
IBM i
7.2

Database
Commitment control

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
111.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 1998, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Commitment control..1
PDF file for Commitment control...1
Commitment control concepts.. 1

How commitment control works..1
How commit and rollback operations work... 2

Commit operation... 3
Rollback operation.. 4

Commitment definition.. 5
Scope for a commitment definition.. 5
Commitment definition names... 8
Example: Jobs and commitment definitions..9

How commitment control works with objects...11
Types of committable resources.. 12
Local and remote committable resources... 14
Access intent of a committable resource...14
The commit protocol of a committable resource...15
Journaled files and commitment control...16
Sequence of journal entries under commitment control...16
Commit cycle identifier...19
Record locking.. 20

Commitment control and independent disk pools..21
Independent disk pool considerations for commitment definitions...21
Considerations for XA transactions..23

Considerations and restrictions for commitment control... 24
Commitment control for batch applications..25
Two-phase commitment control... 26

Roles in commit processing..27
States of the transaction for two-phase commitment control.. 29
Commitment definitions for two-phase commitment control.. 32

Commitment definition for two-phase commit: Allow vote read-only.................................... 33
Commitment definition for two-phase commit: Not wait for outcome................................... 35
Commitment definition for two-phase commit: Indicate OK to leave out.............................. 38
Commitment definition for two-phase commit: Not select a last agent................................. 40
Vote reliable effect on flow of commit processing... 40

XA transaction support for commitment control...43
SQL server mode and thread-scoped transactions for commitment control.....................................47

Starting commitment control.. 48
Commit notify object..49
Commit lock level... 51

Ending commitment control.. 53
System-initiated end of commitment control...55

Commitment control during activation group end.. 55
Implicit commit and rollback operations.. 55
Commitment control during normal routing step end...59
Commitment control during abnormal system or job end.. 59
Updates to the notify object...60
Commitment control recovery during initial program load after abnormal end.................................62

Managing transactions and commitment control... 63
Displaying commitment control information...64

Displaying locked objects for a transaction... 64
Displaying jobs associated with a transaction... 65

 iii

Displaying resource status of a transaction... 65
Displaying transaction properties.. 65

Optimizing performance for commitment control...66
Minimizing locks..68
Managing transaction size.. 69
Soft commit...70

Scenarios and examples: Commitment control..71
Scenario: Commitment control..71
Practice problem for commitment control.. 74

Logic flow for practice problem..79
Steps associated with the logic flow for the practice program... 81

Example: Using a transaction logging file to start an application...82
Example: Using a notify object to start an application..86

Example: Unique notify object for each program.. 87
Example: Single notify object for all programs.. 92

Example: Using a standard processing program to start an application.. 92
Example: Code for a standard processing program...93

Processing flow... 94
Example: Code for a standard commit processing program... 95
Example: Using a standard processing program to decide whether to restart the application... 97

Troubleshooting transactions and commitment control.. 98
Commitment control errors... 98

Error conditions...99
Nonerror conditions..100
Error messages to monitor during commitment control... 100
Monitoring for errors after a CALL command...103
Failure of normal commit or rollback processing.. 103

Detecting deadlocks...105
Recovering transactions after communications failure.. 106
When to force commit and rollback operations and when to cancel resynchronization................. 107
Ending a long-running rollback..108
Finding large or old transactions... 109

Related information... 109

Notices..111
Programming interface information..112
Trademarks.. 112
Terms and conditions.. 113

iv

Commitment control
Commitment control is a function that ensures data integrity. It defines and processes a group of changes
to resources, such as database files or tables, as a transaction.

Commitment control either ensures that the entire group of individual changes occur on all systems
that participate in the transaction, or ensures that none of the changes occur. Db2® for IBM® i uses the
commitment control function to commit and rollback database transactions that are running with an
isolation level other than *NONE (no commit).

You can use commitment control to design an application so that the system can restart the application
if a job, an activation group within a job, or the system ends abnormally. With commitment control, you
can have assurance that when the application starts again, no partial updates are in the database due to
incomplete transactions from a prior failure.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 110.

PDF file for Commitment control
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select Commitment control .

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader
You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) .

Related reference
Related information for Commitment control
Product manuals, IBM Redbooks publications, Web sites, and other information center topic collections
contain information that relates to the Commitment control topic collection. You can view or print any of
the PDF files.

Commitment control concepts
These commitment control concepts help you understand how commitment control works, how it
interacts with your system, and how it interacts with other systems in your network.

How commitment control works
Commitment control ensures that either the entire group of individual changes occurs on all systems that
participate or that none of the changes occur.

For example, when you transfer funds from a savings to a checking account, more than one change occurs
as a group. To you, this transfer seems like a single change. However, more than one change occurs to

© Copyright IBM Corp. 1998, 2013 1

http://www.adobe.com/products/acrobat/readstep.html

the database because both savings and checking accounts are updated. To keep both accounts accurate,
either all the changes or none of the changes must occur to the checking and savings account.

Commitment control allows you to complete the following tasks:

• Ensure that all changes within a transaction are completed for all resources that are affected.
• Ensure that all changes within a transaction are removed if processing is interrupted.
• Remove changes that are made during a transaction when the application determines that a transaction

is in error.

You can also design an application so that commitment control can restart the application if a job,
an activation group within a job, or the system ends abnormally. With commitment control, you can
have assurance that when the application starts again, no partial updates are in the database due to
incomplete transactions from a prior failure.

Transaction
A transaction is a group of individual changes to objects on the system that appears as a single atomic
change to the user.

Note: IBM Navigator for i uses the term transaction, whereas the character-based interface uses the term
logical unit of work (LUW). The two terms are interchangeable. This topic, unless specifically referring to
the character-based interface, uses the term transaction.

A transaction can be any of the following situations:

• Inquiries in which no database file changes occur.
• Simple transactions that change one database file.
• Complex transactions that changes one or more database files.
• Complex transactions that change one or more database files, but these changes represent only a part

of a logical group of transactions.
• Simple or complex transactions that involve database files at more than one location. The database files

can be in one of the following situations:

– On a single remote system.
– On the local system and one or more remote systems.
– Assigned to more than one journal on the local system. Each journal can be thought of as a local

location.
• Simple or complex transactions on the local system that involve objects other than database files.

How commit and rollback operations work
Commit and rollback operations affect changes that are made under commitment control.

The following programming languages and application programming interfaces (APIs) support commit
and rollback operations.

Language or API Commit Rollback

CL COMMIT command ROLLBACK command

IBM Integrated Language
Environment® (ILE) RPG

COMIT operation code ROLBK operation code

ILE COBOL COMMIT verb ROLLBACK verb

ILE C _Rcommit function _Rrollbck function

PLI PLICOMMIT subroutine PLIROLLBACK subroutine

SQL COMMIT statement ROLLBACK statement

2 IBM i: Commitment control

Language or API Commit Rollback

SQL Call Level Interface (CLI) SQLTransact() function (It is used to commit and roll back a
transaction)

XA APIs xa_commit() and
db2xa_commit() APIs

xa_rollback() and
db2xa_rollback() APIs

Related concepts
SQL call level interface
Database programming
Related information
WebSphere development studio: ILE C/C++ programmer's guide PDF
CL programming
Application programming interfaces

Commit operation
A commit operation makes permanent all changes made under commitment control since the previous
commit or rollback operation. The system also releases all locks related to the transaction.

The system performs the following steps when it receives a request to commit:

• The system saves the commit identification, if one is provided, for use at recovery time.
• The system writes records to the file before performing the commit operation if both of the following

conditions are true:

– Records were added to a local or remote database file under commitment control.
– SEQONLY(*YES) was specified when the file was opened so that blocked I/O feedback is used by the

system and a partial block of records exists.

Otherwise, the I/O feedback area and I/O buffers are not changed.
• The system makes a call to the commit and rollback exit program for each API commitment resource

that is present in the commitment definition. If a location has more than one exit program registered,
the system calls exit programs for that location in the order that they were registered.

• If any record changes were made to resources assigned to a journal, the system writes a C CM journal
entry to every local journal associated with the commitment definition. Sequence of journal entries
under commitment control shows the entries that are typically written while a commitment definition is
active.

• The system makes permanent object-level changes that are pending.
• The system unlocks record and object locks that were acquired and kept for commitment control

purposes. Those resources are made available to other users.
• The system changes information in the commitment definition to show that the current transaction has

been ended.

The system must perform all of the previous steps correctly for the commit operation to be successful.

Related concepts
Commitment definition
The commitment definition contains information that pertains to the resources that are being changed
under commitment control during a transaction.
Sequence of journal entries under commitment control

Commitment control 3

http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc092712.pdf

This table shows the sequence of entries that are typically written while a commitment definition is active.
You can use the Journal entry information finder to get more information about the contents of the journal
entries.

Rollback operation
A rollback operation removes all changes made since the previous commit or rollback operation. The
system also releases all locks related to the transaction.

The system performs the following steps when it receives a request to roll back:

• The system clears records from the I/O buffer if both of the following conditions are true:

– If records were added to a local or remote database file under commitment control.
– If SEQONLY(*YES) was specified when the file was opened so that blocked I/O is used by the system

and a partial block of records exists that has not yet been written to the database.

Otherwise, the I/O feedback area and I/O buffers remain unchanged.
• The system makes a call to the commit or rollback exit program for each API commitment resource

that is present in the commitment definition. If a location has more than one exit program registered,
the system calls the exit programs for that location in reverse order from the order in which they were
registered.

• If a record was deleted from a file, the system adds the record back to the file.
• The system removes any changes to records that have been made during this transaction, and places

the original records (the before-images) back into the file.
• If any records were added to the file during this transaction, they remain in the file as deleted records.
• If any record changes were made to resources assigned to a journal during the transaction, the system

adds a journal entry of C RB to the journal, indicating that a rollback operation occurred. The journal
also contains images of the record changes that were rolled back. Before the rollback operation was
requested, the before-images and after-images of changed records were placed in the journal. The
system also writes C RB entry to the default journal if any committable resources are assigned to that
journal.

• The system positions the open files under commitment control at one of the following positions:

– The last record accessed in the previous transaction
– At the open position if no commit operation has been performed for the file using this commitment

definition

This consideration is important if you are doing sequential processing.
• The system does not roll back noncommittable changes for database files. For example, opened files

are not closed, and cleared files are not restored. The system does not reopen or reposition any files
that were closed during this transaction.

• The system unlocks record locks that were acquired for commitment control purposes and makes those
records available to other users.

• The commit identification currently saved by the system remains the same as the commit identification
provided with the last commit operation for the same commitment definition.

• The system reverses or rolls back object-level committable changes made during this transaction.
• Object locks that were acquired for commitment control purposes are unlocked and those objects are

made available to other users.
• The system establishes the previous commitment boundary as the current commitment boundary.
• The system changes information in the commitment definition to show that the current transaction has

been ended.

The system must perform all of the previous steps correctly for the rollback operation to be successful.

4 IBM i: Commitment control

Commitment definition
The commitment definition contains information that pertains to the resources that are being changed
under commitment control during a transaction.

To create a commitment definition, use the Start Commitment Control (STRCMTCTL) command to start
commitment control on your system. Also, Db2 for i automatically creates a commitment definition when
the isolation level is other than *NONE (no commit).

The system maintains the commitment control information in the commitment definition as the
commitment resources change, until the commitment definition is ended. Each active transaction on the
system is represented by a commitment definition. A subsequent transaction can reuse a commitment
definition after each commit or rollback of an active transaction.

A commitment definition generally includes the following information:

• The parameters on the STRCMTCTL command.
• The current status of the commitment definition.
• Information about database files and other committable resources that contain changes that are made

during the current transaction.

For commitment definitions with job-scoped locks, only the job that starts commitment control knows
that commitment definition. No other job knows that commitment definition.

Programs can start and use multiple commitment definitions. Each commitment definition for a job
identifies a separate transaction that has committable resources associated with it. These transactions
can be committed or rolled back independently from transactions that are associated with other
commitment definitions that are started for the job.

Related concepts
Commit operation
A commit operation makes permanent all changes made under commitment control since the previous
commit or rollback operation. The system also releases all locks related to the transaction.
Commitment control and independent disk pools
Independent disk pools and independent disk pool groups can each have a separate i5/OS database. You
can use commitment control with these databases.
Independent disk pool considerations for commitment definitions
You must be aware of these considerations for commitment definitions when you use independent disk
pools.

Scope for a commitment definition
The scope of a commitment definition determines which programs use that commitment definition, and
how locks acquired during transactions are scoped.

The interface that starts the commitment definition determines the scope of the commitment definition.
There are four possible scopes for a commitment definition, which fall under two general categories:

Commitment definitions with job-scoped locks

• Activation-group-level commitment definition
• Job-level commitment definition
• Explicitly-named commitment definition

Commitment definitions with transaction-scoped locks

• Transaction-scoped commitment definition

Commitment definitions with job-scoped locks can be used only by programs that run in the job that
started the commitment definitions. In comparison, more than one job can use commitment definitions
with transaction-scoped locks.

Commitment control 5

Applications typically use either activation-group-level or job-level commitment definitions. These
commitment definitions are created either explicitly with the Start Commitment Control (STRCMTCTL)
command, or implicitly by the system when an SQL application runs with an isolation level other than
*NONE.

Activation-group-level commitment definition
The most common scope is to the activation group. The activation-group-level commitment definition
is the default scope when the STRCMTCTL command explicitly starts the commitment definition, or
when an SQL application that runs with an isolation level other than *NONE (no commit) implicitly starts
the commitment definition. Only programs that run within that activation group use that commitment
definition. Many activation-group-level commitment definitions can be active for a job at one time.
However, each activation-group-level commitment definition can be associated only with a single
activation group. The programs that run within that activation group can associate their committable
changes only with that activation-group-level commitment definition.

When IBM Navigator for i, the Work with Commitment Definitions (WRKCMTDFN) command, the Display
Job (DSPJOB) command, or the Work with Job (WRKJOB) command displays an activation-group-level
commitment definition, these fields display the following information:

• The commitment definition field displays the name of the activation group. It shows the special value
*DFTACTGRP to indicate the default activation group.

• The activation group field displays the activation group number.
• The job field displays the job that started the commitment definition.
• The thread field displays *NONE.

Job-level commitment definition
A commitment definition can be scoped to the job only by issuing STRCMTCTL CMTSCOPE (*JOB).
Any program running in an activation group that does not have an activation-group-level commitment
definition started uses the job-level commitment definition, if it has already been started by another
program for the job. You can only start a single job-level commitment definition for a job.

When IBM Navigator for i, the Work with Commitment Definitions (WRKCMTDFN) command, the Display
Job (DSPJOB) command, or the Work with Job (WRKJOB) command displays a job-level commitment
definition, these fields display the following information:

• The commitment definition field displays the special value *JOB.
• The activation group field displays a blank.
• The job field displays the job that started the commitment definition.
• The thread field displays *NONE.

For a given activation group, the programs that run within that activation group can use only a single
commitment definition. Therefore, programs that run within an activation group can either use the
job-level or the activation-group-level commitment definition, but not both at the same time. In a
multi-threaded job that does not use SQL server mode, transactional work for a program is scoped to
the appropriate commitment definition with respect to the activation group of the program, regardless
of which thread performs it. If multiple threads use the same activation group, they must cooperate to
perform the transactional work and ensure that commits and rollbacks occur at the correct time.

Even when the job-level commitment definition is active for the job, a program can still start the
activation-group-level commitment definition if no program running within that activation group has
performed any commitment control requests or operations for the job-level commitment definition.
Otherwise, you must first end the job-level commitment definition before you can start the activation-
group-level commitment definition. The following commitment control requests or operations for the
job-level commitment definition can prevent the activation-group-level commitment definition from being
started:

• Opening (full or shared) a database file under commitment control.

6 IBM i: Commitment control

• Using the Add Commitment Resource (QTNADDCR) API to add an API commitment resource.
• Committing a transaction.
• Rolling back a transaction.
• Adding a remote resource under commitment control.
• Using the Change Commitment Options (QTNCHGCO) API to changing commitment options.
• Bringing the commitment definition to a rollback required state using the Rollback Required

(QTNRBRQD) API.
• Sending a user journal entry that includes the current commit cycle identifier by using the Send Journal

Entry (QJOSJRNE) API with the Include Commit Cycle Identifier parameter.

Likewise, if the programs within an activation group are currently using the activation-group-level
commitment definition, the commitment definition must first be ended before programs running within
that same activation group can use the job-level commitment definition.

When opening a database file, the open scope for the opened file can be either to the activation group
or to the job with one restriction: if a program is opening a file under commitment control and the file
is scoped to the job, then the program making the open request must use the job-level commitment
definition.

Explicitly-named commitment definition
Explicitly-named commitment definitions are started by the system when it needs to perform its own
commitment control transactions without affecting any transactions used by an application. An example
of a function that starts these types of commitment definitions is the problem log. An application cannot
start explicitly-named commitment definitions.

When IBM Navigator for i, the Work with Commitment Definitions (WRKCMTDFN) command, the Display
Job (DSPJOB) command, or the Work with Job (WRKJOB) command displays an explicitly-named
commitment definition, these fields display the following information:

• The commitment definition field displays the name given to it by the system.
• The activation group field displays a blank.
• The job field displays the job that started the commitment definition.
• The thread field displays *NONE.

Transaction-scoped commitment definitions
Transaction-scoped commitment definitions are started with the XA APIs for Transaction Scoped Locks.

These APIs use commitment control protocols that are thread based or SQL connection based, and not
activation group based. In other words, the APIs are used to associate the commitment definition with a
particular thread or SQL connection while the transactional work is performed, and to commit or rollback
the transactions. The system attaches these commitment definitions to the threads that perform the
transactional work, with respect to the API protocols. They can be used by threads in different jobs.

When IBM Navigator for i, the Work with Commitment Definitions (WRKCMTDFN) command, the Display
Job (DSPJOB) command, or the Work with Job (WRKJOB) command displays a transaction-scoped
commitment definition, these fields display the following information:

• The commitment definition field displays the special value *TNSOBJ.
• The activation group field displays a blank.
• The job field displays the job that started the commitment definition. Or, if the commitment definition is

currently attached to a thread, the thread's job is displayed.
• The thread field displays the thread to which the commitment definition is attached (or *NONE if the

commitment definition is not currently attached to any thread).

Commitment control 7

Related reference
XA APIs

Commitment definition names
The system gives names to all commitment definitions that are started for a job.

The following table shows various commitment definitions and their associated names for a particular job.

Activation group Commit scope Commitment definition name

Any Job *JOB

Default activation group Activation group *DFTACTGRP

User-named activation group Activation group Activation group name (for
example, PAYROLL)

System-named activation group Activation group Activation group number (for
example, 0000000145)

None Explicitly named QDIR001 (example of a system-
defined commitment definition
for system use only). System-
defined commitment definition
names begin with Q.

None Transaction *TNSOBJ

Only IBM Integrated Language Environment (ILE) compiled programs can start commitment control for
activation groups other than the default activation group. Therefore, a job can use multiple commitment
definitions only if the job is running one or more ILE compiled programs.

Original Program Model (OPM) programs run in the default activation group, and by default use the
*DFTACTGRP commitment definition. In a mixed OPM and ILE environment, jobs must use the job-level
commitment definition if all committable changes made by all programs are to be committed or rolled
back together.

An opened database file scoped to an activation group can be associated with either an activation-group-
level or job-level commitment definition. An opened database file scoped to the job can be associated
only with the job-level commitment definition. Therefore, any program, OPM or ILE, which opens a
database file under commitment control scoped to the job needs to use the job-level commitment
definition.

Application programs do not use the commitment definition name to identify a particular commitment
definition when making a commitment control request. Commitment definition names are primarily used
in messages to identify a particular commitment definition for a job.

For activation-group-level commitment definitions, the system determines which commitment definition
to use, based on which activation group the requesting program is running in. This is possible because
the programs that run within an activation group at any point in time can only use a single commitment
definition.

For transactions with transaction-scoped locks, the XA APIs and the transaction related attributes added
to the CLI determine which commitment definition the invoking thread uses.

Related information
ILE concepts PDF

8 IBM i: Commitment control

Example: Jobs and commitment definitions
This figure shows an example of a job that uses multiple commitment definitions.

The figure indicates which file updates are committed or rolled back at each activation group level. The
example assumes that all of the updates that are made to the database files by all of the programs are
made under commitment control.

Commitment control 9

The following table shows how files are committed or rolled back if the scenario in the previous figure
changes.

10 IBM i: Commitment control

Additional examples of multiple commitment definitions in a job
Change in
scenario

Effect on changes to these files

F1 and F2 F3 and F4 F5 and F6 F7

PGMX performs a
rollback operation
instead of a
commit operation
(3= =COMMIT
becomes
ROLLBACK).

Still pending Rolled back Already committed Rolled back

PGMZ performs a
commit operation
before returning to
PGMX.

Still pending Committed by
PGMZ

Already committed Committed

PGMZ attempts to
start commitment
control specifying
CMTSCOPE(*ACTG
RP) after updating
file F7. The
attempt fails
because changes
are pending using
the job-level
commitment
definition.

Still pending Still pending Already committed Still pending

PGMX does not
start commitment
control and does
not open files
F3 and F4 with
COMMIT(*YES).
PGMZ attempts to
open file F7 with
COMMIT(*YES).

Still pending Not under
commitment
control

Already committed File F7 cannot be
opened because no
*JOB commitment
definition exists
(PGMX did not
create it).

How commitment control works with objects
When you place an object under commitment control, it becomes a committable resource. It is registered
with the commitment definition. It participates in each commit operation and rollback operation that
occurs for that commitment definition.

The following topics describe these attributes of a committable resource:

• Resource type
• Location
• Commit protocol
• Access intent

Commitment control 11

Types of committable resources
This table lists the different types of committable resources, including FILE, Data Definition Language
(DDL), distributed data management (DDM), logical unit (LU) 6.2, Distributed Relational Database
Architecture™ (DRDA), API, and TCP.

The table shows the following items:

• The types of committable resources.
• How they are placed under commitment control.
• How they are removed from commitment control.
• Restrictions that apply to the resource type.

Resource type How to place
it under
commitment
control

How to remove it
from commitment
control

What kinds of
changes are
committable

Restrictions

FILE- local
database files

Opening under
commitment
control1

Closing the file,
if no changes are
pending.

If changes are
pending when the
file is closed,
after performing
the next commit or
rollback operation.

Record-level
changes

No more than 500
000 000 records
can be locked for a
single transaction2.

DDL- object-level
changes to local
SQL tables and SQL
collections.

Running SQL
under commitment
control

Performing a
commit or rollback
operation after
the object-level
change.

Object-level
changes, such as:

• Create SQL
package

• Create SQL table
• Drop SQL table

Only object-level
changes made
using SQL are
under commitment
control.

DDM- remote
distributed data
management
(DDM) file

Opening under
commitment
control.
Commitment
control support
for DDM has
more information
about commitment
control and
distributed data
management.

Closing the file,
if no changes are
pending.

If changes are
pending when the
file is closed,
after performing
the next commit or
rollback operation.

Record-level
changes

LU 6.2- protected
conversation

Starting the
conversation3

Ending the
conversation

DRDA- distributed
relational database

Using SQL
CONNECT
statement

Ending the
connection

12 IBM i: Commitment control

Resource type How to place
it under
commitment
control

How to remove it
from commitment
control

What kinds of
changes are
committable

Restrictions

API- local
API commitment
resource

Add Commitment
Resource
(QTNADDCR) API

Remove
Commitment
Resource
(QTNRMVCR) API

The user program
determines this.
Journal entries
might be written
by the user
program using the
Send Journal Entry
(QJOSJRNE) API to
assist with tracking
these changes.

The application
must provide
an exit program
to be called
during commit,
rollback, or
resynchronization
operations.

TCP-TCP/IP
connection

Using SQL
CONNECT
statement to
an RDB defined
to use TCP/IP
connections, or
opening a DDM
file defined with a
TCP/IP location

Ending the SQL
connection, or
closing the DDM
file if no changes
are pending. If
the DDM file
is closed with
changes pending,
the connection
is closed after
performing the
next commit or
rollback operation.

Notes:
1 For details on how to place a database file under commitment control, see the appropriate
language reference manual. Related information for commitment control links to language manuals
that you can use.
2 You can use a QAQQINI file to reduce the limit of 500 000 000. See “Managing transaction size” on
page 69 for instructions.
3 When a DDM connection is started, the DDM file specifies PTCCNV(*YES), and the DDM file is
defined with an SNA remote location; an LU 6.2 resource is added with the DDM resource.

When a DRDA connection is started, an LU 6.2 resource is added with the DRDA resource if both of the
following conditions are true:

• The program is using the distributed unit of work connection protocols.
• The connection is to a rational database (RDB) that is defined with an SNA remote location. For more

information about starting protected conversions, see APPC Programming .

Related concepts
Distributed database programming
Updates to the notify object
The system updates the notify object with the commit identification of the last successful commit
operation for that commitment definition.
Related reference
Add Commitment Resource (QTNADDCR) API
Remove Commitment Resource (QTNRMVCR) API
Send Journal Entry (QJOSJRNE) API

Commitment control 13

http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415443.pdf

Local and remote committable resources
A committable resource can be either a local resource or a remote resource.

Local committable resource
A local committable resource is on the same system as the application. Each journal associated with
resources under commitment control can be thought of as a local location. All the resources that are
registered without a journal (optionally for both DDL resources and API resources) can be thought of as a
separate local location.

If a committable resource is on an independent disk pool and the commitment definition is on a different
disk pool, the resource is not considered local.

Remote committable resources
A remote committable resource is on a different system from the application. A remote location exists for
each unique conversation to a remote system. A commitment definition might have one or more remote
locations on one or more remote systems.

When you place a local resource under commitment control for the system disk pool, or any independent
disk pools, you must use Distributed Relational Database Architecture (DRDA) to access resources under
commitment control in any other independent disk pools.

The following table shows the types of committable resources and their locations.

Resource type Location

API Local

DDL Local

DDM Remote

DRDA Local or remote

FILE Local

LU62 Remote

TCP Remote

Related concepts
Commitment control and independent disk pools
Independent disk pools and independent disk pool groups can each have a separate i5/OS database. You
can use commitment control with these databases.

Access intent of a committable resource
The access intent determines how the resources participate together in a transaction.

When a resource is placed under commitment control, the resource manager indicates how the resource
is accessed:

• Update
• Read-only
• Undetermined

The following table shows what access intents are possible for a particular type of resource and how the
system determines the access intent for a resource when it is registered.

14 IBM i: Commitment control

Resource type Possible access intents How the access intent is
determined

FILE Update, read-only Based on how the file was
opened

DDL Update Always update

API Update Always update

DDM Update, read-only Based on how the file was
opened

LU62 Undetermined Always undetermined

DRDA Update, read-only, undetermined For DRDA Level 1, the access
intent is update if no other
remote resources are registered.
Otherwise, the access intent
is read-only. For DRDA Level
2, the access intent is always
undetermined.

TCP Undetermined Always undetermined

The access intent of resources that are already registered determines whether a new resource can be
registered. The following rules apply:

• A one-phase resource whose access intent is update cannot be registered when any of the following
conditions is true:

– Resources whose access intent is update are already registered at other locations.
– Resources whose access intent is undetermined are already registered at other locations.
– Resources whose access intent is undetermined are already registered at the same location and the

resources have been changed during the current transaction.
• A two-phase resource whose access intent is update cannot be registered when a one-phase resource

whose access intent is update is already registered.

The commit protocol of a committable resource
Commit protocol is the capability a resource has to participate in one-phase or two-phase commit
processing. Local resources, except API committable resources, are always two-phase resources.

If a committable resource resides on an independent disk pool and the commitment definition resides on
a different disk pool, the resource is not considered as a local resource or a two-phase resource.

A two-phase resource is also called a protected resource. Remote resources and API committable
resources must be registered as one-phase resources or two-phase resources when they are placed
under commitment control. The following table shows what types of committable resources can coexist in
a commitment definition with a one-phase resource.

Resource type Can coexist with

One-phase API resource Other local resources. No remote resources.

One-phase remote resource Other one-phase resources at the same location.
No local resources.

Related concepts
Commitment control and independent disk pools

Commitment control 15

Independent disk pools and independent disk pool groups can each have a separate i5/OS database. You
can use commitment control with these databases.

Journaled files and commitment control
You must journal (log) a database file (resource type FILE or DDM) before it can be opened for output
under commitment control or referenced by an SQL application that uses an isolation level other than
*NONE (no commit). A file does not need to be journaled in order to open it for input only under
commitment control.

An error occurs if any of the following conditions is true:

• An attempt is made to open a database file for output under commitment control, but the file is not
currently journaled.

