printf("length = %d, state = %d\n\n", length, ps);
 printf("MB_CUR_MAX: %d\n\n", MB_CUR_MAX);

 sl += length;

 length = mbrlen(&string[sl], MB_CUR_MAX, &ps);

 /* The next character is a mixed byte. Length is 3 to */
 /* account for the shiftout 0x0e. State is */
 /* changed to double byte state. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = mbrlen(&string[sl], MB_CUR_MAX, &ps);

224 IBM i: ILE C/C++ Runtime Library Functions

 /* The next character is also a double byte character. */
 /* The state is changed to initial state since this was */
 /* the last double byte character. Length is 3 to */
 /* account for the ending 0x0f shiftin. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = mbrlen(&string[sl], MB_CUR_MAX, &ps);

 /* The next character is single byte so length is 1 and */
 /* state remains in initial state. */

 printf("length = %d, state = %d\n\n", length, ps);

 }
 /* The output should look like this:

 length = 1, state = 0

 MB_CUR_MAX: 1

 length = 1, state = 0

 MB_CUR_MAX: 4

 length = 3, state = 2

 length = 3, state = 0

 length = 1, state = 0
 */

Related Information
• “mblen() — Determine Length of a Multibyte Character” on page 221
• “mbtowc() — Convert Multibyte Character to a Wide Character” on page 235
• “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 225
• “mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 229
• “setlocale() — Set Locale” on page 370
• “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 483
• “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 510
• “<locale.h>” on page 5
• “<wchar.h>” on page 16

mbrtowc() — Convert a Multibyte Character to a Wide Character
(Restartable)

Format
#include <wchar.h>
size_t mbrtowc (wchar_t *pwc, const char *s, size_t n, mbstate_t *ps);

Language Level
ANSI

Threadsafe
Yes, if ps is not NULL.

Library Functions 225

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
This function might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
This function is the restartable version of the mbtowc() function.

If s is a null pointer, the mbrtowc() function determines the number of bytes necessary to enter the
initial shift state (zero if encodings are not state-dependent or if the initial conversion state is described).
In this situation, the value of the pwc parameter will be ignored and the resulting shift state described will
be the initial conversion state.

If s is not a null pointer, the mbrtowc() function determines the number of bytes that are in the multibyte
character (and any leading shift sequences) pointed to by s, produces the value of the corresponding
multibyte character and if pwc is not a null pointer, stores that value in the object pointed to by pwc. If the
corresponding multibyte character is the null wide character, the resulting state will be reset to the initial
conversion state.

This function differs from its corresponding internal-state multibyte character function in that it has an
extra parameter, ps of type pointer to mbstate_t that points to an object that can completely describe the
current conversion state of the associated multibyte character sequence. If ps is NULL, this function uses
an internal static variable for the state.

At most, n bytes of the multibyte string are examined.

Return Value
If s is a null pointer, the mbrtowc() function returns the number of bytes necessary to enter the initial
shift state. The value returned must be less than the MB_CUR_MAX macro.

If a conversion error occurs, errno might be set to ECONVERT.

If s is not a null pointer, the mbrtowc() function returns one of the following:
0

If the next n or fewer bytes form the multibyte character that corresponds to the null wide character.
positive

If the next n or fewer bytes form a valid multibyte character. The value returned is the number of bytes
that constitute the multibyte character.

(size_t)-2
If the next n bytes form an incomplete (but potentially valid) multibyte character, and all n bytes have
been processed. It is unspecified whether this can occur when the value of n is less than the value of
the MB_CUR_MAX macro.

(size_t)-1
If an encoding error occurs (when the next n or fewer bytes do not form a complete and correct
multibyte character). The value of the macro EILSEQ is stored in errno, but the conversion state is
unchanged.

Note: When a -2 value is returned, the string could contain redundant shift-out and shift-in characters or a
partial UTF-8 character. To continue processing the multibyte string, increment the pointer by the value n,
and call mbrtowc() again.

226 IBM i: ILE C/C++ Runtime Library Functions

Example
/* This program is compiled with LOCALETYPE(*LOCALE) and */
/* SYSIFCOPT(*IFSIO) */

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <wchar.h>
#include <errno.h>

#define LOCNAME "/qsys.lib/JA_JP.locale"
#define LOCNAME_EN "/qsys.lib/EN_US.locale"

int main(void)
{
 int length, sl = 0;
 char string[10];
 wchar_t buffer[10];
 mbstate_t ps = 0;
 memset(string, '\0', 10);
 string[0] = 0xC1;
 string[1] = 0x0E;
 string[2] = 0x41;
 string[3] = 0x71;
 string[4] = 0x41;
 string[5] = 0x72;
 string[6] = 0x0F;
 string[7] = 0xC2;
 /* In this first example we will convert */
 /* a multibyte character when the CCSID of locale */
 /* associated with LC_CTYPE is 37. */
 /* For single byte cases the state will always */
 /* remain in the initial state 0 */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)
 printf("setlocale failed.\n");

 length = mbrtowc(buffer, string, MB_CUR_MAX, &ps);

 /* In this case length is 1, and C1 is converted 0x00C1 */

 printf("length = %d, state = %d\n\n", length, ps);
 printf("MB_CUR_MAX: %d\n\n", MB_CUR_MAX);

 /* Now lets try a multibyte example. We first must set the */
 /* locale to a multibyte locale. We choose a locale with */
 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)
 printf("setlocale failed.\n");

 length = mbrtowc(buffer, string, MB_CUR_MAX, &ps);

 /* The first is single byte so length is 1 and */
 /* the state is still the initial state 0. C1 is converted*/
 /* to 0x00C1 */

 printf("length = %d, state = %d\n\n", length, ps);
 printf("MB_CUR_MAX: %d\n\n", MB_CUR_MAX);

 sl += length;

 length = mbrtowc(&buffer[1], &string[sl], MB_CUR_MAX, &ps);

 /* The next character is a mixed byte. Length is 3 to */
 /* account for the shiftout 0x0e. State is */
 /* changed to double byte state. 0x4171 is copied into */
 /* the buffer */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = mbrtowc(&buffer[2], &string[sl], MB_CUR_MAX, &ps);

 /* The next character is also a double byte character. */
 /* The state is changed to initial state since this was */
 /* the last double byte character. Length is 3 to */
 /* account for the ending 0x0f shiftin. 0x4172 is copied */
 /* into the buffer. */

Library Functions 227

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = mbrtowc(&buffer[3], &string[sl], MB_CUR_MAX, &ps);

 /* The next character is single byte so length is 1 and */
 /* state remains in initial state. 0xC2 is converted to */
 /* 0x00C2. The buffer now has the value: */
 /* 0x00C14171417200C2 */

 printf("length = %d, state = %d\n\n", length, ps);

}
/* The output should look like this:

length = 1, state = 0

MB_CUR_MAX: 1

length = 1, state = 0

MB_CUR_MAX: 4

length = 3, state = 2

length = 3, state = 0

length = 1, state = 0
 */

Related Information
• “mblen() — Determine Length of a Multibyte Character” on page 221
• “mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 223
• “mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 229
• “setlocale() — Set Locale” on page 370
• “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 483
• “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 510
• “<locale.h>” on page 5
• “<wchar.h>” on page 16

mbsinit() — Test State Object for Initial State

Format
#include <wchar.h>
int mbsinit (const mbstate_t *ps);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. This
function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For more
information, see “Understanding CCSIDs and Locales” on page 571.

228 IBM i: ILE C/C++ Runtime Library Functions

Description
If ps is not a null pointer, the mbsinit() function specifies whether the pointed to mbstate_t object
describes an initial conversion state.

Return Value
The mbsinit() function returns nonzero if ps is a null pointer or if the pointed to object describes an
initial conversion state. Otherwise, it returns zero.

Example
This example checks the conversion state to see if it is the initial state.

#include <stdio.h>
#include <wchar.h>
#include <stdlib.h>

main()
{
 char *string = "ABC";
 mbstate_t state = 0;
 wchar_t wc;
 int rc;

 rc = mbrtowc(&wc, string, MB_CUR_MAX, &state);
 if (mbsinit(&state))
 printf("In initial conversion state\n");
}

Related Information
• “mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 223
• “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 225
• “mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 229
• “setlocale() — Set Locale” on page 370
• “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 483
• “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 510
• “<locale.h>” on page 5
• “<wchar.h>” on page 16

mbsrtowcs() — Convert a Multibyte String to a Wide Character
String (Restartable)

Format
#include <wchar.h>
size_t mbsrtowcs (wchar_t *dst, const char **src, size_t len,
 mbstate_t *ps);

Language Level
ANSI

Threadsafe
Yes, if ps is not NULL.

Library Functions 229

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
This function might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
This function is the restartable version of mbstowcs().

The mbsrtowcs() function converts a sequence of multibyte characters that begins in the conversion
state described by ps from the array indirectly pointed to by src into a sequence of corresponding wide
characters. It then stores the converted characters into the array pointed to by dst.

Conversion continues up to and including an ending null character, which is also stored. Conversion will
stop earlier in two cases: when a sequence of bytes are reached that do not form a valid multibyte
character, or (if dst is not a null pointer) when len wide characters have been stored into the array pointed
to by dst. Each conversion takes place as if by a call to mbrtowc() function.

If dst is not a null pointer, the pointer object pointed to by src will be assigned either a null pointer (if
conversion stopped due to reaching an ending null character) or the address just past the last multibyte
character converted. If conversion stopped due to reaching an ending null character, the initial conversion
state is described.

Return Value
If the input string does not begin with a valid multibyte character, an encoding error occurs, the
mbsrtowcs() function stores the value of the macro EILSEQ in errno, and returns (size_t) -1, but the
conversion state will be unchanged. Otherwise, it returns the number of multibyte characters successfully
converted, which is the same as the number of array elements modified when dst is not a null pointer.

If a conversion error occurs, errno might be set to ECONVERT.

230 IBM i: ILE C/C++ Runtime Library Functions

Example

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <locale.h>

#define SIZE 10

int main(void)
{
 char mbs1[] = "abc";
 char mbs2[] = "\x81\x41" "m" "\x81\x42";
 const char *pmbs1 = mbs1;
 const char *pmbs2 = mbs2;
 mbstate_t ss1 = 0;
 mbstate_t ss2 = 0;
 wchar_t wcs1[SIZE], wcs2[SIZE];

 if (NULL == setlocale(LC_ALL, "/qsys.lib/locale.lib/ja_jp939.locale"))
 {
 printf("setlocale failed.\n");
 exit(EXIT_FAILURE);
 }
 mbsrtowcs(wcs1, &pmbs1, SIZE, &ss1);
 mbsrtowcs(wcs2, &pmbs2, SIZE, &ss2);
 printf("The first wide character string is %ls.\n", wcs1);
 printf("The second wide character string is %ls.\n", wcs2);
 return 0;
}

 /***
 The output should be similar to:

 The first wide character string is abc.
 The second wide character string is Am B.
 ***/

Also, see the examples for “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)”
on page 225.

Related Information
• “mblen() — Determine Length of a Multibyte Character” on page 221
• “mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 223
• “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 225
• “mbstowcs() — Convert a Multibyte String to a Wide Character String” on page 231
• “setlocale() — Set Locale” on page 370
• “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 483
• “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 510
• “<locale.h>” on page 5
• “<wchar.h>” on page 16

mbstowcs() — Convert a Multibyte String to a Wide Character
String

Format
#include <stdlib.h>
size_t mbstowcs(wchar_t *pwc, const char *string, size_t n);

Library Functions 231

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
This function might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
For more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The mbstowcs() function determines the length of the sequence of the multibyte characters pointed to
by string. It then converts the multibyte character string that begins in the initial shift state into a wide
character string, and stores the wide characters into the buffer that is pointed to by pwc. A maximum of n
wide characters are written.

Return Value
The mbstowcs() function returns the number of wide characters generated, not including any ending null
wide characters. If a multibyte character that is not valid is encountered, the function returns (size_t)-1.

If a conversion error occurs, errno might be set to ECONVERT.

232 IBM i: ILE C/C++ Runtime Library Functions

Examples

/* This program is compiled with LOCALETYPE(*LOCALEUCS2) and */
/* SYSIFCOPT(*IFSIO) */

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <wchar.h>
#include <errno.h>

#define LOCNAME "/qsys.lib/JA_JP.locale"
#define LOCNAME_EN "/qsys.lib/EN_US.locale"

int main(void)
{
 int length, sl = 0;
 char string[10];
 char string2[] = "ABC";
 wchar_t buffer[10];
 memset(string, '\0', 10);
 string[0] = 0xC1;
 string[1] = 0x0E;
 string[2] = 0x41;
 string[3] = 0x71;
 string[4] = 0x41;
 string[5] = 0x72;
 string[6] = 0x0F;
 string[7] = 0xC2;
 /* In this first example we will convert */
 /* a multibyte character when the CCSID of locale */
 /* associated with LC_CTYPE is 37. */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)
 printf("setlocale failed.\n");

 length = mbstowcs(buffer, string2, 10);

 /* In this case length ABC is converted to UNICODE ABC */
 /* or 0x004100420043. Length will be 3. */

 printf("length = %d\n\n", length);

 /* Now lets try a multibyte example. We first must set the */
 /* locale to a multibyte locale. We choose a locale with */
 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)
 printf("setlocale failed.\n");

 length = mbstowcs(buffer, string, 10);

 /* The buffer now has the value: */
 /* 0x004103A103A30042 length is 4 */

 printf("length = %d\n\n", length);

}
/* The output should look like this:

length = 3

length = 4
 */

Library Functions 233

/* This program is compiled with LOCALETYPE(*LOCALE) and */
/* SYSIFCOPT(*IFSIO) */

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <wchar.h>
#include <errno.h>

#define LOCNAME "/qsys.lib/JA_JP.locale"
#define LOCNAME_EN "/qsys.lib/EN_US.locale"

int main(void)
{
 int length, sl = 0;
 char string[10];
 char string2[] = "ABC";
 wchar_t buffer[10];
 memset(string, '\0', 10);
 string[0] = 0xC1;
 string[1] = 0x0E;
 string[2] = 0x41;
 string[3] = 0x71;
 string[4] = 0x41;
 string[5] = 0x72;
 string[6] = 0x0F;
 string[7] = 0xC2;
 /* In this first example we will convert */
 /* a multibyte character when the CCSID of locale */
 /* associated with LC_CTYPE is 37. */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)
 printf("setlocale failed.\n");

 length = mbstowcs(buffer, string2, 10);

 /* In this case length ABC is converted to */
 /* 0x00C100C200C3. Length will be 3. */

 printf("length = %d\n\n", length);

 /* Now lets try a multibyte example. We first must set the *
 /* locale to a multibyte locale. We choose a locale with
 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)
 printf("setlocale failed.\n");

 length = mbstowcs(buffer, string, 10);

 /* The buffer now has the value: */
 /* 0x00C14171417200C2 length is 4 */

 printf("length = %d\n\n", length);

}

/* The output should look like this:

length = 3

length = 4
 */

Related Information
• “mblen() — Determine Length of a Multibyte Character” on page 221
• “mbtowc() — Convert Multibyte Character to a Wide Character” on page 235
• “setlocale() — Set Locale” on page 370
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “wcstombs() — Convert Wide-Character String to Multibyte String” on page 522
• “<locale.h>” on page 5
• “<stdlib.h>” on page 14

234 IBM i: ILE C/C++ Runtime Library Functions

• “<wchar.h>” on page 16

mbtowc() — Convert Multibyte Character to a Wide Character

Format
#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *string, size_t n);

Language Level
ANSI

Threadsafe
No

Use mbrtowc() instead.

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
This function might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
For more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The mbtowc() function first determines the length of the multibyte character pointed to by string. It then
converts the multibyte character to a wide character as described in mbstowcs. A maximum of n bytes
are examined.

Return Value
If string is NULL, the mbtowc() function returns:

• Nonzero when the active locale is mixed byte. The function initializes the state variable.
• 0 otherwise.

If string is not NULL, the mbtowc() function returns:

• 0 if string points to the null character
• The number of bytes comprising the converted multibyte character
• -1 if string does not point to a valid multibyte character.

If a conversion error occurs, errno might be set to ECONVERT.

Example
This example uses the mblen() and mbtowc() functions to convert a multibyte character into a single
wide character.

Library Functions 235

#include <stdio.h>
#include <stdlib.h>

#define LOCNAME "/qsys.lib/mylib.lib/ja_jp959.locale"
/*Locale created from source JA_JP and CCSID 939 */

int length, temp;
char string [] = "\x0e\x41\x71\x0f";
wchar_t arr[6];

int main(void)
{
 /* initialize internal state variable */
 temp = mbtowc(arr, NULL, 0);

 setlocale (LC_ALL, LOCNAME);
 /* Set string to point to a multibyte character. */
 length = mblen(string, MB_CUR_MAX);
 temp = mbtowc(arr,string,length);
 arr[1] = L'\0';
 printf("wide character string: %ls",arr);
}

Related Information
• “mblen() — Determine Length of a Multibyte Character” on page 221
• “mbstowcs() — Convert a Multibyte String to a Wide Character String” on page 231
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “wctomb() — Convert Wide Character to Multibyte Character” on page 532
• “<stdlib.h>” on page 14

memchr() — Search Buffer

Format
#include <string.h>
void *memchr(const void *buf, int c, size_t count);

Language Level
ANSI

Threadsafe
Yes

Description
The memchr() function searches the first count bytes of buf for the first occurrence of c converted to an
unsigned character. The search continues until it finds c or examines count bytes.

Return Value
The memchr() function returns a pointer to the location of c in buf. It returns NULL if c is not within the
first count bytes of buf.

Example
This example finds the first occurrence of “x” in the string that you provide. If it is found, the string that
starts with that character is printed.

236 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <string.h>

int main(int argc, char ** argv)
{
 char * result;

 if (argc != 2)
 printf("Usage: %s string\n", argv[0]);
 else
 {
 if ((result = (char *) memchr(argv[1], 'x', strlen(argv[1]))) != NULL)
 printf("The string starting with x is %s\n", result);
 else
 printf("The letter x cannot be found in the string\n");
 }
}

/******************** Output should be similar to: **************

The string starting with x is xing
*/

Related Information
• “memcmp() — Compare Buffers” on page 237
• “memcpy() — Copy Bytes” on page 238
• “memmove() — Copy Bytes” on page 241
• “wmemchr() — Locate Wide Character in Wide-Character Buffer” on page 538
• “memset() — Set Bytes to Value” on page 242
• “strchr() — Search for Character” on page 390
• “<string.h>” on page 15

memcmp() — Compare Buffers

Format
#include <string.h>
int memcmp(const void *buf1, const void *buf2, size_t count);

Language Level
ANSI

Threadsafe
Yes

Description
The memcmp() function compares the first count bytes of buf1 and buf2.

Return Value
The memcmp() function returns a value indicating the relationship between the two buffers as follows:

Value Meaning

Less than 0 buf1 less than buf2

0 buf1 identical to buf2

Library Functions 237

Value Meaning

Greater than 0 buf1 greater than buf2

Example
This example compares first and second arguments passed to main() to determine which, if either, is
greater.

#include <stdio.h>
#include <string.h>

int main(int argc, char ** argv)
{
 int len;
 int result;

 if (argc != 3)
 {
 printf("Usage: %s string1 string2\n", argv[0]);
 }
 else
 {
 /* Determine the length to be used for comparison */
 if (strlen(argv[1]) < strlen(argv[2]))
 len = strlen(argv[1]);
 else
 len = strlen(argv[2]);

 result = memcmp(argv[1], argv[2], len);

 printf("When the first %i characters are compared,\n", len);
 if (result == 0)
 printf("\"%s\" is identical to \"%s\"\n", argv[1], argv[2]);
 else if (result < 0)
 printf("\"%s\" is less than \"%s\"\n", argv[1], argv[2]);
 else
 printf("\"%s\" is greater than \"%s\"\n", argv[1], argv[2]);
 }
}

/**************** If the program is passed the arguments **************
***************** firststring and secondstring, ************
***************** output should be: ************

When the first 11 characters are compared,
"firststring" is less than "secondstring"
**/

Related Information
• “memchr() — Search Buffer” on page 236
• “memcpy() — Copy Bytes” on page 238
• “wmemcmp() — Compare Wide-Character Buffers” on page 539
• “memmove() — Copy Bytes” on page 241
• “memset() — Set Bytes to Value” on page 242
• “strcmp() — Compare Strings” on page 392
• “<string.h>” on page 15

memcpy() — Copy Bytes

Format
#include <string.h>
void *memcpy(void *dest, const void *src, size_t count);

238 IBM i: ILE C/C++ Runtime Library Functions

Language Level
ANSI

Threadsafe
Yes

Description
The memcpy() function copies count bytes of src to dest. The behavior is undefined if copying takes
place between objects that overlap. The memmove() function allows copying between objects that might
overlap.

Return Value
The memcpy() function returns a pointer to dest.

Example
This example copies the contents of source to target.

#include <string.h>
#include <stdio.h>

#define MAX_LEN 80

char source[MAX_LEN] = "This is the source string";
char target[MAX_LEN] = "This is the target string";

int main(void)
{
 printf("Before memcpy, target is \"%s\"\n", target);
 memcpy(target, source, sizeof(source));
 printf("After memcpy, target becomes \"%s\"\n", target);
}

/********************* Expected output: ************************

Before memcpy, target is "This is the target string"
After memcpy, target becomes "This is the source string"
*/

Related Information
• “memchr() — Search Buffer” on page 236
• “memcmp() — Compare Buffers” on page 237
• “wmemcpy() — Copy Wide-Character Buffer” on page 541
• “memmove() — Copy Bytes” on page 241
• “memset() — Set Bytes to Value” on page 242
• “strcpy() — Copy Strings” on page 396
• “<string.h>” on page 15

memicmp() — Compare Bytes

Format
#include <string.h> // also in <memory.h>
int memicmp(void *buf1, void *buf2, unsigned int cnt);

Library Functions 239

Note: The memicmp function is available for C++ programs. It is available for C only when the program
defines the __cplusplus__strings__ macro.

Language Level
Extension

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The memicmp function compares the first cnt bytes of buf1 and buf2 without regard to the case of letters
in the two buffers. The function converts all uppercase characters into lowercase and then performs the
comparison.

Return Value
The return value of memicmp indicates the result as follows:

Table 4. Return values of memicmp()

Value Meaning

Less than 0 buf1 less than buf2

0 buf1 identical to buf2

Greater than 0 buf1 greater than buf2

Example
This example copies two strings that each contain a substring of 29 characters that are the same except
for case. The example then compares the first 29 bytes without regard to case.

#include <stdio.h>
#include <string.h>
char first[100],second[100];
int main(void)
{
 int result;
 strcpy(first, "Those Who Will Not Learn From History");
 strcpy(second, "THOSE WHO WILL NOT LEARN FROM their mistakes");
 printf("Comparing the first 29 characters of two strings.\n");
 result = memicmp(first, second, 29);
 printf("The first 29 characters of String 1 are ");
 if (result < 0)
 printf("less than String 2.\n");
 else
 if (0 == result)
 printf("equal to String 2.\n");
 else
 printf("greater than String 2.\n");
 return 0;
}

The output should be:

Comparing the first 29 characters of two strings.
The first 29 characters of String 1 are equal to String 2

240 IBM i: ILE C/C++ Runtime Library Functions

Related Information
• “memchr() — Search Buffer” on page 236
• “memcmp() — Compare Buffers” on page 237
• “memcpy() — Copy Bytes” on page 238
• “memmove() — Copy Bytes” on page 241
• “memset() — Set Bytes to Value” on page 242
• “strcmp() — Compare Strings” on page 392
• “strcmpi() — Compare Strings Without Case Sensitivity” on page 393
• “stricmp() — Compare Strings without Case Sensitivity” on page 407
• “strnicmp() — Compare Substrings Without Case Sensitivity” on page 415
• “<string.h>” on page 15

memmove() — Copy Bytes

Format
#include <string.h>
void *memmove(void *dest, const void *src, size_t count);

Language Level
ANSI

Threadsafe
Yes

Description
The memmove() function copies count bytes of src to dest. This function allows copying between objects
that might overlap as if src is first copied into a temporary array.

Return Value
The memmove() function returns a pointer to dest.

Example
This example copies the word "shiny" from position target + 2 to position target + 8.

Library Functions 241

#include <string.h>
#include <stdio.h>

#define SIZE 21

char target[SIZE] = "a shiny white sphere";

int main(void)
{
 char * p = target + 8; /* p points at the starting character
 of the word we want to replace */
 char * source = target + 2; /* start of "shiny" */

 printf("Before memmove, target is \"%s\"\n", target);
 memmove(p, source, 5);
 printf("After memmove, target becomes \"%s\"\n", target);
}

/********************* Expected output: ************************

Before memmove, target is "a shiny white sphere"
After memmove, target becomes "a shiny shiny sphere"
*/

Related Information
• “memchr() — Search Buffer” on page 236
• “memcmp() — Compare Buffers” on page 237
• “wmemmove() — Copy Wide-Character Buffer” on page 542
• “memcpy() — Copy Bytes” on page 238
• “memset() — Set Bytes to Value” on page 242
• “strcpy() — Copy Strings” on page 396
• “<string.h>” on page 15

memset() — Set Bytes to Value

Format
#include <string.h>
void *memset(void *dest, int c, size_t count);

Language Level
ANSI

Threadsafe
Yes

Description
The memset() function sets the first count bytes of dest to the value c. The value of c is converted to an
unsigned character.

Return Value
The memset() function returns a pointer to dest.

Example
This example sets 10 bytes of the buffer to A and the next 10 bytes to B.

242 IBM i: ILE C/C++ Runtime Library Functions

#include <string.h>
#include <stdio.h>

#define BUF_SIZE 20

int main(void)
{
 char buffer[BUF_SIZE + 1];
 char *string;

 memset(buffer, 0, sizeof(buffer));
 string = (char *) memset(buffer,'A', 10);
 printf("\nBuffer contents: %s\n", string);
 memset(buffer+10, 'B', 10);
 printf("\nBuffer contents: %s\n", buffer);
}

/******************* Output should be similar to: ***************

Buffer contents: AAAAAAAAAA

Buffer contents: AAAAAAAAAABBBBBBBBBB
*/

Related Information
• “memchr() — Search Buffer” on page 236
• “memcmp() — Compare Buffers” on page 237
• “memcpy() — Copy Bytes” on page 238
• “memmove() — Copy Bytes” on page 241
• “wmemset() — Set Wide Character Buffer to a Value” on page 543
• “<string.h>” on page 15

mktime() — Convert Local Time

Format
#include <time.h>
time_t mktime(struct tm *time);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_TOD category of the current locale.

Description
The mktime() function converts a stored tm structure (assume to be in job local time) pointed to by
time, into a time_t structure suitable for use with other time functions. After the conversion, the time_t
structure will be considered Universal Coordinate Time (UTC). For this conversion, mktime() checks the
current locale setting for local time zone and daylight saving time (DST). If these values are not set in the
current locale, mktime() gets the local time zone and daylight saving time settings from the current job.
If the DST is set in the locale but the time zone information is not, the DST information in the locale is
ignored. mktime() then uses the current time zone information to determine UTC.

Library Functions 243

The values of some structure elements pointed to by time are not restricted to the ranges shown for
gmtime().

The values of tm_wday and tm_yday passed to mktime() are ignored and are assigned their correct
values on return.

A positive or 0 value for tm_isdst causes mktime() to presume initially that DST, respectively, is or is not
in effect for the specified time. A negative value for tm_isdst causes mktime() to attempt to determine
whether DST is in effect for the specified time.

Return Value
The mktime() function returns Universal Coordinate Time (UTC) having type time_t. The value (time_t)
(-1) is returned if the Universal Coordinate Time cannot be represented.

Example
This example prints the day of the week that is 40 days and 16 hours from the current date.

#include <stdio.h>
#include <time.h>

char *wday[] = { "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday" };

int main(void)
{
 time_t t1, t3;
 struct tm *t2;

 t1 = time(NULL);
 t2 = localtime(&t1);
 t2 -> tm_mday += 40;
 t2 -> tm_hour += 16;
 t3 = mktime(t2);

 printf("40 days and 16 hours from now, it will be a %s \n",
 wday[t2 -> tm_wday]);
}

/******************* Output should be similar to: ***************

40 days and 16 hours from now, it will be a Sunday
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211

244 IBM i: ILE C/C++ Runtime Library Functions

• “mktime64() — Convert Local Time” on page 245
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

mktime64() — Convert Local Time

Format
#include <time.h>
time64_t mktime64(struct tm *time);

Language Level
ILE C Extension

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_TOD category of the current locale.

Description
The mktime64() function converts a stored tm structure (assumed to be in job local time) pointed to
by time, into a time64_t value suitable for use with other time functions. After the conversion, the
time64_t value will be considered Universal Coordinate Time (UTC). For this conversion, mktime64()
checks the current locale settings for the local time zone and daylight saving time (DST). If these values
are not set in the current locale, mktime64() gets the local time zone and DST settings from the current
job. If the DST is set in the locale but the time zone information is not, the DST information in the locale
is ignored. The mktime64() function then uses the time zone information of the current job to determine
UTC.

The values of some structure elements pointed to by time are not restricted to the ranges shown for
gmtime64().

The values of tm_wday and tm_yday passed to mktime64() are ignored and are assigned their correct
values on return.

A positive or 0 value for tm_isdst causes mktime() to presume initially that DST, respectively, is or is not
in effect for the specified time. A negative value for tm_isdst causes mktime() to attempt to determine
whether DST is in effect for the specified time.

Note: The supported date and time range for this function is 01/01/1970 00:00:00 through 12/31/9999
23:59:59.

Return Value
The mktime64() function returns Universal Coordinate Time (UTC) having type time64_t. The value
(time_t)(-1) is returned if the Universal Coordinate Time cannot be represented or if the given time is out
of range. If the given time is out of range, errno is set to EOVERFLOW.

Example
This example prints the day of the week that is 40 days and 16 hours from the current date.

Library Functions 245

#include <stdio.h>
#include <time.h>

char *wday[] = { "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday" };

int main(void)
{
 time64_t t1, t3;
 struct tm *t2;

 t1 = time64(NULL);
 t2 = localtime64(&t1);
 t2 -> tm_mday += 40;
 t2 -> tm_hour += 16;
 t3 = mktime64(t2);

 printf("40 days and 16 hours from now, it will be a %s \n",
 wday[t2 -> tm_wday]);
}

/******************* Output should be similar to: ***************

40 days and 16 hours from now, it will be a Sunday
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

modf() — Separate Floating-Point Value

Format
#include <math.h>
double modf(double x, double *intptr);

Language Level
ANSI

246 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

Description
The modf() function breaks down the floating-point value x into fractional and integral parts. The signed
fractional portion of x is returned. The integer portion is stored as a double value pointed to by intptr. Both
the fractional and integral parts are given the same sign as x.

Return Value
The modf() function returns the signed fractional portion of x.

Example
This example breaks the floating-point number -14.876 into its fractional and integral components.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, y, d;

 x = -14.876;
 y = modf(x, &d);

 printf("x = %lf\n", x);
 printf("Integral part = %lf\n", d);
 printf("Fractional part = %lf\n", y);
}

/**************** Output should be similar to: ******************

x = -14.876000
Integral part = -14.000000
Fractional part = -0.876000
*/

Related Information
• “fmod() — Calculate Floating-Point Remainder” on page 133
• “frexp() — Separate Floating-Point Value” on page 155
• “ldexp() — Multiply by a Power of Two” on page 201
• “<math.h>” on page 6

nextafter() – nextafterl() – nexttoward() – nexttowardl() —
Calculate the Next Representable Floating-Point Value

Format
#include <math.h>
double nextafter(double x, double y);
long double nextafterl(long double x, long double y);
double nexttoward(double x, long double y);
long double nexttowardl(long double x, long double y);

Language Level
ANSI

Library Functions 247

Threadsafe
Yes

Description
The nextafter(), nextafterl(), nexttoward(), and nexttowardl() functions calculate the next
representable value after x in the direction of y.

Return Value
The nextafter(), nextafterl(), nexttoward(), and nexttowardl() functions return the next
representable value after x in the direction of y. If x is equal to y, they return y. If x or y is NaN (Not a
Number), NaN is returned and errno is set to EDOM. If x is the largest finite value and the result is infinite
or not representable, HUGE_VAL is returned and errno is set to ERANGE.

Example
This example converts a floating-point value to the next greater representable value and next smaller
representable value. It prints out the converted values.

#include <stdio.h>
#include <math.h>
int main(void)
{
 double x, y;
 long double ld;

 x = nextafter(1.234567899, 10.0);
 printf("nextafter 1.234567899 is %#19.17g\n" x);
 ld = nextafterl(1.234567899, -10.0);
 printf("nextafterl 1.234567899 is %#19.17g\n" ld);

 x = nexttoward(1.234567899, 10.0);
 printf("nexttoward 1.234567899 is %#19.17g\n" x);
 ld = nexttowardl(1.234567899, -10.0);
 printf("nexttowardl 1.234567899 is %#19.17g\n" ld);

}

/***************** Output should be similar to: *****************
nextafter 1.234567899 is 1.2345678990000002
nextafterl 1.234567899 is 1.2345678989999997
nexttoward 1.234567899 is 1.2345678990000002
nexttowardl 1.234567899 is 1.2345678989999997

*/

Related Information
• “ceil() — Find Integer >=Argument” on page 86
• “floor() — Find Integer <=Argument” on page 132
• “frexp() — Separate Floating-Point Value” on page 155
• “modf() — Separate Floating-Point Value” on page 246
• “<math.h>” on page 6

nl_langinfo() — Retrieve Locale Information

Format
#include <langinfo.h>
#include <nl_types.h>
char *nl_langinfo(nl_item item);

248 IBM i: ILE C/C++ Runtime Library Functions

Language Level
XPG4

Threadsafe
No

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE, LC_MESSAGES, LC_MONETARY,
LC_NUMERIC, and LC_TIME categories of the current locale. This function is not available when
LOCALETYPE(*CLD) is specified on the compilation command. For more information, see “Understanding
CCSIDs and Locales” on page 571.

Description
The nl_langinfo() function retrieves from the current locale the string that describes the requested
information specified by item.

The retrieval of the following information from the current locale is supported:

Item Explanation

CODESET CCSID of locale in character form

D_T_FMT string for formatting date and time

D_FMT date format string

T_FMT time format string

T_FMT_AMPM a.m. or p.m. time format string

AM_STR Ante Meridian affix

PM_STR Post Meridian affix

DAY_1 name of the first day of the week (for example, Sunday)

DAY_2 name of the second day of the week (for example, Monday)

DAY_3 name of the third day of the week (for example, Tuesday)

DAY_4 name of the fourth day of the week (for example, Wednesday)

DAY_5 name of the fifth day of the week (for example, Thursday)

DAY_6 name of the sixth day of the week (for example, Friday)

DAY_7 name of the seventh day of the week (for example, Saturday)

ABDAY_1 abbreviated name of the first day of the week

ABDAY_2 abbreviated name of the second day of the week

ABDAY_3 abbreviated name of the third day of the week

ABDAY_4 abbreviated name of the fourth day of the week

ABDAY_5 abbreviated name of the fifth day of the week

ABDAY_6 abbreviated name of the sixth day of the week

ABDAY_7 abbreviated name of the seventh day of the week

MON_1 name of the first month of the year

Library Functions 249

Item Explanation

MON_2 name of the second month of the year

MON_3 name of the third month of the year

MON_4 name of the fourth month of the year

MON_5 name of the fifth month of the year

MON_6 name of the sixth month of the year

MON_7 name of the seventh month of the year

MON_8 name of the eighth month of the year

MON_9 name of the ninth month of the year

MON_10 name of the tenth month of the year

MON_11 name of the eleventh month of the year

MON_12 name of the twelfth month of the year

ABMON_1 abbreviated name of the first month of the year

ABMON_2 abbreviated name of the second month of the year

ABMON_3 abbreviated name of the third month of the year

ABMON_4 abbreviated name of the fourth month of the year

ABMON_5 abbreviated name of the fifth month of the year

ABMON_6 abbreviated name of the sixth month of the year

ABMON_7 abbreviated name of the seventh month of the year

ABMON_8 abbreviated name of the eighth month of the year

ABMON_9 abbreviated name of the ninth month of the year

ABMON_10 abbreviated name of the tenth month of the year

ABMON_11 abbreviated name of the eleventh month of the year

ABMON_12 abbreviated name of the twelfth month of the year

ERA era description segments

ERA_D_FMT era date format string

ERA_D_T_FMT era date and time format string

ERA_T_FMT era time format string

ALT_DIGITS alternative symbols for digits

RADIXCHAR radix character

THOUSEP separator for thousands

YESEXPR affirmative response expression

NOEXPR negative response expression

YESSTR affirmative response for yes/no queries

NOSTR negative response for yes/no queries

250 IBM i: ILE C/C++ Runtime Library Functions

Item Explanation

CRNCYSTR currency symbol, preceded by '-' if the symbol should appear before the
value, '+' if the symbol should appear after the value, or '.' if the symbol
should replace the radix character

Returned Value
The nl_langinfo() function returns a pointer to a null-ended string containing information concerning
the active language or cultural area. The active language or cultural area is determined by the most recent
setlocale() call. The array pointed to by the returned value is modified by subsequent calls to the
function. The array should not be changed by the user's program.

If the item is not valid, the function returns a pointer to an empty string.

Example
This example retrieves the name of the codeset using the nl_langinfo() function.

#include <langinfo.h>
#include <locale.h>
#include <nl_types.h>
#include <stdio.h>

int main(void)
{
 printf("Current codeset is %s\n", nl_langinfo(CODESET));
 return 0;
}

/**

 The output should be similar to:

 Current codeset is 37

**/

Related Information
• “localeconv() — Retrieve Information from the Environment” on page 203
• “setlocale() — Set Locale” on page 370
• “<langinfo.h>” on page 5
• “<nl_types.h>” on page 6

perror() — Print Error Message

Format
#include <stdio.h>
void perror(const char *string);

Language Level
ANSI

Threadsafe
Yes

Library Functions 251

Description
The perror() function prints an error message to stderr. If string is not NULL and does not point to
a null character, the string pointed to by string is printed to the standard error stream, followed by a
colon and a space. The message associated with the value in errno is then printed followed by a new-line
character.

To produce accurate results, you should ensure that the perror() function is called immediately after a
library function returns with an error; otherwise, subsequent calls might alter the errno value.

Return Value
There is no return value.

The value of errno can be set to:
Value

Meaning
EBADDATA

The message data is not valid.
EBUSY

The record or file is in use.
ENOENT

The file or library cannot be found.
EPERM

Insufficient authorization for access.
ENOREC

Record not found.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

Example
This example tries to open a stream. If fopen() fails, the example prints a message and ends the
program.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *fh;

 if ((fh = fopen("mylib/myfile","r")) == NULL)
 {
 perror("Could not open data file");
 abort();
 }
}

Related Information
• “clearerr() — Reset Error Indicators” on page 87
• “ferror() — Test for Read/Write Errors” on page 120
• “strerror() — Set Pointer to Runtime Error Message” on page 400
• “<stdio.h>” on page 13

252 IBM i: ILE C/C++ Runtime Library Functions

pow() — Compute Power

Format
#include <math.h>
double pow(double x, double y);

Language Level
ANSI

Threadsafe
Yes

Description
The pow() function calculates the value of x to the power of y.

Return Value
If y is 0, the pow() function returns the value 1. If x is 0 and y is negative, the pow() function sets errno
to EDOM and returns 0. If both x and y are 0, or if x is negative and y is not an integer, the pow() function
sets errno to EDOM, and returns 0. The errno variable can also be set to ERANGE. If an overflow results,
the pow() function returns +HUGE_VAL for a large result or -HUGE_VAL for a small result.

Example
This example calculates the value of 23.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x, y, z;

 x = 2.0;
 y = 3.0;
 z = pow(x,y);

 printf("%lf to the power of %lf is %lf\n", x, y, z);
}

/***************** Output should be similar to: *****************

2.000000 to the power of 3.000000 is 8.000000
*/

Related Information
• “exp() — Calculate Exponential Function” on page 114
• “log() — Calculate Natural Logarithm” on page 214
• “log10() — Calculate Base 10 Logarithm” on page 215
• “sqrt() — Calculate Square Root” on page 384
• “<math.h>” on page 6

Library Functions 253

printf() — Print Formatted Characters

Format
#include <stdio.h>
int printf(const char *format-string, argument-list);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The printf() function formats and prints a series of characters and values to the standard output
stream stdout. Format specifications, beginning with a percent sign (%), determine the output format for
any argument-list following the format-string. The format-string is a multibyte character string beginning
and ending in its initial shift state.

The format-string is read left to right. When the first format specification is found, the value of the first
argument after the format-string is converted and printed according to the format specification. The
second format specification causes the second argument after the format-string to be converted and
printed, and so on through the end of the format-string. If there are more arguments than there are format
specifications, the extra arguments are evaluated and ignored. The results are undefined if there are not
enough arguments for all the format specifications.

A format specification has the following form:

%

flags width . precision h

L

l

ll

H

D

DD

type

Conversions can be applied to the nth argument after the format-string in the argument list, rather than
to the next unused argument. In this case, the conversion character % is replaced by the sequence %n$,
where n is a decimal integer in the range 1 through NL_ARGMAX, giving the position of the argument in
the argument list. This feature provides for the definition of format strings that select arguments in an
order appropriate to specific languages.

Alternative format specification has the following form:

254 IBM i: ILE C/C++ Runtime Library Functions

% arg-number$

flags width . precision h

L

l

ll

H

D

DD

type

As an alternative, specific entries in the argument-list can be assigned by using the format specification
outlined in the preceding diagram. This format specification and the previous format specification cannot
be mixed in the same call to printf(). Otherwise, unpredictable results might occur.

The arg-number is a positive integer constant where 1 refers to the first entry in the argument-list.
Arg-number cannot be greater than the number of entries in the argument-list, or else the results are
undefined. Arg-number also may not be greater than NL_ARGMAX.

In format strings containing the %n$ form of conversion specifications, numbered arguments in the
argument list can be referenced from the format string as many times as required.

In format strings containing the %n$ form of a conversion specification, a field width or precision may be
indicated by the sequence *m$, where m is a decimal integer in the range 1 thru NL_ARGMAX giving the
position in the argument list (after the format argument) of an integer argument containing the field width
or precision, for example:

printf("%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The format-string can contain either numbered argument specifications (that is, %n$ and *m$), or
unnumbered argument specifications (that is, % and *), but normally not both. The only exception to
this is that %% can be mixed with the %n$ form. The results of mixing numbered and unnumbered
argument specifications in a format-string string are undefined. When numbered argument specifications
are used, specifying the nth argument requires that all the leading arguments, from the first to the (n-1)th,
are specified in the format string.

Each field of the format specification is a single character or number signifying a particular format option.
The type character, which appears after the last optional format field, determines whether the associated
argument is interpreted as a character, a string, a number, or pointer. The simplest format specification
contains only the percent sign and a type character (for example, %s).

The following optional fields control other aspects of the formatting:
Field

Description
flags

Justification of output and printing of signs, blanks, decimal points, octal, and hexadecimal prefixes,
and the semantics for wchar_t precision unit.

width
Minimum number of bytes output.

precision
See Table 6 on page 262.

h, l, ll, L, H, D, DD
Size of argument expected:

Library Functions 255

h
A prefix with d, i, o, u, x, X, and n types that specifies that the argument is a short int or unsigned
short int.

l
A prefix with d, i, o, u, x, X, and n types that specifies that the argument is a long int or unsigned
long int.

ll
A prefix with d, i, o, u, x, X, and n types that specifies that the argument is a long long int or
unsigned long long int.

L
A prefix with a, A, e, E, f, F, g, or G types that specifies that the argument is long double.

H
A prefix with a, A, e, E, f, F, g, or G types that specifies that the argument is _Decimal32.

D
A prefix with a, A, e, E, f, F, g, or G types that specifies that the argument is _Decimal64.

DD
A prefix with a, A, e, E, f, F, g, or G types that specifies that the argument is _Decimal128.

Each field of the format specification is discussed in detail below. If a percent sign (%) is followed by a
character that has no meaning as a format field, the behavior is undefined. One exception to this behavior
is %%. To print a percent-sign character, use %%.

The type characters and their meanings are given in the following table:

256 IBM i: ILE C/C++ Runtime Library Functions

Table 5. Type characters

Character Argument Output Format

a Floating-point For non decimal floating-point numbers, signed value having the
form [-]0xh.hhhhp[sign]ddd, where h is a single hexadecimal
digit, hhhh is one or more hexadecimal digits, ddd is one
or more decimal digits, and sign is + or -. The number of
hexadecimal digits after the decimal point is equal to the
requested precision.

For decimal floating-point numbers, if the precision is missing,
either the f or e style formatting is used based on the following
criteria.

• f style formatting is used when the quantum exponent of the
value is less than or equal to 0 but greater than or equal to
-(n+5). The quantum exponent of a number can be determined
by calling the quantexp64() function. n is the number of
digits in the digit-sequence (including trailing zeros) when the
decimal point is ignored. For example:

0.000005

contains 1 digit in the digit sequence, n = 1

0.0000050

contains 2 digits in the digit sequence, n = 2

12.30

contains 4 digits in the digit sequence, n = 4

The precision is equal to the absolute value of the quantum
exponent of the value.

• e style formatting is used when the quantum exponent of
the value does not satisfy the f style criteria. The precision
is equal to n-1. The e style format of a decimal floating-
point value is the same as the e style format of a non
decimal floating-point value with two exceptions: a) if the
value is equal to 0 then the exponent is equal to the
quantum exponent of the value, and b) the exponent is always
given with the minimum number of digits required (i.e., the
exponent never contains a leading zero). For example:

0.0000000 produces 0e-7

-1870 produces -1.87e+3

If the precision modifier is present and at least as large as
the precision of the value, the conversion is as if the precision
modifier were missing. If the precision modifier is present and
less than the precision of the value, the value is first rounded
to the number of digits specified by the precision modifier.
The result is then converted as if the precision modifier were
missing.

A Floating-point Identical to the a format except that uppercase alphabetic
characters are used instead of lowercase alphabetic characters.

d, i Integer Signed decimal integer.

u Integer Unsigned decimal integer.

Library Functions 257

Table 5. Type characters (continued)

Character Argument Output Format

o Integer Unsigned octal integer.

x Integer Unsigned hexadecimal integer, using abcdef.

X Integer Unsigned hexadecimal integer, using ABCDEF.

D(n,p) Packed decimal It has the format [-] dddd.dddd where the number of digits after
the decimal point is equal to the precision of the specification.
If the precision is missing, the default is p; if the precision is
zero, and the # flag is not specified, no decimal point character
appears. If the n and the p are *, an argument from the
argument list supplies the value. n and p must precede the value
being formatted in the argument list. At least one character
appears before a decimal point. The value is rounded to the
appropriate number of digits.

f Floating-point Signed value having the form [-]dddd.dddd, where dddd is one
or more decimal digits. The number of digits before the decimal
point depends on the magnitude of the number. The number
of digits after the decimal point is equal to the requested
precision.2

F Floating-point Identical to the f format except that uppercase alphabetic
characters are used instead of lowercase alphabetic
characters.2

e Floating-point Signed value having the form [-]d.dddd e[sign]ddd, where d is a
single-decimal digit, dddd is one or more decimal digits, ddd is
2 or more decimal digits, and sign is + or -.2

E Floating-point Identical to the e format except that uppercase alphabetic
characters are used instead of lowercase alphabetic
characters.2

g Floating-point Signed value printed in f or e format. The e format is used only
when the exponent of the value is less than -4 or greater than or
equal to precision. Trailing zeros are truncated, and the decimal
point appears only if one or more digits follow it.2

G Floating-point Identical to the g format except that uppercase alphabetic
characters are used instead of lowercase alphabetic
characters.2

c Character (byte) Single character.

s String Characters (bytes) printed up to the first null character (\0) or
until precision is reached.

n Pointer to integer Number of characters (bytes) successfully written so far to
the stream or buffer; this value is stored in the integer whose
address is given as the argument.

258 IBM i: ILE C/C++ Runtime Library Functions

Table 5. Type characters (continued)

Character Argument Output Format

p Pointer Pointer converted to a sequence of printable characters. It can
be one of the following:

• space pointer
• system pointer
• invocation pointer
• procedure pointer
• open pointer
• suspend pointer
• data pointer
• label pointer

lc or C Wide Character The (wchar_t) character is converted to a multibyte character as
if by a call to wctomb(), and this character is printed out.1

ls or S Wide Character The (wchar_t) characters up to the first (wchar_t) null character
(L\0), or until precision is reached, are converted to multibyte
characters, as if by a call to wcstombs(), and these characters
are printed out. If the argument is a null string, (null) is printed.1

Note:

1. See the documentation for the wctomb() function or the documentation for the wcstombs() function
for more information. You can also find additional information in “Wide Characters” on page 574.

2. If the H, D, or DD format size specifiers are not used, only 15 significant digits of output are
guaranteed.

The following list shows the format of the printed values for IBM i pointers, and gives a brief description of
the components of the printed values.

Space pointer: SPP:Context:Object:Offset:AG

 Context: type, subtype and name of the context
 Object: type, subtype and name of the object
 Offset: offset within the space
 AG: Activation group ID

System pointer: SYP:Context:Object:Auth:Index:AG

 Context: type, subtype and name of the context
 Object: type, subtype and name of the object
 Auth: authority
 Index: Index associated with the pointer
 AG: Activation group ID

Invocation pointer: IVP:Index:AG

 Index: Index associated with the pointer
 AG: Activation group ID

Procedure pointer: PRP:Index:AG

 Index: Index associated with the pointer
 AG: Activation group ID

Library Functions 259

Suspend pointer: SUP:Index:AG

 Index: Index associated with the pointer
 AG: Activation group ID

Data pointer: DTP:Index:AG

 Index: Index associated with the pointer
 AG: Activation group ID

Label pointer: LBP:Index:AG

 Index: Index associated with the pointer
 AG: Activation group ID

NULL pointer: NULL

The following restrictions apply to pointer printing and scanning on the IBM i operating system:

• If a pointer is printed out and scanned back from the same activation group, the scanned back pointer
will be compared equal to the pointer printed out.

• If a scanf() family function scans a pointer that was printed out by a different activation group, the
scanf() family function will set the pointer to NULL.

• If a pointer is printed out in a teraspace environment, just the hexadecimal value of the pointer is
printed out. These results are the same as when using %#p.

The %#p format specifier has much better performance than the %p format specifier.

See the ILE C/C++ Programmer's Guide for more information about using IBM i pointers.

If a floating-point value of INFINITY or Not-a-Number (NaN) is formatted using the a, e, f, or g format,
the output string is infinity or nan. If a floating-point value of INFINITY or Not-A-Number (NaN) is
formatted using the A, E, F, or G format, the output string is INFINITY or NAN.

The flag characters and their meanings are as follows (notice that more than one flag can appear in a
format specification):

Flag Meaning Default

- Left-justify the result within the field width. Right-justify.

+ Prefix the output value with a sign (+ or -) if the output value
is of a signed type.

Sign appears only
for negative signed
values (-).

blank(' ') Prefix the output value with a blank if the output value is
signed and positive. The + flag overrides the blank flag if
both appear, and a positive signed value will be output with a
sign.

No blank.

260 IBM i: ILE C/C++ Runtime Library Functions

Flag Meaning Default

When used with the o, x, or X formats, the # flag prefixes any
nonzero output value with 0, 0x, or 0X, respectively.

No prefix.

When used with the D(n,p), a, A, e, E, f or F formats, the #
flag forces the output value to contain a decimal point in all
cases.

Decimal point
appears only if digits
follow it.

When used with the g or G formats, the # flag forces the
output value to contain a decimal point in all cases and
prevents the truncation of trailing zeros.

Decimal point
appears only if digits
follow it; trailing
zeros are truncated.

When used with the ls or S format, the # flag causes
precision to be measured in characters, regardless of the
size of the character. For example, if single-byte characters
are being printed, a precision of 4 would result in 4 bytes
being printed. If double-byte characters are being printed, a
precision of 4 would result in 8 bytes being printed.

Precision indicates
the maximum
number of bytes to
be output.

When used with the p format, the # flag converts the pointer
to hex digits. These hex digits cannot be converted back into
a pointer, unless in a teraspace environment.

Pointer converted
to a sequence of
printable characters.

0 When used with the d, i, D(n,p) o, u, x, X, a, A, e, E, f, F, g, or
G formats, the 0 flag causes leading 0s to pad the output to
the field width. The 0 flag is ignored if precision is specified
for an integer or if the - flag is specified.

Space padding. No
space padding for
D(n,p).

The # flag should not be used with c, lc, d, i, u, or s types.

Width is a nonnegative decimal integer controlling the minimum number of characters printed. If the
number of characters (bytes) in the output value is less than the specified width, blanks are added on the
left or the right (depending on whether the - flag is specified) until the minimum width is reached.

Width never causes a value to be truncated; if the number of characters (bytes) in the output value is
greater than the specified width, or width is not given, all characters of the value are printed (subject to
the precision specification).

For the ls or S type, width is specified in bytes. If the number of bytes in the output value is less than the
specified width, single-byte blanks are added on the left or the right (depending on whether the - flag is
specified) until the minimum width is reached.

The width specification can be an asterisk (*), in which case an argument from the argument list supplies
the value. The width argument must precede the value being formatted in the argument list.

Precision is a nonnegative decimal integer preceded by a period, which specifies the number of characters
to be printed or the number of decimal places. Unlike the width specification, the precision can cause
truncation of the output value or rounding of a floating-point or packed decimal value.

The precision specification can be an asterisk (*), in which case an argument from the argument list
supplies the value. The precision argument must precede the value being formatted in the argument list.

The interpretation of the precision value and the default when the precision is omitted depend on the type,
as shown in the following table:

Library Functions 261

Table 6. Values of Precision

Type Meaning Default

 a
 A

For non decimal floating-point numbers, precision
specifies the number of hexadecimal digits to be
printed after the decimal point.

For decimal floating-point numbers, precision specifies
the number of significant digits to be printed.

For non decimal floating-
point numbers, the default
precision is sufficient for
an exact representation
of the value. If precision
is 0, no decimal point
is printed. For decimal
floating-point numbers,
the default precision is
sufficient for an exact
representation of the
value. Refer to Table 5 on
page 257 for more details
on the format used.

 i
 d
 u
 o
 x
 X

Precision specifies the minimum number of digits to be
printed. If the number of digits in the argument is less
than precision, the output value is padded on the left
with zeros. The value is not truncated when the number
of digits exceeds precision.

If precision is 0 or omitted
entirely, or if the period (.)
appears without a number
following it, the precision
is set to 1.

 f
 F
 D(n,p)
 e
 E

Precision specifies the number of digits to be printed
after the decimal point. The last digit printed is
rounded.

Default precision for f, F,
e and E is six. Default
precision for D(n,p) is p. If
precision is 0 or the period
appears without a number
following it, no decimal
point is printed.

 g
 G

Precision specifies the maximum number of significant
digits printed.

All significant digits are
printed. Default precision
is six.

 c No effect. The character is printed.

 lc No effect. The wchar_t character is
converted and resulting
multibyte character is
printed.

 s Precision specifies the maximum number of characters
(bytes) to be printed. Characters (bytes) in excess of
precision are not printed.

Characters are printed
until a null character is
encountered.

 ls Precision specifies the maximum number of bytes to be
printed. Bytes in excess of precision are not printed;
however, multibyte integrity is always preserved.

wchar_t characters are
converted and resulting
multibyte characters are
printed.

Return Value
The printf() function returns the number of bytes printed. The value of errno may be set to:
Value

Meaning

262 IBM i: ILE C/C++ Runtime Library Functions

EBADMODE
The file mode that is specified is not valid.

ECONVERT
A conversion error occurred.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

EILSEQ
An invalid multibyte character sequence was encountered.

EPUTANDGET
An illegal write operation occurred after a read operation.

ESTDOUT
stdout cannot be opened.

Note: The radix character for the printf() function is locale sensitive. The radix character is the decimal
point to be used for the # flag character of the format string parameter for the format types D(n,p), a, A, e,
E, f, F, g, and G.

Examples
This example prints data in a variety of formats.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char ch = 'h', *string = "computer";
 int count = 234, hex = 0x10, oct = 010, dec = 10;
 double fp = 251.7366;
 wchar_t wc = (wchar_t)0x0058;
 wchar_t ws[4];

 printf("1234567890123%n4567890123456789\n\n", &count);
 printf("Value of count should be 13; count = %d\n\n", count);
 printf("%10c%5c\n", ch, ch);
 printf("%25s\n%25.4s\n\n", string, string);
 printf("%f %.2f %e %E\n\n", fp, fp, fp, fp);
 printf("%i %i %i\n\n", hex, oct, dec);
}
/***************** Output should be similar to: *****************

234 +234 000234 EA ea 352

12345678901234567890123456789

Value of count should be 13; count = 13

 h h
 computer
 comp

251.736600 251.74 2.517366e+02 2.517366E+02

16 8 10

***/

Example that uses printf()

 #include <stdio.h>
 #include <stdlib.h>
 #include <locale.h>
 /* This program is compiled with LOCALETYPE(*LOCALEUCS2) and */
 /* SYSIFCOPT(*IFSIO) */
 /* We will assume the locale setting is the same as the CCSID of the */
 /* job. We will also assume any files involved have a CCSID of */

Library Functions 263

 /* 65535 (no convert). This way if printf goes to the screen or */
 /* a file the output will be the same. */
 int main(void)
 {
 wchar_t wc = 0x0058; /* UNICODE X */
 wchar_t ws[4];
 setlocale(LC_ALL,
 "/QSYS.LIB/EN_US.LOCALE"); /* a CCSID 37 locale */
 ws[0] = 0x0041; /* UNICODE A */
 ws[1] = (wchar_t)0x0042; /* UNICODE B */
 ws[2] = (wchar_t)0x0043; /* UNICODE C */
 ws[3] = (wchar_t)0x0000;
 /* The output displayed is CCSID 37 */
 printf("%lc %ls\n\n",wc,ws);
 printf("%lc %.2ls\n\n",wc,ws);

 /* Now let's try a mixed-byte CCSID example */
 /* You would need a device that can handle mixed bytes to */
 /* display this correctly. */

 setlocale(LC_ALL,
 "/QSYS.LIB/JA_JP.LOCALE");/* a CCSID 5026 locale */

 /* big A means an A that takes up 2 bytes on the screen */
 /* It will look bigger then single byte A */
 ws[0] = (wchar_t)0xFF21; /* UNICODE big A */
 ws[1] = (wchar_t)0xFF22; /* UNICODE big B */
 ws[2] = (wchar_t)0xFF23; /* UNICODE big C */
 ws[3] = (wchar_t)0x0000;
 wc = 0xff11; /* UNICODE big 1 */

 printf("%lc %ls\n\n",wc,ws);

 /* The output of this printf is not shown below and it */
 /* will differ depending on the device you display it on,*/
 /* but if you looked at the string in hex it would look */
 /* like this: 0E42F10F404040400E42C142C242C30F */
 /* 0E is shift out, 0F is shift in, and 42F1 is the */
 /* big 1 in CCSID 5026 */

 printf("%lc %.4ls\n\n",wc,ws);

 /* The output of this printf is not shown below either. */
 /* The hex would look like: */
 /* 0E42F10F404040400E42C10F */
 /* Since the precision is in bytes we only get 4 bytes */
 /* of the string. */

 printf("%lc %#.2ls\n\n",wc,ws);

 /* The output of this printf is not shown below either. */
 /* The hex would look like: */
 /* 0E42F10F404040400E42C142C20F */
 /* The # means precision is in characters reguardless */
 /* of size. So we get 2 characters of the string. */
 }
 /***************** Output should be similar to: *****************

 X ABC

 X AB

 ***/

Example that uses printf()

 #include <stdio.h>
 #include <stdlib.h>
 #include <locale.h>
 /* This program is compile LOCALETYPE(*LOCALE) and */
 /* SYSIFCOPT(*IFSIO) */
 int main(void)
 {
 wchar_t wc = (wchar_t)0x00C4; /* D */
 wchar_t ws[4];
 ws[0] = (wchar_t)0x00C1; /* A */
 ws[1] = (wchar_t)0x00C2; /* B */
 ws[2] = (wchar_t)0x00C3; /* C */

264 IBM i: ILE C/C++ Runtime Library Functions

 ws[3] = (wchar_t)0x0000;
 /* The output displayed is CCSID 37 */
 printf("%lc %ls\n\n",wc,ws);

 /* Now let's try a mixed-byte CCSID example */
 /* You would need a device that can handle mixed bytes to */
 /* display this correctly. */

 setlocale(LC_ALL,
 "/QSYS.LIB/JA_JP.LOCALE"); /* a CCSID 5026 locale */

 /* big A means an A that takes up 2 bytes on the screen */
 /* It will look bigger than single byte A */

 ws[0] = (wchar_t)0x42C1; /* big A */
 ws[1] = (wchar_t)0x42C2; /* big B */
 ws[2] = (wchar_t)0x42C3; /* big C */
 ws[3] = (wchar_t)0x0000;
 wc = 0x42F1; /* big 1 */

 printf("%lc %ls\n\n",wc,ws);

 /* The output of this printf is not shown below and it */
 /* will differ depending on the device you display it on,*/
 /* but if you looked at the string in hex it would look */
 /* like this: 0E42F10F404040400E42C142C242C30F */
 /* 0E is shift out, 0F is shift in, and 42F1 is the */
 /* big 1 in CCSID 5026 */

 printf("%lc %.4ls\n\n",wc,ws);

 /* The output of this printf is not shown below either. */
 /* The hex would look like: */
 /* 0E42F10F404040400E42C10F */
 /* Since the precision is in bytes we only get 4 bytes */
 /* of the string. */

 printf("%lc %#.2ls\n\n",wc,ws);

 /* The output of this printf is not shown below either. */
 /* The hex would look like: */
 /* 0E42F10F404040400E42C142C20F */
 /* The # means precision is in characters regardless */
 /* of size. So we get 2 characters of the string. */
 }
 /***************** Output should be similar to: *****************

 D ABC

 ***/

Related Information
• “fprintf() — Write Formatted Data to a Stream” on page 141
• “fscanf() — Read Formatted Data” on page 156
• “quantexpd32() - quantexpd64() - quantexpd128() — Compute the Quantum Exponent” on page 273
• “scanf() — Read Data” on page 362
• “sprintf() — Print Formatted Data to Buffer” on page 383
• “sscanf() — Read Data” on page 386
• “vfprintf() — Print Argument Data to Stream” on page 461
• “vprintf() — Print Argument Data” on page 469
• “vsprintf() — Print Argument Data to Buffer” on page 473
• “wprintf() — Format Data as Wide Characters and Print” on page 544
• “<stdio.h>” on page 13

Library Functions 265

putc() – putchar() — Write a Character

Format
#include <stdio.h>
int putc(int c, FILE *stream);
int putchar(int c);

Language Level
ANSI

Threadsafe
No

#undef putc or #undef putchar allows the putc or putchar function to be called instead of the
macro version of these functions. The functions are threadsafe.

Description
The putc() function converts c to unsigned char and then writes c to the output stream at the current
position. The putchar() is equivalent to putc(c, stdout).

The putc() function can be defined as a macro so the argument can be evaluated multiple times.

The putc() and putchar() functions are not supported for files opened with type=record.

Return Value
The putc() and putchar() functions return the character written. A return value of EOF indicates an
error.

The value of errno may be set to:
Value

Meaning
ECONVERT

A conversion error occurred.
EPUTANDGET

An illegal write operation occurred after a read operation.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

Example
This example writes the contents of a buffer to a data stream. In this example, the body of the for
statement is null because the example carries out the writing operation in the test expression.

266 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <string.h>

#define LENGTH 80

int main(void)
{
 FILE *stream = stdout;
 int i, ch;
 char buffer[LENGTH + 1] = "Hello world";

 /* This could be replaced by using the fwrite function */
 for (i = 0;
 (i < strlen(buffer)) && ((ch = putc(buffer[i], stream)) != EOF);
 ++i);
}

/******************** Expected output: **************************

Hello world
*/

Related Information
• “fputc() — Write Character” on page 143
• “fwrite() — Write Items” on page 169
• “getc() – getchar() — Read a Character” on page 175
• “puts() — Write a String” on page 268
• “putwc() — Write Wide Character” on page 269
• “putwchar() — Write Wide Character to stdout ” on page 271
• “<stdio.h>” on page 13

putenv() — Change/Add Environment Variables

Format
#include <stdlib.h>
int putenv(const char *varname);

Language Level
XPG4

Threadsafe
Yes

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

Description
The putenv() function sets the value of an environment variable by altering an existing variable or
creating a new one. The varname parameter points to a string of the form var=x, where x is the new value
for the environment variable var.

Library Functions 267

The name cannot contain a blank or an equal (=) symbol. For example,

 PATH NAME=/my_lib/joe_user

is not valid because of the blank between PATH and NAME. Similarly,

 PATH=NAME=/my_lib/joe_user

is not valid because of the equal symbol between PATH and NAME. The system interprets all characters
following the first equal symbol as being the value of the environment variable.

Return Value
The putenv() function returns 0 if successful. If putenv() fails then -1 is returned and errno is set to
indicate the error.

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char *pathvar;

 if (-1 == putenv("PATH=/:/home/userid")) {
 printf("putenv failed \n");
 return EXIT_FAILURE;
 }
 /* getting and printing the current environment path */

 pathvar = getenv("PATH");
 printf("The current path is: %s\n", pathvar);
 return 0;
}

/**
 The output should be:

 The current path is: /:/home/userid

Related Information
• “getenv() — Search for Environment Variables” on page 177
• “<stdlib.h>” on page 14

puts() — Write a String

Format
#include <stdio.h>
int puts(const char *string);

Language Level
ANSI

Threadsafe
Yes

268 IBM i: ILE C/C++ Runtime Library Functions

Description
The puts() function writes the given string to the standard output stream stdout; it also appends a
new-line character to the output. The ending null character is not written.

Return Value
The puts() function returns EOF if an error occurs. A nonnegative return value indicates that no error has
occurred.

The value of errno may be set to:
Value

Meaning
ECONVERT

A conversion error occurred.
EPUTANDGET

An illegal write operation occurred after a read operation.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

Example
This example writes Hello World to stdout.

#include <stdio.h>

int main(void)
{
 if (puts("Hello World") == EOF)
 printf("Error in puts\n");
}

/************************ Expected output: *********************

Hello World
*/

Related Information
• “fputs() — Write String” on page 145
• “fputws() — Write Wide-Character String” on page 148
• “gets() — Read a Line” on page 179
• “putc() – putchar() — Write a Character” on page 266
• “putwc() — Write Wide Character” on page 269
• “<stdio.h>” on page 13

putwc() — Write Wide Character

Format
 #include <stdio.h>
 #include <wchar.h>
 wint_t putwc(wint_t wc, FILE *stream);

Library Functions 269

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
This behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The putwc() function writes the wide character wc to the stream at the current position. It also
advances the file position indicator for the stream appropriately. The putwc() function is equivalent
to the fputwc() function except that some platforms implement putwc() as a macro. Therefore, for
portability, the stream argument to putwc() should not be an expression with side effects.

Using a non-wide-character function with the putwc() function on the same stream results in undefined
behavior. After calling the putwc() function, flush the buffer or reposition the stream pointer before
calling a write function for the stream, unless EOF has been reached. After a write operation on the
stream, flush the buffer or reposition the stream pointer before calling the putwc() function.

Return Value
The putwc() function returns the wide character written. If a write error occurs, it sets the error indicator
for the stream and returns WEOF. If an encoding error occurs when a wide character is converted to a
multibyte character, the putwc() function sets errno to EILSEQ and returns WEOF.

For information about errno values for putwc(), see “fputc() — Write Character” on page 143.

Example
The following example uses the putwc() function to convert the wide characters in wcs to multibyte
characters and write them to the file putwc.out.

270 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <errno.h>

int main(void)
{
 FILE *stream;
 wchar_t *wcs = L"A character string.";
 int i;

 if (NULL == (stream = fopen("putwc.out", "w"))) {
 printf("Unable to open: \"putwc.out\".\n");
 exit(1);
 }

 for (i = 0; wcs[i] != L'\0'; i++) {
 errno = 0;
 if (WEOF == putwc(wcs[i], stream)) {
 printf("Unable to putwc() the wide character.\n"
 "wcs[%d] = 0x%lx\n", i, wcs[i]);
 if (EILSEQ == errno)
 printf("An invalid wide character was encountered.\n");
 exit(1);
 }
 }
 fclose(stream);
 return 0;

 /***
 The output file putwc.out should contain :

 A character string.
 ***/
}

Related Information
• “fputc() — Write Character” on page 143
• “fputwc() — Write Wide Character” on page 146
• “fputws() — Write Wide-Character String” on page 148
• “getwc() — Read Wide Character from Stream” on page 180
• “putc() – putchar() — Write a Character” on page 266
• “putwchar() — Write Wide Character to stdout ” on page 271
• “<stdio.h>” on page 13
• “<wchar.h>” on page 16

putwchar() — Write Wide Character to stdout

Format
 #include <wchar.h>
 wint_t putwchar(wint_t wc);

Language Level
ANSI

Threadsafe
Yes

Library Functions 271

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
This behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The putwchar() function converts the wide character wc to a multibyte character and writes it to
stdout. A call to the putwchar() function is equivalent to putwc(wc, stdout).

Using a non-wide-character function with the putwchar() function on the same stream results in
undefined behavior. After calling the putwchar() function, flush the buffer or reposition the stream
pointer before calling a write function for the stream, unless EOF has been reached. After a write
operation on the stream, flush the buffer or reposition the stream pointer before calling the putwchar()
function.

Return Value
The putwchar() function returns the wide character written. If a write error occurs, the putwchar()
function sets the error indicator for the stream and returns WEOF. If an encoding error occurs when a
wide character is converted to a multibyte character, the putwchar() function sets errno to EILSEQ and
returns WEOF.

For information about errno values for putwc(), see “fputc() — Write Character” on page 143.

Example
This example uses the putwchar() function to write the string in wcs.

272 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <wchar.h>
#include <errno.h>
#include <stdlib.h>

int main(void)
{
 wchar_t *wcs = L"A character string.";
 int i;

 for (i = 0; wcs[i] != L'\0'; i++) {
 errno = 0;
 if (WEOF == putwchar(wcs[i])) {
 printf("Unable to putwchar() the wide character.\n");
 printf("wcs[%d] = 0x%lx\n", i, wcs[i]);
 if (EILSEQ == errno)
 printf("An invalid wide character was encountered.\n");
 exit(EXIT_FAILURE);
 }
 }
 return 0;

 /**
 The output should be similar to :

 A character string.
 **/
}

Related Information
• “fputc() — Write Character” on page 143
• “fputwc() — Write Wide Character” on page 146
• “fputws() — Write Wide-Character String” on page 148
• “getwchar() — Get Wide Character from stdin” on page 182
• “putc() – putchar() — Write a Character” on page 266
• “putwc() — Write Wide Character” on page 269
• “<wchar.h>” on page 16

quantexpd32() - quantexpd64() - quantexpd128() — Compute the
Quantum Exponent

Format
#define __STDC_WANT_DEC_FP__
#include <math.h>
int quantexpd32(_Decimal32 x);
int quantexpd64(_Decimal64 x);
int quantexpd128(_Decimal128 x);

Language Level
ANSI

Threadsafe
Yes

Description
The quantexpd32(), quantexpd64(), and quantexpd128() functions compute the quantum
exponent of a finite argument. The numerical value of a finite number is given by: (-1)sign x coefficient

Library Functions 273

x 10exponent. The quantum of a finite number is given by 1 x 10exponent and represents the value of a unit in
the least significant position of the coefficient of a finite number. The quantum exponent is the exponent
of the quantum (represented by exponent above).

Return Value
The quantexpd32(), quantexpd64(), and quantexpd128() functions return the quantum exponent
of x. If x is infinite or NaN, errno is set to EDOM and the value INT_MIN is returned.

Example
This example illustrates the use of the quantexpd128() function:

#define __STDC_WANT_DEC_FP__
#include <stdio.h>
#include <math.h>
int main(void)
{
 _Decimal128 x;
 int y;

 x = 4.56DL;
 y = quantexpd128(x);
 printf("quantexpd128(%DDa) = %d\n", x, y);

 return 0;
}

/***************** Output should be similar to: *****************
quantexpd128(4.56) = -2
*/

Related Information
• “quantized32() - quantized64() - quantized128() — Set the Quantum Exponent of X to the Quantum

Exponent of Y” on page 274
• “samequantumd32() - samequantumd64() - samequantumd128() — Determine if Quantum Exponents

X and Y are the Same” on page 360

quantized32() - quantized64() - quantized128() — Set the Quantum
Exponent of X to the Quantum Exponent of Y

Format
#define __STDC_WANT_DEC_FP__
#include <math.h>
_Decimal32 quantized32(_Decimal32 x, _Decimal32 y);
_Decimal64 quantized64(_Decimal64 x, _Decimal64 y);
_Decimal128 quantized128(_Decimal128 x, _Decimal128 y);

Language Level
ANSI

Threadsafe
Yes

Description
The quantized32(), quantized64(), and quantized128() functions set the quantum exponent of
argument x to the quantum exponent of argument y, while trying to keep the value the same. If the

274 IBM i: ILE C/C++ Runtime Library Functions

quantum exponent is being increased, the value is correctly rounded according to the rounding mode
Round to Nearest, Ties to Even. If the result does not have the same value as x, the ″inexact″ floating-
point exception is raised. If the quantum exponent is being decreased, and the significand of the result
has more digits than the type would allow, the result is NaN and the ″invalid″ floating-point exception is
raised.

If one or both operands are NaN, the result is NaN, and the ″invalid″ floating-point exception may
be raised. Otherwise, if only one operand is infinity, the result is NaN, and the ″invalid″ floating-point
exception is raised. If both operands are infinity, the result is infinity and the sign is the same as x.

The quantized32(), quantized64(), and quantized128() functions do not signal underflow or
overflow.

Return Value
The quantized32(), quantized64(), and quantized128() functions return the number which is
equal in value (except for any rounding) and sign to x, and which has a quantum exponent equal to the
quantum exponent of y.

Example
This example illustrates the use of the quantized128() function:

#define __STDC_WANT_DEC_FP__
#include <stdio.h>
#include <math.h>
int main(void)
{
 _Decimal128 price = 64999.99DL;
 _Decimal128 rate = 0.09875DL;
 _Decimal128 tax = quantized128(price * rate, 0.01DL);
 _Decimal128 total = price + tax;

 printf("price = %DDa\n"
 " tax = %DDa (price * rate = %DDa)\n"
 "total = %DDa\n",
 price, tax, price * rate, total);

 return 0;
}

/***************** Output should be similar to: *****************
price = 64999.99
 tax = 6418.75 (price * rate = 6418.7490125)
total = 71418.74
*/

Related Information
• “quantexpd32() - quantexpd64() - quantexpd128() — Compute the Quantum Exponent” on page 273
• “samequantumd32() - samequantumd64() - samequantumd128() — Determine if Quantum Exponents

X and Y are the Same” on page 360

qsort() — Sort Array

Format
#include <stdlib.h>
void qsort(void *base, size_t num, size_t width,
 int(*compare)(const void *key, const void *element));

Language Level
ANSI

Library Functions 275

Threadsafe
Yes

Description
The qsort() function sorts an array of num elements, each of width bytes in size. The base pointer is a
pointer to the array to be sorted. The qsort() function overwrites this array with the sorted elements.

The compare argument is a pointer to a function you must supply that takes a pointer to the key argument
and to an array element, in that order. The qsort() function calls this function one or more times during
the search. The function must compare the key and the element and return one of the following values:

Table 7. Return values of the qsort() compare function

Value Meaning

Less than 0 key less than element

0 key equal to element

Greater than 0 key greater than element

The sorted array elements are stored in ascending order, as defined by your compare function. You can
sort in reverse order by reversing the sense of “greater than” and “less than” in compare. The order of the
elements is unspecified when two elements compare equally.

Return Value
There is no return value.

Example
This example sorts the arguments (argv) in ascending lexical sequence, using the comparison function
compare() supplied in the example.

276 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

 /* Declaration of compare() as a function */
int compare(const void *, const void *);

int main (int argc, char *argv[])
{
 int i;
 argv++;
 argc--;
 qsort((char *)argv, argc, sizeof(char *), compare);
 for (i = 0; i < argc; ++i)
 printf("%s\n", argv[i]);
 return 0;
}

int compare (const void *arg1, const void *arg2)
{
 /* Compare all of both strings */
 return(strcmp(*(char **)arg1, *(char **)arg2));
}

/*********** If the program is passed the arguments: ************
******** 'Does' 'this' 'really' 'sort' 'the' 'arguments' 'correctly?'****
**************** then the expected output is: *******************

arguments
correctly?
really
sort
the
this
Does
*/

Related Information
• “bsearch() — Search Arrays” on page 76
• “<stdlib.h>” on page 14

QXXCHGDA() — Change Data Area

Format
#include <xxdtaa.h>

void QXXCHGDA(_DTAA_NAME_T dtaname, short int offset, short int len,
 char *dtaptr);

Language Level
ILE C Extension

Threadsafe
Yes

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

Library Functions 277

Description
The QXXCHGDA() function allows you to change the data area specified by dtaname, starting at position
offset, with the data in the user buffer pointed to by dtaptr of length len. The structure dtaname contains
the names of the data area and the library that contains the data area. The values that can be specified for
the data area name are:
*LDA

Specifies that the contents of the local data area are to be changed. The library name dtaa_lib must
be blank.

*GDA
Specifies that the contents of the group data area are to be changed. The library name dtaa_lib must
be blank.

data-area-name
Specifies that the contents of the data area created using the Create Data Area (CRTDTAARA) CL
command are to be changed. The library name dtaa_lib must be either *LIBL, *CURLIB, or the name of
the library where the data area (data-area-name) is located. The data area is locked while it is being
changed.

QXXCHGDA can only be used to change character data.

Example

#include <stdio.h>
#include <xxdtaa.h>

#define START 1
#define LENGTH 8

int main(void)
{
 char newdata[LENGTH] = "new data";

 /* The local data area will be changed */
 _DTAA_NAME_T dtaname = {"*LDA ", " "};

 /* Use function to change the local data area. */
 QXXCHGDA(dtaname,START,LENGTH,newdata);
 /* The first 8 characters in the local data area */
 /* are: new data */
}

Related Information
• “QXXRTVDA() — Retrieve Data Area” on page 283

QXXDTOP() — Convert Double to Packed Decimal

Format
#include <xxcvt.h>
void QXXDTOP(unsigned char *pptr, int digits, int fraction,
 double value);

Language Level
ILE C Extension

Threadsafe
Yes

278 IBM i: ILE C/C++ Runtime Library Functions

Description
The QXXDTOP function converts the double value specified in value to a packed decimal number with
digits total digits, and fraction fractional digits. The result is stored in the array pointed to by pptr.

Example

#include <xxcvt.h>
#include <stdio.h>

int main(void)
{
 unsigned char pptr[10];
 int digits = 8, fraction = 6;
 double value = 3.141593;

 QXXDTOP(pptr, digits, fraction, value);
}

Related Information
• “QXXDTOZ() — Convert Double to Zoned Decimal” on page 279
• “QXXITOP() — Convert Integer to Packed Decimal” on page 280
• “QXXITOZ() — Convert Integer to Zoned Decimal” on page 281
• “QXXPTOD() — Convert Packed Decimal to Double” on page 282
• “QXXPTOI() — Convert Packed Decimal to Integer” on page 282
• “QXXZTOD() — Convert Zoned Decimal to Double” on page 285
• “QXXZTOI() — Convert Zoned Decimal to Integer” on page 285

QXXDTOZ() — Convert Double to Zoned Decimal

Format
#include <xxcvt.h>
void QXXDTOZ(unsigned char *zptr, int digits, int fraction,
 double value);

Language Level
ILE C Extension

Threadsafe
Yes

Description
The QXXDTOZ function converts the double value specified in value to a zoned decimal number with digits
total digits, and fraction fractional digits. The result is stored in the array pointed to by zptr.

Library Functions 279

Example

#include <xxcvt.h>
#include <stdio.h>

int main(void)
{
 unsigned char zptr[10];
 int digits = 8, fraction = 6;
 double value = 3.141593;

 QXXDTOZ(zptr, digits, fraction, value);
} /* Zoned value is : 03141593 */

Related Information
• “QXXDTOP() — Convert Double to Packed Decimal” on page 278
• “QXXITOP() — Convert Integer to Packed Decimal” on page 280
• “QXXITOZ() — Convert Integer to Zoned Decimal” on page 281
• “QXXPTOD() — Convert Packed Decimal to Double” on page 282
• “QXXPTOI() — Convert Packed Decimal to Integer” on page 282
• “QXXZTOD() — Convert Zoned Decimal to Double” on page 285
• “QXXZTOI() — Convert Zoned Decimal to Integer” on page 285

QXXITOP() — Convert Integer to Packed Decimal

Format
#include <xxcvt.h>
void QXXITOP(unsigned char *pptr, int digits, int fraction,
 int value);

Language Level
ILE C Extension

Threadsafe
Yes

Description
The QXXITOP function converts the integer specified in value to a packed decimal number with digits total
digits, and fraction fractional digits. The result is stored in the array pointed to by pptr.

Example

#include <xxcvt.h>
#include <stdio.h>

int main(void)
{
 unsigned char pptr[10];
 int digits = 3, fraction = 0;
 int value = 116;

 QXXITOP(pptr, digits, fraction, value);
}

280 IBM i: ILE C/C++ Runtime Library Functions

Related Information
• “QXXDTOP() — Convert Double to Packed Decimal” on page 278
• “QXXDTOZ() — Convert Double to Zoned Decimal” on page 279
• “QXXITOZ() — Convert Integer to Zoned Decimal” on page 281
• “QXXPTOD() — Convert Packed Decimal to Double” on page 282
• “QXXPTOI() — Convert Packed Decimal to Integer” on page 282
• “QXXZTOD() — Convert Zoned Decimal to Double” on page 285
• “QXXZTOI() — Convert Zoned Decimal to Integer” on page 285

QXXITOZ() — Convert Integer to Zoned Decimal

Format
#include <xxcvt.h>
void QXXITOZ(unsigned char *zptr, int digits, int fraction, int value);

Language Level
ILE C Extension

Threadsafe
Yes

Description
The QXXITOZ function converts the integer specified in value to a zoned decimal number with digits total
digits, and fraction fractional digits. The result is stored in the array pointed to by zptr.

Example

#include <xxcvt.h>
#include <stdio.h>

int main(void)
{
 unsigned char zptr[10];
 int digits = 9, fraction = 0;
 int value = 111115;

 QXXITOZ(zptr, digits, fraction, value);
 /* Zoned value is : 000111115 */
}

Related Information
• “QXXDTOP() — Convert Double to Packed Decimal” on page 278
• “QXXDTOZ() — Convert Double to Zoned Decimal” on page 279
• “QXXITOP() — Convert Integer to Packed Decimal” on page 280
• “QXXPTOD() — Convert Packed Decimal to Double” on page 282
• “QXXPTOI() — Convert Packed Decimal to Integer” on page 282
• “QXXZTOD() — Convert Zoned Decimal to Double” on page 285
• “QXXZTOI() — Convert Zoned Decimal to Integer” on page 285

Library Functions 281

QXXPTOD() — Convert Packed Decimal to Double

Format
#include <xxcvt.h>
double QXXPTOD(unsigned char *pptr, int digits, int fraction);

Language Level
ILE C Extension

Threadsafe
Yes

Description
The QXXPTOD function converts a packed decimal number to a double.

Example

#include <xxcvt.h>
#include <stdio.h>

int main(void)
{
 unsigned char pptr[10];
 int digits = 8, fraction = 6;
 double value = 6.123456, result;
 /* First convert an integer to a packed decimal,*/
 QXXDTOP(pptr, digits, fraction, value);
 /* then convert it back to a double. */
 result = QXXPTOD(pptr, digits, fraction);
 /* result = 6.123456 */
}

Related Information
• “QXXDTOP() — Convert Double to Packed Decimal” on page 278
• “QXXDTOZ() — Convert Double to Zoned Decimal” on page 279
• “QXXITOP() — Convert Integer to Packed Decimal” on page 280
• “QXXITOZ() — Convert Integer to Zoned Decimal” on page 281
• “QXXPTOI() — Convert Packed Decimal to Integer” on page 282
• “QXXZTOD() — Convert Zoned Decimal to Double” on page 285
• “QXXZTOI() — Convert Zoned Decimal to Integer” on page 285

QXXPTOI() — Convert Packed Decimal to Integer

Format
#include <xxcvt.h>
int QXXPTOI(unsigned char *pptr, int digits, int fraction);

Language Level
ILE C Extension

282 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

Description
The QXXPTOI function converts a packed decimal number to an integer.

Example

#include <xxcvt.h>
#include <stdio.h>

int main(void)
{
 unsigned char pptr[10];
 int digits = 3, fraction = 0, value = 104, result;
 /* First convert an integer to a packed decimal,*/
 QXXITOP(pptr, digits, fraction, value);
 /* then convert it back to an integer. */
 result = QXXPTOI(pptr, digits, fraction);
 /* result = 104 */
}

Related Information
• “QXXDTOP() — Convert Double to Packed Decimal” on page 278
• “QXXDTOZ() — Convert Double to Zoned Decimal” on page 279
• “QXXITOP() — Convert Integer to Packed Decimal” on page 280
• “QXXITOZ() — Convert Integer to Zoned Decimal” on page 281
• “QXXPTOD() — Convert Packed Decimal to Double” on page 282
• “QXXZTOD() — Convert Zoned Decimal to Double” on page 285
• “QXXZTOI() — Convert Zoned Decimal to Integer” on page 285

QXXRTVDA() — Retrieve Data Area

Format
#include <xxdtaa.h>

void QXXRTVDA(_DTAA_NAME_T dtaname, short int offset,
 short int len, char *dtaptr);

Language Level
ILE C Extension

Threadsafe
Yes

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

Library Functions 283

Description
The following typedef definition is included in the <xxdtaa.h> header file. The character arrays are not
null-ended strings so they must be blank filled.

typedef struct _DTAA_NAME_T {
 char dtaa_name[10]; /* name of data area */
 char dtaa_lib[10]; /* library that contains data area */
}_DTAA_NAME_T;

The QXXRTVDA() function retrieves a copy of the data area specified by dtaname starting at position
offset with a length of len. The structure dtaname contains the names of the data area and the library that
contains the data area. The values that can be specified for the data area name are:
*LDA

The contents of the local data area are to be retrieved. The library name dtaa_lib must be blank.
*GDA

The contents of the group data area are to be retrieved. The library name dtaa_lib must be blank.
*PDA

Specifies that the contents of the program initialization parameters (PIP) data area are to be retrieved.
The PIP data area is created for each pre-started job and is a character area up to 2000 characters in
length. You cannot retrieve the PIP data area until you have acquired the requester. The library name
dtaa_lib must be blank.

data-area-name
Specifies that the contents of the data area created using the Create Data Area (CRTDTAARA) CL
command are to be retrieved. The library name dtaa_lib must be either *LIBL, *CURLIB, or the name
of the library where the data area (data-area-name) is located. The data area is locked while the data
is being retrieved.

The parameter dtaptr is a pointer to the storage that receives the retrieved copy of the data area. Only
character data can be retrieved using QXXRTVDA.

