IBMi
7.4

Systems management
Journal management

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
381.

This edition applies to IBM i 7.3 (product number 5770-SS1) and to all subsequent releases and modifications until
otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor
does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.

© Copyright International Business Machines Corporation 2004, 2019.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Journal ManNAgEMENt.......cccvieiieiiiieiiiiiieiiiieiieteitessecestesatessesassessssassesssssssessssessssesse b

WNAE'S NEW FOF 7.4 ittt ettt ettt e st e et e e s te s be e satessbeesseesabeesseesaseesaesasesnbassasesnseesssesnseanes 1
PDF file for Journal ManagemENt.......c.uii ittt tee e et e e e te e e e sbae e ebae e sbaeesbaeesseeesaseeesnes 2
System-managed access-Path ProteCtioN.......cc. i e 2
BENETIES OF SMAPP.....c ottt ettt et e sttt e st e e be e sate e beesabessbeesasessseensaesnseenseessseensaenns 3
HOW SIMAPP WOTKS.....vtiitiiriiiiiieniesiteesite st esteestesstessseessessseesbesssaesssesssaesssessseesssessseensaessseensessssesnseenseens 3
How the system chooses access paths t0 ProteCt.....ciucieiiciiriciie e 4
Effects of SMAPP on performance and StOrage........cuveccueeeiieeeiieeciieeccie et ecte e ve e e sre e e saee e e ae e e 4
How SMAPP handles changes in disk pool configuration........ccceeeceeiecieicciecccee e e, 6
SMAPP and access path JOUrNAliNG........eecciie ettt e e e re e e e bae e sbae e s baeesbaeeeaes 6
SMAPP and independent disSk POOLS.......c.cuiiiciiiiciie ettt eete e st e e e vt e e s rae e saaeeeans 7
Starting SMAPP or changing SMAPP VAlUES.........ciiciiieiieeeiieeccieeectee et e esveeesve e e sateeesbaeesaaae e asaeennseas 7
DiSPLaying SMAPP STAtUS....c.uiieiieecciieciiee et et e ettt eeete e s steesste e s steesesteeessaesasseesssseeensseesnssaeansseeansseeans 8
(oot 1 o Nl gat: 1N aa b T F=T==Ta a =Y o} SR 9
Journal MaNagEMENt CONCEPLS...cccuiiiiiieeciieecreeectee e eree e st e e ree e s e e e e beeesbeesebeeeesbeeesseeesnseeesnseessnsees 10
Benefits of Journal ManagemMeENT........cueiiciiiiciiecciee ettt e e s e e e re e e re e s abee e abaeeenseeeas 10
How journal ManagemeENnt WOIKS.......uicciieeiieeciieeectee et ecreeesve e e sve e e steeesaveeesabeeesabaeesnbaeeenseesenseas 10
JOUINAL ENEIES..eiiitirteeieerte ettt ettt e st et e st e s bt esate s beesbeesabeesbaesabeenbeesaseenbeesasesnsaesssesnsennes 13
Journal management and system PerformMancCe.......ccueccieeecieeeciee et vee e 14
Journal management with the save-while-active fUNCtioN........ceeciieicciie e 15
Planning for journal ManagemMENt........cocciieiciie ettt e et e e e etre e sebre e sebaeesebaeesbaeessaaesseeanans 16
IBM Navigator for i versus the character-based interface for journaling objects........cccceeeunennnee 17
Planning which objects t0 JOUINAL.....ccc.uiiciii e ra e e 17
Reasons to joUrNal aCCESS PALNS.....cccuiiicciiiciee ettt e et e e ra e e s bae e 20
Reasons to journal before-imMages. ...ttt et aae e 20
Planning for journal use of auXiliary StOrage......c.uuecviviieiieeeiee et e e 21
Frequently asked questions about journaling and disk arm usage........ccccceeeeveeecveeecveescnnnen. 22
Functions that increase the journal reCEeIVEr SiZ.....ccuiiiiiiieciiiicieeccee e 24
Methods to estimate the size of a journal reCEIVEN.......uiicviieeiiieeeeeeeeee e 24
Journal sizing and Planning tOOL....c.uiiiecieecee et e ae e et 25
Estimating the size of the journal receiver manually........cccccecvveeiiieeciiieciee e 26
Methods to reduce the storage that journal reCeiVErs USE......uuievieeeiieeeiieeeiieeccieeecree e 27
Determining the type of disk pool in which to place journal receivers......cccccvceereerieerneennnnn 28
Journal management and independent disk POOLS........c.eeeeiieeecieicciee e 29
Planning Setup for JOUINALl FECEIVEIS......uuii ettt ree e ee s vee e e bee e s aae s e aae e neeas 30
Disk pool assignment for JOUrNal FECEIVEIS....cccuuiiciieeeiieecctee et e eaae e e 30
Library assignment for JOUrNal FECEIVEIS.cciiiiciiecciie ettt et et ete e e te e e e taeenes 30
Naming conventions for JOUMNAl FECEIVEIS......cccuiiicciieeciieceire et vee e e rae e e 31
Threshold (disk space) for JOUrNal FECEIVEIS.......uiic ittt e 32
SECUNItY TOr JOUINAL FECEIVEIS..ci i iii ettt et e e e s ate e e rae e s ate e e atee e naeesnnes 33
Planning SETUP fOr JOUMNALS......uui ittt et et te e e e te e e e e e e et e e e entaeesataeeeasaeenns 34
Disk pool assignment for JOUINALS........uicciei it e ere e e vee e s ree e e bae e e 34
Library assignment fOr JOUINALS......ccuuiieieieciececececte ettt rre e e te e e ste e e aae e e nreeeaes 34
Naming conventions fOr JOUMALS........cuiicciie ittt esre e e b e e e eaaeeseaaeeens 34
Journal and journal receiver asSOCIAtioN......cueiccieeecieecee et e ebae e 35
JOUMNAL MESSAZE QUEBUE.....eeecceieeeeiieeeeiteeeetteeeeteeeetteeeetteesssteeeesteeseseeesastaesastesassteesasssssnssessassesanns 35
Manual versus system journal-receiver Management.......cccceeeeieeeecieeeeieeecieeeereeeeeeeeeaee e 36
Automatic deletion of JOUrNAl FECEIVEIS.....ccuuii et 38
Receiver size options for JOUMNALS.......cccuiieciie et e 39

N[0T =1 o] o] =Tod A 113 T S USRS 42
Minimized entry-specific data for journal @Ntries......cceecvveecvieeccie e 43

Customization of the journal reCOVErY COUNT.........iiiiieiiiiee e 45

Fixed-length options for JOUrNal ENTHES......civ it 45
JOUMNAL CACNE. .ttt ettt e st e s st e s s be e s sabe e s sabeessabeessaseesssseesnnenas 46
Object assigNMENT 10 JOUMALS.....iiiiiiiiiiieeiee ettt e s e s s e e s sbee s sbeessbeeessbeeesanees 47
SEHHING UP JOUMNALING. cc ttieiieeeieeete ettt st e st e s s be e s s be e s s be e s abeessabeeesabeesssbeessnseessnseessnses 48
Example: Setting UP JOUMMALING.....coiciiiiiieeitee ettt ste st siee e siee s saee s sbe e s sbee s sbaessbeessaneas 49
Starting and ending journaling and changing journaling attributes.......ccceevevriieiiniiennieeireeeee e, 51
Why you must save objects after you start Journaling........cccceeveveeiiiieiiiieeniieensiee e seeee e 51
SEArTING JOUMMALING. .eiiutieiiieeieiee ettt sttt et e s ste e s te e s sateessreeesssteessseeesasteessseaesnsseesanseesasseesanes 52
Lo TN =1 LT Y = Ul o = Y= PSR 53
Journaling database physical files (1ables).....ccvveieeciiecirceececeee e 53
Journal DB2 MUltiSYStEM fIlES......uuiiie ettt e e e e e e e e nraee s 54
LOZICAL fIle JOUINALING....iiiiciieiiieeeiee ettt ettt e ssre e e s e e e sbee s sbae e sabaeesnaeesasaeesnne 54
Journaling integrated file SyStem ObJECTS......uiiiviiiiciiicce e 54

N Lo] U] g b L (oot YTyl o - L o [P 56
Journaling data areas and data QUEUES.......ccuieiriieiiieeieiee et sere e see e s see e s seeessneeesnee 56
Automatically Starting JOUrNALNG......ccuiiiciiieciee et sree s sree s sree s sraeesaee 57
Changing journaling attributes of journaled objects without ending journaling.........c.cccceeveennnee. 58
(] oL [T =3 ToT Ul g F= YT o = SO U 59
MaANAZING JOUMNALS...eutiiiiiieieiieeertte ettt ettt e st e e st e e st e e sbee e sabeeesbee s s baeesssaeessbaeesasaeesssaessseesssseesssseeenne 60
Swapping, deleting, saving and restoring journals and reCeIVErS.......cccvvereieereiieererieeniieeseieenans 61
SWaAPPINE JOUINAL FECEIVETS...eitieieiieieiteteiteeeite e sttt e ettt e sttt essseeesssteessseeesssaeessseessseeessssesssseeenn 61
JOUNAL FECEIVEN CRAINS. .. eiiiiiieiecie ettt ettt e st e s sbe e s sbe e e sbe e s sabeessabaessasaesaeas 62
Resetting the sequence number of Journal ENtries......cciiviiiiriieinieee e 64
Deleting JOUMNAL FrECEIVEIS....uuiiicieeeiee ettt see e saee e sbee e sbee e ssbeeesbeeesseeesaseessnsens 65
DElEtiNg JOUMNALS. ... tiiieiieietie ettt ettt e st e s st e e s st e e s baesssbeesssbeesssbaesnnsaesnsseens 67
Saving and restoring journals and JOUrNal FECEIVETS......ocuiiirviieieiieenteeeieeseieeseeeeeseeessaeeens 68
Evaluation of how system changes affect journal management......c.ccccvvveeviieeniiieeniiieennieesneenn 72
Keeping records of journaled 0DJECTS.......cuviiiiiiiiiieiecte e 72
Security management fOr JOUMMALS.....cciii ittt sae e e s ba e e sbaeesseeeas 73
Displaying information for journaled objects, journals, and reCeIVErS.......ccccvvevieerrveeeriieesieeenne 74
Working with inoperable JOUrNal FECEIVETS.....c.uiiiiiiiiiie ettt sbe e s saeeeas 75
COMPANING JOUMMAL IMAEGES..ciictiiiiieeiiiee ittt sttt st e setteeserteeserteeseseeesaseeesaseeeseseeesaseessaseesssseessaseessans 76
Working with IBM-supplied JOUMNaLlS.......ciuiiiiiiiieiiieeicceeessee sttt be e s 76
Sending YOUr OWN JOUINAL ENTIIES....iiiiiiiiiieieiieeeiteeerteeeee e stee e st e e sree s saeessreessbaeessaessnsaesssaeens 78
Changing the state of loCal JOUMNALS....c..iii ittt s e s 79
Work with messages on the journal MeSSage QUEUE.......c.uiivriiiiiiieiiieenrtee st e s esseeeeas 80
Scenario: JOUrNal MaN@EEMENT......iiiiiiieetteerte ettt e s st e s ste e s s abe e s sseeessabeesssseessssaesnssaesnssens 81
TKLPROD ...ttt ettt ettt ettt s he et s at et st e s bt et e s bt et e e at et e sat e b e eat e e bt et e sheebeeae e besaeenbenas 82
JLINT ettt ettt ettt ettt ettt b et e e a e et e st e bt e a b e e he e b e e at e bt e a e e bt e b e eh e e bt e at e b e et e ebe et e ehe e beeneenbeeaee 83
TKLDEV ...ttt ettt et e ettt st e bt et e e a e et e eat e bt e a e e bt et e ehe e bt eat e bt et e ehe et e she e be et e nbeeaes 83
Recovery operations for journal ManagemeEnt........ceuciiiiiieeriiieeieeeie e sre s see e saae e ssaeee s 84
Determining recovery needs Using JOUrNal STatUS......cccvvcviiiriieiniieeniieeeee et esiee e eiee s seee e seee e 84
Recovery for journal management after abnormal system end.......c.cccoecveiveiiiniiiiniiiennciieencieenns 85
Recovering from a damaged JOUrNal FECEIVET......cuuiiriiiieieeeiteeeite ettt e e rae e aae s 86
Recovering @ damaged JOUMNAL.......ouciiiiiiiiiiieirieeecteesee e ssee e ste s siee s s tee st e s sbe e s sbeessabaessasaesnanas 87
Associating receivers With JOUINALS......cuuiviiiiiiiieniecceeee e 88
Recovering a damaged journal with the WRKIRN command.........ccceevueeriieeniiieeniieennieennnens 89
Recovery of JoUrNaled 0bDJECTS....cii e e e e e e s et e e e s e aaaeeeean 90
APPLYING JOUrNAled ChaNGES. ...ccicciiiiieeciee ettt ee e ee s s ee e s be e e s e e e ssbeasssneas 92
ReMOVING JOUINAled ChaNgES.ttt ettt et e s ae e s re e s sbe e s eeesaeas 97
Use Of the QATRNCHG fil..uuurueriiiiiiiiiieeecitteieeee ettt e e e e e e e sasaraee e e e e e e e e e e ee s ssaseanees 100
Journaled changes With trigger ProgramsS.o e iriieirieeiniieeseieessreessreesseeesseeessseeessseeesnns 104
Journaled changes with referential CONSTraINTS......ccviirviiiriieirieeee e 104
Actions of applying or removing journaled changes by journal code........ccccoeveirrieirniennnnen. 105
When the system ends applying or removing journaled changes........ccccveveercveercieercneennns 114
Example: Applying journaled Changes........oociiieiiiiniiiiiiiicntecete e aee s 116

Example: Removing journaled Changes.......cuiiiiiiriieiiiieiieeceiee sttt see e s see e 118

Example: Recovering objects with partial transactions........cccccveveiiiveeinieciniee e 119

Journal eNtry INFOIMATION. ..cii e e e e tre e e s e te e e e e enbeeeesenseeeeeesnseanaanns 121
N [o] 0 g g P N oloTe [o [T od T o) o] -SSR 122
All journal entries by COde and tYPe....uuu i ciiiee ittt e e e eanree s 123
Fixed-length portion of the Journal @Ntry......cieiiii e 158
Layouts for the fixed-length portion of journal ENtriesS.......cccevvcieiiiieiriiiercieerieee e 160
Variable-length portion of the JourNal ENtry.......ccoeeiiiiiiiee e 189
Layouts for variable-length portion of journal @Ntries.......ceviiiiiiiiniiiireee e 190
Working with journal entry infOrmation.......ccociiiiiiiriieiiecce e 301

Displaying and printing JoUrNal €NTHES......iiviiiiiiiiiiriierieeerre sttt e st e ssaeeessaeeeeas 301
Displaying journal information for a table using IBM Navigator for i.......ccccceevvveiriieenceennnns 304
Displaying journal entry information using the Display_Journal table function 304
Receiving journal entries in an exit Program.......ccceecieeriieerieeesiereesireessireessreeessseeessseeessseeens 305
Retrieving journal entries iN @ Programi.. .. i eeeeiieenrreeerieessieessreessreessbeessreessreesssseessans 310
Working with pointers in JOUrNal @NTHES......iiiiiirieiriecece et s 311
Replaying a database operation from a single journal entry.....cccccceviceiniieiniieeenieeenieeeen 312
Replaying a non-database operation from a single journal entry.....ccccccevveeinieeinieennieennnne 313
Considerations for entries which contain minimized entry-specific data.........ccccceeeveuneen.. 314
RemMOte JOUMNAl MANAZEMENT.....ciiiiiiiiieeeiee ettt et e s st e s st e s s be e e sbaessbeesssseeesssaeesssaesssseesnnes 315

(o] LN ToTU N g a T | ool a o =T o) =TSRSS 315
Network configurations for remote JOUMNALlS.......ccccuiiviiiiiiiienieeeeeee e 316
TYPES Of FEMOTE JOUINALS ... eiieieeeciieee ettt e e e e e cree e e s et re e e e e esbeeeeeenbeeeesenseeeesennseenesnns 318
Filtered remote JOUINALS........viiii ettt et e e e erre e e e stee e e s eerb e e e e esanbeeeeeennbeneesennseneeaanns 320
Journal state and deliVEry MOGE.......uuiie it e e e e e rtr e e e e e abee e e s e nraeee s 321
Journal receivers associated with a remote JoUrNal........cccccieiiecciiee e 325
Process of adding remMote JOUMNALoccuiiiiiiiiiiieieie ettt ettt sre e s sae e s see e ssaeeas 326

Library redirection with remote JOUINALS.......ceeiccuiiee e e e eaeee e 327
Remote JoUrnal attribULES. ..o e e e e e 329
Supported communications protocols for remote JOUrNalS......ccceecvieeeeeccieee e, 330
Release-to-release considerations for remote JoUrNals.......ccueeeeecciieeececiieee e e, 331

Planning for r&MOTE JOUMNALS....cccuiiiiiieeiiieeecree ettt ettt e s eate e s ate e s sate e sssteessstaesssseesnnseesn 331
Candidates for remote journal ManagemMeENT......cocciiiriieirieeiriee et see e see e s saee e saeas 331
Synchronous and asynchronous delivery mode for remote journals......ccceecvveeeiecceeeeeccciieeeennne 332
Communications protocol and delivery mode for remote journals......ccceeceeeeeeecieeeeiecceeeeeeeens 333
Where the replication of journal entries Start........ccieeieeciiee e e 333
Factors that affect remote journal performancCe.........cooccuieeiicciiee e 335
Remote journals and auXiliary STOrAZE....ccuiiiriiiriiieieiieerieeerrtesstessree st e s be e s s beessbaessabaessaseees 337
Journal receiver disk poOl CONSIAEIAtIONS.......uuiieiieciiiie e et et e e e e e e e e e e e erbeee e e eerraeeeens 338
Remote journals and Main STOMAEE.....ccuuuiiiriiiiriieiriteeete et essrte s ree e sre e e s e e e s baeesbaeesbeeessaeeas 338

Setting UP reMOLE JOUMNALS...ii ittt ee e s ee e st e e sbee e sbee e sbeeesbeeesbeessaneeesnsens 339
Preparing to USE reMOtE JOUIMALS.....civcieiriieereeeeieeeeieeeeee sttt e s ste e s sae e s see e ssate e sseeessaeesnaeeas 339
AddiNg reMOLE JOUMALS....uiiieiiiiiiieieiee ettt ettt et e s st e s sbe e s s bt e ssbaessabeessaseeessbaesssseessnseesns 340

REMOVING rEMOTE JOUINALS...ceiiciieiiciiee ittt st ete s ete e srte e ite e st e e sbee s s be e e sabeessbeessbaessaseessasaessanes 341

Activating and inactivating remote JOUMNALS.......coccviiiiiiiiiiieieeeee e s 342
Activating the replication of journal entries to a remote journal......cccccceeecieercieinieeencieeesceeeenee, 342

Catch-up phase for remote JOUMNALS......ceiiiciiiie e srree e e e ree e e e e ennaeee s 343
Relational database considerations for remote journal state.......cccoeccveeeeecciieeeccciee e 345
Automatically restarting remote JOUMNAL...c..eieciericieiiiieeeece e 345
Inactivating the replication of journal entries to a remote journal.......ccccoeceeircieiecieincieensieenne 346