• No commitment definition is started that can be used by the file being opened under commitment
control.

If only the after-images are being journaled for a database file when that file is opened under
commitment control, the system automatically starts journaling both the before-images and after-images.
The before-images are written only for changes to the file that occur under commitment control. If other
changes that are not under commitment control occur to the file at the same time, only after-images are
written for those changes.

The system automatically writes record-level committable changes and object-level committable changes
to a journal. For record-level changes, the system then uses the journal entries, if necessary, for recovery
purposes; the system does not use entries from object-level committable changes for recovery purposes.
Furthermore, the system does not automatically write journal entries for API commitment resources.
However, the exit program for the API resource can use the Send Journal Entry (QJOSJRNE) API to write
journal entries to provide an audit trail or to assist with recovery. The content of these entries is controlled
by the user exit program.

The system uses a technique other than a journal to perform recovery for object-level commitment
resources. Recovery for API commitment resources is accomplished by calling the commit and rollback
exit program associated with each particular API commitment resource. The exit program has the
responsibility for performing the actual recovery that is necessary for the situation.

Related concepts
Journal management

Sequence of journal entries under commitment control
This table shows the sequence of entries that are typically written while a commitment definition is active.
You can use the Journal entry information finder to get more information about the contents of the journal
entries.

Commitment control entries are written to a local journal if at least one of the following conditions is true:

• The journal is specified as the default journal on the Start Commitment Control (STRCMTCTL) command.
• At least one file journaled to the journal is opened under commitment control.
• At least one API commitment resource associated with the journal is registered under commitment

control.

16 IBM i: Commitment control

Entry type Description Where it is written When it is written

C BC Begin commitment
control

To the default journal, if
one is specified on the
STRCMTCTL command.

When the STRCMTCTL
command is used.

To the journal. When the first file
journaled to a journal is
opened or when an API
resource is registered
for a journal.

C SC Start commit cycle To the journal. When the first record
change occurs for
the transaction for a
file journaled to this
journal1.

To the journal for an API
resource.

When the QJOSJRNE
API is first used with the
Include Commit Cycle
Identifier key.

Journal codes D and F DDL object-level entries To the journal
associated with the
object being updated.
Only journal entries that
contain a commit cycle
identifier represent a
DDL object-level change
that is part of the
transaction.

When updates occur.

Journal code R Record-level entries To the journal
associated with the file
being updated.

When the updates occur.

Journal code U User-created entries To the journal
associated with an API
resource.

If the application
program uses the
QJOSJRNE API is first
used with the Include
Commit Cycle Identifier
key.

C CM Commit To the journal. When the commit has
completed successfully.

To the default journal. If any committable
resources are
associated with the
journal.

C RB Rollback To the journal. After the rollback
operation has
completed.

To the default journal. If any committable
resources are
associated with the
journal.

Commitment control 17

Entry type Description Where it is written When it is written

C LW End transaction To the default journal,
if one is specified
on the STRCMTCTL
command. The system
writes an LW header
record and one or more
detail records. These
entries are written only
if OMTJRNE(*NONE)
is specified on the
STRCMTCTL command
or if a system error
occurs.

When the commit or
rollback operation has
completed.

C EC End commitment control To the journal. When the End
Commitment Control
(ENDCMTCTL) command
is completed.

To a local journal that is
not the default journal.

When a commit
boundary is established,
following the point
when all committable
resources associated
with that journal have
been removed from
commitment control.

C SB Start of savepoint or
nested commit cycle.

To the journal. When the application
creates an SQL
SAVEPOINT, or when
the system creates an
internal nested commit
cycle to handle a series
of database functions as
a single operation2.

C SQ Release of savepoint
or commit of nested
commit cycle.

To the journal. When the application
releases an SQL
SAVEPOINT, or when
the system commits an
internal nested commit
cycle2.

C SU Rollback of savepoint or
nested commit cycle.

To the journal. When the application
rolls back an SQL
SAVEPOINT, or when the
system rolls back an
internal nested commit
cycle2.

18 IBM i: Commitment control

Entry type Description Where it is written When it is written

Notes:
1 You can specify that the fixed-length portion of the journal entry includes transaction information
by specifying the Logical Unit of Work (*LUW) value for the Fixed-Length Data (FIXLENDTA) parameter
of the Create Journal (CRTJRN) or Change Journal (CHGJRN) command. By specifying the FIXLENDTA
(*LUW) parameter, the fixed-length portion of each C SC journal entry will contain the Logical Unit
of Work ID (LUWID) of the current transaction. Likewise for XA transactions, if you specify the
FIXLENDTA(*XID) parameter, the fixed-length portion of each C SC journal entry will contain the XID
of the current transaction. The LUWID or XID can help you find all the commit cycles for a particular
transaction if multiple journals or systems are involved in the transaction.
2 These entries are sent only if you set the QTN_JRNSAVPT_MYLIB_MYJRN environment variable to
*YES where MYJRN is the journal you are using and MYLIB is the library the journal is stored in. Special
value *ALL is supported for the MYLIB and MYJRN values. You can set these variables system-wide or
for a specific job. To have the entries sent for journal MYLIB/MYJRN for just one job, use this command
in that job:

• ADDENVVAR ENVVAR(QTN_JRNSAVPT_MYLIB_MYJRN) VALUE(*YES)

To have entries sent for all journals for all jobs, use this command:

• ADDENVVAR ENVVAR('QTN_JRNSAVPT_*ALL_*ALL') VALUE(*YES) LEVEL(*SYS)

This environment variable value is cached internally for each commitment definition the first time a
resource related to a particular journal is placed under commitment control. If the environment variable
is changed after that point, the cached value must be refreshed for it to become effective for that
journal. Any call to the Retrieve Commit Information (QTNRCMTI) API refreshes the cached
value in the calling job.

Related concepts
Commit operation
A commit operation makes permanent all changes made under commitment control since the previous
commit or rollback operation. The system also releases all locks related to the transaction.
Journal entry information finder
Related reference
End Commitment Control (ENDCMTCTL) command

Commit cycle identifier
A commit cycle is the time from one commitment boundary to the next. The system assigns a commit cycle
identifier to associate all of the journal entries for a particular commit cycle together. Each journal that
participates in a transaction has its own commit cycle and its own commit cycle identifier.

The commit cycle identifier is the journal sequence number of the C SC journal entry written for the
commit cycle. The commit cycle identifier is placed in each journal entry written during the commit cycle.
If more than one journal is used during the commit cycle, the commit cycle identifier for each journal is
different.

You can specify that the fixed-length portion of the journal entry includes transaction information by
specifying the Logical Unit of Work (*LUW) value for the Fixed-Length Data (FIXLENDTA) parameter
of the Create Journal (CRTJRN) or Change Journal (CHGJRN) command. By specifying the FIXLENDTA
(*LUW) parameter, the fixed-length portion of each C SC journal entry will contain the Logical Unit of
Work ID (LUWID) of the current transaction. Likewise for XA transactions, if you specify the FIXLENDTA
(*XID) parameter, the fixed-length portion of each C SC journal entry will contain the XID of the current
transaction. The LUWID or XID can help you find all the commit cycles for a particular transaction if
multiple journals or systems are involved in the transaction.

You can use the Send Journal Entry (QJOSJRNE) API to write journal entries for API resources. You have
the option of including the commit cycle identifier on those journal entries.

Commitment control 19

You can use the commit cycle identifier to apply or remove journaled changes to a commitment
boundary using the Apply Journaled Changes (APYJRNCHG) command or the Remove Journaled Changes
(RMVJRNCHG) command. These limitations apply:

• Most object-level changes made under commitment control are written to the journal but are not
applied or removed using the APYJRNCHG and RMVJRNCHG commands.

• The QJOSJRNE API writes user-created journal entries with a journal code of U. These entries cannot
be applied or removed using the APYJRNCHG and RMVJRNCHG commands. They must be applied or
removed with a user-written program.

Record locking
When a job holds a record lock and another job attempts to retrieve that record for update, the requesting
job waits and is removed from active processing.

The requesting job will be active till one of the following events occurs:

• The record lock is released.
• The specified wait time ends.

More than one job can request a record to be locked by another job. When the record lock is released, the
first job to request the record receives that record. When waiting for a locked record, specify the wait time
in the WAITRCD parameter on the following create, change, or override commands:

• Create Physical File (CRTPF)
• Create Logical File (CRTLF)
• Create Source Physical File (CRTSRCPF)
• Change Physical File (CHGPF)
• Change Logical File (CHGLF)
• Change Source Physical File (CHGSRCPF)
• Override Database File (OVRDBF)

When you specify wait time, consider the following information:

• If you do not specify a value, the program waits the default wait time for the process.
• For commitment definitions with transaction-scoped locks only, the job default wait time can be

overridden by a transaction lock-wait time that can be specified on:

– The xa_open API.
– A JDBC or JTA interface. Distributed transactions lists these APIs.

• If the record cannot be allocated within the specified time, a notify message is sent to the high-level
language program.

• If the wait time for a record is exceeded, the message sent to the job log gives the name of the
job holding the locked record that caused the requesting job to wait. If you experience record lock
exceptions, you can use the job log to help determine which programs to alter so they will not hold locks
for long durations.

Programs keep record locks over long durations for one of the following reasons:

• The record remains locked while the workstation user is considering a change.
• The record lock is part of a long commitment transaction. Consider making smaller transactions so a

commit operation can be performed more frequently.
• An undesired lock has occurred. For example, assume that a file is defined as an update file with unique

keys, and that the program updates and adds additional records to the file. If the workstation user
wants to add a record to the file, the program might attempt to access the record to determine whether
the key already exists. If it does, the program informs the workstation user that the request made is not
valid. When the record is retrieved from the file, it is locked until it is implicitly released by another read
operation to the same file, or until it is explicitly released.

20 IBM i: Commitment control

Note: For more information about how to use each high-level language interface to release record locks,
see the appropriate high-level language reference manual. Related information for commitment control
has links to high-level language manuals that you can use with commitment control.

The duration of the lock is much longer if LCKLVL(*ALL) is specified because the record that was
retrieved from the file is locked until the next commit or rollback operation. It is not implicitly released
by another read operation and cannot be explicitly released.

Another function that can put a lock on a file is the save-while-active function.

Related concepts
JDBC Distributed transactions
Save-while-active function
Related reference
Related information for Commitment control
Product manuals, IBM Redbooks publications, Web sites, and other information center topic collections
contain information that relates to the Commitment control topic collection. You can view or print any of
the PDF files.

Commitment control and independent disk pools
Independent disk pools and independent disk pool groups can each have a separate i5/OS database. You
can use commitment control with these databases.

However, because each independent disk pool or independent disk pool group has a separate SQL
database, you should be aware of some considerations.

Related concepts
Commitment definition
The commitment definition contains information that pertains to the resources that are being changed
under commitment control during a transaction.
Local and remote committable resources
A committable resource can be either a local resource or a remote resource.
The commit protocol of a committable resource
Commit protocol is the capability a resource has to participate in one-phase or two-phase commit
processing. Local resources, except API committable resources, are always two-phase resources.

Independent disk pool considerations for commitment definitions
You must be aware of these considerations for commitment definitions when you use independent disk
pools.

QRECOVERY library considerations
When you start commitment control, the commitment definition is created in the QRECOVERY library.
Each independent disk pool or independent disk pool group has its own version of a QRECOVERY library.
On an independent disk pool, the name of the QRECOVERY library is QRCYxxxxx, where xxxxx is the
number of the independent disk pool. For example, the name of the QRECOVERY library for independent
disk pool 39 is QRCY00039. Furthermore, if the independent disk pool is part of a disk pool group, only
the primary disk pool has a QRCYxxxxx library.

When you start commitment control, the commitment definition is created in the QRECOVERY library of
the independent disk pool that is associated with that job, making commitment control active on the
independent disk pool.

Set ASP Group considerations
Using the Set ASP Group (SETASPGRP) command while commitment control is active on an independent
disk pool has the following effects:

Commitment control 21

• If you switch from an independent disk pool and resources are registered with commitment control on
the disk pool, the SETASPGRP command fails with message CPDB8EC, reason code 2, The thread
has an uncommitted transaction. This message is followed by message CPFB8E9.

• If you switch from an independent disk pool and no resources are registered with commitment control,
the commitment definitions are moved to the independent disk pool to which you are switching.

• If you switch from the system disk pool (ASP group *NONE), commitment control is not affected. The
commitment definitions stay on the system disk pool. If you subsequently place independent disk pool
resources under commitment control before system disk pool resources, the commitment definition is
moved to the independent disk pool.

• If you use a notify object, the notify object must reside on the same independent disk pool or
independent disk pool group as the commitment definition.

• If you move the commitment definition to another independent disk pool or independent disk pool
group, the notify object must also reside on that other independent disk pool or independent disk pool
group. The notify object on the other independent disk pool or independent disk pool group is updated
if the commitment definition ends abnormally. If the notify object is not found on the other independent
disk pool or independent disk pool group, the update fails with message CPF8358.

The current name space of the job determines which independent ASP the commitment definition is
created in. If the job is not associated with an independent ASP, the commitment definition is created in
*SYSBAS, otherwise it is created in the independent ASP. If the job is associated with an independent ASP,
you can open files under commitment control that reside in the current library name space, i.e. they may
reside in the independent ASP or *SYSBAS. If the first resource that is placed under commitment control
does not reside in the same ASP as the commitment definition, the commitment definition is moved to the
resource's ASP. If both *SYSBAS and independent ASP resources are registered in the same commitment
definition, the system implicitly uses a two-phase commit protocol to ensure the resources are committed
atomically in the event of a system failure. Therefore, transactions that involve data in both *SYSBAS and
an independent ASP will not perform as well as transactions that are isolated to a single ASP group.

Default journal considerations
You should be aware of the following default journal considerations:

• If you use the default journal, the journal must reside on the same independent disk pool or
independent disk pool group as the commitment definition.

• If the default journal is not found on the other independent disk pool or independent disk pool group
when commitment control starts, the commitment control start fails with message CPF9873.

• If you move the commitment definition to another independent disk pool or independent disk pool
group, the default journal must also reside on that other independent disk pool or independent disk
pool group. If the journal is not found on the other independent disk pool or independent disk pool
group, the commitment definition is moved, but no default journal is used from this point on.

Initial program load (IPL) and vary off considerations
You should be aware of the following IPL and vary off considerations:

• Recovery of commitment definitions residing on an independent disk pool is performed during the vary
on processing of the independent disk pool and is similar to IPL recovery.

• Commitment definitions in an independent disk pool are not recovered during the system IPL.
• When recovery is required for a commitment definition that contains resources that reside in both

*SYSBAS and an independent ASP, the commitment definition will be split into two commitment
definitions during the recovery, one in *SYSBAS and one in the independent ASP, as though there
were a remote database connection between the two ASP groups. Resynchroniziation may be initiated
by the system during the recovery to ensure the data in both ASP groups is committed or rolled back
atomically.

• The vary off of an independent disk pool has the following effects on commitment definitions:

– Jobs associated with the independent disk pool end.

22 IBM i: Commitment control

– No new commitment definitions are allowed to be created on the independent disk pool.
– Commitment definitions residing on the independent disk pool become unusable.
– Commitment definitions residing on the independent disk pool, but not attached to a job, release

transaction scoped locks.

Remote database considerations
You should be aware of the following remote database considerations:

• You cannot use an LU 6.2 SNA connection (protected conversations or Distributed Unit of Work (DUW))
to connect to a remote database from an independent disk pool database. You can use unprotected
SNA conversations to connect from an independent disk pool database to a remote database.

• When commitment control is active for a job or thread, access to data outside the independent disk
pool or disk pool group to which the commitment definition belongs is only possible remotely, as if it
were data that resides on another system. When you issue an SQL CONNECT statement to connect to
the relational database (RDB) on the independent disk pool, the system makes the connection a remote
connection.

• The system disk pool and basic disk pools do not require a remote connection for read-only access to
data that resides on an independent disk pool. Likewise, an independent disk pool does not require a
remote connection for read-only access to data that resides on the system disk pool or a basic disk
pool.

Related concepts
Commitment definition
The commitment definition contains information that pertains to the resources that are being changed
under commitment control during a transaction.
Commit notify object
A notify object is a message queue, data area, or database file that contains information identifying
the last successful transaction completed for a particular commitment definition if that commitment
definition did not end normally.
Commitment control recovery during initial program load after abnormal end
When you perform an initial program load (IPL) after your system ends abnormally, the system attempts
to recover all the commitment definitions that were active when the system ended.

Considerations for XA transactions
In the XA environment, each database is considered a separate resource manager. When a transaction
manager wants to access two databases under the same transaction, it must use the XA protocols to
perform two-phase commit with the two resource managers.

Because each independent disk pool is a separate SQL database, in the XA environment each
independent disk pool is also considered a separate resource manager. For an application server to
perform a transaction that targets two different independent disk pools, the transaction manager must
also use a two-phase commit protocol.

Related concepts
XA transaction support for commitment control
Db2 for i can participate in X/Open global transactions.
Independent disk pool examples

Commitment control 23

Considerations and restrictions for commitment control
You need to be aware of these considerations and restrictions for commitment control.

Database file considerations
• If you specify that a shared file be opened under commitment control, all subsequent uses of that file

must be opened under commitment control.
• If SEQONLY(*YES) is specified for the file opened for read-only with LCKLVL(*ALL) (either implicitly or

by a high-level language program, or explicitly by the Override with Database File (OVRDBF) command),
then SEQONLY(*YES) is ignored and SEQONLY(*NO) is used.

• Record-level changes made under commitment control are recorded in a journal. These changes can be
applied to or removed from the database with the Apply Journaled Changes (APYJRNCHG) command or
the Remove Journaled Changes (RMVJRNCHG) command.

• Both before-images and after-images of the files are journaled under commitment control. If you
specify only to journal the after-images of the files, the system also automatically journals the before-
image of the file changes that occurred under commitment control. However, because the before-
images are not captured for all changes made to the files, you cannot use the RMVJRNCHG command
for these files.

Considerations for object-level and record-level changes
• Object-level and record-level changes made under commitment control using SQL use the commitment
definition that is currently active for the activation group that the requesting program is running in. If
neither the job-level nor the activation-group-level commitment definition is active, SQL will start an
activation-group-level commitment definition.

One-phase and two-phase commit considerations
• While a one-phase remote conversation or connection is established, remote conversations or

connections to other locations are not allowed. If a commitment boundary is established and all
resources are removed, the location can be changed.

• If you are using two-phase commit, you do not need to use the Submit Remote Command
(SBMRMTCMD) command to start commitment control or perform any other commitment control
operations at the remote locations. The system performs these functions for you.

• For a one-phase remote location, the COMMIT and ROLLBACK CL commands will fail if SQL is in the call
stack and the remote relational database is not on a system. If SQL is not on the call stack, the COMMIT
and ROLLBACK commands will not fail.

• For a one-phase remote location, commitment control must be started on the source system before
making committable changes to remote resources. The system automatically starts commitment
control for distributed database SQL on the source system at connection time if the SQL program is
running with the commitment control option other than *NONE. When the first remote resource is
placed under commitment control, the system starts commitment control on the target system.

Save consideration
A save operation is prevented if the job performing the save has one or more active commitment
definitions with any of the following types of committable changes:

• A record change to a file that resides in the library being saved. For logical files, all the related physical
files are checked.

• Any object-level changes within a library that is being saved.
• Any API resource that was added using the Add Commitment Resource (QTNADDCR) API and with the

Allow normal save processing field set to the default value of N.

24 IBM i: Commitment control

This prevents the save operations from saving to the save media changes that are due to a partial
transaction.

Note: If you use the new save with partial transactions feature, the object can be saved without ending a
commitment definition.

Object locks and record locks prevent pending changes from commitment definitions in other jobs from
being saved to the save media. This is true only for API commitment resources if locks are acquired when
changes are made to the object or objects associated with the API commitment resource.

Miscellaneous considerations and restrictions
• Before upgrading your system to a new release, all pending resynchronizations must either be

completed or canceled.
• The COMMIT and ROLLBACK values are shown on the WRKACTJOB Function field during a commit or

rollback. If the Function remains COMMIT or ROLLBACK for a long time, one of the following events
might have occurred:

– A resource failure during the commit or rollback requires resynchronization. Control will not return to
the application until the resynchronization completes or is canceled.

– This system voted read-only during the commit. Control will not return to the application until the
system that initiated the commit sends data to this system.

– This system voted OK to leave out during the commit. Control will not return to the application until
the system that initiated the commit sends data to this system.

Related concepts
Ensuring two-phase commit integrity
Commit lock level
The value you specify for the LCKLVL parameter on the Start Commitment Control (STRCMTCTL)
command becomes the default level of record locking for database files that are opened and placed
under commitment control for the commitment definition.
Related reference
Override with Database File (OVRDBF) command
Apply Journaled Changes (APYJRNCHG) command
Remove Journaled Changes (RMVJRNCHG) command
SQL programming
Submit Remote Command (SBMRMTCMD) command
Commit (COMMIT) command
Rollback (ROLLBACK) command
Add Commitment Resource (QTNADDCR) API

Commitment control for batch applications
Batch applications might or might not need commitment control. In some cases, a batch application
can perform a single function of reading an input file and updating a master file. However, you can use
commitment control for this type of application if it is important to start it again after an abnormal end.

The input file is an update file with a code in the records to indicate that a record was processed. This file
and any files updated are placed under commitment control. When the code is present in the input file, it
represents a completed transaction. The program reads through the input file and bypasses any records
with the completed code. This allows the same program logic to be used for normal and starting-again
conditions.

If the batch application contains input records dependent on one another and contains switches or totals,
a notify object can be used to provide information about starting again. The values held in the notify
object are used to start processing again from the last committed transaction within the input file.

Commitment control 25

If input records are dependent on one another, they can be processed as a transaction. A batch job
can lock a maximum of 500 000 000 records. You can reduce this limit by using a Query Options File
(QAQQINI). Use the QRYOPTLIB parameter of the Change Query Attributes (CHGQRYA) command to
specify a Query Options File for a job to use. Use the COMMITMENT_CONTROL_LOCK_LEVEL value in
the Query Options File as the lock limit for the job. The lock limit value is cached internally for each
commitment definition the first time a journaled resource is placed under commitment control. If the lock
limit is changed after that point, the cached value must be refreshed for it to become effective for that
commitment definition. Any call to the Retrieve Commit Information (QTNRCMTI) API refreshes
the cached value in the calling job. The new value will not apply to transactions that started before the
cache is refreshed.

Any commit cycle that exceeds 2000 locks probably slows down system performance noticeably.
Otherwise, the same locking considerations exist as for interactive applications, but the length of time
records are locked in a batch application might be less important than in interactive applications.

Related concepts
Commit notify object
A notify object is a message queue, data area, or database file that contains information identifying
the last successful transaction completed for a particular commitment definition if that commitment
definition did not end normally.
Managing transaction size
Another way to minimize record locks is to manage the size of the transaction.
Related reference
Change Query Attributes (CHGQRYA) command

Two-phase commitment control
Two-phase commitment control ensures that committable resources on multiple systems remain
synchronized.

i5/OS operating system supports two-phase commit in accordance with the SNA LU 6.2 architecture. For
more detailed information about the internal protocols used by the system for two-phase commit, see
the SNA Transaction Programmer's Reference for LU Type 6.2, GC30-3084-05. All supported releases of
i5/OS operating system support the Presumed Nothing protocols of SNA LU 6.2 and the Presumed Abort
protocols of SNA LU 6.2.

Two-phase commit is also supported using TCP/IP as a Distributed Unit of Work (DUW) Distributed
Relational Database Architecture (DRDA) protocol. To use TCP/IP DUW connections, all of the systems
(both the application requester and the application server) must be at V5R1M0 or newer. For more
information about DRDA, see the Open Group Technical Standard, DRDA V2 Vol. 1: Distributed Relational
Database Architecture at the Open Group Web site.

Under two-phase commit, the system performs the commit operation in two waves:

• During the prepare wave, a resource manager issues a commit request to its transaction manager. The
transaction manager informs any other resources it manages and the other transaction managers that
the transaction is ready to be committed. All the resource managers must respond that they are ready
to commit. This is called the vote.

• During the committed wave, the transaction manager that initiates the commit request decides what
to do, based on the outcome of the prepare wave. If the prepare wave completes successfully and all
participants vote ready, the transaction manager instructs all the resources it manages and the other
transaction managers to commit the transaction. If the prepare wave does not complete successfully,
all the transaction managers and resource managers are instructed to roll back the transaction.

Commit and rollback operations with remote resources
When remote resources are under commitment control, the initiator sends a commit request to all remote
agents. The request is sent throughout the transaction program network. Each agent responds with the
results of the commit operation.

26 IBM i: Commitment control

If errors occur during the prepare wave, the initiator sends a rollback request to all agents. If errors occur
during the committed wave, the system attempts to bring as many locations as possible to committed
status. These attempts might result in a heuristic mixed state. See States of the transaction for two-phase
commitment control for more information about the possible states.

Any errors are sent back to the initiator where they are signaled to the user. If a default journal was
specified on the Start Commitment Control (STRCMTCTL) command, C LW entries are written. If errors
occur, these entries are written, even if OMTJRNE(*LUWID) was specified. You can use these entries,
along with the error messages and the status information for the commitment definition, to attempt to
synchronize the committable resources manually.

When remote resources are under commitment control, the initiator sends a rollback request to all
remote agents. The request is sent throughout the transaction program network. Each agent responds
with the results of the rollback operation.

Related concepts
The Open Group Web site
Related reference
Start Commitment Control (STRCMTCTL) command

Roles in commit processing
If a commit of a transaction involves more than one resource manager, each resource manager plays a
role in the transaction. A resource manager is responsible for committing or rolling back changes made
during the transaction.

The resource managers by resource type are as follows:

FILE
Database manager

DDM
Database manager

DDL
Database manager

DRDA
Communications transaction program

LU62
Communications transaction program

API
API exit program

The following figures shows the basic roles in a transaction. The structure shown in the figures is called a
transaction program network. The structure can be in a single-level tree and a multilevel tree.

Roles in two-phase commit processing: Single-level tree
When an application on System A issues a commit request, the resource manager on System A becomes
the initiator. For Distributed Relational Database Architecture (DRDA) distributed unit of work over TCP/IP,
the initiator is called the coordinator.

The resource managers for the other three systems (B, C, and D) become agents for this transaction. For
DRDA distributed unit of work over TCP/IP, agents are sometimes called participants.

Commitment control 27

http://www.opengroup.org/

Roles in two-phase commit processing: Multi-level tree
If the application is using APPC communications to perform the two-phase commit, the relationship
between systems can change from one transaction to the next. The following figure shows the same
systems when an application on System B issues the commit request. This configuration is a multi-level
tree.

The roles in this figure do not apply to DRDA distributed unit of work over TCP/IP because multi-level
transactions trees are not supported.

28 IBM i: Commitment control

The transaction program network has another level because System B is not communicating directly with
System C and System D. The resource manager in System A now has the roles of agent and cascaded
initiator.

To improve performance of LU 6.2 two-phase transactions, the initiator might assign the role of last agent
to one of the agents. The last agent does not participate in the prepare wave. In the committed wave, the
last agent commits first. If the last agent does not commit successfully, the initiator instructs the other
agents to roll back.

For DRDA distributed unit of work over TCP/IP, the coordinator might assign the role of resync server to a
participant. The resync server is responsible to resynchronize the other participants in the event in which
there is a communications failure with the coordinator, or the coordinator has a systems failure.

Related concepts
Commitment definition for two-phase commit: Allow vote read-only
Normally, a transaction manager participates in both phases of commit processing. To improve the
performance of commit processing, you can set up some or all locations in a transaction to allow the
transaction manager to vote read-only.

States of the transaction for two-phase commitment control
A commitment definition is established at each location that is part of the transaction program network.
For each commitment definition, the system keeps track of the state of its current transaction and
previous transaction.

The system uses the state to decide whether to commit or roll back if a transaction is interrupted by
a communication or system failure. If multiple locations are participating in a transaction, the states
of the transactions at each location might be compared to determine the correct action (commit or
rollback). This process of communicating between locations to determine the correct action is called
resynchronization.

Commitment control 29

The following table shows these items:

• The basic states that might occur during a transaction.
• Additional states that might occur.
• Whether a state requires resynchronization if the transaction is interrupted by a communications or

system failure. The possible values are as follows:
Not needed

Each location can make the correct decision independently.
May be necessary

Each location can make the correct decision, but the initiator might need to be informed of the
decision.

Required
The state of each location must be determined before the correct decision can be made.

• Action taken by a communications or system failure.