Example

#include <stdio.h>
#include <xxdtaa.h>

#define DATA_AREA_LENGTH 30
#define START 6
#define LENGTH 7

int main(void)
{
 char uda_area[DATA_AREA_LENGTH];

 /* Retrieve data from user-defined data area currently in MYLIB */
 _DTAA_NAME_T dtaname = {"USRDDA ", "MYLIB "};

 /* Use the function to retrieve some data into uda_area. */
 QXXRTVDA(dtaname,START,LENGTH,uda_area);

 /* Print the contents of the retrieved subset. */
 printf("uda_area contains %7.7s\n",uda_area);

}

Related Information
• “QXXCHGDA() — Change Data Area” on page 277

284 IBM i: ILE C/C++ Runtime Library Functions

QXXZTOD() — Convert Zoned Decimal to Double

Format
#include <xxcvt.h>
double QXXZTOD(unsigned char *zptr, int digits, int fraction);

Language Level
ILE C Extension

Threadsafe
Yes

Description
The QXXZTOD function converts to a double, the zoned decimal number (with digits total digits, and
fraction fractional digits) pointed to by zptr. The resulting double value is returned.

Example

#include <xxcvt.h>
#include <stdio.h>

int main(void)
{
 unsigned char zptr[] = "06123456";
 int digits = 8, fraction = 6;
 double result;

 result = QXXZTOD(zptr, digits, fraction);
 /* result = 6.123456 */
}

Related Information
• “QXXDTOP() — Convert Double to Packed Decimal” on page 278
• “QXXDTOZ() — Convert Double to Zoned Decimal” on page 279
• “QXXITOP() — Convert Integer to Packed Decimal” on page 280
• “QXXITOZ() — Convert Integer to Zoned Decimal” on page 281
• “QXXPTOD() — Convert Packed Decimal to Double” on page 282
• “QXXPTOI() — Convert Packed Decimal to Integer” on page 282
• “QXXZTOI() — Convert Zoned Decimal to Integer” on page 285

QXXZTOI() — Convert Zoned Decimal to Integer

Format
#include <xxcvt.h>
int QXXZTOI(unsigned char *zptr, int digits, int fraction);

Language Level
ILE C Extension

Library Functions 285

Threadsafe
Yes

Description
The QXXZTOI function converts to an integer, the zoned decimal number (with digits total digits, and
fraction fractional digits) pointed to by zptr. The resulting integer is returned.

Example

#include <xxcvt.h>
#include <stdio.h>

int main(void)
{
 unsigned char zptr[] = "000111115";
 int digits = 9, fraction = 0, result;

 result = QXXZTOI(zptr, digits, fraction);
 /* result = 111115 */
}

Related Information
• “QXXDTOP() — Convert Double to Packed Decimal” on page 278
• “QXXDTOZ() — Convert Double to Zoned Decimal” on page 279
• “QXXITOP() — Convert Integer to Packed Decimal” on page 280
• “QXXITOZ() — Convert Integer to Zoned Decimal” on page 281
• “QXXPTOD() — Convert Packed Decimal to Double” on page 282
• “QXXPTOI() — Convert Packed Decimal to Integer” on page 282
• “QXXZTOD() — Convert Zoned Decimal to Double” on page 285

raise() — Send Signal

Format
#include <signal.h>
int raise(int sig);

Language Level
ANSI

Threadsafe
Yes

Description
The raise() function sends the signal sig to the running program. If compiled with
SYSIFCOPT(*ASYNCSIGNAL) on the compilation command, this function uses asynchronous signals. The
asynchronous version of this function throws a signal to the process or thread.

Return Value
The raise() function returns 0 if successful, nonzero if unsuccessful.

286 IBM i: ILE C/C++ Runtime Library Functions

Example
This example establishes a signal handler called sig_hand for the signal SIGUSR1. The signal handler is
called whenever the SIGUSR1 signal is raised and will ignore the first nine occurrences of the signal. On
the tenth raised signal, it exits the program with an error code of 10. Note that the signal handler must be
reestablished each time it is called.

#include <signal.h>
#include <stdio.h>

void sig_hand(int); /* declaration of sig_hand() as a function */

int main(void)
{
 signal(SIGUSR1, sig_hand); /* set up handler for SIGUSR1 */

 raise(SIGUSR1); /* signal SIGUSR1 is raised */
 /* sig_hand() is called */
}

void sig_hand(int sig)
{
 static int count = 0; /* initialized only once */

 count++;
 if (count == 10) /* ignore the first 9 occurrences of this signal */
 exit(10);
 else
 signal(SIGUSR1, sig_hand); /* set up the handler again */
}
/* This is a program fragment and not a complete program */

Related Information
• “signal() — Handle Interrupt Signals” on page 378
• “Signal Handling Action Definitions” on page 554
• “<signal.h>” on page 11
• Signal APIs in the APIs topic in the Information Center.
• POSIX thread APIs in the APIs topic in the Information Center.

rand() – rand_r() — Generate Random Number

Format
#include <stdlib.h>
int rand(void);
int rand_r(unsigned int *seed);

Language Level
ANSI

Threadsafe
No

rand() is not threadsafe, but rand_r() is.

Description
The rand() function generates a pseudo-random integer in the range 0 to RAND_MAX (macro defined
in <stdlib.h>). Use the srand() function before calling rand() to set a starting point for the random
number generator. If you do not call the srand() function first, the default seed is 1.

Library Functions 287

Note: The rand_r() function is the restartable version of rand().

Return Value
The rand() function returns a pseudo-random number.

Example
This example prints the first 10 random numbers generated.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int x;

 for (x = 1; x <= 10; x++)
 printf("iteration %d, rand=%d\n", x, rand());
}

/********************* Output should be similar to: ************

iteration 1, rand=16838
iteration 2, rand=5758
iteration 3, rand=10113
iteration 4, rand=17515
iteration 5, rand=31051
iteration 6, rand=5627
iteration 7, rand=23010
iteration 8, rand=7419
iteration 9, rand=16212
iteration 10, rand=4086
*/

Related Information
• “srand() — Set Seed for rand() Function” on page 385
• “<stdlib.h>” on page 14

_Racquire() — Acquire a Program Device

Format
#include <recio.h>
int _Racquire(_RFILE *fp, char *dev);

Language Level
ILE C Extension

Threadsafe
No

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

288 IBM i: ILE C/C++ Runtime Library Functions

Description
The _Racquire() function acquires the program device specified by the dev parameter and associates it
with the file specified by fp. The dev parameter is a null-ended C string. The program device name must
be specified in uppercase. The program device must be defined to the file.

This function is valid for display and ICF files.

Return Value
The _Racquire() function returns 1 if it is successful or zero if it is unsuccessful. The value of errno
may be set to EIOERROR (a non-recoverable I/O error occurred) or EIORECERR (a recoverable I/O error
occurred).

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{
 _RFILE *fp;
 _RIOFB_T *rfb;

 /* Open the device file. */
 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)
 {
 printf ("Could not open file\n");
 exit (1);
 }

 _Racquire (fp,"DEVICE1"); /* Acquire another program device. */
 /* Replace with actual device name.*/

 _Rformat (fp,"FORMAT1"); /* Set the record format for the */
 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 /* Do some processing... */

 _Rclose (fp);
}

Related Information
• “_Rrelease() — Release a Program Device” on page 344

_Rclose() — Close a File

Format
#include <recio.h>

int _Rclose(_RFILE *fp);

Language Level
ILE C Extension

Library Functions 289

Threadsafe
Yes

Description
The _Rclose() function closes the file specified by fp. Before this file is closed, all buffers associated
with it are flushed and all buffers reserved for it are released. The file is closed even if an exception
occurs. The _Rclose() function applies to all types of files.

Note: The storage pointed to by the _RFILE pointer is freed by the_Rclose() function. After the use of
the _Rclose() function, any attempt to use the _RFILE pointer is not valid.

Return Value
The _Rclose() function returns zero if the file is closed successfully, or EOF if the close operation failed
or the file was already closed. The file is closed even if an exception occurs, and zero is returned.

The value of errno may be set to:

Value Meaning

ENOTOPEN The file is not open.

EIOERROR A non-recoverable I/O error occurred.

EIORECERR A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *fp;

 /* Open the file for processing in arrival sequence. */
 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)
 {
 printf ("Open failed\n");
 exit (1);
 }
 else
 /* Do some processing */;

 _Rclose (fp);
}

Related Information
• “_Ropen() — Open a Record File for I/O Operations” on page 319

_Rcommit() — Commit Current Record

Format
#include <recio.h>
int _Rcommit(char *cmtid);

290 IBM i: ILE C/C++ Runtime Library Functions

Language Level
ILE C Extension

Threadsafe
No

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

Description
The _Rcommit() function completes the current transaction for the job that calls it and establishes a
new commitment boundary. All changes made since the last commitment boundary are made permanent.
Any file or resource that is open under commitment control in the job is affected.

The cmtid parameter is a null-ended C string used to identify the group of changes associated with a
commitment boundary. It cannot be longer than 4000 bytes.

The _Rcommit() function applies to database and DDM files.

Return Value
The _Rcommit() function returns 1 if the operation is successful or zero if the operation is unsuccessful.
The value of errno may be set to EIOERROR (a non-recoverable I/O error occurred) or EIORECERR (a
recoverable I/O error occurred).

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Library Functions 291

Example

#include <stdio.h>
#include <recio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
 char buf[40];
 int rc = 1;
 _RFILE *purf;
 _RFILE *dailyf;

 /* Open purchase display file and daily transaction file */
 if ((purf = _Ropen ("MYLIB/T1677RD3", "ar+,indicators=y")) == NULL)
 {
 printf ("Display file did not open.\n");
 exit (1);
 }

 if ((dailyf = _Ropen ("MYLIB/T1677RDA", "wr,commit=y")) == NULL)
 {
 printf ("Daily transaction file did not open.\n");
 exit (2);
 }

 /* Select purchase record format */
 _Rformat (purf, "PURCHASE");

 /* Invite user to enter a purchase transaction. */
 /* The _Rwrite function writes the purchase display. */
 _Rwrite (purf, "", 0);
 _Rreadn (purf, buf, sizeof(buf), __DFT);

 /* Update daily transaction file */
 rc = ((_Rwrite (dailyf, buf, sizeof(buf)))->num_bytes);

 /* If the databases were updated, then commit the transaction. */
 /* Otherwise, rollback the transaction and indicate to the */
 /* user that an error has occurred and end the application. */
 if (rc)
 {
 _Rcommit ("Transaction complete");
 }
 else
 {
 _Rrollbck ();
 _Rformat (purf, "ERROR");
 }

 _Rclose (purf);
 _Rclose (dailyf);
}

Related Information
• “_Rrollbck() — Roll Back Commitment Control Changes” on page 347

_Rdelete() — Delete a Record

Format
#include <recio.h>
_RIOFB_T *_Rdelete(_RFILE *fp);

Language Level
ILE C Extension

292 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

Description
The _Rdelete() function deletes the record that is currently locked for update in the file specified by fp.
After the delete operation, the record is not locked. The file must be open for update.

A record is locked for update by reading or locating to it unless __NO_LOCK is specified on the read or
locate option. If the __NO_POSITION option is specified on the locate operation that locked the record,
the record deleted may not be the record that the file is currently positioned to.

This function is valid for database and DDM files.

Return Value
The _Rdelete() function returns a pointer to the _RIOFB_T structure associated with fp. If the operation
is successful, the num_bytes field contains 1. If the operation is unsuccessful, the num_bytes field
contains zero.

The value of errno may be set to:
Value

Meaning
ENOTDLT

The file is not open for delete operations.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *fp;
 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */
 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)
 {
 printf ("Open failed\n");
 exit (1);
 }

 /* Get the library and file names of the file opened. */
 opfb = _Ropnfbk (fp);
 printf ("Library: %10.10s\nFile: %10.10s\n",
 opfb->library_name,
 opfb->file_name);

 /* Get the first record. */
 _Rreadf (fp, NULL, 20, __DFT);
 printf ("First record: %10.10s\n", *(fp->in_buf));

 /* Delete the first record. */
 _Rdelete (fp);

 _Rclose (fp);
}

Library Functions 293

Related Information
• “_Rrlslck() — Release a Record Lock” on page 346

_Rdevatr() — Get Device Attributes

Format
#include <recio.h>
#include <xxfdbk.h>
_XXDEV_ATR_T *_Rdevatr(_RFILE *fp, char *dev);

Language Level
ILE C Extension

Threadsafe
No

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

Description
The _Rdevatr() function returns a pointer to a copy of the device attributes feedback area for the file
pointed to by fp, and the device specified by dev.

The dev parameter is a null-ended C string. The device name must be specified in uppercase.

The _Rdevatr() function is valid for display and ICF files.

Return Value
The _Rdevatr() function returns NULL if an error occurs.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

294 IBM i: ILE C/C++ Runtime Library Functions

Example

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char ** argv)
{
 _RFILE *fp; /* File pointer */
 _RIOFB_T *rfb; /*Pointer to the file's feedback structure */
 _XXIOFB_T *iofb; /* Pointer to the file's feedback area */
 _XXDEV_ATR_T *dv_atr; /* Pointer to a copy of the file's device */
 /* attributes feedback area */

 /* Open the device file. */
 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)
 {
 printf ("Could not open file\n");
 exit (1);
 }

 dv_atr = _Rdevatr (fp, argv[1]);
 if (dv_atr == NULL)
 printf("Error occurred getting device attributes for %s.\n",
 argv[1]);

 _Rclose (fp);
}

Related Information
• “_Racquire() — Acquire a Program Device” on page 288
• “_Rrelease() — Release a Program Device” on page 344

realloc() — Change Reserved Storage Block Size

Format
#include <stdlib.h>
void *realloc(void *ptr, size_t size);

Language Level
ANSI

Threadsafe
Yes

Description
The realloc() function changes the size of a previously reserved storage block. The ptr argument points
to the beginning of the block. The size argument gives the new size of the block, in bytes. The contents of
the block are unchanged up to the shorter of the new and old sizes.

If the ptr is NULL, realloc() reserves a block of storage of size bytes. It does not necessarily give all bits
of each element an initial value of 0.

If size is 0 and the ptr is not NULL, realloc() frees the storage allocated to ptr and returns NULL

Note:

1. All heap storage is associated with the activation group of the calling function. As such, storage should
be allocated, deallocated, and reallocated within the same activation group. You cannot allocate heap

Library Functions 295

storage within one activation group and deallocate or reallocate that storage from a different activation
group. For more information about activation groups, see the ILE Concepts manual.

2. If the Quick Pool memory manager has been enabled in the current activation group then storage is
retrieved using Quick Pool memory manager. See“_C_Quickpool_Init() — Initialize Quick Pool Memory
Manager” on page 93 for more information.

Return Value
The realloc() function returns a pointer to the reallocated storage block. The storage location of the
block may be moved by the realloc() function. Thus, the ptr argument to the realloc() function is
not necessarily the same as the return value.

If size is 0, the realloc() function returns NULL. If there is not enough storage to expand the block to
the given size, the original block is unchanged and the realloc() function returns NULL.

The storage to which the return value points is aligned for storage of any type of object.

To use teraspace storage instead of single-level store storage without changing the C source code,
specify the TERASPACE(*YES *TSIFC) parameter on the compiler command. This maps the realloc()
library function to _C_TS_realloc(), its teraspace storage counterpart. The maximum amount of
teraspace storage that can be allocated by each call to _C_TS_realloc() is 2GB - 240, or 214743408
bytes. For additional information about teraspace storage, see the ILE Concepts manual.

Example
This example allocates storage for the prompted size of array and then uses realloc() to reallocate the
block to hold the new size of the array. The contents of the array are printed after each allocation.

296 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 long * array; /* start of the array */
 long * ptr; /* pointer to array */
 int i; /* index variable */
 int num1, num2; /* number of entries of the array */
 void print_array(long *ptr_array, int size);
 printf("Enter the size of the array\n");
 scanf("%i", &num1);
 /* allocate num1 entries using malloc() */
 if ((array = (long *) malloc(num1 * sizeof(long))) != NULL)
 {
 for (ptr = array, i = 0; i < num1 ; ++i) /* assign values */
 *ptr++ = i;
 print_array(array, num1);
 printf("\n");
 }
 else { /* malloc error */
 perror("Out of storage");
 abort();
 }
 /* Change the size of the array ... */
 printf("Enter the size of the new array\n");
 scanf("%i", &num2);
 if ((array = (long *) realloc(array, num2* sizeof(long))) != NULL)
 {
 for (ptr = array + num1, i = num1; i <= num2; ++i)
 ptr++ = i + 2000; / assign values to new elements */
 print_array(array, num2);
 }
 else { /* realloc error */
 perror("Out of storage");
 abort();
 }
}

void print_array(long * ptr_array, int size)
{
 int i;
 long * index = ptr_array;
 printf("The array of size %d is:\n", size);
 for (i = 0; i < size; ++i) /* print the array out */
 printf(" array[%i] = %li\n", i, ptr_array[i]);
}

/**** If the initial value entered is 2 and the second value entered
 is 4, then the expected output is:
Enter the size of the array
The array of size 2 is:
 array[0] = 0
 array[1] = 1
Enter the size of the new array
The array of size 4 is:
 array[0] = 0
 array[1] = 1
 array[2] = 2002
 array[3] = 2003 */

Related Information
• “calloc() — Reserve and Initialize Storage” on page 80
• “_C_Quickpool_Debug() — Modify Quick Pool Memory Manager Characteristics” on page 91
• “_C_Quickpool_Init() — Initialize Quick Pool Memory Manager” on page 93
• “_C_Quickpool_Report() — Generate Quick Pool Memory Manager Report” on page 95
• “Heap Memory” on page 583
• “free() — Release Storage Blocks” on page 152
• “malloc() — Reserve Storage Block” on page 219
• “<stdlib.h>” on page 14

Library Functions 297

regcomp() — Compile Regular Expression

Format
#include <regex.h>
int regcomp(regex_t *preg, const char *pattern, int cflags);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE categories of the
current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The regcomp() function compiles the source regular expression pointed to by pattern into an executable
version and stores it in the location pointed to by preg. You can then use the regexec() function to
compare the regular expression to other strings.

The cflags flag defines the attributes of the compilation process:

cflag Description String

REG_ALT_NL • When LOCALETYPE(*LOCALE) is specified, the
newline character of the integrated file system
will be matched by regular expressions.

• When LOCALETYPE(*LOCALEUTF) is specified,
the database newline character will be matched.

If the REG_ALT_NL flag is not set, the
default for LOCALETYPE(*LOCALE) is to match
the database newline, and the default for
LOCALETYPE(*LOCALEUTF) is to match the
integrated file system newline.

Note: For UTF-8 and UTF-32, the newline
character of the integrated file system and the
database newline character are the same.

REG_EXTENDED Support extended regular expressions.

REG_NEWLINE Treat newline character as a special end-of-line
character; it then establishes the line boundaries
matched by the] and $ patterns, and can only be
matched within a string explicitly using \n. (If you
omit this flag, the newline character is treated like
any other character.)

REG_ICASE Ignore case in match.

298 IBM i: ILE C/C++ Runtime Library Functions

cflag Description String

REG_NOSUB Ignore the number of subexpressions specified
in pattern. When you compare a string to the
compiled pattern (using regexec()), the string
must match the entire pattern. The regexec()
function then returns a value that indicates only if
a match was found; it does not indicate at what
point in the string the match begins, or what the
matching string is.

Regular expressions are a context-independent syntax that can represent a wide variety of character sets
and character set orderings, which can be interpreted differently depending on the current locale. The
functions regcomp(), regerror(), regexec(), and regfree() use regular expressions in a similar
way to the UNIX awk, ed, grep, and egrep commands.

Return Value
If the regcomp() function is successful, it returns 0. Otherwise, it returns an error code that you can use
in a call to the regerror() function, and the content of preg is undefined.

Example

#include <regex.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 regex_t preg;
 char *string = "a very simple simple simple string";
 char *pattern = "\\(sim[a-z]le\\) \\1";
 int rc;
 size_t nmatch = 2;
 regmatch_t pmatch[2];

 if (0 != (rc = regcomp(&preg, pattern, 0))) {
 printf("regcomp() failed, returning nonzero (%d)\n", rc);
 exit(EXIT_FAILURE);
 }

 if (0 != (rc = regexec(&preg, string, nmatch, pmatch, 0))) {
 printf("Failed to match '%s' with '%s',returning %d.\n",
 string, pattern, rc);
 }
 else {
 printf("With the whole expression, "
 "a matched substring \"%.*s\" is found at position %d to %d.\n",
 pmatch[0].rm_eo - pmatch[0].rm_so, &string[pmatch[0].rm_so],
 pmatch[0].rm_so, pmatch[0].rm_eo - 1);
 printf("With the sub-expression, "
 "a matched substring \"%.*s\" is found at position %d to %d.\n",
 pmatch[1].rm_eo - pmatch[1].rm_so, &string[pmatch[1].rm_so],
 pmatch[1].rm_so, pmatch[1].rm_eo - 1);
 }
 regfree(&preg);
 return 0;

 /**
 The output should be similar to :

 With the whole expression, a matched substring "simple simple" is found
 at position 7 to 19.
 With the sub-expression, a matched substring "simple" is found
 at position 7 to 12.
 **/
}

Library Functions 299

Related Information
• “regerror() — Return Error Message for Regular Expression” on page 300
• “regexec() — Execute Compiled Regular Expression ” on page 301
• “regfree() — Free Memory for Regular Expression ” on page 304
• “<regex.h>” on page 10

regerror() — Return Error Message for Regular Expression

Format
#include <regex.h>
size_t regerror(int errcode, const regex_t *preg,
 char *errbuf, size_t errbuf_size);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE categories of the
current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The regerror() function finds the description for the error code errcode for the regular expression preg.
The description for errcode is assigned to errbuf. The errbuf_size value specifies the maximum message
size that can be stored (the size of errbuf). The description strings for errcode are:

errcode Description String

REG_NOMATCH regexec() failed to find a match.

REG_BADPAT Invalid regular expression.

REG_ECOLLATE Invalid collating element referenced.

REG_ECTYPE Invalid character class type referenced.

REG_EESCAPE Last character in regular expression is a \.

REG_ESUBREG Number in \digit invalid or error.

REG_EBRACK [] imbalance.

REG_EPAREN \(\) or () imbalance.

REG_EBRACE \{ \} imbalance.

REG_BADBR Expression between \{ and \} is invalid.

REG_ERANGE Invalid endpoint in range expression.

REG_ESPACE Out of memory.

REG_BADRPT ?, *, or + not preceded by valid regular expression.

300 IBM i: ILE C/C++ Runtime Library Functions

errcode Description String

REG_ECHAR Invalid multibyte character.

REG_EBOL Circumflex anchor not at beginning of regular
expression.

REG_EEOL $ anchor not at end of regular expression.

REG_ECOMP Unknown error occurred during regcomp() call.

REG_EEXEC Unknown error occurred during regexec() call.

Return Value
The regerror() function returns the size of the buffer needed to hold the string that describes the error
condition. The value of errno may be set to ECONVERT (conversion error).

Example
This example compiles an invalid regular expression, and prints an error message using the regerror()
function.

#include <regex.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 regex_t preg;
 char *pattern = "a[missing.bracket";
 int rc;
 char buffer[100];

 if (0 != (rc = regcomp(&preg, pattern, REG_EXTENDED))) {
 regerror(rc, &preg, buffer, 100);
 printf("regcomp() failed with '%s'\n", buffer);
 exit(EXIT_FAILURE);
 }
 return 0;

/**
 The output should be similar to:

 regcomp() failed with '[] imbalance.'
 **/
}

Related Information
• “regcomp() — Compile Regular Expression ” on page 298
• “regexec() — Execute Compiled Regular Expression ” on page 301
• “regfree() — Free Memory for Regular Expression ” on page 304
• “<regex.h>” on page 10

regexec() — Execute Compiled Regular Expression

Format
#include <regex.h>
int regexec(const regex_t *preg, const char *string,
 size_t nmatch, regmatch_t *pmatch, int eflags);

Library Functions 301

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE categories of the
current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The regexec() function compares the null-ended string against the compiled regular expression preg to
find a match between the two.

The nmatch value is the number of substrings in string that the regexec() function should try to match
with subexpressions in preg. The array you supply for pmatch must have at least nmatch elements.

The regexec() function fills in the elements of the array pmatch with offsets of the substrings in string
that correspond to the parenthesized subexpressions of the original pattern given to the regcomp()
function to create preg. The zeroth element of the array corresponds to the entire pattern. If there
are more than nmatch subexpressions, only the first nmatch - 1 are stored. If nmatch is 0, or if the
REG_NOSUB flag was set when preg was created with the regcomp() function, the regexec() function
ignores the pmatch argument.

The eflags flag defines customizable behavior of the regexec() function:

errflag Description String

REG_NOTBOL Indicates that the first character of string is not the
beginning of line.

REG_NOTEOL Indicates that the first character of string is not the
end of line.

When a basic or extended regular expression is matched, any given parenthesized subexpression of the
original pattern could participate in the match of several different substrings of string. The following rules
determine which substrings are reported in pmatch:

1. If subexpression i in a regular expression is not contained within another subexpression, and it
participated in the match several times, then the byte offsets in pmatch[i] will delimit the last such
match.

2. If subexpression i is not contained within another subexpression, and it did not participate in an
otherwise successful match, the byte offsets in pmatch[i] will be -1. A subexpression does not
participate in the match when any of following conditions are true:

• * or \{ \} appears immediately after the subexpression in a basic regular expression.
• *, ?, or { } appears immediately after the subexpression in an extended regular expression, and the

subexpression did not match (matched 0 times).
• | is used in an extended regular expression to select this subexpression or another, and the other

subexpression matched.
3. If subexpression i is contained within another subexpression j, and i is not contained within any other

subexpression that is contained within j, and a match of subexpression j is reported in pmatch[j], then
the match or non-match of subexpression i reported in pmatch[i] will be as described in 1. and 2.
above, but within the substring reported in pmatch[j] rather than the whole string.

302 IBM i: ILE C/C++ Runtime Library Functions

4. If subexpression i is contained in subexpression j, and the byte offsets in pmatch[j] are -1, then the
offsets in pmatch[i] also will be -1.

5. If subexpression i matched a zero-length string, then both byte offsets in pmatch[i] will be the byte
offset of the character or null terminator immediately following the zero-length string.

If the REG_NOSUB flag was set when preg was created by the regcomp() function, the contents of
pmatch are unspecified. If the REG_NEWLINE flag was set when preg was created, new-line characters
are allowed in string.

Return Value
If a match is found, the regexec() function returns 0. If no match is found, the regexec() function
returns REG_NOMATCH. Otherwise, it returns a nonzero value indicating an error. A nonzero return value
can be used in a call to the regerror() function.

Example

#include <regex.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 regex_t preg;
 char *string = "a very simple simple simple string";
 char *pattern = "\\(sim[a-z]le\\) \\1";
 int rc;
 size_t nmatch = 2;
 regmatch_t pmatch[2];

 if (0 != (rc = regcomp(&preg, pattern, 0))) {
 printf("regcomp() failed, returning nonzero (%d)\n", rc);
 exit(EXIT_FAILURE);
 }

 if (0 != (rc = regexec(&preg, string, nmatch, pmatch, 0))) {
 printf("Failed to match '%s' with '%s',returning %d.\n",
 string, pattern, rc);
 }
 else {
 printf("With the whole expression, "
 "a matched substring \"%.*s\" is found at position %d to %d.\n",
 pmatch[0].rm_eo - pmatch[0].rm_so, &string[pmatch[0].rm_so],
 pmatch[0].rm_so, pmatch[0].rm_eo - 1);
 printf("With the sub-expression, "
 "a matched substring \"%.*s\" is found at position %d to %d.\n",
 pmatch[1].rm_eo - pmatch[1].rm_so, &string[pmatch[1].rm_so],
 pmatch[1].rm_so, pmatch[1].rm_eo - 1);
 }
 regfree(&preg);
 return 0;

 /**
 The output should be similar to :

 With the whole expression, a matched substring "simple simple" is found
 at position 7 to 19.
 With the sub-expression, a matched substring "simple" is found
 at position 7 to 12.
 **/
}

Related Information
• “regcomp() — Compile Regular Expression ” on page 298
• “regerror() — Return Error Message for Regular Expression” on page 300
• “regfree() — Free Memory for Regular Expression ” on page 304
• “<regex.h>” on page 10

Library Functions 303

regfree() — Free Memory for Regular Expression

Format
#include <regex.h>
void regfree(regex_t *preg);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE categories of the
current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The regfree() function frees any memory that was allocated by the regcomp() function to implement
the regular expression preg. After the call to the regfree() function, the expression that is defined by
preg is no longer a compiled regular or extended expression.

Return Value
There is no return value.

Example
This example compiles an extended regular expression.

#include <regex.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 regex_t preg;
 char *pattern = ".*(simple).*";
 int rc;

 if (0 != (rc = regcomp(&preg, pattern, REG_EXTENDED))) {
 printf("regcomp() failed, returning nonzero (%d)\n", rc);
 exit(EXIT_FAILURE);
 }

 regfree(&preg);
 printf("regcomp() is successful.\n");
 return 0;

/**
 The output should be similar to:

 regcomp() is successful.
 **/
}

Related Information
• “regcomp() — Compile Regular Expression ” on page 298

304 IBM i: ILE C/C++ Runtime Library Functions

• “regerror() — Return Error Message for Regular Expression” on page 300
• “regexec() — Execute Compiled Regular Expression ” on page 301
• “<regex.h>” on page 10

remove() — Delete File

Format
#include <stdio.h>
int remove(const char *filename);

Language Level
ANSI

Threadsafe
Yes

Description
The remove() function deletes the file specified by filename. If the filename contains the member name,
the member is removed or the file is deleted.

Note: You cannot remove a nonexistent file or a file that is open.

Return Value
The remove() function returns 0 if it successfully deletes the file. A nonzero return value indicates an
error.

The value of errno may be set to ECONVERT (conversion error).

Example
When you call this example with a file name, the program attempts to remove that file. It issues a
message if an error occurs.

#include <stdio.h>

int main(int argc, char ** argv)
{
 if (argc != 2)
 printf("Usage: %s fn\n", argv[0]);
 else
 if (remove(argv[1]) != 0)
 perror("Could not remove file");
}

Related Information
• “fopen() — Open Files” on page 134
• “rename() — Rename File” on page 306
• “<stdio.h>” on page 13

Library Functions 305

rename() — Rename File

Format
#include <stdio.h>
int rename(const char *oldname, const char *newname);

Language Level
ANSI

Threadsafe
Yes

Description
The rename() function renames the file specified by oldname to the name given by newname. The
oldname pointer must specify the name of an existing file. The newname pointer must not specify the
name of an existing file. You cannot rename a file with the name of an existing file. You also cannot
rename an open file.

The file formats that can be used to satisfy the new name depend on the format of the old name.
The following table shows the valid file formats that can be used to specify the old file name and the
corresponding valid file formats for the new name.

If the format for both new name and old name is lib/file(member), then the file cannot change. If the
file name changes, rename will not work. For example, the following is not valid: lib/file1(member1)
lib/file2(member1).

Old Name New Name

lib/file(member) lib/file(member), lib/file, file, file(member)

lib/file lib/file, file

file lib/file, file

file(member) lib/file(member), lib/file, file, file(member)

Return Value
The rename() function returns 0 if successful. On an error, it returns a nonzero value.

The value of errno may be set to ECONVERT (conversion error).

Example
This example takes two file names as input and uses rename() to change the file name from the first
name to the second name.

#include <stdio.h>

int main(int argc, char ** argv)
{
 if (argc != 3)
 printf("Usage: %s old_fn new_fn\n", argv[0]);
 else if (rename(argv[1], argv[2]) != 0)
 perror ("Could not rename file");
}

306 IBM i: ILE C/C++ Runtime Library Functions

Related Information
• “fopen() — Open Files” on page 134
• “remove() — Delete File” on page 305
• “<stdio.h>” on page 13

rewind() — Adjust Current File Position

Format
#include <stdio.h>
void rewind(FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Description
The rewind() function repositions the file pointer associated with stream to the beginning of the file. A
call to the rewind() function is the same as:

 (void)fseek(stream, 0L, SEEK_SET);

except that the rewind() function also clears the error indicator for the stream.

The rewind() function is not supported for files opened with type=record.

Return Value
There is no return value.

The value of errno may be set to:
Value

Meaning
EBADF

The file pointer or descriptor is not valid.
ENODEV

Operation attempted on a wrong device.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

Example
This example first opens a file myfile for input and output. It writes integers to the file, uses rewind() to
reposition the file pointer to the beginning of the file, and then reads in the data.

Library Functions 307

#include <stdio.h>

FILE *stream;

int data1, data2, data3, data4;
int main(void)
{
 data1 = 1; data2 = -37;

 /* Place data in the file */
 stream = fopen("mylib/myfile", "w+");
 fprintf(stream, "%d %d\n", data1, data2);

 /* Now read the data file */
 rewind(stream);
 fscanf(stream, "%d", &data3);
 fscanf(stream, "%d", &data4);
 printf("The values read back in are: %d and %d\n",
 data3, data4);
}

/******************** Output should be similar to: **************

The values read back in are: 1 and -37
*/

Related Information
• “fgetpos() — Get File Position” on page 124
• “fseek() – fseeko() — Reposition File Position” on page 158
• “fsetpos() — Set File Position” on page 160
• “ftell() – ftello() — Get Current Position” on page 162
• “<stdio.h>” on page 13

_Rfeod() — Force the End-of-Data

Format
#include <recio.h>

int _Rfeod(_RFILE *fp);

Language Level
ILE C Extension

Threadsafe
Yes

Description
The _Rfeod() function forces an end-of-data condition for a device or member associated with the file
specified by fp. Any outstanding updates, deletes or writes that the system is buffering will be forced to
nonvolatile storage. If a database file is open for input, any outstanding locks will be released.

The _Rfeod() function positions the file to *END unless the file is open for multi-member processing and
the current member is not the last member in the file. If multi-member processing is in effect and the
current member is not the last member in the file, _Rfeod() will open the next member of the file and
position it to *START.

The _Rfeod() function is valid for all types of files.

308 IBM i: ILE C/C++ Runtime Library Functions

Return Value
The _Rfeod() function returns 1 if multi-member processing is taking place and the next member has
been opened. EOF is returned if the file is positioned to *END. If the operation is unsuccessful, zero is
returned. The value of errno may be set to EIOERROR (a non-recoverable error occurred) or EIORECERR
(a recoverable I/O error occurred). See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *in;
 char new_purchase[21] = "PEAR 1002022244";

 /* Open the file for processing in keyed sequence. */

 if ((in = _Ropen("MYLIB/T1677RD4", "rr+, arrseq=N")) == NULL)
 {
 printf("Open failed\n");
 exit(1);
 };

 /* Update the first record in the keyed sequence. */

 _Rlocate(in, NULL, 0, __FIRST);
 _Rupdate(in, new_purchase, 20);

 /* Force the end of data. */

 _Rfeod(in);

Related Information
• “_Racquire() — Acquire a Program Device” on page 288
• “_Rfeov() — Force the End-of-File” on page 309

_Rfeov() — Force the End-of-File

Format
#include <recio.h>

int _Rfeov(_RFILE *fp);

Language Level
ILE C Extension

Threadsafe
Yes

Description
The _Rfeov() function forces an end-of-volume condition for a tape file that is associated with the file
that is specified by fp. The _Rfeov() function positions the file to the next volume of the file. If the file is
open for output, the output buffers will be flushed.

The _Rfeov() function is valid for tape files.

Library Functions 309

Return Value
The _Rfeov() function returns 1 if the file has moved from one volume to the next. It will return EOF if
it is called while processing the last volume of the file. It will return zero if the operation is unsuccessful.
The value of errno may be set to EIOERROR (a non-recoverable error occurred) or EIORECERR (a
recoverable I/O error occurred). See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <recio.h>
#include <stdlib.h>

int main(void)
{
 _RFILE *tape;
 _RFILE *fp;
 char buf[92];
 int i, feov2;

 /* Open source physical file containing C source. */

 if ((fp = _Ropen ("QCSRC(T1677SRC)", "rr blkrcd=y")) == NULL)
 {
 printf ("could not open C source file\n");
 exit (1);
 }

 /* Open tape file to receive C source statements */

 if ((tape = _Ropen ("T1677TPF", "wr lrecl=92 blkrcd=y")) == NULL)
 {
 printf ("could not open tape file\n");
 exit (2);
 }

 /* Read the C source statements, find their sizes */
 /* and add them to the tape file. */

 while ((_Rreadn (fp, buf, sizeof(buf), __DFT)) -> num_bytes != EOF
)
 {
 for (i = sizeof(buf) - 1 ; buf[i] == ' ' && i > 12; --i);
 i = (i == 12) ? 80 : (1-12);
 memmove(buf, buf+12, i);
 _Rwrite (tape, buf, i);
 }
 feov2 = _Rfeov (fp);

 _Rclose (fp);
 _Rclose (tape);
}

Related Information
• “_Racquire() — Acquire a Program Device” on page 288
• “_Rfeod() — Force the End-of-Data” on page 308

_Rformat() — Set the Record Format Name

Format
#include <recio.h>

void _Rformat(_RFILE *fp, char *fmt);

Language Level
ILE C Extension

310 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

Description
The _Rformat() function sets the record format to fmt for the file specified by fp.

The fmt parameter is a null-ended C string. The fmt parameter must be in uppercase.

The _Rformat() function is valid for multi-format logical database, DDM files, display, ICF and printer
files.

Return Value
The _Rformat() function returns void. See Table 22 on page 549 and Table 24 on page 553 for errno
settings.

Example
This example shows how _Rformat() is used.

Library Functions 311

#include <stdio.h>
#include <recio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
 char buf[40];
 int rc = 1;
 _RFILE *purf;
 _RFILE *dailyf;

 /* Open purchase display file and daily transaction file */
 if ((purf = _Ropen ("MYLIB/T1677RD3", "ar+,indicators=y")) == NULL)
 {
 printf ("Display file did not open.\n");
 exit (1);
 }

 if ((dailyf = _Ropen ("MYLIB/T1677RDA", "wr,commit=y")) == NULL)
 {
 printf ("Daily transaction file did not open.\n");
 exit (2);
 }

 /* Select purchase record format */
 _Rformat (purf, "PURCHASE");

 /* Invite user to enter a purchase transaction. */
 /* The _Rwrite function writes the purchase display. */
 _Rwrite (purf, "", 0);
 _Rreadn (purf, buf, sizeof(buf), __DFT);

 /* Update daily transaction file */
 rc = ((_Rwrite (dailyf, buf, sizeof(buf)))->num_bytes);

 /* If the databases were updated, then commit the transaction. */
 /* Otherwise, rollback the transaction and indicate to the */
 /* user that an error has occurred and end the application. */
 if (rc)
 {
 _Rcommit ("Transaction complete");
 }
 else
 {
 _Rrollbck ();
 _Rformat (purf, "ERROR");
 }

 _Rclose (purf);
 _Rclose (dailyf);
}

Related Information
• “_Ropen() — Open a Record File for I/O Operations” on page 319

_Rindara() — Set Separate Indicator Area

Format
#include <recio.h>

void _Rindara(_RFILE *fp, char *indic_buf);

Language Level
ILE C Extension

312 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
No

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

Description
The _Rindara() function registers indic_buf as the separate indicator area to be used by the file
specified by fp. The file must be opened with the keyword indicators=Y on the _Ropen() function. The
DDS for the file should specify also that a separate indicator area is to be used. It is generally best to
initialize a separate indicator area explicitly with '0' (character) in each byte.

The _Rindara() function is valid for display, ICF, and printer files.

Return Value
The _Rindara() function returns void. See Table 22 on page 549 and Table 24 on page 553 for errno
settings.

Library Functions 313

Example

#include <stdio.h>
#include <recio.h>
#include <stdlib.h>
#include <string.h>
#define PF03 2
#define IND_OFF '0'
#define IND_ON '1'

int main(void)
{
 char buf[40];
 int rc = 1;
 _SYSindara ind_area;
 _RFILE *purf;
 _RFILE *dailyf;
 /* Open purchase display file and daily transaction file */
 if ((purf = _Ropen ("MYLIB/T1677RD3", "ar+,indicators=y")) == NULL)
 {
 printf ("Display file did not open.\n");
 exit (1);
 }
 if ((dailyf = _Ropen ("MYLIB/T1677RDA", "wr,commit=y")) == NULL)
 {
 printf ("Daily transaction file did not open.\n");
 exit (2);
 }
 /* Associate separate indicator area with purchase file */
 _Rindara (purf, ind_area);
 /* Select purchase record format */
 _Rformat (purf, "PURCHASE");
 /* Invite user to enter a purchase transaction. */
 /* The _Rwrite function writes the purchase display. */
 _Rwrite (purf, "", 0);
 _Rreadn (purf, buf, sizeof(buf), __DFT);
 /* While user is entering transactions, update daily and */
 /* monthly transaction files. */
 while (rc && ind_area[PF03] == IND_OFF)
 {
 rc = ((_Rwrite (dailyf, buf, sizeof(buf)))->num_bytes);
 /* If the databases were updated, then commit transaction */
 /* otherwise, rollback the transaction and indicate to the */
 /* user that an error has occurred and end the application. */
 if (rc)
 {
 _Rcommit ("Transaction complete");
 }
 else
 {
 _Rrollbck ();
 _Rformat (purf, "ERROR");
 }
 _Rwrite (purf, "", 0);
 _Rreadn (purf, buf, sizeof(buf), __DFT);
 }

 _Rclose (purf);
 _Rclose (dailyf);
}

Related Information
• “_Ropen() — Open a Record File for I/O Operations” on page 319

_Riofbk() — Obtain I/O Feedback Information

Format
#include <recio.h>
#include <xxfdbk.h>
_XXIOFB_T *_Riofbk(_RFILE *fp);

314 IBM i: ILE C/C++ Runtime Library Functions

Language Level
ILE C Extension

Threadsafe
Yes

Description
The _Riofbk() function returns a pointer to a copy of the I/O feedback area for the file that is specified
by fp.

The _Riofbk() function is valid for all types of files.

Return Value
The _Riofbk() function returns NULL if an error occurs. See Table 22 on page 549 and Table 24 on page
553 for errno settings.

Example

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>
typedef struct {
 char name[20];
 char address[25];
} format1 ;
typedef struct {
 char name[8];
 char password[10];
} format2 ;
typedef union {
 format1 fmt1;
 format2 fmt2;
} formats ;

int main(void)
{
 _RFILE *fp; /* File pointer */
 _RIOFB_T *rfb; /*Pointer to the file's feedback structure */
 _XXIOFB_T *iofb; /* Pointer to the file's feedback area */
 formats buf, in_buf, out_buf; /* Buffers to hold data */
 /* Open the device file. */
 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)
 {
 printf ("Could not open file\n");
 exit (1);
 }
 _Racquire (fp,"DEVICE1"); /* Acquire another device. Replace */
 /* with actual device name. */
 _Rformat (fp,"FORMAT1"); /* Set the record format for the */
 /* display file. */
 rfb = _Rwrite (fp, "", 0); /* Set up the display. */
 _Rpgmdev (fp,"DEVICE2"); /* Change the default program device. */
 /* Replace with actual device name. */
 _Rformat (fp,"FORMAT2"); /* Set the record format for the */
 /* display file. */
 rfb = _Rwrite (fp, "", 0); /* Set up the display. */
 rfb = _Rwriterd (fp, &buf, sizeof(buf));
 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,
 sizeof(out_buf));
 _Rreadindv (fp, &buf, sizeof(buf), __DFT);
 /* Read from the first device that */
 /* enters data - device becomes */
 /* default program device. */
 /* Determine which terminal responded first. */
 iofb = _Riofbk (fp);
 if (!strncmp ("FORMAT1 ", iofb -> rec_format, 10))
 {
 _Rrelease (fp, "DEVICE1");

Library Functions 315

 }
 else
 {
 _Rrelease(fp, "DEVICE2");
 }
 /* Continue processing. */
 printf ("Data displayed is %45.45s\n", &buf);
 _Rclose (fp);
}

Related Information
• “_Ropnfbk() — Obtain Open Feedback Information” on page 323

_Rlocate() — Position a Record

Format
#include <recio.h>

_RIOFB_T *_Rlocate(_RFILE *fp, void *key, int klen_rrn, int opts);

Language Level
ILE C Extension

Threadsafe
Yes

However, if the file pointer is passed among threads, the I/O feedback area is shared among those
threads.

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

Description
The _Rlocate() function positions to the record in the file associated with fp and specified by the key,
klen_rrn and opts parameters. The _Rlocate() function locks the record specified by the key, klen_rrn
and opts parameters unless __NO_LOCK is specified.

The _Rlocate() function is valid for database and DDM files that are opened with the _Ropen()
function. The following are valid parameters of the _Rlocate() function.

key
Points to a string containing the key fields to be used for positioning.

klen_rrn
Specifies the length of the key that is used if positioning by key or the relative record number if
positioning by relative record number.

opts
Specifies positioning options to be used for the locate operation. The possible macros are:
__DFT

Default to __KEY_EQ and lock the record for update if the file is open for updating.

316 IBM i: ILE C/C++ Runtime Library Functions

__END
Positions to just after the last record in a file. There is no record that is associated with this
position.

__END_FRC
Positions to just after the last record in a file. All buffered changes are made permanent. There is
no record that is associated with this position.

__FIRST
Positions to the first record in the access path that is currently being used by fp. The key
parameter is ignored.

__KEY_EQ
Positions to the first record with the specified key.

__KEY_GE
Positions to the first record that has a key greater than or equal to the specified key.

__KEY_GT
Positions to the first record that has a key greater than the specified key.

__KEY_LE
Positions to the first record that has a key less than or equal to the specified key.

__KEY_LT
Positions to the first record that has a key less than the specified key.

__KEY_NEXTEQ
Positions to the next record that has a key equal to the key value with a length of klen_rrn, at the
current position. The key parameter is ignored.

__KEY_NEXTUNQ
Positions to the next record with a unique key from the current position in the access path. The key
parameter is ignored.

__KEY_PREVEQ
Positions to the previous record with a key equal to the key value with a length of klen_rrn, at the
current position. The key parameter is ignored.

__KEY_PREVUNQ
Positions to the previous record with a unique key from the current position in the access path.
The key parameter is ignored.

__LAST
Positions to the last record in the access path that is currently being used by fp. The key parameter
is ignored.

__NEXT
Positions to the next record in the access path that is currently being used by fp. The key
parameter is ignored.

__PREVIOUS
Positions to the previous record in the access path that is currently being used by fp. The key
parameter is ignored.

__RRN_EQ
Positions to the record that has the relative record number specified on the klen_rrn parameter.

__START
Positions to just before the first record in the file. There is no record that is associated with this
position.

__START_FRC
Positions to just before the first record in a file. There is no record that is associated with this
position. All buffered changes are made permanent.

__DATA_ONLY
Positions to data records only. Deleted records will be ignored.

Library Functions 317

__KEY_NULL_MAP
The NULL key map is to be considered when locating to a record by key.

__NO_LOCK
The record that is positioned will not be locked.

__NO_POSITION
The position of the file is not changed, but the located record will be locked if the file is open for
update.

__PRIOR
Positions to just before the requested record.

If you specify a start or end option (__START, __START_FRC, __END or __END_FRC) with any other
options, the start or end option takes precedence and the other options might be ignored.

If you are positioned to __START or __END and perform a _Rreads operation, errno is set to EIOERROR.

Return Value
The _Rlocate() function returns a pointer to the _RIOFB_T structure associated with fp. If the
_Rlocate() operation is successful, the num_bytes field contains 1. If __START, __START_FRC, _END
or __END_FRC are specified, the num_bytes field is set to EOF. If the _Rlocate() operation is
unsuccessful, the num_bytes field contains zero. The key and rrn fields are updated, and the key field
will contain the complete key even if a partial key is specified.

The value of errno may be set to:

Table 8. Errno Values

Value Meaning

EBADKEYLN The key length that is specified is not valid.

ENOTREAD The file is not open for read operations

EIOERROR A non-recoverable I/O error occurred.

EIORECERR A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

318 IBM i: ILE C/C++ Runtime Library Functions

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *in;
 char new_purchase[21] = "PEAR 1002022244";

 /* Open the file for processing in keyed sequence. */

 if ((in = _Ropen("MYLIB/T1677RD4", "rr+, arrseq=N")) == NULL)
 {
 printf("Open failed\n");
 exit(1);
 };

 /* Update the first record in the keyed sequence. */

 _Rlocate(in, NULL, 0, __FIRST);
 _Rupdate(in, new_purchase, 20);

 /* Force the end of data. */

 _Rfeod(in);

 _Rclose(in);
}

Related Information
• “_Ropen() — Open a Record File for I/O Operations” on page 319

_Ropen() — Open a Record File for I/O Operations

Format
#include <recio.h>

_RFILE *_Ropen(const char * filename, const char * mode, ...);

Language Level
ILE C Extension

Threadsafe
Yes

Description
The _Ropen() function opens the record file specified by filename according to the mode parameter,
which may be followed by optional parameters, if the varparm keyword parameter is specified in the
mode parameter. The open mode and keyword parameters may be separated by a comma and one or
more spaces. The _Ropen() function does not dynamically create database files for you. All of the files
you refer to in the _Ropen() function must exist, or the open operation will fail.

Files that are opened by the _Ropen() function are closed implicitly when the activation group they are
opened in, is ended. If a pointer to a file opened in one activation group is passed to another activation
group and the opening activation group is ended, the file pointer will no longer be valid.

The _Ropen() function applies to all types of files. The filename variable is any valid IBM i system file
name.

Library Functions 319

The mode parameter specifies the type of access that is requested for the file. It contains an open mode
that is followed by optional keyword parameters. The mode parameter may be one of the following values:
Mode

Description
rr

Open an existing file for reading records.
wr

Open an existing file for writing records. If the file contains data, the content is cleared unless the file
is a logical file.

ar
Open an existing file for writing records to the end of the file (append).

rr+
Open an existing file for reading, writing or updating records.

wr+
Open an existing file for reading, writing or updating records. If the file contains data, the content is
cleared unless the file is a logical file.

ar+
Open an existing file for reading and writing records. All data is written to the end of the file.

The mode may be followed by any of the following keyword parameters:
Keyword

Description
arrseq=value

Where value can be:
Y

Specifies that the file is processed in arrival sequence.
N

Specifies that the file is processed using the access path that is used when the file was created.
This is the default.

blkrcd=value
Where value can be:
Y

Performs record blocking. The operating system determines the most efficient block size for you.
This parameter is valid for database, DDM, diskette and tape files. It is only valid for files opened
for input-only or output-only (modes rr, wr, or ar).

N
Does not perform record blocking. This is the default.

ccsid=value
Specifies the CCSID that is used for translation of the file. The default is 0 which indicates that the job
CCSID is used.

commit=value
Where value can be:
Y

Specifies that the database file is opened under commitment control. Commitment control must
have been set up prior to this.

N
Specifies that the database file is not opened under commitment control. This is the default.

dupkey=value
value can be:
Y

Duplicate key values will be flagged in the _RIOFB_T structure.

320 IBM i: ILE C/C++ Runtime Library Functions

N
Duplicate key values will not be flagged. This is the default.

indicators=value
Indicators are valid for printer, display, and ICF files. value can be:
Y

The indicators that are associated with the file are returned in a separate indicator area instead of
in the I/O buffers.

N
The indicators are returned in the I/O buffers. This is the default.

insertkeyfb=value
Where value can be:
Y

Specifies that insert key feedback is requested for keyed files opened for writing with arrseq=N.
This is the default.

N
Specifies that insert key feedback is not requested.

Note: If the key field of the _RIOFB_T structure is never referenced by the application following writes,
specifying insertkeyfb=N can result in better performance when writing. When the last I/O operation
is writing, the _Rupfb() function will not update the _RIOFB_T structure with information about this
writing operation if insertkeyfb=N is specified.

keyfb=value
Where value can be:
Y

Specifies that read key feedback is requested for keyed files opened for reading with arrseq=N.
This is the default.

N
Specifies that read key feedback is not requested.

Note: If the key field of the _RIOFB_T structure is never referenced by the application, specifying
keyfb=N can result in better performance. When the last I/O operation is reading, the _Rupfb()
function will not update the _RIOFB_T structure with information about this reading operation if
keyfb=N is specified.

lrecl=value
The length, in bytes, for fixed length records, and the maximum length for variable length records.
This parameter is valid for diskette, display, printer, tape, and save files.

nullcap=value
Where value can be:
Y

The program is capable of handling null fields in records. This is valid for database and DDM files.
N

The program cannot handle null fields in records. This is the default.
riofb=value

Where value can be:
Y

All fields in the _RIOFB_T structure are updated by any I/O operation that returns a pointer to
the _RIOFB_T structure. However, the blk_filled_by field is not updated when using the _Rreadk
function. This is the default.

N
Only the num_bytes field in the _RIOFB_T structure is updated.

rtncode=value
Where value can be:

Library Functions 321

Y
Use this option to bypass exception generation and handling. This will improve performance in the
end-of-file and record-not-found cases. If the end-of-file is encountered, num_bytes will be set to
EOF, but no errno values will be generated. If no record is found, num_bytes will be set to zero,
and errno will be set to EIORECERR. This parameter is only valid for database and DDM files. For
DDM files, num_bytes is not updated for _Rfeod.

N
The normal exception generation and handling process will occur for the cases of end-of-file and
record-not-found. This is the default.

secure=value
Where value can be:
Y

Secures the file from overrides.
N

Does not secure the file from overrides. This is the default.
splfname=(value)

For spooled output only. Where value can be:
*FILE

The name of the printer file is used for the spooled output file name.
spool-file-name

Specify the name of the spooled output file. A maximum of 10 characters can be used.
usrdta=(value)

To specify, for spooled output only, user-specified data that identifies the file.
user-data

Specify up to 10 characters of user-specified text.
varparm=(list)

Where (list) is a list of optional keywords indicating which optional parameters will be passed to
_Ropen(). The order of the keywords within the list indicates the order that the optional parameters
will appear after the mode parameter. The following is a valid optional keyword:
lvlchk

The lvlchk keyword is used in conjunction with the lvlchk option on #pragma mapinc. When this
keyword is used, a pointer to an object of type _LVLCHK_T (generated by #pragma mapinc) must
be specified after the mode parameter on the _Ropen() function. For more details on this pointer,
see the lvlchk option of #pragma mapinc in the ILE C/C++ Programmer's Guide.

vlr=value
Variable length record, where value is the minimum length of bytes of a record to be written to the file.
The value can equal -1, or range from 0 to the maximum record length of the file. This parameter is
valid for database and DDM files.

When VLR processing is required, _Ropen() will set min_length field. If the default value is not used,
the minimum value that is provided by the user will be directly copied into min_length field. If the
default value is specified, _Ropen() gets the minimum length from DB portion of the open data path.

Return Value
The _Ropen() function returns a pointer to a structure of type _RFILE if the file is opened successfully. It
returns NULL if opening the file is unsuccessful.

The value of errno may be set to:
Value

Meaning
EBADMODE

The file mode that is specified is not valid.

322 IBM i: ILE C/C++ Runtime Library Functions

EBADNAME
The file name that is specified is not valid.

ECONVERT
A conversion error occurred.

ENOTOPEN
The file is not open.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *fp;

 /* Open the file for processing in arrival sequence. */
 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)
 {
 printf ("Open failed\n");
 exit (1);
 }
 else
 /* Do some processing */;

 _Rclose (fp);
}

Related Information
• “_Rclose() — Close a File” on page 289
• “<recio.h>” on page 7

_Ropnfbk() — Obtain Open Feedback Information

Format
#include <recio.h>
#include <xxfdbk.h>

_XXOPFB_T *_Ropnfbk(_RFILE *fp);

Language Level
ILE C Extension

Threadsafe
Yes

Library Functions 323

Description
The _Ropnfbk() function returns a pointer to a copy of the open feedback area for the file that is
specified by fp.

The _Ropnfbk() function is valid for all types of files.

Return Value
The _Ropnfbk() function returns NULL if an error occurs. See Table 22 on page 549 and Table 24 on
page 553 for errno settings.

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *fp;
 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */
 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)
 {
 printf ("Open failed\n");
 exit (1);
 }

 /* Get the library and file names of the file opened. */
 opfb = _Ropnfbk (fp);
 printf ("Library: %10.10s\nFile: %10.10s\n",
 opfb->library_name,
 opfb->file_name);

 _Rclose (fp);
}

Related Information
• “_Rupfb() — Provide Information on Last I/O Operation” on page 350

_Rpgmdev() — Set Default Program Device

Format
#include <recio.h>
int _Rpgmdev(_RFILE *fp, char *dev);

Language Level
ILE C Extension

Threadsafe
No

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

324 IBM i: ILE C/C++ Runtime Library Functions

Description
The _Rpgmdev() function sets the current program device for the file that is associated with fp to dev.
You must specify the device in uppercase.

The dev parameter is a null-ended C string.

The _Rpgmdev() function is valid for display, ICF, and printer files.

Return Value
The _Rpgmdev() function returns 1 if the operation is successful or zero if the device specified has not
been acquired for the file. See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>

typedef struct {
 char name[20];
 char address[25];
} format1 ;

typedef struct {
 char name[8];
 char password[10];
} format2 ;

typedef union {
 format1 fmt1;
 format2 fmt2;
} formats ;

int main(void)
{
 _RFILE *fp; /* File pointer */
 _RIOFB_T *rfb; /*Pointer to the file's feedback structure */
 formats buf, in_buf, out_buf; /* Buffers to hold data */

 /* Open the device file. */
 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)
 {
 printf ("Could not open file\n");
 exit (1);
 }

 _Rpgmdev (fp,"DEVICE2");/* Change the default program device. */
 /* Replace with actual device name. */

 _Rformat (fp,"FORMAT2"); /* Set the record format for the */
 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */
 rfb = _Rwriterd (fp, &buf, sizeof(buf));

 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,
 sizeof(out_buf));

 /* Continue processing. */

 _Rclose (fp);
}

Related Information
• “_Racquire() — Acquire a Program Device” on page 288
• “_Rrelease() — Release a Program Device” on page 344

Library Functions 325

_Rreadd() — Read a Record by Relative Record Number

Format
#include <recio.h>

_RIOFB_T *_Rreadd (_RFILE *fp, void *buf, size_t size,
 int opts, long rrn);

Language Level
ILE C Extension

Threadsafe
Yes

However, if the file pointer is passed among threads, the I/O feedback area is shared among those
threads.

Description
The _Rreadd() function reads the record that is specified by rrn in the arrival sequence access path for
the file that is associated with fp. If the file is opened for updating, the _Rreadd() function locks the
record specified by the rrn unless __NO_LOCK is specified. If the file is a keyed file, the keyed access path
is ignored. Up to size number of bytes are copied from the record into buf (move mode only).

The following parameters are valid for the _Rreadd() function.
buf

Points to the buffer where the data that is read is to be stored. If locate mode is used, this parameter
must be set to NULL.

size
Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

rrn
The relative record number of the record to be read.

opts
Specifies the processing and access options for the file. The possible options are:
__DFT

If the file is opened for updating, then the record being read is locked for update. The previously
locked record will no longer be locked.

__NO_LOCK
Does not lock the record being positioned to.

The _Rreadd() function is valid for database, DDM and display (subfiles) files.

Return Value
The _Rreadd() function returns a pointer to the _RIOFB_T structure associated with fp. If the
_Rreadd() operation is successful the num_bytes field is set to the number of bytes transferred from
the system buffer to the user's buffer (move mode) or the record length of the file (locate mode). If
blkrcd=Y and riofb=Y are specified, the blk_count and the blk_filled_by fields of the _RIOFB_T structure
are updated. The key and rrn fields are also updated. If the file associated with fp is a display file, the
sysparm field is updated. If it is unsuccessful, the num_bytes field is set to a value less than size and errno
will be changed.

The value of errno may be set to:

326 IBM i: ILE C/C++ Runtime Library Functions

Value
Meaning

ENOTREAD
The file is not open for read operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *fp;
 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */
 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)
 {
 printf ("Open failed\n");
 exit (1);
 }

 /* Get the library and file names of the file opened. */
 opfb = _Ropnfbk (fp);
 printf ("Library: %10.10s\nFile: %10.10s\n",
 opfb->library_name,
 opfb->file_name);

 /* Get the second record. */
 _Rreadd (fp, NULL, 20, __DFT, 2);
 printf ("Second record: %10.10s\n", *(fp->in_buf));

 _Rclose (fp);
}

Related Information
• “_Rreadf() — Read the First Record” on page 328
• “_Rreadindv() — Read from an Invited Device” on page 330
• “_Rreadk() — Read a Record by Key” on page 332
• “_Rreadl() — Read the Last Record” on page 335
• “_Rreadn() — Read the Next Record” on page 336
• “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 339
• “_Rreadp() — Read the Previous Record” on page 340
• “_Rreads() — Read the Same Record” on page 342

Library Functions 327

_Rreadf() — Read the First Record

Format
#include <recio.h>

_RIOFB_T *_Rreadf (_RFILE *fp, void *buf, size_t size, int opts);

Language Level
ILE C Extension

Threadsafe
Yes

However, if the file pointer is passed among threads, the I/O feedback area is shared among those
threads.

Description
The _Rreadf() function reads the first record in the access path that is currently being used for the
file specified by fp. The access path may be keyed sequence or arrival sequence. If the file is opened
for updating, the _Rreadf() function locks the first record unless __NO_LOCK is specified. Up to size
number of bytes are copied from the record into buf (move mode only).

The following are valid parameters for the _Rreadf() function.
buf

This parameter points to the buffer where the data that is read is to be stored. If locate mode is used,
this parameter must be set to NULL.

size
This parameter specifies the number of bytes that are to be read and stored in buf. If locate mode is
used, this parameter is ignored.

opts
This parameter specifies the processing and access options for the file. The possible options are:
__DFT

If the file is opened for updating, then the record being read or positioned to is locked for update.
The previously locked record will no longer be locked.

__NO_LOCK
Does not lock the record being positioned to.

The _Rreadf() function is valid for database and DDM files.

Return Value
The _Rreadf() function returns a pointer to the _RIOFB_T structure that is specified by fp. If the
_Rreadf() operation is successful the num_bytes field is set to the number of bytes transferred from
the system buffer to the user's buffer (move mode) or the record length of the file (locate mode). The key
and rrn fields are updated. If record blocking is taking place, the blk_count and blk_filled_by fields are
updated. The num_bytes field is set to EOF if the file is empty. If it is unsuccessful, the num_bytes field is
set to a value less than size, and errno is changed.

The value of errno may be set to:
Value

Meaning

328 IBM i: ILE C/C++ Runtime Library Functions

ENOTREAD
The file is not open for read operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *fp;
 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */
 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)
 {
 printf ("Open failed\n");
 exit (1);
 }

 /* Get the library and file names of the file opened. */
 opfb = _Ropnfbk (fp);
 printf ("Library: %10.10s\nFile: %10.10s\n",
 opfb->library_name,
 opfb->file_name);

 /* Get the first record. */
 _Rreadf (fp, NULL, 20, __DFT);
 printf ("First record: %10.10s\n", *(fp->in_buf));

 /* Delete the first record. */
 _Rdelete (fp);

 _Rclose (fp);
}

Related Information
• “_Rreadd() — Read a Record by Relative Record Number” on page 326
• “_Rreadindv() — Read from an Invited Device” on page 330
• “_Rreadk() — Read a Record by Key” on page 332
• “_Rreadl() — Read the Last Record” on page 335
• “_Rreadn() — Read the Next Record” on page 336
• “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 339
• “_Rreadp() — Read the Previous Record” on page 340
• “_Rreads() — Read the Same Record” on page 342

Library Functions 329

_Rreadindv() — Read from an Invited Device

Format
#include <recio.h>

_RIOFB_T *_Rreadindv(_RFILE *fp, void *buf, size_t size, int opts);

Language Level
ILE C Extension

Threadsafe
No

Description
The _Rreadindv() function reads data from an invited device.

The following are valid parameters for the _Rreadindv() function.
buf

Points to the buffer where the data that is read is to be stored. If locate mode is used, this parameter
must be set to NULL.

size
Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

opts
Specifies the processing options for the file. Possible values are:
__DFT

If the file is opened for updating, then the record being read or positioned to is locked. Otherwise,
the option is ignored.

The _Rreadindv() function is valid for display and ICF files.

Return Value
The _Rreadindv() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rreadindv() function is successful, the num_bytes field is set to the number of bytes transferred from
the system buffer to the user's buffer (move mode) or the record length of the file (locate mode). The
sysparm and rrn (for subfiles) fields are also updated. The num_bytes field is set to EOF if the file is empty.
If the _Rreadindv() function is unsuccessful, the num_bytes field is set to a value less than the value of
size and the errno will be changed.

The value of errno may be set to:
Value

Meaning
ENOTREAD

The file is not open for read operations.
ETRUNC

Truncation occurred on an I/O operation.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

330 IBM i: ILE C/C++ Runtime Library Functions

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>
typedef struct {
 char name[20];
 char address[25];
} format1 ;
typedef struct {
 char name[8];
 char password[10];
} format2 ;
typedef union {
 format1 fmt1;
 format2 fmt2;
} formats ;
int main(void)
{
 _RFILE *fp; /* File pointer */
 _RIOFB_T *rfb; /* Pointer to the file's feedback structure */
 _XXIOFB_T *iofb; /* Pointer to the file's feedback area */
 formats buf, in_buf, out_buf; /* Buffers to hold data */
 /* Open the device file. */
 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)
 {
 printf ("Could not open file\n");
 exit (1);
 }
 _Racquire (fp,"DEVICE1"); /* Acquire another device. Replace */
 /* with actual device name. */
 _Rformat (fp,"FORMAT1"); /* Set the record format for the */
 /* display file. */
 rfb = _Rwrite (fp, "", 0); /* Set up the display. */
 _Rpgmdev (fp,"DEVICE2"); /* Change the default program device. */
 /* Replace with actual device name. */
 _Rformat (fp,"FORMAT2"); /* Set the record format for the */
 /* display file. */
 rfb = _Rwrite (fp, "", 0); /* Set up the display. */
 rfb = _Rwriterd (fp, &buf, sizeof(buf));
 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,
 sizeof(out_buf));
 _Rreadindv (fp, &buf, sizeof(buf), __DFT);
 /* Read from the first device that */
 /* enters data - device becomes */
 /* default program device. */
 /* Determine which terminal responded first. */
 iofb = _Riofbk (fp);
 if (!strncmp ("FORMAT1 ", iofb -> rec_format, 10))
 {
 _Rrelease (fp, "DEVICE1");
 }
 else
 {
 _Rrelease(fp, "DEVICE2");
 }
 /* Continue processing. */
 printf ("Data displayed is %45.45s\n", &buf);
 _Rclose (fp);
}

Related Information
• “_Rreadd() — Read a Record by Relative Record Number” on page 326
• “_Rreadf() — Read the First Record” on page 328
• “_Rreadk() — Read a Record by Key” on page 332
• “_Rreadl() — Read the Last Record” on page 335
• “_Rreadn() — Read the Next Record” on page 336
• “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 339

Library Functions 331

• “_Rreadp() — Read the Previous Record” on page 340
• “_Rreads() — Read the Same Record” on page 342

_Rreadk() — Read a Record by Key

Format
#include <recio.h>

_RIOFB_T *_Rreadk(_RFILE *fp, void *buf, size_t size,
 int opts, void *key, unsigned int keylen);

Language Level
ILE C Extension

Threadsafe
Yes

However, if the file pointer is passed among threads, the I/O feedback area is shared among those
threads.

Description
The _Rreadk() function reads the record in the keyed access path that is currently being used for the
file that is associated with fp. Up to size number of bytes are copied from the record into buf (move mode
only). If the file is opened for updating, the _Rreadk() function locks the record positioned to unless
__NO_LOCK is specified. You must be processing the file using a keyed sequence path.

The following parameters are valid for the _Rreadk() function.
buf

Points to the buffer where the data that is read is to be stored. If locate mode is used, this parameter
must be set to NULL.

size
Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

key
Points to the key to be used for reading.

keylen
Specifies the total length of the key to be used.

opts
Specifies the processing options for the file. Possible values are:
__DFT

Default to __KEY_EQ.
__KEY_EQ

Positions to and reads the first record that has the specified key.
__KEY_GE

Positions to and reads the first record that has a key greater than or equal to the specified key.
__KEY_GT

Positions and reads to the first record that has a key greater than the specified key.
__KEY_LE

Positions to and reads the first record that has a key less than or equal to the specified key.

332 IBM i: ILE C/C++ Runtime Library Functions

__KEY_LT
Positions to and reads the first record that has a key less than the specified key.

__KEY_NEXTEQ
Positions to and reads the next record that has a key equal to the key value at the current position.
The key parameter is ignored.

__KEY_NEXTUNQ
Positions to and reads the next record with a unique key from the current position in the access
path. The key parameter is ignored.

__KEY_PREVEQ
Positions to and reads the last record that has a key equal to the key value at the current position.
The key parameter is ignored.

__KEY_PREVUNQ
Positions to and reads the previous record with a unique key from the current position in the
access path. The key parameter is ignored.

__NO_LOCK
Do not lock the record for updating.

The positioning options are mutually exclusive.

The following options may be combined with the positioning options using the bit-wise OR (|) operator.
__KEY_NULL_MAP

The NULL key map is to be considered when reading a record by key.
__NO_LOCK

The record that is positioned will not be locked.

The _Rreadk() function is valid for database and DDM files.

Return Value
The _Rreadk() function returns a pointer to the _RIOFB_T structure associated with fp. If the
_Rreadk() operation is successful the num_bytes field is set to the number of bytes transferred from the
system buffer to the user's buffer (move mode) or the record length of the file (locate mode). The key and
rrn fields will be updated. The key field will always contain the complete key if a partial key is specified.
When using record blocking with _Rreadk(), only one record is read into the block. Thus there are zero
records remaining in the block and the blk_count field of the _RIOFB_T structure will be updated with 0.
The blk_filled_by field is not applicable to _Rreadk() and is not updated. If the record specified by key
cannot be found, the num_bytes field is set to zero or EOF. If you are reading a record by a partial key,
then the entire key is returned in the feedback structure. If it is unsuccessful, the num_bytes field is set to
a value less than size and errno will be changed.

The value of errno may be set to:
Value

Meaning
EBADKEYLN

The key length specified is not valid.
ENOTREAD

The file is not open for read operations.
ETRUNC

Truncation occurred on an I/O operation.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.
See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Library Functions 333

Example

#include <stdio.h>
#include <recio.h>
#include <stdlib.h>

int main(void)
{
 _RFILE *fp;
 _RIOFB_T *fb;
 char buf[4];
 /* Create a physical file */
 system("CRTPF FILE(QTEMP/MY_FILE)");
 /* Open the file for write */
 if ((fp = _Ropen("QTEMP/MY_FILE", "wr")) == NULL)
 {
 printf("open for write fails\n");
 exit(1);
 }
 /* write some records into the file */
 _Rwrite(fp, "KEY9", 4);
 _Rwrite(fp, "KEY8", 4);
 _Rwrite(fp, "KEY7", 4);
 _Rwrite(fp, "KEY6", 4);
 _Rwrite(fp, "KEY5", 4);
 _Rwrite(fp, "KEY4", 4);
 _Rwrite(fp, "KEY3", 4);
 _Rwrite(fp, "KEY2", 4);
 _Rwrite(fp, "KEY1", 4);
 /* Close the file */
 _Rclose(fp);
 /* Open the file for read */
 if ((fp = _Ropen("QTEMP/MY_FILE", "rr")) == NULL)
 {
 printf("open for read fails\n");
 exit(2);
 }
 /* Read the record with key KEY3 */
 fb = _Rreadk(fp, buf, 4, __KEY_EQ, "KEY3", 4);
 printf("record %d with value %4.4s\n", fb->rrn, buf);
 /* Read the next record with key less than KEY3 */
 fb = _Rreadk(fp, buf, 4, __KEY_LT, "KEY3", 4);
 printf("record %d with value %4.4s\n", fb->rrn, buf);
 /* Read the next record with key greater than KEY3 */
 fb = _Rreadk(fp, buf, 4, __KEY_GT, "KEY3", 4);
 printf("record %d with value %4.4s\n", fb->rrn, buf);
 /* Read the next record with different key */
 fb = _Rreadk(fp, buf, 4, __KEY_NEXTUNQ, "", 4);
 printf("record %d with value %4.4s\n", fb->rrn, buf);
 /* Close the file */
 _Rclose(fp);
}

Related Information
• “_Rreadd() — Read a Record by Relative Record Number” on page 326
• “_Rreadf() — Read the First Record” on page 328
• “_Rreadindv() — Read from an Invited Device” on page 330
• “_Rreadl() — Read the Last Record” on page 335
• “_Rreadn() — Read the Next Record” on page 336
• “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 339
• “_Rreadp() — Read the Previous Record” on page 340
• “_Rreads() — Read the Same Record” on page 342

334 IBM i: ILE C/C++ Runtime Library Functions

_Rreadl() — Read the Last Record

Format
#include <recio.h>

_RIOFB_T *_Rreadl(_RFILE *fp, void *buf, size_t size, int opts);

Language Level
ILE C Extension

Threadsafe
Yes

However, if the file pointer is passed among threads, the I/O feedback area is shared among those
threads.

Description
The _Rreadl() function reads the last record in the access path currently being used for the file
specified by fp. The access path may be keyed sequence or arrival sequence. Up to size number of bytes
are copied from the record into buf (move mode only). If the file is opened for updating, the _Rreadl()
function locks the last record unless __NO_LOCK is specified.

The following parameters are valid for the _Rreadl() function.
buf

Points to the buffer where the data that is read is to be stored. If locate mode is used, this parameter
must be set to NULL.

size
Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

opts
Specifies the processing options for the file. Possible values are:
__DFT

If the file is opened for updating, then the record being read or positioned to is locked. The
previously locked record will no longer be locked.

__NO_LOCK
Do not lock the record being positioned to.

The _Rreadl() function is valid for database and DDM files.

Return Value
The _Rreadl() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rreadl() operation is successful the num_bytes field is set to the number of bytes transferred from the
system buffer to the user's buffer (move mode) or the record length of the file (locate mode). The key and
rrn fields will be updated. If record blocking is taking place, the blk_count and blk_filled_by fields will be
updated. If the file is empty, the num_bytes field is set to EOF. If it is unsuccessful, the num_bytes field is
set to a value less than size and errno will be changed.

The value of errno may be set to:
Value

Meaning

Library Functions 335

ENOTREAD
The file is not open for read operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *fp;
 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */
 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)
 {
 printf ("Open failed\n");
 exit (1);
 }

 /* Get the library and file names of the file opened. */
 opfb = _Ropnfbk (fp);
 printf ("Library: %10.10s\nFile: %10.10s\n",
 opfb->library_name,
 opfb->file_name);

 /* Get the last record. */
 _Rreadl (fp, NULL, 20, __DFT);
 printf ("Last record: %10.10s\n", *(fp->in_buf));

 _Rclose (fp);
}

Related Information
• “_Rreadd() — Read a Record by Relative Record Number” on page 326
• “_Rreadf() — Read the First Record” on page 328
• “_Rreadindv() — Read from an Invited Device” on page 330
• “_Rreadk() — Read a Record by Key” on page 332
• “_Rreadn() — Read the Next Record” on page 336
• “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 339
• “_Rreadp() — Read the Previous Record” on page 340
• “_Rreads() — Read the Same Record” on page 342

_Rreadn() — Read the Next Record

Format
#include <recio.h>

_RIOFB_T *_Rreadn (_RFILE *fp, void *buf, size_t size, int opts);

336 IBM i: ILE C/C++ Runtime Library Functions

Language Level
ILE C Extension

Threadsafe
Yes

However, if the file pointer is passed among threads, the I/O feedback area is shared among those
threads.

Description
The _Rreadn() function reads the next record in the access path that is currently being used for the
file that is associated with fp. The access path may be keyed sequence or arrival sequence. Up to size
number of bytes are copied from the record into buf (move mode only). If the file is opened for updating,
the _Rreadn() function locks the record positioned to unless __NO_LOCK is specified.

If the file associated with fp is opened for sequential member processing and the current record position
is the last record of any member in the file except the last, _Rreadn() will read the first record in the next
member of the file.

If an _Rlocate() operation positioned to a record specifying the __PRIOR option, _Rreadn() will read
the record positioned to by the _Rlocate() operation.

If the file is open for record blocking and a call to _Rreadp() has filled the block, the _Rreadn()
function is not valid if there are records remaining in the block. You can check the blk_count in _RIOFB_T
to see if there are any remaining records.

The following are valid parameters for the _Rreadn() function.
buf

Points to the buffer where the data that is read is to be stored. If locate mode is used, this parameter
must be set to NULL.

size
Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

opts
Specifies the processing options for the file. Possible values are:
__DFT

If the file is opened for updating, then the record being read or positioned to is locked. The
previously locked record will no longer be locked.

__NO_LOCK
Do not lock the record being positioned to.

The _Rreadn() function is valid for all types of files except printer files.

Return Value
The _Rreadn() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rreadn() operation is successful the num_bytes field is set to the number of bytes transferred from
the system buffer to the user's buffer (move mode) or the record length of the file (locate mode). The key
and rrn fields are updated. If the file that is associated with fp is a display file, the sysparm field is also
updated. If record blocking is taking place, the blk_count and the blk_filled_by fields of the _RIOFB_T
structure are updated. If attempts are made to read beyond the last record in the file, the num_bytes
field is set to EOF. If it is unsuccessful, the num_bytes field is set to a value less than size, and errno is
changed. If you are using device files and specify zero as the size, check errno to determine if the function
was successful.

The value of errno may be set to:

Library Functions 337

Value
Meaning

ENOTREAD
The file is not open for read operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *fp;
 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */
 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)
 {
 printf ("Open failed\n");
 exit (1);
 }

 /* Get the library and file names of the file opened. */
 opfb = _Ropnfbk (fp);
 printf ("Library: %10.10s\nFile: %10.10s\n",
 opfb->library_name,
 opfb->file_name);

 /* Get the first record. */
 _Rreadf (fp, NULL, 20, __DFT);
 printf ("First record: %10.10s\n", *(fp->in_buf));

 /* Delete the second record. */
 _Rreadn (fp, NULL, 20, __DFT);
 _Rdelete (fp);

 _Rclose (fp);
}

Related Information
• “_Rreadd() — Read a Record by Relative Record Number” on page 326
• “_Rreadf() — Read the First Record” on page 328
• “_Rreadindv() — Read from an Invited Device” on page 330
• “_Rreadk() — Read a Record by Key” on page 332
• “_Rreadl() — Read the Last Record” on page 335
• “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 339
• “_Rreadp() — Read the Previous Record” on page 340
• “_Rreads() — Read the Same Record” on page 342

338 IBM i: ILE C/C++ Runtime Library Functions

_Rreadnc() — Read the Next Changed Record in a Subfile

Format
#include <recio.h>

_RIOFB_T *_Rreadnc(_RFILE *fp, void *buf, size_t size);

Language Level
ILE C Extension

Threadsafe
No

Description
The _Rreadnc() function reads the next changed record from the current position in the subfile that is
associated with fp. The minimum size of data that is read from the screen are copied from the system
buffer to buf.

The following are valid parameters for the _Rreadnc() function.
buf

Points to the buffer where the data that is read is to be stored. If locate mode is used, this parameter
must be set to NULL.

size
Specifies the number of bytes that are to be read and stored in buf.

The _Rreadnc() function is valid for subfiles.

Return Value
The _Rreadnc() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rreadnc() operation is successful the num_bytes field is set to the number of bytes transferred from
the system buffer to the user's buffer (move mode) or the record length of the file (locate mode). The rrn
and sysparm fields are updated. If there are no changed records between the current position and the end
of the file, the num_bytes field is set to EOF. If it is unsuccessful, the num_bytes field is set to a value less
than size, and errno is changed.

The value of errno may be set to:
Value

Meaning
ENOTREAD

The file is not open for read operations.
ETRUNC

Truncation occurred on an I/O operation.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Library Functions 339

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>
#define LEN 10
#define NUM_RECS 20
#define SUBFILENAME "MYLIB/T1677RD6"
#define PFILENAME "MYLIB/T1677RDB"
typedef struct {
 char name[LEN];
 char phone[LEN];
} pf_t;
#define RECLEN sizeof(pf_t)
void init_subfile(_RFILE *, _RFILE *);

int main(void)
{
 _RFILE *pf;
 _RFILE *subf;
 /***
 * Open the subfile and the physical file. *
 ***/
 if ((pf = _Ropen(PFILENAME, "rr")) == NULL) {
 printf("can't open file %s\n", PFILENAME);
 exit(1);
 }
 if ((subf = _Ropen(SUBFILENAME, "ar+")) == NULL) {
 printf("can't open file %s\n", SUBFILENAME);
 exit(2);
 }
 /***
 * Initialize the subfile with records *
 * from the physical file. *
 ***/
 init_subfile(pf, subf);
 /***
 * Write the subfile to the display by writing *
 * a record to the subfile control format. *
 ***/
 _Rformat(subf, "SFLCTL");
 _Rwrite(subf, "", 0);
 _Rreadnc(subf, "", 0);
 /***
 * Close the physical file and the subfile. *
 ***/
 _Rclose(pf);
 _Rclose(subf);
}

Related Information
• “_Rreadd() — Read a Record by Relative Record Number” on page 326
• “_Rreadf() — Read the First Record” on page 328
• “_Rreadindv() — Read from an Invited Device” on page 330
• “_Rreadk() — Read a Record by Key” on page 332
• “_Rreadl() — Read the Last Record” on page 335
• “_Rreadn() — Read the Next Record” on page 336
• “_Rreadp() — Read the Previous Record” on page 340
• “_Rreads() — Read the Same Record” on page 342

_Rreadp() — Read the Previous Record

Format
#include <recio.h>

_RIOFB_T *_Rreadp(_RFILE *fp, void *buf, size_t size, int opts);

340 IBM i: ILE C/C++ Runtime Library Functions

Language Level
ILE C Extension

Threadsafe
Yes

However, if the file pointer is passed among threads, the I/O feedback area is shared among those
threads.

Description
The _Rreadp() function reads the previous record in the access path that is currently being used for the
file that is associated with fp. The access path may be keyed sequence or arrival sequence. Up to size
number of bytes are copied from the record into buf (move mode only). If the file is opened for updating,
the _Rreadp() function locks the record positioned to unless __NO_LOCK is specified.

If the file associated with fp is opened for sequential member processing and the current record position
is the first record of any member in the file except the first, _Rreadp() will read the last record in the
previous member of the file.

If the file is open for record blocking and a call to _Rreadn() has filled the block, the _Rreadp()
function is not valid if there are records remaining in the block. You can check the blk_count in _RIOFB_T
to see if there are any remaining records.

The following are valid parameters for the _Rreadp() function.
buf

Points to the buffer where the data that is read is to be stored. If locate mode is used, this parameter
must be set to NULL.

size
Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

opts
Specifies the processing options for the file. Possible values are:
__DFT

If the file is opened for updating, then the record being read or positioned to is locked. The
previously locked record will no longer be locked.

__NO_LOCK
Do not lock the record being positioned to.

The _Rreadp() function is valid for database and DDM files.

Return Value
The _Rreadp() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rreadp() operation is successful the num_bytes field is set to the number of bytes transferred from the
system buffer to the user's buffer (move mode) or the record length of the file (locate mode). The key and
rrn fields are also updated. If record blocking is taking place, the blk_count and the blk_filled_by fields of
the _RIOFB_T structure are updated. If attempts are made to read prior to the first record in the file, the
num_bytes field is set to EOF. If it is unsuccessful, the num_bytes field is set to a value less than size, and
errno is changed.

The value of errno may be set to:
Value

Meaning
ENOTREAD

The file is not open for read operations.

Library Functions 341

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *fp;
 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */
 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)
 {
 printf ("Open failed\n");
 exit (1);
 }

 /* Get the library and file names of the file opened. */
 opfb = _Ropnfbk (fp);
 printf ("Library: %10.10s\nFile: %10.10s\n",
 opfb->library_name,
 opfb->file_name);

 /* Get the last record. */
 _Rreadl (fp, NULL, 20, __DFT);
 printf ("Last record: %10.10s\n", *(fp->in_buf));

 /* Get the previous record. */

 _Rreadp (fp, NULL, 20, __DFT);
 printf ("Next to last record: %10.10s\n", *(fp->in_buf));

 _Rclose (fp);
}

Related Information
• “_Rreadd() — Read a Record by Relative Record Number” on page 326
• “_Rreadf() — Read the First Record” on page 328
• “_Rreadindv() — Read from an Invited Device” on page 330
• “_Rreadk() — Read a Record by Key” on page 332
• “_Rreadl() — Read the Last Record” on page 335
• “_Rreadn() — Read the Next Record” on page 336
• “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 339
• “_Rreads() — Read the Same Record” on page 342

_Rreads() — Read the Same Record

Format
#include <recio.h>

_RIOFB_T *_Rreads(_RFILE *fp, void *buf, size_t size, int opts);

342 IBM i: ILE C/C++ Runtime Library Functions

Language Level
ILE C Extension

Threadsafe
Yes

However, if the file pointer is passed among threads, the I/O feedback area is shared among those
threads.

Description
The _Rreads() function reads the current record in the access path that is currently being used for the
file that is associated with fp. The access path may be keyed sequence or arrival sequence. Up to size
number of bytes are copied from the record into buf (move mode only). If the file is opened for updating,
the _Rreads() function locks the record positioned to unless __NO_LOCK is specified.

If the current position in the file that is associated with fp has no record associated with it, the
_Rreads() function will fail.

The _Rreads() function is not valid when the file is open for record blocking.

The following are valid parameters for the _Rreads() function.
buf

Points to the buffer where the data that is read is to be stored. If locate mode is used, this parameter
must be set to NULL.

size
Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

opts
Specifies the processing options for the file. Possible values are:
__DFT

If the file is opened for updating, then the record being read or positioned to is locked. The
previously locked record will no longer be locked.

__NO_LOCK
Do not lock the record being positioned to.

The _Rreads() function is valid for database and DDM files.

Return Value
The _Rreads() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rreads() operation is successful the num_bytes field is set to the number of bytes transferred from the
system buffer to the user's buffer (move mode) or the record length of the file (locate mode). The key and
rrn fields are also updated. If it is unsuccessful, the num_bytes field is set to a value less than size, and
errno is changed.

The value of errno may be set to:
Value

Meaning
ENOTREAD

The file is not open for read operations.
ETRUNC

Truncation occurred on an I/O operation.
EIOERROR

A non-recoverable I/O error occurred.

Library Functions 343

EIORECERR
A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *fp;
 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */
 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)
 {
 printf ("Open failed\n");
 exit (1);
 }

 /* Get the library and file names of the file opened. */
 opfb = _Ropnfbk (fp);
 printf ("Library: %10.10s\nFile: %10.10s\n",
 opfb->library_name,
 opfb->file_name);

 /* Get the last record. */
 _Rreadl (fp, NULL, 20, __DFT);
 printf ("Last record: %10.10s\n", *(fp->in_buf));

 /* Get the same record without locking it. */
 _Rreads (fp, NULL, 20, __NO_LOCK);
 printf ("Same record: %10.10s\n", *(fp->in_buf));

 _Rclose (fp);
}

Related Information
• “_Rreadd() — Read a Record by Relative Record Number” on page 326
• “_Rreadf() — Read the First Record” on page 328
• “_Rreadindv() — Read from an Invited Device” on page 330
• “_Rreadk() — Read a Record by Key” on page 332
• “_Rreadl() — Read the Last Record” on page 335
• “_Rreadn() — Read the Next Record” on page 336
• “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 339
• “_Rreadp() — Read the Previous Record” on page 340

_Rrelease() — Release a Program Device

Format
#include <recio.h>

int _Rrelease(_RFILE *fp, char *dev);

Language Level
ILE C Extension

344 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
No

Job CCSID Interface
All character data sent to this function is expected to be in the CCSID of the job. All character data
returned by this function is in the CCSID of the job. See “Understanding CCSIDs and Locales” on page 571
for more information.