ManNagiNg rEMOTE JOUMMALS...ciiiiiiiciieieie ettt ete et srtte st e e st e s s rte e s s bt e e sbeessabeeesabaeessseessasaessnsaesnnsans 346
Keeping records of your remote journal NETWOIK.......ccuiiviiiiriiiiiiieirieecrec e 347
Displaying remote journal function information.........cocuieirieeiiiieiiieeiec e 347
Evaluating how system changes affect your remote journal network......ccccceeevieericieeniieeninenn. 348
Getting information about remote journal ENtries.......coviiievieiriieie e 348

File identifier considerations for working with integrated file system entries.......c.cccceeuuuen. 348
Confirmed and unconfirmed JoUrNal ENTHES......ccccciiie i 350
Journal entries from a remote journal with library redirection........ccccceeecieeeiccciiee e, 351

Retrieving journal entries from a remote journal during the catch-up phase......cccccceeeuuennee 351

vi

Remote journal considerations for retrieving journal entries when using commitment

(oo) 1 o] BRSO 352

Remote journal considerations for retrieving journal entries when using journal caching...353
Journal receiver management with remote JOUrNalS.......coccieiriiiiiiieinieeieee e 353
Swapping journal receiver operations with remote Journals.......cccceeveeriiieieiieeniieeeneeeee e 354
Considerations for save and restore operations with remote journals.........ccccoeccieeeeecciieeeeecnns 355
Rules for saving and restoring JOUMNALlS........civivericierriiee et eete e see e eee st e e sree e sbee e 355

Rules for saving and restoring JOUrNal FECEIVETS.....ccuiiiriiiirieeirieeeriee st e seieeeseeesseeesseeeeans 356
Considerations for restoring journaled 0bJECTS......cuviiiriiiiiiiiireeee e 358
Considerations for restoring objects saved With SAVSTG.......cccccerviiiriveenniieennieeeneee e 359
Remote journal considerations when restarting the SErver.......cccvcvvivcieiecieiciieeeee e 359
Working with remote JoUrnal Error MESSAZES. ...cuvvitiriiirriierrieeriteeseeesseeessieeesseeessreeessseessssees 361
Scenarios: Remote journal management and FECOVETY.....cuvivcieiicieeriiee e eite e scieeesrreeessreeesseeeeeaee 362
Scenario: Data replication environment for remote journals.......cccceeccveeeeeeccieeeecccieee e 362
Scenario: Hot-backup eNVIFONMENT.......uiii ettt ee e e e e e e e ebeee e e s raeeeeeeannns 365
Scenario: Recovery for remote JOUrNALNG......cc.iiiiiieiiiieirieeee et ee s sbee s s bee s 367
Details: Recovery for remote journaling SCENAIIO.......civcuieiriiieeiieeriieecieeeeee e ire e saeeesseee e 368
Related information for journal ManagemeENnt......c.ci e iieiicie e s s 378

[\ 0] (L =1 - TR 1 - ¥ |

Programming interface iNfOrmMation. ... s e e e e s e 382
= o (=10 =T OO OO URRPPRROPRPRN 382
BT g 0TS TaTo eleTaTe L1 AT] o T3PSO 383

Journal management

Journal management provides a means by which you can record the activity of objects on your system.
When you use journal management, you create an object called a journal. The journal records the
activities of the objects you specify in the form of journal entries. The journal writes the journal entries in
another object called a journal receiver.

Journal management provides you with the following:

« Decreased recovery time after an abnormal end

« Powerful recovery functions

« Powerful audit functions

« The ability to replicate journal entries on a remote system

This topic provides information about how to set up, manage, and troubleshoot system-managed access-
path protection (SMAPP), local journals, and remote journals on the IBM® i platform.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer information.

What's new for 7.4

Describes the improvements and additions to journal management.

New journal entry types for journal entry codes Sand T
For journal code S - Distributed mail services, there are new entry types:
« NG -- Non-delivery mail generated

« NL -- New mail logging table information

e SH -- SMTP configuration changed

- SJ -- Mail delivery request generated

« SZ -- Mail delivery task completed

e TM -- Transferring mail status changed

For journal code T - Audit trail entry, there are new entry types:

« MO -- Db2 Mirror Setup Tools

M6 -- Db2 Mirror Communication Services

M7 -- Db2 Mirror Replication Services
M8 -- Db2 Mirror Product Services
« M9 -- Db2 Mirror Replication State

For a list of all journal entries by code and type see: “All journal entries by code and type” on page 123

QDFTJRN *DTAARA is no longer supported.

The QDFTJIRN *DTAARA which in the past, was used to start and manage automatic journaling, is no
longer supported. It has been fully replaced by the Start Journal Library (STRIRNLIB) command. The
QDFTIRN data area, if it exists, will be ignored.

See Start Journal Library (STRIRNLIB) for details on enabling library journaling.

How to see what's new or changed

To help you see where technical changes have been made, this information uses:

© Copyright IBM Corp. 2004, 2019 1

« The ¥ image to mark where new or changed information begins.
« The €image to mark where new or changed information ends.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for Journal management

Use this to view and print a PDF of this information.

To view or download the PDF version of this document, select Journal management.

You can view or download these related topics:

 Database programming contains the following topics:

— Setting up a database on your system.
— Using a database on your system.
- Integrated file system contains the following topics:

— What is the integrated file system?
— Integrated file system concepts and terminology.
— The interfaces you can use to interact with the integrated file system.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you would like to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)-'-{s'.

System-managed access-path protection

System-managed access-path protection (SMAPP) allows you to use some of the advantages of journaling
without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart your system
after an abnormal end.

SMAPP is a way to reduce the time for the system or independent disk pool to restart after an abnormal
end. An access path describes the order in which records in a database file are processed. A file can have
multiple access paths, if different programs need to see the records in different sequences.

When the system or an independent disk pool ends abnormally, the system must rebuild the access paths
the next time you restart the system, or vary on an independent disk pool. When the system must rebuild
access paths, the next restart or vary on operation takes longer to complete than if the system ended
normally.

When you use SMAPP, the system protects the access paths so the system does not need to rebuild

the access paths after an abnormal end. This topic introduces SMAPP, describes SMAPP concepts, and
provides setup and management tasks.

2 IBMi: Journal management

http://www.adobe.com/products/acrobat/readstep.html

Benefits of SMAPP

System-managed access-path protection (SMAPP) can greatly reduce the amount of time it takes to
restart your system or vary on an independent disk pool, after an abnormal end.

The time is reduced by protecting access paths. A protected access path can be recovered much
quicker than a unprotected access path. It is an automatic function that runs without attention. SMAPP
determines which access paths to protect without any intervention by the user. It adjusts to changes in
the environment, such as the addition of new applications or new hardware.

SMAPP does not require any setup. You do not have to change your applications. You do not have to
journal any physical files or even use journaling at all. You simply need to determine your policy for access
path recovery:

« After a failure, how long you can afford to spend rebuilding access paths when you restart the system, or
vary on an independent disk pool.

« How to balance access path protection with other demands on system resources.

- Whether to have different target times for recovering access paths for different disk pools.

You may need to experiment with different target recovery times for access paths to achieve the correct

balance for your system. If you configure additional basic or independent disk pools, you must also
evaluate your access path recovery times.

The system protects access paths by journaling the access paths to internal system journals. Therefore,
SMAPP requires some additional auxiliary storage for journal receivers. However, SMAPP is desighed to
keep the additional disk usage to a minimum. SMAPP manages journal receivers and removes them from
the system as soon as they are no longer needed.

Related concepts
Independent disk pools

How SMAPP works

The purpose of system-managed access-path protection (SMAPP) is to reduce the amount of time it takes
to restart the system or vary on an independent disk pool, after an abnormal end.

It can take much longer than normal to restart the system when the system ends abnormally because of
something like a power interruption. Also, if you are using an independent disk pool, the next vary on of
the independent disk pool can take much longer than normal.

Access paths

An access path describes the order in which records in a database file are processed. A file can have
multiple access paths, if different programs need to see the records in different sequences.

How SMAPP works with abnormal ends

When the system restarts after an abnormal end, the system rebuilds access paths that were open for
updating at the time of the abnormal end. Rebuilding access paths contributes to this long restart time.
Likewise, when you vary on an independent disk pool, the system rebuilds access paths that were open
for updating at the time the independent disk pool ended abnormally. The system does not rebuild access
paths that are specified as MAINT(*REBLD) when you create them. When protecting access paths with
SMAPP, the system uses information that it has collected to bring access paths up to date, rather than
rebuilding them.

You can specify the target time for rebuilding access paths after the system ends abnormally. The target
time is a goal that the system does its best to achieve. The actual recovery time for access paths after a
specific failure may be somewhat more or less than this target.

The target recovery time for access paths can be specified for the entire system or for individual disk
pools. The system dynamically selects which access paths to protect to meet this target. It periodically
estimates how long it will take to recover access paths that are open for change.

Journal management 3

For new systems, the system-wide recovery time for access paths is 50 minutes, which is the default. If
you move from a release that does not provide the SMAPP function to a release that supports SMAPP, the
system-wide recovery time for access paths is also set to 50 minutes.

How the system chooses access paths to protect

The system periodically examines access path exposure and estimates how long it would take to rebuild
all the exposed access paths. If the rebuild time exceeds your target recovery times for access paths, the
system selects additional access paths for protection.

An access path is exposed when the access path has changed because records have been added or
deleted or because a key field has changed, and those changes have not yet been written to the disk.

The system periodically examines access path exposure and estimates the time required to rebuild all the
exposed access paths. If the rebuild time exceeds your target recovery times for access paths, the system
selects additional access paths for protection. The system can also remove access paths from protection
if the estimated time for rebuilding access paths consistently falls below your target recovery times for
access paths. The recover attribute of a file is not used in determining whether to protect access paths.

Some access paths are not eligible for protection by SMAPP:

« Afile that specifies MAINT(*REBLD).

« An access path that is already explicitly journaled.

« An access path in the QTEMP library.

« An access path whose underlying physical files are journaled to different journals.
« Afile journaled to a journal in standby state.

« Some access paths that use an international component for unicode (ICU) sort sequence table and
aggregate encoded vector indexes.

You can use the Display Recovery for Access Paths (DSPRCYAP) command to see a list of
access paths that are not eligible for SMAPP.

Effects of SMAPP on performance and storage

System-managed access-path protection (SMAPP) is designed to have minimal effect to your system.
Though it is minimal, SMAPP does affect your system's processor performance and auxiliary storage.

Processor performance

SMAPP has some effect on processor performance. The lower the target recovery time you specify for
access paths, the greater this effect may be. Typically, the effect on processor performance is not very
noticeable, unless the processor is nearing capacity. Another situation that may cause an increase in
processor consumption is when local journals are placed in standby state and large access paths built
over files journaled to the local journal are modified. The presence of standby state flags the access paths
as not eligible for SMAPP protection. This may force SMAPP to protect many other small access paths
in an attempt to achieve the specified target recovery time, and this can lead to performance concerns.
Using the F16=Display details function from the Display Recovery for Access Paths (DSPRCYAP) shows
the internal threshold used by SMAPP. All access paths with estimated rebuild times greater than the
internal threshold are protected by SMAPP. The internal threshold value might change if the number of
exposed access paths changes, the estimated rebuild times for exposed access paths changes, or if the
target recovery time changes.

To alleviate the processor performance impact, INCACCPTH(*ELIGIBLE) can be specified on the Change
Recovery for Access Paths (CHGRCYAP) command. This will give SMAPP permission to ignore any access
paths built over files journaled to journals in this state which in turn will prevent SMAPP from having to
protect many other small access paths. However, this INCACCPTH option will ignore these access paths
when estimating the IPL or independent Auxiliary Storage Pool (ASP) vary on exposure which means that
the actual IPL or independent ASP vary on duration may be longer than the estimated value.

4 IBMi: Journal management

Auxiliary storage

SMAPP causes increased disk activity, which increases the load on disk input/output processors. Because
the disk write operations for SMAPP do not happen at the same time, they do not directly affect

the response time for a specific transaction. However, the increased disk activity might affect overall
response time.

Also when you use SMAPP, the system creates an internal journal and journal receiver for each disk pool
on your system. The journal receivers that SMAPP uses take additional auxiliary storage. If the target
recovery time for access paths for a disk pool is set to *NONE, the journal receiver has no entries. The
internal journal receivers are spread across all the arms in a disk pool, up to a maximum of 100 arms.

The system manages the journal receivers automatically to minimize the affect as much as possible.

It regularly discards internal journal receivers that are no longer needed for recovery and recovers the
disk space. The internal journal receivers that are used by SMAPP require less auxiliary storage than the
journal receivers for explicit journaling of access paths. Internal journal receivers are more condensed
because they are used only for SMAPP entries.

If you have already set up journaling for a physical file, the system uses the same journal to protect any
access paths that are associated with that physical file. If the system chooses to protect additional access
paths, your journal receivers will grow larger more quickly. You will need to change journal receivers more
often.

Tips to reduce SMAPP's effect on auxiliary storage

« When you set up SMAPP, specify target recovery times for access paths either for the entire system or
for individual disk pools, but not for both. If you specify both, the system does extra work by balancing
the overall target with the individual targets.

« If you also journal physical files, to deal with the increased size of your journal receivers, consider
specifying to remove internal entries when you set up journaling or swap journal receivers. If you
specify this, the system periodically removes internal entries from user journal receivers when it
no longer needs them to recover access paths. This prevents your journal receivers from growing
excessively large because of SMAPP.

« If your system cannot support dedicating any resources to SMAPP, you can specify *OFF for the system
target recovery time. Before choosing this option, consider setting the recovery time to *NONE for a
normal business cycle, perhaps a week. During that time, periodically display the estimated recovery
time for access paths. Evaluate whether those times are acceptable or whether you need to dedicate
some system resources to protecting access paths.

If you turn SMAPP off, any disk storage that has already been used will be recovered shortly thereafter.
If you set the SMAPP values to *NONE, any disk storage that has already been used will be recovered
after the next time you restart your system.

Note: If you want to change the target system recovery time to a different value after you have set it to
*OFF, the system must be in a restricted state.

Related concepts

Receiver size options for journals

A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

Performance

Journal management 5

How SMAPP handles changes in disk pool configuration

When you restart the system, the system checks to see if your disk pool configuration has changed. The
system may change either the size of the SMAPP receiver or the placement of the receiver based on the
change to the disk units.

When you restart your system, the system checks to see if your disk pool configuration has changed. The
system does the following:

« If any disk units have been added or removed from an existing disk pool, the system may change either
the size of the SMAPP receiver or the placement of the receiver.

« If any new disk pools are in the configuration and do not have any access path recovery times assigned
for SMAPP, the system assigns a recovery time of *“NONE for that disk pool. If you remove a disk pool
from your configuration and later add it back, the access path for that disk pool is set to *NONE, even if
that disk pool previously had a recovery time for access paths.

- If all basic user disk pools have been removed from your configuration so that you have only the system
disk pool, the system access path recovery time is set to the lower of the following values:

— The existing system access path recovery time.

— The current access path recovery time for disk pool 1. If the current access path recovery time for
disk pool 1 is *NONE, the system access path recovery time is not changed.

When you vary on an independent disk pool, the system checks to see if any disk units have been

added or removed from the independent disk pool. The system may change either the size of the SMAPP
receiver or the placement of the receiver based on the change to the disk units. If this is the first time
the independent disk pool is varied on, then the system assigns a recovery time of *NONE for that
independent disk pool.

When you add disk units to your disk configuration while your system is active, or your independent disk
pool is varied on, the system does not consider those changes in making SMAPP storage decisions until
the next time you restart the system, or vary on the independent disk pool. The system uses the size of
the disk pool to determine the threshold size for SMAPP receivers. If you add disk units, the system does
not increase the threshold size for the receivers until the next time you restart the system restart or vary
on the independent disk pool. This means that the frequency of changing SMAPP receivers will not go
down until you restart the system, or vary off the independent disk pool.

When you create a new user disk pool while your system is active, add all of the planned disks to the disk
pool at the same time. The system uses the initial size of the new disk pool to make storage decisions for
SMAPP. If you later add more disk units to the disk pool, those disk units are not considered until the next
time you restart the system or vary on the independent disk pool. When you create a new user disk pool,
the access path recovery time for that disk pool is set to *NONE. You can use the EDTRCYAP command to
set a target recovery time for the new disk pool, if desired.

Related concepts
Disk management

SMAPP and access path journaling

In addition to using system-managed access path protection (SMAPP), you can choose to journal some
access paths yourself by using the Start Journaling Access Path (STRIRNAP) command. This is called
explicit journaling.

To journal an access path explicitly, you must first journal all the underlying physical files. SMAPP does not
require that the underlying physical files be journaled.

The reason for choosing to journal an access path explicitly is that you consider the access path (and the
underlying files) absolutely critical. You want to make sure that the files are available as soon as possible
when the system is started after an abnormal end.

Under SMAPP, the system looks at all access paths to determine how it can meet the specified target
times for recovering access paths. It may not choose to protect an access path that you consider critical.

6 IBMi: Journal management

When the system determines how to meet the target times for recovering access paths, it considers only
access paths that are not explicitly journaled.

How SMAPP is different from explicitly journaling access paths:

« SMAPP does not require that underlying physical files be journaled.

- SMAPP determines which access paths to protect based strictly on the target recovery times for all
access paths. You might choose to journal an access path explicitly because of your requirements for
the availability of a specific file.

« SMAPP continually evaluates which access paths to protect and responds to changes in your system
environment.

« SMAPP does not require any user intervention to manage its internal journals and journal receivers.
- SMAPP uses less disk space for journal receivers because they are detached and deleted regularly.

For more information about when to journal access paths, see Reasons to journal access paths.

Related concepts

Reasons to journal access paths

If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely.

Related reference
Start Journal Access Path (STRIRNAP) command

SMAPP and independent disk pools

Use SMAPP to limit recovery time for access paths that reside within independent disk pools.

When you use SMAPP to protect access paths in independent disk pools, you can specify the recovery
time individually for each independent disk pool. This helps limit the vary-on duration as well as the
guantity of background job activity, which must ensue to make each access path whole when you vary on
your independent disk pool after an abnormal vary off.

The recovery time that you specify becomes an attribute of the independent disk pool and thus moves
with the independent disk pool if you switch it between systems. Therefore, if you are switching an
independent disk pool between systems, you only need to specify the recovery time once.

The only occasion when the specified recovery time is not moved is when the system you are moving
the independent disk pool to has its system wide recovery time specified as *OFF. In this case, the
independent disk pool's recovery time is set to *NONE when you vary on the independent disk pool.

Related concepts
Independent disk pools

Starting SMAPP or changing SMAPP values

Use the Edit Recovery Access Path (EDTRCYAP) display to start or change values for system-managed
access-path protection (SMAPP).

If you use basic or independent disk pools to separate objects that have different recovery and availability
requirements, you might also want to specify different recovery times for access paths in those disk pools.

For example, if you have a large history file that changes infrequently, you can put the file in a separate
disk pool and set the access path recovery time for that disk pool to *NONE. Or, if you have an
independent disk pool, and you want the recovery time to move with the disk pool when it is switched to
another system, you can specify a specific time for that disk pool.