State name Description Resynchronization if
the transaction is
interrupted

Action taken by a
communications or
system failure

Basic states during two-phase commit processing:

Reset (RST) From the commitment
boundary until a
program issues a
request to commit or roll
back.

Not needed. Pending changes are
rolled back.

Prepare in Progress
(PIP)

The initiator has started
the prepare wave. All
locations have not yet
voted.

May be necessary. Pending changes are
rolled back.

Prepared (PRP) This location and all
locations further down
in the transaction
program network have
voted to commit. This
location has not yet
received notification
from the initiator to
commit.

Required. In doubt. It depends
on the results of
the resynchronization
process.

Commit in Progress
(CIP)

All locations have
voted to commit. The
initiator has started the
committed wave.

Required. Pending changes
are committed.
Resynchronization is
performed to ensure
that all locations have
committed. If a heuristic
rollback is reported by
another location, an
error is reported.

Committed (CMT) All agents have
committed and returned
a reply to this node.

May be necessary. None.

Additional states during two-phase commit processing:

30 IBM i: Commitment control

State name Description Resynchronization if
the transaction is
interrupted

Action taken by a
communications or
system failure

Last Agent Pending
(LAP)

If a last agent is
selected, this state
occurs at the initiator
between the PIP state
and the CIP state. The
initiator has instructed
the last agent to commit
and has not yet received
a response.

Required. In doubt. It depends
on the results of
the resynchronization
process.

Vote-Read-Only (VRO) This agent responded
to the prepare wave by
indicating that it has
no pending changes. If
the vote-read-only state
is permitted, this agent
is not included in the
committed wave.

May be necessary. None.

Rollback Required (RBR) One of the following
events occurred:

• An agent issued
a rollback request
before the commit
operation.

• A transaction failure
has occurred.

• The QTNRBRQD API
was used to place
the transaction in
a rollback required
state.

The transaction program
is not allowed
to perform any
additional changes
under commitment
control.

May be necessary. Pending changes are
rolled back.

Conditions that occur because of operator actions or errors:

Forced Rollback This location and all
locations further down
the transaction program
network, except the last
agent, have been rolled
back through operator
intervention.

May be necessary. Pending changes have
already been rolled
back.

Commitment control 31

State name Description Resynchronization if
the transaction is
interrupted

Action taken by a
communications or
system failure

Forced Commit This location and all
locations further down
the transaction program
network, except the
last agent, have
committed through
operator intervention.

May be necessary. Pending changes
have already been
committed.

Heuristic Mixed (HRM) Some resource
managers have
committed. Some have
rolled back. Operator
intervention was used
or a system error
occurred. Heuristic
mixed does not appear
as a status on the
commitment definition
displays. Notification
messages are sent to
the operator.

May be necessary. The operator must
perform a restore
operation at all
participating locations to
bring the database to a
consistent state.

Related concepts
Commitment definition for two-phase commit: Allow vote read-only
Normally, a transaction manager participates in both phases of commit processing. To improve the
performance of commit processing, you can set up some or all locations in a transaction to allow the
transaction manager to vote read-only.
Commitment definition for two-phase commit: Not wait for outcome
When a communication or system failure occurs during a commit operation so that resynchronization
is required, the default is to wait until the resynchronization is finished before the commit operation
completes.
Starting commitment control
To start commitment control, use the Start Commitment Control (STRCMTCTL) Command.
Commitment control recovery during initial program load after abnormal end
When you perform an initial program load (IPL) after your system ends abnormally, the system attempts
to recover all the commitment definitions that were active when the system ended.
Commitment control errors
When you use commitment control, it is important to understand which conditions cause errors and which
do not.

Commitment definitions for two-phase commitment control
To change the commitment options for your transaction after you start commitment control, use the
Change Commitment Options (QTNCHGCO) API.

Depending on your environment and your applications, changing the commitment options can improve
your system's performance.

Note: If you are using a DRDA distributed unit of work over TCP/IP connection, the only option that
applies is Allow vote read-only.

Related reference
Change Commitment Options (QTNCHGCO) API

32 IBM i: Commitment control

Commitment definition for two-phase commit: Allow vote read-only
Normally, a transaction manager participates in both phases of commit processing. To improve the
performance of commit processing, you can set up some or all locations in a transaction to allow the
transaction manager to vote read-only.

If the location has no committable changes during a transaction, the transaction manager votes read-only
during the prepare wave. The location does not participate in the committed wave. This improves overall
performance because the communication flows that normally occur during the committed wave are
eliminated during transactions in which no updates are made at one or more remote locations.

After you start commitment control, you can use the Change Commitment Options (QTNCHGCO) API
to change the Vote read-only permitted option to Y. You might want to do this if the following
conditions are true:

• One or more remote systems often do not have any committable changes for a transaction.
• A transaction does not depend on where the file cursor (next record) was set by the previous

transaction. When a location votes read-only, the application is never notified if the transaction is rolled
back. The location has committed any read operations to the database files and, thus, moved the cursor
position. The position of the file cursor is typically important only if you do sequential processing.

If your commitment definition is set up to allow vote read-only, the application waits for the next message
flow from another location.

The Vote read-only permitted option is intended for applications that are client/server in nature. If
the purpose of program A is only to satisfy requests from program I, not to do any independent work, it is
appropriate to allow the Vote read-only option for program A.

Flow of commit processing without last agent optimization when agent votes read-
only
The following figure shows the flow of messages among the application programs and the transaction
managers when an application program issues a commit instruction without last agent optimization when
the agent votes read-only. Neither the initiator application program nor the agent application programs is
aware of the two-phase commit processing. The numbers in parentheses () in the figure correspond to the
numbered items in the description that follows.

Commitment control 33

The following list is a description of the events for normal processing without last agent optimization
when the agent votes read only. This describes a basic flow. The sequence of events can become much
more complex when the transaction program network has multiple levels or when errors occur.

1. Application program A does a receive request to indicate that it is ready to receive a request from
program I.

2. The initiator application (I) issues a commit instruction.
3. The transaction manager for the initiator (TM-I) takes the role of initiator for this transaction. It starts

the prepare wave by sending a prepare message to all the other locations that are participating in the
transaction.

4. The transaction managers for every other location take the role of agent (TM-A). The application
program A is notified by TM-A that a request to commit has been received. For ICF files, the
notification is in the form of the Receive Take Commit (RCVTKCMT) ICF indicator being set on.

5. The application program A responds by issuing a commit instruction (or a rollback instruction). This is
the application program's vote.

6. If application program A has used the Change Commitment Options API (QTNCHGCO) to set the Vote
read-only permitted commitment option to Y and no changes have been made at the agent during
the transaction, the agent (TM-A) responds to the initiator (TM-I) with a reset message. There is no
committed wave for the agent.

7. A return is sent to the application program (A) to indicate that the transaction is complete at agent
TM-A.

8. The next time the initiator (TM-I) issues any messages to the agent (TM-A), either a data flow or
a commitment instruction, TM-I causes its current transaction ID to be sent with the message. The
reason for this is that a new transaction ID might have been generated at TM-I if a communications
failure had occurred between TM-I and another system during the commit operation.

9. A return is sent to the application program (A) to indicate that the transaction is complete at agent
TM-A. The return is delayed until after the next message is received because a new transaction ID
must be received from TM-I before the next transaction can be started by application A.

34 IBM i: Commitment control

Related concepts
Roles in commit processing
If a commit of a transaction involves more than one resource manager, each resource manager plays a
role in the transaction. A resource manager is responsible for committing or rolling back changes made
during the transaction.
States of the transaction for two-phase commitment control
A commitment definition is established at each location that is part of the transaction program network.
For each commitment definition, the system keeps track of the state of its current transaction and
previous transaction.
Optimizing performance for commitment control
Using commitment control requires resources that can affect system performance. Several factors affect
system performance regarding commitment control.
Related reference
Change Commitment Options (QTNCHGCO) API

Commitment definition for two-phase commit: Not wait for outcome
When a communication or system failure occurs during a commit operation so that resynchronization
is required, the default is to wait until the resynchronization is finished before the commit operation
completes.

Note: The Not wait for outcome option does not apply if you are using a Distributed Relational Database
Architecture (DRDA) distributed unit of work over TCP/IP connection. DRDA distributed unit of work over
TCP/IP connections never waits for outcome.

Consider changing this behavior if the following conditions are true:

• The applications that participate are independent of each other.
• Your program logic does not need the results of previous transactions to ensure that your database files

remain synchronized.

After you start commitment control, you can use the Change Commitment Options (QTNCHGCO) API to
specify that the commitment definition does not wait for the outcome of resynchronization. If you specify
N (No) for the Wait for outcome option, the system uses a database server job (QDBSRVnn) to handle
resynchronization asynchronously.

Note: These database server jobs are started during the initial program load (IPL) process. If you change
the options for commitment control, this has no effect on the number of jobs that the system starts.

This topic only refers to two values for the resolved Wait for outcome option, Y (Yes) and N (No).
There are actually two more values that you can specify, L (Yes or Inherit from Initiator) and U (No or
Inherit from Initiator). When you use these values, the actual value used during each commit operation is
resolved to Yes or No by the system. The QTNCHGCO (Change Commitment Options) API topic has more
details about these values.

Note: The initiator's value can only be inherited by an agent if both the initiator and the agent support
presumed abort.

The wait for outcome (WFO) option does not affect normal, error-free commit processing. If an error
occurs, the WFO option determines whether the application waits for resynchronization or not, with the
following conditions:

• If the resolved WFO option is Y (Yes), the application waits for the result of the resynchronization.
• If the resolved WFO option is N (No) and a communication failure occurs during the prepare wave or

rollback of a location that supports presumed abort protocols, no resynchronization is performed and
the commitment definition is rolled back.

• If the commitment definition is in doubt (transaction state is prepared or Last Agent Pending), the
application will wait for the result of the resynchronization regardless of the resolved WFO value.

Commitment control 35

• If the resolved WFO option is N and neither one of conditions two or three is true, the system attempts
to resynchronize once. If it is not successful, the system signals STATUS message CPF83E6 to the
application to indicate that resynchronization is in progress.

Because CPF83E6 is a STATUS message, it only has an effect if the application is monitoring for
it. Normally, your application can treat this message as an informational message. The systems
that are participating in the transaction attempt to resynchronize the transaction until the failure is
repaired. These subsequent resynchronization attempts are performed in the database server jobs. If
a subsequent resynchronization attempt that is performed in a database server job fails, the message
CPI83D0 is sent to QSYSOPR.

Wait for outcome value: Yes
In the following figure, the commitment definition for the initiator (I) uses the default value of Y (Yes) for
the Wait for outcome option. When communications between TM-I and TM-A is lost, both application
A and application I wait until the transaction is resynchronized.

Wait for outcome value: No
In the following figure, the commitment definition for the initiator has the resolved WFO set to N (No). TM-
A meets condition 3 in the preceding list, while TM-I meets condition 4. Control is returned to application
I after one attempt to resynchronize with TM-A. A database server job attempts to resynchronize.
Application I never receives the return indicator when the commit request has completed successfully.
Control is not returned to the agent application (A) until after communications is reestablished. This
depends on the timing of the failure. In this case, the communications failure occurs before the commit
message is received from the initiator, leaving TM-A in doubt as to whether to commit or rollback. When
the transaction manager is in doubt, it retains control until the resynchronization is completed, regardless
of the resolved WFO value at that system.

36 IBM i: Commitment control

If you want the applications at all systems to continue before resynchronization completes, you must
either change the resolved WFO option to N (No) on all systems, or set the initiator to N and the rest of
the systems to U (No or Inherit from Initiator). But remember that the resolved WFO option is ignored
when the transaction manager is in doubt as to whether to commit or rollback, and always waits until
resynchronization completes before returning control.

When a connection is made to a remote relational database, and no protected conversations have already
been started, the system implicitly changes the Wait for outcome value to N. The reason for this is
that the performance of commit operations is improved when the Wait for outcome value is N and the
remote system supports presumed abort. This implicit change of the Wait for outcome value is only
performed for DRDA and DDM applications. APPC applications use the default Wait for outcome value
of Y unless they call the QTNCHGCO API to change it.

Related concepts
States of the transaction for two-phase commitment control

Commitment control 37

A commitment definition is established at each location that is part of the transaction program network.
For each commitment definition, the system keeps track of the state of its current transaction and
previous transaction.
Commitment control errors
When you use commitment control, it is important to understand which conditions cause errors and which
do not.
Related reference
Change Commitment Options (QTNCHGCO) API

Commitment definition for two-phase commit: Indicate OK to leave out
Normally, the transaction manager at every location in the transaction program network participates in
every commit or rollback operation. To improve performance, you can set up some or all locations in a
transaction to allow the transaction manager to indicate OK to leave out.

Note: The Indicate OK to leave out option does not apply if you are using a DRDA distributed unit of work
over TCP/IP connection.

If no communications flows are sent to the location during a transaction, the location is left out
when a commit or rollback operation is performed. This improves overall performance because
the communications flows that normally occur during the commit or rollback are eliminated during
transactions in which no data is sent to one or more remote locations.

After you start commitment control, you can use the Change Commitment Options (QTNCHGCO) API to
change the OK to leave out option to Y (Yes). You might want to do this if one or more remote systems
often are not involved in a transaction.

If your commitment definition is set up to indicate OK to leave out, the application waits for the next
message flow from another location.

The OK to leave out option is intended for applications that are client/server in nature. If the only purpose
of program A is to satisfy requests from program I and not to do any independent work, then it is
appropriate to allow the OK to leave out option for program A.

Flow of commit processing without last agent optimization when agent votes OK to
leave out
The following figure shows the flow of messages among the application programs and the transaction
managers when an application program issues a commit instruction without last agent optimization when
the agent indicates OK to leave out. Both the initiator application program and the agent application
programs are unaware of the two-phase commit processing. The numbers in parentheses () in the figure
correspond to the numbered items in the description that follows.

38 IBM i: Commitment control

Here is a description of the events for normal processing without last agent optimization when the agent
votes OK to leave out. This describes a basic flow. The sequence of events can become much more
complex when the transaction program network has multiple levels or when errors occur.

1. Application program A does a receive request to indicate that it is ready to receive a request from
program I.

2. The initiator application (I) issues a commit instruction.
3. The transaction manager for the initiator (TM-I) takes the role of initiator for this transaction. It starts

the prepare wave by sending a prepare message to all the other locations that are participating in the
transaction.

4. The transaction managers for every other location take the role of agent (TM-A). The application
program A is notified by TM-A that a request to commit has been received. For ICF files, the
notification is in the form of the Receive Take Commit (RCVTKCMT) ICF indicator being set on.

5. The application program A responds by issuing a commit instruction (or a rollback instruction). This is
the application program's vote.

6. If application program A has used the Change Commitment Options API (QTNCHGCO) to set the OK
to leave out commitment option to Y, an indicator is sent when the agent (TM-A) responds to the
initiator (TM-I) with a request commit message.

Note: Any change to the OK to leave out commitment option does not take effect until the next
successful commit operation.

7. When the initiator (TM-I) receives all the votes, the TM-I sends a commit message. This starts the
committed wave.

Commitment control 39

8. Each agent (TM-A) commits and responds with a reset message.
9. A return is sent to the application program (I) to indicate that the transaction is complete at the

initiator.
10. Any number of transactions might occur on TM-I, none of which requires changes to TM-A or data

from TM-A. TM-A is not included in these transactions.
11. The next time the initiator (TM-I) issues a message to the agent (A), a new transaction ID is sent with

the message. If the initiator performs any commit or rollback operations before sending a message to
the agent, no messages are sent to the agent during those operations (the agent is 'left out' of those
commits or rollbacks). Because one or more transactions might have been committed or rolled back
at the initiator while the agent was left out, the initiator must communicate its current transaction ID
when the next message is sent to the agent.

12. A return is sent to the application program (A) to indicate that the original commit is complete and
that it is participating in the current transaction.

Related concepts
Optimizing performance for commitment control
Using commitment control requires resources that can affect system performance. Several factors affect
system performance regarding commitment control.

Commitment definition for two-phase commit: Not select a last agent
By default, the transaction manager for the initiator is free to select any agent as a last agent during a
commit operation.

Note: The Not select last agent option does not apply if you are using a DRDA distributed unit of work over
TCP/IP connection.

In case of a multi-level tree, any agent selected as a last agent by its initiator is also free to select a last
agent of its own. Performance is improved when a last agent is selected during the commit operation
because two communications flows are eliminated between an initiator and its last agent (the prepare
phase is eliminated for these systems).

However, when the initiator sends the request commit to its last agent, it must wait until it has received
the last agent's vote before it can continue. This is regardless of the Wait for outcome value for the
commitment definition. During normal, error-free commit processing, this is not an issue. But, if an error
occurs during this window, the initiator cannot continue until resynchronization completes. If the initiator
application is handling requests from a user at a terminal, this can be a usability consideration.

You must consider whether the improved performance during normal commit operations is more
important than the impact on usability when such an error occurs. Note that if the error occurs before the
request commit is sent to the last agent, the LUW will immediately roll back and the initiator will not wait.
Therefore, the window when an error can cause the initiator to wait is quite small, so such an error is rare.

If you decide that the usability impact is not worth the improved performance, you can change your
commitment definitions to not select a last agent. After you start commitment control, you can use the
Change Commitment Options (QTNCHGCO) API to change the Last agent permitted option to N.

Related reference
Change Commitment Options (QTNCHGCO) API

Vote reliable effect on flow of commit processing
Vote reliable is an optimization that improves performance by returning earlier to the initiator application
after a commit operation and eliminating one message during a commit operation.

There is no explicit vote reliable optimization for Distributed Relational Database Architecture (DRDA)
distributed unit of work over TCP/IP. However, i5/OS operating system never requests a reset (forget)
confirmation for TCP/IP connections. Therefore, a reset (forget) is always implied for TCP/IP connections.

After you start commitment control, you can use the Change Commitment Options (QTNCHGCO) API to
change the Accept vote reliable option to Y.

40 IBM i: Commitment control

Vote reliable can be thought of as a promise by an agent to its initiator that no heuristic decisions will
be made at the agent if communications failure occurs while the agent is in doubt. An agent that is using
the vote reliable optimization sends an indicator to the initiator during the prepare wave of the commit.
If the initiator is also using the vote reliable optimization, it then sends an indicator to the agent that no
reset is required in response to the commit message. This eliminates the reset message, and allows the
transaction manager to return to the application at the initiator as soon as the commit message is sent.

Consider using the vote reliable optimization if the following conditions are true:

• It is unlikely that a heuristic decision is made at an in doubt agent in the event of a systems or
communications failure unless the failure cannot be repaired.

• Your program logic does not need the results of previous transactions to ensure that your database files
remain synchronized.

The vote reliable optimization is used by the i5/OS operating system only if all the following conditions are
true:

• The initiator and agent locations support the presumed abort level of commitment control.
• The initiator location accepts the vote reliable indication from the agent. On i5/OS initiators, this

depends on the value of two commitment options:

– The value of the Wait for outcome commitment option must be No (Yes is the default).
– The value of the Accept vote reliable commitment option must be Yes (Yes is the default).

• The agent location votes reliable during the prepare wave. i5/OS agents always vote reliable. This is
because heuristic decisions can be made only through a manual procedure that warns of the possible
negative side-effects of making a heuristic decision.

Flow of commit processing with vote reliable optimization
The following figure shows the flow of messages among the application programs and the transaction
managers when the vote reliable optimization is used. Both the initiator application program and
the agent application programs are unaware of the two-phase commit processing. The numbers in
parentheses () in the figure correspond to the numbered items in the description that follows.

Commitment control 41

The following list describes the events for normal processing without last agent optimization when
the agent votes reliable. This describes a basic flow. The sequence of events can become much more
complex when the transaction program network has multiple levels or when errors occur.

1. Application program A does a receive request to indicate that it is ready to receive a request from
program I.

2. The initiator application (I) issues a commit instruction.
3. The transaction manager for the initiator (TM-I) takes the role of initiator for this transaction. It starts

the prepare wave by sending a prepare message to all the other locations that are participating in the
transaction.

4. The transaction managers for every other location take the role of agent (TM-A). The application
program A is notified by TM-A that a request to commit has been received. For ICF files, the
notification is in the form of the Receive Take Commit (RCVTKCMT) ICF indicator being set on.

5. The application program A responds by issuing a commit instruction (or a rollback instruction). This is
the application program's vote.

6. The agent (TM-A) responds to the initiator (TM-I) with a request commit message. i5/OS systems send
a vote reliable indicator with the request commit.

7. When the initiator (TM-I) receives all the votes, the TM-I sends a commit message. If the Wait for
outcome commitment option is N (No) and the Accept vote reliable commitment option is Y (Yes), a no
reset indicator is sent with the commit message. This tells the agent that no reset message is required
in response to the commit.

8. The transaction is complete. A return is sent to the application programs (I and A). This return
indicates that the commit operation was successful. If a heuristic damage occurs at system A due
to a heuristic decision being made before the committed message is received, application I is not
informed. Instead, a message is sent to the QSYSOPR message queue. However, application A receives
the heuristic damage indication.

42 IBM i: Commitment control

9. The next time the agent (TM-A) sends any message to the initiator (TM-I), either a data flow or a
commitment instruction, an implied reset indicator is sent with the message to inform TM-I that TM-A
completed the commit successfully. The reason for this is that TM-I must retain information about the
completed transaction until it has confirmed that TM-A successfully received the commit message in
step “7” on page 42

Related reference
Change Commitment Options (QTNCHGCO) API

XA transaction support for commitment control
Db2 for i can participate in X/Open global transactions.

The Open Group has defined an industry-standard model for transactional work that allows changes
made against unrelated resources to be part of a single global transaction. An example of this is changes
to databases that are provided by two separate vendors. This model is called the X/Open Distributed
Transaction Processing model.

The following publications describe the X/Open Distributed Transaction Processing model in detail:

• X/Open Guide, February 1996, Distributed Transaction Processing: Reference Model, Version 3
(ISBN:1-85912-170-5, G504), The Open Group.

• X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification
(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

• X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

Be familiar with the information in these books, particularly the XA Specification, before attempting to use
the XA transaction support provided by Db2 for i. You can find these books at the Open Group Web site.

There are five components to the distributed transaction processing (DTP) model:

Application program (AP)
It implements the required function of the user by specifying a sequence of operations that involves
resources such as databases. It defines the start and end of global transactions, accesses resources
within transaction boundaries, and normally makes the decision whether to commit or roll back each
transaction.

Transaction manager (TM)
It manages global transactions and coordinates the decision to start them and commit them, or
roll them back in order to ensure atomic transaction completion. The TM also coordinates recovery
activities with the RMs after a component fails.

Resource manager (RM)
It manages a defined part of the computer's shared resources, such as a database management
system. The AP uses interfaces defined by each RM to perform transactional work. The TM uses
interfaces provided by the RM to carry out transaction completion.

Communications resource manager (CRM)
It allows an instance of the model to access another instance either inside or outside the current TM
domain. CRMs are outside the scope of Db2 for i and are not discussed here.

Communication protocol
The protocols are used by CRMs to communicate with each other. This is outside the scope of Db2 for i
and is not discussed here.

The XA Specification is the part of the DTP model that describes a set of interfaces that is used by
the TM and RM components of the DTP model. Db2 for i implements these interfaces as a set of UNIX
platform-style APIs and exit programs. See XA APIs for detailed documentation of these APIs and for
more information about how to use Db2 for i as an RM.

IBM Navigator for i and XA transactions
IBM Navigator for i supports the management of XA transactions as Global Transactions.

Commitment control 43

A global transaction might contain changes both outside and within Db2 for i. A global transaction is
coordinated by an external transaction manager using the Open Group XA architecture, or using another
similar architecture. An application commits or rolls back a global transaction using interfaces provided by
the transaction manager. The transaction manager uses commit protocols defined by the XA architecture,
or by another architecture, to complete the transaction. Db2 for i acts as an XA resource manager when
participating in a global transaction. There are two types of global transactions:

• Transaction-scoped locks: Locks acquired on behalf of the transaction are scoped to the transaction.
The transaction can move from one job or thread to another.

• Job-scoped locks: Locks acquired on behalf of the transaction are scoped to the job. The transaction
cannot move from the job that started it.

Considerations for XA transactions
The XA APIs for transaction-scoped locks are recommended for new users of the XA transaction support.
The XA APIs for job-scoped locks will continue to be supported, but no longer have any advantages
over the XA APIs for transaction-scoped locks. The XA APIs for transaction-scoped locks have fewer
restrictions and better performance in the following situations:

• If multiple SQL connections are ever used to work on a single XA transaction branch.
• If a single SQL connection is used to work on multiple, concurrent XA transaction branches.

In these situations, a separate job must be started to run XA transaction branches when you use the XA
APIs for Job Scoped Locks.

Understand the following considerations and restrictions before using Db2 for i as an RM. The term thread
refers to either a job that is not thread capable, or a single thread within a thread-capable job.

The following considerations apply to both transactions with transaction-scoped locks and transactions
with job-scoped locks unless noted otherwise.

Db2 for i considerations
• XA transactions against a local database must be performed in jobs that are running in SQL server

mode. For such transactions, if the xa_open() or db2xa_open() API is used in a job that is not already
running in SQL server mode, SQL server mode is implicitly started. You can refer to XA APIs for
restrictions on the supported database interfaces.

• XA transactions against a remote database are required to use SQL server mode when you use the
XA APIs for job-scoped locks. However, server mode is optional for XA transactions against a remote
database when you use the XA APIs for transaction-scoped locks. Furthermore, changes to DDM files
using traditional i5/OS database access methods are allowed within XA transactions against a remote
database when SQL server mode is not used.

• During the XA API invocations, the XA specification reports any errors that are detected by Db2 for i
through return codes. Diagnostic messages are left in the job log when the meaning of the error cannot
be determined from the return code alone.

Embedded SQL considerations
• In order to use a Structured Query Language (SQL) connection for XA transactions, you must use the

xa_open() or db2xa_open() application programming interface (API) before the SQL connection is made.
The relational database that will be connected to must be passed to the xa_open() or db2xa_open()
API by the xainfo parameter. The user profile and password to be used in the job that the connection is
routed to might be passed to the xa_open() or db2xa_open() API. If it is not passed, the profile uses the
one that was specified or used as the default during the connection attempt.

Note: The following consideration applies only to transactions with job-scoped locks.
• If embedded SQL is used to perform XA transactions, the work performed for each connection is routed

to a different job, even if the connections are made in the same thread. This is different than SQL server
mode without XA, where work performed for all connections in a single thread is routed to the same

44 IBM i: Commitment control

job. This is because the XA specification requires a separate prepare, commit or rollback call for each
resource manager instance.

Note: The following consideration applies only to transactions with job-scoped locks.
• If embedded SQL is used to perform XA transactions, only one connection per relational database can

be made per thread. Whenever the thread is not actively associated with a transaction branch, work
requested over one of the thread's connections will cause the RM to use the TM's ax_reg() exit program
to determine whether the work is to start, resume or join a transaction branch.

If the work is to start a transaction branch, it is performed over that thread's connection to the
corresponding relational database.

If the work is to join a transaction branch, it is rerouted over the connection to the corresponding
relational database that was made in the thread that started the transaction branch. Note that the
system does not enforce that the user profile for that connection is the same as the one for the
connection of the joining thread. The TM is responsible to ensure that this is not a security concern.
Typical TMs use the same user profile for all connections. This user profile is authorized to all data that
is managed by the TM. Further security of access to this data is managed by the TM or AP instead of
using the standard IBM i security techniques.

Note: The following consideration applies only to transactions with job-scoped locks.
• If the work is to resume a transaction branch, the connection that is used depends on whether the

suspended transaction branch association was established by starting or joining the transaction branch.

Subsequent work is performed over the same connection until the db2xa_end() API is used to suspend
or end the thread's association with that transaction branch.

CLI considerations
• If the CLI is used to perform XA transactions, more than one connection might be made in the same

thread after the db2xa_open() API is used. The connections can be used in other threads to perform
XA transactions, as long as those other threads first use the db2xa_open() API with the same xainfo
parameter value.

Note: The following consideration applies only to transactions with job-scoped locks.
• If the CLI is used to perform XA transactions, the connection that is used to start a transaction branch

must be used for all work on that transaction branch. If another thread is to join the transaction branch,
the connection handle for the connection used to start the transaction branch must be passed to the
joining thread so that it can perform work over that same connection. Likewise, if a thread is to resume
the transaction branch, the same connection must be used.

Because CLI connection handles cannot be used in a different job, the join function is limited to threads
running in the same job that started the transaction branch when the CLI is used.

Remote relational database considerations
Note: These considerations for a remote relational database apply only to transactions with job-scoped
locks.