Description
The _Rrelease() function releases the program device that is specified by dev from the file that is
associated with fp. The device name must be specified in uppercase.

The dev parameter is a null-ended C string.

The _Rrelease() function is valid for display and ICF files.

Return Value
The _Rrelease() function returns 1 if it is successful or zero if it is unsuccessful. The value of errno
may be set to EIOERROR (a non-recoverable I/O error occurred) or EIORECERR (a recoverable I/O error
occurred). See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example
#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>
typedef struct {
 char name[20];
 char address[25];
} format1 ;
typedef struct {
 char name[8];
 char password[10];
} format2 ;
typedef union {
 format1 fmt1;
 format2 fmt2;
} formats ;

int main(void)
{
 _RFILE *fp; /* File pointer */
 _RIOFB_T *rfb; /*Pointer to the file's feedback structure */
 _XXIOFB_T *iofb; /* Pointer to the file's feedback area */
 formats buf, in_buf, out_buf; /* Buffers to hold data */
 /* Open the device file. */
 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)
 {
 printf ("Could not open file\n");
 exit (1);
 }
 _Racquire (fp,"DEVICE1"); /* Acquire another device. Replace */
 /* with actual device name. */
 _Rformat (fp,"FORMAT1"); /* Set the record format for the */
 /* display file. */
 rfb = _Rwrite (fp, "", 0); /* Set up the display. */
 _Rpgmdev (fp,"DEVICE2"); /* Change the default program device. */
 /* Replace with actual device name. */
 _Rformat (fp,"FORMAT2"); /* Set the record format for the */
 /* display file. */
 rfb = _Rwrite (fp, "", 0); /* Set up the display. */
 rfb = _Rwriterd (fp, &buf, sizeof(buf));
 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,
 sizeof(out_buf));
 _Rreadindv (fp, &buf, sizeof(buf), __DFT);
 /* Read from the first device that */
 /* enters data - device becomes */

Library Functions 345

 /* default program device. */
 /* Determine which terminal responded first. */
 iofb = _Riofbk (fp);
 if (!strncmp ("FORMAT1 ", iofb -> rec_format, 10))
 {
 _Rrelease (fp, "DEVICE1");
 }
 else
 {
 _Rrelease(fp, "DEVICE2");
 }
 /* Continue processing. */
 printf ("Data displayed is %45.45s\n", &buf);
 _Rclose (fp);
}

Related Information
• “_Racquire() — Acquire a Program Device” on page 288

_Rrlslck() — Release a Record Lock

Format
#include <recio.h>

int _Rrlslck(_RFILE *fp);

Language Level
ILE C Extension

Threadsafe
Yes

Description
The _Rrlslck() function releases the lock on the currently locked record for the file specified by fp. The
file must be open for update, and a record must be locked. If the _NO_POSITION option was specified on
the _Rlocate() operation that locked the record, the record released may not be the record currently
positioned to.

The _Rrlslck() function is valid for database and DDM files.

Return Value
The _Rrlslck() function returns 1 if the operation is successful, or zero if the operation is unsuccessful.

The value of errno may be set to:
Value

Meaning
ENOTUPD

The file is not open for update operations.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

346 IBM i: ILE C/C++ Runtime Library Functions

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 char buf[21];
 _RFILE *fp;
 _XXOPFB_T *opfb;
 int result;

 /* Open the file for processing in arrival sequence. */

 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)
 {
 printf ("Open failed\n");
 exit (1);
 };

 /* Get the library and file names of the file opened. */
 opfb = _Ropnfbk (fp);
 printf ("Library: %10.10s\nFile: %10.10s\n",
 opfb->library_name,
 opfb->file_name);

 /* Get the last record. */
 _Rreadl (fp, NULL, 20, __DFT);
 printf ("Last record: %10.10s\n", *(fp->in_buf));

 /* _Rrlslck example. */
 result = _Rrlslck (fp);
 if (result == 0)
 printf("_Rrlslck failed.\n");

 _Rclose (fp);
}

Related Information
• “_Rdelete() — Delete a Record” on page 292

_Rrollbck() — Roll Back Commitment Control Changes

Format
#include <recio.h>

int _Rrollbck(void);

Language Level
ILE C Extension

Threadsafe
No

Description
The _Rrollbck() function reestablishes the last commitment boundary as the current commitment
boundary. All changes that are made to the files under commitment control in the job, are reversed. All
locked records are released. Any file that is open under commitment control in the job will be affected.
You must specify the keyword parameter commit=y when the file is opened to be under commitment
control. A commitment control environment must have been set up prior to this.

Library Functions 347

The _Rrollbck() function is valid for database and DDM files.

Return Value
The _Rrollbck() function returns 1 if the operation is successful or zero if the operation is
unsuccessful. The value of errno may be set to EIOERROR (a non-recoverable I/O error occurred) or
EIORECERR (a recoverable I/O error occurred). See Table 22 on page 549 and Table 24 on page 553 for
errno settings.

Example
#include <stdio.h>
#include <recio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
 char buf[40];
 int rc = 1;
 _RFILE *purf;
 _RFILE *dailyf;

 /* Open purchase display file and daily transaction file */
 if ((purf = _Ropen ("MYLIB/T1677RD3", "ar+,indicators=y")) == NULL)
 {
 printf ("Display file did not open.\n");
 exit (1);
 }

 if ((dailyf = _Ropen ("MYLIB/T1677RDA", "wr,commit=y")) == NULL)
 {
 printf ("Daily transaction file did not open.\n");
 exit (2);
 }

 /* Select purchase record format */
 _Rformat (purf, "PURCHASE");

 /* Invite user to enter a purchase transaction. */
 /* The _Rwrite function writes the purchase display. */
 _Rwrite (purf, "", 0);
 _Rreadn (purf, buf, sizeof(buf), __DFT);

 /* Update daily transaction file */
 rc = ((_Rwrite (dailyf, buf, sizeof(buf)))->num_bytes);

 /* If the databases were updated, then commit the transaction. */
 /* Otherwise, rollback the transaction and indicate to the */
 /* user that an error has occurred and end the application. */
 if (rc)
 {
 _Rcommit ("Transaction complete");
 }
 else
 {
 _Rrollbck ();
 _Rformat (purf, "ERROR");
 }

 _Rclose (purf);
 _Rclose (dailyf);
}

Related Information
• “_Rcommit() — Commit Current Record” on page 290
• Recovering your system manual

348 IBM i: ILE C/C++ Runtime Library Functions

_Rupdate() — Update a Record

Format
#include <recio.h>

_RIOFB_T *_Rupdate(_RFILE *fp, void *buf, size_t size);

Language Level
ILE C Extension

Threadsafe
Yes

However, if the file pointer is passed among threads, the I/O feedback area is shared among those
threads.

Description
The _Rupdate() function updates the record that is currently locked for update in the file that is
specified by fp. The file must be open for update. A record is locked for update by reading or locating to it
unless __NO_LOCK is specified on the read or locate operation. If the __NO_POSITION option is specified
on a locate operation the record updated may not be the record currently positioned to. After the update
operation, the updated record is no longer locked.

The number of bytes that are copied from buf to the record is the minimum of size and the record length
of the file (move mode only). If size is greater than the record length, the data is truncated, and errno is
set to ETRUNC. One complete record is always written to the file. If the size is less than the record length
of the file, the remaining data in the record will be the original data that was read into the system buffer
by the read that locked the record. If a locate operation locked the record, the remaining data will be what
was in the system input buffer prior to the locate.

The _Rupdate() function can be used to update deleted records and key fields. A deleted record that
is updated will no longer be marked as a deleted record. In both of these cases any keyed access paths
defined for fp will be changed.

Note: If locate mode is being used, _Rupdate() works on the data in the file's input buffer.

The _Rupdate() function is valid for database, display (subfiles) and DDM files.

Return Value
The _Rupdate() function returns a pointer to the _RIOFB_T structure associated with fp. If the
_Rupdate() function is successful, the num_bytes field is set to the number of bytes transferred from
the system buffer to the user's buffer (move mode) or the record length of the file (locate mode). If fp is
a display file, the sysparm field is updated. If the _Rupdate() function is unsuccessful, the num_bytes
field is set to a value less than the size specified (move mode) or zero (locate mode). The errno value will
also be changed.

The value of errno may be set to:
Value

Meaning
ENOTUPD

The file is not open for update operations.
EIOERROR

A non-recoverable I/O error occurred.

Library Functions 349

EIORECERR
A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
 _RFILE *in;
 char new_purchase[21] = "PEAR 1002022244";

 /* Open the file for processing in keyed sequence. */

 if ((in = _Ropen("MYLIB/T1677RD4", "rr+, arrseq=N")) == NULL)
 {
 printf("Open failed\n");
 exit(1);
 };

 /* Update the first record in the keyed sequence. */

 _Rlocate(in, NULL, 0, __FIRST);
 _Rupdate(in, new_purchase, 20);

 /* Force the end of data. */

 _Rfeod(in);

 _Rclose(in);
}

Related Information
• “_Rreadd() — Read a Record by Relative Record Number” on page 326
• “_Rreadf() — Read the First Record” on page 328
• “_Rreadindv() — Read from an Invited Device” on page 330
• “_Rreadk() — Read a Record by Key” on page 332
• “_Rreadl() — Read the Last Record” on page 335
• “_Rreadn() — Read the Next Record” on page 336
• “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 339
• “_Rreadp() — Read the Previous Record” on page 340
• “_Rreads() — Read the Same Record” on page 342

_Rupfb() — Provide Information on Last I/O Operation

Format
#include <recio.h>

_RIOFB_T *_Rupfb(_RFILE *fp);

Language Level
ILE C Extension

350 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

However, if the file pointer is passed among threads, the I/O feedback area is shared among those
threads.

Description
The _Rupfb() function updates the feedback structure associated with the file specified by fp with
information about the last I/O operation. The _RIOFB_T structure will be updated even if riofb=N was
specified when the file was opened. The num_bytes field of the _RIOFB_T structure will not be updated.
See “<recio.h>” on page 7 for a description of the _RIOFB_T structure.

The _Rupfb() function is valid for all types of files.

Return Value
The _Rupfb() function returns a pointer to the _RIOFB_T structure specified by fp. See Table 22 on page
549 and Table 24 on page 553 for errno settings.

Example
#include <stdio.h>
#include <recio.h>
#include <stdlib.h>

int main(void)
{
 _RFILE *fp;
 _RIOFB_T *fb;
 /* Create a physical file */
 system("CRTPF FILE(QTEMP/MY_FILE) RCDLEN(80)");
 /* Open the file for write */
 if ((fp = _Ropen("QTEMP/MY_FILE", "wr")) == NULL)
 {
 printf("open for write fails\n");
 exit(1);
 }
 /* Write some records into the file */
 _Rwrite(fp, "This is record 1", 16);
 _Rwrite(fp, "This is record 2", 16);
 _Rwrite(fp, "This is record 3", 16);
 _Rwrite(fp, "This is record 4", 16);
 _Rwrite(fp, "This is record 5", 16);
 _Rwrite(fp, "This is record 6", 16);
 _Rwrite(fp, "This is record 7", 16);
 _Rwrite(fp, "This is record 8", 16);
 _Rwrite(fp, "This is record 9", 16);
 /* Close the file */
 _Rclose(fp);
 /* Open the file for read */
 if ((fp = _Ropen("QTEMP/MY_FILE", "rr, blkrcd = y")) == NULL)
 {
 printf("open for read fails\n");
 exit(2);
 }
 /* Read some records */
 _Rreadn(fp, NULL, 80, __DFT);
 _Rreadn(fp, NULL, 80, __DFT);
 /* Call _Rupfb and print feed back information */
 fb = _Rupfb(fp);
 printf("record number -------------------------- %d\n",
 fb->rrn);
 printf("number of bytes read ------------------- %d\n",
 fb->num_bytes);
 printf("number of records remaining in block --- %hd\n",
 fb->blk_count);
 if (fb->blk_filled_by == __READ_NEXT)
 {
 printf("block filled by ------------------------ __READ_NEXT\n");
 }
 else
 {

Library Functions 351

 printf("block filled by ------------------------ __READ_PREV\n");
 }
 /* Close the file */
 _Rclose(fp);
}

Related Information
• “_Ropnfbk() — Obtain Open Feedback Information” on page 323

_Rwrite() — Write the Next Record

Format
#include <recio.h>

_RIOFB_T * _Rwrite(_RFILE *fp, void *buf, size_t size);

Language Level
ILE C Extension

Threadsafe
Yes

However, if the file pointer is passed among threads, the I/O feedback area is shared among those
threads.

Description
The _Rwrite() function has two modes: move and locate. When buf points to a user buffer, _Rwrite()
is in move mode. When buf is NULL, the function is in locate mode.

The _Rwrite() function appends a record to the file specified by fp. The number of bytes copied from
buf to the record is the minimum of size and the record length of the file (move mode only). If size is
greater than the record length, the data is truncated and errno is set to ETRUNC. One complete record is
always written if the operation is successful.

If you are using _Ropen() and then _Rwrite() to output records to a source physical file, the sequence
numbers must be manually appended.

The _Rwrite() function has no effect on the position of the file for a subsequent read operation.

Records might be lost although the _Rwrite() function indicates success when the following items are
true:

• Record blocking is taking place.
• The file associated with fp is approaching the limit of the number of records it can contain and the file

cannot be extended.
• Multiple writers are writing to the same file.

Because the output is buffered, the _Rwrite() function returns success that indicates the record is
successfully copied to the buffer. However, when the buffer is flushed, the function might fail because the
file has been filled to capacity by another writer. In this case, the _Rwrite() function indicates that an
error occurred only on the call to the _Rwrite() function that sends the data to the file.

The _Rwrite() function is valid for all types of files.

352 IBM i: ILE C/C++ Runtime Library Functions

Return Value
The _Rwrite() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rwrite() operation is successful the num_bytes field is set to the number of bytes written for both
move mode and locate mode. The function transfers the bytes from the user's buffer to the system buffer.
If record blocking is taking place, the function only updates the rrn and key fields when it sends the
block to the database. If fp is a display, ICF or printer file, the function updates the sysparm field. If it is
unsuccessful, the num_bytes field is set to a value less than size specified (move mode) or zero (locate
mode) and errno is changed.

The value of errno may be set to:
Value

Meaning
ENOTWRITE

The file is not open for write operations.
ETRUNC

Truncation occurred on an I/O operation.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Example
#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>
typedef struct {
 char name[20];
 char address[25];
} format1 ;
typedef struct {
 char name[8];
 char password[10];
} format2 ;
typedef union {
 format1 fmt1;
 format2 fmt2;
} formats ;

int main(void)
{
 _RFILE *fp; /* File pointer */
 _RIOFB_T *rfb; /*Pointer to the file's feedback structure */
 _XXIOFB_T *iofb; /* Pointer to the file's feedback area */
 formats buf, in_buf, out_buf; /* Buffers to hold data */
 /* Open the device file. */
 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)
 {
 printf ("Could not open file\n");
 exit (1);
 }
 _Racquire (fp,"DEVICE1"); /* Acquire another device. Replace*/
 /* with actual device name. */
 _Rformat (fp,"FORMAT1"); /* Set the record format for the */
 /* display file. */
 rfb = _Rwrite (fp, "", 0); /* Set up the display. */
 _Rpgmdev (fp,"DEVICE2"); /* Change the default program device.*/
 /* Replace with actual device name. */
 _Rformat (fp,"FORMAT2"); /* Set the record format for the */
 /* display file. */
 rfb = _Rwrite (fp, "", 0); /* Set up the display. */
 rfb = _Rwriterd (fp, &buf, sizeof(buf));
 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,
 sizeof(out_buf));
 _Rreadindv (fp, &buf, sizeof(buf), __DFT);
 /* Read from the first device that */

Library Functions 353

 /* enters data - device becomes */
 /* default program device. */
 /* Determine which terminal responded first. */
 iofb = _Riofbk (fp);
 if (!strncmp ("FORMAT1 ", iofb -> rec_format, 10))
 {
 _Rrelease (fp, "DEVICE1");
 }
 else
 {
 _Rrelease(fp, "DEVICE2");
 }
 /* Continue processing. */
 printf ("Data displayed is %45.45s\n", &buf);
 _Rclose (fp);
}

Related Information
• “_Rwrited() — Write a Record Directly” on page 354
• “_Rwriterd() — Write and Read a Record” on page 357
• “_Rwrread() — Write and Read a Record (separate buffers)” on page 358

_Rwrited() — Write a Record Directly

Format
#include <recio.h>

_RIOFB_T *_Rwrited(_RFILE *fp, void *buf, size_t size, unsigned long rrn);

Language Level
ILE C Extension

Threadsafe
Yes

However, if the file pointer is passed among threads, the I/O feedback area is shared among those
threads.

Description
The _Rwrited() function writes a record to the file associated with fp at the position specified by rrn.
The _Rwrited() function will only write over deleted records. The number of bytes copied from buf to
the record is the minimum of size and the record length of the file (move mode only). If size is greater
than the record length, the data is truncated, and errno is set to ETRUNC. One complete record is always
written if the operation is successful.

The _Rwrited() function has no effect on the position of the file for a read operation.

The _Rwrited() function is valid for database, DDM and subfiles.

Return Value
The _Rwrited() function returns a pointer to the _RIOFB_T structure associated with fp. If the
_Rwrited() operation is successful the num_bytes field is set to the number of bytes transferred from
the user's buffer to the system buffer (move mode) or the record length of the file (locate mode). The rrn
field is updated. If fp is a display file, the sysparm field is updated. If it is unsuccessful, the num_bytes
field is set to a value less than size specified (move mode) or zero (locate mode) and errno is changed.

354 IBM i: ILE C/C++ Runtime Library Functions

The value of errno may be set to:
Value

Meaning
ENOTWRITE

The file is not open for write operations.
ETRUNC

Truncation occurred on an I/O operation.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Library Functions 355

Example

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>
#define LEN 10
#define NUM_RECS 20
#define SUBFILENAME "MYLIB/T1677RD6"
#define PFILENAME "MYLIB/T1677RDB"
typedef struct {
 char name[LEN];
 char phone[LEN];
} pf_t;
#define RECLEN sizeof(pf_t)
void init_subfile(_RFILE *, _RFILE *);
int main(void)
{
 _RFILE *pf;
 _RFILE *subf;
 /* Open the subfile and the physical file. */
 if ((pf = _Ropen(PFILENAME, "rr")) == NULL) {
 printf("can't open file %s\n", PFILENAME);
 exit(1);
 }
 if ((subf = _Ropen(SUBFILENAME, "ar+")) == NULL) {
 printf("can't open file %s\n", SUBFILENAME);
 exit(2);
 }
 /* Initialize the subfile with records *
 * from the physical file. */
 init_subfile(pf, subf);
 /* Write the subfile to the display by writing *
 * a record to the subfile control format. */
 _Rformat(subf, "SFLCTL");
 _Rwrite(subf, "", 0);
 _Rreadnc(subf, "", 0);
 /* Close the physical file and the subfile. */
 _Rclose(pf);
 _Rclose(subf);
}
void init_subfile(_RFILE *pf, _RFILE *subf)
 {
 _RIOFB_T *fb;
 int i;
 pf_t record;
 /* Select the subfile record format. */
 _Rformat(subf, "SFL");
 for (i = 1; i <= NUM_RECS; i++) {
 fb = _Rreadn(pf, &record, RECLEN, __DFT);
 if (fb->num_bytes != RECLEN) {
 printf("%d\n", fb->num_bytes);
 printf("%d\n", RECLEN);
 printf("error occurred during read\n");
 exit(3);
 }
 fb = _Rwrited(subf, &record, RECLEN, i);
 if (fb->num_bytes != RECLEN) {
 printf("error occurred during write\n");
 exit(4);
 }
 }
 }

Related Information
• “_Rwrite() — Write the Next Record” on page 352
• “_Rwriterd() — Write and Read a Record” on page 357
• “_Rwrread() — Write and Read a Record (separate buffers)” on page 358

356 IBM i: ILE C/C++ Runtime Library Functions

_Rwriterd() — Write and Read a Record

Format
#include <recio.h>
_RIOFB_T *_Rwriterd(_RFILE *fp, void *buf, size_t size);

Language Level
ILE C Extension

Threadsafe
No

Description
The _Rwriterd() function performs a write and then a read operation on the file that is specified by
fp. The minimum of size and the length of the current record format determines the amount of data to
be copied between the system buffer and buf for both the write and read parts of the operation. If size
is greater than the record length of the current format, errno is set to ETRUNC on the write part of the
operation. If size is less than the length of the current record format, errno is set to ETRUNC on the read
part of the operation.

The _Rwriterd() function is valid for display and ICF files.

Return Value
The _Rwriterd() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rwriterd() operation is successful, the num_bytes field is set to the number of bytes transferred from
the system buffer to buf on the read part of the operation (move mode) or the record length of the file
(locate mode).

The value of errno may be set to:
Value

Meaning
ENOTUPD

The file is not open for update operations.
ETRUNC

Truncation occurred on an I/O operation.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Library Functions 357

Example

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>

typedef struct {
 char name[20];
 char address[25];
} format1 ;

typedef struct {
 char name[8];
 char password[10];
} format2 ;

typedef union {
 format1 fmt1;
 format2 fmt2;
} formats ;

int main(void)
{
 _RFILE *fp; /* File pointer */
 _RIOFB_T *rfb; /*Pointer to the file's feedback structure */
 formats buf, in_buf, out_buf; /* Buffers to hold data */

 /* Open the device file. */
 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)
 {
 printf ("Could not open file\n");
 exit (1);
 }

 _Rpgmdev (fp,"DEVICE2");/* Change the default program device. */
 /* Replace with actual device name. */

 _Rformat (fp,"FORMAT2"); /* Set the record format for the */
 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */
 rfb = _Rwriterd (fp, &buf, sizeof(buf));

 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,
 sizeof(out_buf));

 /* Continue processing. */

 _Rclose (fp);
}

Related Information
• “_Rwrite() — Write the Next Record” on page 352
• “_Rwrited() — Write a Record Directly” on page 354
• “_Rwrread() — Write and Read a Record (separate buffers)” on page 358

_Rwrread() — Write and Read a Record (separate buffers)

Format
#include <recio.h>

_RIOFB_T *_Rwrread(_RFILE *fp, void *in_buf, size_t in_buf_size,
 void *out_buf, size_t out_buf_size);

Language Level
ILE C Extension

358 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
No

Description
The _Rwrread() function performs a write and then a read operation on the file that is specified by fp.
Separate buffers may be specified for the input and output data. The minimum of size and the length of
the current record format determines the amount of data to be copied between the system buffer and the
buffers for both the write and read parts of the operation. If out_buf_size is greater than the record length
of the current format, errno is set to ETRUNC on the write part of the operation. If in_buf_size is less than
the length of the current record format, errno is set to ETRUNC on the read part of the operation.

The _Rwrread() function is valid for display and ICF files.

Return Value
The _Rwrread() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rwrread() operation is successful, the num_bytes field is set to the number of bytes transferred from
the system buffer to in_buf in the read part of the operation (move mode) or the record length of the file
(locate mode).

The value of errno may be set to:
Value

Meaning
ENOTUPD

The file is not open for update operations.
ETRUNC

Truncation occurred on an I/O operation.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

See Table 22 on page 549 and Table 24 on page 553 for errno settings.

Library Functions 359

Example

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>

typedef struct {
 char name[20];
 char address[25];
} format1 ;

typedef struct {
 char name[8];
 char password[10];
} format2 ;

typedef union {
 format1 fmt1;
 format2 fmt2;
} formats ;

int main(void)
{
 _RFILE *fp; /* File pointer */
 _RIOFB_T *rfb; /*Pointer to the file's feedback structure */
 formats buf, in_buf, out_buf; /* Buffers to hold data */

 /* Open the device file. */
 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)
 {
 printf ("Could not open file\n");
 exit (1);
 }

 _Rpgmdev (fp,"DEVICE2");/* Change the default program device. */
 /* Replace with actual device name. */

 _Rformat (fp,"FORMAT2"); /* Set the record format for the */
 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */
 rfb = _Rwriterd (fp, &buf, sizeof(buf));

 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,
 sizeof(out_buf));

 /* Continue processing. */

 _Rclose (fp);
}

Related Information
• “_Rwrite() — Write the Next Record” on page 352
• “_Rwrited() — Write a Record Directly” on page 354
• “_Rwriterd() — Write and Read a Record” on page 357

samequantumd32() - samequantumd64() - samequantumd128() —
Determine if Quantum Exponents X and Y are the Same

Format
#define __STDC_WANT_DEC_FP__
#include <math.h>
_Bool samequantumd32(_Decimal32 x, _Decimal32 y);
_Bool samequantumd64(_Decimal64 x, _Decimal64 y);
_Bool samequantumd128(_Decimal128 x, _Decimal128 y);

360 IBM i: ILE C/C++ Runtime Library Functions

Language Level
ANSI

Threadsafe
Yes

Description
The samequantumd32(), samequantumd64(), and samequantumd128() functions determine if the
quantum exponents of x and y are the same. If both x and y are NaN or both x and y are infinity,
they have the same quantum exponents. If exactly one operand is infinity or exactly one operand is
NaN, they do not have the same quantum exponents. The samequantumd32(), samequantumd64(), and
samequantumd128() functions raise no floating-point exceptions.

Return Value
The samequantumd32(), samequantumd64(), and samequantumd128() functions return true when x
and y have the same quantum exponents, and false otherwise.

Example
This example illustrates the use of the samequantumd64() function.

#define __STDC_WANT_DEC_FP__

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

static void dump_value(_Decimal64 val1, _Decimal64 val2)
{
 printf(" quantexp(x)=%d quantexp(y)=%d samequantum=%d\n",
 quantexpd64(val1), quantexpd64(val2),
 (int)samequantumd64(val1, val2));
}

int main(void)
{
 _Decimal64 a1 = strtod64("1.23", NULL);
 _Decimal64 a2 = strtod64("0.01", NULL);
 _Decimal64 b1 = strtod64("1.234", NULL);
 _Decimal64 b2 = strtod64("0.01", NULL);
 _Decimal64 c1 = strtod64("1.000", NULL);
 _Decimal64 c2 = strtod64("1.00", NULL);
 _Decimal64 d1 = strtod64("0.000", NULL);
 _Decimal64 d2 = strtod64("0.00", NULL);

 printf("x=%-8Da y=%-8Da\n", a1, a2);
 dump_value(a1, a2);
 printf("x=%-8Da y=%-8Da\n", b1, b2);
 dump_value(b1, b2);
 printf("x=%-8Da y=%-8Da\n", c1, c2);
 dump_value(c1, c2);
 printf("x=%-8Da y=%-8Da\n", d1, d2);
 dump_value(d1, d2);

 return 0;
}
/***************** Output should be similar to: *****************
x=1.23 y=0.01
 quantexp(x)=-2 quantexp(y)=-2 samequantum=1
x=1.234 y=0.01
 quantexp(x)=-3 quantexp(y)=-2 samequantum=0
x=1.000 y=1.00
 quantexp(x)=-3 quantexp(y)=-2 samequantum=0
x=0.000 y=0.00
 quantexp(x)=-3 quantexp(y)=-2 samequantum=0
*/

Library Functions 361

Related Information
• “quantized32() - quantized64() - quantized128() — Set the Quantum Exponent of X to the Quantum

Exponent of Y” on page 274
• “quantexpd32() - quantexpd64() - quantexpd128() — Compute the Quantum Exponent” on page 273

scanf() — Read Data

Format
#include <stdio.h>
int scanf(const char *format-string, argument-list);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The scanf() function reads data from the standard input stream stdin into the locations given by each
entry in argument-list. Each argument must be a pointer to a variable with a type that corresponds to a
type specifier in format-string. The format-string controls the interpretation of the input fields, and is a
multibyte character string that begins and ends in its initial shift state.

The format-string can contain one or more of the following:

• White-space characters, as specified by the isspace() function (such as blanks and new-line
characters). A white-space character causes the scanf() function to read, but not to store, all
consecutive white-space characters in the input up to the next character that is not white space. One
white-space character in format-string matches any combination of white-space characters in the input.

• Characters that are not white space, except for the percent sign character (%). A non-whitespace
character causes the scanf() function to read, but not to store, a matching non-whitespace character.
If the next character in stdin does not match, the scanf() function ends.

• Format specifications, introduced by the percent sign (%). A format specification causes the scanf()
function to read and convert characters in the input into values of a specified type. The value is assigned
to an argument in the argument list.

The scanf() function reads format-string from left to right. Characters outside of format specifications
are expected to match the sequence of characters in stdin; the matched characters in stdin are
scanned but not stored. If a character in stdin conflicts with format-string, scanf() ends. The
conflicting character is left in stdin as if it had not been read.

When the first format specification is found, the value of the first input field is converted according to the
format specification and stored in the location specified by the first entry in argument-list. The second
format specification converts the second input field and stores it in the second entry in argument-list, and
so on through the end of format-string.

362 IBM i: ILE C/C++ Runtime Library Functions

An input field is defined as all characters up to the first white-space character (space, tab, or new line),
up to the first character that cannot be converted according to the format specification, or until the field
width is reached, whichever comes first. If there are too many arguments for the format specifications,
the extra arguments are ignored. The results are undefined if there are not enough arguments for the
format specifications.

A format specification has the following form:

%

* width h

L

l

ll

H

D

DD

type

Each field of the format specification is a single character or a number signifying a particular format
option. The type character, which appears after the last optional format field, determines whether the
input field is interpreted as a character, a string, or a number. The simplest format specification contains
only the percent sign and a type character (for example, %s).

Each field of the format specification is discussed in detail below. If a percent sign (%) is followed by a
character that has no meaning as a format control character, the behavior is undefined. One exception to
this behavior is %%. To specify a percent-sign character, use %%.

The following restrictions apply to pointer printing and scanning:

• If a pointer is printed out and scanned back from the same activation group, the scanned back pointer
will be compared equal to the pointer that is printed out.

• If a scanf() family function scans a pointer that was printed out by a different activation group, the
scanf() family function will set the pointer to NULL.

See the ILE C/C++ Programmer's Guide for more information about using IBM i pointers.

An asterisk (*) following the percent sign suppresses assignment of the next input field, which is
interpreted as a field of the specified type. The field is scanned but not stored.

The width is a positive decimal integer controlling the maximum number of characters to be read from
stdin. No more than width characters are converted and stored at the corresponding argument. Fewer
than width characters are read if a white-space character (space, tab, or new line), or a character that
cannot be converted according to the given format occurs before width is reached.

The optional size modifiers h, l, ll, L, H, D, and DD indicate the size of the receiving object. The conversion
characters d, i, and n must be preceded by h if the corresponding argument is a pointer to a short int
rather than a pointer to an int, by l if it is a pointer to a long int, or by ll if it is a pointer to a long long int.
Similarly, the conversion characters o, u, x, and X must be preceded by h if the corresponding argument
is a pointer to an unsigned short int rather than a pointer to an unsigned int, by l if it is a pointer to an
unsigned long int, or by ll if it is a pointer to an unsigned long long int. The conversion characters a, A,
e, E, f, F, g, and G must be preceded by l if the corresponding argument is a pointer to a double rather
than a pointer to a float, by L if it is a pointer to a long double, by H if it is a pointer to a _Decimal32, by
D if it is a pointer to a _Decimal64, or by DD if it is a pointer to a _Decimal128. Finally, the conversion
characters c, s, and [must be preceded by l if the corresponding argument is a pointer to a wchar_t rather
than a pointer to a single-byte character type. If an h, l, L, ll, H, D, or DD appears with any other conversion
character, the behavior is undefined.

The type characters and their meanings are in the following table:

Library Functions 363

Characte
r Type of Input Expected Type of Argument

d Signed decimal integer Pointer to int.

o Unsigned octal integer Pointer to unsigned int.

x, X Unsigned hexadecimal integer Pointer to unsigned int.

i Decimal, hexadecimal, or octal integer Pointer to int.

u Unsigned decimal integer Pointer to unsigned int.

a, A, e, E,
f, F, g, G

For non decimal floating-point numbers,
an optionally signed floating-point number,
infinity, or NaN, whose format is the same as
expected for the strtod() function.

For decimal floating-point numbers, an
optionally signed floating-point number,
infinity, or NaN, whose format is the same as
expected for the strtod64() function.

Pointer to floating point.

D(n,p) Packed decimal value consisting of an
optional sign (+ or -); then a non-empty
sequence of digits, optionally a series of one
or more decimal digits possibly containing
a decimal point, but not a decimal suffix.
The subject sequence is defined as the
longest initial subsequence of the input
string, starting with the first non-whitespace
character, in the expected form. It contains
no characters if the input string is empty
or consists entirely of white space, or if the
first non-whitespace character is anything
other than a sign, a digit, or a decimal point
character.

Pointer to decimal(n,p). Since the internal
representation of the binary coded decimal
object is the same as the internal
representation of the packed decimal data
type, you can use the type character D(n,p).

c Character; white-space characters that are
ordinarily skipped are read when c is
specified

Pointer to char large enough for input field.

s String Pointer to character array large enough for
input field plus a ending null character (\0),
which is automatically appended.

n No input read from stream or buffer Pointer to int, into which is stored the
number of characters successfully read from
the stream or buffer up to that point in the
call to scanf().

p Pointer to void converted to series of
characters

Pointer to void.

lc Multibyte character constant Pointer to wchar_t.

ls Multibyte string constant Pointer to wchar_t string.

To read strings not delimited by space characters, substitute a set of characters in brackets ([]) for the s
(string) type character. The corresponding input field is read up to the first character that does not appear
in the bracketed character set. If the first character in the set is a caret (^), the effect is reversed: the
input field is read up to the first character that does appear in the rest of the character set.

364 IBM i: ILE C/C++ Runtime Library Functions

To store a string without storing an ending null character (\0), use the specification %ac, where a is a
decimal integer. In this instance, the c type character means that the argument is a pointer to a character
array. The next a characters are read from the input stream into the specified location, and no null
character is added.

The input for a %x format specifier is interpreted as a hexadecimal number.

The scanf() function scans each input field character by character. It might stop reading a particular
input field either before it reaches a space character, when the specified width is reached, or when the
next character cannot be converted as specified. When a conflict occurs between the specification and
the input character, the next input field begins at the first unread character. The conflicting character, if
there was one, is considered unread and is the first character of the next input field or the first character
in subsequent read operations on stdin.

For %lc and %ls, specifies the data that is read is a multibyte string and is converted to wide characters as
if by calls to mbtowc.

For the %a, %A, %e, %E, %f, %F, %g, and %G format specifiers, a character sequence of INFINITY or
NAN (ignoring case) is allowed and yields a value of INFINITY or Quiet Not-A-Number (NaN), respectively.

Alternative format specification has the following form:

% arg-number$

* width h

L

l

ll

H

D

DD

type

As an alternative, specific entries in the argument-list may be assigned by using the format specification
outlined in the diagram above. This format specification and the previous format specification may not be
mixed in the same call to scanf(). Otherwise, unpredictable results may occur.

The arg-number is a positive integer constant where 1 refers to the first entry in the argument-list.
Arg-number may not be greater than the number of entries in the argument-list, or else the results are
undefined. Arg-number also may not be greater than NL_ARGMAX.

Return Value
The scanf() function returns the number of fields that were successfully converted and assigned. The
return value does not include fields that were read but not assigned.

The return value is EOF for an attempt to read at end-of-file if no conversion was performed. A return
value of 0 means that no fields were assigned.

Error Conditions
If the type of the argument that is to be assigned into is different than the format specification,
unpredictable results can occur. For example, reading a floating-point value, but assigning it into a
variable of type int, is incorrect and would have unpredictable results.

If there are more arguments than format specifications, the extra arguments are ignored. The results are
undefined if there are not enough arguments for the format specifications.

If the format string contains an invalid format specification, and positional format specifications are being
used, errno will be set to EILSEQ.

Library Functions 365

If positional format specifications are used and there are not enough arguments, errno will be set to
EINVAL.

If a conversion error occurs, errno may be set to ECONVERT.

Examples
This example scans various types of data.

#include <stdio.h>

int main(void)
{
 int i;
 float fp;
 char c, s[81];

 printf("Enter an integer, a real number, a character "
 "and a string : \n");
 if (scanf("%d %f %c %s", &i, &fp, &c, s) != 4)
 printf("Not all fields were assigned\n");
 else
 {
 printf("integer = %d\n", i);
 printf("real number = %f\n", fp);
 printf("character = %c\n", c);
 printf("string = %s\n",s);
 }
}

/***************** If input is: 12 2.5 a yes, *******************
************** then output should be similar to: ****************

Enter an integer, a real number, a character and a string :
integer = 12
real number = 2.500000
character = a
string = yes
*/

This example converts a hexadecimal integer to a decimal integer. The while loop ends if the input value is
not a hexadecimal integer.

#include <stdio.h>

int main(void)
{
 int number;

 printf("Enter a hexadecimal number or anything else to quit:\n");
 while (scanf("%x",&number))
 {
 printf("Hexadecimal Number = %x\n",number);
 printf("Decimal Number = %d\n",number);
 }
}

/*************** If input is: 0x231 0xf5e 0x1 q, ****************
**************** then output should be similar to: **************

Enter a hexadecimal number or anything else to quit:
Hexadecimal Number = 231
Decimal Number = 561
Hexadecimal Number = f5e
Decimal Number = 3934
Hexadecimal Number = 1
Decimal Number = 1
*/

This example reads from stdin and assigns data by using the alternative positional format string.

366 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
int main(int argc, char *argv[])
{
 int i;
 char s[20];
 float f;

 scanf("%2$s %3$f %1$d",&i, s, &f);

 printf("The data read was \n%i\n%s\n%f\n,i,s,f);

 return 0;
}

/*************** If the input is : test 0.2 100 *****************
************** then the output will be similar to: ***************

The data read was
100
test
0.20000
*/
 --

This example reads in a multibyte character string into a wide Unicode string. The example can be
compiled with either LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF).

#include <locale.h>
#include <stdio.h>
#include <wchar.h>

void main(void)
{
 wchar_t uString[20];

 setlocale(LC_UNI_ALL, "");
 scanf("Enter a string %ls",uString);

 printf("String read was %ls\n",uString);
}

/* if the input is : ABC
 then the output will be similiar to:

 String read was ABC

 */

Related Information
• “fscanf() — Read Formatted Data” on page 156
• “printf() — Print Formatted Characters” on page 254
• “sscanf() — Read Data” on page 386
• “strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double” on page 426
• “strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point” on page

429
• “wscanf() — Read Data Using Wide-Character Format String” on page 545
• “fwscanf() — Read Data from Stream Using Wide Character” on page 170
• “swscanf() — Read Wide Character Data” on page 441
• “<stdio.h>” on page 13

Library Functions 367

setbuf() — Control Buffering

Format
#include <stdio.h>
void setbuf(FILE *, char *buffer);

Language Level
ANSI

Threadsafe
Yes

Description
If the operating system supports user-defined buffers, setbuf() controls buffering for the specified
stream. The setbuf() function only works in ILE C when using the integrated file system. The stream
pointer must refer to an open file before any I/O or repositioning has been done.

If the buffer argument is NULL, the stream is unbuffered. If not, the buffer must point to a character array
of length BUFSIZ, which is the buffer size that is defined in the <stdio.h> include file. The system uses the
buffer, which you specify, for input/output buffering instead of the default system-allocated buffer for the
given stream. stdout, stderr, and stdin do not support user-defined buffers.

The setvbuf() function is more flexible than the setbuf() function.

Return Value
There is no return value.

Example
This example opens the file setbuf.dat for writing. It then calls the setbuf() function to establish a
buffer of length BUFSIZ. When string is written to the stream, the buffer buf is used and contains the
string before it is flushed to the file.

#include <stdio.h>

int main(void)
{
 char buf[BUFSIZ];
 char string[] = "hello world";
 FILE *stream;

 memset(buf,'\0',BUFSIZ); /* initialize buf to null characters */

 stream = fopen("setbuf.dat", "wb");

 setbuf(stream,buf); /* set up buffer */

 fwrite(string, sizeof(string), 1, stream);

 printf("%s\n",buf); /* string is found in buf now */

 fclose(stream); /* buffer is flushed out to myfile.dat */
}

Related Information
• “fclose() — Close Stream” on page 116
• “fflush() — Write Buffer to File” on page 121

368 IBM i: ILE C/C++ Runtime Library Functions

• “fopen() — Open Files” on page 134
• “setvbuf() — Control Buffering” on page 376
• “<stdio.h>” on page 13

setjmp() — Preserve Environment

Format
#include <setjmp.h>
int setjmp(jmp_buf env);

Language Level
ANSI

Threadsafe
Yes

Description
The setjmp() function saves a stack environment that can subsequently be restored by the longjmp()
function. The setjmp() and longjmp() functions provide a way to perform a non-local goto. They are
often used in signal handlers.

A call to the setjmp() function causes it to save the current stack environment in env. A subsequent call
to the longjmp() function restores the saved environment and returns control to a point corresponding
to the setjmp() call. The values of all variables (except register variables) available to the function
receiving control contain the values they had when the longjmp() function was called. The values of
register variables are unpredictable. Nonvolatile auto variables that are changed between calls to the
setjmp() function and the longjmp() function are also unpredictable.

Return Value
The setjmp() function returns the value 0 after saving the stack environment. If the setjmp() function
returns as a result of a longjmp() call, it returns the value argument of the longjmp() function, or 1 if
the value argument of the longjmp() function is 0. There is no error return value.

Example
This example saves the stack environment at the statement:

 if (setjmp(mark) != 0) ...

When the system first performs the if statement, it saves the environment in mark and sets the condition
to FALSE because the setjmp() function returns a 0 when it saves the environment. The program prints
the message:

 setjmp has been called

The subsequent call to function p() causes it to call the longjmp() function. Control is transferred
to the point in the main() function immediately after the call to the setjmp() function using the
environment saved in the mark variable. This time, the condition is TRUE because -1 is specified in the
second parameter on the longjmp() function call as the return value to be placed on the stack. The
example then performs the statements in the block, prints the message "longjmp() has been called",
calls the recover() function, and leaves the program.

Library Functions 369

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf mark;

void p(void);
void recover(void);

int main(void)
{
 if (setjmp(mark) != 0)
 {
 printf("longjmp has been called\n");
 recover();
 exit(1);
 }
 printf("setjmp has been called\n");
 printf("Calling function p()\n");
 p();
 printf("This point should never be reached\n");
}

void p(void)
{
 printf("Calling longjmp() from inside function p()\n");
 longjmp(mark, -1);
 printf("This point should never be reached\n");
}

void recover(void)
{
 printf("Performing function recover()\n");
}
/*******************Output should be as follows: **********************
 setjmp has been called
 Calling function p()
 Calling longjmp() from inside function p()
 longjmp has been called
 Performing function recover()
**/

Related Information
• “longjmp() — Restore Stack Environment” on page 217
• “<setjmp.h>” on page 11

setlocale() — Set Locale

Format
#include <locale.h>
char *setlocale(int category, const char *locale);

Language Level
ANSI

Threadsafe
No

Locale Sensitive
For more information, see “Understanding CCSIDs and Locales” on page 571.

370 IBM i: ILE C/C++ Runtime Library Functions

Description
The setlocale() function changes or queries variables that are defined in the <locale.h> include file,
that indicate location. The values for category are listed below.

Category Purpose

LC_ALL Names entire locale of program.

LC_COLLATE Affects behavior of the strcoll() and strxfrm() functions.

LC_CTYPE Affects behavior of character handling functions.

LC_MONETARY Affects monetary information returned by localeconv() and
nl_langinfo() functions.

LC_NUMERIC Affects the decimal-point character for the formatted input/output and
string conversion functions, and the non-monetary formatting information
returned by the localeconv() and nl_langinfo() functions.

LC_TIME Affects behavior of the strftime() function and the time formatting
information returned by the nl_langinfo() function.

LC_TOD Affects the behavior of the time functions.

The category LC_TOD has several fields in it. The TNAME field is the
time zone name. The TZDIFF field is the difference between local time
and Greenwich Meridian time. If the TNAME field is nonblank, then the
TZDIFF field is used when determining the values that are returned by
some of the time functions. This value takes precedence over the system
value, QUTCOFFSET.

LC_UNI_ALL* This category causes setlocale() to load all of the the LC_UNI_
categories from the locale specified. This category accepts only a locale
with a UCS-2 or UTF-32 CCSID.

LC_UNI_COLLATE* Affects behavior of the wcscoll() and wcsxfrm() functions. This
category accepts only a locale with a UCS-2 or UTF-32 CCSID.

Note: This category is not supported for UCS-2.

LC_UNI_CTYPE* Affects the behavior of the wide character handling functions. This
category accepts only a locale with a UCS-2 or UTF-32 CCSID.

LC_UNI_MESSAGES* Affects the message formatting information returned by the
_WCS_nl_langinfo() function. This category accepts only a locale with
a UCS-2 or UTF-32 CCSID.

LC_UNI_MONETARY* Affects the monetary information returned by the wcslocaleconv()
and _WCS_nl_langinfo() functions. This category accepts only a
locale with a UCS-2 or UTF-32 CCSID.

LC_UNI_NUMERIC* Affects the decimal-point character for the wide character formatted
input/output and wide character string conversion functions, and the
non-monetary information returned by the wcslocaleconv() and
_WCS_nl_langinfo() functions. This category accepts only a locale
with a UCS-2 or UTF-32 CCSID.

LC_UNI_TIME* Affects the behavior of the wcsftime() function and the time formatting
information returned by the _WCS_nl_langinfo() functions. This
category accepts only a locale with a UCS-2 or UTF-32 CCSID.

LC_UNI_TOD* Affects the behavior of the wide character time functions. This category
accepts only a locale with a UCS-2 or UTF-32 CCSID.

Library Functions 371

Category Purpose

*
To use categories with UNI in the name, LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF)
must be specified on the compilation command. If LOCALETYPE(*LOCALEUCS2) is used, the locale
specified must be a UCS-2 locale. If LOCALETYPE(*LOCALEUTF) is used, the locale specified must
be a UTF-32 locale.

Note: There are two ways of defining setlocale() and other locale-sensitive C functions. The
original way to define setlocale() uses *CLD locale objects to set the locale and retrieve locale-
sensitive data. The second way to define setlocale() uses *LOCALE objects to set the locale
and retrieve locale-sensitive data. The original way is accessed by specifying LOCALETYPE(*CLD)
on the compilation command. The second way is accessed by specifying LOCALETYPE(*LOCALE),
LOCALETYPE(*LOCALEUCS2), or LOCALETYPE(*LOCALEUTF) on the compilation command. For more
information about the two methods of locale definition in ILE C, see the International Locale Support
section in the ILE C/C++ Programmer's Guide.

Setlocale using *CLD locale objects
You can set the value of locale to "C", "", LC_C, LC_C_GERMANY, LC_C_FRANCE, LC_C_SPAIN, LC_C_ITALY,
LC_C_USA or LC_C_UK. A locale value of "C" indicates the default C environment. A locale value of "" tells
the setlocale() function to use the default locale for the implementation.

Setlocale with *LOCALE objects
You can set the value of locale to "", "C", "POSIX", or the fully qualified Integrated File System path name
of a *LOCALE object enclosed in double quotes. A locale value of "C" or "POSIX" indicates the default
C *LOCALE object. A locale value of "" tells the setlocale() function to use the default locale for the
process.

The default locale for the process is determined using the following table:

Category Default Locale

LC_ALL 1. Check the LC_ALL environment variable1. If it is defined and not
null, use the specified locale2 for all POSIX locale categories.
Otherwise, go to the next step.

2. For each POSIX locale category (LC_CTYPE, LC_COLLATE,
LC_TIME, LC_NUMERIC, LC_MESSAGES, LC_MONETARY, and
LC_TOD), check the environment variable with the same name1.
If it is defined and not null, use the locale specified2. Otherwise,
go to the next step.

3. Check the LANG environment variable1. For every locale
category that was not set in the previous step, if the LANG
environment variable is defined and not null, set the locale
category to the specified locale2. Otherwise, set it to the default
C *LOCALE object.

372 IBM i: ILE C/C++ Runtime Library Functions

Category Default Locale

LC_CTYPE
LC_COLLATE
LC_TIME
LC_NUMERIC
LC_MESSAGES
LC_MONETARY
LC_TOD

1. Check the LC_ALL environment variable1. If it is defined and not
null, use the specified locale2. Otherwise, go to the next step.

2. Check the environment variable with the same name1 as the
specified locale category. If it is defined and not null, use the
locale specified2. Otherwise, go to the next step.

3. Check the LANG environment variable1. If it is defined and not
null, set the locale category to the specified locale2. Otherwise,
go to the next step.

4. Set the locale category to the default C *LOCALE object.

LC_UNI_ALL If your module is compiled with the LOCALETYPE(*LOCALEUCS2)
option:

1. Check the LC_UCS2_ALL environment variable1. If it is defined
and not null, use the specified locale for all Unicode locale
categories. Otherwise, go to the next step.

2. For each Unicode locale category check the corresponding
environment variable1 (LC_UCS2_CTYPE, LC_UCS2_COLLATE,
LC_UCS2_TIME, LC_UCS2_NUMERIC, LC_UCS2_MESSAGES,
LC_UCS2_MONETARY, or LC_UCS2_TOD)3. If it is defined and
not null, use the locale specified. Otherwise, go to the next
step.

3. Set the locale category to the default UCS-2 *LOCALE object.

If your module is compiled with the LOCALETYPE(*LOCALEUTF)
option:

1. Check the LC_UTF_ALL environment variable1. If it is defined
and not null, use the specified locale for all Unicode locale
categories. Otherwise, go to the next step.

2. For each Unicode locale category check the corresponding
environment variable1 (LC_UTF_CTYPE, LC_UTF_COLLATE,
LC_UTF_TIME, LC_UTF_NUMERIC, LC_UTF_MESSAGES,
LC_UTF_MONETARY, or LC_UTF_TOD)3. If it is defined and not
null, use the locale specified. Otherwise, go to the next step.

3. Check the LANG environment variable1. For every locale
category that was not set in the previous step, if the LANG
environment variable is defined and not null, set the locale
category to the specified locale. Otherwise, set it to the default
UTF *LOCALE object.

Library Functions 373

Category Default Locale

LC_UNI_CTYPE
LC_UNI_COLLATE
LC_UNI_TIME
LC_UNI_NUMERIC
LC_UNI_MESSAGES
LC_UNI_MONETARY
LC_UNI_TOD

If your module is compiled with the LOCALETYPE(*LOCALEUCS2)
option:

1. Check the environment variable corresponding to the specified
locale category1 (LC_UCS2_CTYPE, LC_UCS2_COLLATE,
LC_UCS2_TIME, LC_UCS2_NUMERIC, LC_UCS2_MESSAGES,
LC_UCS2_MONETARY, or LC_UCS2_TOD)3. If it is defined and
not null, use the locale specified. Otherwise, go to the next
step.

2. Check the LC_UCS2_ALL environment variable1. If it is defined
and not null, use the specified locale. Otherwise, go to the next
step.

3. Set the locale category to the default UCS-2 *LOCALE object.

If your module is compiled with the LOCALETYPE(*LOCALEUTF)
option:

1. Check the environment variable corresponding to the
specified locale category1 (LC_UTF_CTYPE, LC_UTF_COLLATE,
LC_UTF_TIME, LC_UTF_NUMERIC, LC_UTF_MESSAGES,
LC_UTF_MONETARY, or LC_UTF_TOD)3. If it is defined and not
null, use the locale specified. Otherwise, go to the next step.

2. Check the LC_UTF_ALL environment variable1. If it is defined
and not null, use the specified locale. Otherwise, go to the next
step.

3. Check the LANG environment variable1. If the LANG
environment variable is defined and not null, set the locale
category to the specified locale. Otherwise, set it to the default
UTF *LOCALE object.

Note: 1 The environment variables with names corresponding to locale categories are created by the user.
The LANG environment variable is automatically created during job initiation when you specify a locale
path name for either of the following:

• the LOCALE parameter in your user profile (see the CHGUSRPRF (Change User Profile) command
information in the Information Center).

• the QLOCALE system value (see the QLOCALE system value information in the Information Center).

The locale environment variables are expected to contain a locale path name of the form /QSYS.LIB/
<locname>.LOCALE or /QSYS.LIB/<libname>.LIB/<locname>.LOCALE. If your module is
compiled with the LOCALETYPE(*LOCALEUTF) option, the environment variable will be ignored if the
<locname> portion of the path exceeds 8 characters. This restriction exists because a 2 character suffix
must be appended to the locale name to get the name of the corresponding UTF locale.

Note: 2 When LOCALETYPE(*LOCALEUTF) is specified on the compilation command, the setlocale()
function appends a trailing _8 to the LC_ALL, LC_CTYPE, LC_COLLATE, LC_TIME, LC_NUMERIC,
LC_MESSAGES, LC_MONETARY, LC_TOD, and LANG environment variables. If this locale is not found,
the UTF default locale object is used. For example, setlocale(LC_ALL, "") when LANG is set
to /QSYS.LIB/EN_US.LOCALE causes setlocale() to attempt to load the locale /QSYS.LIB/
EN_US_8.LOCALE. If the LANG environment variable is used to set one of the Unicode locale categories
(LC_UNI_ALL, LC_UNI_CTYPE, LC_UNI_COLLATE, LC_UNI_TIME, LC_UNI_NUMERIC, LC_UNI_MESSAGES,
LC_UNI_MONETARY, or LC_UNI_TOD), setlocale() appends a trailing _4 to the locale name stored in
the environment variable. This is an attempt to locate the corresponding UTF-32 locale. If this locale
is not found, the default UTF-32 locale object is used. For example, setlocale(LC_UNI_TIME, "")
when LANG is set to /QSYS.LIB/EN_US.LOCALE causes setlocale() to attempt to load the locale /
QSYS.LIB/EN_US_4.LOCALE. Locale names ending in _4 and _8 follow a naming convention introduced

374 IBM i: ILE C/C++ Runtime Library Functions

by the CRTLOCALE CL command (see the CRTLOCALE (Create Locale) command information in the
Information Center) for locales created with CCSID(*UTF).

Note: 3 The LC_UNI_ALL, LC_UNI_COLLATE, LC_UNI_CTYPE, LC_UNI_TIME, LC_UNI_NUMERIC,
LC_UNI_MESSAGES, LC_UNI_MONETARY, and LC_UNI_TOD locale category names are shared between
UCS-2 and UTF. The environment variables corresponding to these categories cannot be shared, so
the names of the environment variables do not exactly match the locale category names. For UCS-2
environment variable names, UNI is replaced with UCS2 (for example, LC_UNI_ALL locale category
becomes LC_UCS2_ALL environment variable). For UTF environment variable names, UNI is replaced
with UTF (for example, LC_UNI_ALL locale category becomes LC_UTF_ALL environment variable).

If compiled with LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF), the locale must be a pointer
to a valid Unicode locale for the categories starting with LC_UNI_, and must not be a Unicode locale for
the other categories.

Return Value
The setlocale() function returns a pointer to a string that represents the current locale setting. If the
returned string is stored, the stored string value can be used as input to the setlocale() function to
restore the locale setting at any time. However, you need to copy the string to a user-defined buffer;
otherwise, the string is overwritten on subsequent calls to setlocale().

Note: Because the string to which a successful call to setlocale() points may be overwritten by
subsequent calls to the setlocale() function, you should copy the string if you plan to use it later. The
exact format of the locale string is different between locale types of *CLD, *LOCALE, *LOCALEUCS2, and
*LOCALEUTF.

To query the locale, give a NULL as the second parameter. For example, to query all the categories of your
locale, enter the following statement:

char *string = setlocale(LC_ALL, NULL);

Error Conditions
On error, the setlocale() function returns NULL, and the program's locale is not changed.

Example that uses *CLD locale objects
 /**

 This example sets the locale of the program to
 LC_C_FRANCE *CLD and prints the string
 that is associated with the locale. This example must be compiled with
 the LOCALETYPE(*CLD) parameter on the compilation command.

 **/

#include <stdio.h>
#include <locale.h>

char *string;

int main(void)
{
 string = setlocale(LC_ALL, LC_C_FRANCE);
 if (string != NULL)
 printf(" %s \n",string);
}

Library Functions 375

Example that uses *LOCALE objects

/**

 This example sets the locale of the program to be "POSIX" and prints
 the string that is associated with the locale. This example must be
 compiled with the LOCALETYPE(*LOCALE) parameter on the CRTCMOD or
 CRTBNDC command.

 **/

#include <stdio.h>
#include <locale.h>

char *string;

int main(void)
{
 string = setlocale(LC_ALL, "POSIX");
 if (string != NULL)
 printf(" %s \n",string);
}

Related Information
• “getenv() — Search for Environment Variables” on page 177
• “localeconv() — Retrieve Information from the Environment” on page 203
• “nl_langinfo() — Retrieve Locale Information” on page 248
• “<locale.h>” on page 5

setvbuf() — Control Buffering

Format
#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int type, size_t size);

Language Level
ANSI

Threadsafe
Yes

Description
The setvbuf() function allows control over the buffering strategy and buffer size for a specified stream.
The setvbuf() function only works in ILE C when using the integrated file system. The stream must refer
to a file that has been opened, but not read or written to.

The array pointed to by buf designates an area that you provide that the C library may choose to use as a
buffer for the stream. A buf value of NULL indicates that no such area is supplied and that the C library is
to assume responsibility for managing its own buffers for the stream. If you supply a buffer, it must exist
until the stream is closed.

The type must be one of the following:
Value

Meaning
_IONBF

No buffer is used.

376 IBM i: ILE C/C++ Runtime Library Functions

_IOFBF
Full buffering is used for input and output. Use buf as the buffer and size as the size of the buffer.

_IOLBF
Line buffering is used. The buffer is deleted when a new-line character is written, when the buffer is
full, or when input is requested.

If type is _IOFBF or _IOLBF, size is the size of the supplied buffer. If buf is NULL, the C library takes size as
the suggested size for its own buffer. If type is _IONBF, both buf and size are ignored.

The value for size must be greater than 0.

Return Value
The setvbuf() function returns 0 if successful. It returns nonzero if a value that is not valid was
specified in the parameter list, or if the request cannot be performed.

The setvbuf() function has no effect on stdout, stdin, or stderr.

Warning: The array that is used as the buffer must still exist when the specified stream is closed. For
example, if the buffer is declared within the scope of a function block, the stream must be closed before
the function is ended and frees the storage allocated to the buffer.

Example
This example sets up a buffer of buf for stream1 and specifies that input to stream2 is to be unbuffered.

#include <stdio.h>

#define BUF_SIZE 1024

char buf[BUF_SIZE];
FILE *stream1, *stream2;

int main(void)
{
 stream1 = fopen("myfile1.dat", "r");
 stream2 = fopen("myfile2.dat", "r");

 /* stream1 uses a user-assigned buffer of BUF_SIZE bytes */
 if (setvbuf(stream1, buf, _IOFBF, sizeof(buf)) != 0)
 printf("Incorrect type or size of buffer\n");

 /* stream2 is unbuffered */
 if (setvbuf(stream2, NULL, _IONBF, 0) != 0)
 printf("Incorrect type or size of buffer\n");

/* This is a program fragment and not a complete function example */

}

Related Information
• “fclose() — Close Stream” on page 116
• “fflush() — Write Buffer to File” on page 121
• “fopen() — Open Files” on page 134
• “setbuf() — Control Buffering” on page 368
• “<stdio.h>” on page 13

Library Functions 377

signal() — Handle Interrupt Signals

Format
#include <signal.h>
void (*signal (int sig, void(*func)(int)))(int);

Language Level
ANSI

Threadsafe
Yes

Description
The signal() function allows a program to choose one of several ways to handle an interrupt signal from
the operating system or from the raise() function. If compiled with the SYSIFCOPT(*ASYNCSIGNAL)
option, this function uses asynchronous signals. The asynchronous version of this function behaves like
sigaction() with SA_NODEFER and SA_RESETHAND options. Asynchronous signal handlers may not
call abort() or exit(). The remainder of this function description will describe synchronous signals.

The sig argument must be one of the macros SIGABRT, SIGALL, SIGILL, SIGINT, SIGFPE, SIGIO,
SIGOTHER, SIGSEGV, SIGTERM, SIGUSR1, or SIGUSR2, defined in the signal.h include file. SIGALL,
SIGIO, and SIGOTHER are only supported by the ILE C/C++ runtime library. The func argument must be
one of the macros SIG_DFL or SIG_IGN, defined in the <signal.h> include file, or a function address.

The meaning of the values of sig is as follows:
Value

Meaning
SIGABRT

Abnormal termination
SIGALL

Catch-all for signals whose current handling action is SIG_DFL.

When SYSIFCOPT(*ASYNCSIGNAL) is specified, SIGALL is not a catch-all signal. A signal handler for
SIGALL is only invoked for a user-raised SIGALL signal.

SIGILL
Detection of a function image that was not valid

SIGFPE
Arithmetic exceptions that are not masked, such as overflow, division by zero, and operations that are
not valid

SIGINT
Interactive attention

SIGIO
Record file I⁄O error

SIGOTHER
ILE C signal

SIGSEGV
Access to memory that was not valid

SIGTERM
End request sent to the program

378 IBM i: ILE C/C++ Runtime Library Functions

SIGUSR1
Intended for use by user applications. (extension to ANSI)

SIGUSR2
Intended for use by user applications. (extension to ANSI)

The action that is taken when the interrupt signal is received depends on the value of func.
Value

Meaning
SIG_DFL

Default handling for the signal will occur.
SIG_IGN

The signal is to be ignored.

Return Value
A return value of SIG_ERR indicates an error in the call to signal(). If successful, the call to signal()
returns the most recent value of func. The value of errno may be set to EINVAL (the signal is not valid).

Example
This example shows you how to establish a signal handler.

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#define ONE_K 1024
#define OUT_OF_STORAGE (SIGUSR1)
/* The SIGNAL macro does a signal() checking the return code */
#define SIGNAL(SIG, StrCln) { \
 if (signal((SIG), (StrCln)) == SIG_ERR) { \
 perror("Could not signal user signal"); \
 abort(); \
 } \
}

void StrCln(int);
void DoWork(char **, int);

int main(int argc, char *argv[]) {
 int size;
 char *buffer;
 SIGNAL(OUT_OF_STORAGE, StrCln);
 if (argc != 2) {
 printf("Syntax: %s size \n", argv[0]);
 return(-1);
 }
 size = atoi(argv[1]);
 DoWork(&buffer, size);
 return(0);
}

void StrCln(int SIG_TYPE) {
 printf("Failed trying to malloc storage\n");
 SIGNAL(SIG_TYPE, SIG_DFL);
 exit(0);
}

void DoWork(char **buffer, int size) {
 int rc;
 *buffer = malloc(size*ONE_K); /* get the size in number of K */
 if (*buffer == NULL) {
 if (raise(OUT_OF_STORAGE)) {
 perror("Could not raise user signal");
 abort();
 }
 }
 return;
}
/* This is a program fragment and not a complete function example */

Library Functions 379

Related Information
• “abort() — Stop a Program” on page 60
• “atexit() — Record Program Ending Function” on page 70
• “exit() — End Program” on page 113
• “raise() — Send Signal” on page 286
• “<signal.h>” on page 11
• signal() API in the APIs topic in the Information Center.

sin() — Calculate Sine

Format
#include <math.h>
double sin(double x);

Language Level
ANSI

Threadsafe
Yes

Description
The sin() function calculates the sine of x, with x expressed in radians. If x is too large, a partial loss of
significance in the result may occur.

Return Value
The sin() function returns the value of the sine of x. The value of errno may be set to either EDOM or
ERANGE.

Example
This example computes y as the sine of π⁄2.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double pi, x, y;

 pi = 3.1415926535;
 x = pi/2;
 y = sin(x);

 printf("sin(%lf) = %lf\n", x, y);
}
/********************* Output should be similar to: *************

sin(1.570796) = 1.000000
*/

Related Information
• “acos() — Calculate Arccosine” on page 62
• “asin() — Calculate Arcsine” on page 67

380 IBM i: ILE C/C++ Runtime Library Functions

• “atan() – atan2() — Calculate Arctangent” on page 69
• “cos() — Calculate Cosine” on page 89
• “cosh() — Calculate Hyperbolic Cosine” on page 90
• “sinh() — Calculate Hyperbolic Sine” on page 381
• “tan() — Calculate Tangent” on page 444
• “tanh() — Calculate Hyperbolic Tangent” on page 445
• “<math.h>” on page 6

sinh() — Calculate Hyperbolic Sine

Format
#include <math.h>
double sinh(double x);

Language Level
ANSI

Threadsafe
Yes

Description
The sinh() function calculates the hyperbolic sine of x, with x expressed in radians.

Return Value
The sinh() function returns the value of the hyperbolic sine of x. If the result is too large, the sinh()
function sets errno to ERANGE and returns the value HUGE_VAL (positive or negative, depending on the
value of x).

Example
This example computes y as the hyperbolic sine of π⁄2.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double pi, x, y;

 pi = 3.1415926535;
 x = pi/2;
 y = sinh(x);

 printf("sinh(%lf) = %lf\n", x, y);
}

/********************* Output should be similar to: *************

sinh(1.570796) = 2.301299
*/

Related Information
• “acos() — Calculate Arccosine” on page 62

Library Functions 381

• “asin() — Calculate Arcsine” on page 67
• “atan() – atan2() — Calculate Arctangent” on page 69
• “cos() — Calculate Cosine” on page 89
• “cosh() — Calculate Hyperbolic Cosine” on page 90
• “sin() — Calculate Sine” on page 380
• “tan() — Calculate Tangent” on page 444
• “tanh() — Calculate Hyperbolic Tangent” on page 445
• “<math.h>” on page 6

snprintf() — Print Formatted Data to Buffer

Format
#include <stdio.h>
int snprintf(char *buffer, size_t n, const char *format-string,
 argument-list);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The snprintf() function formats and stores a series of characters and values in the array buffer.
Any argument-list is converted and put out according to the corresponding format specification in the
format-string. The snprintf() function is identical to the sprintf() function with the addition of the n
argument, which indicates the maximum number of characters (including the ending null character) to be
written to buffer.

The format-string consists of ordinary characters and has the same form and function as the format string
for the printf() function.

Return Value
The snprintf() function returns the number of bytes that are written in the array, not counting the
ending null character.

Example
This example uses snprintf() to format and print various data.

#include <stdio.h>

char buffer[200];
int i, j;
double fp;

382 IBM i: ILE C/C++ Runtime Library Functions

char *s = "baltimore";
char c;

int main(void)
{
 c = 'l';
 i = 35;
 fp = 1.7320508;

 /* Format and print various data */
 j = snprintf(buffer, 6, "%s\n", s);
 j += snprintf(buffer+j, 6, "%c\n", c);
 j += snprintf(buffer+j, 6, "%d\n", i);
 j += snprintf(buffer+j, 6, "%f\n", fp);
 printf("string:\n%s\ncharacter count = %d\n", buffer, j);
}

/********************* Output should be similar to: *************

string:
baltil
35
1.732
character count = 15 */

Related Information
• “fprintf() — Write Formatted Data to a Stream” on page 141
• “printf() — Print Formatted Characters” on page 254
• “sprintf() — Print Formatted Data to Buffer” on page 383
• “vsnprintf() — Print Argument Data to Buffer” on page 472
• “<stdio.h>” on page 13

sprintf() — Print Formatted Data to Buffer

Format
#include <stdio.h>
int sprintf(char *buffer, const char *format-string, argument-list);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The sprintf() function formats and stores a series of characters and values in the array buffer. Any
argument-list is converted and put out according to the corresponding format specification in the format-
string.

The format-string consists of ordinary characters and has the same form and function as the format-string
argument for the printf() function.

Library Functions 383

Return Value
The sprintf() function returns the number of bytes that are written in the array, not counting the
ending null character.

Example
This example uses sprintf() to format and print various data.

#include <stdio.h>

char buffer[200];
int i, j;
double fp;
char *s = "baltimore";
char c;

int main(void)
{
 c = 'l';
 i = 35;
 fp = 1.7320508;

 /* Format and print various data */
 j = sprintf(buffer, "%s\n", s);
 j += sprintf(buffer+j, "%c\n", c);
 j += sprintf(buffer+j, "%d\n", i);
 j += sprintf(buffer+j, "%f\n", fp);
 printf("string:\n%s\ncharacter count = %d\n", buffer, j);
}

/********************* Output should be similar to: *************

string:
baltimore
l
35
1.732051

character count = 24 */

Related Information
• “fprintf() — Write Formatted Data to a Stream” on page 141
• “printf() — Print Formatted Characters” on page 254
• “sscanf() — Read Data” on page 386
• “swprintf() — Format and Write Wide Characters to Buffer” on page 440
• “vfprintf() — Print Argument Data to Stream” on page 461
• “vprintf() — Print Argument Data” on page 469
• “vsprintf() — Print Argument Data to Buffer” on page 473
• “<stdio.h>” on page 13

sqrt() — Calculate Square Root

Format
#include <math.h>
double sqrt(double x);

Language Level
ANSI

384 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

Description
The sqrt() function calculates the nonnegative value of the square root of x.

Return Value
The sqrt() function returns the square root result. If x is negative, the function sets errno to EDOM, and
returns 0.

Example
This example computes the square root of the quantity that is passed as the first argument to main. It
prints an error message if you pass a negative value.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(int argc, char ** argv)
{
 char * rest;
 double value;

 if (argc != 2)
 printf("Usage: %s value\n", argv[0]);
 else
 {
 value = strtod(argv[1], &rest);
 if (value < 0.0)
 printf("sqrt of a negative number\n");
 else
 printf("sqrt(%lf) = %lf\n", value, sqrt(value));
 }
}

/******************** If the input is 45, *****************************
**************** then the output should be similar to: **********

sqrt(45.000000) = 6.708204
*/

Related Information
• “exp() — Calculate Exponential Function” on page 114
• “hypot() — Calculate Hypotenuse” on page 192
• “log() — Calculate Natural Logarithm” on page 214
• “log10() — Calculate Base 10 Logarithm” on page 215
• “pow() — Compute Power” on page 253
• “<math.h>” on page 6

srand() — Set Seed for rand() Function

Format
#include <stdlib.h>
void srand(unsigned int seed);

Library Functions 385

Language Level
ANSI

Threadsafe
No

Description
The srand() function sets the starting point for producing a series of pseudo-random integers. If
srand() is not called, the rand() seed is set as if srand(1) were called at program start. Any other value
for seed sets the generator to a different starting point.

The rand() function generates the pseudo-random numbers.

Return Value
There is no return value.

Example
This example first calls srand() with a value other than 1 to initiate the random value sequence. Then
the program computes five random values for the array of integers that are called ranvals.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int i, ranvals[5];

 srand(17);
 for (i = 0; i < 5; i++)
 {
 ranvals[i] = rand();
 printf("Iteration %d ranvals [%d] = %d\n", i+1, i, ranvals[i]);
 }
}

/****************** Output should be similar to: ****************

Iteration 1 ranvals [0] = 24107
Iteration 2 ranvals [1] = 16552
Iteration 3 ranvals [2] = 12125
Iteration 4 ranvals [3] = 9427
Iteration 5 ranvals [4] = 13152
*/

Related Information
• “rand() – rand_r() — Generate Random Number” on page 287
• “<stdlib.h>” on page 14

sscanf() — Read Data

Format
#include <stdio.h>
int sscanf(const char *buffer, const char *format, argument-list);

Language Level
ANSI

386 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The sscanf() function reads data from buffer into the locations that are given by argument-list. Each
argument must be a pointer to a variable with a type that corresponds to a type specifier in the format-
string.

Return Value
The sscanf() function returns the number of fields that were successfully converted and assigned. The
return value does not include fields that were read but not assigned.

The return value is EOF when the end of the string is encountered before anything is converted.

Example
This example uses sscanf() to read various data from the string tokenstring, and then displays that data.

#include <stdio.h>
#include <stddef.h>

int main(void)
{
 char *tokenstring = "15 12 14";
 char *string = "ABC Z";
 wchar_t ws[81];
 wchar_t wc;
 int i;
 float fp;
 char s[81];
 char c;

 /* Input various data */
 /* In the first invocation of sscanf, the format string is */
 /* "%s %c%d%f". If there were no space between %s and %c, */
 /* sscanf would read the first character following the */
 /* string, which is a blank space. */

 sscanf(tokenstring, "%s %c%d%f", s, &c, &i, &fp);
 sscanf(string, "%ls %lc", ws,&wc);

 /* Display the data */
 printf("\nstring = %s\n",s);
 printf("character = %c\n",c);
 printf("integer = %d\n",i);
 printf("floating-point number = %f\n",fp);
 printf("wide-character string = %S\n",ws);
 printf("wide-character = %C\n",wc);
}

/***************** Output should be similar to: *****************

string = 15
character = 1
integer = 2
floating-point number = 14.000000
wide-character string = ABC
wide-character = Z

***/

Library Functions 387

Related Information
• “fscanf() — Read Formatted Data” on page 156
• “scanf() — Read Data” on page 362
• “swscanf() — Read Wide Character Data” on page 441
• “fwscanf() — Read Data from Stream Using Wide Character” on page 170
• “wscanf() — Read Data Using Wide-Character Format String” on page 545
• “sprintf() — Print Formatted Data to Buffer” on page 383
• “<stdio.h>” on page 13

strcasecmp() — Compare Strings without Case Sensitivity

Format
#include <strings.h>
int strcasecmp(const char *string1, const char *string2);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. This
function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strcasecmp() function compares string1 and string2 without sensitivity to case. All alphabetic
characters in string1 and string2 are converted to lowercase before comparison.

The strcasecmp() function operates on null terminated strings. The string arguments to the function
are expected to contain a null character ('\0') marking the end of the string.

Return Value
The strcasecmp() function returns a value indicating the relationship between the two strings, as
follows:

Table 9. Return values of strcasecmp()

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

388 IBM i: ILE C/C++ Runtime Library Functions

Example
This example uses strcasecmp() to compare two strings.

#include <stdio.h>
#include <strings.h>

int main(void)
{
 char_t *str1 = "STRING";
 char_t *str2 = "string";
 int result;

 result = strcasecmp(str1, str2);

 if (result == 0)
 printf("Strings compared equal.\n");
 else if (result < 0)
 printf("\"%s\" is less than \"%s\".\n", str1, str2);
 else
 printf("\"%s\" is greater than \"%s\".\n", str1, str2);

 return 0;
}

/******** The output should be similar to: ***************

Strings compared equal.

***********************************/

Related Information
• “strncasecmp() — Compare Strings without Case Sensitivity” on page 409
• “strncmp() — Compare Strings” on page 412
• “stricmp() — Compare Strings without Case Sensitivity” on page 407
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “__wcsicmp() — Compare Wide Character Strings without Case Sensitivity ” on page 497
• “__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity” on page 505
• “<strings.h> ” on page 15

strcat() — Concatenate Strings

Format
#include <string.h>
char *strcat(char *string1, const char *string2);

Language Level
ANSI

Threadsafe
Yes

Description
The strcat() function concatenates string2 to string1 and ends the resulting string with the null
character.

Library Functions 389

The strcat() function operates on null-ended strings. The string arguments to the function should
contain a null character (\0) that marks the end of the string. No length checking is performed. You should
not use a literal string for a string1 value, although string2 may be a literal string.

If the storage of string1 overlaps the storage of string2, the behavior is undefined.

Return Value
The strcat() function returns a pointer to the concatenated string (string1).

Example
This example creates the string "computer program" using strcat().

#include <stdio.h>
#include <string.h>

#define SIZE 40

int main(void)
{
 char buffer1[SIZE] = "computer";
 char * ptr;

 ptr = strcat(buffer1, " program");
 printf("buffer1 = %s\n", buffer1);

}

/***************** Output should be similar to: *****************

buffer1 = computer program
*/

Related Information
• “strchr() — Search for Character” on page 390
• “strcmp() — Compare Strings” on page 392
• “strcpy() — Copy Strings” on page 396
• “strcspn() — Find Offset of First Character Match” on page 397
• “strncat() — Concatenate Strings” on page 410
• “wcscat() — Concatenate Wide-Character Strings” on page 488
• “wcsncat() — Concatenate Wide-Character Strings” on page 501
• “<string.h>” on page 15

strchr() — Search for Character

Format
#include <string.h>
char *strchr(const char *string, int c);

Language Level
ANSI

Threadsafe
Yes

390 IBM i: ILE C/C++ Runtime Library Functions

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strchr() function finds the first occurrence of a character in a string. The character c can be the null
character (\0); the ending null character of string is included in the search.

The strchr() function operates on null-ended strings. The string arguments to the function should
contain a null character (\0) that marks the end of the string.

Return Value
The strchr() function returns a pointer to the first occurrence of c that is converted to a character in
string. The function returns NULL if the specified character is not found.

Example
This example finds the first occurrence of the character "p" in "computer program".

#include <stdio.h>
#include <string.h>

#define SIZE 40

int main(void)
{
 char buffer1[SIZE] = "computer program";
 char * ptr;
 int ch = 'p';

 ptr = strchr(buffer1, ch);
 printf("The first occurrence of %c in '%s' is '%s'\n",
 ch, buffer1, ptr);

}

/***************** Output should be similar to: *****************

The first occurrence of p in 'computer program' is 'puter program'
*/

Related Information
• “strcat() — Concatenate Strings” on page 389
• “strcmp() — Compare Strings” on page 392
• “strcpy() — Copy Strings” on page 396
• “strcspn() — Find Offset of First Character Match” on page 397
• “strncmp() — Compare Strings” on page 412
• “strpbrk() — Find Characters in String” on page 417
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “wcschr() — Search for Wide Character” on page 489
• “wcsspn() — Find Offset of First Non-matching Wide Character” on page 512
• “<string.h>” on page 15

Library Functions 391

strcmp() — Compare Strings

Format
#include <string.h>
int strcmp(const char *string1, const char *string2);

Language Level
ANSI

Threadsafe
Yes

Description
The strcmp() function compares string1 and string2. The function operates on null-ended strings. The
string arguments to the function should contain a null character (\0) that marks the end of the string.

Return Value
The strcmp() function returns a value indicating the relationship between the two strings, as follows:

Table 10. Return values of strcmp()

Value Meaning

Less than 0 string1 less than string2

0 string1 identical to string2

Greater than 0 string1 greater than string2

Example
This example compares the two strings that are passed to main() using strcmp().

392 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <string.h>

int main(int argc, char ** argv)
{
 int result;

 if (argc != 3)
 {
 printf("Usage: %s string1 string2\n", argv[0]);
 }
 else
 {

 result = strcmp(argv[1], argv[2]);

 if (result == 0)
 printf("\"%s\" is identical to \"%s\"\n", argv[1], argv[2]);
 else if (result < 0)
 printf("\"%s\" is less than \"%s\"\n", argv[1], argv[2]);
 else
 printf("\"%s\" is greater than \"%s\"\n", argv[1], argv[2]);
 }
}

/****************** If the input is the strings ***********************
********** "is this first?" and "is this before that one?", ***********
****************** then the expected output is: *********************

"is this first?" is greater than "is this before that one?"
**/

Related Information
• “strcat() — Concatenate Strings” on page 389
• “strchr() — Search for Character” on page 390
• “strcpy() — Copy Strings” on page 396
• “strcspn() — Find Offset of First Character Match” on page 397
• “strncmp() — Compare Strings” on page 412
• “strpbrk() — Find Characters in String” on page 417
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “wcschr() — Search for Wide Character” on page 489
• “wcsspn() — Find Offset of First Non-matching Wide Character” on page 512
• “<string.h>” on page 15

strcmpi() — Compare Strings Without Case Sensitivity

Format
#include <string.h>
int strcmpi(const char *string1, const char *string2);

Note: The strcmpi function is available for C++ programs. It is available for C only when the program
defines the __cplusplus__strings__ macro.

Language Level
Extension

Library Functions 393

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
strcmpi compares string1 and string2 without sensitivity to case. All alphabetic characters in the two
arguments string1 and string2 are converted to lowercase before the comparison.

The function operates on null-ended strings. The string arguments to the function are expected to contain
a null character (\0) marking the end of the string.

Return Value
strcmpi returns a value indicating the relationship between the two strings, as follows:

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

Example
This example uses strcmpi to compare two strings.

#include <stdio.h>
#include <string.h>
int main(void)
{
 /* Compare two strings without regard to case */
 if (0 == strcmpi("hello", "HELLO"))
 printf("The strings are equivalent.\n");
 else
 printf("The strings are not equivalent.\n");
 return 0;
}

The output should be:

 The strings are equivalent.

Related Information
• “strcoll() — Compare Strings” on page 395
• “strcspn() — Find Offset of First Character Match” on page 397
• “strdup() — Duplicate String” on page 399
• “stricmp() — Compare Strings without Case Sensitivity” on page 407
• “strncmp() — Compare Strings” on page 412
• “strnicmp() — Compare Substrings Without Case Sensitivity” on page 415
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “strcasecmp() — Compare Strings without Case Sensitivity” on page 388

394 IBM i: ILE C/C++ Runtime Library Functions

• “strncasecmp() — Compare Strings without Case Sensitivity” on page 409
• “<string.h>” on page 15

strcoll() — Compare Strings

Format
#include <string.h>
int strcoll(const char *string1, const char *string2);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_COLLATE category of the current locale. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strcoll() function compares two strings using the collating sequence that is specified by the
program's locale.

Return Value
The strcoll() function returns a value indicating the relationship between the strings, as listed below:

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

If strcoll() is unsuccessful, errno is changed. The value of errno may be set to EINVAL (the string1 or
string2 arguments contain characters that are not available in the current locale).

Example
This example compares the two strings that are passed to main() using strcoll():

Library Functions 395

#include <stdio.h>
#include <string.h>

int main(int argc, char ** argv)
{
 int result;

 if (argc != 3)
 {
 printf("Usage: %s string1 string2\n", argv[0]);
 }
 else
 {

 result = strcoll(argv[1], argv[2]);

 if (result == 0)
 printf("\"%s\" is identical to \"%s\"\n", argv[1], argv[2]);
 else if (result < 0)
 printf("\"%s\" is less than \"%s\"\n", argv[1], argv[2]);
 else
 printf("\"%s\" is greater than \"%s\"\n", argv[1], argv[2]);
 }
}

/****************** If the input is the strings ***********************
**************** "firststring" and "secondstring", ********************
****************** then the expected output is: *****************

"firststring" is less than "secondstring"
*/

Related Information
• “setlocale() — Set Locale” on page 370
• “strcmp() — Compare Strings” on page 392
• “strncmp() — Compare Strings” on page 412
• “wcscoll() — Language Collation String Comparison” on page 492
• “<string.h>” on page 15

strcpy() — Copy Strings

Format
#include <string.h>
char *strcpy(char *string1, const char *string2);

Language Level
ANSI

Threadsafe
Yes

Description
The strcpy() function copies string2, including the ending null character, to the location that is specified
by string1.

The strcpy() function operates on null-ended strings. The string arguments to the function should
contain a null character (\0) that marks the end of the string. No length checking is performed. You should
not use a literal string for a string1 value, although string2 may be a literal string.

396 IBM i: ILE C/C++ Runtime Library Functions

Return Value
The strcpy() function returns a pointer to the copied string (string1).

Example
This example copies the contents of source to destination.

#include <stdio.h>
#include <string.h>

#define SIZE 40

int main(void)
{
 char source[SIZE] = "This is the source string";
 char destination[SIZE] = "And this is the destination string";
 char * return_string;

 printf("destination is originally = \"%s\"\n", destination);
 return_string = strcpy(destination, source);
 printf("After strcpy, destination becomes \"%s\"\n", destination);
}

/***************** Output should be similar to: *****************

destination is originally = "And this is the destination string"
After strcpy, destination becomes "This is the source string"
*/

Related Information
• “strcat() — Concatenate Strings” on page 389
• “strchr() — Search for Character” on page 390
• “strcmp() — Compare Strings” on page 392
• “strcspn() — Find Offset of First Character Match” on page 397
• “strncpy() — Copy Strings” on page 413
• “strpbrk() — Find Characters in String” on page 417
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “wcscpy() — Copy Wide-Character Strings” on page 493
• “wcsncpy() — Copy Wide-Character Strings” on page 504
• “<string.h>” on page 15

strcspn() — Find Offset of First Character Match

Format
#include <string.h>
size_t strcspn(const char *string1, const char *string2);

Language Level
ANSI

Threadsafe
Yes

Library Functions 397

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strcspn() function finds the first occurrence of a character in string1 that belongs to the set of
characters that is specified by string2. Null characters are not considered in the search.

The strcspn() function operates on null-ended strings. The string arguments to the function should
contain a null character (\0) marking the end of the string.

Return Value
The strcspn() function returns the index of the first character found. This value is equivalent to the
length of the initial substring of string1 that consists entirely of characters not in string2.

Example
This example uses strcspn() to find the first occurrence of any of the characters "a", "x", "l", or "e" in
string.

#include <stdio.h>
#include <string.h>

#define SIZE 40

int main(void)
{
 char string[SIZE] = "This is the source string";
 char * substring = "axle";

 printf("The first %i characters in the string \"%s\" "
 "are not in the string \"%s\" \n",
 strcspn(string, substring), string, substring);

}

/********** Output should be similar to: **************

The first 10 characters in the string "This is the source string"
are not in the string "axle"
*/

Related Information
• “strcat() — Concatenate Strings” on page 389
• “strchr() — Search for Character” on page 390
• “strcmp() — Compare Strings” on page 392
• “strcpy() — Copy Strings” on page 396
• “strncmp() — Compare Strings” on page 412
• “strpbrk() — Find Characters in String” on page 417
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “<string.h>” on page 15

398 IBM i: ILE C/C++ Runtime Library Functions

strdup() — Duplicate String

Format
#include <string.h>
char *strdup(const char *string);

Note: The strdup function is available for C++ programs. It is available for C only when the program
defines the __cplusplus__strings__ macro.

Language Level
XPG4, Extension

Threadsafe
Yes

Description
strdup reserves storage space for a copy of string by calling malloc. The string argument to this function
is expected to contain a null character (\0) marking the end of the string. Remember to free the storage
reserved with the call to strdup.

Return Value
strdup returns a pointer to the storage space containing the copied string. If it cannot reserve storage
strdup returns NULL.

Example
This example uses strdup to duplicate a string and print the copy.

#include <stdio.h>
#include <string.h>
int main(void)
{
 char *string = "this is a copy";
 char *newstr;
 /* Make newstr point to a duplicate of string */
 if ((newstr = strdup(string)) != NULL)
 printf("The new string is: %s\n", newstr);
 return 0;
}

The output should be:

 The new string is: this is a copy

Related Information
• “strcpy() — Copy Strings” on page 396
• “strncpy() — Copy Strings” on page 413
• “wcscpy() — Copy Wide-Character Strings” on page 493
• “wcsncpy() — Copy Wide-Character Strings” on page 504
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “<string.h>” on page 15

Library Functions 399

strerror() — Set Pointer to Runtime Error Message

Format
#include <string.h>
char *strerror(int errnum);

Language Level
ANSI

Threadsafe
Yes

Description
The strerror() function maps the error number in errnum to an error message string.

Return Value
The strerror() function returns a pointer to the string. It does not return a NULL value. The value of
errno may be set to ECONVERT (conversion error).

Example
This example opens a file and prints a runtime error message if an error occurs.