To start SMAPP or change SMAPP values, proceed as follows:
1. On the display, specify one of the following values in the System access path recovery time field:
« *SYSDFT

Journal management 7

« *NONE
« *MIN
- *OFF
« A specific value between 1 and 1440 minutes.
2. At the Include access paths field select one of the following:
« *ALL
« *ELIGIBLE
3. If you are starting or changing SMAPP for disk pools, change the Target field for individual disk pools.

To change the access path recovery time from *OFF to another value, your system must be in a restricted
state.

You can also use the Change Recovery for Access Paths (CHGRCYAP) command to change the
target recovery times without using the Edit Recovery Access Path display.

The system performance monitor also provides information about access path recovery times. The
Work Management and Performance Tools for IBM i topics provide more information about monitoring
performance and about what SMAPP information is available through the tools.

Related reference

Edit Recovery Access Path (EDTRCYAP) command

Change Recovery for Access Paths (CHGRCYAP) command

Related information

Work Management

Performance Tools for System i PDF

Displaying SMAPP status
You can display many types of status for SMAPP.

You can use the Edit Recovery for Access Paths (EDTRCYAP) command to view the following
values for system-managed access-paths (SMAPP):

« The entire system.

Basic and independent disk pools.

Access paths not eligible for protection.

Protected access paths.

Unprotected access paths

Use the top part of the display to see the values for the entire system. Use the bottom part of the display
to see the values for individual disk pools on the system. If you do not have basic or independent

disk pools that are active, the bottom part of the display says No user ASP configured or
information not available.

Estimated time for recovery

To see the number of minutes the system estimates it will need to recover most of the access paths, look
at the Estimated recovery time for access paths field. The time is an estimated maximum, based on
most circumstances. It assumes that the system is recovering access paths on a dedicated server (during
a restart) and that all eligible access paths are being recovered or rebuilt. It does not include time to
rebuild access paths that must be rebuilt for one of the following reasons:

« The access path is damaged.

« The access path was marked as not valid during a previous abnormal end and was not successfully
rebuilt.

« One of the following commands marked the access path as not valid and was running when the
system failed:

8 IBMi: Journal management

http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415340.pdf

— Copy File (CPYF), if the system chose to rebuild the access path for efficiency.
— Reorganize Physical File Membexr (RGZPFM)
— Restore Object (RSTOBJ)

If you have basic or independent disk pools, the estimated recovery time for access paths for the entire
system (System access path recovery time field) might not equal the total estimated recovery time for
the disk pools (Access Path Recovery Time-Estimated (Minutes)). When you restart the system or vary
on an independent disk pool, the system overlaps processing when recovering access paths to reduce the
total time it requires.

Disk space used

The Disk Storage Used field on the display shows the disk space that SMAPP uses only for internal
system journals and journal receivers. It does not include any additional space in user-managed journal
receivers for protecting access paths whose underlying physical files are already journaled.

Access paths not eligible

You can display all access paths that are not eligible for protection. To view access paths that are not
eligible for protection, press F13. Access paths that are not eligible for access protection are as follows:

 Access paths built over physical files which are journaled to separate journals.
« Access paths built over a physical file which is journaled to a journal whose state is currently standby.

Protected access paths

You can display up to 500 protected access paths by pressing F14. The system displays the access paths
with the highest estimated recovery time first.

Unprotected access paths

You can display up to 500 access paths that are eligible for SMAPP protection but are not currently being
protected by pressing F15. The system displays the access paths with the highest estimated recovery
time first.

Display details

By pressing F16 you can display some additional details concerning your SMAPP environment. These
details may be helpful if there are concerns with your SMAPP environment.

You can also use the Display Recovery for Access Paths (DSPRCYAP) command to display or
print the estimated recovery times, disk usage and additional details.

Related reference
Display Recovery for Access Paths (DSPRCYAP) command

Local journal management

Use local journal management to recover the changes to an object that have occurred since the object
was last saved, as an audit trail, or to help replicate an object. Setting up journaling locally is a
prerequisite for other system functions such as remote journal management and commitment control.
Use this information to set up, manage, and troubleshoot journaling on a local system.

Related information

Journal entry information finder

Journal management 9

Journal management concepts
This topic explains how journal management works, why to use it, and how it affects your system.

Journal management enables you to recover the changes to an object that have occurred since the object
was last saved. You can also use journal management to provide an audit trail or to help replicate an
object. You use a journal to define what objects you want to protect with journal management. The system
keeps a record of changes you make to objects that are journaled and of other events that occur on the
system.

This topic provides information about how journals work, information about journal entries, and how
journals affect system performance.

Benefits of journal management

The primary benefit of journal management is that it enables you to recover the changes to an object that
have occurred since the object was last saved. This ability is especially useful if you have an unscheduled
outage such as a power failure.

In addition to powerful recovery functions, journal management also has the following benefits:

« Journal management enhances system security. You can create an audit trail of activity that occurs for
objects.

- Journal management allows you to generate user defined journal entries to record activity, even for
objects that do not allow journaling.

- Journal management provides quicker recovery of access paths if your system ends abnormally.
- Journal management provides quicker recovery when restoring from save-while-active media.
« Journal management provides the means to recover an object that was saved with partial transactions.

Saving your system while it is active has instructions for saving an object with partial transactions.

Related tasks

Save your server while it is active

Example: Recovering objects with partial transactions

If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.

How journal management works

Use journal management to create an object called a journal. Use a journal to define which objects you
want to protect. You can have more than one journal on your system. A journal can define protection for
more than one object.

You can journal the objects that are listed below:

 Libraries

Database physical files

Access paths
- Data areas

Data queues

Integrated file system objects (stream files, directories, and symbolic links).

Journal entries

The system keeps a record of changes you make to objects that are journaled and of other events that
occur on the system. These records are called journal entries. You can also write journal entries for events
that you want to record, or for objects other than the object that you want to protect with journaling.

10 IBMi: Journal management

For example, some journal entries identify activity for a specific database record such as add, update, or
delete. (If the updated object image after the update is the same as the image before the update, then
journal entries are not deposited for that update.) Also journal entries identify activity such as a save,
open, or close operation for an object. Journal entries can also identify other events that occur, such as
security-relevant events on the system or changes made by dynamic performance tuning. The Journal
entry information link below describes all the possible journal entry types and their contents.

Each journal entry can include additional control information that identifies the source of the activity,
including the user, job, program, time, and date. The entries that the system deposits for a journaled
object reflect the changes made to that journaled object. For example, the entries for changes to
database records can include the entire image of the database record, not just the changed information.

Journal receivers

The system writes entries to an object called a journal receiver. The system sends entries for all the
objects associated with a particular journal to the same journal receiver.

You can attach journal receivers to a journal by using System i° Navigator or the Create Journal (CRTIRN)
and Change Journal (CHGJRN) commands. The system adds journal entries to the attached receiver.
Journal receivers that are no longer attached to a journal and are still known to the system are associated
with that journal. Use the Work with Journal Attributes (WRKIRNA) command to see a list of receivers
associated with a journal.

The system adds an entry to the attached journal receiver when an event occurs to a journaled object.
The system numbers each entry sequentially. For example, it adds an entry when you change a record in a
journaled database file member. Journal entries contain information that identifies:

« Type of change

« Record that has been changed

« Change that has been made to the record

« Information about the change (such as the job being run and the time of the change)

When you are journaling objects, changes to the objects are added to the journal receiver. The system
does not journal data that you retrieved but did not change. If the logical file record format of a database
file does not contain all the fields that are in the dependent physical file record format, the journal entry
still contains all the fields of the physical file record format. In addition, if you are journaling access paths,
entries for those access paths are added to the journal. If the updated physical file image after the update
is the same as the image before the update, and if the file has no variable length fields, then journal
entries are not deposited for that update. If the updated data area image after the update is the same

as the image before the update, then journal entries are not deposited for that update. If the attribute
that was requested to be changed was already that value, then journal entries are not deposited for that
change.

Summary of the journaling process

The following figure shows a summary of journal processing. Objects A and B are journaled; object C is
not. Programs PGMX and PGMY use object B. When you make a change to object A or B, the following
occurs:

« The change is added to the attached journal receiver.
« The journal receiver is written to auxiliary storage.
« The changes are written to the main storage copy of the object.

Object C changes are written directly to the main storage copy of the object because it is not being
journaled. Only the entries added to the journal receiver are written immediately to auxiliary storage.
Changes against the object may stay in main storage until the object is closed.

Journal management 11

Main Storage

PGMX

— % | Object B

Object B Object B FoMY
Changes Changes

Ohject B Object ©
Coject A
Changes A &

== | Ojec] A

Auxilary Slorage

iy

Y

Jalrmal

Jaurmal Haceiver

Cbject B Change

Object B Change

Object A Change

Oibjects

Ciioject A

Object B

Object C

You can also take advantage of the remote journal function. The remote journal function allows you to
associate a journal on a remote system with a journal on a local system. Journal entries on the local

system are replicated to the remote journal receiver.

Related concepts
Journal entry informatio

n

This topic provides information and tasks for working with journal entries.

Remote journal management

Use remote journal management to establish journals and journal receivers on a remote system that are
associated with specific journals and journal receivers on a local system. Remote journal management
replicates journal entries from the local system to the journals and journal receivers that are located on

the remote system after they have been established.

Related reference

Create Journal (CRTIRN) command

Change Journal (CHGJRN) command

12 IBMi: Journal management

Work with Journal Attributes (WRKJRNA) command

Journal entries

When you use journal management, the system keeps a record of changes that you make to objects that
are journaled and of other events that occur on the system. These records are called journal entries. You
can use journal entries to help recover objects or analyze changes that were made to the objects.

Every journal entry is stored internally in a compressed format. The operating system must convert
journal entries to an external form before you can see them. You cannot change or access the journal
entries directly. Not even the security officer can remove or change journal entries in a journal receiver.
You can use these journal entries to help you recover your objects or analyze changes that were made to
the objects.

Contents of a journal entry
Journal entries contain the following information:

- Information that identifies the type of change.

Information that identifies the data that was changed.

The after-image of the data.

Optionally, the before-image of the data (this is a separate entry in the journal).

Information that identifies the job, the user, and the time of change.

The journal identifier of the object.

Information that indicates if the entry-specific data is minimized.

The system also places entries in the journal that are not for a particular journaled object. These entries
contain information about the operation of the system and the control of the journal receivers.

Journal identifier

When you start journaling an object, the system assigns a unique journal identifier (JID) to that object.
The system uses the JID to associate the journal entry with the corresponding journaled object.

Journal entry numbering

Each journal entry is sequentially numbered without any missing numbers until you reset the sequence
number with the Change Journal (CHGJRN) command or System i Navigator. However, when you
display journal entries, sequence numbers can be missing because the system uses some entries only
internally. For audit purposes, you can display these internal entries with the INCHIDENT option on the
Display Journal (DSPJRN) command.

When the system exceeds the largest sequence number, a message is sent to the system operator
identifying the condition and requesting action. No other journal entries can be added to the journal until
the journal receivers are changed and the sequence number is reset.

Fixed-length and variable-length portions

A journal entry that is converted for displaying or processing contains a fixed-length prefix portion that

is followed by a variable-length portion. The variable-length portion contains entry-specific data and, in
some cases, null-values indicator data. The format of the converted entry depends on the command that
you use and the format that you specify. The entry-specific data varies by entry type. The Send Jouxnal
Entxy (SNDJRNE) command or the QJOSIRNE API specifies the entry-specific data for user-created
journal entries.

Related concepts
Why you must save objects after you start journaling

Journal management 13

After you start journaling, it is essential that you save objects that you are journaling.

Journal entry information
This topic provides information and tasks for working with journal entries.

Related reference

Apply Journaled Changes (APYJRNCHG) command

Apply Journaled Changes Extend (APYJRNCHGX) command
Compare Journal Images (CMPJRNIMG) command

Delete Pointer Handle (QjoDeletePointerHandle) API
Display Journal (DSPJRN) command

Get Path Name of Object from Its File ID (QpOlGetPathFromFileID()) API
Receive Journal Entry (RCVIJRNE) command

Retrieve Journal Entry (RTVIJRNE) command

Retrieve Journal Entries (QjoRetrieveJournalEntries) API
Remove Journaled Changes (RMVJRNCHG) command
Replay Database Operation (QDBRPLAY) API

Send Journal Entry (SNDJRNE) command

Send Journal Entry (QJOSJRNE) API

Journal management and system performance

Journal management prevents transactions from being lost if your system ends abnormally or has to be
recovered. Journal management writes changes to journaled objects immediately to the journal receiver
in auxiliary storage. Journaling increases the disk activity on your system and can have a noticeable affect
on system performance.

Journaling also increases the overhead associated with opening objects and closing objects, so as the
number of objects you are journaling increases, the general performance of the system can be slower. The
time it takes to perform an IPL on your system or vary on of an independent auxiliary storage pool (ASP)
can also increase, particularly if your system or independent ASP ends abnormally.

The system takes measures to minimize the performance effect of using journaling features. For example,
the system packages before-images and after-images, and any access path changes for arecord in a
single write operation to auxiliary storage. Therefore, journaling access paths, and before-images and
after-images, usually does not cause additional performance overhead. However, they do add to the
auxiliary storage requirements for journaling.

The system also spreads journal receivers across multiple disk units to improve performance. If you do
not specify a maximum receiver-size option, then the system can place the journal receiver on up to ten
disk units in a disk pool. If you specify a maximum receiver-size option, and a matching sufficiently large
journal size threshold then the system can place the journal receiver on up to 100 disk units in a disk pool.

You can take measures to minimize the effect of journaling on your system performance:

« Consider using journal caching. Journal caching is a separately chargeable feature that causes the
system to write journal entries to memory in large groups. When there are several journal entries in
memory then the system writes journal entries from memory to disk. If the application performs a large
number of changes, this can result in fewer synchronous disk writes resulting in improved performance.
However, when you use journal caching, a few of the most recent updates to your journaled objects may
be lost on an abnormal IPL or independent ASP vary on.

« Before using journal standby state, consider the potential System Managed Access Path Protection
(SMAPP) impacts of making that choice and consider specifying INCACCPTH(*ELIGIBLE) on the Change
Recovery for Access Paths (CHGRCYAP) command.

« Do not set the force-write ratio (FRCRATIO) parameter for physical files that you are journaling. You can
let the system manage when to write records for the physical file to disk because the journal receiver
has a force-write ratio of 1.

« For optimal performance, ensure that your I/O processors have adequate write cache.

14 IBMi: Journal management

 Consider using record blocking when a program processes a journaled file sequentially
(SEQONLY(*YES)). When you add or insert records to the file, the records are not written to the journal
receiver until the block is filled. You can specify record blocking with the Override with Database File
(OVRDBF) command or in some high-level language programs. If you use the OVRDBF command, do the
following:

— Set the SEQONLY parameter to (*YES).

— Use a large enough value for the NBRRCDS parameter to make the buffer approach the optimal size of
128KB.

« Consider minimizing the fixed-length portion of the journal entry using RCVSIZOPT(*MINFIXLEN)
for the journal. When you specify this option, all of the data that is selectable by the FIXLENDTA
parameter is not deposited. Therefore, that information does not have to be retrieved, benefiting journal
performance.

« Consider omitting information from the journal entry you do not need using the OMTIRNE parameter.
When you specify the OMTIRNE parameter for database physical files you will not deposit the file open
and close entries which saves processing as well as disk storage space. Similarly, if you specify the
OMTIRNE parameter for directories and stream files, the object open, close, and force entries are not
deposited.

« Ensure you have enough write cache for your I/O processor (I0OP).

Related concepts

Receiver size options for journals

A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

Journal cache

Journal caching is a separately chargeable feature with which you can specify that the system cache
journal entries in main storage, before writing them to disk. Journal caching is option 42 of the IBM i
operating system.

Frequently asked questions about journaling and disk arm usage
Journaling affects the disk arms that store the journal receiver.

Performance

Disk management

Striving for Optimal Journal Performance on DB2 Universal Database for iSeries
Related reference

Override with Database File (OVRDBF) command

Journal management with the save-while-active function

Journaling can help you with recovery if you use the save-while-active function in your backup strategy.
If you plan to save an application without ending it for checkpoint processing, consider journaling all of
the objects associated with the application. After the save operation is complete, save all of the journal
receivers for the objects you are saving.

If you need to perform recovery, you can restore objects from the save-while-active media. Then you can
apply journal changes to an application boundary.

You also can use the save-while-active function to save an object with partial transactions--before the
transactions reach a commit boundary. When you restore an object with partial transactions, you cannot
use it without additional actions. Journaling enables you to apply or remove changes to an object with
partial transactions to restore it to a usable state.

Using the save-while-active function to save your journaled objects can help you recover your objects
more quickly when you need to apply or remove journaled changes specifying FROMENT(*LASTSAVE) or
FROMENTLRG(*LASTSAVE). When you use the save-while-active function to save your journaled objects,

Journal management 15

http://www.redbooks.ibm.com/abstracts/sg246286.html?Open

the system saves and then restores information that indicates which starting journal sequence number
is needed for the apply or remove operation. When this information is available for all objects to which
you are applying or removing journaled changes, the system does not need to scan the journal receivers
to determine this starting point. Scanning journal receiver data to find the starting points can be time
consuming.

Also, using the save-while-active function when saving your objects allows you to restore a version
of your object which was not from the last save and to still specify FROMENT(*LASTSAVE) or
FROMENTLRG(*LASTSAVE) on the apply or remove command and successfully apply or remove changes.

Related concepts

Commitment control

Related tasks

Save your server while it is active

Example: Recovering objects with partial transactions

If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Planning for journal management

This topic provides you with the information you need to ensure you have enough disk space, to plan what
objects to journal, and to plan which journaling options to use.

Before you start to journal an object, you must make decisions that will determine how you will create
journals and receivers, what objects to journal and how to journal those objects. These decisions include:

« Whether to use System i Navigator to set up your journaling environment.

« What objects to protect with journaling.

- Whether to journal other objects that the system does not journal.

« Whether to combine journaling with the save-while-active function.

« How many journals you need and which objects must be assigned to each journal.

« Whether to journal after-images only or both before-images and after-images.

- Whether your application programs must write journal entries to assist with recovery.
« What type of disk pool in which to store your journal receiver.

« Whether to use the remote journal function to replicate the journal entries and receivers to one or more
additional systems.

« Whether to omit the optional open, close, or force entries for your objects.
You also need to make operational decisions about journal management:

« How often must journal receivers be changed and saved?
« How often must you save journaled objects?
« How must journals and journal receivers be secured?

Finally, you need to balance the benefits of journaling with the affect it may have on your system
performance and auxiliary storage requirements.

Use the following information to help you make these decisions:
Note: The Remote journal management topic has information about remote journaling.

Related concepts

Remote journal management

Use remote journal management to establish journals and journal receivers on a remote system that are
associated with specific journals and journal receivers on a local system. Remote journal management
replicates journal entries from the local system to the journals and journal receivers that are located on
the remote system after they have been established.

16 IBMi: Journal management

IBM Navigator for i versus the character-based interface for journaling
objects

There are two environments that you can use for journal management: IBM Navigator for i and the
character-based interface. Navigator for i provides a graphical interface for journaling that is easy to use
and does not require the use of control language (CL) commands. The character-based interface requires
the use of CL commands or APIs, but has more functionality than Navigator for i. Some of this function is
also available through the System i Navigator.

Here is a list of journaling functions that are only available with the character-based interface:
« Journal access paths.

« Compare journal entries.

« Apply journaled changes.

« Remove journaled changes.

Display journal entries.