• XA connections to a remote relational database are supported only if the relational database resides
on a system that supports Distributed Unit of Work (DUW) DRDA connections. This includes System i®
products that run Distributed Relational Database Architecture (DRDA) over SNA LU 6.2 conversations,
or that use V5R1 or later when running DRDA using TCP/IP connections. This also includes other
platforms that support DRDA over SNA LU 6.2 or that support the XA protocol using DRDA over TCP/IP.

• Before using the XA join function, the db2xa_open() API must be used in the joining thread. The same
relational database name and RMID must be specified on the db2xa_open() API in both the thread that
started the transaction branch and the joining thread. If the transaction branch is active when a join
is attempted, the joining thread is blocked. The joining thread remains blocked until the active thread
suspends or ends its association with the transaction branch.

Commitment control 45

Recovery considerations
• The manual heuristic commit and rollback support that is provided for all commitment definitions can

be used if it becomes necessary to force a transaction branch to commit or roll back while it is in a
prepared state.

• The manual heuristic rollback support is also allowed for transaction branches that are in an active
or idle state. This support is especially important when a client connection fails after the xa_end API
has been used to move the transaction branch to the idle state, but before xa_commit or xa_rollback
has been used to complete the transaction. If the client transaction manager does not come back
to complete the idle transaction branch after the connection failure, the idle transaction branch is
orphaned and will remain pending until the system is restarted or a manual heuristic rollback is
performed.

• There is also a manual option to forget transaction branches that are in a heuristically completed state.
If a transaction manager does not follow the XA protocol to issue the xa_forget API after receiving a
heuristic decision return code, the transaction branch is orphaned and will remain in the heuristically
completed state, even through a restart of the system. The transaction branch does not hold any
pending changes or locks in this state, but it does consume system storage that is freed when the forget
option is exercised.

Transaction branch considerations
• Information about XA transaction branches is shown as part of the commitment control information

displayed by IBM Navigator for i and by the Work with Job (WRKJOB), Display Job (DSPJOB), and
Work with Commitment Definition (WRKCMTDFN) commands. The TM name, transaction branch state,
transaction identifier, and branch qualifier are all shown. The commitment definitions related to all
currently active XA transactions can be displayed by using the command WRKCMTDFN JOB(*ALL)
STATUS(*XOPEN) or by displaying the Global Transactions folder in IBM Navigator for i.

Note: The following item applies only to transactions with job-scoped locks.
• If an association between a thread and an existing transaction branch is suspended or ended using

the db2xa_end() API, the thread might start a new transaction branch. If the connection used to start
the new transaction branch was used earlier to start a different transaction branch and the thread's
association with that transaction branch has been ended or suspended by the db2xa_end() API, a
new SQL server job might be started. A new SQL server job is needed only if the first transaction
branch has not yet been completed by the db2xa_commit() or db2xa_rollback() API. In this case,
another completion message SQL7908 is sent to the job log identifying the new SQL server job, just as
the connection's original SQL server job was identified when the connection was established. All SQL
requests for the new transaction branch are routed to the new SQL server job. When the transaction
branch is completed by the db2xa_commit() or db2xa_rollback() API, the new SQL server job is recycled
and returned to the prestart job pool.

• A transaction branch is marked Rollback Only in the following situations only for the XA transactions
for job-scoped locks:

– A thread ends when it is still associated with the transaction branch. This includes a thread ending as
the result of process termination.

– The system fails.
• With XA transactions for transaction-scoped locks, a transaction branch is rolled back by the system if

any threads are still associated with it when any of the following situations occur:

– The connection that is related to the transaction branch is ended.
– The job that started the transaction branch is ended.
– The system fails.

Note: The following consideration applies only to transactions with job-scoped locks.
• There is one situation where a transaction branch will be rolled back by the system, regardless of

whether there are still associated threads. This occurs when the SQL server job that the connection's

46 IBM i: Commitment control

work is being routed to is ended. This can only happen when the End Job (ENDJOB) CL command is
used against that job.

• A transaction branch is not affected if no threads have an active association with it when any of the
following situations occur. The TM can commit or roll back the transaction branch from any thread that
has used the xa_open() or db2xa_open() API with the same xainfo parameter value that was specified in
the thread that started the transaction branch.

– The connection that is related to the transaction branch is ended.
– A thread or job that performed work for the transaction branch uses the xa_close() or db2xa_close()

API.
– The system fails. In this case, the transaction branch is not affected only if it is in prepared state. If it

is in idle state, the system rolls it back.
• When the transaction identifier (XID) of two XA transaction branches have the same global transaction
identifier (GTRID), but different branch qualifiers (BQUALs), they are said to be loosely coupled. By
default, loosely coupled transaction branches do not share locks. However, when using the XA APIs for
transaction-scoped locks, there is an option that allows loosely coupled transactions to share locks.

Related concepts
Considerations for XA transactions
In the XA environment, each database is considered a separate resource manager. When a transaction
manager wants to access two databases under the same transaction, it must use the XA protocols to
perform two-phase commit with the two resource managers.
The Open Group Web site
SQL server mode and thread-scoped transactions for commitment control
Commitment definitions with job-scoped locks are normally scoped to an activation group.
Related tasks
When to force commit and rollback operations and when to cancel resynchronization
The decision to force a commit or rollback operation is called a heuristic decision. This action enables an
operator to manually commit or roll back the resources for a transaction that is in a prepared state.

SQL server mode and thread-scoped transactions for commitment control
Commitment definitions with job-scoped locks are normally scoped to an activation group.

If a job is multithreaded, all threads in the job have access to the commitment definition and changes
made for a particular transaction can be spread across multiple threads. That is, all threads whose
programs run in the same activation group participate in a single transaction.

There are cases where it is desirable for transactional work to be scoped to the thread, rather than an
activation group. In other words, each thread has its own commitment definition and transactional work
for each commitment definition is independent of work performed in other threads.

Db2 for i provides this support by using the Change Job (QWTCHGJB) API to change the job to run in SQL
server mode. When an SQL connection is requested in SQL server mode, it is routed to a separate job.
All subsequent SQL operations that are performed for that connection are also routed to that job. When
the connection is made, completion message SQL7908 is sent to the job log of the SQL server mode job
indicating which job the SQL requests are being routed to. The commitment definition is owned by the
job that is indicated in this message. If errors occur, it might be necessary to look at the job logs for both
jobs to understand the source of the problem because no real work is done in the job performing the SQL
statements.

When running in SQL server mode, only SQL interfaces can be used to perform work under commitment
control. Embedded SQL or Call Level Interface (CLI) can be used. All connections made through
embedded SQL in a single thread are routed to the same back-end job. This allows a single commit
request to commit the work for all the connections, just as it can be in a job that is not running in SQL
server mode. Each connection made through the CLI is routed to a separate job. The CLI requires work
that is performed for each connection to be committed or rolled back independently.

Commitment control 47

http://www.opengroup.org

You cannot perform the following operations under commitment control when running in SQL server
mode:

• Record changes that are made with interfaces that are not SQL interfaces
• Changes to DDM files
• Changes to API commitment resources

You cannot start commitment control directly in a job running in SQL server mode.

Related concepts
XA transaction support for commitment control
Db2 for i can participate in X/Open global transactions.
Running DB2 CLI in server mode
Starting DB2 CLI in SQL server mode
Restrictions for running DB2 CLI in server mode
Related reference
Change Job (QWTCHGJB) API

Starting commitment control
To start commitment control, use the Start Commitment Control (STRCMTCTL) Command.

Note: Commitment control does not need to be started by SQL applications. SQL implicitly starts
commitment control at connect time when the SQL isolation level is not *NONE.

When you use the STRCMTCTL command, you can specify these parameters.

Commit lock-level
Specify the lock-level with the LCKLVL parameter on the STRCMTCTL command. The level you specify
becomes the default level of record locking for database files that are opened and placed under
commitment control for the commitment definition.

Commit notify object
Use the NTFY parameter to specify the notify object. A notify object is a message queue, data area,
or database file that contains information identifying the last successful transaction completed for a
particular commitment definition if that commitment definition did not end normally.

Commit scope parameter
Use the CMTSCOPE parameter to specify commit scope. When commitment control is started, the
system creates a commitment definition. The commit scope parameter identifies the scope for the
commitment definition. The default is to scope the commitment definition to the activation group of
the program making the start commitment control request. The alternative scope is to the job.

Default journal parameter
You can specify a default journal when you start commitment control. You might use a default journal
for these reasons:

• You want to capture transaction journal entries. These entries can assist you in analyzing the history
of what resources are associated with a transaction. They are not used for applying and removing
journaled changes. The omit journal entries (OMTJRNE) parameter determines whether the system
writes transaction entries.

• You want to improve performance for jobs that close files and open them again within a routing
step. If you close all the files assigned to a journal that is not the default journal, all the system
information about the journal is removed from the routing step. If a file that is assigned to that
journal is opened later, all the information about the journal must be created again. The system
keeps information about the default journal with the commitment definition, whether any resources
that are assigned to the journal are active.

48 IBM i: Commitment control

Commit text parameter
Use the TEXT parameter to identify the specific text to be associated with a commitment definition
when displaying information about the commitment definitions started for a job. If no text is specified,
the system provides a default text description.

Omit journal entries parameter
If you specify a default journal to improve performance, you can use the OMTJRNE parameter to
prevent the system from writing transaction journal entries. Having the system write transaction
entries significantly increases the size of your journal receiver and degrades performance during
commit and rollback operations.

Transaction entries can be useful when you are setting up and testing either your commitment control
environment or a new application.

Transaction entries are written to the default journal regardless of the value of the OMTJRNE
parameter under these conditions:

• A system error occurs during a commit or rollback operation.
• A manual change is made to a resource that participated in a transaction, and the change caused

a heuristic mixed condition. See States of the transaction for two-phase commitment control for
a description of the heuristic mixed condition. This type of manual change is called a heuristic
decision.

You can use the information about what resources participated in the transaction to determine what
action to take in these situations.

You can use the Journal entry information finder to show the layouts for the entry-specific data for
transaction (commitment control) journal entries.

Related concepts
States of the transaction for two-phase commitment control
A commitment definition is established at each location that is part of the transaction program network.
For each commitment definition, the system keeps track of the state of its current transaction and
previous transaction.
Journal entry information finder
Related tasks
When to force commit and rollback operations and when to cancel resynchronization
The decision to force a commit or rollback operation is called a heuristic decision. This action enables an
operator to manually commit or roll back the resources for a transaction that is in a prepared state.
Related reference
Start Commitment Control (STRCMTCTL) command

Commit notify object
A notify object is a message queue, data area, or database file that contains information identifying
the last successful transaction completed for a particular commitment definition if that commitment
definition did not end normally.

The information used to identify the last successful transaction for a commitment definition is given by
the commit identification that associates a commit operation with a specific set of committable resource
changes.

The commit identification of the last successful transaction for a commitment definition is placed in the
notify object only if the commitment definition does not end normally. This information can be used to
help determine where processing for an application ended so that the application can be started again.

For independent disk pools, the notify object must reside on the same independent disk pool or
independent disk pool group as the commitment definition. If you move the commitment definition to
another independent disk pool or independent disk pool group, the notify object must also reside on that
other independent disk pool or independent disk pool group. The notify object on the other independent
disk pool or independent disk pool group is updated if the commitment definition ends abnormally. If the

Commitment control 49

notify object is not found on the other independent disk pool or independent disk pool group, the update
fails with message CPF8358.

If journaled resources participate in the current transaction and a commit operation is performed with a
commit identification, the commit identification is placed in the commit journal entry (journal code and
entry type of C CM) that identifies that particular transaction as being committed. A commit journal entry
containing the commit identification is sent to each journal associated with resources that participated in
the transaction.

The following table shows how you specify the commit identification and its maximum size. If the commit
identification exceeds its maximum size, it is truncated when it is written to the notify object.

Language Operation Maximum characters in commit
identification

CL COMMIT command 3000 1

Integrated Language
Environment (ILE) RPG

COMIT operation code 4000 1

PLI PLICOMMIT subroutine 4000 1

ILE C _Rcommit function 4000 1

ILE COBOL COMMIT verb Not supported

SQL COMMIT statement Not supported

Note: 1If the notify object is a data area, the maximum size is 2000 characters.

When a notify object is updated with the commit identification, it is updated as follows:

Database file
If a database file is used as the notify object, the commit identification is added to the end of the file.
Any existing records will be left in the file. Because several users or jobs can be changing records at
the same time, each commit identification in the file contains unique information to associate the data
with the job and commitment definition that failed. The file that serves can be journaled

Data area
If a data area is used as the notify object, the entire content of the data area is replaced when
the commit identification is placed in the data area. If more than one user or job is using the same
program, only the commit identification from the last commitment definition that did not end normally
will be in the data area. Consequently, a single data area notify object might not produce the correct
information for starting the application programs again. To solve this problem, use a separate data
area for each commitment definition for each workstation user or job.

Message queue
If a message queue is used as a notify object, message CPI8399 is sent to the message queue.
The commit identification is placed in the second-level text for message CPI8399. As with using
a database file for the notify object, the contents of each commit identification uniquely identify a
particular commitment definition for a job so that an application program can be started again.

Related concepts
Commitment control for batch applications
Batch applications might or might not need commitment control. In some cases, a batch application
can perform a single function of reading an input file and updating a master file. However, you can use
commitment control for this type of application if it is important to start it again after an abnormal end.
Example: Using a notify object to start an application

50 IBM i: Commitment control

When a program is started after an abnormal end, it can look for an entry in the notify object. If the entry
exists, the program can start a transaction again. After the transaction has been started again, the notify
object is cleared by the program to prevent it from starting the same transaction yet another time.

Commit lock level
The value you specify for the LCKLVL parameter on the Start Commitment Control (STRCMTCTL)
command becomes the default level of record locking for database files that are opened and placed
under commitment control for the commitment definition.

The default level of record locking cannot be overridden when opening local database files. However,
database files accessed by SQL use the current SQL isolation level in effect at the time of the first SQL
statement issued against it.

The lock level must be specified with respect to your needs, the wait periods allowed, and the release
procedures used most often.

The following descriptions apply only to files that are opened under commitment control:

*CHG Lock Level
Use this value if you want to protect changed records from changes by other jobs running at the same
time. For files that are opened under commitment control, the lock is held for the duration of the
transaction. For files not opened under commitment control, the lock on the record is held only from
the time the record is read until the update operation is complete.

*CS Lock Level
Use this value to protect both changed and retrieved records from changes by other jobs running at
the same time. Retrieved records that are not changed are protected only until they are released, or a
different record is retrieved.

The *CS lock level ensures that other jobs are not able to read a record for update that this job has
read. In addition, the program cannot read records for update that have been locked with a record
lock type of *UPDATE in another job until that job accesses a different record.

*ALL Lock Level
Use this value to protect changed records and retrieved records that are under commitment control
from changes by other jobs running under commitment control at the same time. Records that are
retrieved or changed are protected until the next commit or rollback operation.

The *ALL lock level ensures that other jobs are not able to access a record for update that this job has
read. This is different from normal locking protocol. When the lock level is specified as *ALL, even a
record that is not read for update cannot be accessed if it is locked with a record lock type of *UPDATE
in another job.

The following table shows the duration of record locks for files under and not under commitment control.

Request LCKLVL parameter Duration of lock Lock type

Read-only No commitment control No lock None

*CHG No lock None

*CS From read to next read,
commit, or rollback

*READ

*ALL From read to commit or
rollback

*READ

Commitment control 51

Request LCKLVL parameter Duration of lock Lock type

Read for update then
update or delete1

No commitment control From read to update or
delete

*UPDATE

*CHG From read to update or
delete

*UPDATE

Then from update or
delete to next commit or
rollback2

*UPDATE

*CS From read to update or
delete

*UPDATE

Then from update or
delete to next commit or
rollback2

*UPDATE

*ALL From read to update or
delete

*UPDATE

Then from update or
delete to next commit or
rollback2

Read for update then
release1

No commitment control From read to release *UPDATE

*CHG From read to release *UPDATE

*CS From read to release,
commit, or rollback

*UPDATE

Then from release to
next read, commit, or
rollback

*UPDATE

*ALL From read to release,
commit, or rollback

*UPDATE

Then from release to
next commit or rollback

Add No commitment control No lock None

*CHG From add to commit or
rollback

*UPDATE

*CS From add to commit or
rollback

*UPDATE

*ALL From add to commit or
rollback

*UPDATE

Write direct No commitment control For duration of write
direct

*UPDATE

*CHG From write direct to
commit or rollback

*UPDATE

*CS From write direct to
commit or rollback

*UPDATE

*ALL From write direct to
commit or rollback

*UPDATE

52 IBM i: Commitment control

Request LCKLVL parameter Duration of lock Lock type

Notes:
1If a commit or rollback operation is performed after a read-for-update operation but before the record
is updated, deleted, or released, the record is unlocked during the commit or rollback operation. The
protection on the record is lost as soon as the commit or rollback completes.
2If a record is deleted but the commit or rollback has not yet been issued for the transaction, the
deleted record does not remain locked. If the same or a different job attempts to read the deleted
record by key, the job receives a record not found indication. However, if a unique keyed access path
exists over the file, another job is prevented from inserting or updating a record with the same unique
key value as that of the deleted record until the transaction is committed.

A record lock type of *READ is obtained on records that are not read for update when the lock level is *CS
or *ALL. This type of lock prevents other jobs from reading the records for update but does not prevent the
records from being accessed from a read-only operation.

A record lock type of *UPDATE is obtained on records that are updated, deleted, added, or read for
update. This type of lock prevents other jobs from reading the records for update, and prevents jobs
running under commitment control with a record lock level of *CS or *ALL from accessing the records for
even a read-only operation.

Programs that are not using commitment control can read records locked by another job, but cannot read
records for update, regardless of the value specified for the LCKLVL parameter.

The lock level, specified for a commitment definition when commitment control is started for an activation
group or for the job, applies only to opens associated with that particular commitment definition.

Note: The *CS and *ALL lock-level values protect you from retrieving a record that currently has a
pending change from a different job. However, the *CS and *ALL lock-level values do not protect you from
retrieving a record using a program running in one activation group that currently has a pending change
from a program running in a different activation group within the same job.

Within the same job, a program can change a record that has already been changed within the current
transaction as long as the record is accessed again using the same commitment definition. When using
the job-level commitment definition, the access to the changed record can be made from a program
running within any activation group that is using the job-level commitment definition.

Related concepts
Considerations and restrictions for commitment control
You need to be aware of these considerations and restrictions for commitment control.
Related reference
Start Commitment Control (STRCMTCTL) command

Ending commitment control
The End Commitment Control (ENDCMTCTL) command ends commitment control for either the
job-level or activation-group-level commitment definition.

Issuing the ENDCMTCTL command indicates to the system that the commitment definition in use by
the program making the request is to be ended. The ENDCMTCTL command ends only one commitment
definition for the job and all other commitment definitions for the job remain unchanged.

If the activation-group-level commitment definition is ended, then programs running within that
activation group can no longer make changes under commitment control, unless the job-level
commitment definition is already started for the job. If the job-level commitment definition is active,
then it is immediately made available for use by the programs running within the activation group that just
ended commitment control.

Commitment control 53

If the job-level commitment definition is ended, then any program running within the job that was using
the job-level commitment definition can no longer make changes under commitment control without first
starting commitment control again with the STRCMTCTL command.

Before issuing the ENDCMTCTL command, the following conditions must be satisfied for the commitment
definition to be ended:

• All files opened under commitment control for the commitment definition to be ended must first
be closed. When ending the job-level commitment definition, this includes all files opened under
commitment control by any program running in any activation group that is using the job-level
commitment definition.

• All API commitment resources for the commitment definition to be ended must first be removed
using the QTNRMVCR API. When ending the job-level commitment definition, this includes all API
commitment resources added by any program running in any activation group that is using the job-level
commitment definition.

• A remote database associated with the commitment definition to be ended must be disconnected.
• All protected conversations associated with the commitment definition must be ended normally using

the correct synchronization level.

If commitment control is being ended in an interactive job and one or more committable resources
associated with the commitment definition have pending changes, inquiry message CPA8350 is sent to
the user asking whether to commit the pending changes, roll back the pending changes, or cancel the
ENDCMTCTL request.

If commitment control is being ended in a batch job, and one or more closed files associated with
the commitment definition to be ended still have pending changes, the changes are rolled back and a
message is sent:

• CPF8356 if only local resources are registered
• CPF835C if only remote resources are registered
• CPF83E4 if both local and remote resources are registered

If a notify object is defined for the commitment definition being ended, it might be updated.

When an activation group that has an API registered as the last agent is ending, the exit program for the
API is called to receive the commit or rollback decision. In this case, even though the activation group
is ending normally, a rollback request can still be returned from the API exit program. Thus, the implicit
commit operation might not be performed.

After the commitment definition has successfully ended, all the necessary recovery, if any, has been
performed. No additional recovery is performed for the commitment resources associated with the
commitment definition just ended.

After the commitment definition is ended, the job-level or activation-group-level commitment definition
can then be started again for the programs running within the activation group. The job-level commitment
definition can be started only if it is not already started for the job.

Although commitment definitions can be started and ended many times by the programs that run within
an activation group, the amount of system resources required for the repeated start and end operations
can cause a decrease in job performance and overall system performance. Therefore, it is recommended
that a commitment definition be left active if a program to be called later will use it.

Related concepts
Updates to the notify object
The system updates the notify object with the commit identification of the last successful commit
operation for that commitment definition.
Related reference
End Commitment Control (ENDCMTCTL) command

54 IBM i: Commitment control

System-initiated end of commitment control
The system can end commitment control, or perform an implicit commit or rollback operation. Sometimes
the system-initiated end of commitment control is normal. Other times, commitment control ends with an
abnormal system or job end.

Commitment control during activation group end
The system automatically ends an activation-group-level commitment definition when an activation group
ends.

If pending changes exist for an activation-group-level commitment definition and the activation group
is ending normally, the system performs an implicit commit operation for the commitment definition
before it is ended. Otherwise, an implicit rollback operation is performed for the activation-group-level
commitment definition before being ended if the activation group is ending abnormally, or if errors were
encountered by the system when closing any files opened under commitment control scoped to the
activation group.

Note: An implicit commit or rollback operation is never performed during activation-group end processing
for the *JOB or *DFTACTGRP commitment definitions. This is because the *JOB and *DFTACTGRP
commitment definitions are never ended due to an activation group ending. Instead, these commitment
definitions are either explicitly ended with an ENDCMTCTL command or ended by the system when the job
ends.

The system automatically closes any files scoped to the activation group when the activation group ends.
This includes any database files scoped to the activation group opened under commitment control. The
close for any such file occurs before any implicit commit operation that might be performed for the
activation-group-level commitment definition. Therefore, any records that reside in an I/O buffer are first
forced to the database before any implicit commit operation is performed.

As part of the implicit commit or rollback operation that might be performed, a call is made to the
API commit and rollback exit program for each API commitment resource associated with the activation-
group-level commitment definition. The exit program must complete its processing within 5 minutes.
After the API commit and rollback exit program is called, the system automatically removes the API
commitment resource.

If an implicit rollback operation is performed for a commitment definition that is being ended due to an
activation group being ended, then the notify object, if one is defined for the commitment definition, might
be updated.

Related concepts
Updates to the notify object
The system updates the notify object with the commit identification of the last successful commit
operation for that commitment definition.

Implicit commit and rollback operations
In some instances, a commit or rollback operation is initiated by the system for a commitment definition.
These types of commit and rollback operations are known as implicit commit and rollback requests.

Typically, a commit or rollback operation is initiated from an application program using one of the
available programming languages that supports commitment control. These types of commit and rollback
operations are known as explicit commit and rollback requests.

The following two tables show what the system does when certain events occur related to a commitment
definition that has pending changes. A commitment definition has pending changes if any of the following
conditions is true:

• Any committable resource has been updated.
• A database file opened under commitment control has been read because reading a file changes the file

position.

Commitment control 55

• The commitment definition has an API resource. Because changes to API resources are done by a user
program, the system must assume that all API resources have pending changes.

The C CM (commit operation) journal entry and C RB (rollback operation) journal entry indicate whether
the operation was explicit or implicit.

The following table shows the actions the system takes when a job ends, either normally or abnormally,
based on the following situations:

• The state of the transaction.
• The action-if-end job value for the commitment definition.
• Whether an API resource is the last agent.

State Last agent API Action if Endjob1

option
Commit or rollback operation

RST N/A N/A If the commitment definition is not
associated with an X/Open global
transaction, an implicit rollback is
performed.

If the commitment definition is
associated with an X/Open global
transaction, the following events occur:

• If the transaction branch state is not
Active (S1), no action is performed and
the transaction branch is left in the
same state.

• If the transaction branch state is
Active (S1), an implicit rollback is
performed.

PIP N/A N/A If the commitment definition is not
associated with an X/Open global
transaction, an implicit rollback is
performed.

If the commitment definition is
associated with an X/Open global
transaction, the transaction branch is in
the Idle (S2) state, and it is left in the
Idle (S2) state.

PRP N/A WAIT If the commitment definition is not
associated with an X/Open2 global
transaction, the following occurs:

• Resynchronization is started to receive
the decision from the initiator of the
commit operation.

• The returned decision to commit or
rollback is performed. It is considered
an explicit operation.

56 IBM i: Commitment control

State Last agent API Action if Endjob1

option
Commit or rollback operation

PRP N/A C If the commitment definition is
not associated with an X/Open2

global transaction, an implicit commit
operation is performed.

R If the commitment definition is
not associated with an X/Open
global transaction, an implicit rollback
operation is performed.

If the commitment definition is
associated with an X/Open global
transaction, the following occurs:

• If the job that started the transaction
ends, the transaction is left in a
prepared state until the XA TM either
commits it or rolls it back. The XA
transaction branch state will be left at
Prepared (S3) in this case.

• If the SQL server job that the
transaction's work is being routed to
is ended, a forced rollback is implicitly
performed. The XA transaction branch
state will be changed to Heuristically
Completed (S5) in this case.

CIP N/A N/A An explicit commit operation is
performed.

LAP NO WAIT 1. Resynchronization to the last agent is
used to retrieve the decision to commit
or to roll back.

2. The returned decision to commit or to
roll back is performed. It is considered
an explicit operation.

LAP YES WAIT 1. The last agent API is called to retrieve
the commit or rollback decision.

2. The commit or rollback operation is
performed. It is considered an explicit
operation.

LAP N/A C An implicit commit operation is
performed.

R An implicit rollback operation is
performed.

CMT N/A N/A A commit operation has already
completed for this commitment
definition and any downstream
locations. The commit operation is
complete.

Commitment control 57

State Last agent API Action if Endjob1

option
Commit or rollback operation

VRO N/A N/A The local and remote agents voted to
read-only. All downstream agents must
also have voted to read-only. No action
is required.

RBR N/A N/A A rollback operation is required. An
explicit rollback operation is performed.

Note:
1 You can change the Action if Endjob option with the Change Commitment Options (QTNCHGCO)
API.
2If the commitment definition is associated with an X/Open global transaction, the following events
occur:

• If the job that started the transaction ends, the transaction is left in a prepared state until the XA TM
either commits it or rolls it back. The XA transaction branch state will be left at Prepared (S3) in this
case.

• For transaction-scoped locks only, if the SQL server job that the transaction's work is being routed to
is ended, a forced rollback is implicitly performed. The XA transaction branch state will be changed to
Heuristically Completed (S5) in this case.

The following table shows the actions the system takes when an activation group ends and applies only to
transactions with job-scoped locks. The system actions are based on the following items:

• The state of the transaction. (It is always reset (RST) when an activation group ends.)
• How the activation group ends-normally or abnormally.
• Whether an API resource is the last agent.

Note: If an API resource is registered as the last agent, this gives control of the commit or rollback
decision to the last agent. The result of the decision is considered an explicit operation

State Last agent API Type of end Commit or rollback operation

RST No Normal An implicit commit operation is
performed. If protected conversations
exist, the commitment definition will
become the root initiator of the commit
operation.

RST No Abnormal An implicit rollback is performed.

RST Yes Normal The API exit program is called.
The commit or rollback operation is
determined by the API.

RST Yes Abnormal The API exit program is called.
The commit or rollback operation is
determined by the API.

Related concepts
Commitment control during abnormal system or job end

58 IBM i: Commitment control

The system ends all commitment definitions for a job when the job ends abnormally. These commitment
definitions are ended during the job end processing. This topic applies only to commitment definitions
with job-scoped locks.
Related reference
Change Commitment Options (QTNCHGCO) API

Commitment control during normal routing step end
The system ends all commitment definitions for a job when a routing step is normally ended.

Note: The following information applies only to commitment definitions with job-scoped locks.