#include <stdlib.h>
#include <string.h>
#include <errno.h>

int main(void)
{
 FILE *stream;

 if ((stream = fopen("mylib/myfile", "r")) == NULL)
 printf(" %s \n", strerror(errno));

}

/* This is a program fragment and not a complete function example */

Related Information
• “clearerr() — Reset Error Indicators” on page 87
• “ferror() — Test for Read/Write Errors” on page 120
• “perror() — Print Error Message” on page 251
• “<string.h>” on page 15

strfmon() — Convert Monetary Value to String

Format
#include <monetary.h>
int strfmon(char *s, size_t maxsize, const char *format, argument_list);

400 IBM i: ILE C/C++ Runtime Library Functions

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_MONETARY categories of the
current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strfmon() function places characters into the array pointed to by s as controlled by the string
pointed to by format. No more than maxsize characters are placed into the array.

The character string format contains two types of objects: plain characters, which are copied to the
output stream, and directives, each of which results in the fetching of zero or more arguments, which
are converted and formatted. The results are undefined if there are insufficient arguments for the format.
If the format is exhausted while arguments remain, the excess arguments are simply ignored. Only 15
significant digits are guaranteed on conversions involving double values.

A directive consists of a % character, optional conversion specifications, and a ending character that
determines the directive's behavior.

A directive consists of the following sequence:

• A % character.
• Optional flags.
• Optional field width.
• Optional left precision.
• Optional right precision.
• A required conversion character indicating the type of conversion to be performed.

Flags

Table 11. Flags

Flag Meaning

=f An = followed by a single character f which is used as the
numeric fill character. By default the numeric fill character
is a space character. This flag does not affect field width
filling, which always uses a space character. This flag is
ignored unless left precision is specified.

^ Do not use grouping characters when formatting the
currency value. Default is to insert grouping characters as
defined in the current locale.

+ or (Specify the style representing positive and negative
currency amounts. If + is specified, the locale's equivalent
of + and – for monetary quantities will be used. If
(is specified, negative amounts are enclosed within
parenthesis. Default is +.

Library Functions 401

Table 11. Flags (continued)

Flag Meaning

! Do not output the currency symbol. Default is to output the
currency symbol.

- Use left justification for double arguments. Default is right
justification.

Field Width
w

A decimal digit string w specifying a minimum field width in bytes in which the result of the conversion
is right-justified (or left-justified if the flag - is specified). The default is 0.

Left Precision
#n

A # followed by a decimal digit string n specifying a maximum number of digits expected to be
formatted to the left of the radix character. This option can be used to keep the formatted output
from multiple calls to strfmon() aligned in the same columns. It can also be used to fill unused
positions with a special character as in $***123.45. This option causes an amount to be formatted as
if it has the number of digits specified by n. If more than n digit positions are required, this conversion
specification is ignored. Digit positions in excess of those actually required are filled with the numeric
fill character (see the =f flag above).

If grouping has not been suppressed with the ^ flag, and it is defined for the current locale, grouping
separators are inserted before the fill characters (if any) are added. Grouping separators are not
applied to fill characters even if the fill character is a digit. To ensure alignment, any characters
appearing before or after the number in the formatted output, such as currency or sign symbols, are
padded as necessary with space characters to make their positive and negative formats an equal
length.

Right Precision
.p

A period followed by a decimal digit string p specifies the number of digits after the radix character. If
the value of the right precision p is 0, no radix character appears. If a right precision is not specified,
a default specified by the current locale is used. The amount being formatted is rounded to the
specified number of digits prior to formatting.

Conversion Characters
Table 12. Conversion Characters

Specifier Meaning

%i The double argument is formatted according to the
locale's international currency format.

%n The double argument is formatted according to the
locale's national currency format.

%% Is replaced by %. No argument is converted.

402 IBM i: ILE C/C++ Runtime Library Functions

Return Value
If the total number of resulting bytes including the ending null character is not more than maxsize, the
strfmon() function returns the number of bytes placed into the array pointed to by s, but excludes the
ending null character. Otherwise, zero is returned, and the contents of the array are undefined.

The value of errno may be set to:
E2BIG

Conversion stopped due to lack of space in the buffer.

Example

#include <stdio.h>
 #include <monetary.h>
 #include <locale.h>

int main(void)
{
 char string[100];
 double money = 1234.56;
 if (setlocale(LC_ALL, "/qsys.lib/en_us.locale") == NULL) {
 printf("Unable to setlocale().\n");
 exit(1);
 }

 strfmon(string, 100, "%i", money); /* USD 1,234.56 */
 printf("%s\n", string);
 strfmon(string, 100, "%n", money); /* $1,234.56 */
 printf("%s\n", string);
}
/**
 The output should be similar to:
 USD 1,234.56
 $1,234.56
**/

Related Information
• “localeconv() — Retrieve Information from the Environment” on page 203
• “<monetary.h>” on page 6

strftime() — Convert Date/Time to String

Format
#include <time.h>
size_t strftime(char *s, size_t maxsize, const char *format,
 const struct tm *timeptr);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE, LC_TIME, and LC_TOD categories of the
current locale. For more information, see “Understanding CCSIDs and Locales” on page 571.

Library Functions 403

Description
The strftime() function places bytes into the array pointed to by s as controlled by the string
pointed to by format. The format string consists of zero or more conversion specifications and ordinary
characters. A conversion specification consists of a % character and a terminating conversion character
that determines the behavior of the conversion. All ordinary characters (including the terminating null
byte, and multi-byte chars) are copied unchanged into the array. If copying takes place between objects
that overlap, then the behavior is undefined. No more than maxsize bytes are placed in the array. The
appropriate characters are determined by the values contained in the structure pointed to by timeptr, and
by the values stored in the current locale.

Each standard conversion specification is replaced by appropriate characters as described in the following
table:

Specifier Meaning

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Date/Time in the format of the locale.

%C Century number [00-99], the year divided by 100 and truncated to an integer.

%d Day of the month [01-31].

%D Date Format, same as %m/%d/%y.

%e Same as %d, except single digit is preceded by a space [1-31].

%g 2 digit year portion of ISO week date [00,99].

%F ISO Date Format, same as %Y-%m-%d.

%G 4 digit year portion of ISO week date. Can be negative.

%h Same as %b.

%H Hour in 24-hour format [00-23].

%I Hour in 12-hour format [01-12].

%j Day of the year [001-366].

%m Month [01-12].

%M Minute [00-59].

%n Newline character.

%p AM or PM string.

%r Time in AM/PM format of the locale. If not available in the locale time format,
defaults to the POSIX time AM/PM format: %I:%M:%S %p.

%R 24-hour time format without seconds, same as %H:%M.

%S Second [00-61]. The range for seconds allows for a leap second and a double leap
second.

%t Tab character.

%T 24-hour time format with seconds, same as %H:%M:%S.

%u Weekday [1,7]. Monday is 1 and Sunday is 7.

404 IBM i: ILE C/C++ Runtime Library Functions

Specifier Meaning

%U Week number of the year [00-53]. Sunday is the first day of the week.

%V ISO week number of the year [01-53]. Monday is the first day of the week. If
the week containing January 1st has four or more days in the new year then it is
considered week 1. Otherwise, it is the last week of the previous year, and the next
year is week 1 of the new year.

%w Weekday [0,6], Sunday is 0.

%W Week number of the year [00-53]. Monday is the first day of the week.

%x Date in the format of the locale.

%X Time in the format of the locale.

%y 2 digit year [00,99].

%Y 4-digit year. Can be negative.

%z UTC offset. Output is a string with format +HHMM or -HHMM, where + indicates east
of GMT, - indicates west of GMT, HH indicates the number of hours from GMT, and
MM indicates the number of minutes from GMT.

%Z Time zone name.

%% % character.

Modified Conversion Specifiers
Some conversion specifiers can be modified by the E or O modifier characters to indicate that an alternate
format or specification should be used rather than the one normally used by the unmodified conversion
specifier. If a modified conversion specifier uses a field in the current locale that is unavailable, then the
behavior will be as if the unmodified conversion specification were used. For example, if the era string is
the empty string "", which means that the string is unavailable, then %EY would act like %Y.

Specifier Meaning

%Ec Date/time for current era.

%EC Era name.

%Ex Date for current era.

%EX Time for current era.

%Ey Era year. This is the offset from the base year.

%EY Year for current era.

%Od Day of the month using alternate digits.

%Oe Same as %Od.

%OH Hour in 24 hour format using alternate digits.

%OI Hour in 12 hour format using alternate digits.

%Om Month using alternate digits.

%OM Minutes using alternate digits.

%OS Seconds using alternate digits.

%Ou Weekday using alternate digits. Monday is 1 and Sunday is 7.

%OU Week number of the year using alternate digits. Sunday is the first day of the week.

Library Functions 405

Specifier Meaning

%OV ISO week number of the year using alternate digits. See %V for explanation of ISO
week number.

%Ow Weekday using alternate digits. Sunday is 0.

%OW Week number of the year using alternate digits. Monday is the first day of the week.

%Oy 2-digit year using alternate digits.

%OZ If the time zone name exists in the current locale, this is the same as %Z;
otherwise, the abbreviated time zone name of the current job is returned.

Note: %C, %D, %e, %h, %n, %r, %R, %t, %T, %u, %V, and the modified conversion specifiers are not
available when LOCALETYPE(*CLD) is specified on the compilation command.

Return Value
If the total number of resulting bytes including the terminating null byte is not more than maxsize,
strftime() returns the number of bytes placed into the array pointed to by s, not including the
terminating null byte. Otherwise, 0 is returned and the contents of the array are indeterminate.

If a conversion error occurs, errno may be set to ECONVERT.

Example

#include <stdio.h>
#include <time.h>

int main(void)
{
 char s[100];
 int rc;
 time_t temp;
 struct tm *timeptr;

 temp = time(NULL);
 timeptr = localtime(&temp);

 rc = strftime(s,sizeof(s),"Today is %A, %b %d.\nTime: %r", timeptr);
 printf("%d characters written.\n%s\n",rc,s);

 return 0;
}

/***
 The output should be similar to:
 46 characters written
 Today is Wednesday, Oct 24.
 Time: 01:01:15 PM
**/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186

406 IBM i: ILE C/C++ Runtime Library Functions

• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “setlocale() — Set Locale” on page 370
• “strptime() — Convert String to Date/Time” on page 418
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

stricmp() — Compare Strings without Case Sensitivity

Format
#include <string.h>
int stricmp(const char *string1, const char *string2);

Note: The stricmp() function is available for C++ programs. It is available for C only when the program
defines the __cplusplus__strings__ macro.

Language Level
Extension

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The stricmp() function compares string1 and string2 without sensitivity to case. All alphabetic
characters in the two arguments string1 and string2 are converted to lowercase before the comparison.

The function operates on null-ended strings. The string arguments to the function are expected to contain
a null character (\0) marking the end of the string.

Return Value
The stricmp() function returns a value indicating the relationship between the two strings, as follows:

Table 13. Return values of stricmp()

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

Library Functions 407

Example
This example uses stricmp() to compare two strings.

#include <stdio.h>
#include <string.h>
int main(void)
{
 /* Compare two strings as lowercase */
 if (0 == stricmp("hello", "HELLO"))
 printf("The strings are equivalent.\n");
 else
 printf("The strings are not equivalent.\n");
 return 0;
}

The output should be:

 The strings are equivalent.

Related Information
• “strcmpi() — Compare Strings Without Case Sensitivity” on page 393
• “strcoll() — Compare Strings” on page 395
• “strcspn() — Find Offset of First Character Match” on page 397
• “strdup() — Duplicate String” on page 399
• “strncmp() — Compare Strings” on page 412
• “strcasecmp() — Compare Strings without Case Sensitivity” on page 388
• “strncasecmp() — Compare Strings without Case Sensitivity” on page 409
• “strnicmp() — Compare Substrings Without Case Sensitivity” on page 415
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “<string.h>” on page 15

strlen() — Determine String Length

Format
#include <string.h>
size_t strlen(const char *string);

Language Level
ANSI

Threadsafe
Yes

Description
The strlen() function determines the length of string excluding the ending null character.

Return Value
The strlen() function returns the length of string.

408 IBM i: ILE C/C++ Runtime Library Functions

Example
This example determines the length of the string that is passed to main().

#include <stdio.h>
#include <string.h>

int main(int argc, char ** argv)
{

 if (argc != 2)
 printf("Usage: %s string\n", argv[0]);
 else
 printf("Input string has a length of %i\n", strlen(argv[1]));
}
/****************** If the input is the string ***********************
*****************"How long is this string?", ******************
****************** then the expected output is: *****************

Input string has a length of 24
*/

Related Information
• “mblen() — Determine Length of a Multibyte Character” on page 221
• “strncat() — Concatenate Strings” on page 410
• “strncmp() — Compare Strings” on page 412
• “strncpy() — Copy Strings” on page 413
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “<string.h>” on page 15

strncasecmp() — Compare Strings without Case Sensitivity

Format
#include <strings.h>
int strncasecmp(const char *string1, const char *string2, size_t count);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. This
function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strncasecmp() function compares up to count characters of string1 and string2 without sensitivity
to case. All alphabetic characters in string1 and string2 are converted to lowercase before comparison.

The strncasecmp() function operates on null terminated strings. The string arguments to the function
are expected to contain a null character ('\0') marking the end of the string.

Library Functions 409

Return Value
The strncasecmp() function returns a value indicating the relationship between the two strings, as
follows:

Table 14. Return values of strncasecmp()

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

Example
This example uses strncasecmp() to compare two strings.

#include <stdio.h>
#include <strings.h>

int main(void)
{
 char_t *str1 = "STRING ONE";
 char_t *str2 = "string TWO";
 int result;

 result = strncasecmp(str1, str2, 6);

 if (result == 0)
 printf("Strings compared equal.\n");
 else if (result < 0)
 printf("\"%s\" is less than \"%s\".\n", str1, str2);
 else
 printf("\"%s\" is greater than \"%s\".\n", str1, str2);

 return 0;
}

/******** The output should be similar to: ***************

Strings compared equal.

***********************************/

Related Information
• “strcasecmp() — Compare Strings without Case Sensitivity” on page 388
• “strncmp() — Compare Strings” on page 412
• “stricmp() — Compare Strings without Case Sensitivity” on page 407
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “__wcsicmp() — Compare Wide Character Strings without Case Sensitivity ” on page 497
• “__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity” on page 505
• “<strings.h> ” on page 15

strncat() — Concatenate Strings

Format
#include <string.h>
char *strncat(char *string1, const char *string2, size_t count);

410 IBM i: ILE C/C++ Runtime Library Functions

Language Level
ANSI

Threadsafe
Yes

Description
The strncat() function appends the first count characters of string2 to string1 and ends the resulting
string with a null character (\0). If count is greater than the length of string2, the length of string2 is used
in place of count.

The strncat() function operates on null-ended strings. The string argument to the function should
contain a null character (\0) marking the end of the string.

Return Value
The strncat() function returns a pointer to the joined string (string1).

Example
This example demonstrates the difference between strcat() and strncat(). The strcat() function
appends the entire second string to the first, whereas strncat() appends only the specified number of
characters in the second string to the first.

#include <stdio.h>
#include <string.h>

#define SIZE 40

int main(void)
{
 char buffer1[SIZE] = "computer";
 char * ptr;

 /* Call strcat with buffer1 and " program" */

 ptr = strcat(buffer1, " program");
 printf("strcat : buffer1 = \"%s\"\n", buffer1);

 /* Reset buffer1 to contain just the string "computer" again */

 memset(buffer1, '\0', sizeof(buffer1));
 ptr = strcpy(buffer1, "computer");

 /* Call strncat with buffer1 and " program" */
 ptr = strncat(buffer1, " program", 3);
 printf("strncat: buffer1 = \"%s\"\n", buffer1);
}

/***************** Output should be similar to: *****************

strcat : buffer1 = "computer program"
strncat: buffer1 = "computer pr"
*/

Related Information
• “strcat() — Concatenate Strings” on page 389
• “strncmp() — Compare Strings” on page 412
• “strncpy() — Copy Strings” on page 413
• “strpbrk() — Find Characters in String” on page 417
• “strrchr() — Locate Last Occurrence of Character in String” on page 422

Library Functions 411

• “strspn() — Find Offset of First Non-matching Character” on page 423
• “wcscat() — Concatenate Wide-Character Strings” on page 488
• “wcsncat() — Concatenate Wide-Character Strings” on page 501
• “<string.h>” on page 15

strncmp() — Compare Strings

Format
#include <string.h>
int strncmp(const char *string1, const char *string2, size_t count);

Language Level
ANSI

Threadsafe
Yes

Description
The strncmp() function compares string1 and string2 to the maximum of count.

Return Value
The strncmp() function returns a value indicating the relationship between the strings, as follows:

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

Example
This example demonstrates the difference between the strcmp() function and the strncmp() function.

412 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <string.h>

#define SIZE 10

int main(void)
{
 int result;
 int index = 3;
 char buffer1[SIZE] = "abcdefg";
 char buffer2[SIZE] = "abcfg";
 void print_result(int, char *, char *);

 result = strcmp(buffer1, buffer2);
 printf("Comparison of each character\n");
 printf(" strcmp: ");
 print_result(result, buffer1, buffer2);

 result = strncmp(buffer1, buffer2, index);
 printf("\nComparison of only the first %i characters\n", index);
 printf(" strncmp: ");
 print_result(result, buffer1, buffer2);
}

void print_result(int res, char * p_buffer1, char * p_buffer2)
{
 if (res == 0)
 printf("\"%s\" is identical to \"%s\"\n", p_buffer1, p_buffer2);
 else if (res < 0)
 printf("\"%s\" is less than \"%s\"\n", p_buffer1, p_buffer2);
 else
 printf("\"%s\" is greater than \"%s\"\n", p_buffer1, p_buffer2);
}

/***************** Output should be similar to: *****************

Comparison of each character
 strcmp: "abcdefg" is less than "abcfg"

Comparison of only the first 3 characters
 strncmp: "abcdefg" is identical to "abcfg"
*/

Related Information
• “strcmp() — Compare Strings” on page 392
• “strcspn() — Find Offset of First Character Match” on page 397
• “strncat() — Concatenate Strings” on page 410
• “strncpy() — Copy Strings” on page 413
• “strpbrk() — Find Characters in String” on page 417
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “<string.h>” on page 15
• “__wcsicmp() — Compare Wide Character Strings without Case Sensitivity ” on page 497
• “__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity” on page 505

strncpy() — Copy Strings

Format
#include <string.h>
char *strncpy(char *string1, const char *string2, size_t count);

Library Functions 413

Language Level
ANSI

Threadsafe
Yes

Description
The strncpy() function copies count characters of string2 to string1. If count is less than or equal to the
length of string2, a null character (\0) is not appended to the copied string. If count is greater than the
length of string2, the string1 result is padded with null characters (\0) up to length count.

Return Value
The strncpy() function returns a pointer to string1.

Example
This example demonstrates the difference between strcpy() and strncpy().

#include <stdio.h>
#include <string.h>

#define SIZE 40

int main(void)
{
 char source[SIZE] = "123456789";
 char source1[SIZE] = "123456789";
 char destination[SIZE] = "abcdefg";
 char destination1[SIZE] = "abcdefg";
 char * return_string;
 int index = 5;

 /* This is how strcpy works */
 printf("destination is originally = '%s'\n", destination);
 return_string = strcpy(destination, source);
 printf("After strcpy, destination becomes '%s'\n\n", destination);

 /* This is how strncpy works */
 printf("destination1 is originally = '%s'\n", destination1);
 return_string = strncpy(destination1, source1, index);
 printf("After strncpy, destination1 becomes '%s'\n", destination1);
}

/***************** Output should be similar to: *****************

destination is originally = 'abcdefg'
After strcpy, destination becomes '123456789'

destination1 is originally = 'abcdefg'
After strncpy, destination1 becomes '12345fg'
*/

Related Information
• “strcpy() — Copy Strings” on page 396
• “strcspn() — Find Offset of First Character Match” on page 397
• “strncat() — Concatenate Strings” on page 410
• “strncmp() — Compare Strings” on page 412
• “strpbrk() — Find Characters in String” on page 417
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “strspn() — Find Offset of First Non-matching Character” on page 423

414 IBM i: ILE C/C++ Runtime Library Functions

• “<string.h>” on page 15

strnicmp() — Compare Substrings Without Case Sensitivity

Format
#include <string.h>
int strnicmp(const char *string1, const char *string2, int n);

Note: The strnset and strset functions are available for C++ programs. They are available for C only
when the program defines the __cplusplus__strings__ macro.

Language Level
Extension

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strnicmp() function compares, at most, the first n characters of string1 and string2 without
sensitivity to case.

The function operates on null terminated strings. The string arguments to the function are expected to
contain a null character (\0) marking the end of the string.

Return Value
The strnicmp() function returns a value indicating the relationship between the substrings, as follows:

Table 15. Return values of strnicmp()

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

Example
This example uses strnicmp() to compare two strings.

#include <stdio.h>
#include <string.h>
int main(void)
{
 char *str1 = "THIS IS THE FIRST STRING";
 char *str2 = "This is the second string";
 int numresult;
 /* Compare the first 11 characters of str1 and str2
 without regard to case */
 numresult = strnicmp(str1, str2, 11);
 if (numresult < 0)
 printf("String 1 is less than string2.\n");

Library Functions 415

 else
 if (numresult > 0)
 printf("String 1 is greater than string2.\n");
 else
 printf("The two strings are equivalent.\n");
 return 0;
}

The output should be:

 The two strings are equivalent.

Related Information
• “strcmp() — Compare Strings” on page 392
• “strcmpi() — Compare Strings Without Case Sensitivity” on page 393
• “stricmp() — Compare Strings without Case Sensitivity” on page 407
• “strncmp() — Compare Strings” on page 412
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “<string.h>” on page 15

strnset() – strset() — Set Characters in String

Format
#include <string.h>
char *strnset(char *string, int c, size_t n);
char *strset(char *string, int c);

Note: The strnset and strset functions are available for C++ programs. They are available for C only
when the program defines the __cplusplus__strings__ macro.

Language Level
Extension

Threadsafe
Yes

Description
strnset sets, at most, the first n characters of string to c (converted to a char). If n is greater than the
length of string, the length of string is used in place of n. strset sets all characters of string, except the
ending null character (\0), to c (converted to a char). For both functions, the string is a null-terminated
string.

Return Value
Both strset and strnset return a pointer to the altered string. There is no error return value.

416 IBM i: ILE C/C++ Runtime Library Functions

Example
In this example, strnset sets not more than four characters of a string to the character 'x'. Then the
strset function changes any non-null characters of the string to the character 'k'.

#include <stdio.h>
#include <string.h>
int main(void)
{
 char str[] = "abcdefghi";
 printf("This is the string: %s\n", str);
 printf("This is the string after strnset: %s\n", strnset((char*)str, 'x', 4));
 printf("This is the string after strset: %s\n", strset((char*)str, 'k'));
 return 0;
}

The output should be:

 This is the string: abcdefghi
 This is the string after strnset: xxxxefghi
 This is the string after strset: kkkkkkkkk

Related Information
• “strchr() — Search for Character” on page 390
• “strpbrk() — Find Characters in String” on page 417
• “wcschr() — Search for Wide Character” on page 489
• “wcspbrk() — Locate Wide Characters in String” on page 506
• “<string.h>” on page 15

strpbrk() — Find Characters in String

Format
#include <string.h>
char *strpbrk(const char *string1, const char *string2);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strpbrk() function locates the first occurrence in the string pointed to by string1 of any character
from the string pointed to by string2.

Return Value
The strpbrk() function returns a pointer to the character. If string1 and string2 have no characters in
common, a NULL pointer is returned.

Library Functions 417

Example
This example returns a pointer to the first occurrence in the array string of either a or b.

#include <stdio.h>
#include <string.h>

int main(void)
{
 char *result, *string = "A Blue Danube";
 char *chars = "ab";

 result = strpbrk(string, chars);
 printf("The first occurrence of any of the characters \"%s\" in "
 "\"%s\" is \"%s\"\n", chars, string, result);
}

/***************** Output should be similar to: *****************

The first occurrence of any of the characters "ab" in "The Blue Danube"
is "anube"
*/

Related Information
• “strchr() — Search for Character” on page 390
• “strcmp() — Compare Strings” on page 392
• “strcspn() — Find Offset of First Character Match” on page 397
• “strncmp() — Compare Strings” on page 412
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “wcschr() — Search for Wide Character” on page 489
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcspbrk() — Locate Wide Characters in String” on page 506
• “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 509
• “wcswcs() — Locate Wide-Character Substring” on page 527
• “<string.h>” on page 15

strptime() — Convert String to Date/Time

Format
#include <time.h>
char *strptime(const char *buf, const char *format, struct tm *tm);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE, LC_TIME, and LC_TOD categories of
the current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see “Understanding CCSIDs and Locales” on page 571.

418 IBM i: ILE C/C++ Runtime Library Functions

Description
The strptime() function converts the character string pointed to by buf to values that are stored in the
tm structure pointed to by tm, using the format specified by format.

The format contains zero or more directives. A directive contains either an ordinary character (not % or a
white space), or a conversion specification. Each conversion specification is composed of a % character
followed by one or more conversion characters, which specify the replacement required. There must be
a white space or other delimiter in both buf and format to be guaranteed that the function will behave
as expected. There must be a delimiter between two string-to-number conversions, or the first number
conversion may convert characters that belong to the second conversion specifier.

Any whitespace (as specified by isspace()) encountered before a directive is scanned in either the
format string or the input string will be ignored. A directive that is an ordinary character must exactly
match the next scanned character in the input string. Case is relevant when matching ordinary character
directives. If the ordinary character directive in the format string does not match the character in the input
string, strptime() is not successful. No more characters will be scanned.

Any other conversion specification is matched by scanning characters in the input string until a character
that is not a possible character for that specification is found or until no more characters can be scanned.
If the specification was string-to-number, the possible character range is +,- or a character specified by
isdigit(). Number specifiers do not require leading zeros. If the specification needs to match a field in
the current locale, scanning is repeated until a match is found. Case is ignored when matching fields in the
locale. If a match is found, the structure pointed to by tm will be updated with the corresponding locale
information. If no match is found, strptime() is not successful. No more characters will be scanned.

Missing fields in the tm structure may be filled in by strptime() if given enough information. For
example, if a date is given, tm_yday can be calculated.

Each standard conversion specification is replaced by appropriate characters as described in the following
table:

Specifier Meaning

%a Name of day of the week, can be either the full name or an abbreviation.

%A Same as %a.

%b Month name, can be either the full name or an abbreviation.

%B Same as %b.

%c Date/time, in the format of the locale.

%C Century number [00–99]. Calculates the year if a two-digit year is used.

%d Day of the month [1–31].

%D Date format, same as %m/%d/%y.

%e Same as %d.

%g 2 digit year portion of ISO week date [00–99].

%G 4 digit year portion of ISO week date. Can be negative.

%h Same as %b.

%H Hour in 24-hour format [0–23].

%I Hour in 12-hour format [1-12].

%j Day of the year [1-366].

%m Month [1-12].

%M Minute [0-59].

Library Functions 419

Specifier Meaning

%n Skip all whitespaces until a newline character is found.

%p AM or PM string, used for calculating the hour if 12-hour format is used.

%r Time in AM/PM format of the locale. If not available in the locale time format,
defaults to the POSIX time AM/PM format: %I:%M:%S %p.

%R 24-hour time format without seconds, same as %H:%M.

%S Second [00-61]. The range for seconds allows for a leap second and a double leap
second.

%t Skip all whitespaces until a tab character is found.

%T 24 hour time format with seconds, same as %H:%M:%S .

%u Weekday [1–7]. Monday is 1 and Sunday is 7.

%U Week number of the year [0-53], Sunday is the first day of the week. Used in
calculating the day of the year.

%V ISO week number of the year [1-53]. Monday is the first day of the week. If the
week containing January 1st has four or more days in the new year, it is considered
week 1. Otherwise, it is the last week of the previous year, and the next week is
week 1 of the new year. Used in calculating the day of the year.

%w Weekday [0 -6]. Sunday is 0.

%W Week number of the year [0-53]. Monday is the first day of the week. Used in
calculating the day of the year.

%x Date in the format of the locale.

%X Time in the format of the locale.

%y 2-digit year [0-99].

%Y 4-digit year. Can be negative.

%z UTC offset. Output is a string with format +HHMM or -HHMM, where + indicates east
of GMT, - indicates west of GMT, HH indicates the number of hours from GMT, and
MM indicates the number of minutes from GMT.

%Z Time zone name.

%% % character.

Modified Conversion Specifiers
Some conversion specifiers can be modified by the E or O modifier characters to indicate that an alternate
format or specification should be used. If a modified conversion specifier uses a field in the current locale
that is unavailable, then the behavior will be as if the unmodified conversion specification were used. For
example, if the era string is the empty string "", which means that era is unavailable, then %EY would act
like %Y.

Specifier Meaning

%Ec Date/time for current era.

%EC Era name.

%Ex Date for current era.

%EX Time for current era.

420 IBM i: ILE C/C++ Runtime Library Functions

Specifier Meaning

%Ey Era year. This is the offset from the base year.

%EY Year for the current era.

%Od Day of the month using alternate digits.

%Oe Same as %Od.

%OH Hour in 24-hour format using alternate digits.

%OI Hour in 12-hour format using alternate digits.

%Om Month using alternate digits.

%OM Minutes using alternate digits.

%OS Seconds using alternate digits.

%Ou Day of the week using alternate digits. Monday is 1 and Sunday is 7.

%OU Week number of the year using alternate digits. Sunday is the first day of the week.

%OV ISO week number of the year using alternate digits. See %V for explanation of ISO
week number.

%Ow Weekday using alternate digit. Sunday is 0 and Saturday is 6.

%OW Week number of the year using alternate digits. Monday is the first day of the week.

%Oy 2-digit year using alternate digits.

%OZ Abbreviated time zone name.

Return Value
On successful completion, the strptime() function returns a pointer to the character following the last
character parsed. Otherwise, a null pointer is returned. The value of errno may be set to ECONVERT
(conversion error).

Example

#include <stdio.h>
#include <locale.h>
#include <time.h>

int main(void)
{
 char buf[100];
 time_t t;
 struct tm *timeptr,result;

 setlocale(LC_ALL,"/QSYS.LIB/EN_US.LOCALE");
 t = time(NULL);
 timeptr = localtime(&t);
 strftime(buf,sizeof(buf), "%a %m/%d/%Y %r", timeptr);

 if (strptime(buf, "%a %m/%d/%Y %r",&result) == NULL)
 printf("\nstrptime failed\n");
 else
 {
 printf("tm_hour: %d\n",result.tm_hour);
 printf("tm_min: %d\n",result.tm_min);
 printf("tm_sec: %d\n",result.tm_sec);
 printf("tm_mon: %d\n",result.tm_mon);
 printf("tm_mday: %d\n",result.tm_mday);
 printf("tm_year: %d\n",result.tm_year);
 printf("tm_yday: %d\n",result.tm_yday);
 printf("tm_wday: %d\n",result.tm_wday);
 }

Library Functions 421

 return 0;
}

/**
 The output should be similar to:
 Tue 10/30/2001 10:59:10 AM
 tm_hour: 10
 tm_min: 59
 tm_sec: 10
 tm_mon: 9
 tm_mday: 30
 tm_year: 101
 tm_yday: 302
 tm_wday: 2
**/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “setlocale() — Set Locale” on page 370
• “strftime() — Convert Date/Time to String” on page 403
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15
• “wcsptime() — Convert Wide Character String to Date/Time” on page 507

strrchr() — Locate Last Occurrence of Character in String

Format
#include <string.h>
char *strrchr(const char *string, int c);

Language Level
ANSI

Threadsafe
Yes

422 IBM i: ILE C/C++ Runtime Library Functions

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strrchr() function finds the last occurrence of c (converted to a character) in string. The ending null
character is considered part of the string.

Return Value
The strrchr() function returns a pointer to the last occurrence of c in string. If the given character is not
found, a NULL pointer is returned.

Example
This example compares the use of strchr() and strrchr(). It searches the string for the first and last
occurrence of p in the string.

#include <stdio.h>
#include <string.h>

#define SIZE 40

int main(void)
{
 char buf[SIZE] = "computer program";
 char * ptr;
 int ch = 'p';

 /* This illustrates strchr */
 ptr = strchr(buf, ch);
 printf("The first occurrence of %c in '%s' is '%s'\n", ch, buf, ptr);

 /* This illustrates strrchr */
 ptr = strrchr(buf, ch);
 printf("The last occurrence of %c in '%s' is '%s'\n", ch, buf, ptr);
}

/***************** Output should be similar to: *****************

The first occurrence of p in 'computer program' is 'puter program'
The last occurrence of p in 'computer program' is 'program'
*/

Related Information
• “strchr() — Search for Character” on page 390
• “strcmp() — Compare Strings” on page 392
• “strcspn() — Find Offset of First Character Match” on page 397
• “strncmp() — Compare Strings” on page 412
• “strpbrk() — Find Characters in String” on page 417
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “<string.h>” on page 15

strspn() — Find Offset of First Non-matching Character

Format
#include <string.h>
size_t strspn(const char *string1, const char *string2);

Library Functions 423

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strspn() function finds the first occurrence of a character in string1 that is not contained in the set
of characters that is specified by string2. The null character (\0) that ends string2 is not considered in the
matching process.

Return Value
The strspn() function returns the index of the first character found. This value is equal to the length
of the initial substring of string1 that consists entirely of characters from string2. If string1 begins with
a character not in string2, the strspn() function returns 0. If all the characters in string1 are found in
string2, the length of string1 is returned.

Example
This example finds the first occurrence in the array string of a character that is not an a, b, or c. Because
the string in this example is cabbage, the strspn() function returns 5, the length of the segment of
cabbage before a character that is not an a, b, or c.

#include <stdio.h>
#include <string.h>

int main(void)
{
 char * string = "cabbage";
 char * source = "abc";
 int index;

 index = strspn(string, "abc");
 printf("The first %d characters of \"%s\" are found in \"%s\"\n",
 index, string, source);
}

/***************** Output should be similar to: *****************

The first 5 characters of "cabbage" are found in "abc"
*/

Related Information
• “strcat() — Concatenate Strings” on page 389
• “strchr() — Search for Character” on page 390
• “strcmp() — Compare Strings” on page 392
• “strcpy() — Copy Strings” on page 396
• “strcspn() — Find Offset of First Character Match” on page 397
• “strpbrk() — Find Characters in String” on page 417
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “wcschr() — Search for Wide Character” on page 489

424 IBM i: ILE C/C++ Runtime Library Functions

• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcspbrk() — Locate Wide Characters in String” on page 506
• “wcsspn() — Find Offset of First Non-matching Wide Character” on page 512
• “wcswcs() — Locate Wide-Character Substring” on page 527
• “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 509
• “<string.h>” on page 15

strstr() — Locate Substring

Format
#include <string.h>
char *strstr(const char *string1, const char *string2);

Language Level
ANSI

Threadsafe
Yes

Description
The strstr() function finds the first occurrence of string2 in string1. The function ignores the null
character (\0) that ends string2 in the matching process.

Return Value
The strstr() function returns a pointer to the beginning of the first occurrence of string2 in string1. If
string2 does not appear in string1, the strstr() function returns NULL. If string2 points to a string with
zero length, the strstr() function returns string1.

Example
This example locates the string "haystack" in the string "needle in a haystack".

#include <string.h>
#include <stdio.h>

int main(void)
{
 char *string1 = "needle in a haystack";
 char *string2 = "haystack";
 char *result;

 result = strstr(string1,string2);
 /* Result = a pointer to "haystack" */
 printf("%s\n", result);
}

/***************** Output should be similar to: *****************

haystack
*/

Related Information
• “strchr() — Search for Character” on page 390
• “strcmp() — Compare Strings” on page 392

Library Functions 425

• “strcspn() — Find Offset of First Character Match” on page 397
• “strncmp() — Compare Strings” on page 412
• “strpbrk() — Find Characters in String” on page 417
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “wcschr() — Search for Wide Character” on page 489
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcspbrk() — Locate Wide Characters in String” on page 506
• “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 509
• “wcsspn() — Find Offset of First Non-matching Wide Character” on page 512
• “wcswcs() — Locate Wide-Character Substring” on page 527
• “<string.h>” on page 15

strtod() - strtof() - strtold() — Convert Character String to Double,
Float, and Long Double

Format
#include <stdlib.h>
double strtod(const char *nptr, char **endptr);
float strtof(const char *nptr, char **endptr);
long double strtold(const char *nptr, char **endptr);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of these functions might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. For more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strtod(), strtof(), and strtold() functions convert a character string to a double, float, or
long double value. The parameter nptr points to a sequence of characters that can be interpreted as a
numeric binary floating-point value. These functions stop reading the string at the first character that is
not recognized as part of a number. This character can be the null character at the end of the string.

The strtod(), strtof(), and strtold() functions expect nptr to point to a string with the following
form:

426 IBM i: ILE C/C++ Runtime Library Functions

whitespace +
 –

digits
. digits

. digits

e

E +
 –

digits

0 x

X

hexdigits
. hexdigits

. hexdigits

p

P +
 –

digits

The first character that does not fit this form stops the scan. In addition, a sequence of INFINITY or NAN
(ignoring case) is allowed.

If an exponent is specified with the hexadecimal digit form, the exponent is interpreted as a binary (base
2) exponent. If an exponent is specified with the decimal digit form, the exponent is interpreted as a
decimal (base 10) exponent.

Return Value
The strtod(), strtof(), and strtold() functions return the value of the floating-point number,
except when the representation causes an underflow or overflow. For an overflow, strtof() returns
HUGE_VALF or -HUGE_VALF; strtod() and strtold() return HUGE_VAL or -HUGE_VAL. For an
underflow, all functions return 0.

In both cases, errno is set to ERANGE. If the string pointed to by nptr does not have the expected form,
no conversion is performed and the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a NULL pointer.

The strtod(), strtof(), and strtold() functions do not fail if a character other than a digit follows
an E or e that is read as an exponent. For example, 100elf is converted to the floating-point value 100.0.

A character sequence of INFINITY (ignoring case) yields a value of INFINITY. A character value of NAN
yields a Quiet Not-A-Number (NAN) value.

Example
This example converts the strings to double, float, and long double values. It prints the converted values
and the substring that stopped the conversion.

Library Functions 427

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *string, *stopstring;
 double x;
 float f;
 long double ld;

 string = "3.1415926This stopped it";
 f = strtof(string, &stopstring);
 printf("string = \"%s\"\n", string);
 printf(" strtof = %f\n", f);
 printf(" Stopped scan at \"%s\"\n\n", stopstring);
 string = "100ergs";
 f = strtof(string, &stopstring);
 printf("string = \"%s\"\n", string);
 printf(" strtof = %f\n", f);
 printf(" Stopped scan at \"%s\"\n\n", stopstring);

 string = "3.1415926This stopped it";
 x = strtod(string, &stopstring);
 printf("string = \"%s\"\n", string);
 printf(" strtod = %f\n", x);
 printf(" Stopped scan at \"%s\"\n\n", stopstring);
 string = "100ergs";
 x = strtod(string, &stopstring);
 printf("string = \"%s\"\n", string);
 printf(" strtod = %f\n", x);
 printf(" Stopped scan at \"%s\"\n\n", stopstring);

 string = "3.1415926This stopped it";
 ld = strtold(string, &stopstring);
 printf("string = \"%s\"\n", string);
 printf(" strtold = %lf\n", ld);
 printf(" Stopped scan at \"%s\"\n\n", stopstring);
 string = "100ergs";
 ld = strtold(string, &stopstring);
 printf("string = \"%s\"\n", string);
 printf(" strtold = %lf\n", ld);
 printf(" Stopped scan at \"%s\"\n\n", stopstring);
}

/***************** Output should be similar to: *****************
string = "3.1415926This stopped it"
 strtof = 3.141593
 Stopped scan at "This stopped it"

string = "100ergs"
 strtof = 100.000000
 Stopped scan at "ergs"

string = "3.1415926This stopped it"
 strtod = 3.141593
 Stopped scan at "This stopped it"

string = "100ergs"
 strtod = 100.000000
 Stopped scan at "ergs"

string = "3.1415926This stopped it"
 strtold = 3.141593
 Stopped scan at "This stopped it"

string = "100ergs"
 strtold = 100.000000
 Stopped scan at "ergs"

*/

Related Information
• “atof() — Convert Character String to Float” on page 71
• “atoi() — Convert Character String to Integer” on page 73
• “atol() – atoll() — Convert Character String to Long or Long Long Integer” on page 74

428 IBM i: ILE C/C++ Runtime Library Functions

• “strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point” on page
429

• “strtol() – strtoll() — Convert Character String to Long and Long Long Integer” on page 435
• “strtoul() – strtoull() — Convert Character String to Unsigned Long and Unsigned Long Long Integer” on

page 437
• “wcstod() - wcstof() - wcstold() — Convert Wide-Character String to Double, Float, and Long Double” on

page 515
• “wcstod32() - wcstod64() - wcstod128() — Convert Wide-Character String to Decimal Floating-Point” on

page 517
• “<stdlib.h>” on page 14

strtod32() - strtod64() - strtod128() — Convert Character String to
Decimal Floating-Point

Format
#define __STDC_WANT_DEC_FP__
#include <stdlib.h>
_Decimal32 strtod32(const char *nptr, char **endptr);
_Decimal64 strtod64(const char *nptr, char **endptr);
_Decimal128 strtod132(const char *nptr, char **endptr);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of these functions might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. For more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strtod32(), strtod64(), and strtod128() functions convert a character string to a single-
precision, double-precision, or quad-precision decimal floating-point value. The parameter nptr points
to a sequence of characters that can be interpreted as a numeric decimal floating-point value. These
functions stop reading the string at the first character that is not recognized as part of a number. This
character can be the null character at the end of the string. The endptr parameter is updated to point to
this character, provided that endptr is not a NULL pointer.

The strtod32(), strtod64(), and strtod128() functions expect nptr to point to a string with the
following form:

Library Functions 429

whitespace +
 –

digits
. digits

. digits

e

E +
 –

digits

The first character that does not fit this form stops the scan. In addition, a sequence of INFINITY or NAN
(ignoring case) is allowed.

Return Value
The strtod32(), strtod64(), and strtod128() functions return the value of the floating-point
number, except when the representation causes an underflow or overflow. For an overflow, strtod32()
returns HUGE_VAL_D32 or -HUGE_VAL_D32; strtod64() returns HUGE_VAL_D64 or -HUGE_VAL_D64;
strtod128() returns HUGE_VAL_D128 or -HUGE_VAL_D128. For an underflow, all functions return
+0.E0.

In both the overflow and underflow cases, errno is set to ERANGE. If the string pointed to by nptr does not
have the expected form, a value of +0.E0 is returned and the value of nptr is stored in the object pointed
to by endptr, provided that endptr is not a NULL pointer.

The strtod32(), strtod64(), and strtod128() functions do not fail if a character other than a digit
follows an E or e that is read as an exponent. For example, 100elf is converted to the floating-point value
100.0.

A character sequence of INFINITY (ignoring case) yields a value of INFINITY. A character value of NAN
yields a Quiet Not-A-Number (NaN) value.

If necessary, the return value is rounded using the rounding mode Round to Nearest, Ties to Even.

Example
This example converts the strings to single-precision, double-precision, and quad-precision decimal
floating-point values. It prints the converted values and the substring that stopped the conversion.

430 IBM i: ILE C/C++ Runtime Library Functions

#define __STDC_WANT_DEC_FP__
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *string, *stopstring;
 _Decimal32 d32;
 _Decimal64 d64;
 _Decimal128 d128;

 string = "3.1415926This stopped it";
 d32 = strtod32(string, &stopstring);
 printf("string = %s\n", string);
 printf(" strtod32 = %Hf\n", d32);
 printf(" Stopped scan at %s\n\n", stopstring);
 string = "100ergs";
 d32 = strtod32(string, &stopstring);
 printf("string = \"%s\"\n", string);
 printf(" strtof = %Hf\n", d32);
 printf(" Stopped scan at \"%s\"\n\n", stopstring);

 string = "3.1415926This stopped it";
 d64 = strtod64(string, &stopstring);
 printf("string = %s\n", string);
 printf(" strtod = %Df\n", d64);
 printf(" Stopped scan at %s\n\n", stopstring);
 string = "100ergs";
 d64 = strtod64(string, &stopstring);
 printf("string = \"%s\"\n", string);
 printf(" strtod = %Df\n", d64);
 printf(" Stopped scan at \"%s\"\n\n", stopstring);

 string = "3.1415926This stopped it";
 d128 = strtod128(string, &stopstring);
 printf("string = %s\n", string);
 printf(" strtold = %DDf\n", d128);
 printf(" Stopped scan at %s\n\n", stopstring);
 string = "100ergs";
 d128 = strtod128(string, &stopstring);
 printf("string = \"%s\"\n", string);
 printf(" strtold = %DDf\n", d128);
 printf(" Stopped scan at \"%s\"\n\n", stopstring);
}

/***************** Output should be similar to: *****************

string = 3.1415926This stopped it
 strtof = 3.141593
 Stopped scan at This stopped it

string = "100ergs"
 strtof = 100.000000
 Stopped scan at "ergs"

string = 3.1415926This stopped it
 strtod= 3.141593
 Stopped scan at This stopped it

string = "100ergs"
 strtod = 100.000000
 Stopped scan at "ergs"

string = 3.1415926This stopped it
 strtold = 3.141593
 Stopped scan at This stopped it

string = "100ergs"
 strtold = 100.000000
 Stopped scan at "ergs"

*/

Related Information
• “atof() — Convert Character String to Float” on page 71

Library Functions 431

• “atoi() — Convert Character String to Integer” on page 73
• “atol() – atoll() — Convert Character String to Long or Long Long Integer” on page 74
• “strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double” on page 426
• “strtol() – strtoll() — Convert Character String to Long and Long Long Integer” on page 435
• “strtoul() – strtoull() — Convert Character String to Unsigned Long and Unsigned Long Long Integer” on

page 437
• “wcstod() - wcstof() - wcstold() — Convert Wide-Character String to Double, Float, and Long Double” on

page 515
• “wcstod32() - wcstod64() - wcstod128() — Convert Wide-Character String to Decimal Floating-Point” on

page 517
• “<stdlib.h>” on page 14

strtok() — Tokenize String

Format
#include <string.h>
char *strtok(char *string1, const char *string2);

Language Level
ANSI

Threadsafe
No

Use strtok_r() instead.

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strtok() function reads string1 as a series of zero or more tokens, and string2 as the set of
characters serving as delimiters of the tokens in string1. The tokens in string1 can be separated by one
or more of the delimiters from string2. The tokens in string1 can be located by a series of calls to the
strtok() function.

In the first call to the strtok() function for a given string1, the strtok() function searches for the first
token in string1, skipping over leading delimiters. A pointer to the first token is returned.

When the strtok() function is called with a NULL string1 argument, the next token is read from a stored
copy of the last non-null string1 parameter. Each delimiter is replaced by a null character. The set of
delimiters can vary from call to call, so string2 can take any value. Note that the initial value of string1 is
not preserved after the call to the strtok() function.

Note that the strtok() function writes data into the buffer. The function should be passed to a non-
critical buffer containing the string to be tokenized because the buffer will be damaged by the strtok()
function.

432 IBM i: ILE C/C++ Runtime Library Functions

Return Value
The first time the strtok() function is called, it returns a pointer to the first token in string1. In later
calls with the same token string, the strtok() function returns a pointer to the next token in the string. A
NULL pointer is returned when there are no more tokens. All tokens are null-ended.

Note: The strtok() function uses an internal static pointer to point to the next token in the string being
tokenized. A reentrant version of the strtok() function, strtok_r(), which does not use any internal
static storage, can be used in place of the strtok() function.

Example
Using a loop, this example gathers tokens, separated by commas, from a string until no tokens are left.
The example prints the tokens, a string, of, and tokens.

#include <stdio.h>
#include <string.h>

int main(void)
{
 char *token, *string = "a string, of, ,tokens\0,after null terminator";

 /* the string pointed to by string is broken up into the tokens
 "a string", " of", " ", and "tokens" ; the null terminator (\0)
 is encountered and execution stops after the token "tokens" */
 token = strtok(string, ",");
 do
 {
 printf("token: %s\n", token);
 }
 while (token = strtok(NULL, ","));
}

/***************** Output should be similar to: *****************

token: a string
token: of
token:
token: tokens
*/

Related Information
• “strcat() — Concatenate Strings” on page 389
• “strchr() — Search for Character” on page 390
• “strcmp() — Compare Strings” on page 392
• “strcpy() — Copy Strings” on page 396
• “strcspn() — Find Offset of First Character Match” on page 397
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “strtok_r() — Tokenize String (Restartable)” on page 433
• “<string.h>” on page 15

strtok_r() — Tokenize String (Restartable)

Format
#include <string.h>
char *strtok_r(char *string, const char *seps,
 char **lasts);

Library Functions 433

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. For more
information, see “Understanding CCSIDs and Locales” on page 571.

Description
This function is the restartable version of strtok().

The strtok_r() function reads string as a series of zero or more tokens, and seps as the set of
characters serving as delimiters of the tokens in string. The tokens in string can be separated by one or
more of the delimiters from seps. The arguments lasts points to a user-provided pointer, which points to
stored information necessary for the strtok_r() function to continue scanning the same string.

In the first call to the strtok_r() function for a given null-ended string, it searches for the first token in
string, skipping over leading delimiters. It returns a pointer to the first character of the first token, writes a
null character into string immediately following the returned token, and updates the pointer to which lasts
points.

To read the next token from string, call the strtok_r() function with a NULL string argument. This
causes the strtok_r() function to search for the next token in the previous token string. Each delimiter
in the original string is replaced by a null character, and the pointer to which lasts points is updated. The
set of delimiters in seps can vary from call to call, but lasts must remain unchanged from the previous call.
When no tokens remain in string, a NULL pointer is returned.

Return Value
The first time the strtok_r() function is called, it returns a pointer to the first token in string. In later
calls with the same token string, the strtok_r() function returns a pointer to the next token in the
string. A NULL pointer is returned when there are no more tokens. All tokens are null-ended.

Related Information
• “strcat() — Concatenate Strings” on page 389
• “strchr() — Search for Character” on page 390
• “strcmp() — Compare Strings” on page 392
• “strcpy() — Copy Strings” on page 396
• “strcspn() — Find Offset of First Character Match” on page 397
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “strtok() — Tokenize String” on page 432
• “<string.h>” on page 15

434 IBM i: ILE C/C++ Runtime Library Functions

strtol() – strtoll() — Convert Character String to Long and Long Long
Integer

Format (strtol())
#include <stdlib.h>
long int strtol(const char *nptr, char **endptr, int base);

Format (strtoll())
#include <stdlib.h>
long long int strtoll(char *string, char **endptr, int base);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of these functions might be affected by the LC_CTYPE category of the current locale. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strtol() function converts a character string to a long integer value. The parameter nptr points to a
sequence of characters that can be interpreted as a numeric value of type long int.

The strtoll() function converts a character string to a long long integer value. The parameter nptr
points to a sequence of characters that can be interpreted as a numeric value of type long long int.

When you use these functions, the nptr parameter should point to a string with the following form:

whitespace +
 –

0

0x

0X

digits

If the base parameter is a value between 2 and 36, the subject sequence's expected form is a sequence
of letters and digits representing an integer whose radix is specified by the base parameter. This
sequence is optionally preceded by a positive (+) or negative (-) sign. Letters from a to z inclusive (either
upper or lower case) are ascribed the values 10 to 35; only letters whose ascribed values are less than
that of the base parameter are permitted. If the base parameter has a value of 16, the characters 0x or
0X optionally precede the sequence of letters and digits, following the positive (+) or negative (-) sign, if
present.

If the value of the base parameter is 0, the string determines the base. After an optional leading sign a
leading 0 indicates octal conversion, a leading 0x or 0X indicates hexadecimal conversion, and all other
leading characters result in decimal conversion.

These functions scan the string up to the first character that is inconsistent with the base parameter. This
character may be the null character ('\0') at the end of the string. Leading white-space characters are
ignored, and an optional sign may precede the digits.

Library Functions 435

If the value of the endptr parameter is not null a pointer, a pointer to the character that ended the scan is
stored in the value pointed to by endptr. If a value cannot be formed, the value pointed to by endptr is set
to the nptr parameter

Return Value
If base has an invalid value (less than 0, 1, or greater than 36), errno is set to EINVAL and 0 is returned.
The value pointed to by the endptr parameter is set to the value of the nptr parameter.

If the value is outside the range of representable values, errno is set to ERANGE. If the value is positive,
the strtol() function will return LONG_MAX, and the strtoll() function will return LONGLONG_MAX.
If the value is negative, the strtol() function will return LONG_MIN, and the strtoll() function will
return LONGLONG_MIN.

If no characters are converted, the strtoll() and strtol() functions will set errno to EINVAL and 0 is
returned. For both functions, the value pointed to by endptr is set to the value of the nptr parameter. Upon
successful completion, both functions return the converted value.

Example
This example converts the strings to a long value. It prints out the converted value and the substring that
stopped the conversion.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *string, *stopstring;
 long l;
 int bs;

 string = "10110134932";
 printf("string = %s\n", string);
 for (bs = 2; bs <= 8; bs *= 2)
 {
 l = strtol(string, &stopstring, bs);
 printf(" strtol = %ld (base %d)\n", l, bs);
 printf(" Stopped scan at %s\n\n", stopstring);
 }
}

/***************** Output should be similar to: *****************

string = 10110134932
 strtol = 45 (base 2)
 Stopped scan at 34932

 strtol = 4423 (base 4)
 Stopped scan at 4932

Related Information
• “atof() — Convert Character String to Float” on page 71
• “atoi() — Convert Character String to Integer” on page 73
• “atol() – atoll() — Convert Character String to Long or Long Long Integer” on page 74
• “strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double” on page 426
• “strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point” on page

429
• “strtoul() – strtoull() — Convert Character String to Unsigned Long and Unsigned Long Long Integer” on

page 437
• “wcstol() – wcstoll() — Convert Wide Character String to Long and Long Long Integer” on page 520
• “<stdlib.h>” on page 14

436 IBM i: ILE C/C++ Runtime Library Functions

strtoul() – strtoull() — Convert Character String to Unsigned Long
and Unsigned Long Long Integer

Format (strtoul())
#include <stdlib.h>
unsigned long int strtoul(const char *nptr, char **endptr, int base);

Format (strtoull())
#include <stdlib.h>
unsigned long long int strtoull(char *string, char **endptr, int base);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of these functions might be affected by the LC_CTYPE category of the current locale. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strtoul() function converts a character string to an unsigned long integer value. The parameter
nptr points to a sequence of characters that can be interpreted as a numeric value of type unsigned long
int.

The strtoull() function converts a character string to an unsigned long long integer value. The
parameter nptr points to a sequence of characters that can be interpreted as a numeric value of type
unsigned long long int.

When you use these functions, the nptr parameter should point to a string with the following form:

whitespace +
 –

0

0x

0X

digits

If the base parameter is a value between 2 and 36, the subject sequence's expected form is a sequence
of letters and digits representing an integer whose radix is specified by the base parameter. This
sequence is optionally preceded by a positive (+) or negative (-) sign. Letters from a to z inclusive (either
upper or lower case) are ascribed the values 10 to 35. Only letters whose ascribed values are less than
that of the base parameter are permitted. If the base parameter has a value of 16 the characters 0x or
0X optionally precede the sequence of letters and digits, following the positive (+) or negative (-) sign, if
present.

If the value of the base parameter is 0, the string determines the base. After an optional leading sign a
leading 0 indicates octal conversion, a leading 0x or 0X indicates hexadecimal conversion, and all other
leading characters result in decimal conversion.

Library Functions 437

These functions scan the string up to the first character that is inconsistent with the base parameter. This
character may be the null character ('\0') at the end of the string. Leading white-space characters are
ignored, and an optional sign may precede the digits.

If the value of the endptr parameter is not null a pointer, a pointer to the character that ended the scan is
stored in the value pointed to by endptr. If a value cannot be formed, the value pointed to by endptr is set
to the nptr parameter.

Return Value
If base has an invalid value (less than 0, 1, or greater than 36), errno is set to EINVAL and 0 is returned.
The value pointed to by the endptr parameter is set to the value of the nptr parameter.

If the value is outside the range of representable values, errno is set to ERANGE. The strtoul()
function will return ULONG_MAX and the strtoull() function will return ULONGLONG_MAX.

If no characters are converted, the strtoull() function will set errno to EINVAL and 0 is returned. The
strtoul() function will return 0 but will not set errno to EINVAL. In both cases the value pointed to
by endptr is set to the value of the nptr parameter. Upon successful completion, both functions return the
converted value.

Example
This example converts the string to an unsigned long value. It prints out the converted value and the
substring that stopped the conversion.

#include <stdio.h>
#include <stdlib.h>

#define BASE 2

int main(void)
{
 char *string, *stopstring;
 unsigned long ul;

 string = "1000e13 e";
 printf("string = %s\n", string);
 ul = strtoul(string, &stopstring, BASE);
 printf(" strtoul = %ld (base %d)\n", ul, BASE);
 printf(" Stopped scan at %s\n\n", stopstring);
}

/***************** Output should be similar to: *****************

string = 1000e13 e
 strtoul = 8 (base 2)
 Stopped scan at e13 e
*/

Related Information
• “atof() — Convert Character String to Float” on page 71
• “atoi() — Convert Character String to Integer” on page 73
• “atol() – atoll() — Convert Character String to Long or Long Long Integer” on page 74
• “strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double” on page 426
• “strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point” on page

429
• “strtol() – strtoll() — Convert Character String to Long and Long Long Integer” on page 435
• “wcstoul() – wcstoull() — Convert Wide Character String to Unsigned Long and Unsigned Long Long

Integer” on page 525
• “<stdlib.h>” on page 14

438 IBM i: ILE C/C++ Runtime Library Functions

strxfrm() — Transform String

Format
#include <string.h>
size_t strxfrm(char *string1, const char *string2, size_t count);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE categories of the
current locale. For more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The strxfrm() function transforms the string pointed to by string2 and places the result into the string
pointed to by string1. The transformation is determined by the program's current locale. The transformed
string is not necessarily readable, but can be used with the strcmp() or the strncmp() functions.

Return Value
The strxfrm() function returns the length of the transformed string, excluding the ending null character.
If the returned value is greater than or equal to count, the contents of the transformed string are
indeterminate.

If strxfrm() is unsuccessful, errno is changed. The value of errno may be set to EINVAL (the string1 or
string2 arguments contain characters which are not available in the current locale).

Example
This example prompts the user to enter a string of characters, then uses strxfrm() to transform the
string and return its length.

#include <stdio.h>
#include <string.h>

int main(void)
{
 char *string1, buffer[80];
 int length;

 printf("Type in a string of characters.\n ");
 string1 = gets(buffer);
 length = strxfrm(NULL, string1, 0);
 printf("You would need a %d element array to hold the string\n",length);
 printf("\n\n%s\n\n transformed according",string1);
 printf(" to this program's locale. \n");
}

Related Information
• “localeconv() — Retrieve Information from the Environment” on page 203
• “setlocale() — Set Locale” on page 370
• “strcmp() — Compare Strings” on page 392

Library Functions 439

• “strcoll() — Compare Strings” on page 395
• “strncmp() — Compare Strings” on page 412
• “<string.h>” on page 15

swprintf() — Format and Write Wide Characters to Buffer

Format
#include <wchar.h>
int swprintf(wchar_t *wcsbuffer, size_t n,
 const wchar_t *format, argument-list);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of
the current locale. The behavior might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC
categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified
on the compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The swprintf() function formats and stores a series of wide characters and values into the wide-
character buffer wcsbuffer. The swprintf() function is equivalent to the sprintf() function, except
that it operates on wide characters.

The value n specifies the maximum number of wide characters to be written, including the ending
null character. The swprintf() function converts each entry in the argument-list according to the
corresponding wide-character format specifier in format. The format has the same form and function as
the format string for the printf() function, with the following exceptions:

• %c (without an l prefix) converts a character argument to wchar_t, as if by calling the mbtowc()
function.

• %lc and %C copy a wchar_t to wchar_t. %#lc and %#C are equivalent to %lc and %C, respectively.
• %s (without an l prefix) converts an array of multibyte characters to an array of wchar_t, as if by calling

the mbstowcs() function. The array is written up to, but not including, the ending null character, unless
the precision specifies a shorter output.

• %ls and %S copy an array of wchar_t (no conversion). The array is written up to, but not including, the
ending NULL character, unless the precision specifies a shorter output. %#ls and %#S are equivalent to
%ls and %S, respectively.

Width and precision always are wide characters.

440 IBM i: ILE C/C++ Runtime Library Functions

A null wide character is added to the end of the wide characters written; the null wide character is not
counted as part of the returned value. If copying takes place between objects that overlap, the behavior is
undefined.

Return Value
The swprintf() function returns the number of wide characters that are written to the output buffer, not
counting the ending null wide character or a negative value if an error is encountered. If n or more wide
characters are requested to be written, a negative value is returned.

The value of errno may be set to EINVAL, invalid argument.

Example
This example uses the swprintf() function to format and print several values to buffer.

#include <wchar.h>
#include <stdio.h>

#define BUF_SIZE 100

int main(void)
{
 wchar_t wcsbuf[BUF_SIZE];
 wchar_t wstring[] = L"ABCDE";
 int num;

 num = swprintf(wcsbuf, BUF_SIZE, L"%s", "xyz");
 num += swprintf(wcsbuf + num, BUF_SIZE - num, L"%ls", wstring);
 num += swprintf(wcsbuf + num, BUF_SIZE - num, L"%i", 100);
 printf("The array wcsbuf contains: \"%ls\"\n", wcsbuf);
 return 0;

 /***
 The output should be similar to :

 The array wcsbuf contains: "xyzABCDE100"
 ***/
}

Related Information
• “printf() — Print Formatted Characters” on page 254
• “sprintf() — Print Formatted Data to Buffer” on page 383
• “vswprintf() — Format and Write Wide Characters to Buffer” on page 476
• “<wchar.h>” on page 16

swscanf() — Read Wide Character Data

Format
#include <wchar.h>
int swscanf(const wchar_t *buffer, const wchar_t *format, argument-list);

Language Level
ANSI

Threadsafe
Yes

Library Functions 441

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of
the current locale. The behavior might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC
categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified
on the compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The swscanf() function is equivalent of the fwscanf() function, except that the argument buffer
specifies a wide string from which the input is to be obtained, rather than from a stream. Reaching the end
of the wide string is equivalent to encountering end-of-file for the fwscanf() function.

Return Value
The swscanf() function returns the number of fields that were successfully converted and assigned. The
return value does not include fields that were read but not assigned. The return value is EOF when the end
of the string is encountered before anything is converted.

The value of errno may be set EINVAL, invalid argument.

Example
This example uses the swscanf() function to read various data from the string ltokenstring, and then
displays that data.

#include <wchar.h>
#include <stdio.h>

wchar_t *ltokenstring = L"15 12 14";
int i;
float fp;
char s[10];
char c;

int main(void)
{
 /* Input various data */

 swscanf(ltokenstring, L"%s %c%d%f", s, &c, &i, &fp);

 /* If there were no space between %s and %c, */
 /* swscanf would read the first character following */
 /* the string, which is a blank space. */

 printf("string = %s\n",s);
 printf("character = %c\n",c);
 printf("integer = %d\n",i);
 printf("floating-point number = %f\n",fp);

}

Related Information
• “fscanf() — Read Formatted Data” on page 156
• “scanf() — Read Data” on page 362
• “fwscanf() — Read Data from Stream Using Wide Character” on page 170
• “wscanf() — Read Data Using Wide-Character Format String” on page 545
• “sscanf() — Read Data” on page 386

442 IBM i: ILE C/C++ Runtime Library Functions

• “sprintf() — Print Formatted Data to Buffer” on page 383
• “<wchar.h>” on page 16

system() — Execute a Command

Format
#include <stdlib.h>
int system(const char *string);

Language Level
ANSI

Threadsafe
Yes

However, the CL command processor and all CL commands are NOT threadsafe. Use this function with
caution.

Description
The system() function passes the given string to the CL command processor for processing.

Return Value
If passed a non-NULL pointer to a string, the system() function passes the argument to the CL command
processor. The system() function returns zero if the command is successful. If passed a NULL pointer to
a string, system() returns -1, and the command processor is not called. If the command fails, system()
returns 1. If the system() function fails, the global variable _EXCP_MSGID in <stddef.h> is set with the
exception message ID. The exception message ID set within the _EXCP_MSGID variable is in job CCSID.

Example
Example that uses system().

 #include <stdlib.h>

 int main(void)
 {
 int result;

 /* A data area is created, displayed and deleted: */

 result = system("CRTDTAARA QTEMP/TEST TYPE(*CHAR) VALUE('Test')");
 result = system("DSPDTAARA TEST");
 result = system("DLTDTAARA TEST");

 }

Related Information
• “exit() — End Program” on page 113
• “<stdlib.h>” on page 14

Library Functions 443

tan() — Calculate Tangent

Format
#include <math.h>
double tan(double x);

Language Level
ANSI

Threadsafe
Yes

Description
The tan() function calculates the tangent of x, where x is expressed in radians. If x is too large, a partial
loss of significance in the result can occur and sets errno to ERANGE. The value of errno may also be set
to EDOM.

Return Value
The tan() function returns the value of the tangent of x.

Example
This example computes x as the tangent of π⁄4.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double pi, x;

 pi = 3.1415926;
 x = tan(pi/4.0);

 printf("tan(%lf) is %lf\n", pi/4, x);
}

/****************** Output should be similar to: ****************

tan(0.785398) is 1.000000
*/

Related Information
• “acos() — Calculate Arccosine” on page 62
• “asin() — Calculate Arcsine” on page 67
• “atan() – atan2() — Calculate Arctangent” on page 69
• “cos() — Calculate Cosine” on page 89
• “cosh() — Calculate Hyperbolic Cosine” on page 90
• “sin() — Calculate Sine” on page 380
• “sinh() — Calculate Hyperbolic Sine” on page 381
• “tanh() — Calculate Hyperbolic Tangent” on page 445
• “<math.h>” on page 6

444 IBM i: ILE C/C++ Runtime Library Functions

tanh() — Calculate Hyperbolic Tangent

Format
#include <math.h>
double tanh(double x);

Language Level
ANSI

Threadsafe
Yes

Description
The tanh() function calculates the hyperbolic tangent of x, where x is expressed in radians.

Return Value
The tanh() function returns the value of the hyperbolic tangent of x. The result of tanh() cannot have a
range error.

Example
This example computes x as the hyperbolic tangent of π⁄4.

#include <math.h>
#include <stdio.h>

int main(void)
{
 double pi, x;

 pi = 3.1415926;
 x = tanh(pi/4);

 printf("tanh(%lf) = %lf\n", pi/4, x);
}

/****************** Output should be similar to: ****************

tanh(0.785398) = 0.655794
*/

Related Information
• “acos() — Calculate Arccosine” on page 62
• “asin() — Calculate Arcsine” on page 67
• “atan() – atan2() — Calculate Arctangent” on page 69
• “cos() — Calculate Cosine” on page 89
• “cosh() — Calculate Hyperbolic Cosine” on page 90
• “sin() — Calculate Sine” on page 380
• “sinh() — Calculate Hyperbolic Sine” on page 381
• “tan() — Calculate Tangent” on page 444
• “<math.h>” on page 6

Library Functions 445

time() — Determine Current Time

Format
#include <time.h>
time_t time(time_t *timeptr);

Language Level
ANSI

Threadsafe
Yes

Description
The time() function determines the current calendar time, in seconds.

Note: Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00,
January 1, 1970 Universal Coordinate Time (UTC).

Return Value
The time() function returns the current calendar time. The return value is also stored in the location that
is given by timeptr. If timeptr is NULL, the return value is not stored. If the calendar time is not available,
the value (time_t)(-1) is returned.

Example
This example gets the time and assigns it to ltime. The ctime() function then converts the number of
seconds to the current date and time. This example then prints a message giving the current time.

#include <time.h>
#include <stdio.h>

int main(void)
{
 time_t ltime;
 if (time(<ime) == -1)
 {
 printf("Calendar time not available.\n");
 exit(1);
 }
 printf("The time is %s\n", ctime(<ime));
}

/****************** Output should be similar to: ****************

The time is Mon Mar 22 19:01:41 2004
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100

446 IBM i: ILE C/C++ Runtime Library Functions

• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

time64() — Determine Current Time

Format
#include <time.h>
time64_t time64(time64_t *timeptr);

Language Level
ANSI

Threadsafe
Yes

Description
The time64() function determines the current calendar time, in seconds.

Note: Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00,
January 1, 1970 Universal Coordinate Time (UTC).

Return Value
The time64() function returns the current calendar time. The return value is also stored in the location
that is given by timeptr. If timeptr is NULL, the return value is not stored. If the calendar time is not
available, the value (time64_t)(-1) is returned.

Example
This example gets the time and assigns it to ltime. The ctime64() function then converts the number of
seconds to the current date and time. This example then prints a message giving the current time.

Library Functions 447

#include <time.h>
#include <stdio.h>

int main(void)
{
 time64_t ltime;

 if (time64(<ime) == -1)
 {
 printf("Calendar time not available.\n");
 exit(1);
 }
 printf("The time is %s", ctime64(<ime));
}

/****************** Output should be similar to: ****************

The time is Mon Mar 22 19:01:41 2004
*/

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “ctime() — Convert Time to Character String” on page 97
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “mktime() — Convert Local Time” on page 243
• “mktime64() — Convert Local Time” on page 245
• “time() — Determine Current Time” on page 446
• “<time.h>” on page 15

tmpfile() — Create Temporary File

Format
#include <stdio.h>
FILE *tmpfile(void);

Language Level
ANSI

Threadsafe
Yes

448 IBM i: ILE C/C++ Runtime Library Functions

Description
The tmpfile() function creates a temporary binary file. The file is automatically removed when it is
closed or when the program is ended.

The tmpfile() function opens the temporary file in wb+ mode.

Return Value
The tmpfile() function returns a stream pointer, if successful. If it cannot open the file, it returns a
NULL pointer. On normal end (exit()), these temporary files are removed.

On the Data Management system, the tmpfile() function creates a new file that is named QTEMP/
QACXxxxxxx. If you specify the SYSIFCOPT(*IFSIO) option on the compilation command, the tmpfile()
function creates a new file that is named /tmp/QACXaaaaaa. At the end of the job, the file that is created
with the filename from the tmpfile() function is discarded. You can use the remove() function to
remove files.

Example
This example creates a temporary file, and if successful, writes tmpstring to it. At program end, the file is
removed.

#include <stdio.h>

FILE *stream;
char tmpstring[] = "This is the string to be temporarily written";

int main(void)
{
 if ((stream = tmpfile()) == NULL)
 perror("Cannot make a temporary file");
 else
 fprintf(stream, "%s", tmpstring);
}

Related Information
• “fopen() — Open Files” on page 134
• “<stdio.h>” on page 13

tmpnam() — Produce Temporary File Name

Format
#include <stdio.h>
char *tmpnam(char *string);

Language Level
ANSI

Threadsafe
Yes

However, using tmpnam(NULL) is NOT threadsafe.

Library Functions 449

Description
The tmpnam() function produces a valid file name that is not the same as the name of any existing file. It
stores this name in string. If string is NULL, the tmpnam() function leaves the result in an internal static
buffer. Any subsequent calls destroy this value. If string is not NULL, it must point to an array of at least
L_tmpnam bytes. The value of L_tmpnam is defined in <stdio.h>.

The tmpnam() function produces a different name each time it is called within an activation group up to
at least TMP_MAX names. For ILE C, TMP_MAX is 32 767. This is a theoretical limit; the actual number of
files that can be opened at the same time depends on the available space in the system.

Return Value
The tmpnam() function returns a pointer to the name. If it cannot create a unique name then it returns
NULL.

Example
This example calls tmpnam() to produce a valid file name.

#include <stdio.h>

int main(void)
{
 char *name1;
 if ((name1 = tmpnam(NULL)) !=NULL)
 printf("%s can be used as a file name.\n", name1);
 else
 printf("Cannot create a unique file name\n");
}

Related Information
• “fopen() — Open Files” on page 134
• “remove() — Delete File” on page 305
• “<stdio.h>” on page 13

toascii() — Convert Character to Character Representable by ASCII

Format
#include <ctype.h>
int toascii(int c);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale. This
function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For more
information, see “Understanding CCSIDs and Locales” on page 571.

450 IBM i: ILE C/C++ Runtime Library Functions

Description
The toascii() function determines to what character c would be mapped to in a 7–bit US-ASCII locale
and returns the corresponding character encoding in the current locale.

Return Value
The toascii() function maps the character c according to a 7–bit US-ASCII locale and returns the
corresponding character encoding in the current locale.

Example
This example prints encodings of the 7–bit US-ASCII characters 0x7c to 0x82 are mapped to by
toascii().

#include <stdio.h>
#include <ctype.h>

 void main(void)
 {
 int ch;

 for (ch=0x7c; ch<=0x82; ch++) {
 printf("toascii(%#04x) = %c\n", ch, toascii(ch));
 }

 }

/*****************And the output should be:********************************
toascii(0x7c) = @
toascii(0x7d) = '
toascii(0x7e) = =
toascii(0x7f) = "
toascii(0x80) = X
toascii(0x81) = a
toascii(0x82) = b
**/

Related Information
• “isascii() — Test for Character Representable as ASCII Value” on page 194
• “<ctype.h>” on page 1

tolower() – toupper() — Convert Character Case

Format
#include <ctype.h>
int tolower(int C);
int toupper(int c);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of these functions might be affected by the LC_CTYPE category of the current locale. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Library Functions 451

Description
The tolower() function converts the uppercase letter C to the corresponding lowercase letter.

The toupper() function converts the lowercase letter c to the corresponding uppercase letter.

Return Value
Both functions return the converted character. If the character c does not have a corresponding lowercase
or uppercase character, the functions return c unchanged.

Example
This example uses the toupper() and tolower() functions to change characters between code 0 and
code 7f.

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int ch;

 for (ch = 0; ch <= 0x7f; ch++)
 {
 printf("toupper=%#04x\n", toupper(ch));
 printf("tolower=%#04x\n", tolower(ch));
 putchar('\n');
 }
}

Related Information
• “isalnum() – isxdigit() — Test Integer Value” on page 193
• “towlower() – towupper() — Convert Wide Character Case” on page 454
• “<ctype.h>” on page 1

towctrans() — Translate Wide Character

Format
#include <wctype.h>
wint_t towctrans(wint_t wc, wctrans_t desc);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale
if LOCALETYPE(*LOCALE) is specified on the compilation command. It might also be affected
by the LC_UNI_CTYPE category of the current locale if either the LOCALETYPE(*LOCALEUCS2) or
LOCALETYPE(*LOCALEUTF) option is specified on the compilation command. This function is not
available when LOCALETYPE(*CLD) is specified on the compilation command. For more information, see
“Understanding CCSIDs and Locales” on page 571.

452 IBM i: ILE C/C++ Runtime Library Functions

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The towctrans() function maps the wide character wc using the mapping that is described by desc.

A towctrans(wc, wctrans("tolower")) behaves in the same way as the call to the wide-character,
case-mapping function towlower().

A towctrans(wc, wctrans("toupper")) behaves in the same way as the call to the wide-character,
case-mapping function towupper().

Return Value
The towctrans() function returns the mapped value of wc using the mapping that is described by desc.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <wctype.h>

int main()
{
 char *alpha = "abcdefghijklmnopqrstuvwxyz";
 char *tocase[2] = {"toupper", "tolower"};
 wchar_t *wcalpha;
 int i, j;
 size_t alphalen;

 alphalen = strlen(alpha)+1;
 wcalpha = (wchar_t *)malloc(sizeof(wchar_t)*alphalen);

 mbstowcs(wcalpha, alpha, 2*alphalen);

 for (i=0; i<2; ++i) {
 printf("Input string: %ls\n", wcalpha);
 for (j=0; j<strlen(alpha); ++j) {
 wcalpha[j] = (wchar_t)towctrans((wint_t)wcalpha[j], wctrans(tocase[i]));
 }
 printf("Output string: %ls\n", wcalpha);
 printf("\n");
 }
 return 0;
}

/**************** Output should be similar to: ******************

Input string: abcdefghijklmnopqrstuvwxyz
Output string: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Input string: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Output string: abcdefghijklmnopqrstuvwxyz

***/

Related Information
• “wctrans() — Get Handle for Character Mapping” on page 533
• “<wchar.h>” on page 16

Library Functions 453

towlower() – towupper() — Convert Wide Character Case

Format
#include <wctype.h>
wint_t towlower(wint_t wc);
wint_t towupper(wint_t wc);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of these functions might be affected by the LC_CTYPE category of the current
locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of these
functions might also be affected by the LC_UNI_CTYPE category of the current locale if either
the LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) option is specified on the compilation
command. These functions are not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The towupper() function converts the lowercase character wc to the corresponding uppercase letter.
The towlower() function converts the uppercase character wc to the corresponding lowercase letter.

Return Value
If wc is a wide character for which iswupper() (or iswlower()) is true and there is a corresponding
wide character for which iswlower() (or iswupper()) is true, towlower() (or towupper()) returns
the corresponding wide character. Otherwise, the argument is returned unchanged.

Example
This example uses towlower() and towupper() to convert characters between 0 and 0x7f.

454 IBM i: ILE C/C++ Runtime Library Functions

#include <wctype.h>
#include <stdio.h>

int main(void)
{
 wint_t w_ch;

 for (w_ch = 0; w_ch <= 0xff; w_ch++) {
 printf ("towupper : %#04x %#04x, ", w_ch, towupper(w_ch));
 printf ("towlower : %#04x %#04x\n", w_ch, towlower(w_ch));
 }
 return 0;
}
/**
The output should be similar to:

:
towupper : 0xc1 0xc1, towlower : 0xc1 0x81
towupper : 0xc2 0xc2, towlower : 0xc2 0x82
towupper : 0xc3 0xc3, towlower : 0xc3 0x83
towupper : 0xc4 0xc4, towlower : 0xc4 0x84
towupper : 0xc5 0xc5, towlower : 0xc5 0x85
:
towupper : 0x81 0xc1, towlower : 0x81 0x81
towupper : 0x82 0xc2, towlower : 0x82 0x82
towupper : 0x83 0xc3, towlower : 0x83 0x83
towupper : 0x84 0xc4, towlower : 0x84 0x84
towupper : 0x85 0xc5, towlower : 0x85 0x85
:
**/

Related Information
• “iswalnum() – iswxdigit() — Test Wide Integer Value” on page 195
• “tolower() – toupper() — Convert Character Case” on page 451
• “<wctype.h>” on page 16

_ultoa() — Convert Unsigned Long Integer to String

Format
#include <stdlib.h>
char *_ultoa(unsigned long value, char *string, int radix);

Note: The _ultoa function is supported only for C++, not for C.

Language Level
Extension

Threadsafe
Yes

Description
_ultoa converts the digits of the given unsigned long value to a character string that ends with a null
character and stores the result in string. The radix argument specifies the base of value; it must be in the
range 2 to 36.

Note: The space allocated for string must be large enough to hold the returned string. The function can
return up to 33 bytes including the null character (\0).

Library Functions 455

Return Value
_ultoa returns a pointer to string. There is no error return value.

When the string argument is NULL or the radix is outside the range 2 to 36, errno will be set to EINVAL.

Example
This example converts the integer value 255 to a decimal, binary, and hexadecimal representation.

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
 char buffer[35];
 char *p;
 p = _ultoa(255UL, buffer, 10);
 printf("The result of _ultoa(255) with radix of 10 is %s\n", p);
 p = _ultoa(255UL, buffer, 2);
 printf("The result of _ultoa(255) with radix of 2\n is %s\n", p);
 p = _ultoa(255UL, buffer, 16);
 printf("The result of _ultoa(255) with radix of 16 is %s\n", p);
 return 0;
}

The output should be:

 The result of _ultoa(255) with radix of 10 is 255
 The result of _ultoa(255) with radix of 2
 is 11111111
 The result of _ultoa(255) with radix of 16 is ff

Related Information
• “_gcvt() — Convert Floating-Point to String” on page 174
• “_itoa() — Convert Integer to String” on page 199
• “_ltoa() — Convert Long Integer to String” on page 216
• “<stdlib.h>” on page 14

ungetc() — Push Character onto Input Stream

Format
#include <stdio.h>
int ungetc(int c, FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Description
The ungetc() function pushes the unsigned character c back onto the given input stream. However, only
one consecutive character is guaranteed to be pushed back onto the input stream if you call ungetc()
consecutively. The stream must be open for reading. A subsequent read operation on the stream starts
with c. The character c cannot be the EOF character.

456 IBM i: ILE C/C++ Runtime Library Functions

Characters placed on the stream by ungetc() will be erased if fseek(), fsetpos(), rewind(), or
fflush() is called before the character is read from the stream.

Return Value
The ungetc() function returns the integer argument c converted to an unsigned char, or EOF if c cannot
be pushed back.

The value of errno may be set to:
Value

Meaning
ENOTREAD

The file is not open for read operations.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/O error occurred.

The ungetc() function is not supported for files opened with type=record.

Example
In this example, the while statement reads decimal digits from an input data stream by using arithmetic
statements to compose the numeric values of the numbers as it reads them. When a non-digit character
appears before the end of the file, ungetc() replaces it in the input stream so that later input functions
can process it.

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 FILE *stream;
 int ch;
 unsigned int result = 0;
 while ((ch = getc(stream)) != EOF && isdigit(ch))
 result = result * 10 + ch - '0';
 if (ch != EOF)
 ungetc(ch,stream);
 /* Put the nondigit character back */
 printf("The result is: %d\n", result);
 if ((ch = getc(stream)) != EOF)
 printf("The character is: %c\n", ch);
}

Related Information
• “getc() – getchar() — Read a Character” on page 175
• “fflush() — Write Buffer to File” on page 121
• “fseek() – fseeko() — Reposition File Position” on page 158
• “fsetpos() — Set File Position” on page 160
• “putc() – putchar() — Write a Character” on page 266
• “rewind() — Adjust Current File Position” on page 307
• “<stdio.h>” on page 13

Library Functions 457

ungetwc() — Push Wide Character onto Input Stream

Format
#include <wchar.h>
#include <stdio.h>
wint_t ungetwc(wint_t wc, FILE *stream);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The ungetwc() function pushes the wide character wc back onto the input stream. The pushed-
back wide characters will be returned by subsequent reads on that stream in the reverse order of
their pushing. A successful intervening call (on the stream) to a file positioning function (fseek(),
fsetpos(), or rewind()) discards any pushed-back wide characters for the stream. The external
storage corresponding to the stream is unchanged. There is always at least one wide character of push-
back. If the value of wc is WEOF, the operation fails and the input stream is unchanged.

A successful call to the ungetwc() function clears the EOF indicator for the stream. The value of the file
position indicator for the stream after reading or discarding all pushed-back wide characters is the same
as it was before the wide characters were pushed back. However, only one consecutive wide character is
guaranteed to be pushed back onto the input stream if you call ungetwc() consecutively.

For a text stream, the file position indicator is backed up by one wide character. This affects the ftell(),
fflush(), fseek() (with SEEK_CUR), and fgetpos() function. For a binary stream, the position
indicator is unspecified until all characters are read or discarded, unless the last character is pushed back,
in which case the file position indicator is backed up by one wide character. This affects the ftell(),
fseek() (with SEEK_CUR), fgetpos(), and fflush() function.

Return Value
The ungetwc() function returns the wide character pushed back after conversion, or WEOF if the
operation fails.

458 IBM i: ILE C/C++ Runtime Library Functions

Example

#include <wchar.h>
#include <wctype.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *stream;
 wint_t wc;
 wint_t wc2;
 unsigned int result = 0;

 if (NULL == (stream = fopen("ungetwc.dat", "r+"))) {
 printf("Unable to open file.\n");
 exit(EXIT_FAILURE);
 }

 while (WEOF != (wc = fgetwc(stream)) && iswdigit(wc))
 result = result * 10 + wc - L'0';

 if (WEOF != wc)
 ungetwc(wc, stream); /* Push the nondigit wide character back */

 /* get the pushed back character */
 if (WEOF != (wc2 = fgetwc(stream))) {
 if (wc != wc2) {
 printf("Subsequent fgetwc does not get the pushed back character.\n");
 exit(EXIT_FAILURE);
 }
 printf("The digits read are '%i'\n"
 "The character being pushed back is '%lc'", result, wc2);
 }
 return 0;

 /**
 Assuming the file ungetwc.dat contains:

 12345ABCDE67890XYZ

 The output should be similar to :

 The digits read are '12345'
 The character being pushed back is 'A'
 **/
}

Related Information
• “fflush() — Write Buffer to File” on page 121
• “fseek() – fseeko() — Reposition File Position” on page 158
• “fsetpos() — Set File Position” on page 160
• “getwc() — Read Wide Character from Stream” on page 180
• “putwc() — Write Wide Character” on page 269
• “ungetc() — Push Character onto Input Stream” on page 456
• “<wchar.h>” on page 16

va_arg() – va_copy() – va_end() – va_start() — Handle Variable
Argument List

Format
#include <stdarg.h>
var_type va_arg(va_list arg_ptr, var_type);
void va_copy(va_list dest, va_list src);

Library Functions 459

void va_end(va_list arg_ptr);
void va_start(va_list arg_ptr, variable_name);

Language Level
ANSI

Threadsafe
Yes

Description
The va_arg(), va_copy(), va_end(), and va_start() functions access the arguments to a function
when it takes a fixed number of required arguments and a variable number of optional arguments. You
declare required arguments as ordinary parameters to the function and access the arguments through the
parameter names.

va_start() initializes the arg_ptr pointer for subsequent calls to va_arg(), va_copy() and
va_end().

The argument variable_name is the identifier of the rightmost named parameter in the parameter list
(preceding , ...). Use va_start() before va_arg(). Corresponding va_start() and va_end() macros
must be in the same function.

va_copy() initializes dest as a copy of src , as if va_start() had been applied to dest followed by
the same sequence of uses of va_arg() as had previously been used to reach the present state of src.
Neither va_copy() nor va_start() shall be called to reinitialize dest without an intervening call to
va_end() for the same dest.

The va_arg() function retrieves a value of the given var_type from the location given by arg_ptr, and
increases arg_ptr to point to the next argument in the list. The va_arg() function can retrieve arguments
from the list any number of times within the function. The var_type argument must be one of int, long,
decimal, double, struct, union, or pointer, or a typedef of one of these types.

The va_end() function is needed to indicate the end of parameter scanning. Each call of va_start()
and va_copy() must be matched by a corresponding call to va_end() in the same function.

Because it is not always possible for the called function to determine how many arguments there are, the
calling function should communicate the number of arguments to the called function. To determine the
number of arguments, a function can use a null pointer to signal the end of the list or pass the count of the
optional arguments as one of the required arguments. The printf() function, for instance, can tell how
many arguments there are through the format-string argument.

Return Value
The va_arg() function returns the current argument. The va_copy(), va_end() and va_start()
functions do not return a value.

Example
This example passes a variable number of arguments to a function which prints each argument twice.

460 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h>
#include <stdarg.h>

int vout(int max, ...);

int main(void)
{
 vout(2, "Sat", "Sun");
 printf("\n");
 vout(3, "Mon", "Tues", "Wed");
}

int vout(int max, ...)
{
 va_list arg_ptr;
 va_list args_copy;
 int args;
 char *day;
 va_start(arg_ptr, max);
 va_copy(args_copy, arg_ptr);
 args = 0;
 while(args < max)
 {
 day = va_arg(arg_ptr, char *);
 printf("Day: %s\n", day);
 args++;
 }
 va_end(arg_ptr);

 args = 0;
 while(args < max)
 {
 day = va_arg(args_copy, char *);
 printf("Day: %s\n", day);
 args++;
 }
 va_end(args_copy);
}

/****************** Output should be similar to: ****************
Day: Sat
Day: Sun
Day: Sat
Day: Sun

Day: Mon
Day: Tues
Day: Wed
Day: Mon
Day: Tues
Day: Wed
*/

Related Information
• “vfprintf() — Print Argument Data to Stream” on page 461
• “vprintf() — Print Argument Data” on page 469
• “vfwprintf() — Format Argument Data as Wide Characters and Write to a Stream ” on page 464
• “vsprintf() — Print Argument Data to Buffer” on page 473
• “<stdarg.h>” on page 11

vfprintf() — Print Argument Data to Stream

Format
#include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE *stream, const char *format, va_list arg_ptr);

Library Functions 461

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale
if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The vfprintf() function formats and writes a series of characters and values to the output stream.
The vfprintf() function works just like the fprintf() function, except that arg_ptr points to a list of
arguments whose number can vary from call to call in the program. These arguments should be initialized
by va_start for each call. In contrast, the fprintf() function can have a list of arguments, but the
number of arguments in that list is fixed when you compile the program.