One other difference between Navigator for i and the character-based interface is that with Navigator for
i, you create the journal and journal receiver together. With the character-based interface, you create the
journal receiver first.

Decide which of the two interfaces to use before you set up journal management, since the character-
based interface creates journal receivers and journals separately, and Navigator for i creates journals and
receivers together. However, if you decide to use a function that Navigator for i does not support after you
start journaling, you can do so with the character-based interface, even if you used Navigator for i to set
up journaling.

Related concepts

Receiver size options for journals

A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

Minimized entry-specific data for journal entries
On the Create Journal (CRTJRN) and Change Journal (CHGJRN) commands, you can specify to allow for
the deposit of minimized journal entries. This will decrease the size of your journal entries.

Fixed-length options for journal entries

You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTIRN) and Change
Journal (CHGIRN) commands to audit security related activity for journaled objects on your system.
The IBM Navigator for i equivalent function is Fixed length data to include on the Create Journal and
Change Receivers dialogs.

Journal cache

Journal caching is a separately chargeable feature with which you can specify that the system cache
journal entries in main storage, before writing them to disk. Journal caching is option 42 of the IBM i
operating system.

Related tasks

Changing the state of local journals
Local journals can be in one of two states, active or standby. When the journal state of a local journal is
active, journal entries are allowed to be deposited to the journal receiver.

Planning which objects to journal
When you plan which objects to journal, consider the following:

« What types of objects you can journal.
- What makes an object a good candidate for journaling.

Journal management 17

« What rules for journaling apply to those objects.
« Whether or not to send journal entries for objects the system does not journal.

Types of objects that are eligible for journaling
You can journal the following object types:

Libraries

Database physical files
« Access paths
« Data areas

Data queues

Integrated file system objects (stream files, directories, and symbolic links)

General characteristics that make objects good candidates for journaling

= An object with a high volume of transactions between save operations is a good candidate for
journaling.

« An object that is difficult to reconstruct the changes made to it, such as an object that receives many
changes without physical documentation. For example, an object used for telephone order entry is more
difficult to reconstruct than an object used for orders that arrive in the mail on order forms.

« An object that contains critical information. For example, if you restore an object back to the last save
operation, and the delay from reconstructing changes to that object has a negative effect on your
operation: that object is a good candidate for journaling.

= Objects that relate to other objects on the system. Although the information in a particular object
may not change often, that object may be critical to other, more dynamic objects on the system. For
example, many files may depend on a customer master file. If you are reconstructing orders, the
customer master file must include new customers or changes in credit limits.

« Objects that require that all the actions on it be replicated.

« An object, that, after a crash, has a requirement to be recovered to a consistent state and have a journal
entry show what actions completed.

- An object that can cause a negative consequence to your operation if a crash damages that object while
the system is in the process of updating it.

« An object for which you want to have an audit trail of changes.

Considerations for journaling database physical files

« If you journal one file that participates in a referential constraint, you must journal all the related
files. Referential constraints are not enforced when you apply or remove journaled changes, but the
referential integrity of those constraints is verified.

 Ifyoujournal all related files, the process for applying and removing journaled changes keeps the
relationships between your database files valid. If you do not journal all related files, your referential
constraint may show a status of check pending after you apply or remove journaled changes. For some
types of referential constraints, the system requires that you journal all of the related files.

- For a file that has a trigger program, if the trigger program only performs processing on object types
which can be journaled and applied, you must journal all of the objects processed by the trigger
program. If the trigger programs do additional work that must be reconstructed during a recovery,
consider using the API support for sending journal entries.

« In general, database source files must not be journaled. If you use the Start Source Entry Utility
(STRSEU) command to update a member, every record in that member is considered changed and every
record is journaled to the journal. However, if changes to a source file are critical, you can journal the file
in the same manner as data files.

18 IBMi: Journal management

Considerations for journaling integrated file system objects

- When you start journaling on a symbolic link, the link is not followed. Therefore if you want to protect
the actual object with journaling, you have to journal the actual object separately.

- If you want to automatically protect all objects which are created in a directory which itself is journaled,
consider the use and impacts of the inherit journaling attribute that you can associate with a journaled
directory.

« Do you want to protect the structure of the directory tree, or just the data stored in stream files
within that directory structure? If you just want to protect the data stored in stream files, then for
performances reasons, it may be best to only journal the stream files themselves instead of journaling
changes to each directory in the directory tree. You must consider this question when you use the
subtree and inherit journaling attributes options on the start journaling interfaces.

« You cannot journal objects on a user-defined file system (UDFS) independent disk pool. If you want to
journal objects in a UDFS, you must use a library capable independent disk pool. Journal management
and independent disk pools has more information about journaling and independent disk pools.

System objects

It is recommended that you do not journal changes to IBM-supplied objects. The system sometimes
creates and manages these objects differently than user-created objects. The system does not assure the
recovery of these files even though all recovery activity normally succeeds.

Journal entries for objects the system does not journal

Some applications depend on information in objects that the system does not journal. For example, an
application programming interface (API) might use a user space to pass data between two jobs.

You can use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API

to write journal entries for these resources. If you need to perform recovery, you can use a program to
retrieve these journal entries and make sure these application objects are synchronized with the objects
you are journaling.

If you are using commitment control, you can use APIs to register these objects as committable
resources.

Before images and access paths

- Reasons to journal access paths has detailed information about whether or not to journal access paths.
- Reasons to journal before-images discusses whether or not to journal before-images

Journaled object limit

The journaled object limit is the maximum number of objects that can be journaled to one journal. You
can set the journal object limit to either 250 000 or 10 000 000. Use the Journal Object Limit
(JRNOBJLMT) parameter on the Cxreate Journal (CRTJIRN) or Change Journal (CHGJRN)
command to set the maximum number of journaled objects.

Journal recovery count

On the CHGIRN command, you can use the Journal Recovery Count (JRNRCYCNT) parameter to indicate
how many journal entries can exist between the last deposited entry and the oldest forced entry for a
journaled object. A value between 10 000 and 2 000 000 000 will be allowed. A value of *SYSDFT will
also be allowed to reset the journal’s recovery count to the system default journal recovery count.

Related concepts
Journal management and independent disk pools

Journal management 19

Independent disk pools are disk pools 33 through 255. Independent disk pools can be user-defined file
system (UDFS) independent disk pools or library-capable independent disk pools.

Sending your own journal entries

You can use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJIRNE) API
to add your own entries to a journal. The system places these entries in the journal's attached journal
receiver along with the system-created journal entries.

Commitment control
Related reference
Work with triggers and constraints

Reasons to journal access paths
If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely.

When your system ends abnormally, perhaps because of a power interruption, the next IPL can take much
longer than a normal IPL. Rebuilding access paths contributes to this long IPL time. When you perform

an IPL after an abnormal end, the system rebuilds access paths that were exposed, except those access
paths that are specified as MAINT(*REBLD) when you create the file. An access path is exposed if changes
have been made to it that have not been written to the disk.

If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely. This reduces the time it takes to IPL after the system ends abnormally.
Access path journaling is strictly for the purpose of system recovery during an IPL. You do not use access
path journal entries when you are applying journal changes to recover a file.

If certain access paths and their underlying files are critical to your operation, you want to ensure that
these files are available as soon as possible after the system ends abnormally. You can choose to journal
these access paths. This is called explicit access path journaling.

Explicit access path journaling differs system-managed access-path protection (SMAPP) in that with
SMAPP you cannot control which access paths the system chooses to protect. Therefore, if the system
does not protect the access path that you consider critical to meet your target recovery times, you must
explicitly journal that access path.

If you choose to journal an access path, remember the following:

« You can journal an access path for a physical file only if the physical file has a keyed access path or an
index created by a referential constraint.

« Before you start journaling an access path, you must journal all the underlying physical files to the same
journal.

« You can journal only access paths that are defined as MAINT(*IMMED) or MAINT(*DLY).

« Some access paths with international components for unicode (ICU) sort sequence tables are too
complex to be journaled. You can journal access paths with other sort sequence tables, and many of the
access paths with ICU sort sequence tables.

The System-managed access-path protection topic has detailed information about SMAPP.

Related concepts

System-managed access-path protection

System-managed access-path protection (SMAPP) allows you to use some of the advantages of journaling
without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart your system
after an abnormal end.

Reasons to journal before-images

When you journal an object, the system always writes an after-image for every change that is made. You
can request that the system write before-image journal entries for database files and data areas. All other
object types only journal after-images. This significantly increases the auxiliary storage requirements for
journaling.

However, you can choose to journal before-images for these reasons:

20 IBMi: Journal management

- Before-images are required for a backout recovery, where you remove journal changes with the Remove
Journaled Changes (RMVJRNCHG) command rather than applying journal changes to a restored copy of
an object. Backout recovery is often complex, particularly if multiple users and programs are accessing
the same object. It is most commonly used when new applications or programs are being tested.

« For database physical files, before-images are required to use the Compare Journal Images
(CMPJRNIMG) command. This command highlights the differences between the before-images and
after-images. It is sometimes used to audit changes to a database file.

« For database physical files, if you want a copy of the record that is deleted to be part of the deleted
record journal entry information, you must specify before-images.

- Commitment control requires before-images for the system to roll back uncommitted changes. When
you open a database file under commitment control, the system automatically journals both before-
images and after-images while the commitment definition is active. If you normally journal only after-
images, the system writes before-images only for the changes made under commitment control. If the
system initiates the journaling of before-images, you cannot use them to remove journaled changes.
Commitment control does not support integrated file system objects, data areas, or data queues.

« Access path journaling also requires before-images for the system to use for IPL recovery. When you
journal access paths, or the system journals an access path to provide system-managed access-path
protection, the system will automatically journal both before and after-images. If you normally journal
only after-images, the system also writes before-images if you are journaling the access path.

You can select before-images on an object-by-object basis. You specify whether you want after-images or
both when you start journaling for a database file or a data area. After you start journaling a database file
or a data area, you can use the Change Journal Object (CHGIRNOBJ) command to change whether you
are journaling before-images.

Related concepts

System-managed access-path protection

System-managed access-path protection (SMAPP) allows you to use some of the advantages of journaling
without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart your system
after an abnormal end.

Related tasks

Journaling database physical files (tables)
When you start journaling a physical file (table), you specify whether you want after-images saved, or both
before-images and after-images.

Journaling data areas and data queues
When you start journaling for a data area or a data queue, the system writes journal entries for all changes
to the data area or data queue.

Related reference

Remove Journaled Changes (RMVIJRNCHG) command
Compare Journal Images (CMPJRNIMG) command
Change Journaled Object (CHGIJRNOBJ) command

Planning for journal use of auxiliary storage

If you are journaling an object, journal management writes a copy of every object change to the journal
receiver. It writes additional entries for object level activity, such as opening and closing the object,
adding a member, or changing an object attribute. If you have a busy system and journal many objects,
your journal receivers can quickly become very large.

The maximum size for a single journal receiver varies. It depends on how the system allocates the journal
receiver across multiple disk arms. The maximum size ranges from approximately 1.9 GBto 1.0 TB
depending on what value you specified for the associated journal's receiver size option.

To avoid possible problems with a journal receiver exceeding the maximum size allowed on the system,
specify a threshold for the receiver of no more than 900 000 000 KB if you specified a journal

Journal management 21

receiver maximum-size option for the associated journal. Otherwise, specify a threshold of no more than
1 441 000 KB.

The following topics provide more information about how journal management affects auxiliary storage:

Functions that increase the journal receiver size

Methods to estimate the size of a journal receiver

Methods to reduce the storage that journal receivers use
« Determine the type of disk pool in which to place journal receivers
« Journals and independent disk pools

Related concepts

Receiver size options for journals

A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

Threshold (disk space) for journal receivers

When you create a journal receiver with System i Navigator or the Create Journal Receiver (CRTJRNRCV)
command, you specify a disk space threshold that indicates when you want the system to warn you or
take action.

Frequently asked questions about journaling and disk arm usage
Journaling affects the disk arms that store the journal receiver.

How the journal receiver affects the disk arm depend on several factors :

« The threshold setting you are using for your journal receiver.
- Whether or not you are using a maximum receiver-size option.
« The way in which the system writes journal entries to disk.

The following are frequently asked questions about journaling and disk arm usage:

“How many arms in my disk pool will journaling use?” on page 22

“Which journal parameters and settings affect the number of the disk arms the journal receiver uses?” on
page 23

“Why is the system not using the new disk arms I added to my disk pool?” on page 23

“Why are some disk arms used by journal receivers noticeably busier than the others and what can I do to
spread out the usage?” on page 23

How many arms in my disk pool will journaling use?

Starting in IBM i 7.1, journal receivers will be spread across all disk arms in the disk pool. Journaling no
longer directs writes to specific disk arms.

The journal receiver threshold value will influence the number of parallel writes that journal will allow. The
higher the journal receiver threshold value, the more parallel I/0 requests will be allowed. Allowing more
parallel I/O requests may improve performance.

For more information about disk arm use and journaling see: Striving for Optimal Journal Performance on

DB2° Universal Database for iSeries Q‘ (3.1 MB)

Back to questions

22 IBMi: Journal management

http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open

Which journal parameters and settings affect the number of the disk arms the
journal receiver uses?

The threshold for the journal receiver and whether you use a maximum receiver-size option have the
largest effect on how many disk arms the journal receiver uses. If you have a system which is before
V5R2, removing internal entries also affects the number of disk arms that are used.

Back to questions

Why is the system not using the new disk arms I added to my disk pool?

There can be a several reasons. First, to use the newly added disk arms, you must perform a change
journal operation to attach a new journal receiver. Also, the system does not necessarily use all of the
disk arms in a disk pool. If you are not using a maximum receiver-size option, the most disk arms the
system will spread the receiver over is ten. The number of disk arms the receiver uses also depends on
the threshold you use for your journal receiver. If you use a maximum receiver-size option and increase
your threshold, it is more likely that your new disk arm will be used.

If you use system-managed access-path protection (SMAPP), the system generates internal journal
entries to protect the access paths for database files. If you have not upgraded to at least V5R2, setting
your journal receiver to remove internal entries is an issue if you are not producing these internal entries.
Before V5R2, removing internal entries can steal disk arms from the normal journal entries. For example,
if you have six disk arms in the disk pool housing your journal receiver and remove internal entries, two
arms are dedicated to the internal entries and four arms are used for your regular journal entries. If you
do not produce any internal entries, those two arms remained idle. For V5R2 and later, this is not an issue.

For more information about disk arm use and journaling see Striving for Optimal Journal Performance on
DB2 Universal Database for iSeries.

Back to questions

Why are some disk arms used by journal receivers noticeably busier than the others
and what can I do to spread out the usage?

The journal receivers probably use some disk arms more than other because of the way journal
management writes journal entries to disk. When the system produces journal entries, journal
management stores the journal entries in memory. When it is ready, journal management sends the
journal entries to a disk arm in one group. When the next group of journal entries are ready, journal
management sends the entries to the next disk arm. Journal management continues in this sequential
manner until all of the disk arms it uses have received a group of journal entries. The cycle then repeats.

You can spread out the usage by increasing your threshold and using a maximum receiver-size option.

For more information about disk arm use and journaling see Striving for Optimal Journal Performance on
DB2 Universal Database for iSeries.

Back to questions

Related concepts

Threshold (disk space) for journal receivers

When you create a journal receiver with System i Navigator or the Create Journal Receiver (CRTJRNRCV)
command, you specify a disk space threshold that indicates when you want the system to warn you or
take action.

Receiver size options for journals

A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

Journal management 23

http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open

Functions that increase the journal receiver size
Some optional functions available with journal management can significantly increase auxiliary storage
requirements.

You can select to journal both before-images and after-images. The system uses more storage if you
select both before-images and after-images, although storage use is not necessarily doubled. If you
journal access paths, the before-images and after-images are written to the journal receiver when a
database file is updated. Only after-images are written when a database file is added (write operation)
or deleted. Neither the before-image nor after-image is deposited into the journal if the after-image is
exactly the same as the before-image.

Using Fixed-length options for journal entries can also increase auxiliary storage requirements. The
additional storage that fixed-length options use is similar to the extra space that is used by journaling
both before-images after-images.

The system requires additional space to journal access paths. The space required depends on the
following items:

« How many access paths are journaled.

« How often you change the access paths. When you update a record in a database file, you cause an
access path journal entry only if you update a field included in the access path.

« The method used to update access paths. More journal entries are written if you update access paths
randomly than if you update them in ascending or descending sequence. Doing a mass change to an
access path field, such as a date change, causes the fewest journal entries.

If you are using system-managed access-path protection and you journal database files, the system uses
the same journal receiver to protect access paths for that file. This also increases the size of your journal
receivers.

The information in Methods to estimate a journal receiver will help you predict your requirements for
auxiliary storage.

Related concepts

Fixed-length options for journal entries

You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTIRN) and Change
Journal (CHGJIRN) commands to audit security related activity for journaled objects on your system.
The IBM Navigator for i equivalent function is Fixed length data to include on the Create Journal and
Change Receivers dialogs.

System-managed access-path protection

System-managed access-path protection (SMAPP) allows you to use some of the advantages of journaling
without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart your system
after an abnormal end.

Related tasks

Methods to estimate the size of a journal receiver
You can estimate the effect that a journal receiver has on auxiliary storage.

Methods to estimate the size of a journal receiver
You can estimate the effect that a journal receiver has on auxiliary storage.

The actual auxiliary storage used will be somewhat larger because the system writes additional entries
for such actions as opening and closing objects, unless you omit open and close journal entries when you
start journaling for database physical files or integrated file system objects.

The first method to estimate the size of a journal receiver is to use a journal receiver calculator. The
Journal receiver calculator provides an easy way for you to estimate the size of your journal receiver
without setting up journaling.

The calculator assumes the following:

 You are journaling after-images only.
 You are using a single journal receiver for an entire day's transactions.

24 IBMi: Journal management

 You are journaling database physical files only. It does not include estimates for libraries, access path
journaling, integrated file system objects, data areas, data queues, or user-created entries.

 You are not minimizing entry-specific data for the files.

Another method for estimating the size of the journal receiver is to run a test. This method is more
accurate because it includes all journal entries. Additionally, this method will work for any object type
which can be journaled, not just database physical files unlike method one. To use this method, you must
either have journaling set up already or you must set it up.

If you are already using journaling, skip steps 1 and 2 below. Instead, issue a Display Journal Receiver
Attributes (DSPJRNRCVA) command before the time period so you can compare sizes from the beginning
of the period to the end.

This method assumes that the same receiver is used during the whole test. If there is a change journal to
attach a new journal receiver during the test, you must include the sizes of all the receivers.

1. Set up journaling by creating the receiver and journal.

2. Start journaling for all the objects that you plan to journal.

3. Choose a time period (1 hour) with typical transaction rates.

4. After one hour, use the Display Journal Receiver Attributes (DSPIRNRCVA) command to display the
size of the receiver.

5. Multiple the size by the number of hours that your system is active in a day.

Related concepts

Minimized entry-specific data for journal entries

On the Create Journal (CRTJRN) and Change Journal (CHGJRN) commands, you can specify to allow for
the deposit of minimized journal entries. This will decrease the size of your journal entries.

Related tasks

Journaling database physical files (tables)

When you start journaling a physical file (table), you specify whether you want after-images saved, or both
before-images and after-images.

Journaling integrated file system objects
You can journal integrated file system objects if they are in the "root"(/), QOpenSys, and user-defined file
systems.