A routing step ends normally by one of the following situations:

• A normal end for a batch job.
• A normal sign-off for an interactive job.
• The Reroute Job (RRTJOB), Transfer Job (TFRJOB), or Transfer Batch Job (TFRBCHJOB) command ends

the current routing step and starts a new routing step.

Any other end of a routing step is considered abnormal and is recognized by a nonzero completion code in
job completion message CPF1164 in the job log.

Before ending a commitment definition during routing step end, the system performs an implicit rollback
operation if the commitment definition has pending changes. This includes calling the API commit and
rollback exit program for each API commitment resource associated with the commitment definition.
The exit program must complete its processing within 5 minutes. After the API commit and rollback exit
program is called, the system automatically removes the API commitment resource.

If a notify object is defined for the commitment definition, it can be updated.

Related concepts
Updates to the notify object
The system updates the notify object with the commit identification of the last successful commit
operation for that commitment definition.

Commitment control during abnormal system or job end
The system ends all commitment definitions for a job when the job ends abnormally. These commitment
definitions are ended during the job end processing. This topic applies only to commitment definitions
with job-scoped locks.

If the system ends abnormally, the system ends all commitment definitions that were started and being
used by all active jobs at the time of the abnormal system end. These commitment definitions are ended
as part of the database recovery processing that is performed during the next IPL after the abnormal
system end.

Attention: The recovery for commitment definitions refers to an abnormal end for the system or
a job due to a power failure, a hardware failure, or a failure in the operating system or licensed
internal code. You must not use the End Job Abnormal (ENDJOBABN) command to force a job to
end abnormally. The abnormal end can result in pending changes for active transactions for the job
you are ending to be partially committed or rolled back. The next IPL might attempt recovery for
any partial transactions for the job ended with the ENDJOBABN command.

The outcome of commitment control recovery that the system performs during an IPL for a
job that you end with the ENDJOBABN command is uncertain. It is because all locks for
commitment resources are released when the job is ended abnormally. Any pending changes
due to partial transactions are made available to other jobs. These pending changes can then
cause other application programs to make additional erroneous changes to the database. Likewise,
any ensuing IPL recovery that is performed later can adversely affect the changes made by
applications after the job was ended abnormally. For example, an SQL table might be dropped

Commitment control 59

during IPL recovery as the rollback action for a pending create table. However, other applications
might have already inserted several rows into the table after the job was ended abnormally.

The system performs as follows for commitment definitions being ended during an abnormal job end or
during the next IPL after an abnormal system end:

• Before ending a commitment definition, the system performs an implicit rollback operation if the
commitment definition has pending changes, unless processing for the commitment definition was
interrupted in the middle of a commit operation. If ended in the middle of a commit operation, the
transaction might be rolled back, resynchronized, or committed, depending on its state. The processing
to perform the implicit rollback operation or to complete the commit operation includes calling the API
commit and rollback exit program for each API commitment resource associated with the commitment
definition. After the API commit and rollback exit program is called, the system automatically removes
the API commitment resource.

Attention: Ending the job while a transaction is in doubt (transaction state is LAP or PRP) can
cause inconsistencies in the database (changes might be committed on one or more systems
and rolled back on other systems).

– If the Action if Endjob commitment option is COMMIT, changes on this system are committed
if the job is ended, without regard to whether changes on the other systems participating in
the transaction are committed or rolled back.

– If the Action if Endjob commitment option is ROLLBACK, changes on this system are rolled
back if the job is ended, without regard to whether changes on the other systems participating
in the transaction are committed or rolled back.

– If the Action if Endjob commitment option is WAIT, the job will not end until resynchronization
completes to the system that owns the commit or rollback decision. To make the
job end before resynchronization is complete, a heuristic decision must be made and
resynchronization must be canceled.

Ending the job or system abnormally during a long-running rollback is not recommended. This
causes another rollback to occur as the job ends (or during the next IPL if the system is
ended). The subsequent rollback will repeat the work performed by the original rollback and
take significantly longer to run.

• If a notify object is defined for the commitment definition, it might be updated.

If a process ends before commitment control is ended and protected conversations are still active, the
commitment definition might be required to commit or roll back. The action is based on the State option
and the Action if end job option for the commitment definition.

Related concepts
Implicit commit and rollback operations
In some instances, a commit or rollback operation is initiated by the system for a commitment definition.
These types of commit and rollback operations are known as implicit commit and rollback requests.
Updates to the notify object
The system updates the notify object with the commit identification of the last successful commit
operation for that commitment definition.

Updates to the notify object
The system updates the notify object with the commit identification of the last successful commit
operation for that commitment definition.

For purposes of the notify object, these are considered uncommitted changes:

• An update to a record that is made under commitment control.
• A record that is deleted under commitment control.
• An object level change that is made to a local DDL object under commitment control.

60 IBM i: Commitment control

• A read operation performed for a database file that was opened under commitment control. This is
because file position is brought back to the last commitment boundary when a rollback operation is
performed. If you perform a read operation under commitment control, the file position is changed and
therefore, an uncommitted change then exists for the commitment definition.

• A commitment definition with one of the following resources that are added is always considered to
have uncommitted changes:

– An API commitment resource
– A remote Distributed Relational Database Architecture (DRDA *) resource
– A Distributed Database Management Architecture (DDM) resource
– An LU 6.2 resource

This is because the system does not know when a real change is made to the object or objects that are
associated with these types of resources. Types of committable resources has more information about
how you add and work with these types of resources.

The system makes updates to the notify object, based on the following ways that a commitment definition
can end:

• If a job ends normally and no uncommitted changes exist, the system does not place the commit
identification of the last successful commit operation in the notify object.

• If an implicit commit operation is performed for an activation-group-level commitment definition when
the activation group is ended, the system does not place the commit identification of the last successful
commit operation in the notify object.

Note: Implicit commit operations are never performed for the *DFTACTGRP or *JOB commitment
definition

• If the system, job, or an activation group ends abnormally before the first successful commit operation
for a commitment definition, the system does not update the notify object because there is no last
commit identification. To differentiate between this condition and a normal program completion, your
program must update the notify object with a specific entry before completing the first successful
commit operation for the commitment definition.

• If an abnormal job end or an abnormal system end occurs after at least one successful commit
operation, the system places the commit identification of that commit operation in the notify object.
If the last successful commit operation did not specify a commit identification, then the notify object is
not updated. For an abnormal job end, this notify object processing is performed for each commitment
definition that was active for the job. For an abnormal system end, this notify object processing is
performed for each commitment definition that was active for all jobs on the system.

• The system updates the notify object with the commit identification of the last successful commit
operation for that commitment definition if all of the following events occur:

– A nondefault activation group ends.
– An implicit rollback operation is performed for the activation-group-level commitment definition.
– At least one successful commit operation has been performed for that commitment definition.

If the last successful commit operation did not specify a commit identification, then the notify object
is not updated. An implicit rollback operation is performed for an activation-group-level commitment
definition if the activation group is ending abnormally or errors occurred when closing the files that were
opened under commitment control and that were scoped to that activation group. For more information
about scoping database files to activation groups and how activation groups can be ended, see the
reference book for the ILE language that you are using.

• If uncommitted changes exist when a job ends normally and at least one successful commit operation
has been performed, the commit identification of the last successful commit operation is placed in the
notify object and the uncommitted changes are rolled back. If the last successful commit operation did
not specify a commit identification, then the notify object is not updated. This notify object processing is
performed for each commitment definition that was active for the job when the job ended.

Commitment control 61

• If uncommitted changes exist when the ENDCMTCTL command is run, the notify object is updated only
if the last successful commit operation specified a commit identification:

– For a batch job, the uncommitted changes are rolled back and the commit identification of the last
successful commit operation is placed in the notify object.

– For an interactive job, if the response to inquiry message CPA8350 is to rollback the changes, the
uncommitted changes are rolled back and the commit identification of the last successful commit
operation is placed in the notify object.

– For an interactive job, if the response to inquiry message CPA8350 is to commit the changes, the
system prompts for a commit identification to use and the changes are committed. The commit
identification that is entered on the prompt display is placed in the notify object.

– For an interactive job, if the response to inquiry message CPA8350 is to cancel the ENDCMTCTL
request, the pending changes remain and the notify object is not updated.

Related concepts
Ending commitment control
The End Commitment Control (ENDCMTCTL) command ends commitment control for either the
job-level or activation-group-level commitment definition.
Commitment control during activation group end
The system automatically ends an activation-group-level commitment definition when an activation group
ends.
Commitment control during normal routing step end
The system ends all commitment definitions for a job when a routing step is normally ended.
Commitment control during abnormal system or job end
The system ends all commitment definitions for a job when the job ends abnormally. These commitment
definitions are ended during the job end processing. This topic applies only to commitment definitions
with job-scoped locks.
Types of committable resources
This table lists the different types of committable resources, including FILE, Data Definition Language
(DDL), distributed data management (DDM), logical unit (LU) 6.2, Distributed Relational Database
Architecture™ (DRDA), API, and TCP.
Commit notify object
A notify object is a message queue, data area, or database file that contains information identifying
the last successful transaction completed for a particular commitment definition if that commitment
definition did not end normally.

Commitment control recovery during initial program load after abnormal end
When you perform an initial program load (IPL) after your system ends abnormally, the system attempts
to recover all the commitment definitions that were active when the system ended.

Likewise, when you vary on an independent disk pool, the system attempts to recover all the commitment
definitions related to that independent disk pool that were active when it was varied off or ended
abnormally.

The recovery is performed by database server jobs that are started by the system during IPL. Database
server jobs are started by the system to handle work that cannot or must not be performed by other jobs.

The database server jobs are named QDBSRVnn, where nn is a two-digit number. The number of database
server jobs depends on the size of your system. Likewise, the name of the database server job for an
independent disk pool or independent disk pool group is QDBSxxxVnn, where xxx is the independent disk
pol number and nn is a two-digit number. For example, QDBS035V02 can be the name of the database
server job for independent disk pool 35.

States of the transaction for two-phase commitment control shows the actions that the system takes,
depending on the state of the transaction when the failure occurred. For two states, PRP and LAP, the
system action is in doubt.

62 IBM i: Commitment control

Notes:

• The following applies only to commitment definitions with job-scoped locks.
• The transaction manager recovers commitment definitions associated with XA transactions (whether

their locks are job-scoped or transaction-scoped) using XA APIs, not the resynchronization process
described in this topic.

The system cannot determine what to do until it performs resynchronization with the other locations that
participated in the transaction. This resynchronization is performed after the IPL or vary on operation
completes.

The system uses the database server jobs to perform this resynchronization. The commitment definitions
that need to be recovered are associated with the database server jobs. During the IPL, the system
acquires all record locks and other object locks that were held by the commitment definition before
the system ended. These locks are necessary to protect the local commitment resources until
resynchronization is complete and the resources can be committed or rolled back.

Messages are sent to the job logs of the database server jobs to indicate the status of resynchronization
with the remote locations. If the transaction is in doubt, resynchronization must be completed with the
location that owns the decision for the transaction before local resources can be committed or rolled
back.

When the decision for a transaction is made, the following messages might be sent to the job log for the
database server job.

CPI8351
&1 pending changes being rolled back

CPC8355
Post-IPL recovery of commitment definition &8 for job &19/&18/&17 completed.

CPD835F
IPL recovery of commitment definition &8 for job &19/&18/&17 failed.

Other messages related to the recovery can also be sent. These messages are sent to the history (QHST)
log. If errors occur, messages are also sent to the QSYSOPR message queue.

You can determine the progress of the recovery by using IBM Navigator for i, by displaying the job log
for the database server job, or by using the Work with Commitment Definitions (WRKCMTDFN) command.
Although with IBM Navigator for i and the Work with Commitment Definitions display, you can force the
system to commit or roll back, you must use this only as a last resort. If you anticipate that all of the
locations that participated in the transaction will eventually be returned to operation, you must allow the
systems to resynchronize themselves. This ensures the integrity of your databases.

Related concepts
Independent disk pool considerations for commitment definitions
You must be aware of these considerations for commitment definitions when you use independent disk
pools.
States of the transaction for two-phase commitment control
A commitment definition is established at each location that is part of the transaction program network.
For each commitment definition, the system keeps track of the state of its current transaction and
previous transaction.

Managing transactions and commitment control
By using these instructions, you can display commitment control information and optimize performance
for commitment control.

Commitment control 63

Displaying commitment control information
IBM Navigator for i can display information about all transactions (logical units of work) on the system.
IBM Navigator for i can also display information about the job, if any, associated with a transaction.

Note: These display operations do not display the isolation level for SQL applications.

To display information, proceed as follows:

1. From IBM Navigator for i, expand the system you want to use.
2. Expand Databases.
3. Expand the system you want to work with.
4. Expand Transactions.

Note: To view a transaction that is associated with an X/Open global transaction, expand Global
Transactions. To view a DB2®-managed transaction, expand Database Transactions.

5. Expand Global Transactions or Database Transactions.

This display shows the following information:

• Unit of Work ID
• Unit of Work State
• Job
• User
• Number
• Resynchronization in Progress
• Commitment Definition

Online help provides information about all the status displays and the fields on each display.

Related tasks
Detecting deadlocks
A deadlock condition can occur when a job holds a lock on an object, object A, and is waiting to obtain
a lock on another object, object B. At the same time, another job or transaction currently holds a lock on
object B and is waiting to obtain a lock on object A.
Recovering transactions after communications failure
These instructions help you handle transactions performing work on a remote system after
communication with that system fails.
When to force commit and rollback operations and when to cancel resynchronization
The decision to force a commit or rollback operation is called a heuristic decision. This action enables an
operator to manually commit or roll back the resources for a transaction that is in a prepared state.
Finding large or old transactions
Use the Work with Commitment Definitions (WRKCMTDFN) command to find large or old
transactions.

Displaying locked objects for a transaction
You can display locked objects for global transactions with transaction-scoped locks only.

To display locked objects for a transaction, follow these steps:

1. From IBM Navigator for i, expand the system you want to use.
2. Expand Databases.
3. Expand the system you want to work with.
4. Expand Transactions.
5. Expand Global Transactions.
6. Right-click the transaction that you want to work with and select Locked Objects.

64 IBM i: Commitment control

Related tasks
Detecting deadlocks
A deadlock condition can occur when a job holds a lock on an object, object A, and is waiting to obtain
a lock on another object, object B. At the same time, another job or transaction currently holds a lock on
object B and is waiting to obtain a lock on object A.

Displaying jobs associated with a transaction
To display jobs associated with a transaction, follow these steps.

1. From the IBM Navigator for i window, expand the system you want to use.
2. Expand Databases.
3. Expand the system you want to work with.
4. Expand Transactions.
5. Expand Global Transactions. or Database Transactions.
6. Right-click the transaction that you want to work with and select Jobs.

For database transactions and global transactions with job-scoped locks, a list of the jobs associated with
the transaction is displayed.

For global transactions with transaction-scoped locks, a list of jobs with this transaction object attached
or waiting for this transaction object to be attached is displayed

Related tasks
Detecting deadlocks
A deadlock condition can occur when a job holds a lock on an object, object A, and is waiting to obtain
a lock on another object, object B. At the same time, another job or transaction currently holds a lock on
object B and is waiting to obtain a lock on object A.

Displaying resource status of a transaction
To display the resource status of a transaction, follow these steps.

1. From the IBM Navigator for i window, expand the system you want to use.
2. Expand Databases.
3. Expand the system you want to work with.
4. Expand Transactions.
5. Expand Global Transactions or Database Transactions.
6. Right-click the transaction that you want to work with and select Resource status.

Displaying transaction properties
To display transaction properties, follow these steps.

1. From the IBM Navigator for i window, expand the system you want to use.
2. Expand Databases.
3. Expand the system you want to work with.
4. Expand Transactions.
5. Expand Global Transactions or Database Transactions.
6. Right-click the transaction that you want to work with and select Properties.

Commitment control 65

Optimizing performance for commitment control
Using commitment control requires resources that can affect system performance. Several factors affect
system performance regarding commitment control.

A factor that does not affect performance
Open a file

If you open a file without specifying the commit open option, no additional system resource is used
even if a commitment definition has been started. For more information about specifying the commit
open option, see the appropriate high-level language reference manual.

Factors that degrade performance
Journal

Journaling a file requires system resources. However, in most cases journaling performs better with
commitment control than without commitment control. If you specify only after-images, commitment
control changes this to both before-images and after-images while commitment control is in effect.
Typically this is a space, not a performance, consideration.

Commit operation
If any changes were made to journaled resources during the transaction, each commit of a transaction
adds two entries to each journal related to those resources. The number of entries added can increase
significantly for a large volume of small transactions. You might want to place the journal receivers in a
separate disk pool from the journals.

Rollback operation
Because commitment control must roll back the pending changes recorded in the database,
additional system resources are required whenever a rollback occurs. Also, if record changes are
pending, a rollback operation causes additional entries to be added to the journal.

Start Commitment Control (STRCMTCTL) and End Commitment Control (ENDCMTCTL) commands
Additional overhead is incurred by the system each time a commitment definition is started using the
STRCMTCTL command and is ended using the ENDCMTCTL command. Avoid using the STRCMTCTL
and ENDCMTCTL commands for each transaction. Use them only when necessary. You can establish a
commitment definition at the beginning of an interactive job and use it for the duration of the job.

Use more than one journal for commitment control transactions
With two-phase commit, files that are opened under commitment control can be journaled to more
than one journal. However, using more than one journal takes additional system resources to manage
the commitment definition. Using more than one journal can also make recovery more complicated.

Record locking
Record locking can affect other applications. The number of records locked within a particular job
increases the overall system resources used for the job. Applications needing to access the same
record must wait for the transaction to end.

Request SEQONLY(*YES)
If you request the SEQONLY(*YES) option (by using the OVRDBF command or the application program
implicitly attempts to use SEQONLY(*YES)) and the file is opened for input only under commitment
control with LCKLVL(*ALL), the option is changed to SEQONLY(*NO). This option can affect the
performance of input files because records will not be blocked.

Request a record-level change for a database file when the save-while-active or independent ASP
quiesce processing is active

A request to make a record-level change under commitment control for a database file might be
delayed if the commitment definition is at a commitment boundary and a save-while-active or an
independent ASP quiesce operation is running in a different job. For the save-while-active operation,
this can happen when a file is journaled to the same journal as some of the objects on the save
request.

Note: The Status column on the Work with Active Jobs (WRKACTJOB) command display shows CMTW
(commit wait) when a job is being held for the save-while-active checkpoint processing.

66 IBM i: Commitment control

Commit or roll back changes when the save-while-active or independent ASP quiesce processing is
active

A commit or rollback operation might be delayed at a commitment boundary when a save-while-
active or an independent ASP quiesce operation is running in a different job. This can happen when
an API commitment resource was previously added to the commitment definition, unless either of the
following conditions is true:

• For the save-while-active operation, the API resource was added using the Add Commitment
Resource (QTNADDCR) API and the Allow normal save processing field has a value of Y.

• For the independent ASP quiesce operation, the API resource was added using the QTNADDCR API
and the Allow independent ASP quiesce field has a value of Y.

Because the job is held during the commit or rollback request, and because a commit or rollback
request can be performed only for a single commitment definition at a time, jobs with more than
one commitment definition with API commitment resources can prevent a save-while-active or an
independent ASP quiesce operation from completing.

Note: If you use the new save with partial transactions feature, the object can be saved without
ending a commitment definition.

Request an object-level change when the save-while-active or independent ASP quiesce processing
is active

A request to make an object-level change under commitment control might be delayed if the
commitment definition is at a commitment boundary and a save-while-active or an independent
ASP quiesce operation is running in a different job. This can happen when an object-level change is
made while the save-while-active or independent ASP quiesce operation is running against the library
that contains the object. For example, the create SQL table operation under commitment control for
table MYTBL in library MYSQLLIB might be delayed when a save-while-active or an independent ASP
quiesce operation is running against library MYSQLLIB.

Note: If the wait time exceeds 60 seconds, inquiry message CPA8351 is sent to ask the user whether
to continue waiting or cancel the operation.

Add an API resource using the QTNADDCR API
A request to add an API commitment resource using the QTNADDCR API might be delayed if all
commitment definitions for the job are at a commitment boundary and a save-while-active or an
independent ASP quiesce operation is running in a different job.

Notes:

1. If the wait time exceeds 60 seconds, inquiry message CPA8351 is sent to ask the user whether to
continue waiting or cancel the operation.

2. For the save-while-active operation, this does not apply to API resources that were added using
the QTNADDCR API if the Allow normal save processing field has a value of Y. For the independent
ASP quiesce operation, this does not apply to API resources that were added using the QTNADDCR
API if the Allow independent ASP quiesce field has a value of Y.

Factors that improve performance
Use a default journal

Using a default journal can help performance if you close and reopen all files under commitment
control while the commitment definition is active. However, using a default journal with
OMTJRNE(*NONE) degrades the performance of commit and rollback operations.

Select a last agent
Performance is enhanced when a last agent is selected because fewer interactions between the
system and the last agent are required during a commit operation. However, if a communications
failure occurs during a commit operation, the commit operation will not complete until
resynchronization completes, regardless of the value of the wait for outcome option. Such a failure is
rare but this option allows the application writer to consider the negative impact of causing the user
to wait indefinitely for the resynchronization to complete when a failure does occur. Weigh this against

Commitment control 67

the performance enhancement that is provided by last agent optimization during successful commit
operations. This consideration is generally more significant for interactive jobs than for batch jobs.

The default is that a last agent is permitted to be selected by the system but the user can modify this
value using the QTNCHGCO API.

Not use the wait for outcome option
When remote resources are under commitment control, performance is improved when the Wait
for Outcome option is set to N (No) and all remote systems support presumed abort. The Wait for
Outcome option is set to N by the system for DRDA and DDM application when the first connection is
made to a remote system. APPC applications must explicitly set the Wait for Outcome option, or the
default value of Y will be used.

Select the OK to Leave Out option
Performance is improved when the OK to Leave Out option is selected.

Select the Vote Read Only option
Performance is improved when the Vote Read Only option is selected.

Related concepts
Journal management
Commitment definition for two-phase commit: Indicate OK to leave out
Normally, the transaction manager at every location in the transaction program network participates in
every commit or rollback operation. To improve performance, you can set up some or all locations in a
transaction to allow the transaction manager to indicate OK to leave out.
Commitment definition for two-phase commit: Allow vote read-only
Normally, a transaction manager participates in both phases of commit processing. To improve the
performance of commit processing, you can set up some or all locations in a transaction to allow the
transaction manager to vote read-only.
Related information
Add Commitment Resource (QTNADDCR) API

Minimizing locks
A typical way to minimize record locks is to release the record lock. (This technique does not work if
LCKLVL(*ALL) has been specified.)

Here is an example of minimizing record locks by releasing the record lock. A single file maintenance
application typically follows these steps:

1. Display a prompt for a record identification to be changed.
2. Retrieve the requested record.
3. Display the record.
4. Allow the workstation user to make the change.
5. Update the record.

In most cases, the record is locked from the access of the requested record through the update. The
record wait time might be exceeded for another job that is waiting for the record. To avoid locking a
record while the workstation user is considering a change, release the record after it is retrieved from the
database (before the record display appears). You then need to access the record again before updating.
If the record was changed between the time it was released and the time it was accessed again, you must
inform the workstation user. The program can determine if the record was changed by saving one or more
fields of the original record and comparing them to the fields in the same record after it is retrieved as
follows:

• Use an update count field in the record and add 1 to the field just before an update. The program saves
the original value and compares it to the value in the field when the record is retrieved again. If a change
has occurred, the workstation user is informed and the record appears again. The update count field
is changed only if an update occurs. The record is released while the workstation user is considering a
change. If you use this technique, you must use it in every program that updates the file.

68 IBM i: Commitment control

• Save the contents of the entire data record and compare it to the record the next time it is retrieved.

In both of the previous cases, the sequence of operations prevents the simple use of externally described
data in RPG where the same field names are used in the master record and in the display file. Using the
same field names (in RPG) does not work because the workstation user's changes are overlaid when the
record is retrieved again.You can solve this problem by moving the record data to a data structure. Or,
if you use the DDS keyword RTNDTA, you can continue to use externally described data. The RTNDTA
keyword allows your program to reread data on the display without the operating system having to move
data from the display to the program. This allows the program to perform the following tasks:

1. Prompt for the record identification.
2. Retrieve the requested record from the database.
3. Release the record.
4. Save the field or fields used to determine if the record was changed.
5. Display the record and wait for the workstation user to respond.

If the workstation user changes the record on the display, the program uses the following sequence:

1. Retrieve the record from the database again.
2. Compare the saved fields to determine if the database record has been changed. If it has been

changed, the program releases the record and sends a message when the record appears.
3. Retrieve the record from the display by running a read operation with the RTNDTA keyword and

updates the record in the database record.
4. Proceed to the next logical prompt because there are no additional records to be released if the

workstation user cancels the request.

LCKLVL(*CHG) and LCKLVL(*CS) work in this situation. If LCKLVL(*ALL) is used, you must release the
record lock by using a commit or rollback operation.

Related tasks
Detecting deadlocks
A deadlock condition can occur when a job holds a lock on an object, object A, and is waiting to obtain
a lock on another object, object B. At the same time, another job or transaction currently holds a lock on
object B and is waiting to obtain a lock on object A.

Managing transaction size
Another way to minimize record locks is to manage the size of the transaction.

For this discussion, a transaction is interactive. (Commitment control can also be used for batch
applications, which often can be considered a series of transactions.) Many of the same considerations
apply to batch applications, which are discussed in Commitment control for batch applications.

You can lock a maximum of 500 000 000 records during a transaction for each journal associated with
the transaction. You can reduce this limit by using a Query Options File (QAQQINI). Use the QRYOPTLIB
parameter of the Change Query Attributes (CHGQRYA) command to specify a Query Options File for a
job to use. Use the COMMITMENT_CONTROL_LOCK_LEVEL value in the Query Options File as the lock
limit for the job. The lock limit value is cached internally for each commitment definition the first time a
journaled resource is placed under commitment control. If the lock limit is changed after that point, the
cached value must be refreshed for it to become effective for that commitment definition. Any call to the
Retrieve Commit Information (QTNRCMTI) API refreshes the cached value in the calling job. The
new value will not apply to transactions that started before the cache is refreshed.

When choosing the lock level for your records, consider the size of your transactions. Use size to
determine how long records are locked before a transaction ends. You must decide if a commit or rollback
operation for commitment control is limited to a single use of the Enter key, or if the transaction consists
of many uses of the Enter key.

Note: The shorter the transaction, the earlier the job waiting to start save-while-active checkpoint
processing can continue and complete.

Commitment control 69

For example, for an order entry application, a customer might order several items in a single order
requiring an order detail record and an inventory master record update for every item in the order. If
the transaction is defined as the entire order and each use of the Enter key orders an item, all records
involved in the order are locked for the duration of the entire order. Therefore, often used records (such
as inventory master records) might be locked for long periods of time, preventing other work from
progressing. If all items are entered with a single Enter key using a subfile, the duration of the locks for
the entire order is minimized.

In general, the number and duration of locks must be minimized so several workstation users can access
the same data without long waiting periods. You can do this by not holding locks while the user is entering
data on the display. Some applications might not require more than one workstation user accessing the
same data. For example, in a cash posting application with many open item records per customer, the
typical approach is to lock all the records and delay them until a workstation user completes posting the
cash for a given receipt.

If the workstation user presses the Enter key several times for a transaction, it is possible to perform the
transaction in a number of segments. For example:

• The first segment is an inquiry in which the workstation user requests the information.
• The second segment is a confirmation of the workstation user's intent to complete the entire

transaction.
• The third segment is retrieval and update of the affected records.

This approach allows record locking to be restricted to a single use of Enter.

This inquiry-first approach is normally used in applications where a decision results from information
displayed. For example, in an airline reservation application, a customer might want to know what flight
times, connecting flights, and seating arrangements are available before making a decision on which flight
to take. After the customer makes a decision, the transaction is entered. If the transaction fails (the flight
is now full), the rollback function can be used and a different request entered. If the records are locked
from the first inquiry until a decision is made, another reservation clerk will be waiting until the other
transaction is complete.

Related concepts
Commitment control for batch applications
Batch applications might or might not need commitment control. In some cases, a batch application
can perform a single function of reading an input file and updating a master file. However, you can use
commitment control for this type of application if it is important to start it again after an abnormal end.

Soft commit
Soft commit is a form of commitment control that limits the number of times that the system writes
journal entries associated with a transaction to disk.