The vfprintf() function converts each entry in the argument list according to the corresponding format
specifier in format. The format has the same form and function as the format string for the printf()
function.

Return Value
If successful, vfprintf() returns the number of bytes written to stream. If an error occurs, the function
returns a negative value.

Example
This example prints out a variable number of strings to the file myfile.

#include <stdarg.h>
#include <stdio.h>

void vout(FILE *stream, char *fmt, ...);
char fmt1 [] = "%s %s %s\n";

int main(void)
{
 FILE *stream;
 stream = fopen("mylib/myfile", "w");

 vout(stream, fmt1, "Sat", "Sun", "Mon");
}

void vout(FILE *stream, char *fmt, ...)

{
 va_list arg_ptr;

 va_start(arg_ptr, fmt);
 vfprintf(stream, fmt, arg_ptr);
 va_end(arg_ptr);
}

/****************** Output should be similar to: ****************

Sat Sun Mon
*/

462 IBM i: ILE C/C++ Runtime Library Functions

Related Information
• “fprintf() — Write Formatted Data to a Stream” on page 141
• “printf() — Print Formatted Characters” on page 254
• “va_arg() – va_copy() – va_end() – va_start() — Handle Variable Argument List” on page 459
• “vprintf() — Print Argument Data” on page 469
• “vsprintf() — Print Argument Data to Buffer” on page 473
• “vwprintf() — Format Argument Data as Wide Characters and Print ” on page 480
• “<stdarg.h>” on page 11
• “<stdio.h>” on page 13

vfscanf() — Read Formatted Data

Format
#include <stdarg.h>
#include <stdio.h>
int vfscanf(FILE *stream, const char *format, va_list arg_ptr);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale
if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The vfscanf() function reads data from a stream into locations specified by a variable number of
arguments. The vfscanf() function works just like the fscanf() function, except that arg_ptr points to
a list of arguments whose number can vary from call to call in the program. These arguments should be
initialized by va_start for each call. In contrast, the fscanf() function can have a list of arguments, but
the number of arguments in that list is fixed when you compile the program.

Each argument must be a pointer to a variable with a type that corresponds to a type specifier in
format-string. The format has the same form and function as the format string for the scanf() function.

Return Value
The vfscanf() function returns the number of fields that were successfully converted and assigned.
The return value does not include fields that were read but not assigned. The return value is EOF for an
attempt to read at end-of-file if no conversion was performed. A return value of 0 means that no fields
were assigned.

Library Functions 463

Example
This example opens the file myfile for input, and then scans this file for a string, a long integer value, and a
floating-point value.

#include <stdio.h>
#include <stdarg.h>

int vread(FILE *stream, char *fmt, ...)
{
 int rc;
 va_list arg_ptr;
 va_start(arg_ptr, fmt);
 rc = vfscanf(stream, fmt, arg_ptr);
 va_end(arg_ptr);
 return(rc);
}

#define MAX_LEN 80
int main(void)
{
 FILE *stream;
 long l;
 float fp;
 char s[MAX_LEN + 1];
 char c;
 stream = fopen("mylib/myfile", "r");
 /* Put in various data. */
 vread(stream, "%s", &s[0]);
 vread(stream, "%ld", &l);
 vread(stream, "%c", &c);
 vread(stream, "%f", &fp);
 printf("string = %s\n", s);
 printf("long double = %ld\n", l);
 printf("char = %c\n", c);
 printf("float = %f\n", fp);
}
/*************** If myfile contains ************************
**************** abcdefghijklmnopqrstuvwxyz 343.2 ***********
********************** expected output is: *********************
string = abcdefghijklmnopqrstuvwxyz
long double = 343
char = .
float = 2.000000
*/

Related Information
• “fprintf() — Write Formatted Data to a Stream” on page 141
• “fscanf() — Read Formatted Data” on page 156
• “fwscanf() — Read Data from Stream Using Wide Character” on page 170
• “scanf() — Read Data” on page 362
• “sscanf() — Read Data” on page 386
• “swscanf() — Read Wide Character Data” on page 441
• “wscanf() — Read Data Using Wide-Character Format String” on page 545
• “<stdio.h>” on page 13

vfwprintf() — Format Argument Data as Wide Characters and Write
to a Stream

Format
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwprintf(FILE *stream, const wchar_t *format, va_list arg);

464 IBM i: ILE C/C++ Runtime Library Functions

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of
the current locale. The behavior might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC
categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified
on the compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The vfwprintf() function is equivalent to the fwprintf() function, except that the variable argument
list is replaced by arg, which the va_start macro (and possibly subsequent va_arg calls) will have
initialized. The vfwprintf() function does not invoke the va_end macro.

Because the functions vfwprintf(), vswprintf(), and vwprintf() invoke the va_arg macro, the
value of arg after the return is unspecified.

Return Value
The vfwprintf() function returns the number of wide characters that are written to the output buffer,
not counting the ending null wide character or a negative value if an error was encountered. If n or more
wide characters are requested to be written, a negative value is returned.

Example
This example prints the wide character a to a file. The printing is done from the vout() function, which
takes a variable number of arguments and uses vfwprintf() to print them to a file.

#include <wchar.h>
#include <stdarg.h>
#include <locale.h>

void vout (FILE *stream, wchar_t *fmt, ...);

const char ifs_path [] = "/tmp/myfile";

 int main(void) {

 FILE *stream;
 wchar_t format [] = L"%lc";

 setlocale(LC_ALL, "POSIX");
 if ((stream = fopen (ifs_path, "w")) == NULL) {
 printf("Could not open file.\n");
 return (-1);
 }
 vout (stream, format, L'a');
 fclose (stream);

Library Functions 465

 /***
 The contents of output file /tmp/myfile should
 be a wide char 'a' which in the "POSIX" locale
 is '0081'x.
 */

 return (0);

 }

 void vout (FILE *stream, wchar_t *fmt, ...)
{
 va_list arg_ptr;
 va_start (arg_ptr, fmt);
 vfwprintf (stream, fmt, arg_ptr);
 va_end (arg_ptr);
}

Related Information
• “printf() — Print Formatted Characters” on page 254
• “fprintf() — Write Formatted Data to a Stream” on page 141
• “vfprintf() — Print Argument Data to Stream” on page 461
• “vprintf() — Print Argument Data” on page 469
• “btowc() — Convert Single Byte to Wide Character” on page 78
• “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 225
• “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 166
• “vswprintf() — Format and Write Wide Characters to Buffer” on page 476
• “vwprintf() — Format Argument Data as Wide Characters and Print ” on page 480
• “<stdarg.h>” on page 11
• “<stdio.h>” on page 13
• “<wchar.h>” on page 16

vfwscanf() — Read Formatted Wide Character Data

Format
#include <stdarg.h>
#include <stdio.h>
int vfwscanf(FILE *stream, const wchar_t *format, va_list arg_ptr);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of
the current locale. The behavior might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC
categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified
on the compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

466 IBM i: ILE C/C++ Runtime Library Functions

Integrated File System Interface
See “Wide Characters” on page 574 for more information.

Wide Character Function
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Description
The vfwscanf() function reads wide data from a stream into locations specified by a variable number of
arguments. The vfwscanf() function works just like the fwscanf() function, except that arg_ptr points
to a list of arguments whose number can vary from call to call in the program. These arguments should be
initialized by va_start for each call. In contrast, the fwscanf() function can have a list of arguments, but
the number of arguments in that list is fixed when you compile the program.

Each argument must be a pointer to a variable with a type that corresponds to a type specifier in format-
string. The format has the same form and function as the format string for the fwscanf() function.

Return Value
The vfwscanf() function returns the number of fields that were successfully converted and assigned.
The return value does not include fields that were read but not assigned. The return value is EOF for an
attempt to read at end-of-file if no conversion was performed. A return value of 0 means that no fields
were assigned.

Example
This example opens the file myfile for input, and then scans this file for a string, a long integer value, and a
floating-point value.

Library Functions 467

#include <stdio.h>
#include <stdarg.h>
#include <wchar.h>

int vread(FILE *stream, wchar_t *fmt, ...)
{
 int rc;
 va_list arg_ptr;
 va_start(arg_ptr, fmt);
 rc = vfwscanf(stream, fmt, arg_ptr);
 va_end(arg_ptr);
 return(rc);
}

#define MAX_LEN 80
int main(void)
{
 FILE *stream;
 long l;
 float fp;
 char s[MAX_LEN + 1];
 char c;
 stream = fopen("mylib/myfile", "r");
 /* Put in various data. */
 vread(stream, L"%s", &s [0]);
 vread(stream, L"%ld", &l);
 vread(stream, L"%c", &c);
 vread(stream, L"%f", &fp);
 printf("string = %s\n", s);
 printf("long double = %ld\n", l);
 printf("char = %c\n", c);
 printf("float = %f\n", fp);
}
/*************** If myfile contains ************************
**************** abcdefghijklmnopqrstuvwxyz 343.2 ***********
********************** expected output is: *********************
string = abcdefghijklmnopqrstuvwxyz
long double = 343
char = .
float = 2.000000
*/

Related Information
• “fscanf() — Read Formatted Data” on page 156
• “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 166
• “fwscanf() — Read Data from Stream Using Wide Character” on page 170
• “scanf() — Read Data” on page 362
• “sscanf() — Read Data” on page 386
• “swprintf() — Format and Write Wide Characters to Buffer” on page 440
• “swscanf() — Read Wide Character Data” on page 441
• “vfscanf() — Read Formatted Data” on page 463
• “vfwscanf() — Read Formatted Wide Character Data” on page 466
• “vscanf() — Read Formatted Data” on page 470
• “vsscanf() — Read Formatted Data” on page 475
• “vswscanf() — Read Formatted Wide Character Data” on page 478
• “vwscanf() — Read Formatted Wide Character Data” on page 481
• “wprintf() — Format Data as Wide Characters and Print” on page 544
• “wscanf() — Read Data Using Wide-Character Format String” on page 545
• “<wchar.h>” on page 16

468 IBM i: ILE C/C++ Runtime Library Functions

vprintf() — Print Argument Data

Format
#include <stdarg.h>
#include <stdio.h>
int vprintf(const char *format, va_list arg_ptr);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The vprintf() function formats and prints a series of characters and values to stdout. The vprintf()
function works just like the printf() function, except that arg_ptr points to a list of arguments whose
number can vary from call to call in the program. These arguments should be initialized by va_start for
each call. In contrast, the printf() function can have a list of arguments, but the number of arguments
in that list is fixed when you compile the program.

The vprintf() function converts each entry in the argument list according to the corresponding format
specifier in format. The format has the same form and function as the format string for the printf()
function.

Return Value
If successful, the vprintf() function returns the number of bytes written to stdout. If an error occurs,
the vprintf() function returns a negative value. The value of errno may be set to ETRUNC.

Example
This example prints out a variable number of strings to stdout.

Library Functions 469

#include <stdarg.h>
#include <stdio.h>

void vout(char *fmt, ...);
char fmt1 [] = "%s %s %s %s %s \n";

int main(void)
{
 FILE *stream;
 stream = fopen("mylib/myfile", "w");

 vout(fmt1, "Mon", "Tues", "Wed", "Thurs", "Fri");
}

void vout(char *fmt, ...)
{
 va_list arg_ptr;

 va_start(arg_ptr, fmt);
 vprintf(fmt, arg_ptr);
 va_end(arg_ptr);
}

/****************** Output should be similar to: ****************

Mon Tues Wed Thurs Fri
*/

Related Information
• “printf() — Print Formatted Characters” on page 254
• “va_arg() – va_copy() – va_end() – va_start() — Handle Variable Argument List” on page 459
• “vfprintf() — Print Argument Data to Stream” on page 461
• “vsprintf() — Print Argument Data to Buffer” on page 473
• “<stdarg.h>” on page 11
• “<stdio.h>” on page 13

vscanf() — Read Formatted Data

Format
#include <stdarg.h>
#include <stdio.h>
int vscanf(const char *format, va_list arg_ptr);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

470 IBM i: ILE C/C++ Runtime Library Functions

Description
The vscanf() function reads data from stdin into locations specified by a variable number of
arguments. The vscanf() function works just like the scanf() function, except that arg_ptr points
to a list of arguments whose number can vary from call to call in the program. These arguments should be
initialized by va_start for each call. In contrast, the scanf() function can have a list of arguments, but the
number of arguments in that list is fixed when you compile the program.

Each argument must be a pointer to a variable with a type that corresponds to a type specifier in
format-string. The format has the same form and function as the format string for the scanf() function.

Return Value
The vscanf() function returns the number of fields that were successfully converted and assigned. The
return value does not include fields that were read but not assigned. The return value is EOF for an
attempt to read at end-of-file if no conversion was performed. A return value of 0 means that no fields
were assigned.

Example
This example uses the vscanf() function to read an integer, a floating-point value, a character, and a
string from stdin and then displays these values.

#include <stdio.h>
#include <stdarg.h>
int vread(char *fmt, ...)
{
 int rc;
 va_list arg_ptr;
 va_start(arg_ptr, fmt);
 rc = vscanf(fmt, arg_ptr);
 va_end(arg_ptr);
 return(rc);
}

int main(void)
{
 int i, rc;
 float fp;
 char c, s[81];
 printf("Enter an integer, a real number, a character "
 "and a string : \n");
 rc = vread("%d %f %c %s", &i, &fp, &c, s);
 if (rc != 4)
 printf("Not all fields are assigned\n");
 else
 {
 printf("integer = %d\n", i);
 printf("real number = %f\n", fp);
 printf("character = %c\n", c);
 printf("string = %s\n",s);
 }
}
/***************** If input is: 12 2.5 a yes, *******************
************** then output should be similar to: ****************
Enter an integer, a real number, a character and a string :
integer = 12
real number = 2.500000
character = a
string = yes
*/

Related Information
• “fscanf() — Read Formatted Data” on page 156
• “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 166
• “fwscanf() — Read Data from Stream Using Wide Character” on page 170
• “scanf() — Read Data” on page 362

Library Functions 471

• “sscanf() — Read Data” on page 386
• “swprintf() — Format and Write Wide Characters to Buffer” on page 440
• “swscanf() — Read Wide Character Data” on page 441
• “vfscanf() — Read Formatted Data” on page 463
• “vfwscanf() — Read Formatted Wide Character Data” on page 466
• “vscanf() — Read Formatted Data” on page 470
• “vsscanf() — Read Formatted Data” on page 475
• “vswscanf() — Read Formatted Wide Character Data” on page 478
• “vwscanf() — Read Formatted Wide Character Data” on page 481
• “wprintf() — Format Data as Wide Characters and Print” on page 544
• “wscanf() — Read Data Using Wide-Character Format String” on page 545
• “<wchar.h>” on page 16

vsnprintf() — Print Argument Data to Buffer

Format
#include <stdarg.h>
#include <stdio.h>
int vsnprintf(char *target-string, size_t n, const char *format, va_list arg_ptr);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The vsnprintf() function formats and stores a series of characters and values in the buffer target-
string. The vsnprintf() function works just like the snprintf() function, except that arg_ptr points to
a list of arguments whose number can vary from call to call in the program. These arguments should be
initialized by the va_start function for each call. In contrast, the snprintf() function can have a list of
arguments, but the number of arguments in that list is fixed when you compile the program.

The vsnprintf() function converts each entry in the argument list according to the corresponding
format specifier in format. The format has the same form and function as the format string for the
printf() function.

Return Value
The vsnprintf() function returns the number of bytes that are written in the array, not counting the
ending null character.

472 IBM i: ILE C/C++ Runtime Library Functions

Example
This example assigns a variable number of strings to string and prints the resultant string.

#include <stdarg.h>
#include <stdio.h>

void vout(char *string, char *fmt, ...);
char fmt1 [] = "%s %s %s\n";

int main(void)
{
 char string[100];

 vout(string, fmt1, "Sat", "Sun", "Mon");
 printf("The string is: %s\n", string);
}

void vout(char *string, char *fmt, ...)
{
 va_list arg_ptr;

 va_start(arg_ptr, fmt);
 vsnprintf(string, 8, fmt, arg_ptr);
 va_end(arg_ptr);
}

/****************** Output should be similar to: ****************

The string is: Sat Su
*/

Related Information
• “printf() — Print Formatted Characters” on page 254
• “sprintf() — Print Formatted Data to Buffer” on page 383
• “snprintf() — Print Formatted Data to Buffer” on page 382
• “va_arg() – va_copy() – va_end() – va_start() — Handle Variable Argument List” on page 459
• “vfprintf() — Print Argument Data to Stream” on page 461
• “vsprintf() — Print Argument Data to Buffer” on page 473
• “<stdarg.h>” on page 11
• “<stdio.h>” on page 13

vsprintf() — Print Argument Data to Buffer

Format
#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *target-string, const char *format, va_list arg_ptr);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if

Library Functions 473

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The vsprintf() function formats and stores a series of characters and values in the buffer target-string.
The vsprintf() function works just like the sprintf() function, except that arg_ptr points to a list of
arguments whose number can vary from call to call in the program. These arguments should be initialized
by the va_start function for each call. In contrast, the sprintf() function can have a list of arguments,
but the number of arguments in that list is fixed when you compile the program.

The vsprintf() function converts each entry in the argument list according to the corresponding format
specifier in format. The format has the same form and function as the format string for the printf()
function.

Return Value
If successful, the vsprintf() function returns the number of bytes written to target-string. If an error
occurs, the vsprintf() function returns a negative value.

Example
This example assigns a variable number of strings to string and prints the resultant string.

#include <stdarg.h>
#include <stdio.h>

void vout(char *string, char *fmt, ...);
char fmt1 [] = "%s %s %s\n";

int main(void)
{
 char string[100];

 vout(string, fmt1, "Sat", "Sun", "Mon");
 printf("The string is: %s\n", string);
}

void vout(char *string, char *fmt, ...)
{
 va_list arg_ptr;

 va_start(arg_ptr, fmt);
 vsprintf(string, fmt, arg_ptr);
 va_end(arg_ptr);
}

/****************** Output should be similar to: ****************

The string is: Sat Sun Mon
*/

Related Information
• “printf() — Print Formatted Characters” on page 254
• “sprintf() — Print Formatted Data to Buffer” on page 383
• “va_arg() – va_copy() – va_end() – va_start() — Handle Variable Argument List” on page 459
• “vfprintf() — Print Argument Data to Stream” on page 461
• “vprintf() — Print Argument Data” on page 469
• “vswprintf() — Format and Write Wide Characters to Buffer” on page 476
• “<stdarg.h>” on page 11
• “<stdio.h>” on page 13

474 IBM i: ILE C/C++ Runtime Library Functions

vsscanf() — Read Formatted Data

Format
#include <stdarg.h>
#include <stdio.h>
int vsscanf(const char *buffer, const char *format, va_list arg_ptr);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Description
The vsscanf() function reads data from a buffer into locations specified by a variable number of
arguments. The vsscanf() function works just like the sscanf() function, except that arg_ptr points to
a list of arguments whose number can vary from call to call in the program. These arguments should be
initialized by va_start for each call. In contrast, the sscanf() function can have a list of arguments, but
the number of arguments in that list is fixed when you compile the program.

Each argument must be a pointer to a variable with a type that corresponds to a type specifier in
format-string. The format has the same form and function as the format string for the scanf() function.

Return Value
The vsscanf() function returns the number of fields that were successfully converted and assigned.
The return value does not include fields that were read but not assigned. The return value is EOF for an
attempt to read at end-of-file if no conversion was performed. A return value of 0 means that no fields
were assigned.

Example
This example uses vsscanf() to read various data from the string tokenstring and then displays that
data.

Library Functions 475

#include <stdio.h>
#include <stdarg.h>
#include <stddef.h>

int vread(const char *buffer, char *fmt, ...)
{
 int rc;
 va_list arg_ptr;
 va_start(arg_ptr, fmt);
 rc = vsscanf(buffer, fmt, arg_ptr);
 va_end(arg_ptr);
 return(rc);
}
int main(void)
{
 char *tokenstring = "15 12 14";
 wchar_t * idestring = L"ABC Z";
 wchar_t ws[81];
 wchar_t wc;
 int i;
 float fp;
 char s[81];
 char c;
 /* Input various data */
 /* In the first invocation of vsscanf, the format string is */
 /* "%s %c%d%f". If there were no space between %s and %c, */
 /* vsscanf would read the first character following the */
 /* string, which is a blank space. */
 vread(tokenstring, "%s %c%d%f", s, &c, &i, &fp);
 vread((char *) idestring, "%S %C", ws,&wc);
 /* Display the data */
 printf("\nstring = %s\n",s);
 printf("character = %c\n",c);
 printf("integer = %d\n",i);
 printf("floating-point number = %f\n",fp);
 printf("wide-character string = %S\n", ws);
 printf("wide-character = %C\n", wc);
}
/***************** Output should be similar to: *****************
string = 15
character = 1
integer = 2
floating-point number = 14.000000
wide-character string = ABC
wide-character = Z
***/

Related Information
• “fscanf() — Read Formatted Data” on page 156
• “fwscanf() — Read Data from Stream Using Wide Character” on page 170
• “scanf() — Read Data” on page 362
• “sscanf() — Read Data” on page 386
• “sprintf() — Print Formatted Data to Buffer” on page 383
• “<stdio.h>” on page 13
• “swscanf() — Read Wide Character Data” on page 441
• “wscanf() — Read Data Using Wide-Character Format String” on page 545

vswprintf() — Format and Write Wide Characters to Buffer

Format
#include <stdarg.h>
#include <wchar.h>
int vswprintf(wchar_t *wcsbuffer, size_t n, const wchar_t
 *format, va_list argptr);

476 IBM i: ILE C/C++ Runtime Library Functions

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of
the current locale. It might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC categories
of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the
compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The vswprintf() function formats and stores a series of wide characters and values in the buffer
wcsbuffer. The vswprintf() function works just like the swprintf() function, except that argptr points
to a list of wide-character arguments whose number can vary from call to call. These arguments should
be initialized by va_start for each call. In contrast, the swprintf() function can have a list of arguments,
but the number of arguments in that list are fixed when you compile the program.

The value n specifies the maximum number of wide characters to be written, including the ending
null character. The vswprintf() function converts each entry in the argument list according to the
corresponding wide-character format specifier in format. The format has the same form and function as
the format string for the printf() function, with the following exceptions:

• %c (without an l prefix) converts an integer argument to wchar_t, as if by calling the mbtowc() function.
• %lc converts a wint_t to wchar_t.
• %s (without an l prefix) converts an array of multibyte characters to an array of wchar_t, as if by calling

the mbrtowc() function. The array is written up to, but not including, the ending null character, unless
the precision specifies a shorter output.

• %ls writes an array of wchar_t. The array is written up to, but not including, the ending null character,
unless the precision specifies a shorter output.

A null wide character is added to the end of the wide characters written; the null wide character is not
counted as part of the returned value. If copying takes place between objects that overlap, the behavior is
undefined.

Return Value
The vswprintf() function returns the number of bytes written in the array, not counting the ending null
wide character.

Example
This example creates a function vout() that takes a variable number of wide-character arguments and
uses vswprintf() to print them to wcstr.

Library Functions 477

#include <stdio.h>
#include <stdarg.h>
#include <wchar.h>

wchar_t *format3 = L"%ls %d %ls";
wchar_t *format5 = L"%ls %d %ls %d %ls";

void vout(wchar_t *wcs, size_t n, wchar_t *fmt, ...)
{
 va_list arg_ptr;

 va_start(arg_ptr, fmt);
 vswprintf(wcs, n, fmt, arg_ptr);
 va_end(arg_ptr);
 return;
}

int main(void)
{
 wchar_t wcstr[100];

 vout(wcstr, 100, format3, L"ONE", 2L, L"THREE");
 printf("%ls\n", wcstr);
 vout(wcstr, 100, format5, L"ONE", 2L, L"THREE", 4L, L"FIVE");
 printf("%ls\n", wcstr);
 return 0;
}

 /**
 The output should be similar to:

 ONE 2 THREE
 ONE 2 THREE 4 FIVE
 **/

Related Information
• “swprintf() — Format and Write Wide Characters to Buffer” on page 440
• “vfprintf() — Print Argument Data to Stream” on page 461
• “vprintf() — Print Argument Data” on page 469
• “vsprintf() — Print Argument Data to Buffer” on page 473
• “<stdarg.h>” on page 11
• “<wchar.h>” on page 16

vswscanf() — Read Formatted Wide Character Data

Format
#include <stdarg.h>
#include <wchar.h>

int vswscanf(const wchar_t *buffer, const wchar_t *format, va_list arg_ptr);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of
the current locale. It might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC categories

478 IBM i: ILE C/C++ Runtime Library Functions

of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the
compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The vswscanf() function reads wide data from a buffer into locations specified by a variable number of
arguments. The vswscanf() function works just like the swscanf() function, except that arg_ptr points
to a list of arguments whose number can vary from call to call in the program. These arguments should be
initialized by va_start for each call. In contrast, the swscanf() function can have a list of arguments, but
the number of arguments in that list is fixed when you compile the program.

Each argument must be a pointer to a variable with a type that corresponds to a type specifier in format-
string. The format has the same form and function as the format string for the swscanf() function.

Return Value
The vswscanf() function returns the number of fields that were successfully converted and assigned.
The return value does not include fields that were read but not assigned. The return value is EOF for an
attempt to read at end-of-file if no conversion was performed. A return value of 0 means that no fields
were assigned.

Example
This example uses the vswscanf() function to read various data from the string tokenstring and then
displays that data.

#include <stdio.h>
#include <stdarg.h>
#include <wchar.h>
int vread(const wchar_t *buffer, wchar_t *fmt, ...)
{
 int rc;
 va_list arg_ptr;
 va_start(arg_ptr, fmt);
 rc = vswscanf(buffer, fmt, arg_ptr);
 va_end(arg_ptr);
 return(rc);
}
int main(void)
{
 wchar_t *tokenstring = L"15 12 14";
 char s[81];
 char c;
 int i;
 float fp;

 /* Input various data */

 vread(tokenstring, L"%s %c%d%f", s, &c, &i, &fp);

 /* Display the data */
 printf("\nstring = %s\n",s);
 printf("character = %c\n",c);
 printf("integer = %d\n",i);
 printf("floating-point number = %f\n",fp);

}
/***************** Output should be similar to: *****************
string = 15
character = 1
integer = 2
floating-point number = 14.000000

***/

Library Functions 479

Related Information
• “fscanf() — Read Formatted Data” on page 156
• “scanf() — Read Data” on page 362
• “fwscanf() — Read Data from Stream Using Wide Character” on page 170
• “wscanf() — Read Data Using Wide-Character Format String” on page 545
• “sscanf() — Read Data” on page 386
• “sprintf() — Print Formatted Data to Buffer” on page 383
• “swscanf() — Read Wide Character Data” on page 441
• “<wchar.h>” on page 16

vwprintf() — Format Argument Data as Wide Characters and Print

Format
#include <stdarg.h>
#include <wchar.h>
int vwprintf(const wchar_t *format, va_list arg);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of
the current locale. It might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC categories
of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the
compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The vwprintf() function is equivalent to the wprintf() function, except that the variable argument list
is replaced by arg, which the va_start macro (and possibly subsequent va_arg calls) will have initialized.
The vwprintf() function does not invoke the va_end macro.

Return Value
The vwprintf() function returns the number of wide characters transmitted. If an output error
occurred, the vwprintf() returns a negative value.

480 IBM i: ILE C/C++ Runtime Library Functions

Example
This example prints the wide character a. The printing is done from the vout() function, which takes a
variable number of arguments and uses the vwprintf() function to print them to stdout.

#include <wchar.h>
#include <stdarg.h>
#include <locale.h>

void vout (wchar_t *fmt, ...);

int main(void) {
 FILE *stream;
 wchar_t format[] = L"%lc";
 setlocale(LC_ALL, "POSIX");
 vout (format, L'a');
 return(0);

/* A long a is written to stdout, if stdout is written to the screen
 it may get converted back to a single byte 'a'. */
}

void vout (wchar_t *fmt, ...) {
 va_list arg_ptr;
 va_start (arg_ptr, fmt);
 vwprintf (fmt, arg_ptr);
 va_end (arg_ptr);
}

Related Information
• “printf() — Print Formatted Characters” on page 254
• “vfprintf() — Print Argument Data to Stream” on page 461
• “vprintf() — Print Argument Data” on page 469
• “btowc() — Convert Single Byte to Wide Character” on page 78
• “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 225
• “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 166
• “vswprintf() — Format and Write Wide Characters to Buffer” on page 476
• “vfwprintf() — Format Argument Data as Wide Characters and Write to a Stream ” on page 464
• “<stdarg.h>” on page 11
• “<wchar.h>” on page 16

vwscanf() — Read Formatted Wide Character Data

Format
#include <stdarg.h>
#include <stdio.h>

int vwscanf(const wchar_t *format, va_list arg_ptr);

Language Level
ANSI

Threadsafe
Yes

Library Functions 481

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of
the current locale. It might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC categories
of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the
compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The vwscanf() function reads data from stdin into locations specified by a variable number of
arguments. The vwscanf() function works just like the wscanf() function, except that arg_ptr points to
a list of arguments whose number can vary from call to call in the program. These arguments should be
initialized by va_start for each call. In contrast, the wscanf() function can have a list of arguments, but
the number of arguments in that list is fixed when you compile the program.

Each argument must be a pointer to a variable with a type that corresponds to a type specifier in
format-string. The format has the same form and function as the format string for the wscanf() function.

Return Value
The vwscanf() function returns the number of fields that were successfully converted and assigned.
The return value does not include fields that were read but not assigned. The return value is EOF for an
attempt to read at end-of-file if no conversion was performed. A return value of 0 means that no fields
were assigned.

Example
This example scans various types of data from stdin.

482 IBM i: ILE C/C++ Runtime Library Functions

#include <stdio.h
#include <stdarg.h

int vread(wchar_t *fmt, ...)
{
 int rc;
 va_list arg_ptr;
 va_start(arg_ptr, fmt);
 rc = vwscanf(fmt, arg_ptr);
 va_end(arg_ptr);
 return(rc);
}

int main(void)
{
 int i, rc;
 float fp;
 char c, s[81];
 printf("Enter an integer, a real number, a character "
 "and a string : \n");
 rc = vread(L"%d %f %c %s",&i,&fp,&c, s);
 if (rc != 4)
 printf("Not all fields are assigned\n");
 else
 {
 printf("integer = %d\n", i);
 printf("real number = %f\n", fp);
 printf("character = %c\n", c);
 printf("string = %s\n",s);
 }
}
/***************** If input is: 12 2.5 a yes, *******************
************** then output should be similar to: ****************
Enter an integer, a real number, a character and a string :
integer = 12
real number = 2.500000
character = a
string = yes
*/

Related Information
• “fscanf() — Read Formatted Data” on page 156
• “scanf() — Read Data” on page 362
• “sscanf() — Read Data” on page 386
• “swscanf() — Read Wide Character Data” on page 441
• “fwscanf() — Read Data from Stream Using Wide Character” on page 170
• “wscanf() — Read Data Using Wide-Character Format String” on page 545
• “sprintf() — Print Formatted Data to Buffer” on page 383
• “<stdio.h>” on page 13

wcrtomb() — Convert a Wide Character to a Multibyte Character
(Restartable)

Format
#include <wchar.h>
size_t wcrtomb (char *s, wchar_t wc, mbstate_t *ps);

Language Level
ANSI

Library Functions 483

Threadsafe
Yes, except when ps is NULL.

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
This function is the restartable version of the wctomb() function.

The wcrtomb() function converts a wide character to a multibyte character.

If s is a null pointer, the wcrtomb() function determines the number of bytes necessary to enter the
initial shift state (zero if encodings are not state-dependent or if the initial conversion state is described).
The resulting state described will be the initial conversion stated.

If s is not a null pointer, the wcrtomb() function determines the number of bytes needed to represent the
multibyte character that corresponds to the wide character given by wc (including any shift sequences),
and stores the resulting bytes in the array whose first element is pointed to by s. At most MB_CUR_MAX
bytes will be stored. If wc is a null wide character, the resulting state described will be the initial
conversions state.

This function differs from its corresponding internal-state multibyte character function in that it has an
extra parameter, ps of type pointer to mbstate_t that points to an object that can completely describe
the current conversion state of the associated multibyte character sequence. If ps is NULL, an internal
static variable will be used to keep track of the conversion state. Using the internal static variable is not
threadsafe.

Return Value
If s is a null pointer, the wcrtomb() function returns the number of bytes needed to enter the initial shift
state. The value returned will not be greater than that of the MB_CUR_MAX macro.

If s is not a null pointer, the wcrtomb() function returns the number of bytes stored in the array object
(including any shift sequences) when wc is a valid wide character; otherwise (when wc is not a valid wide
character), an encoding error occurs, the value of the macro EILSEQ shall be stored in errno and -1 will be
returned, but the conversion state will be unchanged.

If a conversion error occurs, errno may be set to ECONVERT.

Examples
This program is compiled with LOCALETYPE(*LOCALE) and SYSIFCOPT(*IFSIO):

#include <stdio.h>
#include <locale.h>
#include <wchar.h>
#include <errno.h>

#define STRLENGTH 10
#define LOCNAME "/qsys.lib/JA_JP.locale"
#define LOCNAME_EN "/qsys.lib/EN_US.locale"

int main(void)

484 IBM i: ILE C/C++ Runtime Library Functions

{
 char string[STRLENGTH];
 int length, sl = 0;
 wchar_t wc = 0x4171;
 wchar_t wc2 = 0x00C1;
 wchar_t wc_string[10];
 mbstate_t ps = 0;
 memset(string, '\0', STRLENGTH);
 wc_string[0] = 0x00C1;
 wc_string[1] = 0x4171;
 wc_string[2] = 0x4172;
 wc_string[3] = 0x00C2;
 wc_string[4] = 0x0000;
 /* In this first example we will convert a wide character */
 /* to a single byte character. We first set the locale */
 /* to a single byte locale. We choose a locale with */
 /* CCSID 37. For single byte cases the state will always */
 /* remain in the initial state 0 */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)
 printf("setlocale failed.\n");

 length = wcrtomb(string, wc, &ps);

 /* In this case since wc > 256 hex, lenth is -1 and */
 /* errno is set to EILSEQ (3492) */
 printf("errno = %d, length = %d\n\n", errno, length);

 length = wcrtomb(string, wc2, &ps);

 /* In this case wc2 00C1 is converted to C1 */

 printf("string = %s\n\n", string);

 /* Now lets try a multibyte example. We first must set the */
 /* locale to a multibyte locale. We choose a locale with */
 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)
 printf("setlocale failed.\n");

 length = wcrtomb(string, wc_string[0], &ps);

 /* The first character is < 256 hex so is converted to */
 /* single byte and the state is still the initial state 0 */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = wcrtomb(&string[sl], wc_string[1], &ps);

 /* The next character is > 256 hex so we get a shift out */
 /* 0x0e followed by the double byte character. State is */
 /* changed to double byte state. Length is 3. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = wcrtomb(&string[sl], wc_string[2], &ps);

 /* The next character is > 256 hex so we get another */
 /* double byte character. The state is left in */
 /* double byte state. Length is 2. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = wcrtomb(&string[sl], wc_string[3], &ps);

 /* The next character is < 256 hex so we close off the */
 /* double byte characters with a shift in 0x0f and then */
 /* get a single byte character. Length is 2. */
 /* The hex look at string would now be: */
 /* C10E417141720FC2 */
 /* You would need a device capable of displaying multibyte */
 /* characters to see this string. */

 printf("length = %d, state = %d\n\n", length, ps);

Library Functions 485

 /* In the last example we will show what happens if NULL */
 /* is passed in for the state. */
 memset(string, '\0', STRLENGTH);

 length = wcrtomb(string, wc_string[1], NULL);

 /* The second character is > 256 hex so a shift out */
 /* followed by the double character is produced but since */
 /* the state is NULL, the double byte character is closed */
 /* off with a shift in right away. So string we look */
 /* like this: 0E41710F and length is 4 and the state is */
 /* left in the initial state. */

 printf("length = %d, state = %d\n\n", length, ps);

}
/* The output should look like this:

errno = 3492, length = -1

string = A

length = 1, state = 0

length = 3, state = 2

length = 2, state = 2

length = 2, state = 0

length = 4, state = 0
 */

This program is compiled with LOCALETYPE(*LOCALEUCS2) and SYSIFCOPT(*IFSIO):

#include <stdio.h>
#include <locale.h>
#include <wchar.h>
#include <errno.h>

#define STRLENGTH 10
#define LOCNAME "/qsys.lib/JA_JP.locale"
#define LOCNAME_EN "/qsys.lib/EN_US.locale"

int main(void)
{
 char string[STRLENGTH];
 int length, sl = 0;
 wchar_t wc = 0x4171;
 wchar_t wc2 = 0x0041;
 wchar_t wc_string[10];
 mbstate_t ps = 0;
 memset(string, '\0', STRLENGTH);
 wc_string[0] = 0x0041;
 wc_string[1] = 0xFF31;
 wc_string[2] = 0xFF32;
 wc_string[3] = 0x0042;
 wc_string[4] = 0x0000;
 /* In this first example we will convert a UNICODE character */
 /* to a single byte character. We first set the locale */
 /* to a single byte locale. We choose a locale with */
 /* CCSID 37. For single byte cases the state will always */
 /* remain in the initial state 0 */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)
 printf("setlocale failed.\n");

 length = wcrtomb(string, wc2, &ps);

 /* In this case wc2 0041 is converted to C1 */
 /* 0041 is UNICODE A, C1 is CCSID 37 A */

 printf("string = %s\n\n", string);

 /* Now lets try a multibyte example. We first must set the */
 /* locale to a multibyte locale. We choose a locale with */
 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)
 printf("setlocale failed.\n");

486 IBM i: ILE C/C++ Runtime Library Functions

 length = wcrtomb(string, wc_string[0], &ps);

 /* The first character UNICODE character is converted to a */
 /* single byte and the state is still the initial state 0 */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = wcrtomb(&string[sl], wc_string[1], &ps);

 /* The next UNICODE character is converted to a shift out */
 /* 0x0e followed by the double byte character. State is */
 /* changed to double byte state. Length is 3. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = wcrtomb(&string[sl], wc_string[2], &ps);

 /* The UNICODE character is converted to another */
 /* double byte character. The state is left in */
 /* double byte state. Length is 2. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = wcrtomb(&string[sl], wc_string[3], &ps);

 /* The next UNICODE character converts to single byte so */
 /* we close off the */
 /* double byte characters with a shiftin 0x0f and then */
 /* get a single byte character. Length is 2. */
 /* The hex look at string would now be: */
 /* C10E42D842D90FC2 */
 /* You would need a device capable of displaying multibyte */
 /* characters to see this string. */

 printf("length = %d, state = %d\n\n", length, ps);

}
/* The output should look like this:

string = A

length = 1, state = 0

length = 3, state = 2

length = 2, state = 2

length = 2, state = 0
 */

Related Information
• “mblen() — Determine Length of a Multibyte Character” on page 221
• “mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 223
• “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 225
• “mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 229
• “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 510
• “wctomb() — Convert Wide Character to Multibyte Character” on page 532
• “<wchar.h>” on page 16

Library Functions 487

wcscat() — Concatenate Wide-Character Strings

Format
#include <wchar.h>
wchar_t *wcscat(wchar_t *string1, const wchar_t *string2);

Language Level
XPG4

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcscat() function appends a copy of the string pointed to by string2 to the end of the string pointed
to by string1.

The wcscat() function operates on null-ended wchar_t strings. The string arguments to this function
should contain a wchar_t null character marking the end of the string. Boundary checking is not
performed.

Return Value
The wcscat() function returns a pointer to the concatenated string1.

Example
This example creates the wide character string "computer program" using the wcscat() function.

#include <stdio.h>
#include <wchar.h>

#define SIZE 40

int main(void)
{
 wchar_t buffer1[SIZE] = L"computer";
 wchar_t * string = L" program";
 wchar_t * ptr;

 ptr = wcscat(buffer1, string);
 printf("buffer1 = %ls\n", buffer1);

}

/**************** Output should be similar to: ******************

buffer1 = computer program
**/

Related Information
• “strcat() — Concatenate Strings” on page 389
• “strncat() — Concatenate Strings” on page 410

488 IBM i: ILE C/C++ Runtime Library Functions

• “wcschr() — Search for Wide Character” on page 489
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcscpy() — Copy Wide-Character Strings” on page 493
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “wcsncat() — Concatenate Wide-Character Strings” on page 501
• “<wchar.h>” on page 16

wcschr() — Search for Wide Character

Format
#include <wchar.h>
wchar_t *wcschr(const wchar_t *string, wchar_t character);

Language Level
XPG4

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcschr() function searches the wide-character string for the occurrence of character. The character
can be a wchar_t null character (\0); the wchar_t null character at the end of string is included in the
search.

The wcschr() function operates on null-ended wchar_t strings. The string argument to this function
should contain a wchar_t null character marking the end of the string.

Return Value
The wcschr() function returns a pointer to the first occurrence of character in string. If the character is
not found, a NULL pointer is returned.

Example
This example finds the first occurrence of the character "p" in the wide-character string "computer
program".

Library Functions 489

#include <stdio.h>
#include <wchar.h>

#define SIZE 40

int main(void)
{
 wchar_t buffer1[SIZE] = L"computer program";
 wchar_t * ptr;
 wchar_t ch = L'p';

 ptr = wcschr(buffer1, ch);
 printf("The first occurrence of %lc in '%ls' is '%ls'\n",
 ch, buffer1, ptr);

}

/**************** Output should be similar to: ******************

The first occurrence of p in 'computer program' is 'puter program'
*/

Related Information
• “strchr() — Search for Character” on page 390
• “strcspn() — Find Offset of First Character Match” on page 397
• “strpbrk() — Find Characters in String” on page 417
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “wcscat() — Concatenate Wide-Character Strings” on page 488
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcscpy() — Copy Wide-Character Strings” on page 493
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “wcspbrk() — Locate Wide Characters in String” on page 506
• “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 509
• “wcsspn() — Find Offset of First Non-matching Wide Character” on page 512
• “wcswcs() — Locate Wide-Character Substring” on page 527
• “<wchar.h>” on page 16

wcscmp() — Compare Wide-Character Strings

Format
#include <wchar.h>
int wcscmp(const wchar_t *string1, const wchar_t *string2);

Language Level
ANSI

Threadsafe
Yes

490 IBM i: ILE C/C++ Runtime Library Functions

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcscmp() function compares two wide-character strings. The wcscmp() function operates on null-
ended wchar_t strings; string arguments to this function should contain a wchar_t null character marking
the end of the string. Boundary checking is not performed when a string is added to or copied.

Return Value
The wcscmp() function returns a value indicating the relationship between the two strings, as follows:

Table 16. Return values of wcscmp()

Value Meaning

Less than 0 string1 less than string2

0 string1 identical to string2

Greater than 0 string1 greater than string2

Example
This example compares the wide-character string string1 to string2 using wcscmp().

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 int result;
 wchar_t string1[] = L"abcdef";
 wchar_t string2[] = L"abcdefg";

 result = wcscmp(string1, string2);

 if (result == 0)
 printf("\"%ls\" is identical to \"%ls\"\n", string1, string2);
 else if (result < 0)
 printf("\"%ls\" is less than \"%ls\"\n", string1, string2);
 else
 printf("\"%ls\" is greater than \"%ls\"\n", string1, string2);
}

/**************** Output should be similar to: ******************

"abcdef" is less than "abcdefg"
*/

Related Information
• “strcmp() — Compare Strings” on page 392
• “strncmp() — Compare Strings” on page 412
• “wcscat() — Concatenate Wide-Character Strings” on page 488
• “wcschr() — Search for Wide Character” on page 489
• “wcscpy() — Copy Wide-Character Strings” on page 493
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “__wcsicmp() — Compare Wide Character Strings without Case Sensitivity ” on page 497

Library Functions 491

• “__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity” on page 505
• “<wchar.h>” on page 16

wcscoll() — Language Collation String Comparison

Format
#include <wchar.h>
int wcscoll (const wchar_t *wcs1, const wchar_t *wcs2);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_COLLATE category of the current locale if
LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this function might
also be affected by the LC_UNI_COLLATE category of the current locale if LOCALETYPE(*LOCALEUCS2) or
LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available when
LOCALETYPE(*CLD) is specified on the compilation command. For more information, see “Understanding
CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcscoll() function compares the wide-character strings pointed to by wcs1 and wcs2, both
interpreted as appropriate to the LC_COLLATE category of the current locale (or the LC_UNI_COLLATE
category if a UNICODE LOCALETYPE was specified).

Return Value
The wcscoll() function returns an integer value indicating the relationship between the strings, as
follows:

Table 17. Return values of wcscoll()

Value Meaning

Less than 0 wcs1 less than wcs2

0 wcs1 equivalent to wcs2

Greater than 0 wcs1 greater than wcs2

If wcs1 or wcs2 contain characters outside the domain of the collating sequence, the wcscoll() function
sets errno to EINVAL. If an error occurs, the wcscoll() function sets errno to an nonzero value. There is
no error return value.

492 IBM i: ILE C/C++ Runtime Library Functions

Example
This example uses the default locale.

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 int result;
 wchar_t *wcs1 = L"first_wide_string";
 wchar_t *wcs2 = L"second_wide_string";

 result = wcscoll(wcs1, wcs2);

 if (result == 0)
 printf("\"%S\" is identical to \"%S\"\n", wcs1, wcs2);
 else if (result < 0)
 printf("\"%S\" is less than \"%S\"\n", wcs1, wcs2);
 else
 printf("\"%S\" is greater than \"%S\"\n", wcs1, wcs2);
}

Related Information
• “strcoll() — Compare Strings” on page 395
• “setlocale() — Set Locale” on page 370
• “<wchar.h>” on page 16

wcscpy() — Copy Wide-Character Strings

Format
#include <wchar.h>
wchar_t *wcscpy(wchar_t *string1, const wchar_t *string2);

Language Level
XPG4

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcscpy() function copies the contents of string2 (including the ending wchar_t null character) into
string1.

The wcscpy() function operates on null-ended wchar_t strings; string arguments to this function should
contain a wchar_t null character marking the end of the string. Only string2 needs to contain a null
character. Boundary checking is not performed.

Return Value
The wcscpy() function returns a pointer to string1.

Library Functions 493

Example
This example copies the contents of source to destination.

#include <stdio.h>
#include <wchar.h>

#define SIZE 40

int main(void)
{
 wchar_t source[SIZE] = L"This is the source string";
 wchar_t destination[SIZE] = L"And this is the destination string";
 wchar_t * return_string;

 printf("destination is originally = \"%ls\"\n", destination);
 return_string = wcscpy(destination, source);
 printf("After wcscpy, destination becomes \"%ls\"\n", destination);
}

/**************** Output should be similar to: ******************

destination is originally = "And this is the destination string"
After wcscpy, destination becomes "This is the source string"
*/

Related Information
• “strcpy() — Copy Strings” on page 396
• “strncpy() — Copy Strings” on page 413
• “wcscat() — Concatenate Wide-Character Strings” on page 488
• “wcschr() — Search for Wide Character” on page 489
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “wcsncpy() — Copy Wide-Character Strings” on page 504
• “<wchar.h>” on page 16

wcscspn() — Find Offset of First Wide-Character Match

Format
#include <wchar.h>
size_t wcscspn(const wchar_t *string1, const wchar_t *string2);

Language Level
XPG4

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

494 IBM i: ILE C/C++ Runtime Library Functions

Description
The wcscspn() function determines the number of wchar_t characters in the initial segment of the string
pointed to by string1 that do not appear in the string pointed to by string2.

The wcscspn() function operates on null-ended wchar_t strings; string arguments to this function should
contain a wchar_t null character marking the end of the string.

Return Value
The wcscspn() function returns the number of wchar_t characters in the segment.

Example
This example uses wcscspn() to find the first occurrence of any of the characters a, x, l, or e in string.

#include <stdio.h>
#include <wchar.h>

#define SIZE 40

int main(void)
{
 wchar_t string[SIZE] = L"This is the source string";
 wchar_t * substring = L"axle";

 printf("The first %i characters in the string \"%ls\" are not in the "
 "string \"%ls\" \n", wcscspn(string, substring),
 string, substring);
}

/**************** Output should be similar to: ******************

The first 10 characters in the string "This is the source string" are not
in the string "axle"
*/

Related Information
• “strcspn() — Find Offset of First Character Match” on page 397
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “wcscat() — Concatenate Wide-Character Strings” on page 488
• “wcschr() — Search for Wide Character” on page 489
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcscpy() — Copy Wide-Character Strings” on page 493
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “wcsspn() — Find Offset of First Non-matching Wide Character” on page 512
• “wcswcs() — Locate Wide-Character Substring” on page 527
• “<wchar.h>” on page 16

wcsftime() — Convert to Formatted Date and Time

Format
 #include <wchar.h>
 size_t wcsftime(wchar_t *wdest, size_t maxsize,
 const wchar_t *format, const struct tm *timeptr);

Library Functions 495

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE, LC_TIME, and LC_TOD categories of
the current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of
this function might also be affected by the LC_UNI_CTYPE, LC_UNI_TIME, and LC_UNI_TOD categories
of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the
compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcsftime() function converts the time and date specification in the timeptr structure into a wide-
character string. It then stores the null-ended string in the array pointed to by wdest according to the
format string pointed to by format. The maxsize value specifies the maximum number of wide characters
that can be copied into the array. This function is equivalent to strftime(), except that it uses wide
characters.

The wcsftime() function works just like the strftime() function, except that it uses wide characters.
The format string is a wide-character character string that contains:

• Conversion-specification characters.
• Ordinary wide characters, which are copied into the array unchanged.

This function uses the time structure pointed to by timeptr, and if the specifier is locale sensitive, then
it will also use the LC_TIME category of the current locale to determine the appropriate replacement
value of each valid specifier. The time structure pointed to by timeptr is usually obtained by calling the
gmtime() or localtime() function.

Return Value
If the total number of wide characters in the resulting string, including the ending null wide character,
does not exceed maxsize, wcsftime() returns the number of wide characters placed into wdest, not
including the ending null wide character. Otherwise, the wcsftime() function returns 0 and the contents
of the array are indeterminate.

If a conversion error occurs, errno may be set to ECONVERT.

Example
This example obtains the date and time using localtime(), formats the information with the
wcsftime(), and prints the date and time.

#include <stdio.h>
#include <time.h>
#include <wchar.h>

int main(void)
{
 struct tm *timeptr;
 wchar_t dest[100];
 time_t temp;

496 IBM i: ILE C/C++ Runtime Library Functions

 size_t rc;

 temp = time(NULL);
 timeptr = localtime(&temp);
 rc = wcsftime(dest, sizeof(dest), L" Today is %A,"
 L" %b %d.\n Time: %I:%M %p", timeptr);
 printf("%d characters placed in string to make:\n\n%ls\n", rc, dest);
 return 0;

 /**
 The output should be similar to:

 43 characters placed in string to make:

 Today is Thursday, Nov 10.
 Time: 04:56 PM
 **/
}

Related Information
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “strftime() — Convert Date/Time to String” on page 403
• “strptime() — Convert String to Date/Time” on page 418
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<wchar.h>” on page 16

__wcsicmp() — Compare Wide Character Strings without Case
Sensitivity

Format
#include <wchar.h>
int __wcsicmp(const wchar_t *string1, const wchar_t *string2);

Language Level
Extension

Threadsafe
Yes

Library Functions 497

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale if
LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this function might
also be affected by the LC_UNI_CTYPE category of the current locale if LOCALETYPE(*LOCALEUCS2) or
LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available when
LOCALETYPE(*CLD) is specified on the compilation command. For more information, see “Understanding
CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The __wcsicmp() function compares string1 and string2 without sensitivity to case. All alphabetic wide
characters in string1 and string2 are converted to lowercase before comparison. The function operates
on null terminated wide character strings. The string arguments to the function are expected to contain a
wchar_t null character (L'\0') marking the end of the string.

Return Value
The__wcsicmp() function returns a value indicating the relationship between the two strings as follows:

Table 18. Return values of __wcsicmp()

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

.

Example
This example uses __wcsicmp() to compare two wide character strings.

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wchar_t *str1 = L"STRING";
 wchar_t *str2 = L"string";
 int result;

 result = __wcsicmp(str1, str2);

 if (result == 0)
 printf("Strings compared equal.\n");
 else if (result < 0)
 printf("\"%ls\" is less than \"%ls\".\n", str1, str2);
 else
 printf("\"%ls\" is greater than \"%ls\".\n", str1, str2);

 return 0;
}

/******** The output should be similar to: ***************

Strings compared equal.

***********************************/

498 IBM i: ILE C/C++ Runtime Library Functions

Related Information
• “strcmp() — Compare Strings” on page 392
• “strncmp() — Compare Strings” on page 412
• “wcscat() — Concatenate Wide-Character Strings” on page 488
• “wcschr() — Search for Wide Character” on page 489
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity” on page 505
• “<wchar.h>” on page 16

wcslen() — Calculate Length of Wide-Character String

Format
#include <wchar.h>
size_t wcslen(const wchar_t *string);

Language Level
XPG4

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcslen() function computes the number of wide characters in the string pointed to by string.

Return Value
The wcslen() function returns the number of wide characters in string, excluding the ending wchar_t null
character.

Example
This example computes the length of the wide-character string string.

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wchar_t * string = L"abcdef";

 printf("Length of \"%ls\" is %i\n", string, wcslen(string));
}

/**************** Output should be similar to: ******************

Length of "abcdef" is 6
*/

Library Functions 499

Related Information
• “mblen() — Determine Length of a Multibyte Character” on page 221
• “strlen() — Determine String Length” on page 408
• “wcsncat() — Concatenate Wide-Character Strings” on page 501
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “wcsncpy() — Copy Wide-Character Strings” on page 504
• “<wchar.h>” on page 16

wcslocaleconv() — Retrieve Wide Locale Information

Format
#include <locale.h>
struct wcslconv *wcslocaleconv(void);

Language Level
Extended

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_UNI_NUMERIC and LC_UNI_MONETARY
categories of the current locale. This function is only available when LOCALETYPE(*LOCALEUCS2)
or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For more information, see
“Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcslocaleconv() function is the same as the localeconv() function, except that it returns
a pointer to a wcslconv structure, which is the wide version of a lconv structure. These elements are
determined by the LC_UNI_MONETARY and LC_UNI_NUMERIC categories of the current locale.

Return Value
The wcslocaleconv() function returns a pointer to a wcslconv structure.

Example
This example prints out the Unicode currency symbol for a French locale.

500 IBM i: ILE C/C++ Runtime Library Functions

/**
This example prints out the Unicode currency symbol for a French
locale. You first must create a Unicode French locale. You can do
this with this command:
CRTLOCALE LOCALE('/QSYS.LIB/MYLIB.LIB/LC_UNI_FR.LOCALE') +
SRCFILE('/QSYS.LIB/QSYSLOCALE.LIB/QLOCALESRC.FILE/ +
FR_FR.MBR') CCSID(13488)

Then you must compile your c program with LOCALETYPE(*LOCALEUCS2)
**/
#include <stdio.h>
#include <locale.h>
int main(void) {
 char * string;
 struct wcslconv * mylocale;
 if (NULL != (string = setlocale(LC_UNI_ALL,
 "/QSYS.LIB/MYLIB.LIB/LC_UNI_FR.LOCALE"))) {
 mylocale = wcslocaleconv();
 /* Display the Unicode currency symbol in a French locale */
 printf("French Unicode currency symbol is a %ls\n",
 mylocale->currency_symbol);
 } else {
 printf("setlocale(LC_UNI_ALL, \"/QSYS.LIB/MYLIB.LIB/LC_UNI_FR.LOCALE\") \
 returned <NULL>\n");
 }

 return 0;
}

Related Information
• “setlocale() — Set Locale” on page 370
• “<locale.h>” on page 5
• “localeconv() — Retrieve Information from the Environment” on page 203

wcsncat() — Concatenate Wide-Character Strings

Format
#include <wchar.h>
wchar_t *wcsncat(wchar_t *string1, const wchar_t *string2, size_t count);

Language Level
XPG4

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcsncat() function appends up to count wide characters from string2 to the end of string1, and
appends a wchar_t null character to the result.

The wcsncat() function operates on null-ending wide-character strings; string arguments to this
function should contain a wchar_t null character marking the end of the string.

Library Functions 501

Return Value
The wcsncat() function returns string1.

Example
This example demonstrates the difference between the wcscat() and wcsncat() functions. The
wcscat() function appends the entire second string to the first; the wcsncat() function appends only
the specified number of characters in the second string to the first.

#include <stdio.h>
#include <wchar.h>
#include <string.h>

#define SIZE 40

int main(void)
{
 wchar_t buffer1[SIZE] = L"computer";
 wchar_t * ptr;

 /* Call wcscat with buffer1 and " program" */

 ptr = wcscat(buffer1, L" program");
 printf("wcscat : buffer1 = \"%ls\"\n", buffer1);

 /* Reset buffer1 to contain just the string "computer" again */

 memset(buffer1, L'\0', sizeof(buffer1));
 ptr = wcscpy(buffer1, L"computer");

 /* Call wcsncat with buffer1 and " program" */
 ptr = wcsncat(buffer1, L" program", 3);
 printf("wcsncat: buffer1 = \"%ls\"\n", buffer1);
}
/**************** Output should be similar to: ******************

wcscat : buffer1 = "computer program"
wcsncat: buffer1 = "computer pr"
*/

Related Information
• “strcat() — Concatenate Strings” on page 389
• “strncat() — Concatenate Strings” on page 410
• “wcscat() — Concatenate Wide-Character Strings” on page 488
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “wcsncpy() — Copy Wide-Character Strings” on page 504
• “<wchar.h>” on page 16

wcsncmp() — Compare Wide-Character Strings

Format
#include <wchar.h>
int wcsncmp(const wchar_t *string1, const wchar_t *string2, size_t count);

Language Level
XPG4

Threadsafe
Yes

502 IBM i: ILE C/C++ Runtime Library Functions

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcsncmp() function compares up to count wide characters in string1 to string2.

The wcsncmp() function operates on null-ended wide-character strings; string arguments to this function
should contain a wchar_t null character marking the end of the string.

Return Value
The wcsncmp() function returns a value indicating the relationship between the two strings, as follows:

Table 19. Return values of wcsncmp()

Value Meaning

Less than 0 string1 less than string2

0 string1 identical to string2

Greater than 0 string1 greater than string2

Example
This example demonstrates the difference between the wcscmp() function, which compares the entire
strings, and the wcsncmp() function, which compares only a specified number of wide characters in the
strings.

#include <stdio.h>
#include <wchar.h>

#define SIZE 10

int main(void)
{
 int result;
 int index = 3;
 wchar_t buffer1[SIZE] = L"abcdefg";
 wchar_t buffer2[SIZE] = L"abcfg";
 void print_result(int, wchar_t *, wchar_t *);

 result = wcscmp(buffer1, buffer2);
 printf("Comparison of each character\n");
 printf(" wcscmp: ");
 print_result(result, buffer1, buffer2);

 result = wcsncmp(buffer1, buffer2, index);
 printf("\nComparison of only the first %i characters\n", index);
 printf(" wcsncmp: ");
 print_result(result, buffer1, buffer2);
}

void print_result(int res, wchar_t * p_buffer1, wchar_t * p_buffer2)
{
 if (res == 0)
 printf("\"%ls\" is identical to \"%ls\"\n", p_buffer1, p_buffer2);
 else if (res < 0)
 printf("\"%ls\" is less than \"%ls\"\n", p_buffer1, p_buffer2);
 else
 printf("\"%ls\" is greater than \"%ls\"\n", p_buffer1, p_buffer2);
}
/**************** Output should be similar to: ******************

Comparison of each character
 wcscmp: "abcdefg" is less than "abcfg"

Comparison of only the first 3 characters
 wcsncmp: "abcdefg" is identical to "abcfg"
*/

Library Functions 503

Related Information
• “strcmp() — Compare Strings” on page 392
• “strcoll() — Compare Strings” on page 395
• “strncmp() — Compare Strings” on page 412
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcsncat() — Concatenate Wide-Character Strings” on page 501
• “wcsncpy() — Copy Wide-Character Strings” on page 504
• “<wchar.h>” on page 16

wcsncpy() — Copy Wide-Character Strings

Format
#include <wchar.h>
wchar_t *wcsncpy(wchar_t *string1, const wchar_t *string2, size_t count);

Language Level
XPG4

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcsncpy() function copies up to count wide characters from string2 to string1. If string2 is shorter
than count characters, string1 is padded out to count characters with wchar_t null characters.

The wcsncpy() function operates on null-ended wide-character strings; string arguments to this function
should contain a wchar_t null character marking the end of the string. Only string2 needs to contain a null
character.

Return Value
The wcsncpy() returns a pointer to string1.

Related Information
• “strcpy() — Copy Strings” on page 396
• “strncpy() — Copy Strings” on page 413
• “wcscpy() — Copy Wide-Character Strings” on page 493
• “wcsncat() — Concatenate Wide-Character Strings” on page 501
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “<wchar.h>” on page 16

504 IBM i: ILE C/C++ Runtime Library Functions

__wcsnicmp() — Compare Wide Character Strings without Case
Sensitivity

Format
#include <wchar.h>;
int __wcsnicmp(const wchar_t *string1, const wchar_t *string2, size_t count);

Language Level
Extension

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale if
LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this function might
also be affected by the LC_UNI_CTYPE category of the current locale if LOCALETYPE(*LOCALEUCS2) or
LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available when
LOCALETYPE(*CLD) is specified on the compilation command. For more information, see “Understanding
CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The __wcsnicmp() function compares up to count characters of string1 and string2 without sensitivity to
case. All alphabetic wide characters in string1 and string2 are converted to lowercase before comparison.

The __wcsnicmp() function operates on null terminated wide character strings. The string arguments to
the function are expected to contain a wchar_t null character (L'\0') marking the end of the string.

Return Value
The__wcsnicmp() function returns a value indicating the relationship between the two strings, as
follows:

Table 20. Return values of __wcsnicmp()

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

Example
This example uses __wcsnicmp() to compare two wide character strings.

#include <stdio.h>
#include <wchar.h>

int main(void)

Library Functions 505

{
 wchar_t *str1 = L"STRING ONE";
 wchar_t *str2 = L"string TWO";
 int result;

 result = __wcsnicmp(str1, str2, 6);

 if (result == 0)
 printf("Strings compared equal.\n");
 else if (result < 0)
 printf("\"%ls\" is less than \"%ls\".\n", str1, str2);
 else
 printf("\"%ls\" is greater than \"%ls\".\n", str1, str2);

 return 0;
}
/******** The output should be similar to: ***************

Strings compared equal.

***********************************/

Related Information
• “strcmp() — Compare Strings” on page 392
• “strncmp() — Compare Strings” on page 412
• “wcscat() — Concatenate Wide-Character Strings” on page 488
• “wcschr() — Search for Wide Character” on page 489
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “__wcsicmp() — Compare Wide Character Strings without Case Sensitivity ” on page 497
• “<wchar.h>” on page 16

wcspbrk() — Locate Wide Characters in String

Format
#include <wchar.h>
wchar_t *wcspbrk(const wchar_t *string1, const wchar_t *string2);

Language Level
XPG4

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcspbrk() function locates the first occurrence in the string pointed to by string1 of any wide
character from the string pointed to by string2.

506 IBM i: ILE C/C++ Runtime Library Functions

Return Value
The wcspbrk() function returns a pointer to the character. If string1 and string2 have no wide characters
in common, the wcspbrk() function returns NULL.

Example
This example uses wcspbrk() to find the first occurrence of either "a" or "b" in the array string.

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wchar_t * result;
 wchar_t * string = L"The Blue Danube";
 wchar_t *chars = L"ab";

 result = wcspbrk(string, chars);
 printf("The first occurrence of any of the characters \"%ls\" in "
 "\"%ls\" is \"%ls\"\n", chars, string, result);

}

/**************** Output should be similar to: ******************

The first occurrence of any of the characters "ab" in "The Blue Danube"
is "anube"
**/

Related Information
• “strchr() — Search for Character” on page 390
• “strcspn() — Find Offset of First Character Match” on page 397
• “strpbrk() — Find Characters in String” on page 417
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “wcschr() — Search for Wide Character” on page 489
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 509
• “wcswcs() — Locate Wide-Character Substring” on page 527
• “<wchar.h>” on page 16

wcsptime() — Convert Wide Character String to Date/Time

Format
#include <wchar.h>
wchar_t *wcsptime(const wchar_t *buf, const wchar_t *format, struct tm *tm);

Language Level
Extended

Threadsafe
Yes

Library Functions 507

Locale Sensitive
The behavior of this function might be affected by the LC_UNI_CTYPE, LC_UNI_TIME, and LC_UNI_TOD
categories of the current locale. This function is only available when LOCALETYPE(*LOCALEUTF) is
specified on the compilation command. For more information, see “Understanding CCSIDs and Locales”
on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcsptime() function converts the wide character string pointed to by buf to values that are stored
in the tm structure pointed to by tm, using the format specified by format. This function is equivalent to
strptime(), except that it uses wide characters.

See “strptime() — Convert String to Date/Time” on page 418 for a description of the format string.

Return Value
On successful completion, the wcsptime() function returns a pointer to the character following the
last wide character parsed. Otherwise, a null pointer is returned. The value of errno may be set to
ECONVERT (conversion error).

Example

#include <stdio.h>
#include <time.h>
#include <wchar.h>

int main(void)
{
 wchar_t buf[100];
 time_t t;
 struct tm *timeptr,result;

 t = time(NULL);
 timeptr = localtime(&t);
 wcsftime(buf, 100, L"%a %m/%d/%Y %r", timeptr);

 if (wcsptime(buf, L"%a %m/%d/%Y %r", &result) == NULL)
 printf("\nwcsptime failed\n");
 else
 {
 printf("tm_hour: %d\n",result.tm_hour);
 printf("tm_min: %d\n",result.tm_min);
 printf("tm_sec: %d\n",result.tm_sec);
 printf("tm_mon: %d\n",result.tm_mon);
 printf("tm_mday: %d\n",result.tm_mday);
 printf("tm_year: %d\n",result.tm_year);
 printf("tm_yday: %d\n",result.tm_yday);
 printf("tm_wday: %d\n",result.tm_wday);
 }

 return 0;
}

/**
 The output should be similar to:

 tm_hour: 14
 tm_min: 25
 tm_sec: 34
 tm_mon: 7
 tm_mday: 19
 tm_year: 103
 tm_yday: 230
 tm_wday: 2
**/

508 IBM i: ILE C/C++ Runtime Library Functions

Related Information
• “asctime() — Convert Time to Character String” on page 63
• “asctime_r() — Convert Time to Character String (Restartable)” on page 65
• “ctime() — Convert Time to Character String” on page 97
• “ctime64() — Convert Time to Character String” on page 98
• “ctime64_r() — Convert Time to Character String (Restartable)” on page 102
• “ctime_r() — Convert Time to Character String (Restartable)” on page 100
• “gmtime() — Convert Time” on page 184
• “gmtime64() — Convert Time” on page 186
• “gmtime64_r() — Convert Time (Restartable)” on page 190
• “gmtime_r() — Convert Time (Restartable)” on page 188
• “localtime() — Convert Time” on page 208
• “localtime64() — Convert Time” on page 210
• “localtime64_r() — Convert Time (Restartable)” on page 213
• “localtime_r() — Convert Time (Restartable)” on page 211
• “setlocale() — Set Locale” on page 370
• “strftime() — Convert Date/Time to String” on page 403
• “strptime() — Convert String to Date/Time” on page 418
• “time() — Determine Current Time” on page 446
• “time64() — Determine Current Time” on page 447
• “<time.h>” on page 15

wcsrchr() — Locate Last Occurrence of Wide Character in String

Format
#include <wchar.h>
wchar_t *wcsrchr(const wchar_t *string, wchar_t character);

Language Level
ANSI

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcsrchr() function locates the last occurrence of character in the string pointed to by string. The
ending wchar_t null character is considered to be part of the string.

Return Value
The wcsrchr() function returns a pointer to the character, or a NULL pointer if character does not occur
in the string.

Library Functions 509

Example
This example compares the use of wcschr() and wcsrchr(). It searches the string for the first and last
occurrence of p in the wide character string.

#include <stdio.h>
#include <wchar.h>

#define SIZE 40

int main(void)
{
 wchar_t buf[SIZE] = L"computer program";
 wchar_t * ptr;
 int ch = 'p';

 /* This illustrates wcschr */
 ptr = wcschr(buf, ch);
 printf("The first occurrence of %c in '%ls' is '%ls'\n", ch, buf, ptr);

 /* This illustrates wcsrchr */
 ptr = wcsrchr(buf, ch);
 printf("The last occurrence of %c in '%ls' is '%ls'\n", ch, buf, ptr);
}

/**************** Output should be similar to: ******************

The first occurrence of p in 'computer program' is 'puter program'
The last occurrence of p in 'computer program' is 'program'
*/

Related Information
• “strchr() — Search for Character” on page 390
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “strcspn() — Find Offset of First Character Match” on page 397
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “wcschr() — Search for Wide Character” on page 489
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “wcswcs() — Locate Wide-Character Substring” on page 527
• “wcspbrk() — Locate Wide Characters in String” on page 506
• “<wchar.h>” on page 16

wcsrtombs() — Convert Wide Character String to Multibyte String
(Restartable)

Format
#include <wchar.h>
size_t wcsrtombs (char *dst, const wchar_t **src, size_t len,
 mbstate_t *ps);

Language Level
ANSI

510 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes, if the fourth parameter, ps, is not NULL.

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
This function is the restartable version of wcstombs().

The wcsrtombs() function converts a sequence of wide characters from the array indirectly pointed to
by src into a sequence of corresponding multibyte characters that begins in the shift state described by
ps, which, if dst is not a null pointer, are then stored into the array pointed to by dst. Conversion continues
up to and including the ending null wide character, which is also stored. Conversion will stop earlier in two
cases: when a code is reached that does not correspond to a valid multibyte character, or (if dst is not a
null pointer) when the next multibyte element would exceed the limit of len total bytes to be stored into
the array pointed to by dst. Each conversion takes place as if by a call to wcrtomb().

If dst is not a null pointer, the object pointed to by src will be assigned either a null pointer (if conversion
stopped due to reaching a ending null character) or the address of the code just past the last wide
character converted. If conversion stopped due to reaching a ending null wide character, the resulting
state described will be the initial conversion state.

Return Value
If the first code is not a valid wide character, an encoding error will occur. wcsrtombs() stores the
value of the macro EILSEQ in errno and returns (size_t) -1, but the conversion state will be unchanged.
Otherwise it returns the number of bytes in the resulting multibyte character sequence, which is the same
as the number of array elements changed when dst is not a null pointer.

If a conversion error occurs, errno may be set to ECONVERT.

Library Functions 511

Example

#include <stdio.h>
#include <wchar.h>
#include <string.h>

#define SIZE 20

int main(void)
{
 char dest[SIZE];
 wchar_t *wcs = L"string";
 wchar_t *ptr;
 size_t count = SIZE;
 size_t length;
 mbstate_t ps = 0;

 ptr = (wchar_t *) wcs;
 length = wcsrtombs(dest, ptr, count, &ps);
 printf("%d characters were converted.\n", length);
 printf("The converted string is \"%s\"\n\n", dest);

 /* Reset the destination buffer */
 memset(dest, '\0', sizeof(dest));

 /* Now convert only 3 characters */
 ptr = (wchar_t *) wcs;
 length = wcsrtombs(dest, ptr, 3, &ps);
 printf("%d characters were converted.\n", length);
 printf("The converted string is \"%s\"\n\n", dest);
}

/***************** Output should be similar to: **********************
6 characters were converted.
The converted string is "string"

3 characters were converted.
The converted string is "str"
*/

Related Information
• “mblen() — Determine Length of a Multibyte Character” on page 221
• “mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 223
• “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 225
• “mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 229
• “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 483
• “wcstombs() — Convert Wide-Character String to Multibyte String” on page 522
• “<wchar.h>” on page 16

wcsspn() — Find Offset of First Non-matching Wide Character

Format
#include <wchar.h>
size_t wcsspn(const wchar_t *string1, const wchar_t *string2);

Language Level
ANSI

Threadsafe
Yes

512 IBM i: ILE C/C++ Runtime Library Functions

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcsspn() function computes the number of wide characters in the initial segment of the string
pointed to by string1, which consists entirely of wide characters from the string pointed to by string2.

Return Value
The wcsspn() function returns the number of wide characters in the segment.

Example
This example finds the first occurrence in the array string of a wide character that is not an a, b, or c.
Because the string in this example is cabbage, the wcsspn() function returns 5, the index of the segment
of cabbage before a character that is not an a, b, or c.

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wchar_t * string = L"cabbage";
 wchar_t * source = L"abc";
 int index;

 index = wcsspn(string, L"abc");
 printf("The first %d characters of \"%ls\" are found in \"%ls\"\n",
 index, string, source);
}

/**************** Output should be similar to: ******************

The first 5 characters of "cabbage" are found in "abc"
*/

Related Information
• “strchr() — Search for Character” on page 390
• “strcspn() — Find Offset of First Character Match” on page 397
• “strpbrk() — Find Characters in String” on page 417
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “wcscat() — Concatenate Wide-Character Strings” on page 488
• “wcschr() — Search for Wide Character” on page 489
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “wcspbrk() — Locate Wide Characters in String” on page 506
• “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 509
• “wcsspn() — Find Offset of First Non-matching Wide Character” on page 512
• “wcswcs() — Locate Wide-Character Substring” on page 527
• “<wchar.h>” on page 16

Library Functions 513

wcsstr() — Locate Wide-Character Substring

Format
#include <wchar.h>
wchar_t *wcsstr(const wchar_t *wcs1, const wchar_t *wcs2);

Language Level
ANSI

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcsstr() function locates the first occurrence of wcs2 in wcs1.

Return Value
The wcsstr() function returns a pointer to the beginning of the first occurrence of wcs2 in wcs1. If wcs2
does not appear in wcs1, the wcsstr() function returns NULL. If wcs2 points to a wide-character string
with zero length, it returns wcs1.

Example
This example uses the wcsstr() function to find the first occurrence of "hay" in the wide-character
string "needle in a haystack".

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wchar_t *wcs1 = L"needle in a haystack";
 wchar_t *wcs2 = L"hay";

 printf("result: \"%ls\"\n", wcsstr(wcs1, wcs2));
 return 0;

 /***
 The output should be similar to:

 result: "haystack"
 ***/
}

Related Information
• “strstr() — Locate Substring” on page 425
• “wcschr() — Search for Wide Character” on page 489
• “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 509
• “wcswcs() — Locate Wide-Character Substring” on page 527
• “<wchar.h>” on page 16

514 IBM i: ILE C/C++ Runtime Library Functions

wcstod() - wcstof() - wcstold() — Convert Wide-Character String to
Double, Float, and Long Double

Format
#include <wchar.h>
double wcstod(const wchar_t *nptr, wchar_t **endptr);
float wcstof(const wchar_t *nptr, wchar_t **endptr);
long double wcstold(const wchar_t *nptr, wchar_t **endptr);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of the
current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this
function might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC categories of the current
locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcstod(), wcstof(), wcstold() functions convert the initial portion of the wide-character string
pointed to by nptr to a double, float or long double value. The nptr parameter points to a sequence of
characters that can be interpreted as a numeric binary floating-point value. These functions stop reading
the string at the first character that it cannot recognize as part of a number. This character can be the
wchar_t null character at the end of the string.

The wcstod(), wcstof(), wcstold() functions expect nptr to point to a string with the following form:

whitespace +
 –

digits
. digits

. digits

e

E +
 –

digits

0 x

X

hexdigits
. hexdigits

. hexdigits

p

P +
 –

digits

The first character that does not fit this form stops the scan. In addition, a sequence of INFINITY or NAN
(ignoring case) is allowed.

Library Functions 515

If an exponent is specified with the hexadecimal digit form, the exponent is interpreted as a binary (base
2) exponent. If an exponent is specified with the decimal digit form, the exponent is interpreted as a
decimal (base 10) exponent.

Return Value
The wcstod(), wcstof(), wcstold() functions return the converted double, float or long double value.
If no conversion could be performed, these functions return 0. If the correct value is outside the range
of representable values, these functions return +HUGE_VAL or -HUGE_VAL (according to the sign of the
value), and set errno to ERANGE. If the correct value would cause underflow, these functions return 0
and set errno to ERANGE. If the string nptr points to is empty or does not have the expected form, no
conversion is performed, and the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

The wcstod(), wcstof(), wcstold() functions do not fail if a character other than a digit follows an E
or e that is read as an exponent. For example, 100elf is converted to the floating-point value 100.0.

The value of errno may be set to ERANGE, range error.

A character sequence of INFINITY (ignoring case) yields a value of INFINITY. A character value of NAN
yields a Quiet Not-A-Number (NAN) value.

Example
This example uses the wcstod(), wcstof(), wcstold() functions to convert the string wcs to double,
float and long double values.

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wchar_t *wcs = L"3.1415926This stopped it";
 wchar_t *stopwcs;

 printf("wcs = \"%ls\"\n", wcs);
 printf(" wcstod = %f\n", wcstod(wcs, &stopwcs));
 printf(" Stop scanning at \"%ls\"\n", stopwcs);

 printf(" wcstof = %f\n", wcstof(wcs, &stopwcs));
 printf(" Stop scanning at \"%ls\"\n", stopwcs);
 printf(" wcstold = %lf\n", wcstold(wcs, &stopwcs));
 printf(" Stop scanning at \"%ls\"\n", stopwcs);
 return 0;

 /**
 The output should be similar to:

 wcs = "3.1415926This stopped it"
 wcstod = 3.141593
 Stop scanning at "This stopped it"
 wcstof = 3.141593
 Stop scanning at "This stopped it"
 wcstold = 3.141593
 Stop scanning at "This stopped it"
 **/
}

Related Information
• “strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double” on page 426
• “strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point” on page

429
• “strtol() – strtoll() — Convert Character String to Long and Long Long Integer” on page 435
• “wcstod32() - wcstod64() - wcstod128() — Convert Wide-Character String to Decimal Floating-Point” on

page 517

516 IBM i: ILE C/C++ Runtime Library Functions

• “wcstol() – wcstoll() — Convert Wide Character String to Long and Long Long Integer” on page 520
• “wcstoul() – wcstoull() — Convert Wide Character String to Unsigned Long and Unsigned Long Long

Integer” on page 525
• “<wchar.h>” on page 16

wcstod32() - wcstod64() - wcstod128() — Convert Wide-Character
String to Decimal Floating-Point

Format
#define __STDC_WANT_DEC_FP__
#include <wchar.h>
_Decimal32 wcstod32(const wchar_t *nptr, wchar_t **endptr);
_Decimal64 wcstod64(const wchar_t *nptr, wchar_t **endptr);
_Decimal128 wcstod128(const wchar_t *nptr, wchar_t **endptr);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of these functions might be affected by the LC_CTYPE and LC_NUMERIC categories of
the current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior
of these functions might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC categories
of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the
compilation command. These functions are not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcstod32(), wcstod64(), and wcstod128() functions convert the initial portion of the wide-
character string pointed to by nptr to a single-precision, double-precision, or quad-precision decimal
floating-point value. The parameter nptr points to a sequence of characters that can be interpreted as a
numeric decimal floating-point value. The wcstod32(), wcstod64(), and wcstod128() functions stop
reading the string at the first character that is not recognized as part of a number. This character can
be the wchar_t null character at the end of the string. The endptr parameter is updated to point to this
character, provided that endptr is not a NULL pointer.

The wcstod32(), wcstod64(), and wcstod128() functions expect nptr to point to a string with the
following form:

Library Functions 517

whitespace +
 –

digits
. digits

. digits

e

E +
 –

digits

The first character that does not fit this form stops the scan. In addition, a sequence of INFINITY or NAN
(ignoring case) is allowed.

Return Value
The wcstod32(), wcstod64(), and wcstod128() functions return the value of the floating-point
number, except when the representation causes an underflow or overflow. For an overflow, wcstod32()
returns HUGE_VAL_D32 or -HUGE_VAL_D32; wcstod64() returns HUGE_VAL_D64 or -HUGE_VAL_D64;
wcstod128() returns HUGE_VAL_D128 or -HUGE_VAL_D128. For an underflow, all functions return
+0.E0.

In both the overflow and underflow cases, errno is set to ERANGE. If the string pointed to by nptr does not
have the expected form, a value of +0.E0 is returned and the value of nptr is stored in the object pointed
to by endptr, provided that endptr is not a NULL pointer.

The wcstod32(), wcstod64(), and wcstod128() functions do not fail if a character other than a digit
follows an E or e that is read as an exponent. For example, 100elf is converted to the floating-point value
100.0.

A character sequence of INFINITY (ignoring case) yields a value of INFINITY. A character value of NAN
(ignoring case) yields a Quiet Not-A-Number (NaN) value.

If necessary, the return value is rounded using the rounding mode Round to Nearest, Ties to Even.

Example
This example converts the string wcs to single-precision, double-precision, and quad-precision decimal
floating-point values.

#define __STDC_WANT_DEC_FP__
#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wchar_t *wcs = L"3.1415926This stopped it";
 wchar_t *stopwcs;

 printf("wcs = \"%ls\"\n", wcs);
 printf("wcstod32 = %Hf\n", wcstod32(wcs, &stopwcs));
 printf(" Stopped scan at \"%ls\"\n", stopwcs);
 printf("wcs = \"%ls\"\n", wcs);
 printf("wcstod64 = %Df\n", wcstod64(wcs, &stopwcs));
 printf(" Stopped scan at \"%ls\"\n", stopwcs);
 printf("wcs = \"%ls\"\n", wcs);
 printf("wcstod128 = %DDf\n", wcstod128(wcs, &stopwcs));
 printf(" Stopped scan at \"%ls\"\n", stopwcs);
}

/***************** Output should be similar to: *****************

wcs = "3.1415926This stopped it"
wcstod32 = 3.141593
 Stopped scan at "This stopped it"
wcs = "3.1415926This stopped it"
wcstod64 = 3.141593
 Stopped scan at "This stopped it"

518 IBM i: ILE C/C++ Runtime Library Functions

wcs = "3.1415926This stopped it"
wcstod128 = 3.141593
 Stopped scan at "This stopped it"

*/

Related Information
• “strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double” on page 426
• “strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point” on page

429
• “strtol() – strtoll() — Convert Character String to Long and Long Long Integer” on page 435
• “wcstod() - wcstof() - wcstold() — Convert Wide-Character String to Double, Float, and Long Double” on

page 515
• “wcstol() – wcstoll() — Convert Wide Character String to Long and Long Long Integer” on page 520
• “wcstoul() – wcstoull() — Convert Wide Character String to Unsigned Long and Unsigned Long Long

Integer” on page 525
• “<wchar.h>” on page 16

wcstok() — Tokenize Wide-Character String

Format
#include <wchar.h>
wchar_t *wcstok(wchar_t *wcs1, const wchar_t *wcs2, wchar_t **ptr);

Language Level
ANSI

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcstok() function reads wcs1 as a series of zero or more tokens and wcs2 as the set of wide
characters serving as delimiters for the tokens in wcs1. A sequence of calls to the wcstok() function
locates the tokens inside wcs1. The tokens can be separated by one or more of the delimiters from wcs2.
The third argument points to a wide-character pointer that you provide where the wcstok() function
stores information necessary for it to continue scanning the same string.

When the wcstok() function is first called for the wide-character string wcs1, it searches for the first
token in wcs1, skipping over leading delimiters. The wcstok() function returns a pointer to the first
token. To read the next token from wcs1, call the wcstok() function with NULL as the first parameter
(wcs1). This NULL parameter causes the wcstok() function to search for the next token in the previous
token string. Each delimiter is replaced by a null character to end the token.

The wcstok() function always stores enough information in the pointer ptr so that subsequent calls, with
NULL as the first parameter and the unmodified pointer value as the third, will start searching right after
the previously returned token. You can change the set of delimiters (wcs2) from call to call.

Library Functions 519

Return Value
The wcstok() function returns a pointer to the first wide character of the token, or a null pointer if there
is no token. In later calls with the same token string, the wcstok() function returns a pointer to the next
token in the string. When there are no more tokens, the wcstok() function returns NULL.

Example
This example uses the wcstok() function to locate the tokens in the wide-character string str1.

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 static wchar_t str1[] = L"?a??b,,,#c";
 static wchar_t str2[] = L"\t \t";
 wchar_t *t, *ptr1, *ptr2;

 t = wcstok(str1, L"?", &ptr1); /* t points to the token L"a" */
 printf("t = '%ls'\n", t);
 t = wcstok(NULL, L",", &ptr1); /* t points to the token L"?b" */
 printf("t = '%ls'\n", t);
 t = wcstok(str2, L" \t,", &ptr2); /* t is a null pointer */
 printf("t = '%ls'\n", t);
 t = wcstok(NULL, L"#,", &ptr1); /* t points to the token L"c" */
 printf("t = '%ls'\n", t);
 t = wcstok(NULL, L"?", &ptr1); /* t is a null pointer */
 printf("t = '%ls'\n", t);
 return 0;
}

 /**
 The output should be similar to:

 t = 'a'
 t = '?b'
 t = ''
 t = 'c'
 t = ''
 **/

Related Information
• “strtok() — Tokenize String” on page 432
• “<wchar.h>” on page 16

wcstol() – wcstoll() — Convert Wide Character String to Long and
Long Long Integer

Format (wcstol())
#include <wchar.h>
long int wcstol(const wchar_t *nptr, wchar_t **endptr, int base);

Format (wcstoll())
#include <wchar.h>
long long int wcstoll(const wchar_t *nptr, wchar_t **endptr, int base);

Language Level
ANSI

520 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

Locale Sensitive
The behavior of these functions might be affected by the LC_CTYPE category of the current locale if
LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of these functions might
also be affected by the LC_UNI_CTYPE category of the current locale if LOCALETYPE(*LOCALEUCS2)
or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. These functions are not
available when LOCALETYPE(*CLD) is specified on the compilation command. For more information, see
“Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcstol() function converts the initial portion of the wide-character string pointed to by nptr to a
long integer value. The nptr parameter points to a sequence of wide characters that can be interpreted
as a numerical value of type long int. The wcstol() function stops reading the string at the first wide
character that it cannot recognize as part of a number. This character can be the wchar_t null character at
the end of the string. The ending character can also be the first numeric character greater than or equal to
the base.

The wcstoll() function converts a wide-character string to a long long integer. The wide-character
string is parsed to skip the initial space characters (as determined by the iswspace function). Any non-
space character signifies the start of a subject string that may form a long long int in the radix specified by
the base parameter. The subject sequence is defined to be the longest initial substring that is a long long
int of the expected form.

If the value of the endptr parameter is not null, then a pointer to the character that ended the scan is
stored in endptr. If a long long integer cannot be formed, the value of the endptr parameter is set to that of
the nptr parameter.