Setting up journaling
This topic provides instructions on how to set up journals and journal receivers.

Starting journaling
This topic provides information about how to start journaling for all object types.

Related reference
Display Journal Receiver Attributes (DSPJRNRCVA) command

Journal sizing and planning tool
This tool allows one to predict the journal traffic that will be generated by journaling one or more
database files.

On the IBM DB2 for i : Journal performance tools and utilities page there is a tool that can be used to
help determine the amount of journal traffic that might be generated by journaling one or more files. It
only predicts the traffic for database files, not for any other object types. On that page under the Journal
Sizing and Planning Tool (Pseudo Journal), you will find:

- Installation guide
« Tutorial
« Save file download for installation

To access follow this link->http://www.ibm.com/systems/i/software/db2/journalperfutilities.html

Journal management 25

http://www.ibm.com/systems/i/software/db2/journalperfutilities.html

Estimating the size of the journal receiver manually
This topic provides instructions for estimating the size of your journal receiver.

This procedure assumes the following:

 You are journaling after-images only.
 You are using a single journal receiver for an entire day's transactions.

 You are journaling database physical files only. It does not include estimates for libraries, access path
journaling, integrated file system objects, data areas, data queues, or user-created entries.

 You are not using the MINENTDTA parameter to minimize entry-specific data for the files.

« Most of the journal entries are record-level (changes to records in a file) instead of object-level (like
renaming or moving objects, ALTER TABLE requests, creating and deleting objects, etc).

Follow the steps below to estimate the size of a journal receiver:

1. Determine the average record length for all the files that you plan to journal. If the record lengths vary
significantly and the information is available, use a weighted average based on the relative number of
transactions per file.

2. If you are not minimizing the fixed-length portion of the journal entry (not specifying
RCVSIZOPT(*MINFIXLEN) on the CRTIJRN command), you can specify the data that is included in
the fixed-length portion (FIXLENDTA) of the journal entries. Find the sum of the bytes for the options
you are using. Select the options from the following list:

*JOB = 26 bytes
*USR =10 bytes
*PGM =10 bytes
*PGMLIB = 22 bytes
*SYSSEQ = 8 bytes
*RMTADR = 20 bytes
*THD = 8 bytes
*LUW = 27 bytes
*XID = 140 bytes
3. Estimate the number of transactions for a day.

4. The system-created portion of a journal entry is approximately 50 bytes. (It varies by the type of
journal entry.)

5. Estimate the number bytes of auxiliary storage needed for one day's transactions by using the
following formula:

Total bytes needed = (a+b+50)*c

where:

a = the average record length of files (step 1)
b = sum of values selected for FIXLENDTA (step 2)
¢ = number of transactions for a day (step 3)

For example:

1. The average record length for journaled files is 115 bytes.

2. *JOB, *USR, and *PGM options of FIXLENDTA are selected. Their sum is 46 bytes.
3. The number of journaled transactions per day is 10 000.

4. The total bytes needed to journal after-images for a day is:

(115+46+50) * 10 000 = 2 110 000

Related concepts
Fixed-length options for journal entries

26 IBMi: Journal management

You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTIRN) and Change
Journal (CHGJIRN) commands to audit security related activity for journaled objects on your system.
The IBM Navigator for i equivalent function is Fixed length data to include on the Create Journal and
Change Receivers dialogs.

Methods to reduce the storage that journal receivers use

Reduce the size of journal entries by methods such as journaling after-images only, or specifying

certain journaling options including the Fixed Length Data (FIXLENDTA) option on the Cxreate Journal
(CRTJRN) and Change Journal (CHGJRN) commands.

Methods to reduce the storage needed for journaling are as follows:

Journal after-images only
Unless you are using commitment control, after-images are sufficient for your recovery needs. When
you start journaling, the default is to journal after-images only. You can use the Change Journal
Object (CHGJRNOBJ) command to stop journaling before-images without ending journaling for that
object.

Omit the journal entries for open, close or force operations to journaled objects
You can omit these journal entries with the OMTIRNE parameter on the Start Journal Physical
file (STRJIRNPF) or Start Journal (STRJIRN) command. For database files (tables), you
can select Exclude open and close entries when you start journaling with System i Navigator. For
integrated file system objects, ensure that Include open, close, and synchronization entries is
not selected when you start journaling with System i Navigator. You can also use the CHGIJRNOBJ
command to start omitting these journal entries for objects that you are currently journaling.

Omitting these journal entries can have a noticeable effect on both space and performance if an
application opens, closes, or forces objects frequently. Also, any time one looks up an object in a
directory, that can cause an open and close entry to occur for that directory. This can be a lot of
additional journal entries if they are not omitted from the directory objects. However, if you omit the
journal entries for opening and closing objects, you cannot perform the following tasks:

« Use open and close boundaries when applying or removing journal changes (the TOJOBO and
TOJOBC parameters).

« Audit which users open particular objects.

Swap journal receivers, save them, and free storage more frequently
Frequently saving and freeing storage for journal receivers help reduce the auxiliary storage that
the receivers use. However, moving journal receivers off-line increases your recovery time because
receivers have to be restored before journal changes can be applied.

Specify receiver size options that can decrease journal receiver size
Specifying the following receiver size options can help reduce journal receivers size:

« Remove internal entries. This causes the system to periodically remove internal entries that it no
longer needs, such as access path entries.

- Minimize the fixed-length portion the journal entry. This causes the system to no longer deposit all
of the data selectable by the FIXLENDTA parameter in the journal entry, thus reducing the size of the
entries. However, if you require this journal entry information for audit or other uses, you cannot use
this storage saving technique. Additionally, it reduces the options available as selection criteria used
on the following commands and API:

— Display Journal (DSPJRN) command

— Receiver Journal Entry (RCVJIRNE) command

— Retrieve Journal Entry (RTVJIRNE) command

— Compare Journal Images (CMPJRNIMG) command

— Apply Journaled Changes (APYJRNCHG) command

— Apply Journaled Changes Extend (APYJRNCHGX) command
— Remove Journaled Changes (RMVIRNCHG) command

Journal management 27

- Retrieve Journaled Entries (QjoRetrieveJournalEntries) API

Minimized entry-specific data for journals
Minimizing entry-specific data allows the system to write data to the journal entries in a minimized
format.

Select the fixed-length options for data carefully
Fixed-length options can quickly increase the size of your journal receiver. The journal receiver
calculator can help you determine the effect of fixed-length options on your auxiliary storage.

If you are journaling a physical file, specify SHARE (xYES) for the file.
You can do this using the Cxreate Physical File (CRTPF) command or the Change Physical
File (CHGPF) command. The system writes a single open and close entry regardless of how often
the shared open data path (ODP) is opened or closed within a routing step.

Related concepts

Receiver size options for journals

A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

Fixed-length options for journal entries

You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTIRN) and Change
Journal (CHGJIRN) commands to audit security related activity for journaled objects on your system.
The IBM Navigator for i equivalent function is Fixed length data to include on the Create Journal and
Change Receivers dialogs.

Determining the type of disk pool in which to place journal receivers

Use disk pools (auxiliary storage pool) to control which objects are allocated to which groups of disk
units. If you are journaling many active objects to the same journal, the journal receiver can become a
performance bottleneck. One way to minimize the performance impact of journaling is to put the journal
receiver in a separate disk pool. This also provides additional protection because your objects are on
different disk units from the journal receiver, which contains a copy of changes to the objects.

There are several types of disk pools:

System disk pool
The system disk pool contains the operating system. It can also contain user libraries and objects. The
system disk pool is always disk pool number 1.

Basic disk pool
Basic disk pools are disk pool numbers 2 through 32. A basic disk pool can be a library or a non library
disk pool. The differences are as follows:

« Alibrary disk pool contains one or more user libraries or user-defined file systems. It does not
contain the operating system. This is the current recommended method of configuring user disk
pools.

« A non library disk pool contains no user libraries or user-defined file systems. It may contain
journals, journal receivers, and save files. If you place a journal receiver in a non library basic disk
pool, the journal must be in either the system disk pool or the same non library disk pool. The
journaled objects must be in the system disk pool.

Independent disk pool
Independent disk pools are disk pools 33 through 255. If you use independent disk pools, you can
only put journals and journal receivers on independent disk pools that are library capable. If you are
going to place the journal receiver in a switchable independent disk pool, the journal receiver, the
journal, and journaled object must be in the same disk pool group (though they do not have to be in
the same disk pool).

When disk pools were first introduced, they were called auxiliary storage pools (ASPs). Only non library
user ASPs were available. Many systems still have this type of ASP. However, recovery steps are more

28 IBMi: Journal management

complex for non library user ASPs. Therefore, for systems implementing journaling for the first time,
library disk pools are recommended.

Journal management and independent disk pools has more specific information about using journaling
with independent disk pools. Manage disk units in disk pools has specific information about disk pools.
The Independent disk pools topic has detailed information about setting up independent disk pools.

Related concepts

Journal management and independent disk pools

Independent disk pools are disk pools 33 through 255. Independent disk pools can be user-defined file
system (UDFS) independent disk pools or library-capable independent disk pools.

Managing independent disk pools

Independent disk pools

Related information

Journaling — User ASPs Versus the System ASP

Journaling — Configuring for Your Fair Share of Write Cache

Journal management and independent disk pools
Independent disk pools are disk pools 33 through 255. Independent disk pools can be user-defined file
system (UDFS) independent disk pools or library-capable independent disk pools.

UDFS and library-capable independent disk pools

UDFS independent disk pools are independent disk pools that only have a user-defined file system.

UDFS independent disk pools cannot store journals and receivers. In contrast to UDFS disk pools, library-
capable independent disk pools have libraries and are capable of storing journals and receivers. If you
plan to journal objects on an independent disk pool, you must use a library-capable independent disk
pool.

Note: A library-capable independent disk pool can have integrated file system objects. You can also
journal integrated file system objects on a library-capable independent disk pool.

You cannot journal objects on a UDFS independent disk pool.

Switchable and dedicated independent disk pools

Independent disk pools can also be switchable or dedicated. Dedicated independent disk pools are used
on only one system. Switchable independent disk pools can be switched between systems. If they are
library-capable, you can journal objects on either switchable or dedicated independent disk pools.

Disk pool groups

You can group switchable independent disk pools into disk pool groups. Disk pool groups consist of one
primary disk pool and one or more secondary disk pools. If you are going to journal an object in a disk
pool group, the object and the journal must be in the same disk pool. The journal receiver can be in a
different disk pool, but must be in the same disk pool group as the journal and journaled object.

Rules for journaling objects on independent disk pools
Use the following rules when journaling objects on independent disk pools:

« The disk pool must be available on the system on which you are working.

« The disk pool must be a library-capable disk pool. You cannot journal an object on a UDFS independent
disk pool.

« In adisk pool group, the journaled object and the journal must be in the same disk pool.

« Inadisk pool group, the journal receiver can be in a different disk pool, but must be in the same disk
pool group.

Journal management 29

http://www.redbooks.ibm.com/abstracts/tips0602.html?Open
http://www.redbooks.ibm.com/abstracts/tips0653.html?Open

Manage disk units in disk pools has information about managing disk pools. The Independent disk pools
topic has information about setting up and managing independent disk pools.

Related concepts
User-defined file system
Disk management
Independent disk pools

Planning setup for journal receivers

The following topics provide information to plan configuration for journal receivers. They provide
information about each option that you can select for journal receivers.

Disk pool assignment for journal receivers
Placing journal receivers in a different disk pool from the journaled objects may prevent performance
bottlenecks.

Before you place the journal receiver in a library basic disk pool, you must first create the library for the
journal receiver in the disk pool.

You can only place a journal receiver in an independent disk pool if the independent disk poolis library
capable. If you are placing the journal receiver in a switchable independent disk pool, you must place it in
the same disk pool group as the journal and the object you are journaling. Manage disk units in disk pools
has more information about disk pools. The Independent disk pools topic has detailed information about
independent disk pools.

If you are creating the journal receiver with the Create Journal Receiver (CRTJRNRCV) command, you can
use the ASP parameter to allocate storage space for the journal receiver in a different disk pool (ASP) than
the library to which you assigned the journal receiver. Do this only if the disk pool is a basic nonlibrary disk
pool.

Related concepts

Managing independent disk pools

Independent disk pools

Related reference

Create Journal Receiver (CRTJRNRCV) command

Library assignment for journal receivers
When you create a journal receiver, you specify a qualified name that includes the library for the receiver.
The library must exist before you create the journal receiver.

You can assign a library from either the New Journal dialog in System i Navigator or with the Create
Journal Receiver (CRTIRNRCV) command.

Your journals and journal receivers can be in different libraries. If they are, you must ensure that the
library that will contain the journal receivers is on the system before restoring the journal. Ensuring this
will also ensure that the journal receiver is created in the desired library, since a journal receiver is
created when the journal is restored. Only the library needs to be on the system, not the journal receivers
in that library. Also, you will want to save the library with the journal receivers last (after all journaled
objects have been saved) to ensure that all the journal entries recording the object saves will be on media.

Refer to the Correct order for restoration of journaled objects link below for additional considerations.

Related tasks

Correct order for restoration of journaled objects

You must restore journals and their associated objects in the correct order when not using deferred
journaling support.

Related reference
Create Journal Receiver (CRTJRNRCV) command

30 IBMi: Journal management

Naming conventions for journal receivers
When you create a journal receiver either with System i Navigator or the Create Journal Receiver
(CRTJIRNRCV) command, you assign a hame to the journal receiver.

When you use System i Navigator or the Change Journal (CHGJRN) command to detach the current
journal receiver and create and attach a new receiver, you can assign a name or have the system generate
one. If you use system journal-receiver management, the system generates the name when it detaches a
receiver and creates and attaches a new one.

If you plan to have more than one journal on your system, use a naming convention that links each journal
with its associated receiver.

To simplify recovery and avoid confusion, make each journal receiver name unique for your entire system,
not unique within a library. If you have two journal receivers with the same name in different libraries and
they both become damaged, the reclaim storage operation renames both journal receivers when they are
placed in the QRCL library. When you use the Move Object (MOVOBJ) command for a journal or journal
receiver in the QRCL library, you can move an object from QRCL back to its original library. You cannot
change the name of the journal or the journal receiver.

When you detach the receiver from the journal and attach a new one, you can have the system generate
the name for the new receiver by incrementing the previous receiver name. If you use system change-
journal management by specifying MNGRCV(*SYSTEM) for the journal, the system also generates a new
receiver name when it changes journal receivers. The default for the Create Journal (CRTIRN) command is
to use system change-journal management.

The following table shows the rules the system uses to generate a new receiver name. It applies these
rules in the sequence shown in the table.

Current name System action Example
Last 4 characters are numeric. Adds 1 DSTR0O001 to DSTR0002
Last character is not numeric. Truncates the name to 6 DSTRCVR to DSTRCV0001
characters, if necessary. Adds
0001
Last character is numeric. Last Adds 1 DSTRO1 to DSTRO2

non-numeric character is in
position 5 or less.

Last character is numeric. Last Truncates to 6 characters, if DSTRCVRO1 to DSTRCV0001
non-numeric character is in necessary. Adds 0001.
position 6 or higher.

If you restore a journal to your system, the system creates a new journal receiver and attaches it to the
journal. The system generates a name for the new journal receiver based on the name of the journal
receiver that was attached when the journal was saved. The following table shows the rules the system
uses to generate a new receiver name when you restore a journal:

Current name System action Example

Last 4 or more characters are Adds 1 to the leftmost digit of the | DSTR0001 to DSTR1001

numeric. numeric portion.

Last character is not numeric. Truncates to six characters, if DSTRCVR to DSTRCV1000.
necessary. Adds 1000.

Ending numeric portion is less Pads the left portion of the DSTRCVO01 to DSTRCV1001.

than 4 digits. numeric portion with zeroes to

create a 4-digit suffix. Adds 1 to
the leftmost digit.

Journal management 31

If the name generated by the system is the same as the name of a journal receiver already on the system,
the system adds 1 to the name until it creates a name that is not a duplicate. For example, assume a
journal receiver named RCV1 was attached when the journal was saved. When the journal is restored,
the system attempts to create a new journal receiver named RCV1001. If that name already exists, the

system tries the name RCV1002.

The following table shows examples of how the system generates new receiver names:

Last journal receiver known to | Created by change journal? Created by restoring journal
the system?

A A0001 A1000
ABCDEF ABCDEF0001 ABCDEF1000
ABCDEFG ABCDEF00013 ABCDEF10003
ABCDEF1234 ABCDEF1235 ABCDEF2234
A0001 A0002 A1001

Al A2 A1001

A9 Al10 A1009
ABCDEF7 ABCDEF00013 ABCDEF10073
ABCDEF9999 Error® ABCDEF0999
A1B15 Al1B16 A1B1015
Notes:

11f the journal exists on the system, the last journal receiver known to the system is the journal receiver
that is currently attached. If the journal does not exist, the last journal receiver known to the system is
the journal receiver that was attached when the journal was saved.

2Ejther when a user issues the CHGIRN command with JRNRCV(*GEN) or when the journal is changed
by system change-journal management.

3The last character of the current name is dropped because it exceeds 6 characters.

41f the journal is set up as MNGRCV(*SYSTEM), the receiver name wraps around to 0's (ABCDEF0000). If
the journal is set up as MNGRCV(*USER), an error occurs because adding 1 to 9999 causes an overflow
condition.

Related concepts

Manual versus system journal-receiver management

When you create a journal with System i Navigator or the Create Journal (CRTIRN) command, you can
select to have either system managed or user managed journal receivers.

Threshold (disk space) for journal receivers

When you create a journal receiver with System i Navigator or the Create Journal Receiver (CRTJRNRCV)
command, you specify a disk space threshold that indicates when you want the system to warn you or
take action.

On the CHGJRN command, you can use the Journal Receiver Threshold (THRESHOLD) parameter to
change the next receiver's threshold when specified in combination with JRNRCV(*GEN).

When the receiver reaches that threshold, the system takes the action specified in the manage receiver
(MNGRCV) parameter for the journal. The default storage threshold is 1 500 000 KB.

In specifying a storage threshold, you need to balance the amount of space that you have available with
the additional system resources that are used to change journal receivers frequently.

32 IBMi: Journal management

Related concepts

Receiver size options for journals

A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTIRN) command, you can
select to have either system managed or user managed journal receivers.

Related tasks

Methods to estimate the size of a journal receiver
You can estimate the effect that a journal receiver has on auxiliary storage.

Related reference
Create Journal Receiver (CRTIJRNRCV) command

Basing the size on your available auxiliary storage
This topic lists the steps necessary to determine a receiver threshold, based on the amount of auxiliary
storage available for use.

Base the size on your available auxiliary storage:

1. Calculate the amount of auxiliary storage space that you have available in the user ASP for the journal
receiver.

2. Assign a receiver threshold that is 75 to 80 percent of that space.

Basing the size on how often you want to change journal receivers
This topic lists the steps necessary to determine a receiver threshold, based on how often you want to
change journal receivers.

Base the size on how often you want to change journal receivers:

1. Use the one of the methods described in Methods to estimate the size of a journal receiver to calculate
how large your receiver can be for a day. If you are just journaling database physical files, you can use
the Journal receiver calculator to estimate the size of your journal receiver.

2. Determine how many times a day you will detach and save the journal receiver.
3. Divide the result of step 1 by the result of step 2. This is your receiver threshold.