Soft commit can improve transaction performance, but it might cause one or more transactions to be
lost in the event of a system failure. Traditional commitment control on Db2 for i ensures transaction
durability, which means that when a transaction has been committed, the transaction persists on the
system. Soft commit does not provide this durability, although it still ensures the atomicity of the
transaction. In other words, the system guarantees a commit boundary, but one or more complete
transactions might be lost in the event of a system failure.

To use soft commit, both for a particular job or across the system, specify *NO on the
QIBM_TN_COMMIT_DURABLE environment variable. You can change this variable with the Add
Environment Variable (ADDENVVAR) command.

For example, to request soft commit from a particular job, run the following command from the job:

ADDENVVAR ENVVAR (QIBM_TN_COMMIT_DURABLE) VALUE (*NO)

To request soft commit across the system, run the following command:

ADDENVVAR ENVVAR (QIBM_TN_COMMIT_DURABLE) VALUE (*NO) LEVEL (*SYS)

70 IBM i: Commitment control

Note: You must have *JOBCTL authority to set this environment variable system wide.

If the QIBM_TN_COMMIT_DURABLE environment variable has not been added, or if the environment
variable has been set to any value other than *NO, the system does not use soft commit; instead, the
system uses traditional commitment control so that the durability of transactions will be ensured.

You can check the existence of this new environment variable, and its value and level if it exists, using the
Work with Environment Variables (WRKENVVAR) command.

This environment variable value is cached internally each time commitment control is started. If the
environment variable is changed after that point, the cached value must be refreshed for it to become
effective. Any call to the Retrieve Commit Information (QTNRCMTI) API refreshes the cached
value in the calling job.

For some transactions, the operating system chooses to ignore your request for soft commit, and instead,
performs traditional commitment. This happens in some complex environments, where multiple database
connections are required or DDL operations are underway. The operating system can determine when it is
appropriate to perform the request and when it makes more sense to perform a traditional commitment
operation. So it is not harmful to request soft commit in such environments.

Scenarios and examples: Commitment control
These scenarios and examples show how one company sets up commitment control. Code examples for
programs that use commitment control are also included in this topic collection.

The following scenario shows how the JKL toy company implements commitment control to track
transactions on its local database.

The following examples provide sample code for commitment control. The practice problem is an RPG
program that implements commitment control. It includes a logic flow that shows what is happening each
step of the way.

Scenario: Commitment control
The JKL Toy Company uses commitment control to protect the database records for manufacturing and
inventory. This scenario shows how JKL toy company uses commitment control to transfer a part from its
inventory department to its manufacturing department.

The Scenario: Journal management topic includes a description of JKL Toy Company's network
environment. The scenario that follows shows how commitment control works on its production system
JKLPROD.

This scenario illustrates the advantages of using commitment control in two examples. The first example
shows how the company's inventory program, Program A, might work without commitment control,
and the possible problems that can occur. The second example shows how the program works with
commitment control.

The JKL Toy Company uses an inventory application program, Program A, on its system JKLPROD.
Program A uses two records. One record tracks items that are stored in the stock room. Another record
keeps track of items that are removed from the stock room, and used in production.

Program A without commitment control
Assume that the following application program does not use commitment control. The system locks
records read for updating. The following steps describe how the application program tracks a diode as it is
removed from the stock room and transferred to checking account:

• Program A locks and retrieves the stock room record. (This action might require a wait if the record is
locked by another program.)

• Program A locks and retrieves the production record. (This might also require a wait.) Program A now
has both records locked, and no other program can change them.

Commitment control 71

• Program A updates the stock room record. This causes the record to be released so it is now available to
be read for update by any other program.

• Program A updates the production record. This causes the record to be released so it is now available to
be read for update by any other program.

Without using commitment control, a problem needs to be solved to make this program work properly in
all circumstances. For example, a problem occurs if program A does not update both records because of
a job or system failure. In this case, the two files are not consistent -- diodes are removed from the stock
room record, but they are not added to the production record. Using commitment control allows you to
ensure that all changes involved in the transaction are completed, or that the files are returned to their
original state if the processing of the transaction is interrupted.

Program A with commitment control
If commitment control is used, the preceding example is changed as follows:

1. Commitment control is started.
2. Program A locks and retrieves the stock room record. (This action can require a wait if the record is

locked by another program.)
3. Program A locks and retrieves the production record. (This can also require a wait.) Program A now has

both records locked, and no other program can change them.
4. Program A updates the stock room record, and commitment control keeps the lock on the record.
5. Program A updates the production record, and commitment control keeps the lock on the record.
6. Program A commits the transaction. The changes to the stock room record and the production record

are made permanent in the files. The changes are recorded in the journal, which assumes they will
appear on disk. Commitment control releases the locks on both records. The records are now available
to be read for update by any other program.

Because the locks on both records are kept by commitment control until the transaction is committed,
a situation cannot arise in which one record is updated and the other is not. If a routing step or system
failure occurs before the transaction is committed, the system removes (rolls back) the changes that have
been made so that the files are updated to the point where the last transaction was committed.

For each routing step in which files are to be under commitment control, the steps shown in the following
figure occur:

72 IBM i: Commitment control

The operations that are performed under commitment control are journaled to the journal. The start
commitment control journal entry appears after the first file open entry under commitment control. This
is because the first file open entry determines what journal is used for commitment control. The journal
entry from the first open operation is then used to check subsequent open operations to ensure that all
files are using the same journal.

When a job failure or system failure occurs, the resources under commitment control are updated to a
commitment boundary. If a transaction is started but is not completed before a routing step ends, that
transaction is rolled back by the system and does not appear in the file after the routing step ends. If the
system abnormally ends before a transaction is completed, that transaction is rolled back by the system
and does not appear in the file after a subsequent successful initial program load (IPL) of licensed internal
code. Anytime a rollback occurs, reversing entries are placed in the journal.

For example, assume that JKL company has 100 diodes in stock. Manufacturing takes out 20 from stock,
for a new balance of 80. The database update causes both before-image (100) and after-image (80)
journal entries.

Assume the system abnormally ended after journaling the entries, but before reaching the commitment
point or rollback point. After the IPL, the system reads the journal entry and updates the corresponding
database record. This update produces two journal entries that reverse the update: the first entry is the
before-image (80) and the second entry is the after-image (100).

When the IPL is successfully completed after the abnormal end, the system removes (or rolls back) any
database changes that are not committed. In the preceding example, the system removes the changes
from the stock room record because a commit operation is not in the journal for that transaction. In this
case, the before-image of the stock room record is placed in the file. The journal contains the rolled back
changes, and an indication that a rollback operation occurred.

Related concepts
Scenario: Journal management

Commitment control 73

Practice problem for commitment control
This practice problem might help you understand commitment control and its requirements. These steps
assume that you are familiar with the i5/OS licensed program, the data file utility (DFU), and this topic
collection.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 110.

Before beginning this problem, follow these prerequisite steps:

1. Create a special library for this practice problem. In the instructions, the library is called CMTLIB.
Substitute the name of your library where you see CMTLIB.

2. Create source files and a job description.

To use commitment control, follow these steps:

1. Create a physical file named ITMP (item master file). The data description specification (DDS) for this
file is as follows:

10 A R ITMR
20 A ITEM 2
30 A ONHAND 5 0
40 A K ITEM

2. Create a physical file named TRNP (transaction file). This file is used as a transaction log file. The DDS
for this file is as follows:

10 A R TRNR
20 A QTY 5 0
30 A ITEM 2
40 A USER 10

3. Create a logical file named TRNL (transaction logical). This file is used to help start the application
again. The USER field is the type LIFO sequence. The DDS for this file is as follows:

10 LIFO
20 A R TRNR PFILE (TRNP)
30 A K USER

4. Enter the STRDFU command, and create a DFU application named ITMU for the ITMP file. Accept the
defaults offered by DFU during the application definition.

5. Type the command CHGDTA ITMU and enter the following records for the ITMP file:

Item On hand

AA 450

BB 375

CC 4000

6. End the program using F3. This entry provides some data against which the program will operate.
7. Create the CL program Item Process (ITMPCSC) as follows:

PGM
DCL &USER *CHAR LEN(10)
RTVJOBA USER(&USER)
CALL ITMPCS PARM(&USER)
ENDPGM

This is the control program that calls the ITMPCS program. It retrieves the user name and passes it to
the processing program. This application assumes that unique user names are used.

8. Create a display file named ITMPCSD from the DDS as follows.

74 IBM i: Commitment control

There are two formats, the first for the basic prompt display and the second to allow the operator to
review the last transaction entered. This display file is used by the ITMPCS program.

SEQNBR *... ... 1 2 3 4 5 6 7 ..

 1.00 A R PROMPT
 2.00 A CA03(93 'End of program')
 3.00 A CA04(94 'Review last')
 4.00 A SETOFF(64 'No rcd to rvw')
 5.00 A 1 2'INVENTORY TRANSACTIONS'
 6.00 A 3 2'Quantity'
 7.00 A QTY 5 0I +1
 8.00 A 61 ERRMSG('Invalid +
 9.00 A quantity' 61)
 10.00 A +5'ITEM'
 11.00 A ITEM 2 I +1
 12.00 A 62 ERRMSG('Invalid +
 13.00 A Item number' 62)
 14.00 A 63 ERRMSG('Rollback +
 15.00 A occurred' 63)
 16.00 A 64 24 2'CF4 was pressed and +
 17.00 A there are no +
 18.00 A transactions for +
 19.00 A this user'
 20.00 A DSPATR(HI)
 21.00 A 23 2'CF4 Review last +
 22.00 A transaction'
 23.00 A R REVW
 24.00 A 1 2'INVENTORY TRANSACTIONS'
 25.00 A +5'REVIEW LAST TRANSACTION'
 26.00 A 3 2'Quantity'
 27.00 A QTY 5 0 +1EDTCDE(Z)
 28.00 A +5'Item'
 29.00 A ITEM 2 +1

9. Study the logic flow provided in Logic flow for the practice program for commitment control.
10. Enter the STRSEU command and type the source as follows:

SEQNBR *... ... 1 2 3 4 5 6 7 ..

 1.00 FITMP UF E K DISK
 2.00 F* KCOMIT
 3.00 FTRNP O E DISK
 4.00 F* KCOMIT
 5.00 FTRNL IF E K DISK
 6.00 F TRNR KRENAMETRNR1
 7.00 FITMPCSD CF E WORKSTN
 8.00 C* Enter parameter with User name for -TRNP- file
 9.00 C *ENTRY PLIST
 10.00 C PARM USER 10
 11.00 C LOOP TAG
 12.00 C EXFMTPROMPT
 13.00 C* Check for CF3 for end of program
 14.00 C 93 DO End of Pgm
 15.00 C SETON LR
 16.00 C RETRN
 17.00 C END
 18.00 C* Check for CF4 for review last transaction
 19.00 C 94 DO Review last
 20.00 C* Check for existence of a record for this user in -TRNL- file
 21.00 C USER CHAINTRNR1 64 Not found
 22.00 C 64 GOTO LOOP
 23.00 C EXFMTREVW
 24.00 C GOTO LOOP
 25.00 C END
 26.00 C* Access Item record
 27.00 C ITEM CHAINITMR 62 Not found
 28.00 C* Handle -not found- Condition
 29.00 C 62 GOTO LOOP
 30.00 C* Does sufficient quantity exist
 31.00 C ONHAND SUB QTY TEST 50 61 Minus
 32.00 C* Handle insufficient quantity
 33.00 C 61 DO
 34.00 C* Release Item record which was locked by the CHAIN for update
 35.00 C EXCPTRLSITM
 36.00 C GOTO LOOP
 37.00 C END
 38.00 C* Change ONHAND and update the Item record
 39.00 C Z-ADDTEST ONHAND

Commitment control 75

 40.00 C UPDATITMR
 41.00 C* Test for Special Simulation Conditions
 42.00 C ITEM IFEQ 'CC'
 43.00 C* Simulate program need for rollback
 44.00 C QTY IFEQ 100
 45.00 C SETON 63 Simult Rlbck
 46.00 C* ROLBK
 47.00 C GOTO LOOP
 48.00 C END
 49.00 C* Simulate an abnormal program cancellation by Div by zero
 50.00 C* Operator Should respond -C- to inquiry message
 51.00 C QTY IFEQ 101
 52.00 C Z-ADD0 ZERO 30
 53.00 C TESTZ DIV ZERO TESTZ 30 Msg occurs
 54.00 C END
 55.00 C* Simulate an abnormal job cancellation by DSPLY.
 56.00 C* Operator Should System Request to another job
 57.00 C* and cancel this one with OPTION(*IMMED)
 58.00 C QTY IFEQ 102
 59.00 C 'CC=102' DSPLY Msg occurs
 60.00 C END
 61 00 C END ITEM=CC
 62.00 C* Write the -TRNP- file
 63 00 C WRITETRNR
 64.00 C* Commit the update to -ITMP- and write to -TRNP-
 65.00 C* COMIT
 66.00 C GOTO LOOP
 67.00 OITMR E RLSITM

11. Enter the CRTRPGPGM command to create program ITMPCS from the source entered in the previous
step.

12. Type the command CALL ITMPCSC, press Enter, and press F4. A message states that there are no
entries for this operator.

13. Enter the following data to see if the program operates correctly:

Quantity Item

3 AA

4 BB

14. Press F4. The review display shows the BB item last entered. Enter the following data:

Quantity Item

5 FF (Invalid item number message occurs.)

9000 BB (Insufficient quantity error message occurs.)

100 CC (Rollback message occurs.)

102 CC (RPG DSPLY operation must occur. Press the
Enter key.)

101 CC (The program must display an inquiry
message stating that a divide by zero condition
has occurred or end, depending on the setting
of job attribute INQMSGRPY. If the inquiry
message appears, enter C to cancel the RPG
program and then C to cancel the CL program
on the subsequent inquiry. This simulates an
unexpected error condition.)

15. Type the Display Data command DSPDTA ITMP.

See if the records AA and BB have been updated correctly. The values must be AA = 447, BB = 371,
and CC = 3697. Note that the quantities subtracted from CC occurred, but the transaction records
were not written.

16. Create a journal receiver for commitment control. Use the Create Journal Receiver (CRTJRNRCV)
command to create a journal receiver called RCVR1 in the CMRLIB library. Specify a threshold of
at least 5000KB. A larger threshold is recommended if your system has sufficient space in order to

76 IBM i: Commitment control

maximize the time between generation of new journal receivers to minimize the performance impacts
of too frequent change journals.

17. Create a journal for commitment control. Use the Create Journal (CRTJRN) command to create a
journal called JRNTEST in the CMTLIB library. Because this journal is used only for commitment
control, specify MNGRCV(*SYSTEM) DLTRCV(*YES). For the JRNRCV parameter, specify the journal
receiver that you created in step “16” on page 76.

18. Use the Start Journal Physical File (STRJRNPF) command with the parameters FILE(CMTLIB/ITMP
CMTLIB/TRNP) JRN(CMTLIB/JRNTEST) to journal the files to be used for commitment control.

The IMAGES parameter uses a default of *AFTER, meaning that only after-image changes of the
records appear in the journal. The files ITMP and TRNP have now started journaling.

Normally, you save the files after starting journaling. You cannot apply journaled changes to a
restored file that does not have the same JID as the journal entries. Because this practice problem
does not require you to apply journaled changes, you can skip saving the journaled files.

19. Type the command CALL ITMPCSC and enter the following transactions:

Quantity Item

5 AA

6 BB

End the program by pressing F3.
20. Type the Display Journal command: DSPJRN CMTLIB/JRNTEST.

Note the entries appearing in the journal. The same sequence of entries (R UP = update of ITMP
followed by R PT = record added to TRNP) occurs in the journal as was performed by the program.
This is because a logical file is defined over the physical file TRNP and the system overrides the RPG
default. If no logical file existed, the RPG assumption of SEQONLY(*YES) is used, and a block of PT
entries appear because the records are kept in the RPG buffer until the block is full.

21. Change the CL program ITMPCSC as follows (the new statements are shown with an asterisk).

 PGM
 DCL &USER *CHAR LEN(10)
 RTVJOBA USER(&USER)
* STRCMTCTL LCKLVL(*CHG)
 CALL ITMPCS PARM(&USER)
* MONMSG MSGID(RPG9001) EXEC(ROLLBACK)
* ENDCMTCTL
 ENDPGM

The STRCMTCTL command sets up the commitment control environment. The LCKLVL word specifies
that records read for update but not updated can be released during the transaction. The MONMSG
command handles any RPG escape messages and performs a ROLLBACK in case the RPG program
abnormally ends. The ENDCMTCTL command ends the commitment control environment.

22. Delete the existing ITMPCSC program and create it again.
23. Change the RPG program to remove the comment symbols at statements 2.00, 4.00, 46.00, and

65.00. The source is now ready for use with commitment control.
24. Delete the existing ITMPCS program and create it again. The program is now ready to operate under

commitment control.
25. Type the command CALL ITMPCSC and the following transactions:

Quantity Item

7 AA

8 BB

26. Use System Request and request the option to display the current job. When the Display Job display
appears, select option 16 to request the display of the commitment control status.

Commitment control 77

Note the values on the display. There must be two commits because two commit statements were
run in the program.

27. Press F9 to see a list of the files under commitment control and the amount of activity for each file.
28. Return to the program and end it by pressing F3.
29. Type DSPJRN CMTLIB/JRNTEST and note the entries for the files and the special journal entries for

commitment control:

Entry Meaning

C BC STRCMTCTL command occurred.

C SC Start commit cycle. This occurs whenever the
first database operation in the transaction
causes a record to be inserted, updated, or
deleted as part of commitment control.

C CM Commit operation has occurred.

C EC ENDCMTCTL command occurred.

The commitment control before-images and after-images (R UB and R UP types) automatically occur
even though you had originally requested IMAGES(*AFTER) for the journal.

30. Type the command CALL ITMPCSC and the following transactions:

Quantity Item

12 AA

100 CC (This is the condition to simulate the need
for an application use of rollback. The CC record
in the ITMP file, which was updated by RPG
statement 40.00 is rolled back.)

31. Press F4 to determine the last transaction entered.

The last committed transaction is the entry for item AA.
32. Use System Request and request the Display Current Job option. When the Display Job display

appears, request the display of the commitment control status.

Note the values on the display and how they have been changed by the rollback.
33. Return to the program.
34. Return to the basic prompt display and end the program by pressing F3.
35. Type the command DSPJRN CMTLIB/JRNTEST.

Note the additional entries that appear in the journal for the use of the rollback entry (C RB entry).
When the ITMP record is rolled back, three entries are placed in the journal. This is because any
change to the database file under commitment control produces a before (R BR) and after (R UR)
entry.

36. Display the entries with journal code R and these entry types: UB, UP, BR, and UR. Use option 5 to
display the full entries. Because the Quantity field is in packed decimal, use F11 to request a hex
display. Note the following conditions:

• The on-hand value of the ITMP record in the UB record
• How the on-hand value is reduced by the UP record
• How the BR record is the same as the UP record
• How the UR record returns the value as originally displayed for the UB record

The last entry is the RB entry for the end of the rollback.
37. Type the command CALL ITMPCSC; press Enter; and press F4. Note the last transaction entered.
38. Type the following transactions:

78 IBM i: Commitment control

Quantity Item

13 AA

101 CC (This is the condition to simulate an
unexpected error condition, which causes the
program to end. The simulation occurs by
dividing a field by 0. The program will display an
inquiry message or end, depending on the setting
of the job attribute INQMSGRPY. If the inquiry
message appears, enter C to end the program.
Because the CL program was changed to monitor
for RPG program errors, the second inquiry which
occurred does not occur.)

39. Type the command DSPJRN CMTLIB/JRNTEST.

The same type of rollback handling has occurred, but this time the rollback was caused by the EXEC
parameter of the MONMSG command in the CL program instead of the RPG program. Display the two
RB entries to see which program caused them.

40. Type the command WRKJOB and write down the fully qualified job name to be used later.
41. Type the command CALL ITMPCSC and enter the following transaction:

Quantity Item

14 AA

102 CC (The RPG DSPLY operation must occur to
the external message queue. Use the System
Request key and select option 1 on the system
request menu to transfer to a secondary job.)

42. Sign on to the second job and reestablish your environment.
43. Type the command ENDJOB and specify the fully qualified job name identified earlier and

OPTION(*IMMED). This simulates an abnormal job or system end.
44. Wait about 30 seconds, type the command CALL ITMPCSC and press F4.

Note the last committed transaction. It must be the AA item entered earlier.
45. Return to the basic prompt display and end the program by pressing F3.
46. Type the command DSPJRN CMTLIB/JRNTEST.

The same type of rollback handling has occurred, but this time the rollback was caused by the system
instead of one of the programs. The RB entry was written by the program QWTPITPP, which is the
work management abnormal end program.

You have now used the basic functions of commitment control. You can proceed with commitment control
on your applications or try some of the other functions such as:

• Using a notify object
• Locking records that are only read with LCKLVL(*ALL)
• Locking multiple records in the same file with LCKLVL(*ALL)

Logic flow for practice problem
The logic flow might help you further understand this practice program for commitment control. The
following figure shows the flow of the practice problem for commitment control.

See “Steps associated with the logic flow for the practice program” on page 81 for details about each of
the steps shown in the figure.

Commitment control 79

80 IBM i: Commitment control

Steps associated with the logic flow for the practice program
These steps are associated with the logic flow for the practice problem.

1. Retrieve the user name that is passed in as a parameter. This is used to write to the TRNP file and
also used to retrieve the last transaction entered by each operator. This application assumes unique
user names for operators.

2. Prompt for the basic display using the format name PROMPT.
3. If F3 is pressed, start an end of program function.
4. If F4 is pressed, start a routine to access the last transaction entered by the operator.
5. Read the item record using the field ITEM. Because the file is an update file, this request locks the

record.
6. Check for a not found condition in the file ITMP.
7. If no ITMP record exists, set on indicator 62 to cause the error message and return to step “2” on

page 81.
8. Subtract the quantity requested (QTY) from the on hand balance (ONHAND) into a work area.
9. Check to see if sufficient quantity exists to meet the request.

10. If insufficient quantity exists, release the lock on the record in the ITMP file. This step is needed
because of insufficient quantity.

11. Set on indicator 61 to signal an insufficient quantity display error message and return to step “2” on
page 81.

12. Change the ONHAND field for the new balance and update the ITMR record.
13. Check for special entry in the ITEM field that can be used to simulate conditions where ROLLBACK is

required.
14. Check for QTY=100. Issue a ROLLBACK operation. This simulates a condition where the program

senses a need for rollback.
15. Check for QTY=101. Cause an exception in the program that will produce an inquiry message. Use

divide by zero for this function. The operator should enter C to cancel the program unless the job
description INQMSGRPH option provides an automatic reply. This simulates a condition where an
unexpected error has occurred and the operator cancels the program.

16. Check for QTY=102. Issue a display with inquiry operation. This stops the program at this step and
allows the use of the System Request key to get to a different job. Cancel the updating job. This
simulates a condition where an abnormal job or system end has occurred in the middle of a commit
boundary.

17. Write the transaction record to TRNP.
18. Commit the records for the transaction and return to step “2” on page 81.
19. Read the first record on the access path for file TRNL, using USER as the key. Because this file is in

LIFO sequence, this will be the last transaction record entered by this user.
20. Check for a record not found condition in the TRNL file that is caused if the file does not contain

entries for this user.
21. If there is no record for this user, set on indicator 64 to cause an error message and return to step “2”

on page 81.
22. Display the last transaction entered for this user. This information can be used if the operator forgets

what was previously entered or when the transaction is restarted. When the operator responds,
return to step “2” on page 81.

23. Perform any of the program functions.

Commitment control 81

Example: Using a transaction logging file to start an application
This example provides sample code and instructions of how to use a transaction logging file to start an
application after an abnormal end.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 110.

A transaction logging file is used to start an application again after a system or job failure when a notify
object is not used. A transaction logging file is often used in interactive applications to summarize the
effects of a transaction.

For example, in an order entry application, a record is typically written to a transaction logging file for each
item ordered. The record contains the item ordered, the quantity, and the price. In an accounts payable
application, a record is written to a transaction logging file for each account number that is to receive a
charge. This record normally contains such information as the account number, the amount charged, and
the vendor.

In many of the applications where a transaction logging file already exists, a workstation user can request
information about the last transaction entered. By adding commitment control to the applications in
which a transaction logging file already exists, you can:

• Ensure that the database files are updated to a commitment boundary.
• Simplify the starting of the transaction again.

You must be able to uniquely identify the workstation user if you use a transaction logging file for starting
applications again under commit control. If unique user profile names are used on the system, that profile
name can be placed in a field in the transaction logging record. This field can be used as the key to the file.

The following examples assume that an order inventory file is being used to perform transactions and that
a transaction logging file already exists. The program does the following tasks:

1. Prompt the workstation user for a quantity and item number.
2. Update the quantity in the production master file (PRDMSTP).
3. Write a record to the transaction logging file (ISSLOGL).

If the inventory quantity on hand is insufficient, the program rejects the transaction. The workstation
user can ask the program where the data entry was interrupted, because the item number, description,
quantity, user name, and date are written to the transaction logging file.

DDS for physical file PRDMSTP
SEQNBR *... ... 1 2 3 4 5 6 7

 1.00 A R PRDMSTR TEXT('Master record')
 2.00 A PRODCT 3 COLHDG('Product' 'Number')
 3.00 A DESCRP 20 COLHDG('Description')
 4.00 A ONHAND 5 0 COLHDG('On Hand' 'Amount')
 5.00 A EDTCDE(Z)
 6.00 A K PRODCT

DDS for physical file ISSLOGP used by ISSLOGP
SEQNBR *... ... 1 2 3 4 5 6 7

 1.00 A R ISSLOGR TEXT('Product log record')
 2.00 A PRODCT 3 COLHDG('Product' 'Number')
 3.00 A DESCRP 20 COLHDG('Description')
 4.00 A QTY 3 0 COLHDG('Quantity')
 5.00 A EDTCDE(Z)
 6.00 A USER 10 COLHDG('User' 'Name')
 7.00 A DATE 6 0 EDTCDE(Y)
 8.00 A COLHDG('Date')

82 IBM i: Commitment control

DDS for logical file ISSLOGL

SEQNBR *... ... 1 2 3 4 5 6 7

 1.00 A LIFO
 2.00 A R ISSLOGR PFILE(ISSLOGP)
 3.00 A K USER

DDS for display file PRDISSD used in the program
SEQNBR *... ... 1 2 3 4 5 6 7 ..

 1.00 A REF(ISSLOGP)
 2.00 A R PROMPT
 3.00 A CA03(98 'End of program')
 4.00 A CA02(97 'Where am I')
 5.00 A 1 20'ISSUES PROCESSING'
 6.00 A 3 2'Quantity'
 7.00 A QTY R I +1
 8.00 A 62 ERRMSG('Not enough +
 9.00 A Qty' 62)
 10.00 A +6'Product'
 11.00 A PRODCT R I +1
 12.00 A 61 ERRMSG('No Product +
 13.00 A record found' 62)
 14.00 A 55 15 2'No Previous record exists'
 15.00 A 24 2'CF2 Last transaction'
 16.00 A R RESTART
 17.00 A 1 20'LAST TRANSACTION +
 18.00 A INFORMATION'
 19.00 A 5 2'Product'
 20.00 A PRODCT R +1
 21.00 A 7 2'Description'
 22.00 A DESCRP R +1
 23.00 A 9 2'Qty'
 24.00 A QTY R +1REFFLD(QTY)

This process is outlined in the Program flow.

Commitment control 83

84 IBM i: Commitment control

The RPG COMMIT operation code is specified after the PRDMSTP file is updated and the record is written
to the transaction logging file. Because each prompt to the operator represents a boundary for a new
transaction, the transaction is considered a single Enter transaction.

The user name is passed to the program when it is called. The access path for the transaction logging file
is defined in last-in-first-out (LIFO) sequence so the program can easily access the last record entered.

The workstation user can start the program again after a system or job failure by using the same function
that identified where data entry was stopped. No additional code needs to be added to the program. If
you are currently using a transaction logging file but are not using it to find out where you are, add the
user name to the transaction logging file (assuming that user names are unique) and use this approach in
the program.

The following example shows the RPG program used. Statements required for commitment control are
marked with arrows (==>).