If the base parameter is a value between 2 and 36, the subject sequence's expected form is a sequence
of letters and digits representing a long long integer whose radix is specified by the base parameter. This
sequence optionally is preceded by a positive (+) or negative (-) sign. Letters from a (or A) to z (or Z)
inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less than that of the
base parameter are permitted. If the base parameter has a value of 16, the characters 0x or 0X optionally
precede the sequence of letters and digits, following the positive (+) or negative (-) sign, if present.

If the value of the base parameter is 0, the string determines the base. Therefore, after an optional
leading sign, a leading 0 indicates octal conversion, and a leading 0x or 0X indicates hexadecimal
conversion.

Return Value
The wcstol() function returns the converted long integer value. If no conversion could be performed,
the wcstol() function returns 0. If the correct value is outside the range of representable values, the
wcstol() function returns LONG_MAX or LONG_MIN (according to the sign of the value), and sets errno
to ERANGE. If the string nptr points to is empty or does not have the expected form, no conversion is
performed, and the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a
null pointer.

Upon successful completion, the wcstoll() function returns the converted value. If no conversion could
be performed, 0 is returned, and the errno global variable is set to indicate the error. If the correct value is
outside the range of representable values, the wcstoll() function returns a value of LONG_LONG_MAX
or LONG_LONG_MIN.

Library Functions 521

The value of errno may be set to ERANGE (range error), or EINVAL (invalid argument).

Example
This example uses the wcstol() function to convert the wide-character string wcs to a long integer
value.

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wchar_t *wcs = L"10110134932";
 wchar_t *stopwcs;
 long l;
 int base;

 printf("wcs = \"%ls\"\n", wcs);
 for (base=2; base<=8; base*=2) {
 l = wcstol(wcs, &stopwcs, base);
 printf(" wcstol = %ld\n"
 " Stopped scan at \"%ls\"\n\n", l, stopwcs);
 }
 return 0;

 /***
 The output should be similar to:

 wcs = "10110134932"
 wcstol = 45
 Stopped scan at "34932"

 wcstol = 4423
 Stopped scan at "4932"

 wcstol = 2134108
 Stopped scan at "932"
 ***/
}

Related Information
• “strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double” on page 426
• “strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point” on page

429
• “strtol() – strtoll() — Convert Character String to Long and Long Long Integer” on page 435
• “strtoul() – strtoull() — Convert Character String to Unsigned Long and Unsigned Long Long Integer” on

page 437
• “wcstod() - wcstof() - wcstold() — Convert Wide-Character String to Double, Float, and Long Double” on

page 515
• “wcstod32() - wcstod64() - wcstod128() — Convert Wide-Character String to Decimal Floating-Point” on

page 517
• “wcstoul() – wcstoull() — Convert Wide Character String to Unsigned Long and Unsigned Long Long

Integer” on page 525
• “<wchar.h>” on page 16

wcstombs() — Convert Wide-Character String to Multibyte String

Format
#include <stdlib.h>
size_t wcstombs(char *dest, const wchar_t *string, size_t count);

522 IBM i: ILE C/C++ Runtime Library Functions

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
For more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcstombs() function converts the wide-character string pointed to by string into the multibyte array
pointed to by dest. The converted string begins in the initial shift state. The conversion stops after count
bytes in dest are filled up or a wchar_t null character is encountered.

Only complete multibyte characters are stored in dest. If the lack of space in dest would cause a
partial multibyte character to be stored, wcstombs() stores fewer than n bytes and discards the invalid
character.

Return Value
The wcstombs() function returns the length in bytes of the multibyte character string, not including a
ending null character. The value (size_t)-1 is returned if an invalid multibyte character is encountered.

The value of errno may be set to EILSEQ (conversion stopped due to input character), or ECONVERT
(conversion error).

Examples
This program is compiled with LOCALETYPE(*LOCALE) and SYSIFCOPT(*IFSIO):

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <wchar.h>

#define STRLENGTH 10
#define LOCNAME "/qsys.lib/JA_JP.locale"
#define LOCNAME_EN "/qsys.lib/EN_US.locale"

int main(void)
{
 char string[STRLENGTH];
 int length, sl = 0;
 wchar_t wc2[] = L"ABC";
 wchar_t wc_string[10];
 mbstate_t ps = 0;
 memset(string, '\0', STRLENGTH);
 wc_string[0] = 0x00C1;
 wc_string[1] = 0x4171;
 wc_string[2] = 0x4172;
 wc_string[3] = 0x00C2;
 wc_string[4] = 0x0000;

 /* In this first example we will convert a wide character string */
 /* to a single byte character string. We first set the locale */
 /* to a single byte locale. We choose a locale with */

Library Functions 523

 /* CCSID 37. */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)
 printf("setlocale failed.\n");

 length = wcstombs(string, wc2, 10);

 /* In this case wide characters ABC are converted to */
 /* single byte characters ABC, length is 3. */

 printf("string = %s, length = %d\n\n", string, length);

 /* Now lets try a multibyte example. We first must set the */
 /* locale to a multibyte locale. We choose a locale with */
 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)
 printf("setlocale failed.\n");

 length = wcstombs(string, wc_string, 10);

 /* The hex look at string would now be: */
 /* C10E417141720FC2 length will be 8 */
 /* You would need a device capable of displaying multibyte */
 /* characters to see this string. */

 printf("length = %d\n\n", length);

}
/* The output should look like this:

string = ABC, length = 3

length = 8
 */

This program is compiled with LOCALETYPE(*LOCALEUCS2) and SYSIFCOPT(*IFSIO):

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <wchar.h>

#define STRLENGTH 10
#define LOCNAME "/qsys.lib/JA_JP.locale"
#define LOCNAME_EN "/qsys.lib/EN_US.locale"

int main(void)
{
 char string[STRLENGTH];
 int length, sl = 0;
 wchar_t wc2[] = L"ABC";
 wchar_t wc_string[10];
 mbstate_t ps = 0;
 memset(string, '\0', STRLENGTH);
 wc_string[0] = 0x0041; /* UNICODE A */
 wc_string[1] = 0xFF41;
 wc_string[2] = 0xFF42;
 wc_string[3] = 0x0042; /* UNICODE B */
 wc_string[4] = 0x0000;
 /* In this first example we will convert a wide character string */
 /* to a single byte character string. We first set the locale */
 /* to a single byte locale. We choose a locale with */
 /* CCSID 37. */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)
 printf("setlocale failed.\n");

 length = wcstombs(string, wc2, 10);

 /* In this case wide characters ABC are converted to */
 /* single byte characters ABC, length is 3. */

 printf("string = %s, length = %d\n\n", string, length);

 /* Now lets try a multibyte example. We first must set the */
 /* locale to a multibyte locale. We choose a locale with */
 /* CCSID 5026 */

524 IBM i: ILE C/C++ Runtime Library Functions

 if (setlocale(LC_ALL, LOCNAME) == NULL)
 printf("setlocale failed.\n");

 length = wcstombs(string, wc_string, 10);

 /* The hex look at string would now be: */
 /* C10E428142820FC2 length will be 8 */
 /* You would need a device capable of displaying multibyte */
 /* characters to see this string. */

 printf("length = %d\n\n", length);

}
/* The output should look like this:

string = ABC, length = 3

length = 8
 */

Related Information
• “mbstowcs() — Convert a Multibyte String to a Wide Character String” on page 231
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 510
• “wctomb() — Convert Wide Character to Multibyte Character” on page 532
• “<stdlib.h>” on page 14

wcstoul() – wcstoull() — Convert Wide Character String to Unsigned
Long and Unsigned Long Long Integer

Format (wcstoul())
#include <wchar.h>
unsigned long int wcstoul(const wchar_t *nptr, wchar_t **endptr, int base);

Format (wcstoull())
#include <wchar.h>
unsigned long long int wcstoull(const wchar_t *nptr, wchar_t **endptr, int base);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of these functions might be affected by the LC_CTYPE category of the current locale if
LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of these functions might
also be affected by the LC_UNI_CTYPE category of the current locale if LOCALETYPE(*LOCALEUCS2)
or LOCALETYPE(*LOCALEUTF) is specified on the compilation command. These functions are not
available when LOCALETYPE(*CLD) is specified on the compilation command. For more information, see
“Understanding CCSIDs and Locales” on page 571.

Library Functions 525

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcstoul() function converts the initial portion of the wide-character string pointed to by nptr to
an unsigned long integer value. The nptr parameter points to a sequence of wide characters that can
be interpreted as a numerical value of type unsigned long int. The wcstoul() function stops reading
the string at the first wide character that it cannot recognize as part of a number. This character can be
the wchar_t null character at the end of the string. The ending character can also be the first numeric
character greater than or equal to the base.

The wcstoull() function converts a wide-character string to an unsigned long long integer. The wide-
character string is parsed to skip the initial space characters (as determined by the iswspace function).
Any non-space character signifies the start of a subject string that may form an unsigned long long int
in the radix specified by the base parameter. The subject sequence is defined to be the longest initial
substring that is an unsigned long long int of the expected form.

If the value of the endptr parameter is not null, then a pointer to the character that ended the scan is
stored in endptr. If an unsigned long long integer cannot be formed, the value of the endptr parameter is
set to that of the nptr parameter.

If the base parameter is a value between 2 and 36, the subject sequence's expected form is a sequence
of letters and digits representing an unsigned long long integer whose radix is specified by the base
parameter. This sequence optionally is preceded by a positive (+) or negative (-) sign. Letters from a (or
A) to z (or Z) inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less than
that of the base parameter are permitted. If the base parameter has a value of 16, the characters 0x or
0X optionally precede the sequence of letters and digits, following the positive (+) or negative (-) sign, if
present.

If the value of the base parameter is 0, the string determines the base. Therefore, after an optional
leading sign, a leading 0 indicates octal conversion, and a leading 0x or 0X indicates hexadecimal
conversion.

The value of errno may be set to EINVAL (endptr is null, no numbers are found, or base is invalid), or
ERANGE (converted value is outside the range).

Return Value
The wcstoul() function returns the converted unsigned long integer value. If no conversion could be
performed, the wcstoul() function returns 0. If the correct value is outside the range of representable
values, the wcstoul() function returns ULONG_MAX and sets errno to ERANGE. If the string nptr points
to is empty or does not have the expected form, no conversion is performed, and the value of nptr is
stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Upon successful completion, the wcstoull() function returns the converted value. If no conversion
could be performed, 0 is returned, and the errno global variable is set to indicate the error. If the
correct value is outside the range of representable values, wcstoull() function returns a value of
ULONG_LONG_MAX.

Example
This example uses the wcstoul() function to convert the string wcs to an unsigned long integer value.

#include <stdio.h>
#include <wchar.h>

#define BASE 2

int main(void)
{
 wchar_t *wcs = L"1000e13 camels";
 wchar_t *endptr;

526 IBM i: ILE C/C++ Runtime Library Functions

 unsigned long int answer;

 answer = wcstoul(wcs, &endptr, BASE);
 printf("The input wide string used: `%ls`\n"
 "The unsigned long int produced: %lu\n"
 "The substring of the input wide string that was not"
 " converted to unsigned long: `%ls`\n", wcs, answer, endptr);
 return 0;
}

 /***
 The output should be similar to:

 The input wide string used: 1000e13 camels
 The unsigned long int produced: 8
 The substring of the input wide string that was not converted to
 unsigned long: e13 camels
 ***/

Related Information
• “strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double” on page 426
• “strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point” on page

429
• “strtol() – strtoll() — Convert Character String to Long and Long Long Integer” on page 435
• “wcstod() - wcstof() - wcstold() — Convert Wide-Character String to Double, Float, and Long Double” on

page 515
• “wcstod32() - wcstod64() - wcstod128() — Convert Wide-Character String to Decimal Floating-Point” on

page 517
• “wcstol() – wcstoll() — Convert Wide Character String to Long and Long Long Integer” on page 520
• “<wchar.h>” on page 16

wcswcs() — Locate Wide-Character Substring

Format
#include <wchar.h>
wchar_t *wcswcs(const wchar_t *string1, const wchar_t *string2);

Language Level
XPG4

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcswcs() function locates the first occurrence of string2 in the wide-character string pointed to by
string1. In the matching process, the wcswcs() function ignores the wchar_t null character that ends
string2.

Library Functions 527

Return Value
The wcswcs() function returns a pointer to the located string or NULL if the string is not found. If string2
points to a string with zero length, wcswcs() returns string1.

Example
This example finds the first occurrence of the wide character string pr in buffer1.

#include <stdio.h>
#include <wchar.h>

#define SIZE 40

int main(void)
{
 wchar_t buffer1[SIZE] = L"computer program";
 wchar_t * ptr;
 wchar_t * wch = L"pr";

 ptr = wcswcs(buffer1, wch);
 printf("The first occurrence of %ls in '%ls' is '%ls'\n",
 wch, buffer1, ptr);
}

/**************** Output should be similar to: ******************

The first occurrence of pr in 'computer program' is 'program'
*/

Related Information
• “strchr() — Search for Character” on page 390
• “strcspn() — Find Offset of First Character Match” on page 397
• “strpbrk() — Find Characters in String” on page 417
• “strrchr() — Locate Last Occurrence of Character in String” on page 422
• “strspn() — Find Offset of First Non-matching Character” on page 423
• “strstr() — Locate Substring” on page 425
• “wcschr() — Search for Wide Character” on page 489
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcscspn() — Find Offset of First Wide-Character Match” on page 494
• “wcspbrk() — Locate Wide Characters in String” on page 506
• “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 509
• “wcsspn() — Find Offset of First Non-matching Wide Character” on page 512
• “<wchar.h>” on page 16

wcswidth() — Determine the Display Width of a Wide Character
String

Format
#include <wchar.h>
int wcswidth (const wchar_t *wcs, size_t n);

Language Level
XPG4

528 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale if
LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this function might
also be affected by the LC_UNI_CTYPE category of the current locale if LOCALETYPE(*LOCALEUCS2) or
LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available when
LOCALETYPE(*CLD) is specified on the compilation command. For more information, see “Understanding
CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcswidth() function determines the number of printing positions that a graphic representation of
n wide characters (or fewer than n wide characters if a null wide character is encountered before n wide
characters have been exhausted) in the wide string pointed to by wcs occupies on a display device. The
number is independent of its location on the device.

The value of errno may be set to EINVAL (non-printing wide character).

Return Value
The wcswidth() function either returns:

• 0, if wcs points to a null wide character; or
• the number of printing positions occupied by the wide string pointed to by wcs; or
• -1, if any wide character in the wide string pointed to by wcs is not a printing wide character.

Example

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wchar_t *wcs = L"ABC";

 printf("wcs has a width of: %d\n", wcswidth(wcs,3));
}

/************The output is as follows**************/
/* */
/* wcs has a width of: 3 */
/* */
/**/

Related Information
• “wcswidth() — Determine the Display Width of a Wide Character String” on page 528
• “<wchar.h>” on page 16

Library Functions 529

wcsxfrm() — Transform a Wide-Character String

Format
#include <wchar.h>
size_t wcsxfrm (wchar_t *wcs1, const wchar_t *wcs2, size_t n);

Language Level
XPG4

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_COLLATE category of the current locale if
LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this function might
also be affected by the LC_UNI_COLLATE category of the current locale if LOCALETYPE(*LOCALEUTF) is
specified on the compilation command. This function is not supported when LOCALETYPE(*LOCALEUCS2)
is specified on the compilation command. This function is not available when LOCALETYPE(*CLD) is
specified on the compilation command. For more information, see “Understanding CCSIDs and Locales”
on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcsxfrm() function transforms the wide-character string pointed to by wcs2 to values which
represent character collating weights and places the resulting wide-character string into the array pointed
to by wcs1.

Return Value
The wcsxfrm() function returns the length of the transformed wide-character string (not including the
ending null wide character code). If the value returned is n or more, the contents of the array pointed to
by wcs1 are indeterminate.

If wcsxfrm() is unsuccessful, errno is changed. The value of errno may be set to EINVAL (the wcs1 or
wcs2 arguments contain characters which are not available in the current locale).

530 IBM i: ILE C/C++ Runtime Library Functions

Example

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wchar_t *wcs;
 wchar_t buffer[80];
 int length;

 printf("Type in a string of characters.\n ");
 wcs = fgetws(buffer, 80, stdin);
 length = wcsxfrm(NULL, wcs, 0);
 printf("You would need a %d element array to hold the wide string\n", length);
 printf("\n\n%S\n\n transformed according", wcs);
 printf(" to this program's locale. \n");
}

Related Information
• “strxfrm() — Transform String” on page 439
• “<wchar.h>” on page 16

wctob() — Convert Wide Character to Byte

Format
#include <stdio.h>
#include <wchar.h>
int wctob(wint_t wc);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wctob() function determines whether wc corresponds to a member of the extended character set,
whose multibyte character has a length of 1 byte when in the initial shift state.

Return Value
If c corresponds to a multibyte character with a length of 1 byte, the wctob() function returns the
single-byte representation. Otherwise, it returns EOF.

Library Functions 531

If a conversion error occurs, errno may be set to ECONVERT.

Example
This example uses the wctob() function to test if the wide character A is a valid single-byte character.

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wint_t wc = L'A';

 if (wctob(wc) == wc)
 printf("%lc is a valid single byte character\n", wc);
 else
 printf("%lc is not a valid single byte character\n", wc);
 return 0;
}

 /**
 The output should be similar to:

 A is a valid single byte character
 **/

Related Information
• “mbtowc() — Convert Multibyte Character to a Wide Character” on page 235
• “wctomb() — Convert Wide Character to Multibyte Character” on page 532
• “wcstombs() — Convert Wide-Character String to Multibyte String” on page 522
• “<wchar.h>” on page 16

wctomb() — Convert Wide Character to Multibyte Character

Format
#include <stdlib.h>
int wctomb(char *string, wchar_t character);

Language Level
ANSI

Threadsafe
No

Use wcrtomb() instead.

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
For more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

532 IBM i: ILE C/C++ Runtime Library Functions

Description
The wctomb() function converts the wchar_t value of character into a multibyte array pointed to by string.
If the value of character is 0, the function is left in the initial shift state. At most, the wctomb() function
stores MB_CUR_MAX characters in string.

The conversion of the wide character is the same as described in wcstombs(). See this function for a
Unicode example.

Return Value
The wctomb() function returns the length in bytes of the multibyte character. The value -1 is returned
if character is not a valid multibyte character. If string is a NULL pointer, the wctomb() function returns
nonzero if shift-dependent encoding is used, or 0 otherwise.

If a conversion error occurs, errno may be set to ECONVERT.

Example
This example converts the wide character c to a multibyte character.

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>

#define SIZE 40

int main(void)
{
 static char buffer[SIZE];
 wchar_t wch = L'c';
 int length;

 length = wctomb(buffer, wch);
 printf("The number of bytes that comprise the multibyte "
 "character is %i\n", length);
 printf("And the converted string is \"%s\"\n", buffer);
}

/**************** Output should be similar to: ******************

The number of bytes that comprise the multibyte character is 1
And the converted string is "c"
*/

Related Information
• “mbtowc() — Convert Multibyte Character to a Wide Character” on page 235
• “wcslen() — Calculate Length of Wide-Character String” on page 499
• “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 483
• “wcstombs() — Convert Wide-Character String to Multibyte String” on page 522
• “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 510
• “<stdlib.h>” on page 14

wctrans() — Get Handle for Character Mapping

Format
#include <wctype.h>
wctrans_t wctrans(const char *property);

Library Functions 533

Language Level
ANSI

Threadsafe
Yes

Description
The wctrans() function returns a value with type wctrans_t. This value describes a mapping between
wide characters. The string argument property is a wide character mapping name. The wctrans_t
equivalent of the wide character mapping name is returned by this function. The toupper and tolower
wide character mapping names are defined in all locales.

Return Value
If property is a valid wide character mapping name, the wctrans() function returns a nonzero value that
is valid as the second argument to the towctrans() function. Otherwise, it returns 0.

Example
This example translates the lowercase alphabet to uppercase, and back to lowercase.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <wctype.h>

int main()
{
 char *alpha = "abcdefghijklmnopqrstuvwxyz";
 char *tocase[2] = {"toupper", "tolower"};
 wchar_t *wcalpha;
 int i, j;
 size_t alphalen;

 alphalen = strlen(alpha)+1;
 wcalpha = (wchar_t *)malloc(sizeof(wchar_t)*alphalen);

 mbstowcs(wcalpha, alpha, 2*alphalen);

 for (i=0; i<2; ++i) {
 printf("Input string: %ls\n", wcalpha);
 for (j=0; j<strlen(alpha); ++j) {
 wcalpha[j] = (wchar_t)towctrans((wint_t)wcalpha[j], wctrans(tocase[i]));
 }
 printf("Output string: %ls\n", wcalpha);
 printf("\n");
 }
 return 0;
}

/**************** Output should be similar to: ******************

Input string: abcdefghijklmnopqrstuvwxyz
Output string: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Input string: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Output string: abcdefghijklmnopqrstuvwxyz

***/

Related Information
• “towctrans() — Translate Wide Character” on page 452
• “<wctype.h>” on page 16

534 IBM i: ILE C/C++ Runtime Library Functions

wctype() — Get Handle for Character Property Classification

Format
#include <wctype.h>
wctype_t wctype(const char *property);

Language Level
XPG4

Threadsafe
Yes

Description
The wctype() function is defined for valid character class names. The property is a string that identifies
a generic character class. These character class names are defined in all locales: alnum, alpha, blank,
cntrl, digit, graph, lower, print, punct, space, upper, xdigit. The function returns a value of
type wctype_t, which can be used as the second argument to a call of the iswctype() function.

The wctype() function determines values of wctype_t according to rules of the coded character set that
are defined by character type information in the program's locale (category LC_CTYPE). Values that are
returned by the wctype() are valid until a call to setlocale() that changes the category LC_CTYPE.

Return Value
The wctype() function returns zero if the given property name is not valid. Otherwise, it returns a value
of type wctype_t that can be used in calls to iswctype().

Library Functions 535

Example
#include <wchar.h>

#define UPPER_LIMIT 0xFF
int main(void)
{
 int wc;
 for (wc = 0; wc <= UPPER_LIMIT; wc++) {
 printf("%#4x ", wc);
 printf("%c", iswctype(wc, wctype("print")) ? wc : ' ');
 printf("%s", iswctype(wc, wctype("alnum")) ? "AN" : " ");
 printf("%s", iswctype(wc, wctype("alpha")) ? "A" : " ");
 printf("%s", iswctype(wc, wctype("blank")) ? "B" : " ");
 printf("%s", iswctype(wc, wctype("cntrl")) ? "C" : " ");
 printf("%s", iswctype(wc, wctype("digit")) ? "D" : " ");
 printf("%s", iswctype(wc, wctype("graph")) ? "G" : " ");
 printf("%s", iswctype(wc, wctype("lower")) ? "L" : " ");
 printf("%s", iswctype(wc, wctype("punct")) ? "PU" : " ");
 printf("%s", iswctype(wc, wctype("space")) ? "S" : " ");
 printf("%s", iswctype(wc, wctype("print")) ? "PR" : " ");
 printf("%s", iswctype(wc, wctype("upper")) ? "U" : " ");
 printf("%s", iswctype(wc, wctype("xdigit")) ? "X" : " ");
 putchar('\n');
 }
 return 0;
}
/***
 The output should be similar to :
 :
 0x1f C
 0x20 B S PR
 0x21 ! G PU PR
 0x22 " G PU PR
 0x23 # G PU PR
 0x24 $ G PU PR
 0x25 % G PU PR
 0x26 & G PU PR
 0x27 ' G PU PR
 0x28 (G PU PR
 0x29) G PU PR
 0x2a * G PU PR
 0x2b + G PU PR
 0x2c , G PU PR
 0x2d - G PU PR
 0x2e . G PU PR
 0x2f / G PU PR
 0x30 0 AN D G PR X
 0x31 1 AN D G PR X
 0x32 2 AN D G PR X
 0x33 3 AN D G PR X
 0x34 4 AN D G PR X
 0x35 5 AN D G PR X
 :
 ***/

Related Information
• “<wchar.h>” on page 16
• “<wctype.h>” on page 16

wcwidth() — Determine the Display Width of a Wide Character

Format
#include <wchar.h>
int wcwidth (const wint_t wc);

Language Level
XPG4

536 IBM i: ILE C/C++ Runtime Library Functions

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE category of the current locale.
The behavior might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation command.
This function is not available when LOCALETYPE(*CLD) is specified on the compilation command. For
more information, see “Understanding CCSIDs and Locales” on page 571.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wcwidth() function determines the number of printing positions that a graphic representation of wc
occupies on a display device. Each of the printing wide characters occupies its own number of printing
positions on a display device. The number is independent of its location on the device.

The value of errno may be set to EINVAL (non-printing wide character).

Return Value
The wcwidth() function either returns:

• 0, if wc is a null wide character; or
• the number of printing position occupied by wc; or
• -1, if wc is not a printing wide character.

Example

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wint_t wc = L'A';

 printf("%lc has a width of %d\n", wc, wcwidth(wc));
 return 0;
}

 /**
 The output should be similar to :
 A has a width of 1
 **/

Related Information
• “wcswidth() — Determine the Display Width of a Wide Character String” on page 528
• “<wchar.h>” on page 16

wfopen() — Open Files

Format
#include <ifs.h>
FILE * wfopen(const wchar_t *filename,const wchar_t *mode);

Library Functions 537

Language Level
ILE C Extension

Threadsafe
Yes

Locale Sensitive
This function is only available when LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is
specified on the compilation command. For more information, see “Understanding CCSIDs and Locales”
on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wfopen() function works like the fopen() function, except:

• wfopen() accepts file name and mode as wide characters.
• The default CCSID for files opened with wfopen() (used when the ccsid=value, o_ccsid=value, and

codepage=value keywords are not specified) is UCS2 when LOCALETYPE(*LOCALEUCS2) is specified on
the compilation command. The default CCSID is UTF-32 when LOCALETYPE(*LOCALEUTF) is specified
on the compilation command.

wmemchr() — Locate Wide Character in Wide-Character Buffer

Format
#include <wchar.h>
wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);

Language Level
ANSI

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wmemchr() function locates the first occurrence of c in the initial n wide characters of the object
pointed to by s. If n has the value 0, the wmemchr() function finds no occurrence of c, and returns a NULL
pointer.

538 IBM i: ILE C/C++ Runtime Library Functions

Return Value
The wmemchr() function returns a pointer to the located wide character, or a NULL pointer if the wide
character does not occur in the object.

Example
This example finds the first occurrence of 'A' in the wide-character string.

#include <stdio.h>
#include <wchar.h>

main()
{
 wchar_t *in = L"1234ABCD";
 wchar_t *ptr;
 wchar_t fnd = L'A';

 printf("\nEXPECTED: ABCD");
 ptr = wmemchr(in, L'A', 6);
 if (ptr == NULL)
 printf("\n** ERROR ** ptr is NULL, char L'A' not found\n");
 else
 printf("\nRECEIVED: %ls \n", ptr);
}

Related Information
• “memchr() — Search Buffer” on page 236
• “strchr() — Search for Character” on page 390
• “wcschr() — Search for Wide Character” on page 489
• “wmemcmp() — Compare Wide-Character Buffers” on page 539
• “wmemcpy() — Copy Wide-Character Buffer” on page 541
• “wmemmove() — Copy Wide-Character Buffer” on page 542
• “wmemset() — Set Wide Character Buffer to a Value” on page 543
• “<wchar.h>” on page 16

wmemcmp() — Compare Wide-Character Buffers

Format
#include <wchar.h>
int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Language Level
ANSI

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Library Functions 539

Description
The wmemcmp() function compares the first n wide characters of the object pointed to by s1 to the first n
wide characters of the object pointed to by s2. If n has the value 0, the wmemcmp() function returns 0.

Return Value
The wmemcmp() function returns a value according to the relationship between the two strings, s1 and s2:

Table 21. Return values of wmemcmp()

Value Meaning

Less than 0 s1 less than s2

0 s1 identical to s2

Greater than 0 s1 greater than s2

Example
This example compares the wide-character string in to out using the wmemcmp() function.

#include <wchar.h>
#include <stdio.h>
#include <locale.h>

main()
{
 int rc;
 wchar_t *in = L"12345678";
 wchar_t *out = L"12AAAAAB";
 setlocale(LC_ALL, "POSIX");

 printf("\nGREATER is the expected result");
 rc = wmemcmp(in, out, 3);
 if (rc == 0)
 printf("\nArrays are EQUAL %ls %ls \n", in, out);
 else
 {
 if (rc > 0)
 printf("\nArray %ls GREATER than %ls \n", in, out);
 else
 printf("\nArray %ls LESS than %ls \n", in, out);
 }
}

 /**
 The output should be:

 GREATER is the expected result
 Array 12345678 GREATER than 12AAAAAB
 **/

Related Information
• “memcmp() — Compare Buffers” on page 237
• “strcmp() — Compare Strings” on page 392
• “wcscmp() — Compare Wide-Character Strings” on page 490
• “wcsncmp() — Compare Wide-Character Strings” on page 502
• “wmemchr() — Locate Wide Character in Wide-Character Buffer” on page 538
• “wmemcpy() — Copy Wide-Character Buffer” on page 541
• “wmemmove() — Copy Wide-Character Buffer” on page 542
• “wmemset() — Set Wide Character Buffer to a Value” on page 543
• “<wchar.h>” on page 16

540 IBM i: ILE C/C++ Runtime Library Functions

wmemcpy() — Copy Wide-Character Buffer

Format
#include <wchar.h>
wchar_t *wmemcpy(wchar_t *s1, const wchar_t *s2, size_t n);

Language Level
ANSI

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wmemcpy() function copies n wide characters from the object pointed to by s2 to the object pointed
to by s1. If s1 and s2 overlap, the result of the copy is unpredictable. If n has the value 0, the wmemcpy()
function copies 0 wide characters.

Return Value
The wmemcpy() function returns the value of s1.

Example
This example copies the first four characters from out to in. In the expected output, the first four
characters in both strings will be "ABCD".

#include <wchar.h>
#include <stdio.h>

main()
{
 wchar_t *in = L"12345678";
 wchar_t *out = L"ABCDEFGH";
 wchar_t *ptr;

 printf("\nExpected result: First 4 chars of in change");
 printf(" and are the same as first 4 chars of out");
 ptr = wmemcpy(in, out, 4);
 if (ptr == in)
 printf("\nArray in %ls array out %ls \n", in, out);
 else
 {
 printf("\n*** ERROR ***");
 printf(" returned pointer wrong");
 }
}

Related Information
• “memcpy() — Copy Bytes” on page 238
• “strcpy() — Copy Strings” on page 396
• “strncpy() — Copy Strings” on page 413
• “wcscpy() — Copy Wide-Character Strings” on page 493

Library Functions 541

• “wcsncpy() — Copy Wide-Character Strings” on page 504
• “wmemchr() — Locate Wide Character in Wide-Character Buffer” on page 538
• “wmemcmp() — Compare Wide-Character Buffers” on page 539
• “wmemmove() — Copy Wide-Character Buffer” on page 542
• “wmemset() — Set Wide Character Buffer to a Value” on page 543
• “<wchar.h>” on page 16

wmemmove() — Copy Wide-Character Buffer

Format
#include <wchar.h>
wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);

Language Level
ANSI

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wmemmove() function copies n wide characters from the object pointed to by s2 to the object pointed
to by s1. Copying takes place as if the n wide characters from the object pointed to by s2 are first copied
into a temporary array, of n wide characters, that does not overlap the objects pointed to by s1 or s2.
Then, the wmemmove() function copies the n wide characters from the temporary array into the object
pointed to by s1. If n has the value 0, the wmemmove() function copies 0 wide characters.

Return Value
The wmemmove() function returns the value of s1.

Example
This example copies the first five characters in a string to overlay the last five characters in the same
string. Since the string is only nine characters long, the source and target overlap.

542 IBM i: ILE C/C++ Runtime Library Functions

#include <wchar.h>
#include <stdio.h>

void main()
{
 wchar_t *theString = L"ABCDEFGHI";

 printf("\nThe original string: %ls \n", theString);
 wmemmove(theString+4, theString, 5);
 printf("\nThe string after wmemmove: %ls \n", theString);

 return;
}

 /**
 The output should be:

 The original string: ABCDEFGHI
 The string after wmemmove: ABCDABCDE
 **/

Related Information
• “memmove() — Copy Bytes” on page 241
• “wmemchr() — Locate Wide Character in Wide-Character Buffer” on page 538
• “wmemcpy() — Copy Wide-Character Buffer” on page 541
• “wmemcmp() — Compare Wide-Character Buffers” on page 539
• “wmemset() — Set Wide Character Buffer to a Value” on page 543
• “<wchar.h>” on page 16

wmemset() — Set Wide Character Buffer to a Value

Format
#include <wchar.h>
wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

Language Level
ANSI

Threadsafe
Yes

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wmemset() function copies the value of c into each of the first n wide characters of the object
pointed to by s. If n has the value 0, the wmemset() function copies 0 wide characters.

Return Value
The wmemset() function returns the value of s.

Library Functions 543

Example
This example sets the first 6 wide characters to the wide character 'A'.

#include <wchar.h>
#include <stdio.h>

void main()
{
 wchar_t *in = L"1234ABCD";
 wchar_t *ptr;

 printf("\nEXPECTED: AAAAAACD");
 ptr = wmemset(in, L'A', 6);
 if (ptr == in)
 printf("\nResults returned - %ls \n", ptr);
 else
 {
 printf("\n** ERROR ** wrong pointer returned\n");
 }
}

Related Information
• “memset() — Set Bytes to Value” on page 242
• “wmemchr() — Locate Wide Character in Wide-Character Buffer” on page 538
• “wmemcpy() — Copy Wide-Character Buffer” on page 541
• “wmemcmp() — Compare Wide-Character Buffers” on page 539
• “wmemmove() — Copy Wide-Character Buffer” on page 542
• “<wchar.h>” on page 16

wprintf() — Format Data as Wide Characters and Print

Format
#include <stdio.h>
int wprintf(const wchar_t *format,...);

Language Level
ANSI

Threadsafe
Yes

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of
the current locale. The behavior might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC
categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified
on the compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

544 IBM i: ILE C/C++ Runtime Library Functions

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
A wprintf(format, ...) is equivalent to fwprintf(stdout, format, ...).

Return Value
The wprintf() function returns the number of wide characters transmitted. If an output error occurred,
the wprintf() function returns a negative value.

Example
This example prints the wide character a. Date and time may be formatted according to your locale's
representation. The output goes to stdout.

#include <wchar.h>
#include <stdarg.h>
#include <locale.h>

int main(void)

{
 setlocale(LC_ALL, "POSIX");
 wprintf (L"%c\n", L'a');
 return(0);
}

 /* A long 'a' is written to stdout */

Related Information
• “printf() — Print Formatted Characters” on page 254
• “btowc() — Convert Single Byte to Wide Character” on page 78
• “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 225
• “vfwprintf() — Format Argument Data as Wide Characters and Write to a Stream ” on page 464
• “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 166
• “vswprintf() — Format and Write Wide Characters to Buffer” on page 476
• “<wchar.h>” on page 16

wscanf() — Read Data Using Wide-Character Format String

Format
#include <stdio.h>
int wscanf(const wchar_t *format,...);

Language Level
ANSI

Threadsafe
Yes

Library Functions 545

Locale Sensitive
The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC categories of
the current locale. The behavior might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC
categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified
on the compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see “Understanding CCSIDs and Locales” on page 571.

Integrated File System Interface
This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Wide Character Function
See “Wide Characters” on page 574 for more information.

Description
The wscanf() function is equivalent to the fwscanf() function with the argument stdin interposed
before the arguments of the wscanf() function.

Return Value
If an input failure occurs before any conversion, the wscanf() function returns the value of the macro
EOF.

Otherwise, the wscanf() function returns the number of input items assigned. It can be fewer than
provided for, or even zero, in the event of an early matching failure.

Example
This example scans various types of data.

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 int i;
 float fp;
 char c,s[81];

 printf("Enter an integer, a real number, a character and a string : \n");
 if (wscanf(L"%d %f %c %s", &i, &fp,&c, s) != 4)
 printf("Some fields were not assigned\n");
 else {
 printf("integer = %d\n", i);
 printf("real number = %f\n", fp);
 printf("character = %c\n", c);
 printf("string = %s\n", s);
 }
 return 0;
}

 /**
 The output should be similar to:

 Enter an integer, a real number, a character and a string :
 12 2.5 a yes
 integer = 12
 real number = 2.500000
 character = a
 string = yes
 **/

546 IBM i: ILE C/C++ Runtime Library Functions

Related Information
• “fscanf() — Read Formatted Data” on page 156
• “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 166
• “fwscanf() — Read Data from Stream Using Wide Character” on page 170
• “scanf() — Read Data” on page 362
• “sscanf() — Read Data” on page 386
• “swprintf() — Format and Write Wide Characters to Buffer” on page 440
• “swscanf() — Read Wide Character Data” on page 441
• “vfscanf() — Read Formatted Data” on page 463
• “vfwscanf() — Read Formatted Wide Character Data” on page 466
• “vscanf() — Read Formatted Data” on page 470
• “vsscanf() — Read Formatted Data” on page 475
• “vswscanf() — Read Formatted Wide Character Data” on page 478
• “vwscanf() — Read Formatted Wide Character Data” on page 481
• “wprintf() — Format Data as Wide Characters and Print” on page 544
• “<wchar.h>” on page 16

Library Functions 547

548 IBM i: ILE C/C++ Runtime Library Functions

Runtime Considerations

This topic provides the following information:

• Exception and condition management
• Interlanguage data type compatibility
• CCSID (Coded Character Set Identifier) source file conversion
• Heap memory

errno Macros
The following table lists which error macros the ILE C library functions can set.

Table 22. errno Macros

Error Macro Description Set by Function

EBADDATA The message data is not valid. perror, strerror

EBADF The catalog descriptor is not
valid.

catclose, catgets, clearerr, fgetc,
fgetpos, fgets, fileno, freopen,
fseek, fsetpos, getc, rewind

EBADKEYLN The key length specified is not
valid.

_Rreadk, _Rlocate

EBADMODE The file mode specified is not
valid.

fopen, freopen, _Ropen

EBADNAME Bad file name specified. fopen, freopen, _Ropen

EBADPOS The position specified is not
valid.

fsetpos

EBADSEEK Bad offset for a seek operation. fgetpos, fseek

EBUSY The record or file is in use. perror, strerror

ECONVERT Conversion error. wcstomb, wcswidth

EDOM Domain error in math function. acos, asin, atan2, cos, exp, fmod,
gamma, hypot, j0, j1, jn, y0, y1,
yn, log, log10, pow, sin, strtol,
strtoul, sqrt, tan

EGETANDPUT An illegal read operation
occurred after a write operation.

fgetc, fread, getc, getchar

EILSEQ The character sequence does not
form a valid multibyte character.

fgetwc, fgetws, getwc,
mblen,mbrlen, mbrtowc,
mbsrtowcs, mbstowcs, mbtowc,
printf, scanf, ungetwc, wcrtomb,
wcsrtombs, wcstombs, wctomb,
wcswidth, wcwidth

EINVAL The signal is not valid. printf, scanf, signal, swprintf,
swscanf, wcstol, wcstoll, wcstoul,
wcstoull

EIO Consecutive calls of I⁄O occurred. I⁄O

© Copyright IBM Corp. 1998, 2015 549

Table 22. errno Macros (continued)

Error Macro Description Set by Function

EIOERROR A non-recoverable I⁄O error
occurred.

All I⁄O functions

EIORECERR A recoverable I⁄O error occurred. All I⁄O functions

ENODEV Operation attempted on a wrong
device.

fgetpos, fsetpos, fseek, ftell,
rewind

ENOENT File or library is not found. perror, strerror

ENOPOS No record at specified position. fsetpos

ENOREC Record not found. fread, perror, strerror

ENOTDLT File is not opened for delete
operations.

_Rdelete

ENOTOPEN File is not opened. clearerr, fclose, fflush, fgetpos,
fopen, freopen, fseek, ftell,
setbuf, setvbuf, _Ropen, _Rclose

ENOTREAD File is not opened for read
operations.

fgetc, fread, ungetc, _Rreadd,
_Rreadf, _Rreadindv, _Rreadk,
_Rreadl, _Rreadn, _Rreadnc,
_Rreadp, _Rreads, _Rlocate

ENOTUPD File is not opened for update
operations.

_Rrlslck, _Rupdate

ENOTWRITE File is not opened for write
operations.

fputc, fwrite, _Rwrite, _Rwrited,
_Rwriterd

ENUMMBRS More than 1 member. ftell

ENUMRECS Too many records. ftell

EPAD Padding occurred on a write
operation.

fwrite

EPERM Insufficient authorization for
access.

perror, strerror

EPUTANDGET An illegal write operation
occurred after a read operation.

fputc, fwrite, fputs, putc, putchar

ERANGE Range error in math function. cos, cosh, gamma, exp, j0, j1, jn,
y0, y1, yn, log, log10, ldexp, pow,
sin, sinh, strtod, strtol, strtoul,
tan, wcstol, wcstoll, wcstoul,
wcstoull, wcstod, wcstof, wcstold

ERECIO File is opened for record I⁄O, so
character-at-a-time processing
functions cannot be used.

fgetc, fgetpos, fputc, fread, fseek,
fsetpos, ftell

ESTDERR stderr cannot be opened. feof, ferror, fgetpos, fputc, fseek,
fsetpos, ftell, fwrite

ESTDIN stdin cannot be opened. fgetc, fgetpos, fread, fseek,
fsetpos, ftell

550 IBM i: ILE C/C++ Runtime Library Functions

Table 22. errno Macros (continued)

Error Macro Description Set by Function

ESTDOUT stdout cannot be opened. fgetpos, fputc, fseek, fsetpos,
ftell, fwrite

ETRUNC Truncation occurred on I⁄O
operation.

Any I⁄O function that reads or
writes a record sets errno to
ETRUNC.

errno Values for Integrated File System Enabled C Stream I/O
The following table describes the possible settings when using integrated file system enabled stream I/O.

Table 23. errno Values for Integrated File System Enabled C Stream I/O

C Stream
Function Possible errno Values

clearerr EBADF

fclose EAGAIN, EBADF, EIO, ESCANFAILURE, EUNKNOWN

feof EBADF

ferror EBADF

fflush EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,
ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

fgetc EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,
EUKNOWN, EGETANDPUT, EDOM, ENOTREAD,

fgetpos EACCESS, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOSYSRSC,
EUNATCH, EUNKNOWN

fgets EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,
EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

fgetwc EBADF, EILSEQ

fgetws EBADF, EILSEQ

fopen EAGAIN, EBADNAME, EBADF, ECONVERT, EDAMAGE, EEXITS, EFAULT, EINVAL, EIO,
EISDIR, ELOOP, ENOENT, ENOMEM, ENOSPC, ENOSYS, ENOSYSRSC, ENOTDIR,
ESCANFAILURE

fprintf EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,
ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

fputc EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,
ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

fputs EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,
ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

fread EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,
EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

freopen EACCES, EAGAIN, EBADNAME, EBADF, EBUSY, ECONVERT, EDAMAGE, EEXITS,
EFAULT, EINVAL, EIO, EISDIR, ELOOP, EMFILE, ENAMETOOLONG, ENFILE, ENOENT,
ENOMEM, ENOSPC, ENOSYS, ENOSYSRSC, ENOTDIR

Runtime Considerations 551

Table 23. errno Values for Integrated File System Enabled C Stream I/O (continued)

C Stream
Function Possible errno Values

fscanf EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,
EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

fseek EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EINVAL, EIO, ENOENT, ENOSPC,
ENOSYSRSC, ESPIPE, EUNKNOWN, EFAULT, EPERM, EUNATCH, EUNKNOWN

fsetpos EACCES, EAGAIN, ABADF, EBUSY, EDAMAGE, EINVAL, EIO, ENOENT, ENOSPC,
ENOSYSRSC, ESPIPE, EUNKNOWN, EFAULT, EPERM, EUNATCH, EUNKNOWN

ftell EACCESS, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOSYSRSC,
EUNATCH, EUNKNOWN

fwrite EACCESS, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOSYSRSC,
EUNATCH, EUNKNOWN

getc EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,
EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

getchar EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,
EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

gets EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,
EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

getwc EBADF, EILSEQ

perror EBADF

printf EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EILSEQ, EINVAL, EIO,
ENOMEM, ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

putc EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,
ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

putchar EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,
ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

puts EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,
ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

remove EACCES, EAGAIN, EBADNAME, EBADF, EBUSY, ECONVERT, EDAMAGE, EEXITS,
EFAULT, EINVAL, EIO, EISDIR, ELOOP, ENAMETOOLONG, ENOENT, ENOMEM, ENOSPC,
ENOTDIR, EPERM, EROOBJ, EUNKNOWN, EXDEV

rename EACCES, EAGAIN, EBADNAME, EBUSY, ECONVERT, EDAMAGE, EEXIST, EFAULT,
EINVAL, EIO, EISDIR, ELOOP, ENAMETOOLONG, ENOTEMPTY, ENOENT, ENOMEM,
ENOSPC, ENOTDIR, EMLINK, EPERM, EUNKNOWN, EXDEV

rewind EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EINVAL, EIO, ENOENT, ENOSPC,
ENOSYSRSC, ESPIPE, EUNKNOWN, EFAULT, EPERM, EUNATCH, EUNKNOWN

scanf EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EILSEQ, EINVAL, EIO, ENOMEM,
EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

setbuf EBADF, EINVAL, EIO

setvbuf EBADF, EINVAL, EIO

552 IBM i: ILE C/C++ Runtime Library Functions

Table 23. errno Values for Integrated File System Enabled C Stream I/O (continued)

C Stream
Function Possible errno Values

tmpfile EACCES, EAGAIN, EBADNAME, EBADF, EBUSY, ECONVERT, EDAMAGE, EEXITS,
EFAULT, EINVAL, EIO, EISDIR, ELOOP, EMFILE, ENAMETOOLONG, ENFILE, ENOENT,
ENOMEM, ENOSPC, ENOSYS, ENOSYSRSC, ENOTDIR, EPERM, EROOBJ, EUNKNOW N,
EXDEV

tmpnam EACCESS, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOENT,
ENOSYSRSC, EUNATCH, EUNKNOWN

ungetc EBADF, EIO

ungetwc EBADF, EILSEQ

vfprintf EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,
ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

vprintf EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,
ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

Record Input and Output Error Macro to Exception Mapping
The following table describes what occurs if the signal SIGIO is raised. Only *ESCAPE, *NOTIFY, and
*STATUS messages are monitored.

Table 24. Record Input and Output Error Macro to Exception Mapping

Description Messages (_EXCP_MSGID) errno setting

*STATUS and *NOTIFY CPF4001 to CPF40FF, CPF4401
to CPF44FF, CPF4901 to
CPF49FF, CPF5004

errno is not set, a default reply is
returned to the operating system.

Recoverable I⁄O error CPF4701 to CPF47FF, CPF4801
to CPF48FF, CPF5001 to
CPF5003, CPF5005 to CPF50FF,

EIORECERR

Non-recoverable I⁄O error2 CPF4101 to CPF41FF, CPF4201
to CPF42FF, CPF4301 to
CPF43FF, CPF4501 to CPF45FF,
CPF4601 to CPF46FF, CPF5101
to CPF51FF, CPF5201 to
CPF52FF, CPF5301 to CPF53FF,
CPF5401 to CPF54FF, CPF5501
to CPF55FF, CPF5601 to
CPF56FF

EIOERROR

Truncation occurred at I/O
operation

C2M3003 ETRUNC

File is not opened C2M3004 ENOTOPEN

File is not opened for read
operations

C2M3005 ENOTREAD

File is not opened for write
operations

C2M3009 ENOTWRITE

Bad file name specified C2M3014 EBADNAME

Runtime Considerations 553

Table 24. Record Input and Output Error Macro to Exception Mapping (continued)

Description Messages (_EXCP_MSGID) errno setting

The file mode specified is not
valid

C2M3015 EBADMODE

File is not opened for update
operations

C2M3041 ENOTUPD

File is not opened for delete
operations

C2M3042 ENOTDLT

The key length specified is not
valid

C2M3044 EBADKEYLN

A non-recoverable I/O error
occurred

C2M3101 EIOERROR

A recoverable I/O error occurred C2M3102 EIORECERR

Note:

• 1 The error is percolated to the user, therefore the user's direct monitor handlers, ILE C condition
handlers and signal handler may get control. The initial setting for SIGIO is SIG_IGN.

• 2 The type of device determines whether the error is recoverable or not recoverable. The following IBM
publications contain information about recoverable and non-recoverable system exceptions for each
specific file type:

– ICF Programming
– ADTS/400: Advanced Printer Function
– Application Display Programming
– Database Programming

Signal Handling Action Definitions
The following table shows the initial state of the C signal values and their handling action definitions when
SYSIFCOPT(*NOASYNCSIGNAL) is specified on the compilation command. SIG_DFL always percolates the
condition to the handler. Resume indicates the exception is handled, and the application continues.

Table 25. Handling Action Definitions for Signal Values

Signal Value Initial State SIG_DFL SIG_IGN
Return from
Handler

SIGABRT1 SIG_DFL Percolate Ignore Resume

SIGALL2 SIG_DFL Percolate Ignore Resume

SIGFPE SIG_DFL Percolate Ignore3 Resume4

SIGILL SIG_DFL Percolate Ignore3 Resume4

SIGINT SIG_DFL Percolate Ignore Resume

SIGIO SIG_IGN Percolate Ignore Resume

SIGOTHER SIG_DFL Percolate Ignore3 Resume4

SIGSEGV SIG_DFL Percolate Ignore3 Resume4

SIGTERM SIG_DFL Percolate Ignore Resume

SIGUSR1 SIG_DFL Percolate Ignore Resume

554 IBM i: ILE C/C++ Runtime Library Functions

Table 25. Handling Action Definitions for Signal Values (continued)

Signal Value Initial State SIG_DFL SIG_IGN
Return from
Handler

SIGUSR2 SIG_DFL Percolate Ignore Resume

Note:

• 1 Can only be signaled by the raise() function or the abort() function
• 2 SIGALL cannot be signaled by the raise() function.
• 3 If the value of the signal is SIGFPE, SIGILL or SIGSEGV the behavior is undefined.
• 4 If the signal is hardware-generated, then the behavior undefined.

The following table shows the initial state of the C signal values and their handling action definitions when
SYSIFCOPT(*ASYNCSIGNAL) is specified on the compilation command.

Table 26. Default Actions for Signal Values

Value Default Action Meaning

SIGABRT 2 Abnormal termination.

SIGFPE 2 Arithmetic exceptions that are not masked, such as
overflow, division by zero, and incorrect operation.

SIGILL 2 Detection of an incorrect function image.

SIGINT 2 Interactive attention.

SIGSEGV 2 Incorrect access to storage.

SIGTERM 2 Termination request sent to the program.

SIGUSR1 2 Intended for use by user applications.

SIGUSR2 2 Intended for use by user applications.

SIGALRM 2 A timeout signal that is sent by alarm().

SIGHUP 2 A controlling terminal is hung up, or the controlling
process ended.

SIGKILL 1 A termination signal that cannot be caught or ignored.

SIGPIPE 3 A write to a pipe that is not being read.

SIGQUIT 2 A quit signal for a terminal.

SIGCHLD 3 An ended or stopped child process. SIGCLD is an alias
name for this signal.

SIGCONT 5 If stopped, continue.

SIGSTOP 4 A stop signal that cannot be caught or ignored.

SIGTSTP 4 A stop signal for a terminal.

SIGTTIN 4 A background process attempted to read from a
controlling terminal.

SIGTTOU 4 A background process attempted to write to a
controlling terminal.

SIGIO 3 Completion of input or output.

Runtime Considerations 555

Table 26. Default Actions for Signal Values (continued)

Value Default Action Meaning

SIGURG 3 High bandwidth data is available at a socket.

SIGPOLL 2 Pollable event.

SIGBUS 2 Specification exception.

SIGPRE 2 Programming exception.

SIGSYS 2 Bad system call.

SIGTRAP 2 Trace or breakpoint trap.

SIGPROF 2 Profiling timer expired.

SIGVTALRM 2 Virtual timer expired.

SIGXCPU 2 Processor time limit exceeded.

SIGXFSZ 2 File size limit exceeded.

SIGDANGER 2 System crash is imminent.

SIGPCANCEL 2 Thread termination signal that cannot be caught or
ignored.

Default Actions:

1
End the process immediately.

2
End the request.

3
Ignore the signal.

4
Stop the process.

5
Continue the process if it is currently stopped. Otherwise, ignore the signal.

Signal to Exception Mapping
The following table shows the system exception messages that are mapped to a signal. All *ESCAPE
exception messages are mapped to signals. The *STATUS and *NOTIFY messages that map to SIGIO as
defined in Table 24 on page 553 are mapped to signals.

Table 27. Signal to Exception Mapping

Signal Message

SIGABRT C2M1601

SIGALL C2M1610 (if explicitly raised)

SIGFPE C2M1602, MCH1201 to MCH1204, MCH1206 to MCH1215, MCH1221 to MCH1224,
MCH1838 to MCH1839

556 IBM i: ILE C/C++ Runtime Library Functions

Table 27. Signal to Exception Mapping (continued)

Signal Message

SIGILL C2M1603, MCH0401, MCH1002, MCH1004, MCH1205, MCH1216 to MCH1219,
MCH1801 to MCH1802, MCH1807 to MCH1808, MCH1819 to MCH1820, MCH1824
to MCH1825, MCH1832, MCH1837, MCH1852, MCH1854 to MCH1857, MCH1867,
MCH2003 to MCH2004, MCH2202, MCH2602, MCH2604, MCH2808, MCH2810 to
MCH2811, MCH3201 to MCH3203, MCH4201 to MCH4211, MCH4213, MCH4296 to
MCH4298, MCH4401 to MCH4403, MCH4406 to MCH4408, MCH4421, MCH4427 to
MCH4428, MCH4801, MCH4804 to MCH4805, MCH5001 to MCH5003, MCH5401
to MCH5402, MCH5601, MCH6001 to MCH6002, MCH6201, MCH6208, MCH6216,
MCH6220, MCH6403, MCH6601 to MCH6602, MCH6609 to MCH6612

SIGINT C2M1604

SIGIO C2M1609, See Table 24 on page 553 for the exception mappings.

SIGOTHER C2M1611 (if explicitly raised)

SIGSEGV C2M1605, MCH0201, MCH0601 to MCH0606, MCH0801 to MCH0803, MCH1001,
MCH1003, MCH1005 to MCH1006, MCH1220, MCH1401 to MCH1402, MCH1602,
MCH1604 to MCH1605, MCH1668, MCH1803 to MCH1806, MCH1809 to MCH1811,
MCH1813 to MCH1815, MCH1821 to MCH1823, MCH1826 to MCH1829, MCH1833,
MCH1836, MCH1848, MCH1850, MCH1851, MCH1864 to MCH1866, MCH1898,
MCH2001 to MCH2002, MCH2005 to MCH2006, MCH2201, MCH2203 to MCH2205,
MCH2401, MCH2601, MCH2603, MCH2605, MCH2801 to MCH2804, MCH2806 to
MCH2809, MCH3001, MCH3401 to MCH3408, MCH3410, MCH3601 to MCH3602,
MCH3603 to MCH3604, MCH3802, MCH4001 to MCH4002, MCH4010, MCH4212,
MCH4404 to MCH4405, MCH4416 to MCH4420, MCH4422 to MCH4426, MCH4429 to
MCH4437, MCH4601, MCH4802 to MCH4803, MCH4806 to MCH4812, MCH5201 to
MCH5204, MCH5602 to MCH5603, MCH5801 to MCH5804, MCH6203 to MCH6204,
MCH6206, MCH6217 to MCH6219, MCH6221 to MCH6222, MCH6401 to MCH6402,
MCH6404, MCH6603 to MCH6608, MCH6801

SIGTERM C2M1606

SIGUSR1 C2M1607

SIGUSR2 C2M1608

Cancel Handler Reason Codes
The following table lists the bits that are set in the reason code. If the activation group is to be stopped,
then the activation group is stopped bit is also set in the reason code. These bits must be correlated to
_CNL_MASK_T in _CNL_Hndlr_Parms_T in <except.h>. Column 2 contains the macro constant defined for
the cancel reason mask in <except.h>.

Table 28. Determining Canceled Invocation Reason Codes

Function Bits set in reason code Rationale

Library functions

exit _EXIT_VERB The definition of exit is normal end of
processing, and therefore invocations canceled
by this function is done with a reason code of
normal.

Runtime Considerations 557

Table 28. Determining Canceled Invocation Reason Codes (continued)

Function Bits set in reason code Rationale

abort _ABNORMAL_TERM
_EXIT_VERB

The definition of abort is abnormal end of
processing, and therefore invocations canceled
by this function are done with a reason code of
abnormal.

longjmp _JUMP The general use of the longjmp() function is
to return from an exception handler, although
it may be used in non-exception situations as
well. It is used as part of the "normal" path
for a program, and therefore any invocations
canceled because of it are cancelled with a
reason code of normal.

Unhandled
function check

_ABNORMAL_TERM
UNHANDLED_EXCP

Not handling an exception which is an abnormal
situation.

System APIs

CEEMRCR _ABNORMAL_TERM
_EXCP_SENT

This API is only used during exception
processing. It is typically used to cancel
invocations where a resume is not possible,
or at least the behavior would be undefined
if control was resumed in them. Also, these
invocations have had a chance to handle
the exception but did not do so. Invocations
canceled by this API are done with reason code
of abnormal.

QMHSNDPM /
QMHRSNEM
(escape messages)
Message Handler
APIs

_ABNORMAL_TERM
_EXCP_SENT

All invocations down to the target invocation
are canceled without any chance of handling
the exception. The API topic contains
information about these APIs.

System commands

Process end _ABNORMAL_TERM
_PROCESS_TERM
_AG_TERMINATING

Any externally initiated shutdown of an
activation group is considered abnormal.

RCLACTGRP _ABNORMAL_TERM
_RCLRSC

The default is abnormal termination. The
termination could be normal if a normal/
abnormal flag is added to the command.

Table 29. Common Reason Code for Cancelling Invocations

Bit Description Header File Constant <except.h>

Bits 0 Reserved

Bits 1 Invocation canceled due to sending exception
message

_EXCP_SENT

Bits 2-15 Reserved

Bit 16 0 - normal end of process 1 - abnormal end of
process

_ABNORMAL_TERM

558 IBM i: ILE C/C++ Runtime Library Functions

Table 29. Common Reason Code for Cancelling Invocations (continued)

Bit Description Header File Constant <except.h>

Bit 17 Activation Group is ending. _AG_TERMINATING

Bit 18 Initiated by Reclaim Activation Group
(RCLACTGRP)

_RCLRSC

Bit 19 Initiated by the process end. _PROCESS_TERM

Bit 20 Initiated by an exit() function. _EXIT_VERB

Bit 21 Initiated by an unhandled function check. _UNHANDLED_EXCP

Bit 22 Invocation canceled due to a longjmp() function. _JUMP

Bit 23 Invocation canceled due to a jump because of
exception processing.

_JUMP_EXCP

Bits 24-31 Reserved (0)

Exception Classes
In a CL program, you can monitor for a selected group of exceptions, or a single exception, based on the
exception identifier. The only class2 values the exception handler will monitor for are _C2_MH_ESCAPE,
_C2_MH_STATUS, _C2_MH_NOTIFY, and _C2_MH_FUNCTION_CHECK. For more information about using
the #pragma exception handler directive, see the ILE C/C++ Compiler Reference. This table defines all the
exception classes you can specify.

Table 30. Exception Classes

Bit position Header File Constant in <except.h> Exception class

0 _C1_BINARY_OVERFLOW Binary overflow or divide by
zero

1 _C1_DECIMAL_OVERFLOW Decimal overflow or divide by
zero

2 _C1_DECIMAL_DATA_ERROR Decimal data error

3 _C1_FLOAT_OVERFLOW Floating-point overflow or
divide by zero

4 _C1_FLOAT_UNDERFLOW Floating-point underflow or
inexact result

5 _C1_INVALID_FLOAT_OPERAND Floating-point invalid operand
or conversion error

6 _C1_OTHER_DATA_ERROR Other data error, for example
edit mask

7 _C1_SPECIFICATION_ERROR Specification (operand
alignment) error

8 _C1_POINTER_NOT_VALID Pointer not set/pointer type
invalid

9 _C1_OBJECT_NOT_FOUND Object not found

10 _C1_OBJECT_DESTROYED Object destroyed

11 _C1_ADDRESS_COMP_ERROR Address computation
underflow or overflow

Runtime Considerations 559

Table 30. Exception Classes (continued)

Bit position Header File Constant in <except.h> Exception class

12 _C1_SPACE_ALLOC_ERROR Space not allocated at
specified offset

13 _C1_DOMAIN_OR_STATE_VIOLATION Domain/State protection
violation

14 _C1_AUTHORIZATION_VIOLATION Authorization violation

15 _C1_JAVA_THROWN_CLASS Exception thrown for a Java™

class.

16-28 _C1_VLIC_RESERVED VLIC reserved

29 _C1_OTHER_MI_EXCEPTION Remaining MI-generated
exceptions (other than function
check)

30 _C1_MI_GEN_FC_OR_MC MI-generated function check
or machine check

31 _C1_MI_SIGEXP_EXCEPTION Message generated via Signal
Exception instruction

32-39 n/a reserved

40 _C2_MH_ESCAPE *ESCAPE

41 _C2_MH_NOTIFY *NOTIFY

42 _C2_MH_STATUS *STATUS

43 _C2_MH_FUNCTION_CHECK function check

44-63 n/a reserved

Data Type Compatibility

Each high-level language has different data types. When you want to pass data between programs that
are written in different languages, you must be aware of these differences.

Some data types in the ILE C programming language have no direct equivalent in other languages.
However, you can simulate data types in other languages that use ILE C data types.

The following table shows the ILE C data type compatibility with ILE RPG.

Table 31. ILE C Data Type Compatibility with ILE RPG

ILE C
declaration
in prototype

Free-form ILE RPG
syntax ILE RPG D spec,

columns 33 to 39
Len
gth Comments

char[n]
char *

 CHAR(n) nA n An array of characters where n=1 to
16773104.

If it is a null-terminated string
parameter, code the prototyped
parameter as a pointer with
the VALUE and OPTIONS(*STRING)
keywords.

560 IBM i: ILE C/C++ Runtime Library Functions

Table 31. ILE C Data Type Compatibility with ILE RPG (continued)

ILE C
declaration
in prototype

Free-form ILE RPG
syntax ILE RPG D spec,

columns 33 to 39
Len
gth Comments

char
 IND 1N

1 An Indicator.

char[n]
 ZONED(n) nS 0

n A zoned decimal.

_Packed
struct
{unsigned
short i;
char[n]}

 VARCHAR(n) nA
VARYING

n+2 A variable length field where i is
the intended length and n is the
maximum length.

Note: If n is greater than 65535,
the first element of the struct is an
unsigned int, and the length is n+4.

_Packed
struct
{unsigned int
i; char[n]}

VARCHAR(n : 4)

 nA
VARYING(4)

n+4 A variable length field where i is
the intended length and n is the
maximum length.

wchar_t[n] UCS2(n) nC 2n An array of UCS-2 characters.

Note: The RPG UCS-2 type also
supports UTF-16 data by specifying
CCSID(1200).

_Packed
struct
{unsigned
short i;
wchar_t[n]}

 VARUCS2(n) nC
VARYING

2n+
2

A variable length UCS-2 field where
i is the intended length and n is the
maximum length.

Note: If n is greater than 65535,
the first element of the struct is an
unsigned int, and the length is 2n+4.

Note: The RPG UCS-2 type also
supports UTF-16 data by specifying
CCSID(1200).

_Packed
struct
{unsigned int
i; wchar_t[n]}

VARUCS2(n : 4)

 nC
VARYING(4)

2n+
4

A variable length UCS-2 field where
i is the intended length and n is the
maximum length.

Note: The RPG UCS-2 type also
supports UTF-16 data by specifying
CCSID(1200).

wchar_t[n]
 GRAPH(n) nG

2n An array of graphic characters.

_Packed
struct
{unsigned
short i;
wchar_t[n]}

VARGRAPH(n)

 nG
VARYING

2n+
2

A variable length graphic field where
i is the intended length and n is the
maximum length.

Note: If n is greater than 65535,
the first element of the struct is an
unsigned int, and the length is 2n+4.

Runtime Considerations 561

Table 31. ILE C Data Type Compatibility with ILE RPG (continued)

ILE C
declaration
in prototype

Free-form ILE RPG
syntax ILE RPG D spec,

columns 33 to 39
Len
gth Comments

_Packed
struct
{unsigned int
i; wchar_t[n]}

VARGRAPH(n : 4)

 nG
VARYING(4)

2n+
4

A variable length graphic field where
i is the intended length and n is the
maximum length.

char[n]
 DATE D

8,
10

A date field.

char[n]
 TIME T

8 A time field.

char[n]

TIMESTAMP

 Z
20-
32

A time stamp field.

short int INT(5) 5I 0 2 An integer field.

short
unsigned int UNS(5) 5U 0 2 An unsigned integer field.

int INT(10) 10I 0 4 An integer field.

unsigned int UNS(10) 10U 0 4 An unsigned integer field

long int INT(10) 10I 0 4 An integer field.

long
unsigned int UNS(10) 10U 0 4 An unsigned integer field.

long long int INT(20) 20I 0 8 An 8-byte integer field.

long long
unsigned int UNS(20) 20U 0 8 An 8-byte unsigned integer field.

struct
{unsigned
int : n}x;

Not supported. Not supported. 4 A 4-byte unsigned integer, a bitfield.

float FLOAT(4) 4F 4 A 4-byte floating point.

double FLOAT(8) 8F 8 An 8-byte double.

long double FLOAT(8) 8F 8 An 8-byte long double.

_Decimal32 Not supported Not supported 4 A 4-byte decimal floating point.

_Decimal64 Not supported Not supported 8 An 8-byte decimal floating point.

_Decimal128 Not supported Not supported 16 A 16-byte decimal floating point.

enum INT(p) pI 1, 2,
4

Enumeration. For n = 1,2,4: p =
3,5,10

Define ILE RPG named constants
with the enum values.

562 IBM i: ILE C/C++ Runtime Library Functions

Table 31. ILE C Data Type Compatibility with ILE RPG (continued)

ILE C
declaration
in prototype

Free-form ILE RPG
syntax ILE RPG D spec,

columns 33 to 39
Len
gth Comments

*
 POINTER *

16 A pointer.

decimal(n,p)

PACKED(n:p)

 nP p
n/2
+1

A packed decimal. n must be less
than or equal to 30.

union.elemen
t

Keyword POS(1) <type> with
keyword
OVERLAY(data
structure name)

ele
men
t
leng
th

An element of a union.

data_type[n] <type> with keyword
DIM(n)

<type> with
keyword DIM(n)

16 An array to which C passes a pointer.

struct data structure data structure n A structure. Use the _Packed
qualifier on the struct if the RPG data
structure does not have the ALIGN
keyword.

Use the ALIGN keyword on the RPG
data structure if the C struct does not
have the _Packed qualifier.

pointer to
function

POINTER(*PROC)
 *

with keyword
PROCPTR

16 A 16-byte pointer.

The following table shows the ILE C data type compatibility with ILE COBOL.

Table 32. ILE C Data Type Compatibility with ILE COBOL

ILE C declaration in
prototype

ILE COBOL LINKAGE
SECTION Length Comments

char[n]
char *

PIC X(n). n An array of characters where n=1 to
3,000,000

char PIC 1 INDIC .. 1 An indicator.

char[n] PIC S9(n) DISPLAY n A zoned decimal.

wchar_t[n] PIC G(n) 2n A graphic data type.

_Packed struct {short i;
char[n]}

05 VL-FIELD.
 10 i PIC S9(4)
 COMP-4.
 10 data PIC X(n).

n+2 A variable length field where i is
the intended length and n is the
maximum length.

char[n] PIC X(n). 6 A date field.

char[n] PIC X(n). 5 A day field.

char PIC X. 1 A day-of-week field.

Runtime Considerations 563

Table 32. ILE C Data Type Compatibility with ILE COBOL (continued)

ILE C declaration in
prototype

ILE COBOL LINKAGE
SECTION Length Comments

char[n] PIC X(n). 8 A time field.

char[n] PIC X(n). 26 A time stamp field.

short int PIC S9(4) COMP-4. 2 A 2-byte signed integer with a
range of -9999 to +9999.

short int PIC S9(4) BINARY. 2 A 2-byte signed integer with a
range of -9999 to +9999.

int PIC S9(9) COMP-4. 4 A 4-byte signed integer with
a range of -999999999 to
+999999999.

int PIC S9(9) BINARY. 4 A 4-byte signed integer with
a range of -999999999 to
+999999999.

int USAGE IS INDEX 4 A 4-byte integer.

long int PIC S9(9) COMP-4. 4 A 4-byte signed integer with
a range of -999999999 to
+999999999.

long int PIC S9(9) BINARY. 4 A 4-byte signed integer with
a range of -999999999 to
+999999999.

struct {unsigned int :
n}x;

PIC 9(9) COMP-4.
PIC X(4).

4 Bitfields can be manipulated using
hex literals.

float USAGE IS COMP-1 4 A 4-byte floating point.

double USAGE IS COMP-2 8 An 8-byte double.

long double Not supported. 8 An 8-byte long double.

enum Not supported. 1, 2, 4 Enumeration.

* USAGE IS POINTER 16 A pointer.

decimal(n,p) PIC S9(n-p)V9(p) COMP-3 n/2+1 A packed decimal.

decimal(n,p) PIC S9(n-p) 9(p) PACKED-
DECIMAL

n/2+1 A packed decimal.

union.element REDEFINES element
length

An element of a union.

data_type[n] OCCURS 16 An array to which C passes a
pointer.

struct 01 record
 05 field1
 05 field2

n A structure. Use the _Packed
qualifier on the struct. Structures
passed should be passed as a
pointer to the structure if you
want to change the contents of the
structure.

pointer to function PROCEDURE-POINTER 16 A 16 byte pointer to a procedure.

564 IBM i: ILE C/C++ Runtime Library Functions

Table 32. ILE C Data Type Compatibility with ILE COBOL (continued)

ILE C declaration in
prototype

ILE COBOL LINKAGE
SECTION Length Comments

Not supported. PIC S9(18) COMP-4. 8 An 8 byte integer.

Not supported. PIC S9(18) BINARY. 8 An 8 byte integer.

The following table shows the ILE C data type compatibility with ILE CL.

Table 33. ILE C Data Type Compatibility with ILE CL

ILE C declaration in
prototype CL Length Comments

char[n]
char *

*CHAR LEN(&N) n An array of characters where n=1 to
32766. A null-terminated string. For
example, CHGVAR &V1 VALUE (&V
*TCAT X'00') where &V1 is one byte
bigger than &V.

char *LGL 1 Holds '1' or '0'.

_Packed struct {short i;
char[n]}

Not supported. n+2 A variable length field where i is
the intended length and n is the
maximum length.

integer types *INT LEN(&N) 2, 4, 8 A 2-, 4-, or 8- byte signed integer. (CL
does not support 1 byte integer type)

*UINT LEN(&N) 2, 4, 8 A 2-, 4-, or 8- byte unsigned integer.
(CL does not support 1 byte integer
type)

float constants CL constants only. 4 A 4- or 8- byte floating point.

decimal(n,p) *DEC n/2+1 A packed decimal. The limit of n is 15
and p is 9.

union.element Not supported. element
length

An element of a union.

struct Not supported. n A structure. Use the _Packed qualifier
on the struct.

pointer to function Not supported. 16 A 16-byte pointer.

The following table shows the ILE C data type compatibility with OPM RPG/400®.

Table 34. ILE C Data Type Compatibility with OPM RPG/400

ILE C declaration in
prototype

OPM RPG/400 I spec, DS
subfield columns spec Length Comments

char[n]
char *

1 10 n An array of characters where n=1 to
32766.

char *INxxxx 1 An Indicator that is a variable
starting with *IN.

char[n] 1 nd (d>=0) n A zoned decimal. The limit of n is
30.

Runtime Considerations 565

Table 34. ILE C Data Type Compatibility with OPM RPG/400 (continued)

ILE C declaration in
prototype

OPM RPG/400 I spec, DS
subfield columns spec Length Comments

_Packed struct
{unsigned short i;
char[n]}

Not supported. n+2 A variable length field where i is
the intended length and n is the
maximum length.

_Packed struct
{unsigned int i; char[n]}

Not supported. n+4 A variable length field where i is
the intended length and n is the
maximum length.

wchar_t[n] Not supported. 2n An array of UCS-2 characters.

_Packed struct
{unsigned short i;
wchar_t[n]}

Not supported. 2n+2 A variable length UCS-2 field where
i is the intended length and n is the
maximum length.

_Packed struct
{unsigned int i;
wchar_t[n]}

Not supported. 2n+4 A variable length UCS-2 field where
i is the intended length and n is the
maximum length.

wchar_t[n] Not supported. 2n An array of graphic characters.

_Packed struct
{unsigned short i;
wchar_t[n]}

Not supported. 2n+2 A variable length graphic field
where i is the intended length and
n is the maximum length.

_Packed struct
{unsigned int i;
wchar_t[n]}

Not supported. 2n+4 A variable length graphic field
where i is the intended length and
n is the maximum length.

char[n] Not supported. 6, 8, 10 A date field.

char[n] Not supported. 8 A time field.

char[n] Not supported. 26 A time stamp field.

short int B 1 20 2 A 2-byte signed integer with a
range of -9999 to +9999.

int B 1 40 4 A 4-byte signed integer with
a range of -999999999 to
+999999999.

long int B 1 40 4 A 4-byte signed integer with
a range of -999999999 to
+999999999.

long long int Not supported. 8 An 8-byte integer field.

struct {unsigned int :
n}x;

Not supported. 4 A 4-byte unsigned integer, a
bitfield.

float Not supported. 4 A 4-byte floating point.

double Not supported. 8 An 8-byte double.

long double Not supported. 8 An 8-byte long double.

_Decimal32 Not supported. 4 A 4-byte decimal floating point.

_Decimal64 Not supported. 8 An 8-byte decimal floating point.

_Decimal128 Not supported. 16 A 16-byte decimal floating point.

566 IBM i: ILE C/C++ Runtime Library Functions

Table 34. ILE C Data Type Compatibility with OPM RPG/400 (continued)

ILE C declaration in
prototype

OPM RPG/400 I spec, DS
subfield columns spec Length Comments

enum Not supported. 1, 2, 4 Enumeration.

* Not supported. 16 A pointer.

decimal(n,p) P 1 n/2+1d n/2+1 A packed decimal. n must be less
than or equal to 30.

union.element data structure subfield
starting at position 1

element
length

An element of a union.

data_type[n] E-SPEC array 16 An array to which C passes a
pointer.

struct data structure n A structure. Use the _Packed
qualifier on the struct.

pointer to function Not supported. 16 A 16 byte pointer.

The following table shows the ILE C data type compatibility with OPM COBOL/400.

Table 35. ILE C Data Type Compatibility with OPM COBOL/400

ILE C declaration in
prototype

OPM COBOL LINKAGE
SECTION Length Comments

char[n]
char *

PIC X(n). n An array of characters where n=1 to
3,000,000

char PIC 1 INDIC .. 1 An indicator.

char[n] PIC S9(n) USAGE IS DISPLAY n A zoned decimal. The limit of n is
18.

_Packed struct {short i;
char[n]}

05 VL-FIELD.
 10 i PIC S9(4)
 COMP-4.
 10 data PIC X(n).

n+2 A variable length field where i is
the intended length and n is the
maximum length.

char[n] PIC X(n). 6, 8, 10 A date field.

char[n] PIC X(n). 8 A time field.

char[n] PIC X(n). 26 A time stamp field.

short int PIC S9(4) COMP-4. 2 A 2 byte signed integer with a range
of -9999 to +9999.

int PIC S9(9) COMP-4. 4 A 4-byte signed integer with
a range of -999999999 to
+999999999.

long int PIC S9(9) COMP-4. 4 A 4-byte signed integer with
a range of -999999999 to
+999999999.

struct {unsigned int :
n}x;

PIC 9(9) COMP-4.
PIC X(4).

4 Bitfields can be manipulated using
hex literals.

Runtime Considerations 567

Table 35. ILE C Data Type Compatibility with OPM COBOL/400 (continued)

ILE C declaration in
prototype

OPM COBOL LINKAGE
SECTION Length Comments

float Not supported. 4 A 4-byte floating point.

double Not supported. 8 An 8-byte double.

long double Not supported. 8 An 8-byte long double.

enum Not supported. 1, 2, 4 Enumeration.

* USAGE IS POINTER 16 A pointer.

decimal(n,p) PIC S9(n-p)V9(p) COMP-3 n/2+1 A packed decimal. The limits of n
and p are 18.

union.element REDEFINES element
length

An element of a union.

data_type[n] OCCURS 16 An array to which C passes a
pointer.

struct 01 record n A structure. Use the _Packed
qualifier on the struct. Structures
passed should be passed as a
pointer to the structure if you
want to change the contents of the
structure.

pointer to function Not supported. 16 A 16-byte pointer.

Not supported. PIC S9(18) COMP-4. 8 An 8 byte integer.

The following table shows the ILE C data type compatibility with CL.

Table 36. ILE C Data Type Compatibility with CL

ILE C declaration in
prototype CL Length Comments

char[n]
char *

*CHAR LEN(&N) n An array of characters where n=1 to
32766. A null terminated string. For
example, CHGVAR &V1 VALUE (&V
*TCAT X'00') where &V1 is one byte
bigger than &V. The limit of n is 9999.

char *LGL 1 Holds '1' or '0'.

_Packed struct {short i;
char[n]}

Not supported. n+2 A variable length field where i is
the intended length and n is the
maximum length.

integer types *INT LEN(&N) 2, 4 A 2- or 4- byte signed integer. (CL
does not support 1 byte integer type)

*UINT LEN(&N) 2, 4 A 2- or 4- byte unsigned integer. (CL
does not support 1 byte integer type)

float constants CL constants only. 4 A 4- or 8- byte floating point.

decimal(n,p) *DEC n/2+1 A packed decimal. The limit of n is 15
and p is 9.

568 IBM i: ILE C/C++ Runtime Library Functions

Table 36. ILE C Data Type Compatibility with CL (continued)

ILE C declaration in
prototype CL Length Comments

union.element Not supported. element
length

An element of a union.

struct Not supported. n A structure. Use the _Packed qualifier
on the struct.

pointer to function Not supported. 16 A 16-byte pointer.

The following table shows how arguments are passed from a command line CL call to an ILE C program.

Table 37. Arguments Passed From a Command Line CL Call to an ILE C Program

Command Line Argument Argv Array ILE C Arguments

argv[0] "LIB/PGMNAME"

argv[1..255] normal parameters

'123.4' argv[1] "123.4"

123.4 argv[2] 0000000123.40000D

'Hi' argv[3] "Hi"

Lo argv[4] "LO"

A CL character array (string) will not be NULL-ended when passed to an ILE C program. A C program that
will receive such arguments from a CL program should not expect the strings to be NULL-ended. You can
use the QCMDEXC to ensure that all the arguments will be NULL-ended.

The following table shows how CL constants are passed from a compiled CL program to an ILE C program.

Table 38. CL Constants Passed from a Compiled CL Program to an ILE C Program

Compile CL Program Argument Argv Array ILE C Arguments

argv[0] "LIB/PGMNAME"

argv[1..255] normal parameters

'123.4' argv[1] "123.4"

123.4 argv[2] 0000000123.40000D

'Hi' argv[3] "Hi"

Lo argv[4] "LO"

A command processing program (CPP) passes CL constants as defined in Table 38 on page 569. You
define an ILE C program as a command processing program when you create your own CL command with
the Create Command (CRTCMD) command to call the ILE C program.

The following table shows how CL variables are passed from a compiled CL program to an ILE C program.
All arguments are passed by reference from CL to C.

Table 39. CL Variables Passed from a Compiled CL Program to an ILE C Program

CL Variables ILE C Arguments

DCL VAR(&v) TYPE(*CHAR) LEN(10) VALUE('123.4') 123.4

DCL VAR(&d) TYPE(*DEC) LEN(10) VALUE(123.4) 0000000123.40000D

Runtime Considerations 569

Table 39. CL Variables Passed from a Compiled CL Program to an ILE C Program (continued)

CL Variables ILE C Arguments

DCL VAR(&h) TYPE(*CHAR) LEN(10) VALUE('Hi') Hi

DCL VAR(&i) TYPE(*CHAR) LEN(10) VALUE(Lo) LO

DCL VAR(&j) TYPE(*LGL) LEN(1) VALUE('1') 1

CL variables and numeric constants are not passed to an ILE C program with null-ended strings. Character
constants and logical literals are passed as null-ended strings, but are not padded with blanks. Numeric
constraints such as packed decimals are passed as 15,5 (8 bytes).

Runtime Character Set
Each EBCDIC CCSID consists of two character types: invariant characters and variant characters.

The following table identifies the hexadecimal representation of the invariant characters in the C
character set.

Table 40. Invariant Characters

.
0x4b

<
0x4c

(
0x4d

+
0x4e

&
0x50

*
0x5c

)
0x5d

;
0x5e

-
0x60

¦
0x6a

,
0x6b

%
0x6c

_
0x6d

>
0x6e

?
0x6f

:
0x7a

@
0x7c

'
0x7d

=
0x7e

"
0x7f

a-i
0x81 -
0x89

j-r
0x91 -
0x99

s-z
0xa2 -
0xa9

A-I
0xc1 -
0xc9

J-R
0xd1 -
0xd9

S-Z
0xe2 -
0xe9

0-9
0xf0 -
0xf9

'\a'
0x2f

'\b'
0x16

'\t'
0x05

'\v'
0x0b

'\f'
0x0c

'\r'
0x0d

'\n'
0x15

' '
0x40

Note: Not all EBCDIC character sets have all invariant characters at the invariant code points. Here are the
exceptions:

• Code page 290, used in Japanese CCSIDs 290, 930, and 5026, has the lowercase Latin characters a-z
in a nonstandard position.

• Code page 420, used in some Arabic CCSIDs, does not have the back quotation mark (ˋ) whose
hexadecimal value is 0x7a.

• Code page 423, used in some older Greek CCSIDs, does not have the ampersand (&) whose
hexadecimal value is 0x50.

• Code pages 905 and 1026, both used in some Turkish CCSIDs, have a hexadecimal value of 0xfc for the
double quotation mark instead of the invariant hexadecimal value of 0x7f.

The following table identifies the hexadecimal representation of the variant characters in the C character
set for the most commonly used CCSIDs.

570 IBM i: ILE C/C++ Runtime Library Functions

Table 41. Variant Characters in Different CCSIDs

CC-
SID | ! ¬ \ ˋ # ~ [] ^ { } / ¢ $

037 0x4f 0x5a 0x5f 0xe0 0x79 0x7b 0xa1 0xba 0xbb 0xb0 0xc0 0xd0 0x61 0x4a 0x5b

256 0xbb 0x4f 0xba 0xe0 0x79 0x7b 0xa1 0x4a 0x5a 0x5f 0xc0 0xd0 0x61 0xb0 0x5b

273 0xbb 0x4f 0xba 0xec 0x79 0x7b 0x59 0x63 0xfc 0x5f 0x43 0xdc 0x61 0xb0 0x5b

277 0xbb 0x4f 0xba 0xe0 0x79 0x4a 0xdc 0x9e 0x9f 0x5f 0x9c 0x47 0x61 0xb0 0x67

278 0xbb 0x4f 0xba 0x71 0x51 0x63 0xdc 0xb5 0x9f 0x5f 0x43 0x47 0x61 0xb2 0x67

280 0xbb 0x4f 0xba 0x48 0xdd 0xb1 0x58 0x90 0x51 0x5f 0x44 0x45 0x61 0xb0 0x5b

284 0x4f 0xbb 0x5f 0xe0 0x79 0x69 0xbd 0x4a 0x5a 0xba 0xc0 0xd0 0x61 0xb0 0x5b

285 0x4f 0x5a 0x5f 0xe0 0x79 0x7b 0xbc 0xb1 0xbb 0xba 0xc0 0xd0 0x61 0xb0 0x4a

297 0xbb 0x4f 0xba 0x48 0xa0 0xb1 0xbd 0x90 0x65 0x5f 0x51 0x54 0x61 0xb0 0x5b

500 0xbb 0x4f 0xba 0xe0 0x79 0x7b 0xa1 0x4a 0x5a 0x5f 0xc0 0xd0 0x61 0xb0 0x5b

See the i5/OS globalization topic for more information about coding variant characters in the other IBM
CCSIDs.

Understanding CCSIDs and Locales

CCSIDs of Characters and Character Strings
Every character or character string has a CCSID associated with it. The CCSID of the character or
character string depends on the origin of the data. You need to pay attention to the CCSID of a character
or character string. It is also important that values are converted to the appropriate CCSID when required.

If LOCALETYPE(*LOCALEUTF) is not specified on the compilation command, the following assumptions
are made:

• The CCSID of the job is the same as the CCSID of the LC_CTYPE category of the current locale.
• The CCSID of character literal values matches the CCSID of the LC_CTYPE category of the current locale.
• The CCSID of the LC_CTYPE category of the current locale is an EBCDIC CCSID.
• The CCSID that is used has all of the invariant characters in the proper positions, and some functions

assume that certain variant characters have the same hexadecimal value as they would in CCSID 37.

When LOCALETYPE(*LOCALEUTF) is specified, most functions (unless otherwise specified) expect
character data input in the CCSID of the LC_CTYPE category of the current locale, regardless of the source
of the character data. See “Unicode Support” on page 577 for more information.

For more information about variant and invariant characters, see “Runtime Character Set” on page
570. For more information about CCSIDs, code pages, and other globalization concepts, see the i5/OS
globalization topic.

Character Literal CCSID
Character literal CCSID is the CCSID of the character and character string literals in compiled source code.
If a programmer does not take special action, the CCSID of these literals is set to the CCSID of the source
file. The CCSID of all the literals in a compilation unit can be changed by using the TGTCCSID option
on the compilation command. The #pragma convert directive can be used to change the CCSID of
character and character string literals within C or C++ source code. See the ILE C/C++ Compiler Reference
for more information.

Runtime Considerations 571

If LOCALETYPE(*CLD) or LOCALETYPE(*LOCALE) is specified on the compilation command, all
wide character literals will be wide EBCDIC literals in the CCSID of the source file. If
LOCALETYPE(*LOCALEUCS2) is specified on the compilation command, all wide character literals will
be UCS-2 literals. If LOCALETYPE(*LOCALEUTF) is specified on the compilation command, all wide
characters will be UTF-32 literals.

The programmer must be aware of the CCSID of character literal values. The character literal CCSID
cannot be retrieved at runtime.

Job CCSID
The CCSID of the job is always an EBCDIC CCSID. ASCII and Unicode job CCSIDs are not supported.
Data read from files is sometimes in the job CCSID. Some functions (for example, getenv()) produce job
CCSID output; some functions (for example, putenv()) expect job CCSID input. The CCSID used most
often by the C runtime is the CCSID of the LC_CTYPE category of the current locale. If the job CCSID does
not match the locale CCSID, conversion might be necessary.

Using the JOBI0400 receiver variable format, the job CCSID value can be retrieved at runtime using the
QUSRJOBI API. The Default Coded Character Set ID field contains the job CCSID value.

File CCSID
When a file is opened, a CCSID is associated with it. Read operations of character and string values return
data in the CCSID of the file. Write operations to the file expect the data in the CCSID of the file. The
CCSID associated with a file when it is opened is dependent on the function that is used to open the file:

• catopen() function

The CCSID associated with a catalog file that is opened using catopen depends on the content of the
oflag parameter. Two of the flags that can be specified for the oflag parameter are NL_CAT_JOB_MODE
and NL_CAT_CTYPE_MODE. These flags are mutually exclusive.