Do not make the journal receiver size too small, or the system will spend too much resource changing
journal receivers or sending threshold messages. To avoid possible problems with a journal receiver
exceeding the maximum size allowed on the system, specify a threshold for the receiver of no more than
900 000 000 KB if you specify a maximum receiver-size option for the associated journal. Otherwise,
specify a threshold of no more than 1 441 000 KB.

Manual versus system journal-receiver management discusses options for managing your journal
receivers.

Security for journal receivers
If a journal receiver has confidential data, someone with authority to that journal receiver could possibly
display that confidential data.

When you create a journal receiver, you specify the authority that all users on the system have to access it
(public authority). The default authority for the Create Journal Receivexr (CRTJIRNRCV) command
is *LIBCRTAUT, which means the system uses the value of the create authority (CRTAUT) parameter for
the journal receiver's library.

Journal receivers contain copies of changes from all objects being journaled. Someone with access to the
journal receiver could display confidential data. The authority to a journal receiver must be as strict as the
authority for the most confidential object that is being journaled.

Journal management 33

You do not need any authority to the journal or to the journal receiver to use an object that is journaled.
Authority to the journal receiver is checked only when using commands that operate directly on the
receiver. The authority you set for the journal receiver has no effect on the people using the journaled
objects.

Related concepts

Security

Related reference

Create Journal Receiver (CRTJRNRCV) command
Related information

Security Reference

Planning setup for journals

The following topics provide information to plan configuration for journals. They provide information about
each option that you can select for journal.

Disk pool assignment for journals

If you want to place the journal in a library basic disk pool, you must first create the library for the journal
in the disk pool. If you use a library basic disk pool, the journal and all the objects you are journaling to it
must be in the same library basic disk pool.

You can only place a journal in an independent disk pool if the independent disk pool is library capable.
If you are placing the journal in a switchable independent disk pool, you must place it in the same disk
pool group as the journal receiver associated with the journal. Manage disk units in disk pools has more
information about disk pools. The Independent disk pools topic has information about independent disk
pools.

If you want to place the journal in a non library basic disk pool, you must first create the library for the
journal in the system disk pool. If the journalis in a non library basic disk pool, all the objects being
journaled to it must be in the system disk pool.

If you are creating the journal with the Create Journal (CRTIRN) command, you can use the ASP
parameter to allocate storage space for the journal in a different disk pool (ASP) than the library to
which you assigned the journal. Do this only if the disk pool is a basic nonlibrary disk pool.

Related concepts

Managing independent disk pools
Independent disk pools

Related reference

Create Journal (CRTIRN) command

Library assignment for journals
When you create a journal, you specify a qualified name that includes the library for the journal. The
library must exist before you create the journal.

You can assign a library from either System i Navigator or with the Create Journal (CRTIJRN) command.

Related reference
Create Journal (CRTIRN) command

Naming conventions for journals

When you create a journal with System i Navigator or the Create Journal (CRTIRN) command, you assign a
name to it. If you plan to have more than one journal on your system, use a naming convention that links
each journal with its associated receiver.

To simplify recovery and avoid confusion, make each journal name unique for your entire system, not
unique within a library. If you have two journals with the same name in different libraries and they both
become damaged, the reclaim storage operation renames both journals when they are placed in the QRCL
library. When you use the Move Object (MOVOBJ) command for a journal in the QRCL library, you can

34 IBMi: Journal management

change the name of the library back to the original library name. You cannot change the name of the
journal itself. In this case, you would not be able to recover your journal from QRCL since its name has
been changed.

Naming conventions to ensure restore sequence

Name the libraries for the journals, objects, and journal receivers to ensure that the objects are restored
in the correct order. A naming convention will ensure that the system automatically starts journaling
after a restore operation. To ensure that journaling is automatically started again, the journals must be
restored before the objects being journaled, unless defer object journaling during restore is specified. (If
the journals and associated objects are in the same library, then the system automatically restores the
objects in the correct order.)

If you start the name of the library for the journal with a special character, such as #, $, or @, the system
will restore the library for the journal before the library for the objects. This is because in normal sort
sequence, special characters appear before alphabetic characters.

When the journals and associated objects are in different libraries, you must ensure that the objects are
restored in the correct order.

Since independent file system objects do not exist in a library, your restore processing must ensure
the objects are restored in the correct order. That is, you must restore your libraries which contain the
journals before restoring the independent file system objects that were journaled to that journal.

Related concepts

Deferring object journaling during restore

Using deferred journaling support allows the system to manage the reestablishment of journaling of
objects after a restore.

Related reference
Create Journal (CRTIJRN) command

Journal and journal receiver association

When you create a journal, you must specify the name of the journal receiver to be attached to it. If you
are using the Create Journal (CRTIRN) command to create the journal, the journal receiver must exist
before you can create the journal.

The receiver that you attach may not have been previously attached to a different journal or have been
interrupted while being attached to any journal. You can specify up to two journal receivers, but the
system ignores the second receiver.

With System i Navigator, you simply create the journal. When you create the journal, System i Navigator
creates the journal receiver in the library you specify in the New Journal dialog.

Related reference
Create Journal (CRTIJRN) command

Journal message queue

When you create or change a journal, you can specify where the system sends messages that are
associated with the journal. In addition, you can create a program to monitor this message queue and
handle any messages associated with the journal. The system also sends messages that are related to the
remote journal function to this message queue.

A common use for this message queue is to handle threshold messages. When you create a journal
receiver, you can specify a storage threshold. If you choose to change journal receivers yourself, you can
specify where the system sends messages when the journal receiver exceeds its storage threshold. You
can create a special message queue for this purpose and create a program to monitor the message queue
for message CPF7099. When the message is received, the program can, for example, detach the receiver
and save it.

Journal management 35

If you specify that the system manages the journal receiver, the system does not send a threshold
message. Instead, when the system automatically changes the journal receiver, it sends message
CPF7020, which indicates that it successfully detached the journal receiver.

There are other messages which are sent to this journal message queue related to processing for the
Delete Receiver (DLTRCV) option of the Create Journal (CRTIJRN) command.

For IBM Navigator for i, you select the message queue in the Journal Properties dialog. For the
character-based interface, you can select the message queue with the Create Journal (CRTIRN) or
Change Journal (CHGJRN) command.

Related concepts

Threshold (disk space) for journal receivers

When you create a journal receiver with System i Navigator or the Create Journal Receiver (CRTJRNRCV)
command, you specify a disk space threshold that indicates when you want the system to warn you or
take action.

Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTIRN) command, you can
select to have either system managed or user managed journal receivers.

Related tasks

Deleting journal receivers
Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal
management task is to delete journal receivers after you no longer need them.

Related reference
Create Journal (CRTIRN) command
Change Journal (CHGJRN) command

Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTIRN) command, you can
select to have either system managed or user managed journal receivers.

The default for the CRTIRN command is to have the system manage the journal receivers.

User journal-receiver management

If you specify user journal receiver management, you are responsible for changing the journal receiver
when it approaches its storage threshold. If you choose this option, you can have the system send a
message to a message queue when the journal receiver approaches its storage threshold.

System journal-receiver management

If you use system journal-receiver management, you can avoid having to do some journal management
chores. However, if you are journaling for recovery purposes, you need to ensure that you save all journal
receivers that have not been saved, not just the currently attached receiver. Also, if you are journaling for
recovery purposes, be sure to specify that the system does not automatically delete receivers when no
longer needed. Automatic deletion of journal receivers describes this option.

If you use system journal-receiver management, you must ensure that your environment is suitable
and that you regularly check the QSYSOPR message queue and the message queues assigned to your
journals.

If the system cannot complete the change journal operation because it cannot obtain the necessary locks,
it retries every 10 minutes (or as specified by the MNGRCVDLY parameter). It sends messages (CPI70E5)
to the journal's message queue and to the QSYSOPR message queue. If this occurs, you may want to
determine why the operation cannot be performed and either correct the condition or swap the journal
receiver your self with System i Navigator or the CHGIJRN command.

If the system cannot complete the change journal operation for any reason other than lock conflicts,
it temporarily discontinues system journal-receiver management for that journal and sends a message

36 IBMi: Journal management

(CPI70E3) to the message queue assigned to the journal or to the QSYSOPR message queue. This
might occur because a journal receiver already exists with the name that it would generate. Look at the
messages in the QHST job log to determine the problem. After you correct the problem, perform a swap
journal operation to do the following:

« Create a new journal receiver
« Detach the current receiver and attach a new journal receiver
« The system then resumes system journal-receiver management.

System journal-receiver management when you restart the system

When you restart the system or vary on an independent disk pool, the system performs a CHGIRN
command to change the journal receiver and reset the journal sequence number.

Note: If the journal has *MAXOPT3 specified as a receiver size option, the sequence number is not
reset when you restart the system or vary on an independent disk pool unless the sequence number is
approaching the maximum sequence number allowed.

Also, if the journal is attached while a maximum receiver-size option is specified, the system attempts to
perform a CHGJRN command to reset the sequence number when the following is true:

« When the sequence number exceeds 9 900 000 000 if RCVSIZOPT(*MAXOPT1) or RCVSIZOPT
(*MAXOPT?2) is in effect for the journal.

« When the sequence number exceeds 18 446 644 000 000 000 000 if RCVSIZOPT(*MAXOPT3) is in
effect for the journal.

For all other journal receivers, the system attempts this CHGIJRN when the sequence number exceeds
2147 000 000.

The system does not reset the journal sequence number when you restart the system or vary on an
independent disk pool if the entries in the receiver may be needed for commitment control recovery.

Delaying automatic journal change

If you use the CRTIRN or CHGIRN command, you can use the Manage Receiver Delay Time (MNGRCVDLY)
parameter. When you use system journal-receiver management for a journal, if the system cannot allocate
an object needed to attach a new journal receiver to the journal, it will wait the length of time that you
specify in the MNGRCVDLY parameter before its next attempt to attach the new journal receiver. If you do
not specify this parameter, the system will wait ten minutes, which is the default.

The following topics have information related to management of journal receivers:

« Automatic deletion of journal receivers

Threshold (disk space) for journal receivers
« Swap journal receivers
» Receiver size options for journals

Related concepts

Automatic deletion of journal receivers

If you choose system journal receiver management, you can also have the system delete journal receivers
that are no longer needed for recovery. You can only specify this if you are using system journal receiver
management.

Threshold (disk space) for journal receivers

When you create a journal receiver with System i Navigator or the Create Journal Receiver (CRTJRNRCV)
command, you specify a disk space threshold that indicates when you want the system to warn you or
take action.

Receiver size options for journals
A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and

Journal management 37

file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

Related tasks

Swapping journal receivers

An important task for journal management is to swap journal receivers. You typically swap journal
receivers when they reach their storage threshold. You can swap journal receivers either with IBM
Navigator for i or with the Change Journal (CHGIRN) command. If you use system journal-receiver
management, the system changes journal receivers for you.

Related reference
Create Journal (CRTIRN) command

Automatic deletion of journal receivers

If you choose system journal receiver management, you can also have the system delete journal receivers
that are no longer needed for recovery. You can only specify this if you are using system journal receiver
management.

The system can only evaluate whether a receiver is needed for its own recovery functions, such as
recovering access paths or rolling back committed changes. It cannot determine whether a receiver is
needed to apply or remove journaled changes.

Note: Use automatic deletion of journal receivers with care if you use save-while-active operations to
save objects before they reach a commitment boundary. Ensure that you save the journal receivers before
the system deletes them. If an object is saved before it reaches a commitment boundary it can have
partial transactions. To avoid data loss you must have access to the journal receivers that were attached
during the save-while-active operation when you restore the objects with partial transactions.

The system will automatically delete journal receivers if you do one of the following:

« Specify Delete receivers when no longer needed in the IBM Navigator for i Change Receivers or
Journal Properties dialogs.
« Specify DLTRCV (*YES) in the Create Journal (CRTIRN) or Change journal (CHGJIRN) commands.

However, even if you select one of the previous items, the system cannot delete the journal receiver if any
of the following conditions is true:

« An exit program that is registered for the Delete Journal Receiver exit point (QIBM_QJO_DLT_JRNRCV)
indicates that the receiver is not eligible for deletion.

A journal has remote journals associated with it, and one or more of the associated remote journals
does not have a full copy of this receiver.

- The system could not get the appropriate locks that are required to complete the operation.

The exit program registration facility was not available to determine if any exit programs were
registered.

If you use system delete-receiver support, you must ensure that your environment is suitable. You must
also regularly check the QSYSOPR message queue and the message queues that are assigned to your
journals.

« If the system cannot complete the DLTJRNRCV command for any of the above reasons, it retries every
10 minutes (or the value you specify on the DLTRCVDLY parameter). It sends a CPI70E6 message
to the journal's message queue, and to QSYSOPR message queue. If this occurs, you might want
to determine why the operation cannot be performed and either correct the condition or run the
DLTIRNRCV command.

« If the system cannot complete the command for any other reason, it sends a CPI70E1 message to the
message queue that is assigned to the journal. If you have not specifically assighed a message queue to
the journal, the message will be sent to the QSYSOPR message queue. Look at the messages in QHST
to determine the problem. After you correct the problem, use the DLTJRNRCV command on the specific
journal receiver.

38 IBMi: Journal management

Do not select to have the detached journal receiver deleted if you might need it for recovery or if you want
to save it before it is deleted. The system does not save the journal receiver before deleting it. The system
does not issue the warning message (CPA7025) that it sends if a user tries to delete a receiver that has
not been saved.

Examples of when you might specify automatic journal deletion include:

 You are journaling only because it is required to use commitment control.
« You are journaling for explicit access-path protection.

« You are replicating the journal receiver to another system through the remote journal function, and that
system is providing the backup copy of the journal receiver.

Delaying the next attempt to delete a journal receiver

If you are using the CRTJRN or CHGJRN command, you can use the Delete Receiver Delay Time
(DLTRCVDLY) parameter. The system waits the time you specify (in minutes) with the DLTRCVDLY
parameter before its next attempt to delete a journal receiver that is associated with the journal when one
of the following is true:

« The system cannot allocate a needed object.
 You are using an exit program, and the exit program votes no.
 You are using remote journaling and the receiver has not been replicated to all the remote journals.

If you do not specify this parameter, the system waits ten minutes, which is the default.

Save your system while it is active has instructions for saving an object with transactions in a partial state.
Example: Recover objects with partial transactions has instructions for recovering objects with partial
transactions.

Related concepts

Manual versus system journal-receiver management

When you create a journal with System i Navigator or the Create Journal (CRTIRN) command, you can
select to have either system managed or user managed journal receivers.

Related tasks

Save your server while it is active

Example: Recovering objects with partial transactions

If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Related reference

Create Journal (CRTIRN) command

Change journal (CHGIRN) command

Delete Journal Receiver exit point (QIBM_QJO_DLT_JRNRCV) API

Receiver size options for journals

A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

When you create a journal with the Create Journal (CRTIRN) command, the Change Journal (CHGJIRN)
command, or IBM Navigator for i, you can specify options that limit the data that gets deposited into these
journal entries, or increases the maximum allowable size for the journal receiver. These options are as
follows:

« The RCVSIZOPT parameter of the CRTJRN command
« The RCVSIZOPT parameter of the CHGIJRN command

Journal management 39

« The Change Receivers dialog box of Navigator for i
« The Journal Properties dialog box of Navigator for i

Note: Specifying *SYSDFT for the RCVSIZOPT parameter is the same as specifying
RCVSIZOPT(*MAXOPT2 *RMVINTENT).

The following subtopics explain the benefits of some of the values for receiver size options.

Remove internal entries

When you specify to remove internal entries the system periodically removes internal journal entries from
the attached journal receiver when it no longer needs them for recovery purposes. Removing internal
entries might have a slight impact on system performance, because the system has to manage these
internal entries separately and periodically remove them.

To remove internal entries specify the RCVSIZOPT(*RMVINTENT) parameter. The Navigator for i
equivalent to the RCVSIZOPT(*RMVINTENT) parameter is Remove internal entries in the Change
Receivers or Journal Properties dialog box.

Specifying to remove internal entries has these benefits:

« It reduces the impact that SMAPP might have on journal receivers for user-created journals.
« It reduces the size of journal receivers that are on the system.

« It reduces the amount of time and media required to save journal receivers, because unnecessary
entries are not saved.

« It reduces the time that it takes to apply journal entries, because the system does not have to evaluate
unnecessary entries.

« It reduces the communications impact if the remote journal function is being used because
unnecessary entries are not sent.

Minimize fixed-length portion of entries
Minimizing the fixed-length portion of entries has the following effects:

« Allinformation selectable by the FIXLENDTA parameter is not deposited in the entries.

= Minimizing the fixed-length portion of entries reduces auxiliary storage space and some CPU time as
well.

« When you view journal entries with this information removed, the displayed value is *OMITTED, blanks,
or zeros, depending on the type of data.

- To determine if a journal receiver was attached to a journal while minimizing the fixed-length portion of
entries, use the Display Journal Receiver Attributes DSPJRNRCVA command display.

« Do not use minimize the fixed-length portion of entries if you require an audit trail.

- Minimizing the fixed-length portion of entries limits the selection criteria you can use on these
commands and APIs:

— Apply Journaled Changes (APYJRNCHG) command

— Apply Journaled Changes Extend (APYJRNCHGX) command
— Compare Journal Images (CMPIJRNIMG) command

— Display Journal (DSPJRN) command

— Receive Journal Entry (RCVIRNE) command

— Remove Journaled Changes (RMVIJRNCHG) command

— Retrieve Journal Entry (RTVJRNE) command

— Retrieve Journal Entries (QjoRetrieveJournalEntries) API

« Minimizing the fixed-length portion of entries reduces the communications impact if the remote journal
function is being used because unnecessary data is not sent.

40 IBMi: Journal management

To minimize the fixed-length portion of entries specify RCVSIZOPT(*MINFIXLEN). The Navigator for i
equivalent to RCVSIZOPT(*MINFIXLEN) is Minimize fixed portion of entries in the Create Journal or
Change Receivers dialog.

If you are using minimizing the fixed-length portion of entries, you cannot use the FIXLENDTA parameter.
See Fixed-length options for journal entries for more information about the FIXLENDTA parameter.

Maximum receiver-size options

Use the following options to specify the maximum allowable size for your journal receivers and to specify
the largest allowable sequence numbers for journal entries. The Navigator for i equivalent is Receiver
Maximum Options in the Create Journal or Change Receivers dialog.

RCVSIZOPT(*SYSDFT)
Using RCVSIZOPT(*SYSDFT) is currently the same as specifying RCVSIZOPT(*RMVINTENT
*MAXOPT2). This is the default.

RCVSIZOPT(*MAXOPT1)
Use RCVSIZOPT(*MAXOPT1) to set the maximum size of a journal receiver attached to your journal
to approximately one terabyte (1 099 511 627 776 bytes) and a maximum sequence number of
9 999 999 999. Additionally, the maximum size of the journal entry which can be deposited is
15 761 440 bytes.

RCVSIZOPT(*MAXOPT2)
Use RCVSIZOPT(*MAXOPT2) to set the maximum size of a journal receiver attached to your journal
to approximately one terabyte (1 099 511 627 776 bytes) and a maximum sequence number of
9 999 999 999. However, with RCVSIZOPT(*MAXOPT2), the system can deposit a journal entry as
large as 4 000 000 000 bytes.