RPG Program
 SEQNBR *... ... 1 2 3 4 5 6 7 ..
 =>1.00 FPRDMSTP UP E K DISK KCOMIT
 =>2.00 FISSLOGL IF E K DISK KCOMIT
 3.00 PRDISSD CP E WORKSTN
 4.00 *ENTRY PLIST
 5.00 PARM USER 10
 6.00 C*
 7.00 C* Initialize fields used in Trans Log Rcd
 8.00 C*
 9.00 C MOVE UDATE DATE
 10.00 C*
 11.00 C* Basic processing loop
 12.00 C*
 13.00 C LOOP TAG
 14.00 C EXFMTPROMPT
 15.00 C 98 GOTO END End of pgm
 16.00 C 97 DO Where am I
 17.00 C EXSR WHERE
 18.00 C GOTO LOOP
 19.00 C END
 20.00 C PRODCT CHAINPRDMSTR 61 Not found
 21.00 C 61 GOTO LOOP
 22.00 C ONHAND SUB QTY TEST 50 62 Less than
 23.00 C 62 DO Not enough
 24.00 C EXCPTRLSMST Release lock
 25.00 C GOTO LOOP
 26.00 C END
 27.00 C*
 28.00 C* Update master record and output the Transaction Log Record
 29.00 C*
 30.00 C Z-ADDTEST ONHAND
 31.00 C UPDATPRDMSTR
 32.00 C WRITEISSLOGR
=>33.00 C COMIT
 34.00 C GOTO LOOP
 35.00 C*
 36.00 C* End of program processing
 37.00 C*
 38.00 C END TAG
 39.00 C SETON LR
 40.00 C*
 41.00 C* WHERE subroutine for "Where am I" requests
 42.00 C*
 43.00 C WHERE BEGSR
 44.00 C USER CHAINISSLOGL 55 Not found
 45.00 C N55 EXFMTRESTART
 46.00 C ENDSR
 47.00 OPRDMSTR E RLSMST

CL program used to call RPG program PRDISS
SEQNBR *... ... 1 2 3 4 5 6 7 ..

 1.00 PGM
 2.00 DCL &USER *CHAR LEN(10)

Commitment control 85

 3.00 STRCMTCTL LCKLVL(*CHG)
 4.00 RTVJOBA USER(&USER)
 5.00 CALL PRDISS PARM(&USER)
 6.00 MONMSG MSGID(RPG900l) EXEC(ROLLBACK)
 7.00 ENDCMTCTL
 8.00 ENDPGM

To use commitment control in this program, a lock level of *CHG is normally specified. The record is
locked by the change until a commit operation is run. Note that if there is an insufficient quantity of
inventory, the record is explicitly released. (If the record are not explicitly released in the program, it is
released when the next record is read for update from the file.)

In this example, there is no additional advantage to using the lock level *ALL. If *ALL is used, a rollback or
commit operation must be used to release the record when an insufficient quantity existed.

The previous code is a CL program that calls the RPG program PRDISS. Note the use of STRCMTCTL/
ENDCMTCTL commands. The unique user name is retrieved (RTVJOBA command) and passed to the
program. The use of the MONMSG command to cause a rollback is described in Example: Use a standard
processing program to start an application.

Related concepts
Example: Using a standard processing program to start an application
A standard processing program is one way to start your application again using one database file as the
notify object for all applications. This approach assumes that user profile names are unique by user for all
applications using the standard program.
Example: Unique notify object for each program
Using a single, unique notify object for each job allows use of an externally described commit
identification even though there might be multiple users of the same program.

Example: Using a notify object to start an application
When a program is started after an abnormal end, it can look for an entry in the notify object. If the entry
exists, the program can start a transaction again. After the transaction has been started again, the notify
object is cleared by the program to prevent it from starting the same transaction yet another time.

You can use a notify object in the following ways:

• If the commit identification is placed in a database file, query this file to determine where to start each
application or workstation job again.

• If the commit identification is placed in a message queue for a particular workstation, a message can be
sent to the work station users when they sign on to inform them of the last transaction committed.

• If the commit identification is placed in a database file that has a key or user name, the program can
read this file when it is started. If a record exists in the file, start the program again. The program can
send a message to the workstation user identifying the last transaction committed. Any recovery is
performed by the program. If a record existed in the database file, the program deletes that record at
the end of the program.

• For a batch application, the commit identification can be placed in a data area that contains totals,
switch settings, and other status information necessary to start the application again. When the
application is started, it accesses the data area and verifies the values stored there. If the application
ends normally, the data area is set up for the next run.

• For a batch application, the commit identification can be sent to a message queue. A program that is run
when the application is started can retrieve the messages from the queue and start the programs again.

You can use several techniques for starting your applications again, depending on your application needs.
In choosing the technique, consider the following information:

• When there are multiple users of a program at the same time, a single data area cannot be used as the
notify object because after an abnormal system end, the commit identification for each user will overlay
each other in the data area.

• Your design for deleting information in the notify object must handle the situation when a failure occurs
immediately following use of the information:

86 IBM i: Commitment control

– If information is deleted immediately, it does not exist if another failure occurs before processing the
interrupted transaction.

– The information in the notify object must not be deleted until the successful processing of the
interrupted transaction. In this case, more than one entry will exist in the notify object if it is a
database file or message queue.

– The program must access the last record if there is more than one entry.
• A notify object cannot be used to provide the work station user with the last transaction committed

because the notify object is updated only if a system or job failure occurs or if uncommitted changes
exist at the normal end of a job.

• If information is displayed to the workstation user, it must be meaningful. This might require that the
program translate codes kept in the notify object into information that will help the user start again.

• Information for starting again must be displayed if the work station user needs it. Additional logic in the
program is required to prevent information from being displayed again when it is no longer meaningful.

• A single notify object and a standard processing program can provide a starting again function if the
notify object is a database file. This standard processing program is called by the programs that require
the ability to start again to minimize the changes to each individual program.

Related concepts
Commit notify object
A notify object is a message queue, data area, or database file that contains information identifying
the last successful transaction completed for a particular commitment definition if that commitment
definition did not end normally.

Example: Unique notify object for each program
Using a single, unique notify object for each job allows use of an externally described commit
identification even though there might be multiple users of the same program.

In the following examples, a database file is used as a notify object and it is used only by this program.

The program has two database files (PRDMSTP and PRDLOCP) that must be updated for receipts to
inventory. The display file used by the program is named PRDRCTD. A database file, PRDRCTP, is used as
the notify object. This notify object is defined to the program as a file and is also used as the definition of a
data structure for the notify function.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 110.

DDS for physical file PRDLOCP
SEQNBR *... ... 1 2 3 4 5 6 7

 1.00 A R PRDLOCR TEXT('Location record')
 2.00 A PRODCT 3 COLHDG('Product' 'Number')
 3.00 A LOCATN 6 COLHDG('Location')
 4.00 A LOCAMT 5 0 COLHDG('Location' 'Amount')
 5.00 A EDTCDE(Z)
 6.00 A K PRODCT
 7.00 A K LOCATN

DDS for display file PRDRCTD
SEQNBR *... ... 1 2 3 4 5 6 7 ..

 1.00 A REF(PRDMSTP)
 2.00 A R PROMPT
 3.00 A CA03(98 'End of program')
 4.00 A SETOFF(71 'RESTART')
 5.00 A 1 20'PRODUCT RECEIPTS'
 6.00 A 3 2'Quantity'
 7.00 A QTY 3 OI +1
 8.00 A +6'Product'

Commitment control 87

 9.00 A PRODCT R I +1
 10.00 A 61 ERRMSG('No record +
 11.00 A found in the +
 12.00 A master file' 62)
 13.00 A +6'Location'
 14.00 A LOCATN R I +1REFFLD(LOCATN PRDLOCP)
 15.00 A 62 ERRMSG('No record +
 16.00 A found in the +
 17.00 A location file' 62)
 18.00 A 9 2'Last Transaction'
 19.00 A 71 +6'This is restart +
 20.00 A information'
 21.00 A DSPATR(HI BL)
 22.00 A 12 2'Quantity'
 23.00 A 12 12'Product'
 24.00 A 12 23'Location'
 25.00 A 12 35'Description'
 26.00 A LSTPRD R 14 15REFFLD(PRODCT)
 27.00 A LSTLOC R 14 26REFFLD(LOCATN *SRC)
 28.00 A LSTQTY R 14 5REFFLD(QTY *SRC)
 29.00 A EDTCDE(Z)
 30.00 A LSTDSC R 14 35REFFLD(DESCRP)

DDS for notify object and externally described data structure (PRDRCTP)
SEQNBR *... ... 1 2 3 4 5 6 7 ..

 1.00 A LIFO
 2.00 A REF(PRDMSTP)
 3.00 A R PRDRCTR
 4.00 A USER 10
 5.00 A PRODCT R
 6.00 A DESCRP R
 7.00 A QTY 3 0
 8.00 A LOCATN R REFFLD(LOCATN PRDLOCP)
 9.00 A K USER

The program processes the notify object as follows:

• At the beginning, the program randomly processes the notify object and displays a record if it exists for
the specific key:

– If multiple records exist, the last record for this key is used because the PRDRCTP file is in LIFO
sequence.

– If no record exists, a transaction was not interrupted so it is not necessary to start again.
– If the program fails before the first successful commit operation, it does not consider that starting

again is required.
• The routine to clear the notify object occurs at the end of the program:

– If there were multiple failures, the routine can handle deletion of multiple records in the notify object.
– Although the system places the commit identification in a database file, the commit identification

must be specified as a variable in the RPG program.
– Because RPG allows a data structure to be externally described, a data structure is a convenient way

of specifying the commit identification. In this example, the data structure uses the same external
description that the database file used as the notify object.

The processing for this program prompts the user for a product number, a location, and a quantity:

• Two files must be updated:

– Product master file (PRDMSTP)
– Product location file (PRDLOCP)

• A record in each file must exist before either is updated.
• The program moves the input fields to corresponding last fields after each transaction is successfully

entered. These last fields are displayed to the operator on each prompt as feedback for what was last
entered.

88 IBM i: Commitment control

• If information for starting again exists, it is moved to these last fields and a special message appears on
the display.

This process is outlined in the following figure. The user name is passed to the program to provide a
unique record in the notify object.

Commitment control 89

90 IBM i: Commitment control

The following example is about the RPG source code. The notify object (file PRDRCTP) is used as a
normal file at the beginning and end of the program, and is also specified as the notify object in the CL
(STRCMTCTL command) before calling the program.

RPG source
SEQNBR *... ... 1 2 3 4 5 6 7 ..

 1.00 FPRDMSTP UF E K DISK KCOMIT
 2.00 FPRDLOCP UF E K DISK KCOMIT
 3.00 FPRDRCTD CF E WORKSTN
 4.00 F*
 5.00 F* The following file is the specific notify object for this pgm.
 6.00 F* It is accessed only in a restart situation and at the
 7.00 F* end of the program to delete any records. The records
 8.00 F* are written to the notify object by Commitment Control.
 9.00 F*
 10.00 FPRDRCTP UF E K DISK
 11.00 ICMTID E DSPRDRCTP
 12.00 C *ENTRY PLIST
 13.00 C PARM USER10 10
 14.00 C MOVE USER10 USER
 15.00 C*
 16.00 C* Check for restart information - get last rcd per user
 17.00 C* PRDRCTP file access path is in LIFO sequence
 18.00 C*
 19.00 C USER CHAINPRDRCTR 20 Not found
 20.00 C N20 DO Restart
 21.00 C EXSR MOVLST Move to last
 22.00 C SETON 71 Restart
 23.00 C END
 24.00 C*
 25.00 C* Basic processing loop
 26.00 C*
 27.00 C L00P TAG
 28.00 C EXFMTPROMPT
 29.00 C 98 GOTO END End of pgm
 30.00 C PRODCT CHAINPRDMSTR 61 Not found
 31.00 C 61 GOTO L00P
 32.00 C KEY KLIST
 33.00 C KFLD PRODCT
 34.00 C KFLD LOCATN
 35.00 C KEY CHAINPRDLOCR 62 Not found
 36.00 C 62 DO
 37.00 C EXCPTRLSMST Release lck
 38.00 C GOTO L00P
 39.00 C END
 40.00 C ADD QTY ONHAND Add
 41.00 C ADD QTY LOCAMT
 42.00 C UPDATPRDMSTR Update
 43.00 C UPDATPRDLOCR Update
 44.00 C*
 45.00 C* Commit and move to previous fields
 46.00 C*
 47.00 C CMTID COMIT
 48.00 C EXSR MOVLST Move to last
 49.00 C GOTO L00P
 50.00 C*
 51.00 C* End of program processing
 52.00 C*
 53.00 C END TAG
 54.00 C SETON LR
 55.00 C*56.00 C* Delete any records in the notify object
 57.00 C*
 58.00 C DLTLP TAG
 59.00 C USER CHAINPRDRCTR 20 Not found
 60.00 C N20 DO
 61.00 C DELETPRDRCTR Delete
 62.00 C GOTO DLTLP
 63.00 C END
 64.00 C*
 65.00 C* Move to -Last Used- fields for operator feedback
 66.00 C*
 67.00 C MOVLST BEGSR
 68.00 C MOVE PRODCT LSTPRD
 69.00 C MOVE LOCATN LSTLOC
 70.00 C MOVE QTY LSTQTY
 71.00 C MOVE DESCRP LSTDSC

Commitment control 91

 72.00 C ENDSR
 73.00 OPRDMSTR E RLSMST

Related concepts
Example: Using a transaction logging file to start an application
This example provides sample code and instructions of how to use a transaction logging file to start an
application after an abnormal end.
Commit notify object
A notify object is a message queue, data area, or database file that contains information identifying
the last successful transaction completed for a particular commitment definition if that commitment
definition did not end normally.
Example: Single notify object for all programs
Using a single notify object for all programs is advantageous. It is because all information required to start
again is in the same object, and a standard approach to the notify object can be used in all programs.

Example: Single notify object for all programs
Using a single notify object for all programs is advantageous. It is because all information required to start
again is in the same object, and a standard approach to the notify object can be used in all programs.

In this situation, use a unique combination of user and program identifications to make sure that the
program accesses the correct information when it starts again.

Because the information required to start again might vary from program to program, do not use
an externally described data structure for the commit identification. If a single notify object is used,
the preceding program can describe the data structure within the program rather than externally. For
example:

 1 10 USER
11 20 PGMNAM
21 23 PRODCT
24 29 LOCATN
30 49 DESC
50 51 0 QTY
52 220 DUMMY

In each program that uses this notify object, the information specified for the commit identification is
unique to the program (the user and program names are not unique). The notify object must be large
enough to contain the maximum information that any program can place in the commit identification.

Related concepts
Example: Unique notify object for each program
Using a single, unique notify object for each job allows use of an externally described commit
identification even though there might be multiple users of the same program.
Commit notify object
A notify object is a message queue, data area, or database file that contains information identifying
the last successful transaction completed for a particular commitment definition if that commitment
definition did not end normally.

Example: Using a standard processing program to start an application
A standard processing program is one way to start your application again using one database file as the
notify object for all applications. This approach assumes that user profile names are unique by user for all
applications using the standard program.

Note: By using the code example, you agree to the terms of the “Code license and disclaimer information”
on page 110.

For this approach, the physical file NFYOBJP is used as the notify object and defined as:

Unique user profile name 10 characters
Program identification 10 characters
Information for starting again Character field

92 IBM i: Commitment control

 (This must be large
 enough to contain the maximum
 amount of information for starting
 programs again that require
 information for starting again.
 This field is required by
 the application programs.
 In the example, it is
 assumed to be a length of 200.)

The file is created with SHARE(*YES). The first two fields in the file are the key to the file. (This file can
also be defined as a data structure in RPG programs.)

Related concepts
Example: Using a transaction logging file to start an application
This example provides sample code and instructions of how to use a transaction logging file to start an
application after an abnormal end.

Example: Code for a standard processing program
This example shows the code for a standard processing program that can be used to start your application
again using one database file as the notify object for all applications.

The application shown in the following code example performs as follows:

1. The application program receives the user name in a parameter and uses it with the program name as
a unique identifier in the notify object.

2. The application program passes a request code of R to the standard commit processing program,
which determines if a record exists in the notify object.

3. If the standard commit processing program returns a code of 1, a record was found and the application
program presents the information needed to start again to the user.

4. The application program proceeds with normal processing.
5. When a transaction is completed, values are saved for reference so the workstation user can see what

was done for the previous transaction.

The information saved is not provided by the notify object because the notify object is updated only if a
job or system failure occurs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 110.

Application program example

SEQNBR *... ... 1 2 3 4 5 6 7 ..

 1.00 FPRDMSTP UF E K DISK KCOMIT
 2.00 FPRDLOCP UF E K DISK KCOMIT
 3.00 FPRDRCTD CF E WORKSTN
 4.00 F*
 5.00 F* The following is a compile time array which contains the
 6.00 F* restart information used in the next example
 7.00 F*
 8.00 E RTXT 50 50 1 Restart text
 9.00 I*
 10.00 I* Data structure used for info passed to notify object
 11.00 I*
 12.00 ICMTID DS
 13.00 I 1 10 USER
 14.00 I 11 20 PGMNAM
 15.00 I 21 23 PRODCT
 16.00 I 24 29 LOCATN
 17.00 I 30 49 DESCRP
 18.00 I P 50 510QTY
 19.00 I 52 170 DUMMY
 20.00 I 171 220 RSTART
 21.00 C *ENTRY PLIST
 22.00 C PARM USER10 10
 23.00 C*
 24.00 C* Initialize fields used to communicate with std program
 25.00 C*

Commitment control 93

 26.00 C MOVE USER10 USER
 27.00 C MOVEL'PRDRC2' PGMNAM
 28.00 C MOVE 'R' RQSCOD Read Rqs
 29.00 C CALL 'STDCMT'
 30.00 C PARM RQSCOD 1
 31.00 C PARM RTNCOD 1
 32.00 C PARM CMTID 220 Data struct
 33.00 C RTNCOD IFEQ '1' Restart
 34.00 C EXSR MOVLST Move to last
 35.00 C SETON 71 Restart
 36.00 C END
 37.00 C*
 38.00 C* Initialize fields used in notify object
 39.00 C*
 40.00 C MOVEARTXT,1 RSTART Move text
 41.00 C*
 42.00 C* Basic processing loop
 43.00 C*
 44.00 C LOOP TAG
 45.00 C EXFMTPROMPT
 46.00 C 98 GOTO END
 47.00 C PRODCT CHAINPRDMSTR 61 Not found
 48.00 C 61 GOTO LOOP
 49.00 C KEY KLIST
 50.00 C KFLD PRODCT
 51.00 C KFLD LOCATN

SEQNBR *... ... 1 2 3 4 5 6 7 ..

 52.00 C KEY CHAINPRDLOCR 62 Not found
 53.00 C 62 DO
 54.00 C EXCPTRLSMST Release lck
 55.00 C GOTO LOOP
 56.00 C END
 57.00 C ADD QTY ONHAND Add
 58.00 C ADD QTY LOCAMT
 59.00 C UPDATPRDMSTR Update
 60.00 C UPDATPRDLOCR Update
 61.00 C*
 62.00 C* Commit and move to previous fields
 63.00 C*
 64.00 C CMTID COMIT
 65.00 C EXSR MOVLST Move to last
 66.00 C GOTO LOOP
 67.00 C* End of program processing
 68.00 C*
 69.00 C END TAG
 70.00 C MOVE 'D' RQSCOD Dlt Rqs
 71.00 C CALL 'STDCMT'
 72.00 C PARM RQSCOD
 73.00 C PARM RTNCOD
 74.00 C PARM CMTID
 75.00 C SETON LR
 76.00 C*
 77.00 C* Move to -Last Used- fields for operator feedback
 78.00 C*
 79.00 C MOVLST BEGSR
 80.00 C MOVE PRODCT LSTPRD
 81.00 C MOVE LOCATN LSTLOC
 82.00 C MOVE DESCRP LSTDSC
 83.00 C MOVE QTY LSTQTY
 84.00 C ENDSR
 85.00 OPRDMSTR E RLSMST
 86.00 ** RTXT Restart Text
 87.00 Inventory Menu - Receipts Option

Processing flow
The standard program is called from applications that must start again.

The application programs pass this parameter list to the standard program:

• Request code
• Return code
• Data structure name (the contents of the notify object)

Request codes perform the following operations:

94 IBM i: Commitment control

• R (Read)

Retrieves the last record added to the notify object with the same key. The return code is set as:

0
No record is available (no start again required).

1
Record returned in the information field for starting again (start again required).

• WA (Write)

Writes a record to the file. This code can be used if you use a notify object for your own purposes. For
example, if the program determines that the transaction needs to be started again, the program can
write a record to the notify object to simulate what the system will do if a job or the system fails.

• DE (Delete)

Deletes all records in the notify object with the same key. The return code is set as:

0
No records exist to be deleted.

1
One or more records were deleted.

• OE (Open)

The O request code is optional and is used to avoid having to start the processing program each time it
is called.

• CA (Close)

After the open request code is used, using the close request code ensures that the file is closed.
• SA (Search)

Returns the last record for this user. The program name is not used. This code can be used in an initial
program to determine whether starting again is required.

Example: Code for a standard commit processing program
The standard commit (STDCMT) processing program performs the functions required to communicate
with a single notify object used by all applications.

While the commitment control function automatically writes an entry to the notify object, a user-written
standard program must process the notify object. The standard program simplifies and standardizes the
approach.

The program is written to verify the parameters that were passed and perform the appropriate action as
follows:

O=Open
The calling program requests the notify object file be kept open on return. Because the notify object
is opened implicitly by the RPG program, the program must not close it. Indicator 98 is set so that the
program returns with LR off to keep the program's work areas and leaves the notify object open so it
can be called again without excess overhead.

C=Close
The calling program has determined that it no longer needs the notify object and requests a close.
Indicator 98 is set off to allow a full close of the notify object.

R=Read
The calling program requests that a record with matching key fields be read and passed back. The
program uses the passed key fields to attempt to retrieve a record from NFYOBJP. If duplicate records
exist for the same key, the last record is returned. The return code is set accordingly and, if the record
existed, it is passed back in the data structure CMTID.

Commitment control 95

W=Write
The calling program requests a record to be written to the notify object to allow the calling program to
start again the next time it is called. The program writes the contents of the passed data as a record in
NFYOBJP.

D=Delete
The calling program requests that records for this matching key be deleted. This function is typically
performed at the successful completion of the calling program to remove any information about
starting again. The program attempts to delete any records for passed key fields. If no records exist, a
different return code is passed back.

S=Search
The calling program requests a search for a record for a particular user regardless of which program
wrote it. This function is used in the program for sign-on to indicate that starting again is required.
The program uses only the user name as the key to see if records exist. The return code is set
appropriately, and the contents of the last record for this key (if it exists) are read and passed back.

The following example shows the standard commit processing program, STDCMT.

Standard commit processing program
Note: By using the code example, you agree to the terms of the “Code license and disclaimer information”
on page 110.

SEQNBR *... ... 1 2 3 4 5 6 7 ..

 1.00 FNFYOBJP UF E K DISK A
 2.00 ICMTID DS
 3.00 I 1 10 UNQUSR
 4.00 I 11 20 UNQPGM
 5.00 I 21 220 BIGFLD
 6.00 C *ENTRY PLIST
 7.00 C PARM RQSCOD 1
 8.00 C PARM RTNCOD 1
 9.00 C PARM CMTID 220
 10.00 C UNQUSR CABEQ*BLANKS BADEND H1 Invalid
 11.00 C UNQPGM CABEQ*BLANKS BADEND H2 Invalid
 12.00 C*
 13.00 C* 'O' for Open
 14.00 C*
 15.00 C RQSCOD IFEQ 'O' Open
 16.00 C SETON 98 End LR
 17.00 C GOTO END
 18.00 C END
 19.00 C*
 20.00 C* 'C' for Close
 21.00 C*
 22.00 C RQSCOD IFEQ 'C' Close
 23.00 C SETOF 98
 24.00 C GOTO END
 25.00 C END
 26.00 C*
 27.00 C* 'R' for Read - Get last record for the key
 28.00 C*
 29.00 C RQSCOD IFEQ 'R' Read
 30.00 C KEY KLIST
 31.00 C KFLD UNQUSR
 32.00 C KFLD UNQPGM
 33.00 C KEY CHAINNFYOBJR 51 Not found
 34.00 C 51 MOVE '0' RTNCOD
 35.00 C 51 GOTO END
 36.00 C MOVE '1' RTNCOD Found
 37.00 C LOOPl TAG
 38.00 C KEY READENFYOBJR 20 EOF
 39.00 C 20 GOTO END
 40.00 C GOTO LOOP1
 41.00 C END
 42.00 C*
 43.00 C* 'W' FOR Write
 44.00 C*
 45.00 C RQSCOD IFEQ 'W' Write
 46.00 C WRITENFYOBJR
 47.00 C GOTO END
 48.00 C END

96 IBM i: Commitment control

 49.00 C*
 50.00 C* 'D' for Delete - Delete all records for the key
 51.00 C*
 52.00 C RQSCOD IFEQ 'D' Delete
 53.00 C KEY CHAINNFYOBJR 51 Not found
 54.00 C 51 MOVE '0' RTNCOD
 55.00 C 51 GOTO END
 56.00 C MOVE '1' RTNCOD Found
 57.00 C LOOP2 TAG
 58.00 C DELETNFYOBJR
 59.00 C KEY READENFYOBJR 20 EOF
 60.00 C N20 GOTO LOOP2
 61.00 C GOTO END
 62.00 C END
 63.00 C*
 64.00 C* 'S' for Search for the last record for this user
 65.00 C* (Ignore the -Program- portion of the key)
 66.00 C*
 67.00 C RQSCOD IFEQ 'S' Search
 68.00 C UNQUSR SETLLNFYOBJR 20 If equal
 69.00 C N20 MOVE '0' RTNCOD
 70.00 C N20 GOTO END
 71.00 C MOVE '1' RTNCOD Found
 72.00 C LOOP3 TAG
 73.00 C UNQUSR READENFYOBJR 20 EOF
 74.00 C N20 GOTO LOOP3
 75.00 C GOTO END
 76.00 C END
 77.00 C*
 78.00 C* Invalid request code processing
 79.00 C*
 80.00 C SETON H2 Bad RQS code
 81.00 C GOTO BADEND
 82.00 C*
 83.00 C* End of program processing
 84.00 C*
 85.00 C END TAG
 86.00 C N98 SETON LR
 87.00 C RETRN
 88.00 C* BADEND tag is used then fall thru to RPG cycle error return
 89.00 C BADEND TAG

Related concepts
Example: Using a standard processing program to decide whether to restart the application
The initial program can call the standard commit processing program to determine if it is necessary to
start again. The workstation user can then decide whether to start again.

Example: Using a standard processing program to decide whether to restart
the application
The initial program can call the standard commit processing program to determine if it is necessary to
start again. The workstation user can then decide whether to start again.

The initial program passes a request code of S (search) to the standard program, which searches for any
record for the user. If a record exists, the information for starting again is passed to the initial program and
the information is displayed to the workstation user.

The commit identification in the notify object contains information that the initial program can display
identifying what program needs to be started again. For example, the last 50 characters of the commit
identification can be reserved to contain this information. In the application program, this information can
be in a compile time array and moved to the data structure in an initialization step. Example: Code for a
standard commit processing program shows how to include this in the application program.

The following example shows an initial program, which determines if a record exists in the notify object.

Example: Initial program
Note: By using the code example, you agree to the terms of the “Code license and disclaimer information”
on page 110.

SEQNBR *... ... 1 2 3 4 5 6 7

Commitment control 97

 1.00 PGM
 2.00 DCLF CMTINLD
 3.00 DCL &RQSCOD *CHAR LEN(1) VALUE(S) /* Search */
 4.00 DCL &RTNCOD *CHAR LEN(1)
 5.00 DCL &CMTID *CHAR LEN(220)
 6.00 DCL &USER *CHAR LEN(10)
 7.00 DCL &INFO *CHAR LEN(50)
 8.00 RTVJOBA USER(&USER)
 9.00 CHGVAR &CMTID (&USER *CAT XX)
 10.00 /* The XX is required to prevent a blank Pgm nam */
 11.00 CALL STDCMT PARM(&RQSCOD &RTNCOD &CMTID)
 12.00 IF (&RTNCOD *EQ '1') DO /* RESTART REQD */
 13.00 CHGVAR &INFO %SST(&CMTID 171 50)
 14.00 SNDRCVF RCDFMT(RESTART)
 15.00 ENDDO
 16.00 /* */
 17.00 /* Enter normal initial program statements */
 18.00 /* or -TFRCTL- to first menu program */
 19.00 /* */
 20.00 ENDPGM

Related concepts
Example: Code for a standard commit processing program
The standard commit (STDCMT) processing program performs the functions required to communicate
with a single notify object used by all applications.
Commit notify object
A notify object is a message queue, data area, or database file that contains information identifying
the last successful transaction completed for a particular commitment definition if that commitment
definition did not end normally.

Troubleshooting transactions and commitment control
This information might help you troubleshoot commitment control errors, detect deadlocks, recover
transactions after communications failure, know when to force commit and rollback operations, and when
to cancel resynchronization and end long-running rollbacks.