– If NL_CAT_JOB_MODE is specified, the job CCSID is associated with the file.
– If NL_CAT_CTYPE_MODE is specified, the CCSID of the LC_CTYPE category of the current locale is

associated with the file.
– If neither flag is specified, no conversion takes place and the CCSID of the returned messages is the

same CCSID as that of the message file.
• fdopen() function

– If LOCALETYPE(*LOCALEUTF) is not specified, then the default CCSID for a file is the job CCSID. The
keyword ccsid=value, o_ccsid=value, or codepage=value can be used in the mode string on the file
open command to change the CCSID associated with the file. o_ccsid=value is the recommended
keyword. The standard files are always associated with the default file CCSID, so they are associated
with the job CCSID.

– If LOCALETYPE(*LOCALEUTF) is specified, then the default CCSID for a file is the CCSID of the
LC_CTYPE category of the current locale when the fopen() function is called. The keywords
described in the previous paragraph can still be used to override the CCSID associated with the
file. The standard files are always associated with the default file CCSID, so they are associated with
the CCSID of the LC_CTYPE category of the current locale when they are opened.

• fopen() and freopen() functions

– If LOCALETYPE(*LOCALEUTF) is not specified, the default CCSID for a file is the job CCSID.

- If SYSIFCOPT(*NOIFSIO) is specified on the compilation command, the keyword ccsid=value can
be used in the mode string on the file open command to change the CCSID of data read from or
written to the file.

- If SYSIFCOPT(*NOIFSIO) is not specified on the compilation command, the keyword ccsid=value,
o_ccsid=value, or codepage=value can be used in the mode string on the file open command to
change the CCSID associated with the file. o_ccsid=value is the recommended keyword.

572 IBM i: ILE C/C++ Runtime Library Functions

The standard files are always associated with the default file CCSID, so they are associated with the
job CCSID.

– If LOCALETYPE(*LOCALEUTF) is specified, then the default CCSID for a file is the CCSID of the
LC_CTYPE category of the current locale when the fopen() or freopen() function is called. The
keyword ccsid=value, o_ccsid=value, or codepage=value can still be used to override the CCSID
associated with the file. The standard files are always associated with the default file CCSID, so they
are associated with the CCSID of the LC_CTYPE category of the current locale when they are opened.

• _Ropen() function

The default CCSID associated with a file opened with the _Ropen() function is the job CCSID. The
ccsid=value keyword can be used in the mode parameter on the _Ropen() function to change the
CCSID associated with the file.

• wfopen() function

– If LOCALETYPE(*LOCALEUCS2) is specified, the default CCSID for a file is UCS-2. The keyword
ccsid=value, o_ccsid=value, or codepage=value can be used in the mode string on the file open
command to change the CCSID associated with the file. o_ccsid=value is the recommended keyword.

– If LOCALETYPE(*LOCALEUTF) is specified, then the default CCSID for a file is UTF-32. The keywords
described in the previous paragraph can still be used to override the CCSID associated with the file.

Locale CCSID
A CCSID is associated with each category of the locale (see “setlocale() — Set Locale” on page 370 for a
list of locale categories). The most commonly used CCSID from the locale is the CCSID associated with
the LC_CTYPE category of the locale. Confusion might arise if different locale categories have different
CCSID values, so it is recommended that all locale categories have the same CCSID value. You can
retrieve the CCSID of the LC_CTYPE category of the current locale by using the nl_langinfo() function
and specifying CODESET as the nl_item. Here are some additional locale CCSID details, broken down by
LOCALETYPE option specified on the compilation command:

• LOCALETYPE(*CLD)

LOCALETYPE(*CLD) is only supported by the ILE C compiler. Many POSIX functions are not supported
when LOCALETYPE(*CLD) is specified. One benefit of the LOCALETYPE(*CLD) option is that all *CLD
locales are CCSID 37. A limited number of locale objects are shipped with the system that can be
used with LOCALETYPE(*CLD). These objects all have the object type *CLD. To get a list of *CLD locale
objects, use the following command:

WRKOBJ OBJ(QSYS/*ALL) OBJTYPE(*CLD)

For more information about *CLD locales, see the ILE C/C++ Compiler Reference.
• LOCALETYPE(*LOCALE)

This is the default LOCALETYPE setting for the ILE C compiler and ILE C++ compiler. The default locale
value usually has a CCSID that is equal to the job CCSID. A wide variety of locale objects exists for this
setting. These locale objects have the *LOCALE object type. The LOCALETYPE(*LOCALE) option supports
a larger number of CCSIDs and a larger number of functions than the LOCALETYPE(*CLD) option.

• LOCALETYPE(*LOCALEUCS2)

This setting introduces a new set of locale categories for UCS-2 characters. These locale category
names begin with the LC_UNI_ substring. The original locale categories are still present, and all the
preceding notes for LOCALETYPE(*LOCALE) apply to LOCALETYPE(*LOCALEUCS2). This setting causes
wide characters to be interpreted as UCS-2 characters instead of wide EBCDIC characters. For more
information, see “Unicode Support” on page 577.

• LOCALETYPE(*LOCALEUTF)

The CCSID of the non-wide locale categories is UTF-8 (CCSID 1208) by default, but it can be changed
to have any single-byte or multibyte CCSID. The CCSID of the wide character (LC_UNI_*) locale
categories is UTF-32. This setting includes limited CCSID neutrality. LOCALETYPE(*LOCALEUTF) uses
locale objects of type *LOCALE. For more information, see “Unicode Support” on page 577.

Runtime Considerations 573

Wide Characters
The ILE C/C++ compilers support the following:

• If LOCALETYPE(*CLD) or LOCALETYPE(*LOCALE) is specified on the compilation command, wide
characters are treated as 2-byte wide EBCDIC characters.

• If LOCALETYPE(*LOCALEUCS2) is specified on the compilation command, wide characters are treated
as 2-byte UCS-2 characters.

• If LOCALETYPE(*LOCALEUTF) is specified on the compilation command, wide characters are treated as
4-byte UTF-32 characters.

When EBCDIC wide characters are used, the CCSID of the EBCDIC characters depends on the CCSID of
the LC_CTYPE category of the current locale. See “Unicode Support” on page 577 for more information
about Unicode characters.

Wide Character Conversions to and from Single-Byte or Multibyte Characters
The character conversion functions examine the CCSID setting for the LC_CTYPE category of the current
locale to determine whether single-byte or multibyte characters are expected for the conversion from or
to wide characters.

The handling of wide character conversions (to and from single-byte or multibyte character strings) is
dependent on the LOCALETYPE parameter value specified on the compilation command. The handling
depends on the shift state of the single-byte or multibyte character string. The mbtowc, mbstowcs,
wctomb, and wcstombs functions maintain an internal shift state variable. The mbrtowc, mbsrtowcs,
wcrtomb, and wcsrtombs functions allow the shift state variable to be passed as a parameter. The
second set of functions is recommended because they are more versatile and are also threadsafe.

LOCALETYPE(*CLD) and LOCALETYPE(*LOCALE) behavior
When converting from a single-byte CCSID to wide EBCDIC, the wide EBCDIC character is constructed
by adding a zero byte to the single-byte character. For example, the single-byte CCSID 37 character A
(hexadecimal value 0xC1) would have the hexadecimal value 0x00C1 when it is converted to a wide
EBCDIC character.

When converting from a multibyte CCSID to wide EBCDIC, the conversion method depends on the shift
state of the input string. In the initial shift state, characters are read exactly as if they were single-byte
characters until a shift-out character (hexadecimal value 0x0E) is read. This character indicates a shift to
double-byte shift state. In the double-byte shift state, 2 bytes are read at a time: the first byte makes
up the first byte of the EBCDIC wide character and the second byte will be the second byte of the
EBCDIC wide character. If the shift-in character (hexadecimal value 0x0F) is encountered, the function
returns to the initial shift state parsing. For example, the multibyte string represented by the hexadecimal
value C10E43DA0FC2 is translated to the EBCDIC wide character string with the hexadecimal value
00C143DA00C2.

When converting from wide EBCDIC to a single-byte CCSID, if the character has a hexadecimal value
greater than 0x00FF, EOF is returned; otherwise, the top byte is truncated and the lower byte is returned.
For example, the wide EBCDIC character with the hexadecimal value 0x00C1 is converted to the single-
byte character whose hexadecimal value is 0xC1.

When converting from wide EBCDIC to a multibyte CCSID, the conversion method is determined by the
shift state of the output string:

• If the output string is in the initial shift state, any EBCDIC wide character with a hexadecimal value that
is less than or equal to 0x00FF is truncated to 1 byte and placed in the output string.

• If the output string is in the initial shift state, any EBCDIC wide character with a value that is greater
than 0x00FF causes a shift-out character (hexadecimal value 0x0E) to be generated in the output string.
The shift state of the output string is updated to double-byte, and both bytes of the EBCDIC wide
character are copied to the output string.

574 IBM i: ILE C/C++ Runtime Library Functions

• If the output string is in the double-byte shift state and an EBCDIC wide character whose hexadecimal
value is less than or equal to 0x00FF is encountered, a shift-in character (hexadecimal value 0x0F) is
placed in the output string. The shift-in character is followed by the value of the EBCDIC wide character
that is truncated to 1 byte. The shift state of the output string is changed to single-byte.

• If the output string is in the double-byte shift state and an EBCDIC wide character whose value is
greater than 0x00FF is encountered, the 2 bytes of the EBCDIC wide character are copied to the output
string.

For example, the EBCDIC wide character string with the hexadecimal value 00C143DA00C2 is translated
to a multibyte string with the hexadecimal value C10E43DA0FC2.

LOCALETYPE(*LOCALEUCS2) and LOCALETYPE(*LOCALEUTF) behavior
If LOCALETYPE(*LOCALEUCS2) is specified on the compilation command, wide character values are
2-byte UCS-2 values. All conversions between UCS-2 strings and single-byte or multibyte strings are
conducted as if the iconv() function were used. CCSID 13488 is used for the UCS-2 string, and the
CCSID of the LC_CTYPE category of the current locale is used for the single-byte or multibyte string.

If LOCALETYPE(*LOCALEUTF) is specified on the compilation command, wide character values are 4-
byte UTF-32 values. All conversions between UTF-32 strings and single-byte or multibyte strings are
conducted as if the iconv() function were used. UTF-32 is not supported by the iconv() function.
Therefore, in conversions between a UTF-32 string and a single-byte or multibyte string, UTF-16
(CCSID 1200) is used as an intermediary data type. Transformations between UTF-32 and UTF-16 are
accomplished using the QlgTransformUCSData() API. The iconv() API is used for the conversion between
UTF-16 and the CCSID of the LC_CTYPE category of the current locale.

Wide Characters and File I/O

Wide character write functions
Several functions, including fwprintf, vwprintf, vfwprintf, wprintf, fputwc, fputws, putwc,
putwchar, and ungetwc can be used to write wide characters to a file. These functions are not available
when either LOCALETYPE(*CLD) or SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

If LOCALETYPE(*LOCALE) is specified on the compilation command, the wide characters that are written
are assumed to be wide character equivalents of the code points in the file CCSID. The CCSID of the file is
assumed to be a single or multibyte EBCDIC CCSID.

If LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation
command, the wide characters that are being written are assumed to be Unicode characters.
For LOCALETYPE(*LOCALEUCS2), they are assumed to be 2-byte UCS-2 characters. For
LOCALETYPE(*LOCALEUTF), they are assumed to be 4-byte UTF-32 characters. If the file that is being
written to is not one of the standard files, the Unicode characters are then written directly to the file as
if the file had been opened for writing in binary mode. The CCSID of the file is assumed to be a Unicode
CCSID that matches the locale setting. If the file that is being written to is a standard file, the Unicode
input is converted to the CCSID of the job before being written to the file.

Non-wide character write functions
The non-wide character write functions (fprintf, vfprintf, vprintf, and printf) can take a wide
character as input.

In all cases, the wide characters are converted to multibyte character strings in the CCSID of the
LC_CTYPE category of the current locale as if the wctomb function or the wcstombs function were used.
The file CCSID is assumed to match the CCSID of the LC_CTYPE category of the current locale.

If LOCALETYPE(*LOCALEUTF) is specified on the compilation command and the file that is being written
to is a standard file, the output will automatically be converted from the CCSID of the LC_CTYPE category
of the current locale to the CCSID of the file (which usually matches the job CCSID).

Runtime Considerations 575

Wide character read functions
The functions that can read wide characters from a file include fgetwc, fgetws, fwscanf,
getwc, getwchar, vfwscanf, vwscanf, and wscanf. These functions are not available when either
LOCALETYPE(*CLD) or SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

If LOCALETYPE(*LOCALE) is specified on the compilation command, the wide characters read from the file
are assumed to be EBCDIC wide character equivalents of the code points in the file CCSID.

If LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation
command, the input wide characters and the characters in the file are assumed to be Unicode
characters. For LOCALETYPE(*LOCALEUCS2), they are assumed to be 2-byte UCS-2 characters. For
LOCALETYPE(*LOCALEUTF), they are assumed to be 4-byte UTF-32 characters. If the file that is being
read is not one of the standard files, the Unicode characters are read directly from the file as if the file had
been opened in binary mode. The CCSID of the file is assumed to be a Unicode CCSID that matches the
locale setting. If the file that is being read is a standard file, then the job CCSID input that is read from the
file is converted to the appropriate Unicode CCSID.

Non-wide character read functions
The non-wide character read functions (fscanf, scanf, vfscanf, and vscanf) can produce a wide
character as output.

In all cases, the wide characters are converted from multibyte character strings in the CCSID of the
LC_CTYPE category of the current locale to the appropriate wide character type for the locale setting as if
the mbtowc function or the mbstowcs function were used.

Other ILE Languages
The standard C/C++ library functions are easily accessible in the C and C++ languages if you include the
appropriate header files and use the appropriate C or C++ compilation command. The functions are also
accessible from other ILE languages, such as RPG, COBOL, and CL, although no header files are provided
for these languages. An additional consideration exists for those functions which are locale sensitive
(that is, dependent upon the current locale). When you use the C or C++ compiler, the default locale is
loaded automatically at program startup time. When you use any of the C/C++ library functions from a
different language, a call to setlocale() should be added when the application starts to ensure that the
proper locale is loaded. Here is a table which describes the correct call to setlocale() based on the desired
LOCALETYPE.

C/C++ compiler option Function call

LOCALETYPE(*CLD) setlocale(LC_ALL, "")

LOCALETYPE(*LOCALE) _C_PSX_setlocale(LC_ALL, "")

LOCALETYPE(*LOCALEUCS2) _UCS2_setlocale(LC_ALL, "")

LOCALETYPE(*LOCALEUTF) _C_UTF_setlocale(LC_ALL, "")

Asynchronous Signal Model
The Asynchronous Signal Model (ASM) is used when the SYSIFCOPT(*ASYNCSIGNAL) option is specified
on the Create C Module (CRTCMOD) or Create Bound C Program (CRTBNDC) compilation command. The
ASM is also used when the RTBND(*LLP64) option is specified on the Create C++ Module (CRTCPPMOD)
or Create Bound C++ Program (CRTBNDCPP) compilation command. It is intended for compatibility with
applications ported from the UNIX operating system. For modules that use the ASM, the signal() and
raise() functions are implemented using the Signal APIs described in the Application programming
interfaces topic under the Programming heading in the Information Center.

Operating system exceptions sent to an ASM module or program are converted to asynchronous signals.
The exceptions are processed by an asynchronous signal handler.

576 IBM i: ILE C/C++ Runtime Library Functions

Modules compiled to use the ASM can be intermixed with modules using the Original Signal Model (OSM)
in the same processes, programs, and service programs. There are several differences between the two
signal models:

• The OSM is based on exceptions, while the ASM is based on asynchronous signals.
• Under the OSM, the signal vector and signal mask are scoped to the activation group. Under the ASM,

there is one signal vector per process and one signal mask per thread. Both types of signal vectors and
signal masks are maintained at runtime.

• The same asynchronous signal vector and signal masks are operated on by all ASM modules in a thread,
regardless of the activation group the signal vector and signal masks belong to. You must save and
restore the state of the signal vector and signal masks to ensure that they are not changed by any ASM
modules. The OSM does not use the asynchronous signal vector and signal masks.

• Signals that are raised by OSM modules are sent as exceptions. Under the OSM, the exceptions are
received and handled by the _C_exception_router function, which directly calls the OSM signal
handler of the user.

Asynchronous signals are not mapped to exceptions, and are not handled by signal handlers that
are registered under the OSM. Under the ASM, the exceptions are received and handled by the
_C_async_exception_router function, which maps the exception to an asynchronous signal. An
ASM signal handler receives control from the operating system asynchronous signal component.

When an OSM module raises a signal, the generated exception percolates up the call stack until it finds
an exception monitor. If the previous call is an OSM function, the _C_exception_router catches the
exception and performs the OSM signal action. The ASM signal handler does not receive the signal.

If the previous call is an ASM function, the _C_async_exception_router handles the exception
and maps it to an asynchronous signal. The handling of the asynchronous signal then depends on the
asynchronous signal vector and mask state of the thread, as defined in the Signal management topic.

If the previous call is an ASM function within a different program or service program, one of two actions
occurs. If the OSM program that raises the signal is running in the same activation group with the ASM
program, the exception is mapped to an asynchronous signal using the mapping described previously.
The signal ID is preserved when the exception is mapped to a signal. So, signal handlers that are
registered with the asynchronous signal model are able to receive signals generated under the original
signal model. This approach can be used to integrate two programs with different signal models.

If the OSM program that raises the signal is running in a different activation group than the ASM
program, any signal that is unmonitored in that activation group causes the termination of that program
and activation group. The unmonitored signal is then percolated to the calling program as a CEE9901
exception. The CEE9901 exception is mapped to a SIGSEGV asynchronous signal.

• Under the ASM, the C functions raise() and signal() are integrated with the system signal
functions, such as kill() and sigaction(). These two sets of APIs can be used interchangeably.
This cannot be done under the OSM.

• A user-specified exception monitor established with #pragma exception_handler has precedence
over the compiler-generated monitor, which calls _C_async_exception_router. In some
situations, this precedence enables you to bypass the compiler-generated monitor, which invokes
_C_async_exception_router.

• The _GetExcData() function is not available under the ASM to retrieve the exception ID associated
with the signal. However, if an extended signal handler is established using the sigaction() function, it
can access the exception information from the signal-specific data structure. For more information, see
“_GetExcData() — Get Exception Data” on page 177.

Unicode Support
The Unicode Standard is a standardized character code designed to encode international texts for display
and storage. It uses a unique 16- or 32–bit value to represent each individual character, regardless
of platform, language, or program. Using Unicode, you can develop a software product that will work

Runtime Considerations 577

with various platforms, languages, and countries or regions. Unicode also allows data to be transported
through many different systems.

There are two different forms of Unicode support available from the compiler and runtime. This section
describes the two forms of Unicode support as well as some of the features of and considerations for
using that support. To obtain additional information about Unicode, visit the Unicode Home Page at
www.unicode.org.

The first type of Unicode support is UCS-2 support. When the LOCALETYPE(*LOCALEUCS2) option is
specified on the compilation command, the compiler and runtime use wide characters (that is, characters
of the wchar_t type) and wide character strings (that is, strings of the wchar_t * type) that represent
2-byte Unicode characters. Narrow (non-wide) characters and narrow character strings represent EBCDIC
characters, just as they do when the UCS-2 support is not enabled. The Unicode characters represent
codepoints in CCSID 13488.

The second type of Unicode support is UTF-8 or UTF-32 support (also known as UTF support). When
the LOCALETYPE(*LOCALEUTF) option is specified on the compilation command, the compiler and
runtime use wide characters and wide character strings that represent 4-byte Unicode characters. Each
4-byte character represents a single UTF-32 character. Narrow characters and narrow character strings
represent UTF-8 characters. Each UTF-8 character is from 1 to 4 bytes in size. Most normal characters are
a single byte in size, and, in fact, all 7-bit ASCII characters map directly to UTF-8 and are 1 byte in size.
The UTF-8 characters represent codepoints in CCSID 1208.

When the UTF support is enabled, not only do the wide characters become UTF-32 Unicode, but the
narrow characters become UTF-8 Unicode as well. As an example, consider the following HelloWorld
program.

#include <stdio.h>

int main() {
 printf("Hello World\n");
 return 0;
}

When this program is compiled with UTF support, the character string is stored within the program as
UTF-8 characters and not EBCDIC characters. The printf() function knows this and is able to parse
the UTF-8 characters and generate the output as expected. However, if this program called some other
user-supplied function that did not know how to handle UTF-8 characters, the other function might yield
incorrect results or behavior.

Reasons to Use Unicode Support
You might want to use Unicode support for your application in two situations. The first situation is if
your application is an international application and requires support for several different languages. The
Unicode character set provides an easy way to allow a single application to handle any language or
character set. The application can perform all input, processing, and output using Unicode characters.
Another situation for using Unicode support is for porting a 7-bit ASCII application. Because the UTF-8
character set is a superset of 7-bit ASCII, an ASCII application can be ported more easily to a UTF-8
environment than to an EBCDIC environment.

Pseudo-CCSID Neutrality
When a program is compiled with UTF support, the runtime allows more than just UTF-8 characters,
and it essentially becomes CCSID neutral. The runtime handles whatever CCSID is contained within the
current locale. By default, when a program is compiled with UTF support, the locale that is loaded is a
UTF-8 (CCSID 1208) locale. This allows the runtime to handle CCSID 1208. If the setlocale() function
is called to set the locale to an EBCDIC locale (for example, a CCSID 37 locale), the runtime handles
CCSID 37. This, along with the #pragma convert support within the compiler, can be used to provide
international application support. Here is an example:

#include <stdio.h>
#include <locale.h>

578 IBM i: ILE C/C++ Runtime Library Functions

http://www.unicode.org/

int main() {
 /* This string is in CCSID 1208 */
 printf("Hello World\n");

 /* Change locale to a CCSID 37 locale */
 setlocale(LC_ALL, "/QSYS.LIB/EN_US.LOCALE");
 #pragma convert(37)

 /* This string is in CCSID 37 */
 printf("Hello World\n");

 return 0;
}

Unicode from Other ILE Languages
The Unicode functions are easily accessible in the C and C++ languages if you include the appropriate
header files and use the appropriate LOCALETYPE option on the C or C++ compilation command. The
Unicode functions are accessible from other ILE languages, such as RPG, COBOL, and CL, although no
header files are provided for these languages.

The following table shows the functions added for UCS-2 support. The support functions have a prefix
of _UCS2_ or _C_UCS2_ added to the standard function name. The Unicode function has the same
parameters as the standard (non-Unicode) function.

_C_UCS2_btowc
_C_UCS2_fgetwc
_C_UCS2_fgetws
_C_UCS2_fprintf
_C_UCS2_fputwc
_C_UCS2_fputws
_C_UCS2_fscanf
_C_UCS2_fwprintf
_C_UCS2_fwscanf
_C_UCS2_getwc
_C_UCS2_getwchar
_C_UCS2_iswalnum
_C_UCS2_iswalpha
_C_UCS2_iswblank
_C_UCS2_iswcntrl
_C_UCS2_iswctype
_C_UCS2_iswdigit
_C_UCS2_iswgraph
_C_UCS2_iswlower
_C_UCS2_iswprint

_C_UCS2_iswpunct
_C_UCS2_iswspace
_C_UCS2_iswupper
_C_UCS2_iswxdigit
_C_UCS2_mblen
_C_UCS2_mbrlen
_C_UCS2_mbrtowc
_C_UCS2_mbsinit
_C_UCS2_mbsrtowcs
_C_UCS2_printf
_C_UCS2_putwc
_C_UCS2_putwchar
_C_UCS2_scanf
_C_UCS2_snprintf
_C_UCS2_sprintf
_C_UCS2_sscanf
_C_UCS2_swprintf
_C_UCS2_swscanf
_C_UCS2_towlower
_C_UCS2_towupper

_C_UCS2_ungetwc
_C_UCS2_vfprintf
_C_UCS2_vfscanf
_C_UCS2_vfwprintf
_C_UCS2_vfwscanf
_C_UCS2_vprintf
_C_UCS2_vscanf
_C_UCS2_vsnprintf
_C_UCS2_vsprintf
_C_UCS2_vsscanf
_C_UCS2_vswprintf
_C_UCS2_vswscanf
_C_UCS2_vwprintf
_C_UCS2_vwscanf
_C_UCS2_wcsftime
_C_UCS2_wcsicmp
_C_UCS2_wcslocalec
onv
_C_UCS2_wcsnicmp
_C_UCS2_wcsrtombs
_C_UCS2_wcstod32

_C_UCS2_wcstod64
_C_UCS2_wcstod128
_C_UCS2_wcstof
_C_UCS2_wcstold
_C_UCS2_wctob
_C_UCS2_wprintf
_C_UCS2_wscanf
_UCS2_mbstowcs
_UCS2_mbtowc
_UCS2_setlocale
_UCS2_wcrtomb
_UCS2_wcstod
_UCS2_wcstol
_UCS2_wcstoll
_UCS2_wcstombs
_UCS2_wcstoul
_UCS2_wcstoull
_UCS2_wcswidth
_UCS2_wctomb
_UCS2_wcwidth

When you use the LOCALETYPE(*LOCALEUCS2) option with either the C or C++ compiler, the default
UCS-2 locale is loaded when the program starts. When you use any of the Unicode functions in the
preceding table from a different language, a call to _UCS2_setlocale(LC_ALL, "") should be added
when the application starts to ensure that the default UCS2 locale is loaded.

The following table shows the functions added for CCSID neutral and UTF-8 support. The functions have
a prefix of _C_NEU_DM_ (for data management I/O functions), _C_NEU_IFS_ or _C_UTF_IFS (for IFS I/O
functions), or _C_NEU_ or _C_UTF_ added to the standard function name. The Unicode function has the
same parameters as the standard (non-Unicode) function.

Functions that operate on wide characters have UTF in the prefix. Functions that do not operate on wide
characters have NEU in the prefix.

Runtime Considerations 579

_C_NEU_asctime
_C_NEU_asctime_r
_C_NEU_atof
_C_NEU_atoi
_C_NEU_catopen
_C_NEU_ctime
_C_NEU_ctime_r
_C_NEU_ctime64
_C_NEU_ctime64_r
_C_NEU_DM_clearerr
_C_NEU_DM_feof
_C_NEU_DM_ferror
_C_NEU_DM_fflush
_C_NEU_DM_fgetc
_C_NEU_DM_fgetpos
_C_NEU_DM_fgets
_C_NEU_DM_fopen
_C_NEU_DM_fprintf
_C_NEU_DM_fputc
_C_NEU_DM_fputs
_C_NEU_DM_fread
_C_NEU_DM_freopen
_C_NEU_DM_fscanf
_C_NEU_DM_fseek
_C_NEU_DM_fsetpos
_C_NEU_DM_ftell
_C_NEU_DM_fwrite
_C_NEU_DM_getc
_C_NEU_DM_getchar
_C_NEU_DM_gets
_C_NEU_DM_perror
_C_NEU_DM_printf
_C_NEU_DM_putc
_C_NEU_DM_putchar
_C_NEU_DM_puts
_C_NEU_DM_remove
_C_NEU_DM_rename
_C_NEU_DM_rewind
_C_NEU_DM_ropen
_C_NEU_DM_scanf
_C_NEU_DM_setbuf
_C_NEU_DM_setvbuf
_C_NEU_DM_tmpfile
_C_NEU_DM_tmpnam
_C_NEU_DM_ungetc
_C_NEU_DM_vfprintf
_C_NEU_DM_vfscanf
_C_NEU_DM_vprintf
_C_NEU_DM_vscanf
_C_NEU_gcvt
_C_NEU_gmtime
_C_NEU_gmtime_r
_C_NEU_IFS_clearerr
_C_NEU_IFS_fdopen
_C_NEU_IFS_feof
_C_NEU_IFS_ferror
_C_NEU_IFS_fflush
_C_NEU_IFS_fgetc

_C_NEU_IFS_fgetpos
_C_NEU_IFS_fgetpos64
_C_NEU_IFS_fgets
_C_NEU_IFS_fopen
_C_NEU_IFS_fopen64
_C_NEU_IFS_fprintf
_C_NEU_IFS_fputc
_C_NEU_IFS_fputs
_C_NEU_IFS_fread
_C_NEU_IFS_freopen
_C_NEU_IFS_freopen64
_C_NEU_IFS_fscanf
_C_NEU_IFS_fseek
_C_NEU_IFS_fseeko
_C_NEU_IFS_fseeko64
_C_NEU_IFS_fsetpos
_C_NEU_IFS_fsetpos64
_C_NEU_IFS_ftell
_C_NEU_IFS_ftello
_C_NEU_IFS_ftello64
_C_NEU_IFS_fwrite
_C_NEU_IFS_getc
_C_NEU_IFS_getchar
_C_NEU_IFS_gets
_C_NEU_IFS_perror
_C_NEU_IFS_printf
_C_NEU_IFS_putc
_C_NEU_IFS_putchar
_C_NEU_IFS_puts
_C_NEU_IFS_remove
_C_NEU_IFS_rename_keep
_C_NEU_IFS_rename_unlink
_C_NEU_IFS_rewind
_C_NEU_IFS_scanf
_C_NEU_IFS_setbuf
_C_NEU_IFS_setvbuf
_C_NEU_IFS_tmpfile
_C_NEU_IFS_tmpfile64
_C_NEU_IFS_tmpnam
_C_NEU_IFS_ungetc
_C_NEU_IFS_vfprintf
_C_NEU_IFS_vfscanf
_C_NEU_IFS_vprintf
_C_NEU_IFS_vscanf
_C_NEU_isalnum
_C_NEU_isalpha
_C_NEU_isblank
_C_NEU_iscntrl
_C_NEU_isdigit
_C_NEU_isgraph
_C_NEU_islower
_C_NEU_isprint
_C_NEU_ispunct
_C_NEU_isspace
_C_NEU_isupper
_C_NEU_isxdigit
_C_NEU_itoa
_C_NEU_localeconv

_C_NEU_localtime
_C_NEU_localtime_r
_C_NEU_localtime64
_C_NEU_localtime64_r
_C_NEU_ltoa
_C_NEU_memicmp
_C_NEU_mktime
_C_NEU_mktime64
_C_NEU_nl_langinfo
_C_NEU_snprintf
_C_NEU_sprintf
_C_NEU_sscanf
_C_NEU_strcasecmp
_C_NEU_strchr
_C_NEU_strcspn
_C_NEU_strerror
_C_NEU_strfmon
_C_NEU_strftime
_C_NEU_strncasecmp
_C_NEU_strpbrk
_C_NEU_strptime
_C_NEU_strrchr
_C_NEU_strspn
_C_NEU_strtod
_C_NEU_strtod32
_C_NEU_strtod64
_C_NEU_strtod128
_C_NEU_strtof
_C_NEU_strtok
_C_NEU_strtok_r
_C_NEU_strtol
_C_NEU_strtold
_C_NEU_strtoll
_C_NEU_strtoul
_C_NEU_strtoull
_C_NEU_system
_C_NEU_toascii
_C_NEU_tolower
_C_NEU_toupper
_C_NEU_ultoa
_C_NEU_vsnprintf
_C_NEU_vsprintf
_C_NEU_vsscanf
_C_NEU_wctrans
_C_NEU_wctype
_C_UTF_btowc
_C_UTF_IFS_fgetwc
_C_UTF_IFS_fgetws
_C_UTF_IFS_fputwc
_C_UTF_IFS_fputws
_C_UTF_IFS_fwprintf
_C_UTF_IFS_fwscanf
_C_UTF_IFS_getwc
_C_UTF_IFS_getwchar
_C_UTF_IFS_putwc
_C_UTF_IFS_putwchar
_C_UTF_IFS_ungetwc
_C_UTF_IFS_vfwprintf

580 IBM i: ILE C/C++ Runtime Library Functions

_C_UTF_IFS_vfwscanf
_C_UTF_IFS_vwprintf
_C_UTF_IFS_vwscanf
_C_UTF_IFS_wfopen
_C_UTF_IFS_wfopen64
_C_UTF_IFS_wprintf
_C_UTF_IFS_wscanf
_C_UTF_isalnum
_C_UTF_isalpha
_C_UTF_isascii
_C_UTF_isblank
_C_UTF_iscntrl
_C_UTF_isdigit
_C_UTF_isgraph
_C_UTF_islower
_C_UTF_isprint
_C_UTF_ispunct
_C_UTF_isspace
_C_UTF_isupper
_C_UTF_iswalnum
_C_UTF_iswalpha
_C_UTF_iswblank
_C_UTF_iswcntrl
_C_UTF_iswctype
_C_UTF_iswdigit
_C_UTF_iswgraph
_C_UTF_iswlower
_C_UTF_iswprint
_C_UTF_iswpunct
_C_UTF_iswspace
_C_UTF_iswupper
_C_UTF_iswxdigit
_C_UTF_isxdigit
_C_UTF_mblen

_C_UTF_mbrlen
_C_UTF_mbrtowc
_C_UTF_mbsinit
_C_UTF_mbsrtowcs
_C_UTF_mbstowcs
_C_UTF_mbtowc
_C_UTF_regcomp
_C_UTF_regerror
_C_UTF_regexec
_C_UTF_setlocale
_C_UTF_strcoll
_C_UTF_strxfrm
_C_UTF_swprintf
_C_UTF_swscanf
_C_UTF_toascii
_C_UTF_tolower
_C_UTF_toupper
_C_UTF_towctrans
_C_UTF_towlower
_C_UTF_towupper
_C_UTF_vswprintf
_C_UTF_vswscanf
_C_UTF_wcrtomb
_C_UTF_wcscat
_C_UTF_wcschr
_C_UTF_wcscmp
_C_UTF_wcscoll
_C_UTF_wcscpy
_C_UTF_wcscspn
_C_UTF_wcsfmon
_C_UTF_wcsftime
_C_UTF_wcsicmp
_C_UTF_wcslen
_C_UTF_wcslocaleconv

_C_UTF_wcsncat
_C_UTF_wcsncmp
_C_UTF_wcsncpy
_C_UTF_wcsnicmp
_C_UTF_WCS_nl_langinfo
_C_UTF_wcspbrk
_C_UTF_wcsptime
_C_UTF_wcsrchr
_C_UTF_wcsrtombs
_C_UTF_wcsspn
_C_UTF_wcsstr
_C_UTF_wcstod
_C_UTF_wcstod32
_C_UTF_wcstod64
_C_UTF_wcstod128
_C_UTF_wcstof
_C_UTF_wcstok
_C_UTF_wcstol
_C_UTF_wcstold
_C_UTF_wcstoll
_C_UTF_wcstombs
_C_UTF_wcstoul
_C_UTF_wcstoull
_C_UTF_wcswcs
_C_UTF_wcswidth
_C_UTF_wcsxfrm
_C_UTF_wctob
_C_UTF_wctomb
_C_UTF_wcwidth
_C_UTF_wmemchr
_C_UTF_wmemcmp
_C_UTF_wmemcpy
_C_UTF_wmemmove
_C_UTF_wmemset

When you use the LOCALETYPE(*LOCALEUTF) option with either the C or C++ compiler, the default
UTF locale is loaded at program startup time. If you use any of the Unicode functions in the preceding
table from a different language, a call to _C_UTF_setlocale(LC_ALL, "") should be added when the
application starts to ensure that the default UTF locale is loaded.

Standard Files
When using the UTF support, the default standard input and output files stdin, stdout, and stderr
have some special processing done for them by the runtime. Since a program using UTF support contains
data in UTF-8 and the standard files interact with the screen and spool files, there is a potential mismatch
in data. The screen and spool file functions are provided by the operating system and thus expect
EBCDIC. For stdout and stderr, the runtime will automatically convert UTF-8 data to EBCDIC. For
stdin, the runtime will automatically convert the incoming EBCDIC to UTF-8 data.

Considerations
Because the default environment for IBM i is primarily an EBCDIC environment, you must be aware of the
situations described in this topic when you use UTF support in an application.

If a program or service program has some modules compiled with the UTF support and some modules
compiled without the UTF support, care must be taken to ensure that unexpected mismatches do not
occur. The wide characters and wide character strings are two bytes in size for a non-UTF module and four

Runtime Considerations 581

bytes in size for a UTF module, so sharing wide characters between the modules may not work correctly.
The narrow (non-wide) characters and character strings are in job CCSID for a non-UTF module and in
CCSID 1208 for a UTF module, so sharing narrow characters between the modules may not work correctly
either.

Whenever a setlocale() is performed to set the locale to a different CCSID, the standard output files
should be flushed to avoid buffering problems with character data containing multiple CCSIDs. Since
stdout is line buffered by default, if each output line ends in a newline character, the problem will not
occur. However, if this is not done, the output may not be shown as intended. The following example
illustrates the problem.

#include <stdio>
#include <locale.h>

int main() {
 /* This string is in CCSID 1208 */
 printf("Hello World");

 /* Change locale to a CCSID 37 locale */
 setlocale(LC_ALL, "/QSYS.LIB/EN_US.LOCALE");
 #pragma convert(37)

 /* This string is in CCSID 37 */
 printf("Hello World\n");

 return 0;
}

In this case, the first printf() causes the CCSID 1208 string "Hello World" to be copied to the stdout
buffer. Before the setlocale() is done, stdout should be flushed to copy that string to the screen.
The second printf() causes the CCSID 37 string "Hello World\n" to be copied to the stdout buffer.
Because of the trailing newline character, the buffer is flushed at that point and the whole buffer is copied
to the screen. Because the CCSID of the current locale is 37 and the screen can handle CCSID 37 without
problems, the whole buffer is copied without conversion. The CCSID 1208 characters are displayed as
unreadable characters. If a flush had been done, the CCSID 1208 characters would have been converted
to CCSID 37 and would have been displayed correctly.

Nearly all of the runtime functions have been modified to support UTF, but there are a handful of them
that have not. Functions and structures that deal with exception handling, such as the _GetExcData()
function, the _EXCP_MSGID variable, and the exception handler structure _INTRPT_Hndlr_Parms_T are
provided by the operating system, not the runtime. They are strictly EBCDIC. The getenv() and
putenv() functions handle only EBCDIC. The QXXCHGDA() and QXXRTVDA() functions handle only
EBCDIC. The argv and envp parameters are also EBCDIC only.

Some of the record I/O functions (that is, functions beginning with _R) do not completely support UTF.
The functions that do not support UTF are _Rformat(), _Rcommit(), _Racquire(), _Rrelease(),
_Rpgmdev(), _Rindara(), and _Rdevatr(). They are available when compiling with the UTF option,
but they accept and generate only EBCDIC. In addition, any character data within the structures returned
by the _R functions will be in EBCDIC rather than UTF.

Other operating system functions have not been modified to support UTF. For example, the integrated file
system functions, such as open(), still accept the job CCSID. Other operating system APIs still accept the
job CCSID. For UTF applications, the characters and character strings provided to these functions need to
be converted to the job CCSID using QTQCVRT, iconv(), #pragma convert, or some other method.

Default File CCSID
When the fopen() function is used to open files , the default CCSID of the file is different depending
on whether or not UTF support is used. If UTF support is not used (that is, if LOCALETYPE(*CLD),
LOCALETYPE(*LOCALE), or LOCALETYPE(*LOCALEUCS2) are specified on the compilation command), the
file CCSID defaults to the current job CCSID. Usually this works well because the job CCSID is set
correctly and the current locale is set to match the job CCSID.

With UTF support, the job CCSID cannot be set to UTF-8 because of system limitations. When
LOCALETYPE(*LOCALEUTF) is specified, the file CCSID defaults to the CCSID of the current locale. If

582 IBM i: ILE C/C++ Runtime Library Functions

the default locale is being used, the CCSID defaults to UTF-8 (CCSID 1208). If this default is not desired,
the ccsid or o_ccsid keyword can be specified in the second parameter of the fopen() call. However,
database files are an exception, because DB2® for IBM i does not completely support UTF-8. When
SYSIFCOPT(*NOIFSIO) is specified, and the CCSID of the current locale is 1208, the CCSID of the file
defaults to CCSID 65535 (no conversion) rather than CCSID 1208. This allows CCSID 1208 to be used
with database files. For more information about file CCSIDs, see “fopen() — Open Files” on page 134.

Newline Character
When the UTF support is not used, the hexadecimal value generated by the compiler for the character
\n and used by the run time has two different values. The hexadecimal value 0x15 is used if
SYSIFCOPT(*NOIFSIO) is specified on the compilation command. The hexadecimal value 0x25 is used
if SYSIFCOPT(*IFSIO) or SYSIFCOPT(*IFS64IO) is specified on the compilation command. When the UTF
support is used, the newline character in UTF-8 will be hexadecimal 0x0a regardless of what SYSIFCOPT
value is used.

Conversion Errors
Some runtime functions perform a CCSID conversion from UTF-8 to an EBCDIC CCSID when required to
interface with an operating system function that does not support UTF-8. When a conversion error occurs
in these cases, a C2M1217 message is generated to the job log with the conversion information.

Heap Memory

Heap Memory Overview
Heap memory is a common pool of free memory used for dynamic memory allocations within an
application.

Heap Memory Manager
A heap memory manager is responsible for the management of heap memory.

The heap memory manager performs the following fundamental memory operations:

• Allocation - performed by malloc and calloc
• Deallocation - performed by free
• Reallocation - performed by realloc

The ILE runtime provides three different heap memory managers:

• Default memory manager - a general-purpose memory manager
• Quick Pool memory manager - a pool memory manager
• Debug memory manager - a memory manager for debugging application heap problems

In addition, each of the memory managers has two different versions - a single-level store version and
a teraspace version. In most cases, the two versions behave similarly except that the single-level store
version returns pointers into single-level store storage and the teraspace version returns pointers into
teraspace storage. The single-level store versions are limited to slightly less than 16 MB for a single
allocation. The single-level store versions are also limited to slightly less than 4 GB for the maximum
amount of allocated heap storage. The teraspace versions are not subject to these limitations. For
additional information about single-level store and teraspace storage, please refer to the ILE Concepts
manual.

The default memory manager is the preferred choice for most applications and is the memory manager
enabled by default. The other memory managers have unique characteristics that can be beneficial in
specific circumstances. Environment variables can be used to indicate which heap manager to use as well

Runtime Considerations 583

as to provide heap manager options. In some cases, functions are also available to indicate which heap
manager to use.

Note: The heap manager environment variables are checked only once per activation group, at the first
heap function which is called within the activation group. To ensure that the environment variables are
used, set up the environment variables before the creation of the activation group.

Default Memory Manager
The default memory manager is a general-purpose memory manager which attempts to balance
performance and memory requirements. It provides adequate performance for most applications while
attempting to minimize the amount of additional memory needed.

The memory manager maintains the free space in the heap as nodes in a Cartesian binary search tree.
This data structure imposes no limitation on the number of block sizes supported by the tree, allowing a
wide range of potential block sizes.

Allocation

A small amount of additional memory is required for each allocation request. This additional memory is
due to the need for a header on each allocation and the need for alignment of each block of memory. The
size of the header on each allocation is 16 bytes. Each block must be aligned on a 16 byte boundary, thus
the total amount of memory required for an allocation of size n is:

size = ROUND (n+16, 16)

For example, an allocation of size 37 would require a size of ROUND(37+16, 16), which is equal to 64
bytes.

A node of the tree that is greater than or equal to the size required is removed from the tree. If the block
found is larger than the needed size, the block is divided into two blocks: one of the needed size, and the
second a remainder. The second block is returned to the free tree for future allocation. The first block is
returned to the caller.

If a block of sufficient size is not found in the free tree, the following processing occurs:

• The heap is expanded.
• A block the size of the acquired extension is added to the free tree.
• Allocation continues as previously described.

Deallocation

Memory blocks deallocated with the free operation are returned to the tree, at the root. Each node along
the path to the insertion point for the new node is examined to see if it adjoins the node being inserted.
If it does, the two nodes are merged and the newly merged node is relocated in the tree. If no adjoining
block is found, the node is inserted at the appropriate place in the tree. Merging adjacent blocks is done to
reduce heap fragmentation.

Reallocation

If the size of the reallocated block is larger than the original block, and the original block already has
enough space to accommodate the new size (e. g. due to alignment requirements), the original block is
returned without any data movement. If the size of the reallocated block is larger than the original block,
the following processing occurs:

• A new block of the requested size is allocated.
• The data is moved from the original block to the new block.
• The original block is returned to the free tree with the free operation.
• The new block is returned to the caller.

If the size of the reallocated block is smaller than the original block, and the difference in size is small, the
original block is returned. Otherwise, if the size of the reallocated block is smaller than the original block,
the block is split and the remaining portion is returned to the free tree.

584 IBM i: ILE C/C++ Runtime Library Functions

Enabling the default memory manager

The default memory manager is enabled by default and can be configured by setting the following
environment variables:

QIBM_MALLOC_TYPE=DEFAULT
QIBM_MALLOC_DEFAULT_OPTIONS=options

To specify user-specified configuration options for the default memory manager, set
QIBM_MALLOC_DEFAULT_OPTIONS=options, where options is a blank delimited list of one or more
configuration options.

If the QIBM_MALLOC_TYPE=DEFAULT environment variable is specified and the _C_Quickpool_Init()
function is called, the environment variable settings take precedence over the _C_Quickpool_Init()
function and the _C_Quickpool_Init() function returns a -1 value indicating that an alternate heap
manager has already been enabled.

Configuration Options

The following configuration options are available:

MALLOC_INIT:N

This option can be used to specify that each byte of allocated memory is initialized to the given value. The
value N represents an integer in the range of 0 to 255.

This option is not enabled by default.

FREE_INIT:N

This option can be used to specify that each byte of freed memory is initialized to the given value. The
value N represents an integer in the range of 0 to 255.

This option is not enabled by default.

CHUNK_REUSE_MAXSZ:N

This option can be used to specify the max size in bytes of reusable chunks. The value N represents an
integer larger than 0.

This option is not enabled by default.

Any number of options can be specified and they can be specified in any order. Blanks are the only valid
delimiter for separating configuration options. Each configuration option can only be specified once. If a
configuration option is specified more than once, only the final instance applies. If a configuration option
is specified with an invalid value, the configuration option is ignored.

Examples

ADDENVVAR ENVVAR(QIBM_MALLOC_DEFAULT_OPTIONS) LEVEL(*JOB) REPLACE(*YES) VALUE('')

ADDENVVAR ENVVAR(QIBM_MALLOC_DEFAULT_OPTIONS) LEVEL(*JOB) REPLACE(*YES)
VALUE('MALLOC_INIT:255 FREE_INIT:0 CHUNK_REUSE_MAXSZ:5242880')

ADDENVVAR ENVVAR(QIBM_MALLOC_DEFAULT_OPTIONS) LEVEL(*JOB) REPLACE(*YES)
VALUE('CHUNK_REUSE_MAXSZ:5242880')

The first example represents the default configuration values. The second example illustrates all options
being specified.The third example represents empty chunks larger than or equal to 5 Mb (5242880 bytes)
are returned to system immediately.

Related functions

There are no functions available to enable or specify configuration options for the default memory
manager. The environment variable support must be used.

Related Information

• “calloc() — Reserve and Initialize Storage” on page 80
• “free() — Release Storage Blocks” on page 152

Runtime Considerations 585

• “malloc() — Reserve Storage Block” on page 219
• “realloc() — Change Reserved Storage Block Size” on page 295
• “_C_TS_malloc_debug() — Determine amount of teraspace memory used (with optional dumps and
verification)” on page 103

• “_C_TS_malloc_info() — Determine amount of teraspace memory used” on page 105
• “_C_Quickpool_Init() — Initialize Quick Pool Memory Manager” on page 93

Quick Pool Memory Manager
The Quick Pool memory manager breaks memory up into a series of pools. It is intended to improve heap
performance for applications that issue large numbers of small allocation requests. When the Quick Pool
memory manager is enabled, allocation requests that fall within a given range of block sizes are assigned
a cell within a pool. These requests can be handled more quickly than requests outside of this range.
Allocation requests outside this range are handled in the same manner as the default memory manager.

A pool consists of a block of memory (called an extent) that is subdivided into a predetermined number of
smaller blocks (called cells) of uniform size. Each cell can be allocated as a block of memory. Each pool
is identified using a pool number. The first pool is pool 1, the second pool is pool 2, the third pool is pool
3, and so on. The first pool is the smallest and each succeeding pool is equal to or larger in size than the
preceding pool.

The number of pools and cell sizes for each of the pools is determined at the time the Quick Pool memory
manager is initialized.

Allocation

A cell is allocated from one of the pools when an allocation request falls within the range of cell sizes
defined by the pools. Each allocation request is serviced from the smallest possible pool to conserve
space.

When the first request comes in for a pool, an extent is allocated for the pool and the request is satisfied
from that extent. Later requests for that pool are also satisfied by the extent until the extent is exhausted.
When an extent is exhausted, a new extent is allocated for the pool.

Deallocation

Memory blocks (cells) deallocated with the free operation are added to a free queue associated with the
pool that contains the cell. Each pool has a free queue that contains cells that have been freed and have
not yet been reallocated. Additional allocation requests from that pool use cells from the free queue.

Reallocation

If the size of the reallocated block falls within the same pool as the original block, the original block is
returned without any data movement. Otherwise, a new block of the requested size is allocated, the data
is moved from the original block to the new block, the original block is returned to the free queue with the
free operation, and the new block is returned to the caller.

Enabling the Quick Pool Memory Manager

The Quick Pool memory manager is not enabled by default. It is enabled and configured either by
calling the _C_Quickpool_Init() and _C_Quickpool_Debug() functions or by setting the following
environment variables:

QIBM_MALLOC_TYPE=QUICKPOOL
QIBM_MALLOC_QUICKPOOL_OPTIONS=options

To enable the Quick Pool memory manager with the default settings, the
QIBM_MALLOC_QUICKPOOL_OPTIONS environment variable does not need to be specified, only
QIBM_MALLOC_TYPE=QUICKPOOL needs to be specified. To enable the Quick Pool memory manager
with user-specified configuration options, set QIBM_MALLOC_QUICKPOOL_OPTIONS=options, where
options is a blank delimited list of one or more configuration options.

586 IBM i: ILE C/C++ Runtime Library Functions

If the QIBM_MALLOC_TYPE=QUICKPOOL environment variable is specified and
the_C_Quickpool_Init() function is called, the environment variable settings take precedence over
the _C_Quickpool_Init() function and the _C_Quickpool_Init() function returns a -1 value
indicating that an alternate heap manager has already been enabled.

If the QIBM_MALLOC_TYPE=QUICKPOOL environment variable is specified and the
_C_Quickpool_Debug() function is called to change the Quick Pool memory manager characteristics,
the settings specified on the parameter to the _C_Quickpool_Debug() function override the
environment variable settings.

Configuration Options

The following configuration options are available:

POOLS:(C1 E1)(C2 E2)...(Cn En)

This option can be used to specify the number of pools to be used, along with the cell size and extent cell
count for each pool. The subscript value n indicates the number of pools. The minimum valid value of n is
1. The maximum valid value of n is 64.

The value C1 indicates the cell size for pool 1, C2 indicates the cell size for pool 2, Cn indicates the cell size
for pool n, and so on. This value must be a multiple of 16 bytes. If a value is specified that is not a multiple
of 16 bytes, the cell size is rounded up to the next larger multiple of 16 bytes. The minimum valid value is
16 and the maximum valid value is 4096.

The value E1 indicates the extent cell count for pool 1, E2 indicates the extent cell count for pool 2, En
indicates the extent cell count for pool n, and so on. The value specifies the number of cells in a single
extent. The value can be any non-negative number, but the total size of the extent might be limited due to
architecture constraints. A value of zero indicates that the implementation can choose a large value.

The default value for this option is "POOLS:(16 4096) (32 4096) (64 1024) (128 1024) (256 512) (512
512) (1024 256) (2048 256) (4096 256)". The defaults represent 9 pools with cells of sizes 16, 32, 64,
128, 256, 512, 1024, 2048, and 4096 bytes. The number of cells in each extent is 4096, 4096, 1024,
1024, 512, 512, 256, 256, and 256.

MALLOC_INIT:N

This option can be used to specify that each byte of allocated memory is initialized to the given value. The
value N represents an integer in the range of 0 to 255.

This option is not enabled by default.

FREE_INIT:N

This option can be used to specify that each byte of freed memory is initialized to the given value. The
value N represents an integer in the range of 0 to 255.

This option is not enabled by default.

COLLECT_STATS

This option can be used to specify that the Quick Pool memory manager collect statistics and report
those statistics upon termination of the application. The Quick Pool memory manager collects statistics
by calling atexit(_C_Quickpool_Report) when this option is specified. Details about the information
contained within that report are documented in the description for _C_Quickpool_Report().

This option is not enabled by default.

Any number of options can be specified and they can be specified in any order. Blanks are the only valid
delimiters for separating configuration options. Each configuration option should only be specified once. If
a configuration option is specified more than once, only the final instance applies. If a configuration option
is specified with an invalid value, the configuration option is ignored.

Examples

ADDENVVAR ENVVAR(QIBM_MALLOC_QUICKPOOL_OPTIONS) LEVEL(*JOB) REPLACE(*YES)
VALUE('POOLS:(16 4096) (32 4096) (64 1024) (128 1024) (256 512) (512 512) (1024 256)

Runtime Considerations 587

(2048 256) (4096 256)')

ADDENVVAR ENVVAR(QIBM_MALLOC_QUICKPOOL_OPTIONS) LEVEL(*JOB) REPLACE(*YES)
VALUE('POOLS:(16 1000) MALLOC_INIT:255 FREE_INIT:0 COLLECT_STATS')

The first example represents the default configuration values. The second example illustrates all options
being specified.

Related Functions

The _C_Quickpool_Init() function allows enablement of the Quick Pool memory manager. The
_C_Quickpool_Init() function also specifies the number of pools to be used, the cell size, and the
extent cell count for each pool.

The _C_Quickpool_Debug() function allows enablement of the other configuration options.

The _C_Quickpool_Report() function is used to report memory statistics.

Note:

1. The default configuration for the Quick Pool memory manager provides a performance improvement
for many applications that issue large numbers of small allocation requests. However, it might be
possible to achieve additional gains by modifying the default configuration. Before modifying the
default configuration, become familiar with the memory requirements and usage of the application.
The Quick Pool memory manager can be enabled with the COLLECT_STATS option to fine-tune the
Quick Pool memory manager configuration.

2. Because of variations in memory requirements and usage, some applications might not benefit from
the memory allocation scheme used by the Quick Pool memory manager. Therefore, it is not advisable
to enable the Quick Pool memory manager for system-wide use. For optimal performance, enable and
configure the Quick Pool memory manager on a per-application basis.

3. It is allowable to create more than one pool with the same size cells. This can be useful for multi-
threaded applications which perform many similar sized allocations. When there is no contention, the
first pool of the requested size is used. When contention occurs on the first pool, the Quick Pool
memory manager allocates cells from any other equal sized pools to minimize contention.

Related Information

• “_C_Quickpool_Init() — Initialize Quick Pool Memory Manager” on page 93
• “_C_Quickpool_Debug() — Modify Quick Pool Memory Manager Characteristics” on page 91
• “_C_Quickpool_Report() — Generate Quick Pool Memory Manager Report” on page 95

Debug Memory Manager
The debug memory manager is used primarily to find incorrect heap usage by an application. It is not
optimized for performance and might negatively affect the performance of the application. However, it is
valuable in determination of incorrect heap usage.

Memory management errors are sometimes caused by writing past the end of an allocated buffer.
Symptoms do not arise until much later when the memory that was overwritten (typically belonging
to another allocation) is referenced and no longer contains the expected data.

The debug memory manager allows detection of memory overwrites, memory over reads, duplicate frees,
and reuse of freed memory. Memory problems detected by the debug memory manager result in one of
two behaviors:

• If the problem is detected at the point that the incorrect usage occurs, an MCH exception message
(typically an MCH0601, MCH3402, or MCH6801) is generated. In this case, the error message typically
stops the application.

• If the problem is not detected until later, after the incorrect usage has already occurred, a C2M1212
message is generated. In this case, the message does not typically stop the application.

The debug memory manager detects memory overwrites and memory over reads in two ways:

588 IBM i: ILE C/C++ Runtime Library Functions

• First, it uses restricted access memory pages. A memory page with restricted access is placed before
and after each allocation. Each memory block is aligned on a 16 byte boundary and placed as close
to the end of a page as possible. Since memory protection is only allowed on a page boundary, this
alignment allows the best detection of memory overwrites and memory over reads. Any read or write
from one of the restricted access memory pages immediately results in an MCH exception.

• Second, it uses padding bytes before and after each allocation. A few bytes immediately before each
allocation are initialized at allocation time to a preset byte pattern. Any padding bytes following the
allocation required to round the allocation size to a multiple of 16 bytes are initialized at allocation time
to a preset byte pattern. When the allocation is freed, all the padding bytes are verified to ensure that
they still contain the expected preset byte pattern. If any of the padding bytes have been modified, the
debug memory manager generates a C2M1212 message with reason code X'80000000', indicating this
fact.

Allocation

A large amount of extra memory is required for each allocation request. The extra memory is due to the
following:

• A memory page before the allocation (single-level store version only)
• A memory page after the allocation
• A header on each allocation
• Alignment of each block of memory on a 16 byte boundary

The size of the header on each allocation is 16 bytes. Each block must be aligned on a 16 byte boundary.
The total amount of memory required for an allocation of size n in the single-level store version is:

size = ROUND((PAGESIZE * 2) + n + 16, PAGESIZE)

For example, an allocation of size 37 with a page size of 4096 bytes requires a size of ROUND(8192 + 37 +
16, 4096), which is equal to 12,288 bytes.

The total amount of memory required for an allocation of size n in the teraspace version is:

size = ROUND(PAGESIZE + n + 16, PAGESIZE)

For example, an allocation of size 37 with a page size of 4096 bytes requires a size of ROUND(4096 + 37 +
16, 4096), which is equal to 8,192 bytes.

Deallocation

Memory blocks deallocated with the free operation are returned to the system. The page protection
attributes are set so that any further read or write access to that memory block generates an MCH
exception.

Reallocation

In all cases, the following processing occurs:

• A new block of the requested size is allocated.
• The data is moved from the original block to the new block.
• The original block is returned with the free operation.
• The new block is returned to the caller.

Enabling the debug memory manager

The debug memory manager is not enabled by default, but is enabled and configured by setting the
following environment variables:

QIBM_MALLOC_TYPE=DEBUG
QIBM_MALLOC_DEBUG_OPTIONS=options

To enable the debug memory manager with the default settings, QIBM_MALLOC_TYPE=DEBUG needs
to be specified. To enable the debug memory manager with user-specified configuration options,

Runtime Considerations 589

set QIBM_MALLOC_DEBUG_OPTIONS=options where options is a blank delimited list of one or more
configuration options.

If the QIBM_MALLOC_TYPE=DEBUG environment variable is specified and the _C_Quickpool_Init()
function is called, the environment variable settings take precedence over the _C_Quickpool_Init()
function and the _C_Quickpool_Init() function returns a -1 value indicating that an alternate heap
manager has been enabled.

Configuration Options

The following configuration options are available:

MALLOC_INIT:N

This option can be used to specify that each byte of allocated memory is initialized to the given value. The
value N represents an integer in the range of 0 to 255.

This option is not enabled by default.

FREE_INIT:N

This option can be used to specify that each byte of freed memory is initialized to the given value. The
value N represents an integer in the range of 0 to 255.

This option is not enabled by default.

Any number of options can be specified and they can be specified in any order. Blanks are the only valid
delimiters for separating configuration options. Each configuration option should only be specified once. If
a configuration option is specified more than once, only the final instance applies. If a configuration option
is specified with an invalid value, the configuration option is ignored.

Examples

ADDENVVAR ENVVAR(QIBM_MALLOC_DEBUG_OPTIONS) LEVEL(*JOB) REPLACE(*YES) VALUE('')

ADDENVVAR ENVVAR(QIBM_MALLOC_DEBUG_OPTIONS) LEVEL(*JOB) REPLACE(*YES)
VALUE('MALLOC_INIT:255 FREE_INIT:0')

The first example represents the default configuration values. The second example illustrates all options
being specified.

Related Functions

There are no functions available to enable or specify configuration options for the debug memory
manager. Use the environment variable support to enable or specify configuration options.

Note:

1. Use the debug memory manager to debug single applications or small groups of applications at the
same time.

The debug memory manager is not appropriate for full-time, constant, or system-wide use. Although it
is designed for minimal performance impact upon the application being debugged, significant negative
impact on overall system throughput can result if it is used on a system-wide basis. It might cause
significant system problems, such as excessive use of the system auxiliary storage pool (ASP).

2. The debug memory manager consumes significantly more memory than the default memory manager.
As a result, the debug memory manager might not be appropriate for use in some debugging
situations.

Because the allocations require two memory pages or more of extra memory per allocation,
applications that issue many small allocation requests see their memory usage increase dramatically.
These programs might encounter new failures as memory allocation requests are denied due to a lack
of memory. These failures are not necessarily errors in the application being debugged and they are
not errors in the debug memory manager.

590 IBM i: ILE C/C++ Runtime Library Functions

Single-level store versions are limited to slightly less than 4 GB for the maximum amount of allocated
heap storage. The debug memory manager allocates a minimum of three pages per allocation, which
allows for less than 350,000 outstanding heap allocations (with a page size of 4096 bytes).

3. The single-level store version of the debug memory manager does each allocation in a separate 16 MB
segment which can cause the system to use temporary addresses more rapidly.

Related Information

• “calloc() — Reserve and Initialize Storage” on page 80
• “free() — Release Storage Blocks” on page 152
• “malloc() — Reserve Storage Block” on page 219
• “realloc() — Change Reserved Storage Block Size” on page 295
• “_C_Quickpool_Init() — Initialize Quick Pool Memory Manager” on page 93

Environment Variables
The following tables describe the environment variables which can be used to enable and configure heap
memory managers.

The following environment variable can be used to indicate which memory manager should be used:

Table 42. Environment Variable to Indicate which Memory Manager to Use

Environment Variable Value Description

QIBM_MALLOC_TYPE DEFAULT Indicates that the default
memory manager is to be used.

QUICKPOOL Indicates that the Quick Pool
memory manager is to be used.

DEBUG Indicates that the debug memory
manager is to be used.

If the QIBM_MALLOC_TYPE environment variable is not set, or if it has a value different than one of the
above values, the default memory manager is used and all of the following environment variables are
ignored.

If QIBM_MALLOC_TYPE is set to DEFAULT, the following environment variable can be used to indicate
default memory manager options. Otherwise, the environment variable is ignored.

Table 43. Default Memory Manager Options

Environment Variable Value Description

QIBM_MALLOC_DEFAULT_OPTIONS MALLOC_INIT:N Each byte of allocated
memory is initialized to this
value.

FREE_INIT:N Each byte of freed memory
is initialized to this value.

CHUNK_REUSE_MAXSZ:N Empty chunks larger than
or equal to this value
are returned to system
immediately.

By default, neither allocated memory nor freed memory is initialized, and empty chunks are kept by
memory manager for reusing.

If QIBM_MALLOC_TYPE is set to QUICKPOOL, the following environment variable can be used to indicate
Quick Pool memory manager options. Otherwise, the environment variable is ignored.

Runtime Considerations 591

Table 44. Quick Pool Memory Manager Options

Environment Variable Value Description

QIBM_MALLOC_QUICKPOOL_OPTIONS POOLS:(C1 E1) (C2 E2) ... (Cn En) Defines the cell
sizes and extent cell
counts for each pool.
The number of (Cn
En) pairs indicate the
number of the pools.

MALLOC_INIT:N Each byte of
allocated memory
is initialized to this
value.

FREE_INIT:N Each byte of freed
memory is initialized
to this value.

COLLECT_STATS Indicates to collect
statistics and
generate a report
when the application
ends.

By default, neither allocated memory nor freed memory is initialized. The default behavior is not to collect
statistics. If the cell sizes and extent cell counts are not specified or are specified incorrectly, the default
configuration values are used, as described earlier in this section.

If QIBM_MALLOC_TYPE is set to DEBUG, the following environment variable can be used to indicate
debug memory manager options. Otherwise, the environment variable is ignored.

Table 45. Debug Memory Manager Options

Environment Variable Value Description

QIBM_MALLOC_DEBUG_OPTIONS MALLOC_INIT: N Each byte of allocated
memory is initialized to
this value.

FREE_INIT:N Each byte of freed
memory is initialized to
this value.

By default, neither allocated memory nor freed memory is initialized.

Diagnosing C2M1211/C2M1212 Message Problems
This section provides information that might help to diagnose problems which are indicated with a
C2M1211 message or C2M1212 message in the job log.

C2M1211 Message
A C2M1211 message indicates that a teraspace version of the heap memory manager has detected that
the heap control structure has been corrupted.

The C2M1211 message can be caused by many things. The most common causes include:

• Freeing a space twice.
• Writing outside the bounds of allocated storage.

592 IBM i: ILE C/C++ Runtime Library Functions

• Writing to storage that has been freed.

The CM1211 message often indicates an application heap problem. Unfortunately, these problems are
often difficult to track down. The best approach to debug this type of problem is to enable the debug
memory manager.

C2M1212 Message
A C2M1212 message indicates some type of memory problem which can lead to memory corruption and
other issues. The memory corruption could occur within application code or operating system code. The
message is only a diagnostic message, but can be an indicator of a real problem. The C2M1212 message
might or might not be the source of other problems. Clean up the memory problem if possible.

When a C2M1212 message is generated, the hexadecimal value of the pointer passed to the free()
function is included as part of the message description. This hexadecimal value can provide clues as
to the origin of the problem. The malloc() function returns only pointers that end in hexadecimal 0.
Any pointer that does not end in hexadecimal 0 was either never set to point to storage reserved by
the malloc() function or was modified since it was set to point to storage reserved by the malloc()
function. If the pointer ends in hexadecimal 0, then the cause of the C2M1212 message is uncertain, and
the program code that calls free() should be examined.

In most cases, a C2M1212 message from a single-level store heap memory manager is preceded by an
MCH6902 message. The MCH6902 message has an error code indicating what the problem is. The most
common error code is 2, which indicates that memory is being freed which is not currently allocated. This
error code could mean one of the following:

• Memory is being freed which has not been allocated.
• Memory is being freed for a second time.

In some cases, a memory leak can cause the single-level store heap to become fragmented to the point
that the heap control segment is full and deallocates fail. This problem is indicated by an MCH6906
message. In this case, the only solution is to debug the application and fix the memory leak.

Stack tracebacks (See “Stack Tracebacks” on page 593) can be used to find the code which is causing
the problem. Once the code has been found, the difficult part is to determine what the problem is with the
pointer to the heap storage. There are several potential causes:

1. The pointer was never initialized and contains an unexpected value. The C2M1212 message dumps
the hex value of the pointer.

2. The pointer was not obtained from malloc(). Perhaps the pointer is a pointer to an automatic (local)
variable or a static (global) variable and not a pointer to heap storage from malloc().

3. The pointer was modified after it was returned from malloc(). For example, if the pointer returned
from malloc() was incremented by some amount and then passed to free(), it would be invalid and
a C2M1212 message is issued.

4. The pointer is being passed a second time to free(). Once free() has been called with the pointer,
the space pointed to by that pointer is deallocated and if free() is called again, a C2M1212 message
is issued.

5. The heap structure maintained by the heap manager to track heap allocations has been corrupted. In
this case, the pointer is a valid pointer but the heap manager cannot determine that and a C2M1212
message results. When the heap structure is corrupted, there is typically at least one C2M1211
message in the job log to indicate that heap corruption has occurred.

6. If the debug memory manager is in use and the reason code on the C2M1212 message is
X'8000000000', padding bytes were overwritten for the given allocation. Refer to “Debug Memory
Manager” on page 588 for more information.

Stack Tracebacks
Enablement for single-level store heap memory managers

Runtime Considerations 593

When a C2M1211 or C2M1212 message is generated from a single-level store heap function, the code
checks for a *DTAARA named QGPL/QC2M1211 or QGPL/QC2M1212. If the data area exists, the program
stack is dumped. If the data area does not exist, no dump is performed.

Enablement for teraspace heap memory managers

When a C2M1211 message or C2M1212 message is generated from a teraspace heap function, the code
checks for a *DTAARA named QGPL/QC2M1211 or QGPL/QC2M1212. If the data area exists and contains
at least 50 characters of data, a 50 character string is retrieved from the data area. If the string within the
data area matches one of the following strings, special behavior is triggered.

_C_TS_dump_stack
_C_TS_dump_stack_vfy_heap
_C_TS_dump_stack_vfy_heap_wabort
_C_TS_dump_stack_vry_heap_wsleep

If the data area does not exist, no dump or heap verification is performed.

The behavior defaults to the _C_TS_dump_stack behavior in the following cases:

• The data area exists but does not contain character data.
• The data area is less than 50 characters in length.
• The data area does not contain any of the listed strings.

The strings in the data area have the following meaning:

_C_TS_dump_stack

The default behavior of dumping the stack is to be performed. No heap verification is done.

_C_TS_dump_stack_vfy_heap

After the stack is dumped, the _C_TS_malloc_debug() function is called to verify the heap control
structures. If any corruption is detected within the heap control structures, the heap errors and all
heap control information are dumped. Any heap information which is dumped is contained within the
same file as the stack dump. If no heap corruption is detected, no heap information is dumped.

After the verification is performed, control returns to the original program generating the C2M1211 or
C2M1212 message and execution continues.

_C_TS_dump_stack_vfy_heap_wabort

_C_TS_dump_stack_vfy_heap_wabort has the same verification behavior as
_C_TS_dump_stack_vfy_heap.

Instead of returning control to the original program if heap corruption is detected, the abort()
function is called to halt execution.

_C_TS_dump_stack_vfy_heap_wsleep

_C_TS_dump_stack_vfy_heap_wsleep has the same verification behavior as
_C_TS_dump_stack_vfy_heap.

Instead of returning control to the original program if heap corruption is detected, the sleep()
function is called to sleep indefinitely, and pause execution to allow debug of the application. The
application needs to be ended manually.

Here is an example of how to create a data area to indicate to call _C_TS_malloc_debug to verify the
heap whenever a C2M1212 message is generated:

CRTDTAARA DTAARA(QGPL/QC2M1212) TYPE(*CHAR) LEN(50)
 VALUE('_C_TS_dump_stack_vfy_heap')

Analysis

Once the data area is in place, a spool file named QPRINT is created with dump information for every
C2M1211 message or C2M1212 message. The spool file is created for the user running the job which gets

594 IBM i: ILE C/C++ Runtime Library Functions

the message. For example, if the job getting the C2M1211 message or C2M1212 message is a server job
or batch job running under userid ABC123 then the spool file is created in the output queue for userid
ABC123. Once the spool files containing stack tracebacks are obtained, the data area can be removed,
and the tracebacks analyzed.

The stack tracebacks can be used to find the code which is causing the problem. Here is an example stack
traceback:

PROGRAM NAME PROGRAM LIB MODULE NAME MODULE LIB INST# PROCEDURE STATEMENT#
QC2UTIL1 QSYS QC2ALLOC QBUILDSS1 000000 dump_stack__Fv 0000001019
QC2UTIL1 QSYS QC2ALLOC QBUILDSS1 000000 free 0000001128
QYPPRT370 QSYS DLSCTODF37 QBUILDSS1 000000 __dl__FPv 0000000007
FSOSA ABCSYS OSAACTS FSTESTOSA 000000 FS_FinalizeDoc 0000000110
ABCKRNL ABCSYS A2PDFUTILS ABMOD_8 000000 PRT_EndDoc_Adb 0000000625
ABCKRNL ABCSYS A2PDFUTILS ABMOD_8 000000 PRT_EndDoc 0000000003
ABCKRNL ABCSYS A2ENGINE ABMOD_8 000000 ABCReport_Start 0000000087
ABCKRNL ABCSYS A2ENTRYPNT ABMOD_8 000000 ABCReport_Run 0000000056
ABCKRNL ABCSYS A2ENTRYPNT ABMOD_8 000000 ABCReport_Entry 0000000155
PRINTABC ABCSYS RUNBATCH ABMOD_6 000000 main 0000000040
PRINTABC ABCSYS RUNBATCH ABMOD_6 000000 _C_pep
QCMD QSYS 000422

The first line is the header line, which shows the program name, program library, module name, module
library, instruction number, procedure name, and statement number.

The first line under the header is always a dump_stack procedure - this procedure is generating
the C2M1211 message or C2M1212 message. The next line is the procedure which is calling the
dump_stack procedure - that is almost always the free procedure, but it could be realloc or
something else. The next line is the __dl__FPv procedure, which is the procedure which handles the
C++ delete operator. For C++ code, this procedure is often in the stack - for C code, it is not.

The free and delete functions are library functions which are freeing memory on behalf of the caller.
They are not important in determining the source of the memory problem.

The line after the __dl__FPv procedure is the one where things get interesting. In this example, the
procedure is called FS_FinalizeDoc and this code contains the incorrect call to delete (it is deleting
an object which has been previously deleted/freed). The owner of that application needs to look at the
source code for that procedure at the given statement number to determine what is being deleted/freed.
In some cases, this object is a local object of some type and it is easy to determine the problem. In other
cases, the object can be passed to the procedure as a parameter and the caller of that procedure needs to
be examined. In this case, the PRT_EndDoc_Adb procedure is the caller of FS_FinalizeDoc.

For this example, the problem is in code within the ABCSYS library.

Runtime Considerations 595

596 IBM i: ILE C/C++ Runtime Library Functions

Library Functions and Extensions

This topic summarizes all the standard C library functions and the ILE C library extensions.

Standard C Library Functions Table, By Name
This table briefly describes the C library functions, listed in alphabetical order. This table provides the
include file name and the function prototype for each function.

Table 46. Standard C Library Functions

Function
System
Include File Function Prototype Description

abort stdlib.h void abort(void); Stops a program abnormally.

abs stdlib.h int abs(int n); Calculates the absolute value of an
integer argument n.

acos math.h double acos(double x); Calculates the arc cosine of x.

asctime time.h char *asctime(const struct
tm *time);

Converts the time that is stored as
a structure to a character string.

asctime_r time.h char *asctime_r (const
struct tm *tm, char *buf);

Converts tm that is stored as a
structure to a character string.
(Restartable version of asctime.)

asin math.h double asin(double x); Calculates the arc sine of x.

assert assert.h void assert(int expression); Prints a diagnostic message and
ends the program if the expression
is false.

atan math.h double atan(double x); Calculates the arc tangent of x.

atan2 math.h double atan2(double y,
double x);

Calculates the arc tangent of y/x.

atexit stdlib.h int atexit(void (*func)(void)); Registers a function to be called at
normal termination.

atof stdlib.h double atof(const char
*string);

Converts string to a double-
precision floating-point value.

atoi stdlib.h int atoi(const char *string); Converts string to an integer.

atol stdlib.h long int atol(const char
*string);

Converts string to a long integer.

bsearch stdlib.h void *bsearch(const void
*key, const void *base,
size_t num, size_t size,
int (*compare) (const void
*element1, const void
*element2));

Performs a binary search on an
array of num elements, each of size
bytes. The array must be sorted
in ascending order by the function
pointed to by compare.

btowc stdio.h
wchar.h

wint_t btowc(int c); Determines whether c constitues
a valid multibyte character in the
initial shift state.

© Copyright IBM Corp. 1998, 2015 597

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

calloc stdlib.h void *calloc(size_t num,
size_t size);

Reserves storage space for an array
of num elements, each of size size,
and initializes the values of all
elements to 0.

catclose6 nl_types.h int catclose (nl_catd catd); Closes a previously opened
message catalog.

catgets6 nl_types.h char *catgets(nl_catd catd,
int set_id, int msg_id, const
char *s);

Retrieves a message from an open
message catalog.

catopen6 nl_types.h nl_catd catopen (const char
*name, int oflag);

Opens a message catalog, which
must be done before a message
can be retrieved.

ceil math.h double ceil(double x); Calculates the double value
representing the smallest integer
that is greater than or equal to x.

clearerr stdio.h void clearerr(FILE *stream); Resets the error indicators and the
end-of-file indicator for stream.

clock time.h clock_t clock(void); Returns the processor time that
has elapsed since the job was
started.

cos math.h double cos(double x); Calculates the cosine of x.

cosh math.h double cosh(double x); Calculates the hyperbolic cosine of
x.

ctime time.h char *ctime(const time_t
*time);

Converts time to a character string.

ctime64 time.h char *ctime64(const
time64_t *time);

Converts time to a character string.

ctime_r time.h char *ctime_r(const time_t
*time, char *buf);

Converts time to a character string.
(Restartable version of ctime.)

ctime64_r time.h char *ctime64_r(const
time64_t *time, char *buf);

Converts time to a character string.
(Restartable version of ctime64.)

difftime time.h double difftime(time_t
time2, time_t time1);

Computes the difference between
time2 and time1.

difftime64 time.h double difftime64(time64_t
time2, time64_t time1);

Computes the difference between
time2 and time1.

div stdlib.h div_t div(int numerator, int
denominator);

Calculates the quotient and
remainder of the division of
numerator by denominator.

erf math.h double erf(double x); Calculates the error function of x.

erfc math.h double erfc(double x); Calculates the error function for
large values of x.

exit stdlib.h void exit(int status); Ends a program normally.

598 IBM i: ILE C/C++ Runtime Library Functions

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

exp math.h double exp(double x); Calculates the exponential function
of a floating-point argument x.

fabs math.h double fabs(double x); Calculates the absolute value of a
floating-point argument x.

fclose stdio.h int fclose(FILE *stream); Closes the specified stream.

fdopen5 stdio.h FILE *fdopen(int handle,
const char *type);

Associates an input or output
stream with the file identified by
handle.

feof stdio.h int feof(FILE *stream); Tests whether the end-of-file flag is
set for a given stream.

ferror stdio.h int ferror(FILE *stream); Tests for an error indicator in
reading from or writing to stream.

fflush1 stdio.h int fflush(FILE *stream); Writes the contents of the buffer
associated with the output stream.

fgetc1 stdio.h int fgetc(FILE *stream); Reads a single unsigned character
from the input stream.

fgetpos1 stdio.h int fgetpos(FILE *stream,
fpos_t *pos);

Stores the current position of the
file pointer associated with stream
into the object pointed to by pos.

fgets1 stdio.h char *fgets(char *string, int
n, FILE *stream);

Reads a string from the input
stream.

fgetwc6
stdio.h
wchar.h

wint_t fgetwc(FILE
*stream);

Reads the next multibyte character
from the input stream pointed to by
stream.

fgetws6
stdio.h
wchar.h

wchar_t *fgetws(wchar_t
*wcs, int n, FILE *stream);

Reads wide characters from the
stream into the array pointed to by
wcs.

fileno5 stdio.h int fileno(FILE *stream); Determines the file handle
currently associated with stream.

floor math.h double floor(double x); Calculates the floating-point value
representing the largest integer
less than or equal to x.

fmod math.h double fmod(double x,
double y);

Calculates the floating-point
remainder of x/y.

fopen stdio.h FILE *fopen(const char
*filename, const char
*mode);

Opens the specified file.

fprintf stdio.h int fprintf(FILE *stream,
const char *format-string,
arg-list);

Formats and prints characters and
values to the output stream.

fputc1 stdio.h int fputc(int c, FILE
*stream);

Prints a character to the output
stream.

Library Functions and Extensions 599

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

fputs1 stdio.h int fputs(const char *string,
FILE *stream);

Copies a string to the output
stream.

fputwc6
stdio.h
wchar.h

wint_t fputwc(wchar_t wc,
FILE *stream);

Converts the wide character wc to
a multibyte character and writes it
to the output stream pointed to by
stream at the current position.

fputws6
stdio.h
wchar.h

int fputws(const wchar_t
*wcs, FILE *stream);

Converts the wide-character string
wcs to a multibyte-character string
and writes it to stream as a
multibyte character string.

fread stdio.h size_t fread(void *buffer,
size_t size, size_t count,
FILE *stream);

Reads up to count items of size
length from the input stream, and
stores them in buffer.

free stdlib.h void free(void *ptr); Frees a block of storage.

freopen stdio.h FILE *freopen(const char
*filename, const char
*mode, FILE *stream);

Closes stream, and reassigns it to
the file specified.

frexp math.h double frexp(double x, int
*expptr);

Separates a floating-point number
into its mantissa and exponent.

fscanf stdio.h int fscanf(FILE *stream,
const char *format-string,
arg-list);

Reads data from stream into
locations given by arg-list.

fseek1 stdio.h int fseek(FILE *stream, long
int offset, int origin);

Changes the current file position
associated with stream to a new
location.

fsetpos1 stdio.h int fsetpos(FILE *stream,
const fpos_t *pos);

Moves the current file position to a
new location determined by pos.

ftell1 stdio.h long int ftell(FILE *stream); Gets the current position of the file
pointer.

fwide6
stdio.h
wchar.h

int fwide(FILE *stream, int
mode);

Determines the orientation of the
stream pointed to by stream.

fwprintf6
stdio.h
wchar.h

int fwprintf(FILE *stream,
const wchar_t *format, arg-
list);

Writes output to the stream
pointed to by stream.

fwrite stdio.h size_t fwrite(const void
*buffer, size_t size,size_t
count, FILE *stream);

Writes up to count items of size
length from buffer to stream.

fwscanf6
stdio.h
wchar.h

int fwscanf(FILE *stream,
const wchar_t *format, arg-
list)

Reads input from the stream
pointed to by stream.

gamma math.h double gamma(double x); Computes the Gamma Function

getc1 stdio.h int getc(FILE *stream); Reads a single character from the
input stream.

600 IBM i: ILE C/C++ Runtime Library Functions

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

getchar1 stdio.h int getchar(void); Reads a single character from
stdin.

getenv stdlib.h char *getenv(const char
*varname);

Searches environment variables for
varname.

gets stdio.h char *gets(char *buffer); Reads a string from stdin, and
stores it in buffer.

getwc6
stdio.h
wchar.h

wint_t getwc(FILE *stream); Reads the next multibyte character
from stream, converts it to a
wide character and advances the
associated file position indicator
for stream.

getwchar6 wchar.h wint_t getwchar(void); Reads the next multibyte character
from stdin, converts it to a
wide character, and advances the
associated file position indicator
for stdin.

gmtime time.h struct tm *gmtime(const
time_t *time);

Converts a time value to a structure
of type tm.

gmtime64 time.h struct tm *gmtime64(const
time64_t *time);

Converts a time value to a structure
of type tm.

gmtime_r time.h struct tm *gmtime_r (const
time_t *time, struct tm
*result);

Converts a time value to a structure
of type tm. (Restartable version of
gmtime.)

gmtime64_r time.h struct tm *gmtime64_r
(const time64_t *time,
struct tm *result);

Converts a time value to a structure
of type tm. (Restartable version of
gmtime64.)

hypot math.h double hypot(double side1,
double side2);

Calculates the hypotenuse of a
right-angled triangle with sides of
length side1 and side2.

isalnum ctype.h int isalnum(int c); Tests if c is alphanumeric.

isalpha ctype.h int isalpha(int c); Tests if c is alphabetic.

isascii4 ctype.h int isascii(int c); Tests if c is within the 7-bit US-
ASCII range.

isblank ctype.h int isblank(int c); Tests if c is a blank or tab character.

iscntrl ctype.h int iscntrl(int c); Tests if c is a control character.

isdigit ctype.h int isdigit(int c); Tests if c is a decimal digit.

isgraph ctype.h int isgraph(int c); Tests if c is a printable character
excluding the space.

islower ctype.h int islower(int c); Tests if c is a lowercase letter.

isprint ctype.h int isprint(int c); Tests if c is a printable character
including the space.

Library Functions and Extensions 601

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

ispunct ctype.h int ispunct(int c); Tests if c is a punctuation
character.

isspace ctype.h int isspace(int c); Tests if c is a whitespace character.

isupper ctype.h int isupper(int c); Tests if c is an uppercase letter.

iswalnum4 wctype.h int iswalnum (wint_t wc); Checks for any alphanumeric wide
character.

iswalpha4 wctype.h int iswalpha (wint_t wc); Checks for any alphabetic wide
character.

iswblank4 wctype.h int iswblank (wint_t wc); Checks for any blank or tab wide
character.

iswcntrl4 wctype.h int iswcntrl (wint_t wc); Tests for any control wide
character.

iswctype4 wctype.h int iswctype(wint_t wc,
wctype_t wc_prop);

Determines whether or not the
wide character wc has the property
wc_prop.

iswdigit4 wctype.h int iswdigit (wint_t wc); Checks for any decimal-digit wide
character.

iswgraph4 wctype.h int iswgraph (wint_t wc); Checks for any printing wide
character except for the wide-
character space.

iswlower4 wctype.h int iswlower (wint_t wc); Checks for any lowercase wide
character.

iswprint4 wctype.h int iswprint (wint_t wc); Checks for any printing wide
character.

iswpunct4 wctype.h int iswpunct (wint_t wc); Test for a wide non-alphanumeric,
non-space character.

iswspace4 wctype.h int iswspace (wint_t wc); Checks for any wide character that
corresponds to an implementation-
defined set of wide characters for
which iswalnum is false.

iswupper4 wctype.h int iswupper (wint_t wc); Checks for any uppercase wide
character.

iswxdigit4 wctype.h int iswxdigit (wint_t wc); Checks for any hexadecimal digit
character.

isxdigit4 wctype.h int isxdigit(int c); Tests if c is a hexadecimal digit.

j0 math.h double j0(double x); Calculates the Bessel function
value of the first kind of order 0.

j1 math.h double j1(double x); Calculates the Bessel function
value of the first kind of order 1.

jn math.h double jn(int n, double x); Calculates the Bessel function
value of the first kind of order n.

602 IBM i: ILE C/C++ Runtime Library Functions

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

labs stdlib.h long int labs(long int n); Calculates the absolute value of n.

ldexp math.h double ldexp(double x, int
exp);

Returns the value of x multiplied by
(2 to the power of exp).

ldiv stdlib.h ldiv_t ldiv(long int
numerator, long int
denominator);

Calculates the quotient
and remainder of numerator/
denominator.

localeconv locale.h struct lconv
*localeconv(void);

Formats numeric quantities in
struct lconv according to the
current locale.

localtime time.h struct tm *localtime(const
time_t *timeval);

Converts timeval to a structure of
type tm.

localtime64 time.h struct tm
*localtime64(const
time64_t *timeval);

Converts timeval to a structure of
type tm.

localtime_r time.h struct tm *localtime_r
(const time_t *timeval,
struct tm *result);

Converts a time value to a structure
of type tm. (Restartable version of
localtime.)

localtime64_r time.h struct tm *localtime64_r
(const time64_t *timeval,
struct tm *result);

Converts a time value to a structure
of type tm. (Restartable version of
localtime64.)

log math.h double log(double x); Calculates the natural logarithm of
x.

log10 math.h double log10(double x); Calculates the base 10 logarithm of
x.

longjmp setjmp.h void longjmp(jmp_buf env,
int value);

Restores a stack environment
previously set in env by the setjmp
function.

malloc stdlib.h void *malloc(size_t size); Reserves a block of storage.

mblen stdlib.h int mblen(const char *string,
size_t n);

Determines the length of a
multibyte character string.

mbrlen4 wchar.h int mbrlen (const char *s,
size_t n, mbstate_t *ps);

Determines the length of a
multibyte character. (Restartable
version of mblen.)

mbrtowc4 wchar.h int mbrtowc (wchar_t *pwc,
const char *s, size_t n,
mbstate_t *ps);

Convert a multibyte character to a
wide character (Restartable version
of mbtowc.)

mbsinit4 wchar.h int mbsinit (const mbstate_t
*ps);

Test state object *ps for initial
state.

mbsrtowcs4 wchar.h size_t mbsrtowc (wchar_t
*dst, const char **src, size_t
len, mbstate_t *ps);

Convert multibyte string to a
wide character string. (Restartable
version of mbstowcs.)