RCVSIZOPT(*MAXOPT3)
Use RCVSIZOPT(*MAXOPT3) to set the maximum size of a journal receiver attached to your journal
to approximately one terabyte (1 099 511 627 776 bytes). In addition, with RCVSIZOPT(*MAXOPT3)
the journal receiver can have a maximum sequence number of 18 446 744 073 709 551 600. With
RCVSIZOPT(*MAXOPT3), the system can deposit a journal entry as large as 4 000 000 000 bytes. You
cannot save or restore these journal receivers to any releases before V5R3MO. Nor can you replicate
them to any remote journals on any systems at a release before V5R3MO.

If you use RCVSIZOPT(*MAXOPT3) you must use the FROMENTLRG and TOENTLRG parameters to
specify a journal entry sequence number larger than 9 999 999 999 when you perform the following
commands:

» APYJRNCHG
APYJRNCHGX
+ CMPJRNIMG
« DSPJRN

« RCVIRNE

* RMVIRNCHG
« RTVIRNE

Related concepts

Fixed-length options for journal entries

You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTIRN) and Change
Journal (CHGJRN) commands to audit security related activity for journaled objects on your system.
The IBM Navigator for i equivalent function is Fixed length data to include on the Create Journal and
Change Receivers dialogs.

Related reference

Create Journal (CRTJRN) command

Change Journal (CHGJRN) command

Change Journal Attributes (CHGIJRNA) command

Journal management 41

Display Journal Receiver Attributes (DSPJRNRCVA) command
Apply Journaled Changes (APYJRNCHG) command

Apply Journaled Changes Extend (APYJRNCHGX) command
Compare Journal Images (CMPJRNIMG) command

Display Journal (DSPJRN) command

Receive Journal Entry (RCVIRNE) command

Remove Journaled Changes (RMVJRNCHG) command
Retrieve Journal Entry (RTVJRNE) command

Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Journal object limit
The journal object limit (JRNOBJLMT) parameter allows you to set the maximum number of objects that
will be allowed to be journaled to the journal.

The journaled object limit is the maximum number of objects that can be journaled to one journal. You can
set the journal object limit to either 250 000 or 10 00 000. Use the Journal Object Limit (JRNOBJLMT)
parameter on the Create Journal (CRTIRN) or Change Journal (CHGIRN) command to set the maximum
number of journaled objects.

The value *MAX10M can only be specified for the Journal Object Limit (JRNOBJILMT) parameter if the
Receiver Size Option (RCVSIZOPT) parameter has one of the receiver maximum values specified, or if
RCVSIZOPT is *SYSDFT.

Some factors to consider in determining the journal object limit are:

- Number of objects that would be actively changing at any given time
« The impact journaling has on the performance of your system

« Importance in being able to get some parallelism at IPL, run-time, hot-site apply, and high-availability
(HA) replay time

« Complexity of managing your journal environment with multiple journals

« Complexity of your hot-site recovery procedures if you have dependencies between objects journaled to
different journals

« Number of objects you may need to journal in the future

« Ajournal employing the *MAX10M attribute cannot be saved and restored to any releases prior to V5R4
and it can not be replicated to any remote journals on any systems prior to V5R4.

« Once you have chosen the *MAX10M option, you cannot switch back to the *MAX250K value.

« If you choose the *MAX10M option, remote journaling will be ended for any remote journal on a release
prior to V5R4 and you will not be able to restart it.

« Increasing the quantity of objects associated with a single journal may increase your IPL time,
independent ASP vary on time, or disaster recovery time. As a general rule, if the number of actively
changing objects is likely to be greater than 5 000, consider journaling some of these objects to a
separate journal. The larger the number of actively changing objects for a given journal at system
termination, the longer it will take to recover the journal at IPL or vary on of an independent ASP.

*MAX250K

The maximum number of objects that can be journaled to one journal is 250 000. This is the default value.
*MAX10M

The maximum number of objects that can be journaled to a single journal is 20 000 000.

If the number of currently journaled objects is greater than the maximum number of journaled objects, a
start journal request will fail.

Note: A new receiver must be attached at the same time as this value is changed.

42 IBM i: Journal management

Minimized entry-specific data for journal entries
On the Create Journal (CRTIRN) and Change Journal (CHGIRN) commands, you can specify to allow for
the deposit of minimized journal entries. This will decrease the size of your journal entries.

When you specify the Minimized Entry Specific Data (MINENTDTA) parameter for an object type, the
entry-specific data for the entries of those object types can be minimized. You can minimize journal
entries for database physical files and data areas.

The system only minimizes entries if the minimized entry is smaller in size than a complete journal entry
deposit. Therefore, even if you specify this option, not all entries that are deposited will be minimized. The
Display Journal (DSPJRN) command, Receiver Journal Entry (RCVJRNE) command, Retrieve Journal Entry
(RTVIRNE) command, and QjoRetrieveJournalEntries API return data that indicates whether the entry is
actually minimized.

The *FILE, *DTAARA, and *FLDBDY values are allowed on the MINENTDTA parameter for the CRTIJRN and
CHGJRN commands and indicate the following:

*FILE
Journaled files may have journal entries deposited with minimized entry specific data. The minimizing
will not occur on field boundaries, and the entry specific data may not be viewable and may not be
used for auditing purposes. This value cannot be specified if *FLDBDY is specified.

*FLDBDY
Journaled files may have journal entries deposited with minimized entry specific data. The minimizing
will occur on field boundaries, and the entry specific data will be viewable and may be used for
auditing purposes.

« The DSPIJRN command always displays the entries which have been minimized on field boundaries
with formatting.

« The *FLDBDY value is not available in releases prior to V5R4.

*DTAARA
Journaled data areas may have journal entries deposited with minimized entry specific data.

Note: You cannot save or restore a journal receiver with minimized journal entries to any release prior to
V5R1MO, nor can they be replicated to any remote journal on a system at a release prior to V5R1MO.

The IBM Navigator for i equivalent is Minimized entry data on the Create Journal and Change Receivers
dialogs.

An optional parameter, Format minimized data (FMTMINDTA), is available on the Retrieve Journal Entries
(RTVIRNE) command, the Receive Journal Entries (RCVIJRNE) command, and the Retrieve Journal Entries
(QjoRetrieveJournalEntries) API. This parameter allows you to specify whether entry specific data which
has been minimized on field boundaries will be returned in a readable format, which allows you to
determine what changes have been made. The possible values for the FMTMINDTA parameter are *NO

or *YES, with the default being *NO. By default, the methods used by these commands provide the data

in their raw format. The RTVJRNE command will indicate whether or not *FLDBDY has been specified for
Minimized entry specific data with a value of 2" in the already existing “MINIMIZED ENTRY DATA” field for
the appropriate entry formats. *FILE and *DTAARA will appear as '1' in their fields.

Using the Display Journal (DSPJRN) command, entries are viewable to the screen, an outfile, or printed
output. The DSPIRN command will also indicate whether or not the *FLDBDY value has been specified for
Minimized entry specific data on the “Display Journal Entry” panel and will indicate a value of ‘2" in the
“Minimized entry specific data” field of the *OUTFILE and in the “Min” field of the printed output. *FILE
and *DTAARA will appear as '1' in their fields.

Related concepts

Considerations for entries which contain minimized entry-specific data
Reduce the size of journal receivers by specifying minimized entry-specific data on the Create Journal
(CRTJIRN) and Change Journal (CHGIRN) commands.

Related reference
Create Journal (CRTIJRN) command

Journal management 43

Change Journal (CHGJRN) command
Related information
Journal code finder

Example: MINENTDTA (*FLDBDY)
The following SQL script provides an example of the of the *FLDBDY value used with the Minimized entry
specific data (MINENTDTA) parameter for the CRTJRN and CHGIRN commands.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer information.

/* Setup of environment x/

create collection payroll

create table payroll/wages (employee int, wages char(10),
startdate date, benefits char(50))

create index payroll/wageix on payroll/wages (employee)

CL:STRJIRNAP FILE(PAYROLL/WAGEIX) JRN(PAYROLL/QSQJRN)

CL:CHGJIRN payroll/QSQJIRN jrnrcv(*GEN) minentdta(xFLDBDY)

/* Changes against files to be audited x/

insert into payroll/wages values (1001, '22.00/hour',
'01/01/2003', 'Qualifies for health benefits, 401k match')

insert into payroll/wages values (1002, '18.00/hour',
'10/01/2004', 'Qualifies for health benefits')

update payroll/wages set wages '24.50/hour' where employee

update payroll/wages set wages '19.00/hour' where employee

1001
1002

/* Auditing procedure *x/
CL:DSPJRN JRN(PAYROLL/QSQJRN) JRNCDE((R)) OUTPUT(*OUTFILE) OUTFILFMT (*TYPE5)
OUTFILE(PAYROLL/DSPJRNOUT) ENTDTALEN(*CALC) NULLINDLEN(4)
create table payroll/auditfile (fixeddata char(555), nvi char(4),
employee int, wages char(10), startdate char(10), benefits char(50))
CL:CPYF FROMFILE(PAYROLL/DSPJRNOUT) TOFILE(PAYROLL/AUDITFILE)
MBROPT (*ADD) OUTFMT (*¥HEX) FMTOPT (xNOCHK)
select nvi, employee, wages, startdate, benefits
from payroll/auditfile

Note: the NVI (Null value indicator) field houses metadata which reveals which columns
residing within the journal entry were collected and what variety of data they house.

Some columns will house null values for fields which were collected, some will house

a copy of the data deposited during the update operation, while others will house

filler values representing the default value for that column. Such filler values will
appear on behalf of those columns whose contents were not changed and were not required

to be collected. These are the same columns which did not consume space within the

journal entry because a copy of their value was not collected. In order to recognize

the difference between these three varieties, refer to the table below. The first NVI
character corresponds to the first field (EMPLOYEE), the second NVI character

corresponds to the second field (WAGES), etc. When the NVI value is a '0', it signifies
that an exact copy of the field is present. When the NVI value is a '1', the corresponding
field houses a null. When the NVI value is a '9', the corresponding field was not collected
(because it was minimized) and, therefore, what will be displayed is the default value.

NVI EMPLOYEE WAGES STARTDATE BENEFITS

0000 1,001 22.00/hour 2004-01-01 Qualifies for health benefits, 401k match
0000 1,002 18.00/hour 2004-10-01 Qualifies for health benefits

0099 1,001 22.00/hour 0001-01-01

0099 1,001 24.50/hour 0001-01-01

0099 1,002 18.00/hour 0001-01-01

0099 1,002 19.00/hour 0001-01-01

The first 2 entries are for the inserts. The second 2 entries are the update before image and update after
image for the first update. The last 2 entries are the update before image and update after image for the
final update. Notice that the update entries have real data for the first 2 fields and default data for the
second 2 fields as indicated by the null value indicators. The first field is collected because it is a key
field for a journaled IX over this table. The second field is collected because the data within the field has
changed. Any of the fixed journal entry information (for example, sequence number, journal code) can
also be included by either substringing the fixed field in the audit file or creating the audit file with fields
formatted such as the *TYPES outfile.

44 IBM i: Journal management

Customization of the journal recovery count

This topic is about using the Journal Recovery Count (JRNRCYCNT) parameter in the CHGIJRN command
to set the journal recovery ratio for each journal. The IBM Navigator for i equivalent function is the
Journal recovery count on the Journal Properties dialog box.

This parameter will indicate how many journal entries can exist between the last deposited entry and the
oldest forced entry for a journaled object. A value between 10 000 and 2 000 000 000 will be allowed. A
value of *SYSDFT will also be allowed to reset the journal's recovery count to the system default journal
recovery count.

The journal recovery count allows you to choose between faster abnormal IPL recovery and decreased
run time processing. Specifying a smaller value decreases the number of changes that would need to
be recovered from this journal during an abnormal IPL by increasing the frequency with which changed
objects are forced. Specifying a larger value increases the number of changes that would need to be
recovered for this journal during an abnormal IPL by decreasing the frequency with which changed
objects are forced.

Note: Changing the journal recovery count value may affect overall system performance as it affects the
utilization of auxiliary storage devices.

The WRKIRNA command indicates the Journal Recovery Count on the panel display and in the printed
output. A value of *SYSDFT displays if the system default journal recovery count is being used. All journals
are created with the system default journal recovery count, and if a value other than the system default
(*SYSDFT) is specified, the system default journal recovery count will no longer be in effect for the journal.
The Retrieve Journal Information API will also return the Journal Recovery Count.

The operating system is shipped with a system default journal recovery count of 250 000. The QJOCHRVC
API changes the system default journal recovery count for all newly created journals on the system and all
existing journals that have the system default (*SYSDFT) specified for their journal recovery count.

For additional information on Journal Recovery Count customization see:

« Change Journal Attributes (CHGJRNA) command
« Change Journal Recovery Count (QJOCHRVC) API

Fixed-length options for journal entries

You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTIRN) and Change
Journal (CHGJIRN) commands to audit security related activity for journaled objects on your system.
The IBM Navigator for i equivalent function is Fixed length data to include on the Create Journal and
Change Receivers dialogs.

With the FIXLENDTA parameter, you can elect to include security related information in the fixed-length
portion of the journal entries. You cannot use the FIXLENDTA parameter and Minimize fixed-length
portion of entries at the same time.

Fixed-length options

With the FIXLENDTA parameter, you can specify that the following data is included in the journal entries
that are deposited into the attached journal receiver:

Job name
Use the *JOB value to specify the job name.

User profile name
Use the *USR value to specify the effective user profile name.

Program name
Use the *PGM value to specify the program name.

Program library name
Use the *PGMLIB value to specify the program library name and the auxiliary storage pool device
name that contains the program library.

Journal management 45

System sequence number
Use the *SYSSEQ value to specify the system sequence number. The system sequence number gives a
relative sequence to all journal entries in all journal receivers on the system.

Remote address
Use the *RMTADR value to specify the remote address, the address family and the remote port.

Thread identifier
Use the *THD value to specify the thread identifier. The thread identifier helps distinguish between
multiple threads running in the same job.

Logical unit of work identifier
Use the *LUW value to specify the logical unit of work identifier. The logical unit of work identifies work
related to specific commit cycles.

Transaction identifier
Use the *XID value to specify the transaction identifier. The transaction identifier identifies
transactions related to specific commit cycles.

Related concepts

Receiver size options for journals

A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

Related reference
Create Journal (CRTIJRN) command
Change Journal (CHGJRN) command

Journal cache
Journal caching is a separately chargeable feature with which you can specify that the system cache
journal entries in main storage, before writing them to disk. Journal caching is option 42 of the IBM i
operating system.

After you have purchased journal caching, you can specify it with the JRNCACHE parameter on the Create
Journal (CRTIRN) or Change Journal (CHGIRN) commands. The IBM Navigator for i equivalent function is
the Cache journal entries option on the Create Journal and Journal Properties dialogs.

Journal caching provides significant performance improvement for batch applications which perform large
numbers of changes to the data portion of the journaled objects. The actions that show a performance
improvement if journal caching is enabled are as follows:

« Changes to database files from add, update, or delete operations

Changes to data areas from uses of the change data area command or API

Changes to data queues from uses of the send data queue API or the receive data queue API

Changes to integrated file system objects from various write and fclear operations on journaled stream
files

Applications using commitment control will see less improvement (commitment control already performs
some journal caching).

Journal caching modifies the behavior of traditional noncached journaling in batch. Without journal
caching, a batch job waits for each new journal entry to be written to disk. Journal caching allows most
operations to no longer be held up waiting for synchronous disk writes to the journal receiver.

Journal caching is especially useful for situations where journaling is being used to enable replication to a
second system.

It is not recommended to use journal caching if it is unacceptable to lose even one recent change in the
event of a system failure where the contents of main memory are not preserved. This type of journaling

46 IBM i: Journal management

is directed primarily toward batch jobs and may not be suitable for interactive applications where single
system recovery is the primary reason for using journaling.

Furthermore, the results from the following commands or API will not display the journal entries in the
cache:

« Display Journal (DSPJRN) command
« Retrieve Journal Entry (RTVJRNE) command
« Receive Journal Entry (RCVIRNE) command

Retrieve Journal Entries (QjoRetrieveJournalEntries) API

The Display Journal Receiver Attributes (DSPJRNRCVA) Command and the Retrieve Journal Receiver
Information (QjoRtvIrnReceiverInformation) API show the total number of journal entries in a journal
receiver. However if some of those entries are in the cache, you cannot see these journal entries
using the DSPJRN, RTVJRNE, and RCVJRNE commands, and the QjoRetrieveJournalEntries API. For
example, if there are 100 journal entries in a journal receiver, the DSPJRNRCVA command and
QjoRtvIrnReceiverInformation API show that the total number of entries is 100. However, if the last
25 entries are in the journal cache, you can only view the first 75 entries.

Journal caching also affects remote journaling. Journal entries are not sent to the remote system until
they are written from the cache to disk. Since journal entries are not sent to the target system right away,
the number of journal entries that are not confirmed are always greater than if you are not using journal
caching.

The Change Journal Attributes (CHGIRNA) command can be used to set the maximum time that the
system waits before writing journal entries to disk when journal caching is used. Setting the CACHEWAIT
time limits the loss of lingering changes when there is a lull in journal entry arrival.

Contact your service representative for more information about ordering journal caching.

Related reference

Create Journal (CRTJRN) command

Change Journal (CHGJRN) command

Change Journal Attributes (CHGIJRNA) command

Object assignment to journals

You can use one journal to manage all the objects you are journaling. Or, you can set up several journals
if groups of objects have different backup and recovery requirements. Every journal has a single attached
receiver. All journal entries for all objects being managed by the journal are written to the same journal
receiver.

When deciding how many journals to use and how to assign objects to journals, consider the following:

« Using one journal (and journal receiver) is the simplest method for managing both daily operations and
recovery.

« There is a limit of 20 000 000 objects that can be journaled to a single journal.

- If using a single journal receiver causes a performance bottleneck, you can alleviate this by placing the
journal receiver in a separate disk pool from the objects that you are journaling.

« To simplify recovery, assign objects that are used together in the same application to the same journal.

- If you are journaling database files, all the physical files underlying a logical file must be assigned to the
same journal.

« Files opened under the same commitment definition within a job can be journaled to different journals.
In commitment control, each journal is considered a local location.

« If your major applications have completely separate objects and backup schedules, separate journals
for the applications may simplify operating procedures and recovery.

- If you journal different objects for different reasons; such as recovery, auditing, or transferring
transactions to another system; you may want to separate these functions into separate journals.
However, you can assign an object to only one journal.

Journal management 47

« If the security of certain objects requires that you exclude their backup and recovery procedures from
the procedures for other objects, assign them to a separate journal, if possible.

« If you have basic disk pools with libraries, all objects assigned to a journal must be in the same disk pool
as the journal. The journal receiver may be in a different disk pool. If you place a journal in a disk pool
without libraries (non library disk pool), objects being journaled must be in the system disk pool. The
journal receiver may be in either the system disk pool or the non library disk pool with the journal.

« If you have independent disk pools, they must be library capable in order to journal objects on them.
You cannot journal objects on User-Defined File System (UDFS) independent disk pools.

Related concepts

Determining the type of disk pool in which to place journal receivers

Use disk pools (auxiliary storage pool) to control which objects are allocated to which groups of disk
units. If you are journaling many active objects to the same journal, the journal receiver can become a
performance bottleneck. One way to minimize the performance impact of journaling is to put the journal
receiver in a separate disk pool. This also provides additional protection because your objects are on
different disk units from the journal receiver, which contains a copy of changes to the objects.