Commitment control errors
When you use commitment control, it is important to understand which conditions cause errors and which
do not.

In general, errors occur when commitment control functions are used inconsistently, such as running an
End Commitment Control (ENDCMTCTL) command when files that use the commitment definition are still
open.

Errors during commit processing
If a communications or system failure occurs during a commit operation, resynchronization might need
to be performed to ensure that the transaction managers keep the data consistent on all the systems
involved in the transaction. The behavior of the resynchronization and how it affects the commit operation
depends on these factors :

• The Wait for outcome commitment option.
• The state of the transaction.

If the failure is catastrophic such that it can never be repaired, or it cannot be repaired in a timely manner,
the system operators for other systems involved in the transaction must make a heuristic decision. The
heuristic decision commits or rolls back the changes made on that system during the transaction. If the
failure is repaired after such a decision, and the resynchronization detects that the decision caused data
integrity problems, message CPD83D9 or CPD83E9 is sent to the QSYSOPR message queue.

Related concepts
Commitment definition for two-phase commit: Not wait for outcome

98 IBM i: Commitment control

When a communication or system failure occurs during a commit operation so that resynchronization
is required, the default is to wait until the resynchronization is finished before the commit operation
completes.
States of the transaction for two-phase commitment control
A commitment definition is established at each location that is part of the transaction program network.
For each commitment definition, the system keeps track of the state of its current transaction and
previous transaction.

Error conditions
If an error occurs, an escape message that you can monitor for in a program is sent.

Here are some typical errors related to commitment control:

• Consecutive STRCMTCTL commands are run without an intervening ENDCMTCTL command.
• Files are opened under commitment control, but no STRCMTCTL command was run.

This is not an error condition for programs that run within an activation group that are to use the
job-level commitment definition. The job-level commitment definition can be started only by a single
program, but when started by a program, the job-level commitment definition is used by any program
running in any activation group that is not using an activation-group-level commitment definition.
Programs that run within an activation group that are to use the activation-group-level commitment
definition must first start the activation-group-level commitment definition with the STRCMTCTL
command.

• Files that are opened for output under commitment control are not journaled.
• The first open operation of a shared file places the file under commitment control, but subsequent open

operations of the same shared file do not.
• The first open operation of a shared file does not place the file under commitment control, but

subsequent open operations of the same shared file do.
• The record lock limit for the job is reached in a single transaction.
• The program issues a read operation, a commit operation, and a change to the same record. The read

operation must be issued again after the commit operation because the commit operation has freed the
lock on the record.

• For a one-phase location, resources placed under commitment control do not reside at the same
location as resources already under commitment control for the commitment definition.

• Uncommitted changes exist when an ENDCMTCTL command is issued.

This is not an error condition for the ENDCMTCTL command if all files are closed, any remote database
is disconnected, and no API commitment resource is still associated with the commitment definition to
be ended.

• A commit, rollback, or ENDCMTCTL command is run, and a STRCMTCTL command was not run.

This is not an error condition for programs that run within an activation group and the job-level
commitment definition is active. The job-level commitment definition can be started only by a single
program, but when started by a program, the job-level commitment definition is used by any program
running in any activation group that is not using an activation-group-level commitment definition.
Programs that run within an activation group and are to use the activation-group-level commitment
definition must first start the activation-group-level commitment definition with the STRCMTCTL
command.

• An ENDCMTCTL command is run with files still open under commitment control for the commitment
definition.

• A job performing a save operation has one or more commitment definitions that are not at a
commitment boundary.

• A save-while-active operation ended because other jobs with committable resources did not reach a
commitment boundary in the time specified for the SAVACTWAIT parameter.

Commitment control 99

• A save-while-active process was not able to continue because of API committable resources being
added to more than one commitment definition for a single job.

• More than 1023 commitment definitions exist for a single job.
• The conversation to a remote location is lost due to a resource failure. This might cause the transaction

to be rolled back.
• A one-phase resource that is opened for update is present at a node that did not initiate the commit

operation. You must remove either the resource or the node that initiated the commit request.
• A commit operation is requested while the transaction is in rollback required (RBR) state. A rollback

operation must be done.
• An API exit program issues a commit request or a rollback request.
• A trigger program issues a commit request or a rollback request for the commitment definition under

which the trigger program was called.

The trigger program can start a separate commitment definition and issue a commit or rollback request
for that definition.

Nonerror conditions
Here are some situations for commitment control in which no errors occur.

• A commit or rollback operation is run and no resources are under commitment control. This allows
you to include commit or rollback operations in your program without considering whether there are
resources under commitment control. It also allows you to specify a commit identification before
making any committable changes.

• A commit or rollback operation is run and there are no uncommitted resource changes. This allows you
to include commit and rollback operations within your program without considering whether there are
uncommitted resource changes.

• A file under commitment control is closed and uncommitted records exist. This situation allows another
program to be called to perform the commit or rollback operation. This occurs regardless of whether
the file is shared. This function allows a subprogram to make database changes that are part of a
transaction involving multiple programs.

• A job ends, either normally or abnormally, with uncommitted changes for one or more commitment
definitions. The changes for all commitment definitions are rolled back.

• An activation group ends with pending changes for the activation-group-level commitment definition.
If the activation group is ending normally and there are no errors encountered when closing any files
opened under commitment control scoped to the same activation group that is ending, an implicit
commit is performed by the system. Otherwise, an implicit rollback is performed.

• A program accesses a changed record again that has not been committed. This allows a program to:

– Add a record and update it before specifying the commit operation.
– Update the same record twice before specifying the commit operation.
– Add a record and delete it before specifying the commit operation.
– Access an uncommitted record again by a different logical file (under commitment control).

• You specify LCKLVL(*CHG or *CS) on the STRCMTCTL command and open a file with a commit operation
for read-only. In this case, no locks occur on the request. It is treated as if commitment control is not in
effect, but the file does appear on the WRKJOB menu option of files under commitment control.

• You issue the STRCMTCTL command and do not open any files under commitment control. In this
situation, any record-level changes made to the files are not made under commitment control.

Error messages to monitor during commitment control
Several different error messages can be returned by the commit or rollback operations or sent to the job
log, depending on the type of message and when the error occurred.

The error messages can occur during the following processing:

100 IBM i: Commitment control

• Normal commit or rollback processing
• Commit or rollback processing during job process end
• Commit or rollback processing during activation group end

You cannot monitor for any of the following messages during activation group end or job process end.
Also, you can only monitor for CPFxxxx messages. CPDxxxx messages are always sent as diagnostic
messages, which cannot be monitored. Any errors encountered when ending an activation-group-level
commitment definition during activation group end or ending any commitment definition during job end
are left in the job log as diagnostic messages.

Error messages related to commitment control to look for are as follows:

CPD8351
Changes might not have been committed.

CPD8352
Changes not committed at remote location &3.

CPD8353
Changes to relational database &1 might not have been committed.

CPD8354
Changes to DDM file &1 might not have been committed.

CPD8355
Changes to DDL object &1 might not have been committed.

CPD8356
Rolled back changes might have been committed.

CPD8358
Changes to relational database &1 might not have been rolled back.

CPD8359
Changes to DDM file &1 might not have been rolled back.

CPD835A
Changes to DDL object &3 might not have been rolled back.

CPD835C
Notify object &1 in &2 not updated.

CPD835D
DRDA resource does not allow SQL cursor hold.

CPF835F
Commit or rollback operation failed.

CPD8360
Members or files or both were already deallocated.

CPD8361
API exit program &1 failed during commit.

CPD8362
API exit program &1 failed during roll back.

CPD8363
API exit program &1 ended after &4 minutes during commit.

CPD8364
API exit program &1 ended after &4 minutes during rollback.

CPD836F
Protocol error occurred during commitment control operation.

CPD83D1
API resource &4 cannot be last agent.

CPD83D2
Resource not compatible with commitment control.

Commitment control 101

CPD83D7
Commit operation changed to rollback.

CPD83D9
A heuristic mixed condition occurred.

CPF83DB
Commit operation resulted in rollback.

CPD83DC
Action If Problems Used to determine commit or rollback operation; reason &2.

CPD83DD
Conversation ended; reason &1.

CPD83DE
Return information not valid.

CPD83EC
API exit program &1 voted rollback.

CPD83EF
Rollback operation started for next logical unit of work.

CPF8350
Commitment definition not found.

CPF8355
ENDCMTCTL not allowed. Pending changes active.

CPF8356
Commitment control ended with &1 local changes not committed.

CPF8358
Notify object &1 in &2 not updated.

CPF8359
Rollback operation failed.

CPF835A
End of commitment definition &1 canceled.

CPF835B
Errors occurred while ending commitment control.

CPF835C
Commitment control ended with remote changes not committed.

CPF8363
Commit operation failed.

CPF8364
Commitment control parameter value is not valid. Reason code &3.

CPF8367
Cannot perform commitment control operation.

CPF8369
Cannot place API commitment resource under commitment control; reason code &1.

CPF83D0
Commitment operation not allowed.

CPF83D2
Commit complete == Resynchronization in progress has been returned.

CPF83D3
Commit complete == Heuristic Mixed has been returned.

CPF83D4
Logical unit of work journal entry not sent.

CPF83E1
Commit operation failed due to constraint violation.

102 IBM i: Commitment control

CPF83E2
Rollback operation required.

CPF83E3
Requested nesting level is not active.

CPF83E4
Commitment control ended with resources not committed.

CPF83E6
Commitment control operation completed with resynchronization in progress.

CPF83E7
Commit or rollback of X/Open global transaction not allowed.

Monitoring for errors after a CALL command
When a program that uses commitment control is called, monitor for unexpected errors and perform a
rollback operation if an error occurs.

For example, uncommitted records can exist when a program encounters an unexpected error such as an
RPG divide-by-zero error.

Depending on the status of the inquiry message reply (INQMSGRPY) parameter for a job, the program
sends an inquiry message or performs a default action. If the operator response or the default action ends
the program, uncommitted records still exist waiting for a commit or rollback operation.

If another program is called and causes a commit operation, the partially completed transaction from the
previous program is committed.

To prevent partially completed transactions from being committed, monitor for escape messages after the
CALL command. For example, if it is an RPG program, use the following coding:

CALL RPGA
MONMSG MSGID(RPG9001)
EXEC(ROLLBACK) /*Rollback if pgm is canceled*/

If it is a COBOL program:

CALL COBOLA
MONMSG MSGID(CBE9001)
EXEC(ROLLBACK) /*Rollback if pgm is canceled*/

Failure of normal commit or rollback processing
Errors might occur at any time during commit or rollback processing.

The following table divides this processing into four situations. The middle column describes the actions
taken by the system when it encounters errors during each situation. The third column suggests what you
or your application must do in response to the messages. These suggestions are consistent with the way
commitment control processing is handled by the system.

Commitment control 103

Situation Commit or rollback processing Suggested action

Record-level I/O commit fails • If the error occurs during the
prepare wave, the transaction
is rolled back and message
CPF83DB is sent.

• If the error occurs during
the committed wave, commit
processing continues to
commit as many remaining
resources as possible. Message
CPF8363 is sent at the end of
commit processing.

Monitor for messages; handle as
you want

Object-level or commit and
rollback exit program for
API commitment resource fails
during commit

• If the error occurs during the
prepare wave, the transaction
is rolled back and message
CPF83DB is sent.

• If the error occurs during the
committed wave, processing
continues to commit or roll
back as many remaining
resources as possible. One
of the following messages is
returned, depending on the
commitment resource type:

– CPD8353
– CPD8354
– CPD8355
– CPD8361

Message CPF8363 is sent at
the end of commit processing.

Monitor for messages; handle as
you want

Record-level I/O rollback fails 1. Returns CPD8356
2. Attempt to continue

processing to rollback object-
level or API commitment
resources

3. Returns CPF8359 at end of
processing

Monitor for messages; handle as
you want

Object-level or commit and
rollback exit program for API
commitment resources fails
during rollback

1. Returns one of the following
messages depending on the
commitment resource type:

• CPD8358
• CPD8359
• CPD835A
• CPD8362

2. Continues processing
3. Returns CPF8359 at end of

processing

Monitor for messages; handle as
you want

104 IBM i: Commitment control

Commit or rollback processing during job end
All of the situations described in the previous table also apply when a job is ending except that one of the
following messages is sent:

• CPF8356 if only local resources are registered
• CPF835C if only remote resources are registered
• CPF83E4 if both local and remote resources are registered

In addition, one of two messages might appear specific to job completion if a commit and rollback exit
program for an API committable resource has been called. If the commit and rollback exit program does
not complete within 5 minutes, the program is canceled; a diagnostic message CPD8363 (for commit) or
CPD8364 (for rollback) is sent; and the remainder of the commit or rollback processing continues.

Commit or rollback processing during initial program load (IPL)
All of the situations described in the previous table also apply during IPL recovery for commitment
definitions except that message CPF835F is sent instead of message CPF8359 or CPF8363. Messages
that get sent for a particular commitment definition might appear in the job log for one of the QDBSRVxx
jobs or the QHST log. In the QHST log, message CPI8356 indicates the beginning of IPL recovery for a
particular commitment definition. Message CPC8351 indicates the end of IPL recovery for a particular
commitment definition and any other messages regarding the recovery of that commitment definition is
found between those two messages.

One of two messages might appear specific to a commitment definition if a commit and rollback exit
program for an API committable resource has been called. If the commit and rollback exit program does
not complete within 5 minutes, the program is canceled; a diagnostic message CPD8363 (for commit) or
CPD8364 (for rollback) is sent; and the remainder of the commit or rollback processing continues.

Detecting deadlocks
A deadlock condition can occur when a job holds a lock on an object, object A, and is waiting to obtain
a lock on another object, object B. At the same time, another job or transaction currently holds a lock on
object B and is waiting to obtain a lock on object A.

Do the following steps to find out if a deadlock condition has occurred and fix it if it has:

1. Locate the suspended job in the list of active jobs.
2. Look at the objects the job is waiting to lock.
3. For all the objects the job is waiting to lock, look at the list of lock holders (transactions or jobs) and try

to find a conflicting lock corresponding to the level requested by the suspended job.
4. If a transaction is holding a conflicting lock, display the jobs associated with this transaction and see if

one of them is waiting to lock.
5. Determine if this waiting job is trying to lock one of the objects locked by the initial suspended job.

When you find the job that is trying to lock on of the objects locked by the initial suspended job, you
can identify the objects in question as the trouble spots.

6. Investigate the transaction in order to determine the appropriate course of action.
a) Look at the transaction properties to find out what application initiated it and then look at the

application code.
b) Or trace the transaction's actions up to this point by finding the Commit cycle ID in the transaction

properties and then searching in a journal for entries containing this ID. To do this, you can use the
Retrieve Journal Entry (RTVJRNE) command and specify the CMTCYCID parameter.

c) After obtaining relevant information, you can choose to force a rollback or commit operation.

Related tasks
Minimizing locks

Commitment control 105

A typical way to minimize record locks is to release the record lock. (This technique does not work if
LCKLVL(*ALL) has been specified.)
Determining the status of a job
Displaying locked objects for a transaction
You can display locked objects for global transactions with transaction-scoped locks only.
Displaying jobs associated with a transaction
To display jobs associated with a transaction, follow these steps.
Displaying commitment control information
IBM Navigator for i can display information about all transactions (logical units of work) on the system.
IBM Navigator for i can also display information about the job, if any, associated with a transaction.
When to force commit and rollback operations and when to cancel resynchronization
The decision to force a commit or rollback operation is called a heuristic decision. This action enables an
operator to manually commit or roll back the resources for a transaction that is in a prepared state.
Related reference
Retrieve Journal Entry (RTVJRNE) command
Related information
Finding large or old transactions
Use the Work with Commitment Definitions (WRKCMTDFN) command to find large or old
transactions.

Recovering transactions after communications failure
These instructions help you handle transactions performing work on a remote system after
communication with that system fails.

In case of a communications failure, the system typically completes the resynchronization with any
remote system automatically. However, if the failure is catastrophic such that the communications will
never be reestablished to the remote system (if, for instance, the communication line is cut), you must
cancel resynchronization and restore transactions yourself. The transactions also might be holding locks
that need to be released.

1. In IBM Navigator for i, display commitment control information for the transaction with which you are
working.

2. Find the transaction of interest that is trying to resynchronize with the remote system. The
Resynchronization in Progress field for that transaction is set to yes.

3. Look for transactions that had a connection to the remote system by checking the resource Status for
individual transactions.

4. After identifying transactions, you must force commit or force rollback depending on the state of the
transaction.

5. You can make the decision to commit or rollback after you investigate the transaction properties.

• You can use the Unit of Work ID to find other parts of the transaction on other systems.
• You can also determine to commit or rollback from the state of transaction. For example, if a

database transaction is performing two-phase commit during communication failure and its state
after the failure is "prepared" or "last agent pending", you might choose to force commit on the
transaction.

6. After forcing a commit or rollback on the transactions in doubt, stop resynchronization on the failed
connection for the identified transactions.

Related tasks
Displaying commitment control information
IBM Navigator for i can display information about all transactions (logical units of work) on the system.
IBM Navigator for i can also display information about the job, if any, associated with a transaction.
When to force commit and rollback operations and when to cancel resynchronization

106 IBM i: Commitment control

The decision to force a commit or rollback operation is called a heuristic decision. This action enables an
operator to manually commit or roll back the resources for a transaction that is in a prepared state.

When to force commit and rollback operations and when to cancel
resynchronization

The decision to force a commit or rollback operation is called a heuristic decision. This action enables an
operator to manually commit or roll back the resources for a transaction that is in a prepared state.

When you make a heuristic decision, the state of the transaction becomes heuristic mixed if your decision
is inconsistent with the results of the other locations in the transaction. You must take responsibility
for determining the action taken by all the other locations that participated in the transaction and
resynchronizing the database records.

Before you make a heuristic decision, gather as much information as you can about the transaction.
Display the jobs that are associated with the commitment definition and make a record of what journals
and files are involved. You can use this information later if you need to display journal entries and apply or
remove journaled changes manually.

The best place to find out information about a transaction is to look at the location that was the initiator
for that transaction. However, the decision to commit or roll back might be owned by an API resource or
by a last agent.

If an API resource was registered as a last agent resource, the final decision of whether to commit or roll
back is owned by the API resource. You need to look at information about the application and how it uses
the API resource to determine whether to commit or to roll back.

If the transaction has a last agent selected, the last agent owns the decision to commit or roll back. Look
at the status of the last agent for information about the transaction.

When you must make heuristic decisions or cancel resynchronization due to a system or communications
failure that cannot be repaired, you can find all transactions in doubt by using the following steps:

1. In IBM Navigator for i, expand the system you want to work with.
2. Expand Databases and the local database for the system.
3. Expand Transactions.
4. Expand Database Transactions or Global Transactions.

In this display windows, you can see the commitment definition, resynchronization status, the current
unit of work ID, and the current unit of work state for each transaction. Look for transactions with the
following information:

• Transactions with a Logical Unit of Work State of Prepared or Last Agent Pending.
• Transactions that show Resynchronization in Progress status of yes.

To work with the job that is participating in the transaction on this system right-click the transaction and
select job.

When you right-click the transaction, you can also select Force Commit, Force Rollback, or Cancel
Resynchronization.

Before making a heuristic decision or canceling resynchronization, you might want to check the status of
the jobs on other systems associated with the transaction. Checking the jobs on remote systems might
help you avoid decisions that cause database inconsistencies between systems.

1. Right-click the transaction you want to work with.
2. Select Resource Status.
3. In the Resource Status dialog, select the Conversation tab for SNA connections; select Connection for

TCP/IP connections.

Each conversation resource represents a remote system that is participating in the transaction. On the
remote systems, you can use IBM Navigator for i to see the transactions associated with the transaction.

Commitment control 107

The base portion of the unit of work ID is the same on all the systems. When you display commitment
control information on the remote system, look for the base portion of the unit of work ID that is the same
on the local system.

For example, if the unit of work ID on the local system starts with: APPN.RCHASL97.X'112233445566,
look for the unit of work ID on the remote system that also starts with
APPN.RCHASL97.X'112233445566.

Related concepts
XA transaction support for commitment control
Db2 for i can participate in X/Open global transactions.
Starting commitment control
To start commitment control, use the Start Commitment Control (STRCMTCTL) Command.
Related tasks
Detecting deadlocks
A deadlock condition can occur when a job holds a lock on an object, object A, and is waiting to obtain
a lock on another object, object B. At the same time, another job or transaction currently holds a lock on
object B and is waiting to obtain a lock on object A.
Recovering transactions after communications failure
These instructions help you handle transactions performing work on a remote system after
communication with that system fails.
Displaying commitment control information
IBM Navigator for i can display information about all transactions (logical units of work) on the system.
IBM Navigator for i can also display information about the job, if any, associated with a transaction.

Ending a long-running rollback
You might want to end long-running rollbacks that consume critical processor time, lock resources, or
take up storage space.

A rollback operation removes all changes made within a transaction since the previous commit operation
or rollback operation. During a rollback operation, the system also releases locks related to the
transaction. If the system contains thousands of transactions, the system can take hours to complete
a rollback operation. These long-running rollbacks can consume critical processor time, lock resources or
take up storage space.

Before you end a long-running rollback, you need to know which commitment definitions are being rolled
back and what state the commitment definitions are in. The State field for commitment definitions that
are rolling back is set to ROLLBACK IN PROGRESS.

Use the Work with Commitment Definitions (WRKCMTDFN) command to check the status of a rollback by
following these steps:

1. Type WRKCMTDFN JOB(*ALL) from the character-based interface.
2. Type F11 to display the State field.

If you end a long-running rollback, files that were changed during the transaction will be left with partial
transactions. You must not end a rollback if your files cannot have partial transactions. To see which files
were changed during the transaction, choose option 5 to display status from the WRKCMTDFN list. Press
F6 to display resource status and select Record Level.

You must have All Object (*ALLOBJ) special authority to end a long-running rollback. To end a long-
running rollback, follow these steps:

1. Type WRKCMTDFN JOB(*ALL) from the character-based interface.
2. Type option 20 (End rollback) on the commitment definition you want to end.

Files with partial transactions have the Partial Transactions Exist, Rollback Ended field set to *YES in
the output from the Display File Description (DSPFD) command. You must remove partial transactions
before the file can be used. You can remove partial transactions by deleting the file and restoring

108 IBM i: Commitment control

the file from a prior save. If you do not have a prior save, you can use the Change Journaled Object
(CHGJRNOBJ) command to reset the Partial Transaction Exists state so that you can open the file. Using
the CHGJRNOBJ requires you to edit the file to bring the file to a consistent state. You must use the
CHGJRNOBJ command only if no prior save is available.

Disabling the ability to end a long-running rollback
Users with *ALLOBJ special authority can end rollbacks by default. If you want to restrict users who
have *ALLOBJ special authority from ending rollbacks, you can do this by creating data area QGPL/
QTNNOENDRB.

Related reference
Create Data Area (CRTDTAARA) command

Finding large or old transactions
Use the Work with Commitment Definitions (WRKCMTDFN) command to find large or old
transactions.

To find large or old transactions follow these steps:

1. Type WRKCMTDFN JOB(*ALL) OUTPUT(*PRINT) from the character-based interface.
2. Use the WRKSPLF command to work with your spool files.
3. Use option 5=Display to display the spool file created by the WRKCMTDFN command in step 1.
4. To find large transactions, search for the 'Record Locks' and 'Pending Changes' fields shown in the

Display Journal Status section for each commitment definition. These fields show the total number of
record locks and changes pending currently for the transaction.

5. To find old transactions, search for the 'Date/time stamp' field in the Commitment Control Status
section for each commitment definition. This field shows when the transaction was started.

This information is also shown when using either System i® Navigator or IBM Navigator for i to display
transactions, but it is easier to find large or old transactions by searching the single spool file produced
by the WRKCMTDFN command, rather than having to display the properties and resource status for each
transaction.

Related tasks
Detecting deadlocks
A deadlock condition can occur when a job holds a lock on an object, object A, and is waiting to obtain
a lock on another object, object B. At the same time, another job or transaction currently holds a lock on
object B and is waiting to obtain a lock on object A.
Displaying commitment control information
IBM Navigator for i can display information about all transactions (logical units of work) on the system.
IBM Navigator for i can also display information about the job, if any, associated with a transaction.

Related information for Commitment control
Product manuals, IBM Redbooks publications, Web sites, and other information center topic collections
contain information that relates to the Commitment control topic collection. You can view or print any of
the PDF files.

Manuals
The following manuals are not included in the V6R1 i5/OS Information Center. However, these manuals
might be a useful reference to you. Each of the manuals is available from the IBM Publications Center
(www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?) as a printed hardcopy that you can order,
in an online format that you can download at no charge, or both.

• COBOL/400 User's Guide

Commitment control 109

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?

• RPG/400® User's Guide

IBM Redbooks

• Advanced Functions and Administration on Db2 for i (5529 KB)

• Stored Procedures, Triggers, and User Defined Functions on Db2 for i (5836 KB)

• Striving for Optimal Journal Performance on Db2 for i (3174 KB)

Web sites

• The Open Group (www.opengroup.org)

Other information
• Database programming
• SQL programming
• XA APIs
• Journal management

Related reference
PDF file for Commitment control
You can view and print a PDF file of this information.

Code license and disclaimer information
IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS PROGRAM
DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR
TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF
THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT
APPLY TO YOU.

110 IBM i: Commitment control

http://www.redbooks.ibm.com/abstracts/sg244249.html
http://www.redbooks.ibm.com/abstracts/sg246503.html
http://www.redbooks.ibm.com/abstracts/sg246286.html
http://www.opengroup.org

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 1998, 2013 111

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This Commitment control publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of IBM i.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

112 Notices

http://www.ibm.com/legal/copytrade.shtml

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 113

114 IBM i: Commitment control

IBM®

Product Number: 5770-SS1

	Contents
	Commitment control
	PDF file for Commitment control
	Commitment control concepts
	How commitment control works
	How commit and rollback operations work
	Commit operation
	Rollback operation

	Commitment definition
	Scope for a commitment definition
	Commitment definition names
	Example: Jobs and commitment definitions

	How commitment control works with objects
	Types of committable resources
	Local and remote committable resources
	Access intent of a committable resource
	The commit protocol of a committable resource
	Journaled files and commitment control
	Sequence of journal entries under commitment control
	Commit cycle identifier
	Record locking

	Commitment control and independent disk pools
	Independent disk pool considerations for commitment definitions
	Considerations for XA transactions

	Considerations and restrictions for commitment control
	Commitment control for batch applications
	Two-phase commitment control
	Roles in commit processing
	States of the transaction for two-phase commitment control
	Commitment definitions for two-phase commitment control
	Commitment definition for two-phase commit: Allow vote read-only
	Commitment definition for two-phase commit: Not wait for outcome
	Commitment definition for two-phase commit: Indicate OK to leave out
	Commitment definition for two-phase commit: Not select a last agent
	Vote reliable effect on flow of commit processing

	XA transaction support for commitment control
	SQL server mode and thread-scoped transactions for commitment control

	Starting commitment control
	Commit notify object
	Commit lock level

	Ending commitment control
	System-initiated end of commitment control
	Commitment control during activation group end
	Implicit commit and rollback operations
	Commitment control during normal routing step end
	Commitment control during abnormal system or job end
	Updates to the notify object
	Commitment control recovery during initial program load after abnormal end

	Managing transactions and commitment control
	Displaying commitment control information
	Displaying locked objects for a transaction
	Displaying jobs associated with a transaction
	Displaying resource status of a transaction
	Displaying transaction properties

	Optimizing performance for commitment control
	Minimizing locks
	Managing transaction size
	Soft commit

	Scenarios and examples: Commitment control
	Scenario: Commitment control
	Practice problem for commitment control
	Logic flow for practice problem
	Steps associated with the logic flow for the practice program

	Example: Using a transaction logging file to start an application
	Example: Using a notify object to start an application
	Example: Unique notify object for each program
	Example: Single notify object for all programs

	Example: Using a standard processing program to start an application
	Example: Code for a standard processing program
	Processing flow

	Example: Code for a standard commit processing program
	Example: Using a standard processing program to decide whether to restart the application

	Troubleshooting transactions and commitment control
	Commitment control errors
	Error conditions
	Nonerror conditions
	Error messages to monitor during commitment control
	Monitoring for errors after a CALL command
	Failure of normal commit or rollback processing

	Detecting deadlocks
	Recovering transactions after communications failure
	When to force commit and rollback operations and when to cancel resynchronization
	Ending a long-running rollback
	Finding large or old transactions

	Related information

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