Library Functions and Extensions 603

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

mbstowcs stdlib.h size_t mbstowcs(wchar_t
*pwc, const char *string,
size_t n);

Converts the multibyte characters
in string to their corresponding
wchar_t codes, and stores not
more than n codes in pwc.

mbtowc stdlib.h int mbtowc(wchar_t *pwc,
const char *string, size_t n);

Stores the wchar_t code
corresponding to the first n bytes of
multibyte character string into the
wchar_t character pwc.

memchr string.h void *memchr(const void
*buf, int c, size_t count);

Searches the first count bytes
of buf for the first occurrence
of c converted to an unsigned
character.

memcmp string.h int memcmp(const void
*buf1, const void *buf2,
size_t count);

Compares up to count bytes of buf1
and buf2.

memcpy string.h void *memcpy(void *dest,
const void *src, size_t
count);

Copies count bytes of src to dest.

memmove string.h void *memmove(void *dest,
const void *src, size_t
count);

Copies count bytes of src to dest.
Allows copying between objects
that overlap.

memset string.h void *memset(void *dest, int
c, size_t count);

Sets count bytes of dest to a value
c.

mktime time.h time_t mktime(struct tm
*time);

Converts local time into calendar
time.

mktime64 time.h time64_t mktime64(struct
tm *time);

Converts local time into calendar
time.

modf math.h double modf(double x,
double *intptr);

Breaks down the floating-point
value x into fractional and integral
parts.

nextafter math.h double nextafter(double x,
double y);

Calculates the next representable
value after x in the direction of y.

nextafterl math.h long double nextafterl(long
double x, long double y);

Calculates the next representable
value after x in the direction of y.

nexttoward math.h double nexttoward(double
x, long double y);

Calculates the next representable
value after x in the direction of y.

nexttowardl math.h long double
nexttowardl(long double x,
long double y);

Calculates the next representable
value after x in the direction of y.

nl_langinfo4 langinfo.h char *nl_langinfo(nl_item
item);

Retrieve from the current locale the
string that describes the requested
information specified by item.

perror stdio.h void perror(const char
*string);

Prints an error message to stderr.

604 IBM i: ILE C/C++ Runtime Library Functions

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

pow math.h double pow(double x,
double y);

Calculates the value x to the power
y.

printf stdio.h int printf(const char
*format-string, arg-list);

Formats and prints characters and
values to stdout.

putc1 stdio.h int putc(int c, FILE *stream); Prints c to the output stream.

putchar1 stdio.h int putchar(int c); Prints c to stdout.

putenv stdlib.h int *putenv(const char
*varname);

Sets the value of an environment
variable by altering an existing
variable or creating a new one.

puts stdio.h int puts(const char *string); Prints a string to stdout.

putwc6
stdio.h
wchar.h

wint_t putwchar(wchar_t
wc, FILE *stream);

Converts the wide character wc to a
multibyte character, and writes it to
the stream at the current position.

putwchar6 wchar.h wint_t putwchar(wchar_t
wc);

Converts the wide character wc to a
multibyte character and writes it to
stdout.

qsort stdlib.h void qsort(void *base,
size_t num, size_t width,
int(*compare)(const void
*element1, const void
*element2));

Performs a quick sort of an array of
num elements, each of width bytes
in size.

quantexpd32 math.h _Decimal32
quantized32(_Decimal32 x,
_Decimal32 y);

Compute the quantum exponent of
a single-precision decimal floating-
point value.

quantexpd64 math.h _Decimal64
quantized64(_Decimal64 x,
_Decimal64 y);

Compute the quantum exponent
of a double-precision decimal
floating-point value.

quantexpd128 math.h _Decimal128
quantized128(_Decimal128
x, _Decimal128 y);

Compute the quantum exponent of
a quad-precision decimal floating-
point value.

quantized32 math.h int
quantexpd32(_Decimal32
x);

Set the quantum exponent
of a single-precision decimal
floating-point value to the
quantum exponent of another
single-precision decimal floating-
point value.

quantized64 math.h int
quantexpd64(_Decimal64
x);

Set the quantum exponent of a
double-precision decimal floating-
point value to the quantum
exponent of another double-
precision decimal floating-point
value.

Library Functions and Extensions 605

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

quantized128 math.h int
quantexpd128(_Decimal12
8 x);

Set the quantum exponent
of a quad-precision decimal
floating-point value to the
quantum exponent of another
quad-precision decimal floating-
point value.

samequantumd32 math.h __bool__
samequantumd32(_Decima
l32 x, _Decimal32 y);

Determine if the quantum
exponents of two single-precision
decimal floating-point values are
the same.

samequantumd64 math.h __bool__
samequantumd64(_Decima
l64 x, _Decimal64 y);

Determine if the quantum
exponents of two double-precision
decimal floating-point values are
the same.

samequantumd128 math.h __bool__
samequantumd128(_Decim
al128 x, _Decimal128 y);

Determine if the quantum
exponents of two quad-precision
decimal floating-point values are
the same.

raise signal.h int raise(int sig); Sends the signal sig to the running
program.

rand stdlib.h int rand(void); Returns a pseudo-random integer.

rand_r stdlib.h int rand_r(void); Returns a pseudo-random integer.
(Restartable version)

realloc stdlib.h void *realloc(void *ptr,
size_t size);

Changes the size of a previously
reserved storage block.

regcomp regex.h int regcomp(regex_t *preg,
const char *pattern, int
cflags);

Compiles the source regular
expression pointed to by pattern
into an executable version and
stores it in the location pointed to
by preg.

regerror regex.h size_t regerror(int errcode,
const regex_t *preg, char
*errbuf, size_t errbuf_size);

Finds the description for the
error code errcode for the regular
expression preg.

regexec regex.h int regexec(const regex_t
*preg, const char *string,
size_t nmatch, regmatch_t
*pmatch, int eflags);

Compares the null-ended string
string against the compiled regular
expression preg to find a match
between the two.

regfree regex.h void regfree(regex_t *preg); Frees any memory that was
allocated by regcomp to implement
the regular expression preg.

remove stdio.h int remove(const char
*filename);

Deletes the file specified by
filename.

rename stdio.h int rename(const char
*oldname, const char
*newname);

Renames the specified file.

606 IBM i: ILE C/C++ Runtime Library Functions

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

rewind1 stdio.h void rewind(FILE *stream); Repositions the file pointer
associated with stream to the
beginning of the file.

scanf stdio.h int scanf(const char
*format-string, arg-list);

Reads data from stdin into
locations given by arg-list.

setbuf stdio.h void setbuf(FILE *stream,
char *buffer);

Controls buffering for stream.

setjmp setjmp.h int setjmp(jmp_buf env); Saves a stack environment that
can be subsequently restored by
longjmp.

setlocale locale.h char *setlocale(int category,
const char *locale);

Changes or queries variables
defined in the locale.

setvbuf stdio.h int setvbuf(FILE *stream,
char *buf, int type, size_t
size);

Controls buffering and buffer size
for stream.

signal signal.h void(*signal (int sig,
void(*func)(int))) (int);

Registers func as a signal handler
for the signal sig.

sin math.h double sin(double x); Calculates the sine of x.

sinh math.h double sinh(double x); Calculates the hyperbolic sine of x.

snprintf stdio.h int snprintf(char *outbuf,
size_t n, const char*, ...)

Same as sprintf except that the
function will stop after n characters
have been written to outbuf.

sprintf stdio.h int sprintf(char *buffer,
const char *format-string,
arg-list);

Formats and stores characters and
values in buffer.

sqrt math.h double sqrt(double x); Calculates the square root of x.

srand stdlib.h void srand(unsigned int
seed);

Sets the seed for the pseudo-
random number generator.

sscanf stdio.h int sscanf(const char
*buffer, const char *format,
arg-list);

Reads data from buffer into the
locations given by arg-list.

strcasecmp strings.h int srtcasecmp(const char
*string1, const char
*string2);

Compares strings without case
sensitivity.

strcat string.h char *strcat(char *string1,
const char *string2);

Concatenates string2 to string1.

strchr string.h char *strchr(const char
*string, int c);

Locates the first occurrence of c in
string.

strcmp string.h int strcmp(const char
*string1, const char
*string2);

Compares the value of string1 to
string2.

Library Functions and Extensions 607

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

strcoll string.h int strcoll(const char
*string1, const char
*string2);

Compares two strings using the
collating sequence in the current
locale.

strcpy string.h char *strcpy(char *string1,
const char *string2);

Copies string2 into string1.

strcspn string.h size_t strcspn(const char
*string1, const char
*string2);

Returns the length of the initial
substring of string1 consisting of
characters not contained in string2.

strerror string.h char *strerror(int errnum); Maps the error number in errnum
to an error message string.

strfmon4 wchar.h int strfmon (char *s,
size_t maxsize, const char
*format, ...);

Converts monetary value to string.

strftime time.h size_t strftime (char *dest,
size_t maxsize, const char
*format, const struct tm
*timeptr);

Stores characters in an array
pointed to by dest, according to the
string determined by format.

strlen string.h size_t strlen(const char
*string);

Calculates the length of string.

strncasecmp strings.h int strncasecmp(const char
*string1, const char
*string2, size_t count);

Compares strings without case
sensitivity.

strncat string.h char *strncat(char *string1,
const char *string2, size_t
count);

Concatenates up to count
characters of string2 to string1.

strncmp string.h int strncmp(const char
*string1, const char
*string2, size_t count);

Compares up to count characters of
string1 and string2.

strncpy string.h char *strncpy(char *string1,
const char *string2, size_t
count);

Copies up to count characters of
string2 to string1.

strpbrk string.h char *strpbrk(const char
*string1, const char
*string2);

Locates the first occurrence in
string1 of any character in string2.

strptime4 time.h char *strptime (const char
*buf, const char *format,
struct tm *tm);

Date and time conversion

strrchr string.h char *strrchr(const char
*string, int c);

Locates the last occurrence of c in
string.

strspn string.h size_t strspn(const char
*string1, const char
*string2);

Returns the length of the initial
substring of string1 consisting of
characters contained in string2.

608 IBM i: ILE C/C++ Runtime Library Functions

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

strstr string.h char *strstr(const char
*string1, const char
*string2);

Returns a pointer to the first
occurrence of string2 in string1.

strtod stdlib.h double strtod(const char
*nptr, char **endptr);

Converts nptr to a double precision
value.

strtod32 stdlib.h _Decimal32 strtod32(const
char *nptr, char **endptr);

Converts nptr to a single-precision
decimal floating-point value.

strtod64 stdlib.h _Decimal64 strtod64(const
char *nptr, char **endptr);

Converts nptr to a double-precision
decimal floating-point value.

strtod128 stdlib.h _Decimal128
strtod128(const char *nptr,
char **endptr);

Converts nptr to a quad-precision
decimal floating-point value.

strtof stdlib.h float strtof(const char *nptr,
char **endptr);

Converts nptr to a float value.

strtok string.h char *strtok(char *string1,
const char *string2);

Locates the next token in string1
delimited by the next character in
string2.

strtok_r string.h char *strtok_r(char *string,
const char *seps, char
**lasts);

Locates the next token in string
delimited by the next character
in seps. (Restartable version of
strtok.)

strtol stdlib.h long int strtol(const char
*nptr, char **endptr, int
base);

Converts nptr to a signed long
integer.

strtold stdlib.h long double strtold(const
char *nptr, char **endptr);

Converts nptr to a long double
value.

strtoul stdlib.h unsigned long int
strtoul(const char *string1,
char **string2, int base);

Converts string1 to an unsigned
long integer.

strxfrm string.h size_t strxfrm(char *string1,
const char *string2, size_t
count);

Converts string2 and places the
result in string1. The conversion
is determined by the program's
current locale.

swprintf wchar.h int swprintf(wchar_t
*wcsbuffer, size_t n, const
wchar_t *format, arg-list);

Formats and stores a series of
wide characters and values into the
wide-character buffer wcsbuffer.

swscanf wchar.h int swscanf (const wchar_t
*buffer, const wchar_t
*format, arg-list)

Reads data from buffer into the
locations given by arg-list.

system stdlib.h int system(const char
*string);

Passes string to the system
command analyzer.

tan math.h double tan(double x); Calculates the tangent of x.

Library Functions and Extensions 609

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

tanh math.h double tanh(double x); Calculates the hyperbolic tangent
of x.

time time.h time_t time(time_t
*timeptr);

Returns the current calendar time.

time64 time.h time64_t time64(time64_t
*timeptr);

Returns the current calendar time.

tmpfile stdio.h FILE *tmpfile(void); Creates a temporary binary file and
opens it.

tmpnam stdio.h char *tmpnam(char *string); Generates a temporary file name.

toascii ctype.h int toascii(int c); Converts c to a character in the 7-
bit US-ASCII character set.

tolower ctype.h int tolower(int c); Converts c to lowercase.

toupper ctype.h int toupper(int c); Converts c to uppercase.

towctrans wctype.h wint_t towctrans(wint_t wc,
wctrans_t desc);

Translates the wide character wc
based on the mapping described by
desc.

towlower4 wctype.h wint_t towlower (wint_t
wc);

Converts uppercase letter to
lowercase letter.

towupper4 wctype.h wint_t towupper (wint_t
wc);

Converts lowercase letter to
uppercase letter.

ungetc1 stdio.h int ungetc(int c, FILE
*stream);

Pushes c back onto the input
stream.

ungetwc6
stdio.h
wchar.h

wint_t ungetwc(wint_t wc,
FILE *stream);

Pushes the wide character wc back
onto the input stream.

va_arg stdarg.h var_type va_arg(va_list
arg_ptr, var_type);

Returns the value of one argument
and modifies arg_ptr to point to the
next argument.

va_copy stdarg.h void va_copy(va_list dest,
va_list src);

Initializes dest as a copy of src.

va_end stdarg.h void va_end(va_list
arg_ptr);

Facilitates normal return from
variable argument list processing.

va_start stdarg.h void va_start(va_list
arg_ptr, variable_name);

Initializes arg_ptr for subsequent
use by va_arg and va_end.

vfprintf stdio.h
stdarg.h

int vfprintf(FILE *stream,
const char *format, va_list
arg_ptr);

Formats and prints characters to
the output stream using a variable
number of arguments.

vfscanf stdio.h
stdarg.h

int vfscanf(FILE *stream,
const char *format, va_list
arg_ptr);

Reads data from a specified stream
into locations given by a variable
number of arguments.

610 IBM i: ILE C/C++ Runtime Library Functions

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

vfwprintf6
stdarg.h
stdio.h
wchar.h

int vfwprintf(FILE *stream,
const wchar_t *format,
va_list arg);

Equivalent to fwprintf, except
that the variable argument list is
replaced by arg.

vfwscanf stdio.h
stdarg.h

int vfwscanf(FILE *stream,
const wchar_t *format,
va_list arg_ptr);

Reads wide data from a specified
stream into locations given by a
variable number of arguments.

vprintf stdio.h
stdarg.h

int vprintf(const char
*format, va_list arg_ptr);

Formats and prints characters to
stdout using a variable number of
arguments.

vscanf stdio.h
stdarg.h

int vscanf(const char
*format, va_list arg_ptr);

Reads data from stdin into
locations given by a variable
number of arguments.

vsprintf stdio.h
stdarg.h

int vsprintf(char *target-
string, const char *format,
va_list arg_ptr);

Formats and stores characters in a
buffer using a variable number of
arguments.

vsnprintf stdio.h int vsnprintf(char *outbuf,
size_t n, const char*,
va_list);

Same as vsprintf except that the
function will stop after n characters
have been written to outbuf.

vsscanf stdio.h
stdarg.h

int vsscanf(const
char*buffer, const char
*format, va_list arg_ptr);

Reads data from a buffer into
locations given by a variable
number of arguments.

vswprintf stdarg.h
wchar.h

int vswprintf(wchar_t
*wcsbuffer, size_t n, const
wchar_t *format, va_list
arg);

Formats and stores a series of wide
characters and values in the buffer
wcsbuffer.

vswscanf stdio.h
wchar.h

int vswscanf(const wchar_t
*buffer, const wchar_t
*format, va_list arg_ptr);

Reads wide data from a buffer
into locations given by a variable
number of arguments.

vwprintf6
stdarg.h
wchar.h

int vwprintf(const wchar_t
*format, va_list arg);

Equivalent to wprintf, except that
the variable argument list is
replaced by arg.

vwscanf stdio.h
wchar.h

int vwscanf(const wchar_t
*format, va_list arg_ptr);

Reads wide data from stdin into
locations given by a variable
number of arguments.

wcrtomb4 wchar.h int wcrtomb (char *s,
wchar_t wchar, mbstate_t
*pss);

Converts a wide character to a
multibyte character. (Restartable
version of wctomb.)

wcscat wchar.h wchar_t *wcscat(wchar_t
*string1, const wchar_t
*string2);

Appends a copy of the string
pointed to by string2 to the end of
the string pointed to by string1.

wcschr wchar.h wchar_t *wcschr(const
wchar_t *string, wchar_t
character);

Searches the wide-character string
pointed to by string for the
occurrence of character.

Library Functions and Extensions 611

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

wcscmp wchar.h int wcscmp(const wchar_t
*string1, const wchar_t
*string2);

Compares two wide-character
strings, *string1 and *string2.

wcscoll4 wchar.h int wcscoll (const wchar_t
*wcs1, const wchar_t
*wcs2);

Compares two wide-character
strings using the collating
sequence in the current locale.

wcscpy wchar.h wchar_t *wcscpy(wchar_t
*string1, const wchar_t
*string2);

Copies the contents of *string2
(including the ending wchar_t null
character) into *string1.

wcscspn wchar.h size_t wcscspn(const
wchar_t *string1, const
wchar_t *string2);

Determines the number of wchar_t
characters in the initial segment of
the string pointed to by *string1
that do not appear in the string
pointed to by *string2.

wcsftime wchar.h size_t wcsftime(wchar_t
*wdest, size_t maxsize,
const wchar_t *format,
const struct tm *timeptr);

Converts the time and date
specification in the timeptr
structure into a wide-character
string.

wcslen wchar.h size_t wcslen(const wchar_t
*string);

Computes the number of wide-
characters in the string pointed to
by string.

wcslocaleconv locale.h struct wcslconv
*wcslocaleconv(void);

Formats numeric quantities in
struct wcslconv according to the
current locale.

wcsncat wchar.h wchar_t *wcsncat(wchar_t
*string1, const wchar_t
*string2, size_t count);

Appends up to count wide
characters from string2 to the end
of string1, and appends a wchar_t
null character to the result.

wcsncmp wchar.h int wcsncmp(const wchar_t
*string1, const wchar_t
*string2, size_t count);

Compares up to count wide
characters in string1 to string2.

wcsncpy wchar.h wchar_t *wcsncpy(wchar_t
*string1, const wchar_t
*string2, size_t count);

Copies up to count wide characters
from string2 to string1.

wcspbrk wchar.h wchar_t *wcspbrk(const
wchar_t *string1, const
wchar_t *string2);

Locates the first occurrence in the
string pointed to by string1 of any
wide characters from the string
pointed to by string2.

wcsptime wchar.h wchar_t *wcsptime (const
wchar_t *buf, const wchar_t
*format, struct tm *tm);

Date and time conversion.
Equivalent to strptime(), except
that it uses wide characters.

wcsrchr wchar.h wchar_t *wcsrchr(const
wchar_t *string, wchar_t
character);

Locates the last occurrence of
character in the string pointed to by
string.

612 IBM i: ILE C/C++ Runtime Library Functions

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

wcsrtombs4 wchar.h size_t wcsrtombs (char *dst,
const wchar_t **src, size_t
len, mbstate_t *ps);

Converts wide character string
to multibyte string. (Restartable
version of wcstombs.)

wcsspn wchar.h size_t wcsspn(const
wchar_t *string1, const
wchar_t *string2);

Computes the number of wide
characters in the initial segment
of the string pointed to by string1,
which consists entirely of wide
characters from the string pointed
to by string2.

wcsstr wchar.h wchar_t *wcsstr(const
wchar_t *wcs1, const
wchar_t *wcs2);

Locates the first occurrence of
wcs2 in wcs1.

wcstod wchar.h double wcstod(const
wchar_t *nptr, wchar_t
**endptr);

Converts the initial portion of the
wide-character string pointed to by
nptr to a double value.

wcstod32 wchar.h _Decimal32
wcstod32(const wchar_t
*nptr, wchar_t **endptr);

Converts the initial portion of the
wide-character string pointed to by
nptr to a single-precision decimal
floating-point value.

wcstod64 wchar.h _Decimal64
wcstod64(const wchar_t
*nptr, wchar_t **endptr);

Converts the initial portion of the
wide-character string pointed to by
nptr to a double-precision decimal
floating-point value.

wcstod128 wchar.h _Decimal128
wcstod128(const wchar_t
*nptr, wchar_t **endptr);

Converts the initial portion of the
wide-character string pointed to by
nptr to a quad-precision decimal
floating-point value.

wcstof wchar.h float wcstof(const wchar_t
*nptr, wchar_t **endptr);

Converts the initial portion of the
wide-character string pointed to by
nptr to a float value.

wcstok wchar.h wchar_t *wcstok(wchar_t
*wcs1, const wchar_t
*wcs2, wchar_t **ptr)

Breaks wcs1 into a sequence of
tokens, each of which is delimited
by a wide character from the wide
string pointed to by wcs2.

wcstol wchar.h long int wcstol(const
wchar_t *nptr, wchar_t
**endptr, int base);

Converts the initial portion of the
wide-character string pointed to by
nptr to a long integer value.

wcstold wchar.h long double wcstold(const
wchar_t *nptr, wchar_t
**endptr);

Converts the initial portion of the
wide-character string pointed to by
nptr to a long double value.

wcstombs stdlib.h size_t wcstombs(char *dest,
const wchar_t *string, size_t
count);

Converts the wchar_t string into a
multibyte string dest.

Library Functions and Extensions 613

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

wcstoul wchar.h unsigned long int
wcstoul(const wchar_t
*nptr, wchar_t **endptr, int
base);

Converts the initial portion of the
wide-character string pointed to by
nptr to an unsigned long integer
value.

wcsxfrm4 wchar.h size_t wcsxfrm (wchar_t
*wcs1, const wchar_t
*wcs2, size_t n);

Transforms a wide-character
string to values which represent
character collating weights and
places the resulting wide-character
string into an array.

wctob stdarg.h
wchar.h

int wctob(wint_t wc); Determines whether wc
corresponds to a member of the
extended character set whose
multibyte character representation
is a single byte when in the initial
shift state.

wctomb stdlib.h int wctomb(char *string,
wchar_t character);

Converts the wchar_t value of
character into a multibyte string.

wctrans wctype.h wctrans_t wctrans(const
char *property);

Constructs a value with type
wctrans_t that describes a
mapping between wide characters
identified by the string argument
property.

wctype4 wchar.h wctype_t wctype (const
char *property);

Obtains handle for character
property classification.

wcwidth wchar.h int wcswidth(const wchar_t
*pwcs, size_t n);

Determine the display width of a
wide character string.

wmemchr wchar.h wchar_t *wmemchr(const
wchar_t *s, wchar_t c, size_t
n);

Locates the first occurrence of c in
the initial n wide characters of the
object pointed to by s.

wmemcmp wchar.h int wmemcmp(const
wchar_t *s1, const wchar_t
*s2, size_t n);

Compares the first n wide
characters of the object pointed to
by s1 to the first n characters of the
object pointed to by s2.

wmemcpy wchar.h wchar_t
*wmemcpy(wchar_t *s1,
const wchar_t *s2, size_t n);

Copies n wide characters from the
object pointed to by s2 to the
object pointed to by s1.

wmemmove wchar.h wchar_t
*wmemmove(wchar_t *s1,
const wchar_t *s2, size_t n);

Copies n wide characters from the
object pointed to by s2 to the
object pointed to by s1.

wmemset wchar.h wchar_t *wmemset(wchar_t
*s, wchar_t c, size_t n);

Copies the value of c into each of
the first n wide characters of the
object pointed to by s.

wprintf6 wchar.h int wprintf(const wchar_t
*format, arg-list);

Equivalent to fwprintf with the
argument stdout interposed before
the arguments to wprintf.

614 IBM i: ILE C/C++ Runtime Library Functions

Table 46. Standard C Library Functions (continued)

Function
System
Include File Function Prototype Description

wscanf6 wchar.h int wscanf(const wchar_t
*format, arg-list);

Equivalent to fwscanf with the
argument stdin interposed before
the arguments of wscanf.

y0 math.h double y0(double x); Calculates the Bessel function
value of the second kind of order
0.

y1 math.h double y1(double x); Calculates the Bessel function
value of the second kind of order
1.

yn math.h double yn(int n, double x); Calculates the Bessel function
value of the second kind of order
n.

Note: 1 This function is not supported for files opened with type=record.

Note: 2 This function is not supported for files opened with type=record and mode=ab+, rb+, or wb+.

Note: 3 The ILE C compiler only supports fully buffered and line-buffered streams. Since a block and
a line are equal to the record length of the opened file, fully buffered and line-buffered streams are
supported in the same way. The setbuf() and setvbuf() functions have no effect.

Note: 4 This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command.

Note: 5 This function is available only when SYSIFCOPT(*IFSIO) is specified on the CRTCMOD or
CRTBNDC command.

Note: 6 This function is not available when either LOCALETYPE(*CLD) or SYSIFCOPT(*NOIFSIO) is
specified on the compilation command.

ILE C Library Extensions to C Library Functions Table
This table briefly describes all the ILE C library extensions, listed in alphabetical order. This table provides
the include file name, and the function prototype for each function.

Table 47. ILE C Library Extensions

Function
System
Include file Function prototype Description

_C_Get
_Ssn_Handle

stdio.h _SSN_Handle_T _C_Get_Ssn_Handle (void); Returns a handle to the C
session for use with DSM APIs.

_C_Quickpool
_Debug

stdio.h _C_Quickpool_Debug_T
_C_Quickpool_Debug(_C_Quickpool_Debug_T
*newval);

Modifies Quick Pool memory
characteristics.

_C_Quickpool
_Init

stdio.h int _C_Quickpool_Init(unsigned int numpools,
unsigned int *cell_sizes, unsigned int
*num_cells);

Initializes the use of the Quick
Pool memory management
algorithm.

Library Functions and Extensions 615

Table 47. ILE C Library Extensions (continued)

Function
System
Include file Function prototype Description

_C_Quickpool
_Report

stdio.h void _C_Quickpool_Report(void); Generates a spooled file that
contains a snapshot of the
memory used by the Quick
Pool memory management
algorithm in the current
activation group.

_C_TS
_malloc64

stdlib.h void *_C_TS_malloc64(unsigned long long int); Same as _C_TS_malloc, but
takes an unsigned long long int
so the user can ask for more
than 2 GB of storage on a single
request.

_C_TS
_malloc_info

mallocinfo.h int _C_TS_malloc_info(struct _C_mallinfo_t
*output_record, size_t sizeofoutput);

Returns current memory usage
information.

_C_TS
_malloc_debu
g

mallocinfo.h int _C_TS_malloc_debug(unsigned int
dump_level, unsigned int verify_level,
struct _C_mallinfo_t *output_record, size_t
sizeofoutput);

Returns the same information
as _C_TS_malloc_info, plus
produces a spool file of
detailed information about the
memory structure used by
C_TS_malloc functions.

_GetExcData signal.h void _GetExcData (_INTRPT_Hndlr_Parms_T
*parms);

Retrieves information about an
exception from within a signal
handler.

QXXCHGDA xxdtaa.h void QXXCHGDA(_DTAA_NAME_T dtaname,
short int offset, short int len, char *dtaptr);

Changes the data area
specified on dtaname using the
data pointed to by dtaptr.

QXXDTOP xxcvt.h void QXXDTOP(unsigned char *pptr, int digits,
int fraction, double value);

Converts a double value to
a packed decimal value with
digits total digits and fraction
fractional digits.

QXXDTOZ xxcvt.h void QXXDTOZ(unsigned char *zptr, int digits,
int fraction, double value);

Converts a double value to
a zoned decimal value with
digits total digits and fraction
fractional digits.

QXXITOP xxcvt.h void QXXITOP(unsigned char *pptr, int digits,
int fraction, int value);

Converts an integer value to a
packed decimal value.

QXXITOZ xxcvt.h void QXXITOZ(unsigned char *zptr, int digits,
int fraction, int value);

Converts an integer value to a
zoned decimal value.

QXXPTOD xxcvt.h double QXXPTOD(unsigned char *pptr, int
digits, int fraction);

Converts a packed decimal
number to a double value with
digits total digits and fraction
fractional digits.

616 IBM i: ILE C/C++ Runtime Library Functions

Table 47. ILE C Library Extensions (continued)

Function
System
Include file Function prototype Description

QXXPTOI xxcvt.h int QXXPTOI(unsigned char *pptr, int digits, int
fraction);

Converts a packed decimal
number to an integer value with
digits total digits and fraction
fractional digits.

QXXRTVDA xxdtaa.h void QXXRTVDA(_DTAA_NAME_T dtaname,
short int offset, short int len, char *dtaptr);

Retrieves a copy of the data
area specified on dtaname.

QXXZTOD xxcvt.h double QXXZTOD(unsigned char *zptr, int
digits, int fraction);

Converts a zoned decimal
number to a double value with
digits total digits and fraction
fractional digits.

QXXZTOI xxcvt.h int QXXZTOI(unsigned char *zptr, int digits, int
fraction);

Converts a zoned decimal
value to an integer value with
digits total digits and fraction
fractional digits.

_Racquire recio.h int _Racquire(_RFILE *fp, char *dev); Prepares a device for record
I/O operations.

_Rclose recio.h int _Rclose(_RFILE *fp); Closes a file that is opened for
record I/O operations.

_Rcommit recio.h int _Rcommit(char *cmtid); Completes the current
transaction, and establishes a
new commitment boundary.

_Rdelete recio.h _RIOFB_T *_Rdelete(_RFILE *fp); Deletes the currently locked
record.

_Rdevatr xxfdbk.h
recio.h

_XXDEV_ATR_T *_Rdevatr(_RFILE *fp, char
*pgmdev);

Returns a pointer to a copy of
the device attributes feedback
area for the file referenced by
fp and the device pgmdev.

_Rfeod recio.h int _Rfeod(_RFILE *fp); Forces an end-of-file condition
for the file referenced by fp.

_Rfeov recio.h int _Rfeov(_RFILE *fp); Forces an end-of-volume
condition for the tape file
referenced by fp.

_Rformat recio.h void Rformat(_RFILE *fp, char *fmt); Sets the record format to fmt
for the file referenced by fp.

_Rindara recio.h void _Rindara (_RFILE *fp, char *indic_buf); Sets up the separate indicator
area to be used for subsequent
record I/O operations.

_Riofbk recio.h
xxfdbk.h

_XXIOFB_T *_Riofbk(_RFILE *fp); Returns a pointer to a copy of
the I/O feedback area for the
file referenced by fp.

_Rlocate recio.h _RIOFB_T *_Rlocate(_RFILE *fp, void *key, int
klen_rrn, int opts);

Positions to the record in the
file associated with fp and
specified by the key, klen_rrn
and opt parameters.

Library Functions and Extensions 617

Table 47. ILE C Library Extensions (continued)

Function
System
Include file Function prototype Description

_Ropen recio.h _RFILE *_Ropen(const char *filename, const
char *mode ...);

Opens a file for record I/O
operations.

_Ropnfbk recio.h
xxfdbk.h

_XXOPFB_T *_Ropnfbk(_RFILE *fp); Returns a pointer to a copy of
the open feedback area for the
file referenced by fp.

_Rpgmdev recio.h int _Rpgmdev(_RFILE *fp, char *dev); Sets the default program
device.

_Rreadd recio.h _RIOFB_T *_Rreadd(_RFILE *fp, void *buf,
size_t size, int opts, long rrn);

Reads a record by relative
record number.

_Rreadf recio.h _RIOFB_T *_Rreadf(_RFILE *fp, void *buf,
size_t size, int opts);

Reads the first record.

_Rreadindv recio.h _RIOFB_T *_Rreadindv(_RFILE *fp, void *buf,
size_t size, int opts);

Reads a record from an invited
device.

_Rreadk recio.h _RIOFB_T *_Rreadk(_RFILE *fp, void *buf,
size_t size, int opts, void *key, int klen);

Reads a record by key.

_Rreadl recio.h _RIOFB_T *_Rreadl(_RFILE *fp, void *buf,
size_t size, int opts);

Reads the last record.

_Rreadn recio.h _RIOFB_T *_Rreadn(_RFILE *fp, void *buf,
size_t size, int opts);

Reads the next record.

_Rreadnc recio.h _RIOFB_T *_Rreadnc(_RFILE *fp, void *buf,
size_t size);

Reads the next changed record
in the subfile.

_Rreadp recio.h _RIOFB_T *_Rreadp(_RFILE *fp, void *buf,
size_t size, int opts);

Reads the previous record.

_Rreads recio.h _RIOFB_T *_Rreads(_RFILE *fp, void *buf,
size_t size, int opts);

Reads the same record.

_Rrelease recio.h int _Rrelease(_RFILE *fp, char *dev); Makes the specified device
ineligible for record I/O
operations.

_Rrlslck recio.h int _Rrlslck(_RFILE *fp); Releases the currently locked
record.

_Rrollbck recio.h int _Rrollbck(void); Reestablishes the last
commitment boundary as the
current commitment boundary.

_Rupdate recio.h _RIOFB_T *_Rupdate(_RFILE *fp, void *buf,
size_t size);

Writes to the record that is
currently locked for update.

_Rupfb recio.h _RIOFB_T *_Rupfb(_RFILE *fp); Updates the feedback structure
with information about the last
record I/O operation.

_Rwrite recio.h _RIOFB_T *_Rwrite(_RFILE *fp, void *buf,
size_t size);

Writes a record to the end of
the file.

618 IBM i: ILE C/C++ Runtime Library Functions

Table 47. ILE C Library Extensions (continued)

Function
System
Include file Function prototype Description

_Rwrited recio.h _RIOFB_T *_Rwrited(_RFILE *fp, void *buf,
size_t size, unsigned long rrn);

Writes a record by relative
record number. It only writes
over deleted records.

_Rwriterd recio.h _RIOFB_T *_Rwriterd(_RFILE *fp, void *buf,
size_t size);

Reads and writes a record.

_Rwrread recio.h _RIOFB_T *_Rwrread(_RFILE *fp, void *inbuf,
size_t in_buf_size, void *out_buf, size_t
out_buf_size);

Functions as _Rwriterd, except
separate buffers may be
specified for input and output
data.

__wcsicmp wchar.h int __wcsicmp(const wchar_t *string1, const
wchar_t *string2);

Compares wide character
strings without case sensitivity.

__wcsnicmp wchar.h int __wcsnicmp(const wchar_t *string1, const
wchar_t *string2, size_t count);

Compares wide character
strings without case sensitivity.

Library Functions and Extensions 619

620 IBM i: ILE C/C++ Runtime Library Functions

Related information

For additional information about topics related to ILE C/C++ programming on the IBM i platform, refer to
the following IBM i publications and IBM i Information Center topics:

 (http://www.ibm.com/systems/i/infocenter/)

• The Application programming interfaces topic in the Programming category of the IBM i Information
Center provides information for experienced application and system programmers who want to use the
application programming interfaces (APIs).

• Application Display Programming, SC41-5715-02 provides information about using DDS to create and
maintain displays, creating and working with display files, creating online help information, using UIM to
define displays, and using panel groups, records, and documents.

• The Backup and recovery topic in the Systems management category of the IBM i Information Center
includes information about how to plan a backup and recovery strategy, how to back up your system,
how to manage tape libraries, and how to set up disk protection for your data. It also includes
information about the Backup, Recovery and Media Services plug-in to IBM i Navigator, information
about recovering your system, and answers to some frequently asked questions about backup and
recovery.

• Recovering your system, SC41-5304-09 provides general information about recovery and availability
options for the IBM i platform. It describes the options available on the system, compares and contrasts
them, and tells where to find more information about them.

• The Control language topic in the Programming category of the IBM i Information Center provides
a description of the control language commands. It also provides a wide-ranging discussion of
programming topics including a general discussion on objects and libraries, CL programming, controlling
flow and communicating between programs, working with objects in CL programs, and creating
CL programs. Other topics include predefined and impromptu messages and message handling,
defining and creating user-defined commands and menus, application testing, including debug mode,
breakpoints, traces, and display functions.

• Communications Management, SC41-5406-02 provides information about work management in
a communications environment, communications status, tracing and diagnosing communications
problems, error handling and recovery, performance, and specific line speed and subsystem storage
information.

• The Files and file systems category in the IBM i Information Center provides information about using
files in application programs.

• The globalization topic in the Programming category of the IBM i Information Center provides
information for planning, installing, configuring, and using globalization and multilingual support of the
IBM i product. It also provides an explanation of the database management of multilingual data and
application considerations for a multilingual system.

• The ICF Programming, SC41-5442-00 manual provides information needed to write application
programs that use communications and the intersystem communications function (IBM i -ICF). It also
contains information about data description specifications (DDS) keywords, system-supplied formats,
return codes, file transfer support, and program examples.

• ILE Concepts, SC41-5606-08 explains concepts and terminology pertaining to the Integrated Language
Environment architecture of the IBM i licensed program. Topics covered include creating modules,
binding, running programs, debugging programs, and handling exceptions.

• The Printing category of information in the IBM i Information Center provides information about how to
plan for and configure printing functions, as well as basic printing information.

• The Basic printing topic provides specific information about printing elements and concepts of the IBM i
product, printer file and print spooling support, and printer connectivity.

© Copyright IBM Corp. 1998, 2015 621

http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415715.pdf
http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415406.pdf
http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415442.pdf

• The Security category in the IBM i Information Center provides information about how to set up and
plan for your system security, how to secure network and communications applications, and how to add
highly secure cryptographic processing capability to your product. It also includes information about
object signing and signature validation, identity mapping, and solutions to Internet security risks.

• Security reference, SC41-5302-10 tells how system security support can be used to protect the system
and data from being used by people who do not have the proper authorization, protect data from
intentional or unintentional damage or destruction, keep security information up-to-date, and set up
security on the system.

• The Systems management category in the IBM i Information Center provides information about the
system unit control panel, starting and stopping the system, using tapes and diskettes, working with
program temporary fixes, as well as handling problems.

• ILE C/C++ Language Reference contains reference information for the C/C++ languages.
• ILE C/C++ Compiler Reference contains reference information about using preprocessor statements,

macros defined by and pragmas recognized by the ILE C/C++ compiler, command line options for both
IBM i and QShell working environments, and I/O considerations for the IBM i environment.

• ILE C/C++ Programmer's Guide provides information about how to develop applications using the
ILE C language. It includes information about creating, running and debugging programs. It also
includes programming considerations for interlanguage program and procedure calls, locales, handling
exceptions, database, externally described and device files. Some performance tips are also described.

For more information about programming utilities, see the following books at the IBM Publications Center:

• ADTS/400: Programming Development Manager, SC09-1771-00
• ADTS for AS/400: Screen Design Aid, SC09-2604-00
• ADTS for AS/400: Source Entry Utility, SC09-2605-00

622 IBM i: ILE C/C++ Runtime Library Functions

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 1998, 2015 623

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

624 Notices

http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Java and all Java-based trademarks and logos are trademarks of Oracle, Inc. in the United States, other
countries, or both.

Other product and service names might be trademarks of IBM or other companies.

Notices 625

626 IBM i: ILE C/C++ Runtime Library Functions

Index

Special Characters
__EXBDY built-in 4
__VBDY built-in 4
_C_Get_Ssn_Handle() function 80
_C_Quickpool_Debug() function

Quick Pool Memory Manager Debug 91
_C_Quickpool_Init() function

Initialize Quick Pool Memory Manager 93
_C_Quickpool_Report() function

Generate Quick Pool Memory Manager Report 95
_C_TS_malloc 220, 616
_C_TS_malloc_debug 616
_C_TS_malloc_debug() function 103
_C_TS_malloc_info 616
_C_TS_malloc_info() function 105
_C_TS_malloc64 220, 616
_EXBDY macro 4
_fputchar() function 144
_gcvt() function 174
_GetExcData() function 177
_INTRPT_Hndlr_Parms_T 2
_itoa() function 199
_ltoa() function 216
_Racquire() function 288
_Rclose() function 289
_Rcommit() function 290
_Rdelete() function 292
_Rdevatr() function 294
_Rfeod() function 308
_Rfeov() function 309
_Rformat() function 310
_Rindara() function 312
_Riofbk() function 314
_Rlocate() function 316
_Ropen() function 319
_Ropnfbk() function 323
_Rpgmdev() function 324
_Rreadd() function 326
_Rreadf() function 328
_Rreadindv() function 330
_Rreadk() function 332
_Rreadl() function 335
_Rreadn() function 336
_Rreadnc() function 339
_Rreadp() function 340
_Rreads() function 342
_Rrelease() function 344
_Rrlslck() function 346
_Rrollbck() function 347
_Rupdate() function 349
_Rupfb() function 350
_Rwrite() function 352
_Rwrited() function 354
_Rwriterd() function 357
_Rwrread() function 358
_ultoa() function 455

_VBDY macro 4
_wcsicmp() function 497
_wcsnicmp() function 505

A
abnormal program end 60
abort() function 60
abs() function 61
absolute value

abs() function 61
fabs 115
labs 200

access mode 117, 134
acos() function 62
acquire a program device 288
adding data to streams 117
append mode

using fopen() function 134
appending data to files 117
arccosine 62
arcsine 67
arctangent 69
argument list functions 45
asctime_r() function 65
asctime() function 63
asin() function 67
assert.h include file 1
assert() function 68
atan() function 69
atan2() function 69
atexit() function 70
atof() function 71
atoi() function 73
atol() function 74
atoll() function

strings to long long values 74

B
bessel functions 26, 75
binary files 136
binary search 76
blksize 136
block size 136
bsearch() function 76
btowc() function 78
buffers

assigning 368
comparing 237
copying 238, 241
flushing 121
searching 236
setting characters 242

bufsiz constant 13
builtins

__EXBDY 4

Index 627

builtins (continued)
__VBDY 4

C
calculating

absolute value 61
absolute value of long integer 200
arccosine 62
arctangent 69
base 10 logarithm 215
calculate the next representable floating-point value
247
cosine 89
error functions 112
exponential function 114
floating-point absolute value 115
floating-point remainder 133
hyperbolic cosine 90
hyperbolic sine 381
hypotenuse 192
logarithm 214
natural logarithm 214
quotient and remainder 111
sine 380
time difference 108, 109

calloc() function 80
cancel handler reason codes 557
case mapping functions 54
catclose() function 82
catgets() function 83
catopen() function 84
ceil() function 86
ceiling function 86
changing

data area 277
environment variables 267
file position 158
reserved storage block size 295

character
converting

to floating-point 74
to integer 73
to long integer 74

reading 123, 175
setting 242
ungetting 456
writing 143, 266

character case mapping
tolower 451
toupper 451
towlower 454
towupper 454

character testing
ASCII value 194
character property 197
isalnum 193
isalpha 193
iscntrl 193
isdigit 193
isgraph 193
islower 193
isprint 193
ispunct 193

character testing (continued)
isspace 193
isupper 193
isxdigit 193
wide alphabetic character 195
wide alphanumeric character 195
wide control character 195
wide decimal-digit character 195
wide hexadecimal digit 195
wide lowercase character 195
wide non-alphanumeric character 195
wide non-space character 195
wide printing character 195
wide uppercase character 195
wide whitespace character 195

character testing functions 52
clear error indicators 87
clearerr 87
clock() function 88
CLOCKS_PER_SEC 89
closing

file 289
message catalog 82
stream 116

comparing
buffers 237
strings 392, 395, 397, 412

comparing strings 388, 409
compile regular expression 298
Compute

Compute the Quantum Exponent 273
Determine if Quantum Exponents X and Y are the Same
360

concatenating strings 389, 410
conversion functions

QXXDTOP 278
QXXDTOZ 279
QXXITOP 280
QXXITOZ 281
QXXPTOD 282
QXXPTOI 282
QXXZTOD 285
QXXZTOI 285

converting
character case 451
character string to decimal floating-point 429
character string to double 426
character string to long integer 435
date 418, 507
double to zoned decimal 279
floating-point numbers to integers and fractions 246
floating-point to packed decimal 278
from structure to string 63
from structure to string (restartable version) 65
integer to a character in the ASCII charactger set 450
integer to packed decimal 280
integer to zoned decimal 281
local time 243, 245
monetary value to string 400
multibyte character to a wide character 225
multibyte character to wchar_t 235
multibyte string to a wide character string 229
packed decimal to double 282
packed decimal to integer 282

628 IBM i: ILE C/C++ Runtime Library Functions

converting (continued)
single byte to wide character 78
string segment to unsigned integer 437
string to formatted date and time 495
strings to floating-point values 71
strings to integer values 73
strings to long values 74
time 184, 186, 188, 190, 208, 210, 211, 213, 418, 507
time to character string 97, 98, 100, 102
wide character case 454
wide character string to multibyte string 510
wide character to a multibyte character 483
wide character to byte 531
wide character to long integer 520
wide character to multibyte character 532
wide-character string to decimal floating-point 517
wide-character string to double 515
wide-characterc string to unsigned long 525
zoned decimal to double 285
zoned decimal to integer 285

copying
bytes 238, 241
strings 396, 413

cos() function 89
cosh() function 90
creating

a temporary file 448, 449
ctime_r() function 100
ctime() function 97
ctime64_r() function 102
ctime64() function 98
ctype functions 193
ctype.h include file 1
currency functions 26

D
data conversion

atof() function 71
atoi() function 73
atol() function 74

data items 150
data type compatibility

CL 565, 568, 569
COBOL 567
ILE COBOL 563
RPG 560, 565

data type limits 5
date

correcting for local time 208, 210, 211, 213
functions 26

date and time conversion 418, 507
decimal.h include file 1
default memory manager 584
deleting

file 305
record 292, 305

determine the display width of a wide character 536
determining

display width of a wide character string 528
display width of a wide-character string 530
length of a multibyte character 223

differential equations 26
difftime() function 108

difftime64() function 109
divf() function 111

E
end-of-file

clearing 307
macro 13
resetting error indicator 87

end-of-file indicator 87, 119
ending a program 60, 113
environment

functions 48
interaction 48
retrieving information 203
table 177
variables 177, 267

environment variables
adding 267
changing 267
searching 177

erf() function 112
erfc() function 112
errno 2
errno macros 549–551
errno values for Integrated File System 551–553
errno variable 251
errno.h include file 1
error handling

assert 68
clearerr 87
ferror 120
functions 19
perror 251
stream I/O 120
strerror 400

error indicator 120
error macros, mapping stream I⁄O exceptions 553, 554
error messages

printing 251
except.h include file 2
exception class

listing 559
mapping 556

EXIT_FAILURE 14, 113
EXIT_SUCCESS 14, 113
exit() function 113
exp() function 114
exponential functions

exp 114
frexp 155
ldexp 201
log 214
log10 215
pow 253
sqrt 384

F
fabs() function 115
fclose() function 116
fdopen() function 117
feof() function 119

Index 629

ferror() function 120
fflush() function 121
fgetc() function 123
fgetpos() function 124
fgets() function 126
fgetwc() function 127
fgetws() function 129
file

appending to 117
handle 131
include 1
maximum opened 13
name length 13
positioning 307
renaming 306
updating 117

file errors 87
file handling

remove 305
rename 306
tmpnam 449

file name length 13
file names, temporary 13
file positioning 124, 158, 160, 162
FILE type 14
fileno() function 131
float.h include file 4
floor() function 132
flushing buffers 121
fmod() function 133
fopen, maximum simultaneous files 13
fopen() function 134
format data as wide characters 166
formatted I/O 141
fpos_t 14
fprintf() function 141
fputc() function 143
fputs() function 145
fputwc() function 146
fputws() function 148
fread() function 150
free() function 152
freopen() function 154
frexp() function 155
fscanf() function 156
fseek() function 158
fseeko() function 158
fsetpos() function 160
ftell() function 162
fwide() function 163
fwprintf() function 166
fwrite() function 169
fwscanf() function 170

G
gamma() function 173
getc() function 175
getchar() function 175
getenv() function 177
gets() function 179
getting

handle for character mapping 533
handle for character property classification 535

getting (continued)
wide character from stdin 182

getwc() function 180
getwchar() function 182
gmtime_r() function 188
gmtime() function 184
gmtime64_r() function 190
gmtime64() function 186

H
handling interrupt signals 378
heap memory 583, 588
heap memory manager 583
HUGE_VAL 6
hypot() function 192
hypotenuse 192

I
I/O errors 87
include files

assert.h 1
ctype.h 1
decimal.h 1
errno.h 1
except.h 2
float.h 4
inttypes.h 4
limits.h 5
locale.h 5
math.h 6
pointer.h 6
recio.h 7
regex.h 10
setjmp.h 11
signal.h 11
stdarg.h 11
stdbool.h 11
stddef.h 11
stdint.h 12
stdio.h 13
stdlib.h 14
string.h 15
time.h 15
xxcvt.h 16
xxdtaa.h 17
xxenv.h 17
xxfdbk.h 17

indicators, error 87
initial strings 413
integer

pseudo-random 287
Integrated File System errno values 551–553
internationalization 5
interrupt signal 378
inttypes.h include file 4
invariant character

hexadecimal representation 570
isalnum() function 193
isalpha()function 193
isascii() function 194
iscntrl() function 193

630 IBM i: ILE C/C++ Runtime Library Functions

isdigit() function 193
isgraph() function 193
islower() function 193
isprint() function 193
ispunct() function 193
isspace()function 193
isupper() function 193
iswalnu() function 195
iswcntrl() function 195
iswctype() function 197
iswdigit() function 195
iswgraph() function 195
iswlower() function 195
iswprint() function 195
iswpunct() function 195
iswspace() function 195
iswupper() function 195
iswxdigit() function 195
isxdigit() function 193

L
labs() function 200
langinfo.h include file 5
language collation string comparison 492
Languages 576
ldexp() function 201
ldiv() function 202
length function 408
length of variables 560
library functions

absolute value
abs 61
fabs 115
labs 200

character case mapping
tolower 451
toupper 451
towlower 454
towupper 454

character testing
isalnum 193
isalpha 193
isascii 194
iscntrl 193
isdigit 193
isgraph 193
islower 193
isprint 193
ispunct 193
isspace 193
isupper 193
iswalnum 195
iswalpha 195
iswcntrl 195
iswctype 197
iswdigit 195
iswgraph 195
iswlower 195
iswprint 195
iswpunct 195
iswspace 195
iswupper 195
iswxdigit 195

library functions (continued)
character testing (continued)

isxdigit 193
conversion

QXXDTOP 278
QXXDTOZ 279
QXXITOP 280
QXXITOZ 281
QXXPTOD 282
QXXPTOI 282
QXXZTOD 285
QXXZTOI 285
strfmon 400
strptime 418
wcsftime 495
wcsptime 507

data areas
QXXCHGDA 277
QXXRTVDA 283

error handling
_GetExcData 177
clearerr 87
raise 286
strerror 400

exponential
exp 114
frexp 155
ldexp 201
log 214
log10 215
pow 253

file handling
fileno 131
remove 305
rename 306
tmpfile 448
tmpnam 449

locale
localeconv 203
nl_langinfo 248
setlocale 370
strxfrm 439

math
acos 62
asin 67
atan 69
atan2 69
bessel 75
ceil 86
cos 89
cosh 90
div 111
erf 112
erfc 112
floor 132
fmod 133
frexp 155
gamma 173
hypot 192
ldiv 202
log 214
log10 215
modf 246
sin 380

Index 631

library functions (continued)
math (continued)

sinh 381
sqrt 384
tan 444
tanh 445

memory management
_C_TS_malloc_debug 103
_C_TS_malloc_info 105
calloc 80
free 152
malloc 219
realloc 295

memory operations
memchr 236
memcmp 237
memcpy 238
memmove 241
memset 242
wmemchr 538
wmemcmp 539
wmemcpy 541
wmemmove 542
wmemset 543

message catalog
catclose 82
catgets 83
catopen 84

miscellaneous
assert 68
getenv 177
longjmp 217
perror 251
putenv 267
rand 287
rand_r 287
setjmp 369
srand 385

multibyte
_wcsicmp 497
_wcsnicmp 505
btowc 78
mblen 221
mbrlen 223
mbrtowc 225
mbsinit 228
mbsrtowcs 229
mbstowcs 231
mbtowc 235
towctrans 452
wcrtomb 483
wcscat 488
wcschr 489
wcscmp 490
wcscoll 492
wcscpy 493
wcscspn 494
wcslen 499
wcslocaleconv 500
wcsncat 501
wcsncmp 502
wcsncpy 504
wcspbrk 506
wcsrchr 509

library functions (continued)
multibyte (continued)

wcsrtombs 510
wcsspn 512
wcstombs 522
wcswcs 527
wcswidth 528
wcsxfrm 530
wctob 531
wctomb 532
wctrans 533
wctype 535
wcwidth 536

program
abort 60
atexit 70
exit 113
signal 378

regular expression
regcomp 298
regerror 300
regexec 301
regfree 304

searching
bsearch 76
qsort 275

stream input/output
fclose 116
feof 119
ferror 120
fflush 121
fgetc 123
fgetpos 124
fgets 126
fgetwc 127
fgetws 129
fprintf 141
fputc 143
fputs 145
fputwc 146
fputws 148
fread 150
freopen 154
fscanf 156
fseek 158
fsetpos 160
ftell 162
fwide 163
fwprintf 166
fwrite 169
fwscanf 170
getc 175
getchar 175
gets 179
getwc 180
getwchar 182
printf 254
putc 266
putchar 266
puts 268
putwc 269
putwchar 271
scanf 362
setbuf 368

632 IBM i: ILE C/C++ Runtime Library Functions

library functions (continued)
stream input/output (continued)

setvbuf 376
sprintf 383
sscanf 386
swprintf 440
swscanf 441
ungetc 456
ungetwc 458
vfprintf 461
vfscanf 463
vfwprintf 464
vfwscanf 466
vprintf 469
vscanf 470
vsnprintf 472
vsprintf 473
vsscanf 475
vswprintf 476
vswscanf 478
vwprintf 480
vwscanf 481
wprintf 544
wscanf 545

string manipulation
strcat 389
strchr 390
strcmp 392
strcoll 395
strcpy 396
strcspn 397
strlen 408
strncmp 412
strncpy 413
strpbrk 417
strrchr 422
strspn 423
strstr 425
strtod 426
strtok 432
strtok_r 433
strtol 435
strtoul 437
strxfrm 439
wcsstr 514
wcstok 519

time
asctime 63
asctime_r 65
clock 88
ctime 97
ctime_r 100
ctime64 98
ctime64_r 102
difftime 108
difftime64 109
gmtime 184
gmtime_r 188
gmtime64 186
gmtime64_r 190
localtime 208
localtime_r 211
localtime64 210
localtime64_r 213

library functions (continued)
time (continued)

mktime 243
mktime64 245
strftime 403
wcsftime 495

trigonometric
acos 62
asin 67
atan 69
atan2 69
cos 89
cosh 90
sin 380
sinh 381
tan 444
tanh 445

type conversion
atof 71
atoi 73
atol 74
strol 435
strtod 426
strtoul 437
toascii 450
wcstod 515
wcstol 520
wcstoul 525

variable argument handling
va_arg 459
va_end 459
va_start 459
vfprintf 461
vfscanf 463
vfwscanf 466
vprintf 469
vscanf 470
vsnprintf 472
vsprintf 473
vsscanf 475
vswscanf 478
vwscanf 481

library introduction 19
limits.h include file 5
llabs() function

absolute value of long long integer 200
lldiv() function

perform long long division 202
local time corrections 208, 210
local time corrections (restartable version) 211, 213
locale functions

localeconv 203
setlocale 370
strxfrm 439

locale.h include file 5
localeconv() function 203
locales

retrieve information 248
setting 370

localtime_r() function 211
localtime() function 208
localtime64_r() function 213
localtime64() function 210
locating storage 152

Index 633

log() function 214
log10() function 215
logarithmic functions

log 214
log10 215

logic errors 68
logical record length 136
longjmp() function 217
lrecl 136

M
malloc() function 219
math functions

abs 61
acos 62
asin 67
atan 69
atan2 69
bessel 75
div 111
erf 112
erfc 112
exp 114
fabs 115
floor 132
fmod 133
frexp 155
gamma 173
hypot 192
labs 200
ldexp 201
ldiv 202
log 214
log10 215
modf 246
pow 253
sin 380
sinh 381
sqrt 384
tan 444
tanh 445

math.h include file 6
mathematical functions 20
maximum

file name 13
opened files 13
temporary file name 13

MB_CUR_MAX 14
mblen() function 221
mbrlen() function 223
mbrtowc() function 225
mbsinit() function 228
mbsrtowcs() function 229
mbstowcs() function 231
mbtowc() function 235
memchr() function 236
memcmp() function 237
memcpy() function 238
memicmp() function 239
memmove() function 241
memory allocation

_C_TS_malloc_debug 103
_C_TS_malloc_info 105

memory allocation (continued)
calloc 80
free 152
malloc 219
realloc 295

memory management
_C_TS_malloc_debug 103
_C_TS_malloc_info 105
calloc 80
free 152
malloc 219
realloc 295

memory object functions 47
memory operations

memchr 236
memcmp 237
memcpy 238
memmove 241
memset 242
wmemchr 538
wmemcmp 539
wmemcpy 541
wmemmove 542
wmemset 543

memset() function 242
message problems 592
miscellaneous functions

assert 68
getenv 177
longjmp 217
perror 251
putenv 267
rand 287
rand_r 287
setjmp 369
srand 385

mktime() function 243
mktime64() function 245
modf() function 246
monetary functions 26
monetary.h include file 6
multibyte functions

_wcsicmp 497
_wcsnicmp 505
btowc 78
mblen 221
mbrlen 223
mbrtowc 225
mbsinit 228
mbsrtowcs 229
mbstowcs 231
mbtowc 235
towctrans 452
wcrtomb 483
wcscat 488
wcschr 489
wcscmp 490
wcscoll 492
wcscpy 493
wcscspn 494
wcsicmp 497
wcslen 499
wcslocaleconv 500
wcsncat 501

634 IBM i: ILE C/C++ Runtime Library Functions

multibyte functions (continued)
wcsncmp 502
wcsncpy 504
wcsnicmp 505
wcspbrk 506
wcsrchr 509
wcsrtombs 510
wcsspn 512
wcstombs 522
wcswcs 527
wcswidth 528
wcsxfrm 530
wctob 531
wctomb 532
wctrans 533
wctype 535
wcwidth 536

N
NDEBUG 1, 68
nextafter() function 247
nextafterl() function 247
nexttoward() function 247
nexttowardl() function 247
nl_langinfo() function 248
nltypes.h include file 6
nonlocal goto 217, 369
NULL pointer 11, 13, 14

O
offsetof macro 11
opening

message catalog 84

P
passing

constants 569
variables 569

perror() function 251
pointer.h include file 6
pow() function 253
pragma preprocessor directives

default memory manager 584
environment variables 591
heap memory 583, 588
message problems 592
quick pool memory manager 586

preprocessor directives
default memory manager 584
environment variables 591
heap memory 583, 588
message problems 592
quick pool memory manager 586

printf() function 254
printing

error messages 251
process control

signal 378
program termination

abort 60

program termination (continued)
atexit 70
exit 113

pseudo-random integers 287
pseudorandom number functions

rand 287
rand_r 287
srand 385

ptrdiff_t 11
pushing characters 456
putc() function 266
putchar() function 266
putenv() function 267
puts() function 268
putwc() function 269
putwchar() function 271

Q
qsort() function 275
quantexpd128() function 273
quantexpd32() function 273
quantexpd64() function 273
quantized128() function 274
quantized32() function 274
quantized64() function 274
Quantum Exponent

Set the Quantum Exponent of X to the Quantum
Exponent of Y 274

quick sort 275
QXXCHGDA() function 277
QXXDTOP() function 278
QXXDTOZ() function 279
QXXITOP() function 280
QXXITOZ() function 281
QXXPTOD() function 282
QXXPTOI() function 282
QXXRTVDA() function 283
QXXZTOD() function 285
QXXZTOI() function 285

R
raise() function 286
RAND_MAX 14
rand_r() function 287
rand() function 287
random access 158, 162
random number generator 287, 385
read operations

character from stdin 175
character from stream 175
data items from stream 150
formatted 156, 362, 386
line from stdin 179
line from stream 126
reading a character 123
scanning 156

reading
character 175
data 362
data from stream using wide character 170
data using wide-character format string 545

Index 635

reading (continued)
formatted data 156
items 150
line 179
messages 83
stream 126
wide character from stream 127, 180
wide-character string from stream 129

realloc() function 295
reallocation 295
recfm 136
recio.h include file 7
record format 136
record input/ouput

_Racquire 288
_Rclose 289
_Rcommit 290
_Rdelete 292
_Rdevatr 294
_Rfeod 308
_Rfeov 309
_Rformat 310
_Rindara 312
_Riofbk 314
_Rlocate 316
_Ropen 319
_Ropnfbk 323
_Rpgmdev 324
_Rreadd 326
_Rreadf 328
_Rreadindv 330
_Rreadk 332
_Rreadl 335
_Rreadn 336
_Rreadnc 339
_Rreadp 340
_Rreads 342
_Rrelease 344
_Rrlslck 346
_Rrollbck 347
_Rupdate 349
_Rupfb 350
_Rwrite 352
_Rwrited 354
_Rwriterd 357
_Rwrread 358

record program ending 70
redirection 154
regcomp() function 298
regerror() function 300
regex.h include file 10
regexec() function 301
regfree() function 304
remove() function 305
rename() function 306
reopening streams 154
reserving storage

_C_TS_malloc_debug 103
_C_TS_malloc_info 105
malloc 219
realloc 295

retrieve data area 283
retrieve locale information 248
rewind() function 307

S
samequantumd128() function 360
samequantumd32() function 360
samequantumd64() function 360
scanf() function 362
searching

bsearch function 76
environment variables 177
strings 390, 417, 423
strings for tokens 432, 433

searching and sorting functions 20
seed 385
send signal 286
separate floating-point value 155
setbuf() function 368
setjmp.h include file 11
setjmp() function 369
setlocale() function 370
setting

bytes to value 242
setvbuf() function 376
signal handling 554
signal.h include file 11
signal() function 378
sin() function 380
sine 380
sinh() function 381
size_t 11
snprintf() function 382
sorting

quick sort 275
sprintf() function 383
sqrt() function 384
srand() function 385
sscanf() function 386
standard types

FILE 14
stdarg.h include file 11
stdbool.h include file 11
stddef.h include file 11
stdint.h include file 12
stdio.h include file 13
stdlib.h include file 14
stopping

program 60
storage allocation 80
strcasecmp() function 388
strcat() function 389
strchr() function 390
strcmp() function 392
strcmpi() function 393
strcoll() function 395
strcpy() function 396
strcspn() function 397
strdup() function 399
stream I/O functions 38
stream input/output

fclose 116
feof 119
ferror 120
fflush 121
fgetc 123
fgets 126

636 IBM i: ILE C/C++ Runtime Library Functions

stream input/output (continued)
fopen 134
fprintf 141
fputc 143
fputs 145
fputwc 146
fputws 148
fread 150
freopen 154
fscanf 156
fseek 158
ftell 162
fwrite 169
getc 175
getchar 175
gets 179
printf 254
putc 266
putchar 266
puts 268
rewind 307
scanf 362
setbuf 368
setvbuf 376
snprintf 382
sprintf 383
sscanf 386
swprintf 440
swscanf 441
tmpfile 448
ungetc 456
ungetwc 458
va_arg 459
va_end 459
va_start 459
vfprintf 461
vfscanf 463
vfwprintf 464
vfwscanf 466
vprintf 469
vscanf 470
vsnprintf 472
vsprintf 473
vsscanf 475
vswprintf 476
vswscanf 478
vwprintf 480
vwscanf 481
wprintf 544
wscanf 545

stream orientation 163
streams

access mode 154
appending 134, 154
binary mode 154
buffering 368
changing current file position 158, 162
changing file position 307
formatted I/O 156, 254, 362, 383,
386
opening 134
reading characters 123, 175
reading data items 150
reading lines 126, 179

streams (continued)
reopening 154
rewinding 307
text mode 154
translation mode 154
ungetting characters 456
updating 134, 154
writing characters 143, 266
writing data items 169
writing lines 268
writing strings 145

strerror() function 400
strfmon() function 400
strftime() function 403
stricmp() function 407
string manipulation

strcasecmp 388
strcat 389
strchr 390
strcmp 392
strcoll 395
strcpy 396
strcspn 397
strlen 408
strncasecmp 409
strncat 410
strncmp 412
strncpy 413
strpbrk 417
strrchr 422
strspn 423
strstr 425
strtod 426
strtok 432
strtok_r 433
strtol 435
strxfrm 439
wcsstr 514
wcstok 519

string.h include file 15
strings

comparing 397, 412
concatenating 389
converting

to floating-point 74
to integer 73
to long integer 74

copying 396
ignoring case 392, 395, 397
initializing 413
length of 408
reading 126
searching 390, 417, 423
searching for tokens 432, 433
strstr 425
writing 145

strlen() function 408
strncasecmp() function 409
strncat() function 410
strncmp() function 412
strncpy() function 413
strnicmp() function 415
strnset() function 416
strpbrk() function 417

Index 637

strptime() function 418
strrchr() function 422
strset() function 416
strspn() function 423
strstr() function 425
strtod() function 426
strtod128() function 429
strtod32() function 429
strtod64() function 429
strtok_r() function 433
strtok() function 432
strtol() function 435
strtoll() function

character string to long long integer 435
strtoul() function 437
strtoull() function

character string to unsigned long long integer 437
strxfrm() function 439
swprintf() function 440
swscanf() function 441
system() function 443

T
tan() function 444
tangent 444
tanh() function 445
testing

ASCII value 194
character property 197
isalnum 193
isalpha 193
iscntrl 193
isdigit 193
isgraph 193
islower 193
isprint 193
ispunct 193
isspace 193
isupper 193
isxdigit 193
state object for initial state 228
wide alphabetic character 195
wide alphanumeric character 195
wide control character 195
wide decimal-digit character 195
wide hexadecimal digit 195
wide lowercase character 195
wide non-alphanumeric character 195
wide non-space character 195
wide printing character 195
wide uppercase character 195
wide whitespace character 195

testing state object for initial state 228
time

asctime 63
asctime_r 65
converting from structure to string 63
converting from structure to string (restartable version)
65
correcting for local time 208, 210, 211, 213
ctime 97
ctime_r 100
ctime64 98

time (continued)
ctime64_r 102
difftime 108
difftime64 109
function 208, 210, 211, 213
functions 26
gmtime 184
gmtime_r 188
gmtime64 186
gmtime64_r 190
localtime 208
localtime_r 211
localtime64 210
localtime64_r 213
mktime 243
mktime64 245
strftime 403
time 446
time64 447

time.h include file 15
time() function 446
time64() function 447
tm structure 184, 186, 188, 190
TMP_MAX 449
tmpfile() function

names 13
number of 13

tmpnam() function
file names 13

toascii() function 450
tokens

strtok 432
strtok_r 433
tokenize string 432

tolower() function 451
toupper() function 451
towctrans() function 452
towlower() function 454
towupper() function 454
trigonometric functions

acos 62
asin 67
atan 69
atan2 69
cos 89
cosh 90
sin 380
sinh 381
tan 444
tanh 445

type conversion
atof 71
atoi 73
atol 74
strtod 426
strtol 435
strtoul 437
toascii 450
wcstod 515
wcstol 520
wcstoul 525

638 IBM i: ILE C/C++ Runtime Library Functions

U
ungetc() function 456
ungetwc() function 458
updating files 117

V
va_arg() function 459
va_copy() function 459
va_end() function 459
va_start() function 459
variable argument functions 45
verify condition 68
vfprintf() function 461
vfscanf() function 463
vfwprintf() function 464
vfwscanf() function 466
vprintf() function 469
vscanf() function 470
vsnprintf() function 472
vsprintf() function 473
vsscanf() function 475
vswprintf() function 476
vswscanf() function 478
vwprintf() function 480
vwscanf() function 481

W
wchar.h include file 16
wcrtomb() function 483
wcscat() function 488
wcschr() function 489
wcscmp() function 490
wcscoll() function 492
wcscpy() function 493
wcscspn() function 494
wcsftime() function 495
wcslen() function 499
wcslocaleconv() function 500
wcsncat() function 501
wcsncmp() function 502
wcsncpy() function 504
wcspbrk() function 506
wcsptime() function 507
wcsrchr() function 509
wcsrtombs() function 510
wcsspn() function 512
wcsstr() function 514
wcstod() function 515
wcstod128() function 517
wcstod32() function 517
wcstod64() function 517
wcstof() function 515
wcstok() function 519
wcstol() function 520
wcstold() function 515
wcstoll() function

wide character to long long integer 520
wcstombs() function 522
wcstoul() function 525
wcstoull() function

wcstoull() function (continued)
wide-character string to unsigned long long 525

wcswcs() function 527
wcswidth() function 528
wcsxfrm() function 530
wctob() function 531
wctomb() function 532
wctrans() function 533
wctype.h include file 16
wctype() function 535
wcwidth() function 536
wide character string functions 55
wmemchr() function 538
wmemcmp() function 539
wmemcpy() function 541
wmemmove() function 542
wmemset() function 543
wprintf() function 544
write operations

character to stdout 143, 266
character to stream 143, 266, 456
data items from stream 169
formatted 141, 254, 383
line to stream 268
printing 169
string to stream 145

writing
character 143, 266
data items from stream 169
formatted data to a stream 141
string 145, 268
wide character 146, 269, 271
wide characters to a stream 166
wide-character string 148

wscanf() function 545

X
xxcvt.h include file 16
xxdtaa.h include file 17
xxenv.h include file 17
xxfdbk.h include file 17

Index 639

640 IBM i: ILE C/C++ Runtime Library Functions

IBM®

Product Number: 5770-SS1

SC41-5607-06

	Contents
	About ILE C/C++ Runtime Library Functions
	What's new
	Include Files
	<assert.h>
	<ctype.h>
	<decimal.h>
	<errno.h>
	<except.h>
	<float.h>
	<inttypes.h>
	<langinfo.h>
	<limits.h>
	<locale.h>
	<math.h>
	<mallocinfo.h>
	<monetary.h>
	<nl_types.h>
	<pointer.h>
	<recio.h>
	<regex.h>
	<setjmp.h>
	<signal.h>
	<stdarg.h>
	<stddef.h>
	<stdbool.h>
	<stdint.h>
	<stdio.h>
	<stdlib.h>
	<string.h>
	<strings.h>
	<time.h>
	<wchar.h>
	<wctype.h>
	<xxcvt.h>
	<xxdtaa.h>
	<xxenv.h>
	<xxfdbk.h>
	Machine Interface (MI) Include Files

	Library Functions
	The C/C++ Library
	Error Handling
	Searching and Sorting
	Mathematical
	Time Manipulation
	Type Conversion
	Conversion
	Record Input/Output
	Stream Input/Output
	Handling Argument Lists
	Pseudorandom Numbers
	Dynamic Memory Management
	Memory Objects
	Environment Interaction
	String Operations
	Character Testing
	Multibyte Character Testing
	Character Case Mapping
	Multibyte Character Manipulation
	Data Areas
	Message Catalogs
	Regular Expression

	abort() — Stop a Program
	abs() — Calculate Integer Absolute Value
	acos() — Calculate Arccosine
	asctime() — Convert Time to Character String
	asctime_r() — Convert Time to Character String (Restartable)
	asin() — Calculate Arcsine
	assert() — Verify Condition
	atan() – atan2() — Calculate Arctangent
	atexit() — Record Program Ending Function
	atof() — Convert Character String to Float
	atoi() — Convert Character String to Integer
	atol() – atoll() — Convert Character String to Long or Long Long Integer
	Bessel Functions
	bsearch() — Search Arrays
	btowc() — Convert Single Byte to Wide Character
	_C_Get_Ssn_Handle() — Handle to C Session
	calloc() — Reserve and Initialize Storage
	catclose() — Close Message Catalog
	catgets() — Retrieve a Message from a Message Catalog
	catopen() — Open Message Catalog
	ceil() — Find Integer >=Argument
	clearerr() — Reset Error Indicators
	clock() — Determine Processor Time
	cos() — Calculate Cosine
	cosh() — Calculate Hyperbolic Cosine
	_C_Quickpool_Debug() — Modify Quick Pool Memory Manager Characteristics
	_C_Quickpool_Init() — Initialize Quick Pool Memory Manager
	_C_Quickpool_Report() — Generate Quick Pool Memory Manager Report
	ctime() — Convert Time to Character String
	ctime64() — Convert Time to Character String
	ctime_r() — Convert Time to Character String (Restartable)
	ctime64_r() — Convert Time to Character String (Restartable)
	_C_TS_malloc_debug() — Determine amount of teraspace memory used (with optional dumps and verification)
	_C_TS_malloc_info() — Determine amount of teraspace memory used
	difftime() — Compute Time Difference
	difftime64() — Compute Time Difference
	div() — Calculate Quotient and Remainder
	erf() – erfc() — Calculate Error Functions
	exit() — End Program
	exp() — Calculate Exponential Function
	fabs() — Calculate Floating-Point Absolute Value
	fclose() — Close Stream
	fdopen() — Associates Stream With File Descriptor
	feof() — Test End-of-File Indicator
	ferror() — Test for Read/Write Errors
	fflush() — Write Buffer to File
	fgetc() — Read a Character
	fgetpos() — Get File Position
	fgets() — Read a String
	fgetwc() — Read Wide Character from Stream
	fgetws() — Read Wide-Character String from Stream
	fileno() — Determine File Handle
	floor() — Find Integer <=Argument
	fmod() — Calculate Floating-Point Remainder
	fopen() — Open Files
	fprintf() — Write Formatted Data to a Stream
	fputc() — Write Character
	_fputchar() — Write Character
	fputs() — Write String
	fputwc() — Write Wide Character
	fputws() — Write Wide-Character String
	fread() — Read Items
	free() — Release Storage Blocks
	freopen() — Redirect Open Files
	frexp() — Separate Floating-Point Value
	fscanf() — Read Formatted Data
	fseek() – fseeko() — Reposition File Position
	fsetpos() — Set File Position
	ftell() – ftello() — Get Current Position
	fwide() — Determine Stream Orientation
	fwprintf() — Format Data as Wide Characters and Write to a Stream
	fwrite() — Write Items
	fwscanf() — Read Data from Stream Using Wide Character
	gamma() — Gamma Function
	_gcvt() — Convert Floating-Point to String
	getc() – getchar() — Read a Character
	getenv() — Search for Environment Variables
	_GetExcData() — Get Exception Data
	gets() — Read a Line
	getwc() — Read Wide Character from Stream
	getwchar() — Get Wide Character from stdin
	gmtime() — Convert Time
	gmtime64() — Convert Time
	gmtime_r() — Convert Time (Restartable)
	gmtime64_r() — Convert Time (Restartable)
	hypot() — Calculate Hypotenuse
	isalnum() – isxdigit() — Test Integer Value
	isascii() — Test for Character Representable as ASCII Value
	iswalnum() – iswxdigit() — Test Wide Integer Value
	iswctype() — Test for Character Property
	_itoa() — Convert Integer to String
	labs() – llabs() — Calculate Absolute Value of Long and Long Long Integer
	ldexp() — Multiply by a Power® of Two
	ldiv() – lldiv() — Perform Long and Long Long Division
	localeconv() — Retrieve Information from the Environment
	localtime() — Convert Time
	localtime64() — Convert Time
	localtime_r() — Convert Time (Restartable)
	localtime64_r() — Convert Time (Restartable)
	log() — Calculate Natural Logarithm
	log10() — Calculate Base 10 Logarithm
	_ltoa() — Convert Long Integer to String
	longjmp() — Restore Stack Environment
	malloc() — Reserve Storage Block
	mblen() — Determine Length of a Multibyte Character
	mbrlen() — Determine Length of a Multibyte Character (Restartable)
	mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)
	mbsinit() — Test State Object for Initial State
	mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)
	mbstowcs() — Convert a Multibyte String to a Wide Character String
	mbtowc() — Convert Multibyte Character to a Wide Character
	memchr() — Search Buffer
	memcmp() — Compare Buffers
	memcpy() — Copy Bytes
	memicmp() — Compare Bytes
	memmove() — Copy Bytes
	memset() — Set Bytes to Value
	mktime() — Convert Local Time
	mktime64() — Convert Local Time
	modf() — Separate Floating-Point Value
	nextafter() – nextafterl() – nexttoward() – nexttowardl() — Calculate the Next Representable Floating-Point Value
	nl_langinfo() — Retrieve Locale Information
	perror() — Print Error Message
	pow() — Compute Power
	printf() — Print Formatted Characters
	putc() – putchar() — Write a Character
	putenv() — Change/Add Environment Variables
	puts() — Write a String
	putwc() — Write Wide Character
	putwchar() — Write Wide Character to stdout
	quantexpd32() - quantexpd64() - quantexpd128() — Compute the Quantum Exponent
	quantized32() - quantized64() - quantized128() — Set the Quantum Exponent of X to the Quantum Exponent of Y
	qsort() — Sort Array
	QXXCHGDA() — Change Data Area
	QXXDTOP() — Convert Double to Packed Decimal
	QXXDTOZ() — Convert Double to Zoned Decimal
	QXXITOP() — Convert Integer to Packed Decimal
	QXXITOZ() — Convert Integer to Zoned Decimal
	QXXPTOD() — Convert Packed Decimal to Double
	QXXPTOI() — Convert Packed Decimal to Integer
	QXXRTVDA() — Retrieve Data Area
	QXXZTOD() — Convert Zoned Decimal to Double
	QXXZTOI() — Convert Zoned Decimal to Integer
	raise() — Send Signal
	rand() – rand_r() — Generate Random Number
	_Racquire() — Acquire a Program Device
	_Rclose() — Close a File
	_Rcommit() — Commit Current Record
	_Rdelete() — Delete a Record
	_Rdevatr() — Get Device Attributes
	realloc() — Change Reserved Storage Block Size
	regcomp() — Compile Regular Expression
	regerror() — Return Error Message for Regular Expression
	regexec() — Execute Compiled Regular Expression
	regfree() — Free Memory for Regular Expression
	remove() — Delete File
	rename() — Rename File
	rewind() — Adjust Current File Position
	_Rfeod() — Force the End-of-Data
	_Rfeov() — Force the End-of-File
	_Rformat() — Set the Record Format Name
	_Rindara() — Set Separate Indicator Area
	_Riofbk() — Obtain I/O Feedback Information
	_Rlocate() — Position a Record
	_Ropen() — Open a Record File for I/O Operations
	_Ropnfbk() — Obtain Open Feedback Information
	_Rpgmdev() — Set Default Program Device
	_Rreadd() — Read a Record by Relative Record Number
	_Rreadf() — Read the First Record
	_Rreadindv() — Read from an Invited Device
	_Rreadk() — Read a Record by Key
	_Rreadl() — Read the Last Record
	_Rreadn() — Read the Next Record
	_Rreadnc() — Read the Next Changed Record in a Subfile
	_Rreadp() — Read the Previous Record
	_Rreads() — Read the Same Record
	_Rrelease() — Release a Program Device
	_Rrlslck() — Release a Record Lock
	_Rrollbck() — Roll Back Commitment Control Changes
	_Rupdate() — Update a Record
	_Rupfb() — Provide Information on Last I/O Operation
	_Rwrite() — Write the Next Record
	_Rwrited() — Write a Record Directly
	_Rwriterd() — Write and Read a Record
	_Rwrread() — Write and Read a Record (separate buffers)
	samequantumd32() - samequantumd64() - samequantumd128() — Determine if Quantum Exponents X and Y are the Same
	scanf() — Read Data
	setbuf() — Control Buffering
	setjmp() — Preserve Environment
	setlocale() — Set Locale
	setvbuf() — Control Buffering
	signal() — Handle Interrupt Signals
	sin() — Calculate Sine
	sinh() — Calculate Hyperbolic Sine
	snprintf() — Print Formatted Data to Buffer
	sprintf() — Print Formatted Data to Buffer
	sqrt() — Calculate Square Root
	srand() — Set Seed for rand() Function
	sscanf() — Read Data
	strcasecmp() — Compare Strings without Case Sensitivity
	strcat() — Concatenate Strings
	strchr() — Search for Character
	strcmp() — Compare Strings
	strcmpi() — Compare Strings Without Case Sensitivity
	strcoll() — Compare Strings
	strcpy() — Copy Strings
	strcspn() — Find Offset of First Character Match
	strdup() — Duplicate String
	strerror() — Set Pointer to Runtime Error Message
	strfmon() — Convert Monetary Value to String
	strftime() — Convert Date/Time to String
	stricmp() — Compare Strings without Case Sensitivity
	strlen() — Determine String Length
	strncasecmp() — Compare Strings without Case Sensitivity
	strncat() — Concatenate Strings
	strncmp() — Compare Strings
	strncpy() — Copy Strings
	strnicmp() — Compare Substrings Without Case Sensitivity
	strnset() – strset() — Set Characters in String
	strpbrk() — Find Characters in String
	strptime() — Convert String to Date/Time
	strrchr() — Locate Last Occurrence of Character in String
	strspn() — Find Offset of First Non-matching Character
	strstr() — Locate Substring
	strtod() - strtof() - strtold() — Convert Character String to Double, Float, and Long Double
	strtod32() - strtod64() - strtod128() — Convert Character String to Decimal Floating-Point
	strtok() — Tokenize String
	strtok_r() — Tokenize String (Restartable)
	strtol() – strtoll() — Convert Character String to Long and Long Long Integer
	strtoul() – strtoull() — Convert Character String to Unsigned Long and Unsigned Long Long Integer
	strxfrm() — Transform String
	swprintf() — Format and Write Wide Characters to Buffer
	swscanf() — Read Wide Character Data
	system() — Execute a Command
	tan() — Calculate Tangent
	tanh() — Calculate Hyperbolic Tangent
	time() — Determine Current Time
	time64() — Determine Current Time
	tmpfile() — Create Temporary File
	tmpnam() — Produce Temporary File Name
	toascii() — Convert Character to Character Representable by ASCII
	tolower() – toupper() — Convert Character Case
	towctrans() — Translate Wide Character
	towlower() – towupper() — Convert Wide Character Case
	_ultoa() — Convert Unsigned Long Integer to String
	ungetc() — Push Character onto Input Stream
	ungetwc() — Push Wide Character onto Input Stream
	va_arg() – va_copy() – va_end() – va_start() — Handle Variable Argument List
	vfprintf() — Print Argument Data to Stream
	vfscanf() — Read Formatted Data
	vfwprintf() — Format Argument Data as Wide Characters and Write to a Stream
	vfwscanf() — Read Formatted Wide Character Data
	vprintf() — Print Argument Data
	vscanf() — Read Formatted Data
	vsnprintf() — Print Argument Data to Buffer
	vsprintf() — Print Argument Data to Buffer
	vsscanf() — Read Formatted Data
	vswprintf() — Format and Write Wide Characters to Buffer
	vswscanf() — Read Formatted Wide Character Data
	vwprintf() — Format Argument Data as Wide Characters and Print
	vwscanf() — Read Formatted Wide Character Data
	wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)
	wcscat() — Concatenate Wide-Character Strings
	wcschr() — Search for Wide Character
	wcscmp() — Compare Wide-Character Strings
	wcscoll() — Language Collation String Comparison
	wcscpy() — Copy Wide-Character Strings
	wcscspn() — Find Offset of First Wide-Character Match
	wcsftime() — Convert to Formatted Date and Time
	__wcsicmp() — Compare Wide Character Strings without Case Sensitivity
	wcslen() — Calculate Length of Wide-Character String
	wcslocaleconv() — Retrieve Wide Locale Information
	wcsncat() — Concatenate Wide-Character Strings
	wcsncmp() — Compare Wide-Character Strings
	wcsncpy() — Copy Wide-Character Strings
	__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity
	wcspbrk() — Locate Wide Characters in String
	wcsptime() — Convert Wide Character String to Date/Time
	wcsrchr() — Locate Last Occurrence of Wide Character in String
	wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)
	wcsspn() — Find Offset of First Non-matching Wide Character
	wcsstr() — Locate Wide-Character Substring
	wcstod() - wcstof() - wcstold() — Convert Wide-Character String to Double, Float, and Long Double
	wcstod32() - wcstod64() - wcstod128() — Convert Wide-Character String to Decimal Floating-Point
	wcstok() — Tokenize Wide-Character String
	wcstol() – wcstoll() — Convert Wide Character String to Long and Long Long Integer
	wcstombs() — Convert Wide-Character String to Multibyte String
	wcstoul() – wcstoull() — Convert Wide Character String to Unsigned Long and Unsigned Long Long Integer
	wcswcs() — Locate Wide-Character Substring
	wcswidth() — Determine the Display Width of a Wide Character String
	wcsxfrm() — Transform a Wide-Character String
	wctob() — Convert Wide Character to Byte
	wctomb() — Convert Wide Character to Multibyte Character
	wctrans() — Get Handle for Character Mapping
	wctype() — Get Handle for Character Property Classification
	wcwidth() — Determine the Display Width of a Wide Character
	wfopen() — Open Files
	wmemchr() — Locate Wide Character in Wide-Character Buffer
	wmemcmp() — Compare Wide-Character Buffers
	wmemcpy() — Copy Wide-Character Buffer
	wmemmove() — Copy Wide-Character Buffer
	wmemset() — Set Wide Character Buffer to a Value
	wprintf() — Format Data as Wide Characters and Print
	wscanf() — Read Data Using Wide-Character Format String

	Runtime Considerations
	errno Macros
	errno Values for Integrated File System Enabled C Stream I/O
	Record Input and Output Error Macro to Exception Mapping
	Signal Handling Action Definitions
	Signal to Exception Mapping

	Cancel Handler Reason Codes
	Exception Classes
	Data Type Compatibility
	Runtime Character Set
	Understanding CCSIDs and Locales
	CCSIDs of Characters and Character Strings
	Character Literal CCSID
	Job CCSID
	File CCSID
	Locale CCSID

	Wide Characters
	Wide Character Conversions to and from Single-Byte or Multibyte Characters
	LOCALETYPE(*CLD) and LOCALETYPE(*LOCALE) behavior
	LOCALETYPE(*LOCALEUCS2) and LOCALETYPE(*LOCALEUTF) behavior

	Wide Characters and File I/O
	Wide character write functions
	Non-wide character write functions
	Wide character read functions
	Non-wide character read functions

	Other ILE Languages

	Asynchronous Signal Model
	Unicode Support
	Reasons to Use Unicode Support
	Pseudo-CCSID Neutrality
	Unicode from Other ILE Languages
	Standard Files
	Considerations
	Default File CCSID
	Newline Character
	Conversion Errors

	Heap Memory
	Heap Memory Overview
	Heap Memory Manager
	Default Memory Manager
	Quick Pool Memory Manager
	Debug Memory Manager
	Environment Variables
	Diagnosing C2M1211/C2M1212 Message Problems
	C2M1211 Message
	C2M1212 Message
	Stack Tracebacks

	Library Functions and Extensions
	Standard C Library Functions Table, By Name
	ILE C Library Extensions to C Library Functions Table

	Related information
	Notices
	Programming interface information
	Trademarks

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