Setting up journaling
This topic provides instructions on how to set up journals and journal receivers.

Setting up journaling consists of creating a journal and a journal receiver. When you create a journal, you
need the following information:

« The name of the journal.
 The library assignment of the journal.
« The journal receiver name to associate with the journal.

« Which disk pool to assign storage space for the journal (only if you are using the ASP parameter in the
CRTIRN command).

« The journal message queue.

« Whether or not to use manual or system journal-receiver management.

« Whether or not to have automatic deletion of the journal receiver.

« The receiver size options for the journal.

« The journal object limit for the journal.

« Who has authority to the journal.

« Whether or not to minimize entry-specific data (character-based interface only).
« Whether or not to use journal caching (character-based interface only).

« Whether or not to delay the next attempt to automatically change the journal receiver (character-based
interface only).

« Whether or not to delay the next attempt to automatically delete the journal receiver (character-based
interface only).

« Whether or not to include fixed-length data in the journal entries (character-based interface only).
When you create a journal receiver, you need the following information:

« The name of the journal receiver

« The disk pool assignment for journal receiver

« The storage threshold for the journal receiver

« Who has authority to the journal receiver

You can choose one of the following methods to set up journaling. For information about the difference

between the two methods, see “IBM Navigator for i versus the character-based interface for journaling
objects” on page 17.

« To set up journaling with Navigator for i, follow these steps.

48 IBM i: Journal management

1. With Navigator for i connect to the system that contains the objects you wish to journal.
2. Expand Journal Management.
3. Select Create a journal.
4. Start journaling for each object that you plan to journal.
« To set up journaling with the character-based interface, follow these steps.

1. Create the journal receiver using the Create Journal Receiver (CRTJRNRCV) command.
2. Create the journal using the Create Journal (CRTIJRN) command.
3. Start journaling for each object that you plan to journal.

Related concepts

Planning setup for journals
The following topics provide information to plan configuration for journals. They provide information about
each option that you can select for journal.

IBM Navigator for i versus the character-based interface for journaling objects

There are two environments that you can use for journal management: IBM Navigator for i and the
character-based interface. Navigator for i provides a graphical interface for journaling that is easy to use
and does not require the use of control language (CL) commands. The character-based interface requires
the use of CL commands or APIs, but has more functionality than Navigator for i. Some of this function is
also available through the System i Navigator.

Starting and ending journaling and changing journaling attributes
This topic provides instructions on how to start and end journaling for all of the object types that
journaling supports.

Related reference
Create Journal Receiver (CRTJRNRCV) command
Create Journal (CRTIRN) command

Example: Setting up journaling

This topic provides several examples of setting up journaling in the character-based interface. The first
example sets up journaling with the both the journal and receiver in the system disk pool. The second and
third examples set up journaling with the journal and journal receiver in separate basic disk pools.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer information.

Journal and receiver in system disk pool

In this example, the library $DSTIRN is in the system disk pool and has the following description:

« Type: PROD

- Disk pool of library: 1

 Create authority: *EXCLUDE

1. The $DSTIRN library already exists in the system disk pool.

2. The Create Journal Receiver (CRTJRNRCV) command creates journal receiver RCVDST1 in the
$DSTIRN library:

CRTJIRNRCV JRNRCV($DSTIRN/RCVDST1) THRESHOLD (1500000)
TEXT ('RECEIVER FOR $DSTJRN JOURNAL')

3. The journal receiver is placed in the system disk pool with the library because *LIBASP is the default
value for the ASP parameter on the CRTJRNRCV command.

4. Public authority for the journal receiver is *EXCLUDE because the Create authority value for the library
is *EXCLUDE and the default for the authority (AUT) parameter is *LIBCRTAUT.

5. The Create Journal (CRTIRN) command creates the associated local journal:

Journal management 49

CRTJIRN JRN($DSTIRN/JIRNLA) JRNRCV ($DSTIRN/RCVDSTL)
MNGRCV (*USER)

The receiver size option is *MAXOPT2 and *RMVINTENT since the RCVSIZOPT(*SYSDFT) is the default for
the CRTIRN command.

Journal receiver in a nonlibrary basic disk pool

In this example, the journal receiver is in a nonlibrary basic disk pool and the journal is in the system disk
pool.

1. The CRTIRNRCV command creates journal receiver RCVDST2 in a nonlibrary basic disk pool

CRTJIRNRCV JRNRCV($DSTIRN/RCVDST2) THRESHOLD (1000000)
ASP(2) TEXT('RECEIVER FOR $DSTJRN JOURNAL')

2. The CRTIRN command creates the local journal in the system disk pool:

CRTJIRN JRN($DSTIRN/IRNLB) IRNRCVR ($DSTIRN/RCVDST2)
MSGQ ($DSTIRN/IRNLBMSG)
MNGRCV (*USER)

3. When the receiver RCVDST2 exceeds 1 024 000 000 bytes of storage, a message (CPF7099) is sent to
the JRNLBMSG message queue in the $DSTIRN library.

4. The objects to be journaled must also be in the system disk pool.

Journal and journal receiver in basic disk pools

In this example, the libraries ARLIBR and ARLIB are in basic library disk pools and have the following
description:

ARLIBR

« Type: PROD

 Disk pool of library: 3

- Create authority: *USE

« Text description: A/R Receiver LIB
ARLIB

« Type: PROD

« Disk pool of library: 4

- Create authority: *USE

« Text description: A/R Receiver LIB

1. The CRTIRNRCV command creates journal receiver RCVDST3 in the library basic disk pool

CRTJIRNRCV JRNRCV(ARLIBR/RCVDST3) THRESHOLD (1500000)
TEXT('RECEIVER FOR ARJRN JOURNAL')

2. Because public authority is not specified, the public authority is set to *USE (the Create authority
value for the ARLIBR library).

3. The CRTIRN command creates the local journal that is associated with the RCVDST3 journal receiver:

CRTJIRN JRN(ARLIB/ARJIRN) JRNRCV(ARLIBR/RCVDST3)

When the RCVDST3 journal receiver exceeds 1 536 000 000 bytes of storage, the system creates a
new journal receiver named RCVDST4, attaches it to the journal, and sends message CPF7020 (journal
receiver detached) to the QSYSOPR message queue (the default queue).

4. All objects journaled to the ARJRN journal must be in ASP 4 because the journal is in ASP 4.

50 IBMi: Journal management

5. In this case, the database files and journal are in the same library. The journal receivers are in a library
that is saved and restored after the journal library if a single command is used, because ARLIBR comes
after ARLIB in a normal sort sequence.

Related reference
Create Journal Receiver (CRTIJRNRCV) command
Create Journal (CRTIRN) command

Starting and ending journaling and changing journaling attributes

This topic provides instructions on how to start and end journaling for all of the object types that
journaling supports.

Why you must save objects after you start journaling
After you start journaling, it is essential that you save objects that you are journaling.

It is critical to save the journaled object after journaling is started to be able to apply journaled changes.
When you start journaling an object, the system assigns a unique journal identifier (JID) to that object. If
the object is a physical database file, each member is also assigned a unique JID. If you start journaling
on a distributed file, the piece on each system has its own unique JID. The JID is part of every journal
entry added to the journal receiver for a given object. The system uses the JID to associate the journal
entry with the corresponding journaled object. The copy of the object on the save media that was saved
before it was journaled does not have the journal identifier saved with it. Therefore, if this copy of the
object is restored to the system, the journal entries cannot be associated with the object and cannot be
applied.

After you start journaling an object, do the following:

 Save the object immediately after you have started journaling it, before any changes have occurred.

 Save a physical file or a logical file after you start journaling access paths for the file. This ensures that
when you restore the file, journaling access paths is started automatically.

« If you are using distributed files, save the file separately on the systems in the node group after starting
journaling for the distributed file.

Saving these objects ensures that you can completely recover all the objects by using your saved copy
and your journal receivers.

Updating the history

If you are not using the save-while-active function, update the history for the object when you save

it so that processing for applying and removing journaled changes will have the best information for
verification. If you save the object using the SAV command, change the UPDHST value to something

other than *NO. The default value for the SAV command is to not preserve the update history. For the
other Save related commands, the default value is to preserve the update history. When you use the
save-while-active function, you do not need to update the history for the object for verification when you
apply and remove journaled changes. When you use the save-while-active function, information is saved
on the media with the object and restored when the object is restored. This extra information provides the
last save information for applying and removing journaled changes.

Saving queue contents

« To save the contents of the queue as well, one must specify QDTA((*DTAQ) on the save commands.

The JID and other journaling operations

Not only do you need the JID to apply journaled changes, other journaling operations use the JID. All
formats, except the *TYPE1, *TYPE2, and *TYPE3 formats, for the Display Journal (DSPJRN), Receive
Journal Entry (RCVIRNE), or Retrieve Journal Entry (RTVIJRNE) command include the JID for the object.

Journal management 51

The JID is also included with the *TYPEPTR and *JRNENTFMT format for the RCVJRNE command, as well
as the Retrieve Journal Entries (QjoRetrieveJournalEntries) API. You can use the Retrieve JID Information
(QJORJIDI) API to retrieve an object's name (for an object not in the integrated file system) or the file
identifier (for an object in the integrated file system), if you know its JID.

Commands for saving objects

You can use one of the following commands to save journaled objects:

Physical database files, data areas, and data queues

« Save Changed Objects (SAVCHGOBJ) and specify OBJTYPE(*object-type) OBJIRN(*YES)

« Save Object (SAVOBJ)

« Save Library (SAVLIB)

« Save (SAV)

Integrated file system objects

« SAV

See the Manually saving parts of your system topic for more information about saving journaled objects.

Related tasks
Manually saving parts of your server

Starting journaling
This topic provides information about how to start journaling for all object types.

After you have created the journal and journal receiver, you can start journaling. When journaling has been
started for an object, the system writes journal entries for all changes to the object.

The start journal command must obtain an exclusive lock on the object. However, for database physical
files and integrated file system objects, you can start journaling even if an object is open. The
recommended procedure for starting journaling is:

1. Start journaling the object.
2. Save the object. If the object is open for changing, this will be a save-while-active type save.

If you are not using the save-while-active function, it is highly recommended that you update the history
for the object when you save it so that processing for applying and removing journaled changes will have
the best information for verification. If you saved the object using the SAV command, the default value is
to not preserve the update history. Therefore, change the UPDHST value to something other than *NO.

For the other save related commands, the default value is to preserve the update history. When using
save-while-active, updating the history for the object is not needed for verification when applying and
removing journaled changes. In this case, information is saved on media with the object, and restored
when the object is restored. This extra information provides the last save information for applying and
removing journaled changes.

Normally, only the definition of a data queue is saved, not its contents. To save the contents of the queue
as well, one must specify QDTA(*DTAQ) on the save commands.

The maximum number of objects that can be associated with one journal is either 250 000 or 10 000 000.
The option of setting the journal object limit to 20 000 000 simplifies journaling because there are fewer
journals to manage, but allows for less parallelism during IPL and disaster recovery. You can also have

all objects created within a subdirectory start journaling automatically without having to be broken up
when you reach the 250 000 limit. The value *MAX10M can only be specified for the Journal Object Limit
(JRNOBJLMT) parameter if the Receiver Size Option (RCVSIZOPT) parameter has one of the *MAXOPT
values specified or if RCVSIZOPT is *SYSDFT.

The following links provide instructions to start journaling for each object type:

52 IBMi: Journal management

Journaling libraries
Allows you to start journaling changes to a library and automatically journal any objects created, moved,
or restored into a library.

Use the Start Journal Library (STRIRNLIB) command to enable the library journaling functions.
STRIRNLIB starts journaling changes (made to a library or list of libraries) to a specific journal, and
optionally starts journaling changes to objects within the library or list of libraries. To start journaling for a
library using IBM Navigator for i follow these steps.

1. With Navigator for i connect to the system that contains the library that you want to journal.
2. Expand File Systems

3. Select Integrated File System

4. Select QSYS.LIB

5. Select the library you want to journal and the Journaling action.

After journaling begins for the object, save the journaled object to preserve its journal attribute
information. Also, the object must be saved because, for example, journaled changes cannot be applied to
a version of the object that was saved before journaling was in effect.

Objects created, moved, and restored into the library that are eligible for journaling can automatically
start journaling to the same journal as the library. Which objects inherit the journal state of the library and
what journaling attributes they start journaling with are determined by the inherit journaling attributes

of the library. The inherit rules allow for objects to inherit the journal state of the library based on the
name of the object being added to the library. Objects with names that begin with specified characters,
can be selected to start journaling or omitted from starting journaling. With this capability, work files
created in production libraries can be prevented from starting journaling while production files can still
have journaling started.

See Start Journal Library (STRIRNLIB) for details on enabling library journaling.

Journaling database physical files (tables)
When you start journaling a physical file (table), you specify whether you want after-images saved, or both
before-images and after-images.

To reduce the number of journal entries, you can omit entries for open operations and close operations
for the file. To omit open and close entries from being journaled, select the Exclude open and close
entries in IBM Navigator for i. Or you can Specify OMTIRNE (*OPNCLOQ) on the Start Journal Physical File
(STRIRNPF) command. If you choose to omit open journal entries and close journal entries, be aware
that:

« You cannot use the journal to audit who has accessed the file.

 You cannot apply or remove journal changes to open boundaries and close boundaries using the
TOJOBO and TOJOBC parameters.

To start journaling for physical database files, follow these steps.
1. With Navigator for i, connect to the system with the object you want to journal.
2. Expand Databases

3. Click Set Database/Schema to use with Database Tasks and set the database and schema that
contain the object you want to journal.

4. Click Tables.
5. Select the table that you want to journal and select the Journaling action.

You can also use the STRIRNPF command to start journaling physical database files.

Related concepts

Reasons to journal before-images

When you journal an object, the system always writes an after-image for every change that is made. You
can request that the system write before-image journal entries for database files and data areas. All other

Journal management 53

object types only journal after-images. This significantly increases the auxiliary storage requirements for
journaling.

Related reference

Start Journal Physical File (STRIRNPF) command

Related information

DB2 Universal Database

Journal DB2 Multisystem files
When you successfully start journaling on a distributed file, the system distributes the start journal
request to the other servers in the node group.

All servers are attempted even if there is a failure at any one server. Once journaling is started on a server
in the node group, it stays started even if there is a failure at any of the other servers.

The journal has to exist with the same name on all servers in the node group. The journal itself is not
distributed, only the Start Journal Physical File (STRIRNPF) command.

The journal and its receiver are associated only with the changes made to the file on the one server. If you
have two servers in the node group and a file is updated on both servers, the update on server Ais only in
server A's journal and receiver and the update on system B is only in system B's journal and receiver.

The journal identifier (JID) is different on each piece of the distributed file. Each server piece has its own
JID. This means that you cannot use the journal entries that are deposited on one server to apply or
remove journaled changes to a different piece of the file on another server.

Related concepts

Distributed database administration

Related reference

Start Journal Physical File (STRIRNPF) command

Logical file journaling

The system automatically starts journaling logical files built over a journaled physical file when it finds a
need to. This is referred to as covert journaling. The result is journal entries recording things like authority
changes for logical files. Any access path associated with the logical file is not covertly journaled.

The covertly journaled logical files show as journaled objects when viewing objects journaled to a journal.
They also report as being journaled when using the Display Object Description (DSPOBJD) command and
other interfaces that return similar information.

If the based on physical file ends journaling, then any covert journaling of the logical files built over the
physical file also ends.

Journaling integrated file system objects
You can journal integrated file system objects if they are in the "root"(/), QOpenSys, and user-defined file
systems.

The following integrated file system objects can be journaled:
« Stream files (*STMF)

« Directories (*DIR)

« Symbolic links (*SYMLNK)

When you use the SAV command to save an integrated file system object, the default is to not update the
history information for the object. If you plan to apply journaled changes to the objects you are journaling,
and you are not using the save-while-active function, specify to preserve the update history information
about the SAV command.

If you are journaling *DIR or *STMF objects, you can reduce the number of journal entries in the journal
receiver. In IBM Navigator for i, if you ensure that Include open, close, and synchronization entries is
deselected, or specify OMTIRNE (*OPNCLOSYN) on the Start Journal (STRIRN) command, you can omit

54 IBMi: Journal management

entries for open operations, close operations, and force entries for the object. If you choose not to journal
these entries be aware of the following:

« You cannot use the journal to audit who has accessed the object for opens, closes, and forces.
« If an object is journaled, it cannot be memory mapped.

 You cannot apply journal changes to open boundaries and close boundaries using the TOJOBO and
TOJOBC parameters.

« This option is only valid for *DIR and *STMF objects.

If you are journaling symbolic links, the system does not follow the symbolic link to determine what to
journal. That is, the system only journals the actual symbolic link. If you want to journal the end object,
you must journal the end object directly.

If you are journaling a directory and select Journal new files and folders in IBM Navigator for i
(INHERIT(*YES) on the STRIRN command), then objects created into that directory will be automatically
journaled to the same journal. Therefore use caution because you can journal more objects than you
realize. Also, even if this option is on, if an object is restored to the directory, it keeps the journaling
attributes it had before the restore operation (when it was saved), unless it has never previously been
journaled. In that case, the object will be journaled. For example, if you restore a stream file that is
journaled to Journal X, but the directory you restore the stream file to is being journaled to Journal Y, the
stream file will still be journaled to Journal X, even if the directory has the inherit option on.

Note: If you end journaling for an object and then rename that object in the same directory in which it
currently resides, journaling is not started for the object, even if the directory has the inherit option on.

If you select Current folder and all subfolders in Navigator for i (SUBTREE(*ALL) on the STRIRN

command), journaling only starts on objects that exist in the subtree when the STRIRN command is

executed. To start journaling on objects that are added to the subtree after this point you have three

options:

 You can start journaling for each object after it is created.

« You can select Journal new files and folders (INHERIT option) on the original start journal request.

« After journaling is started you can use the Change Journaled Objects (CHGIJRNOBJ) command and
specify INHERIT(*YES).

If you select to journal the current folder and all subfolders, and there are object types in the subtree that
are not supported for journaling, the unsupported object types are skipped over so that only object types
that are supported for journaling get journaled.

Restrictions for journaling integrated file system objects are as follows:

 You cannot journal files which are memory mapped. The Memory Map a File (mmap()) API
documentation has information about memory mapping.

- IBMisystems allocate disk space for Integrated xSeries servers as virtual disk drives. From the
perspective of the IBM i system, virtual drives appear as byte stream files within the integrated file
system. You cannot journal these byte stream files. See the Windows environment on IBM i topic for
more information about Integrated xSeries servers.

« Virtual volume files cannot be journaled.
« Temporary user-defined file systems cannot be journaled.
To start journaling for integrated file system objects, do the following steps:
1. With IBM Navigator for i, connect to the system on which the object that you want to journal is located.
. Expand File Systems.
. Select Integrated File Systems.
. Expand the file system with the object you want to journal.
. If you are journaling a directory, select the directory and the Journaling action.

o o0 A WN

. If you are journaling an object in a directory, expand the directory and select that object and the
Journaling action.

Journal management 55

You can also use the STRIRN command or Start Journal (QjoStartJournal) API for integrated file system
objects that you want to journal.

Related concepts

Integrated file system

Related reference

Memory Map a File (mmap()) API
Start Journal (STRIRN) command
Start Journal (QjoStartJournal) API

Journal access paths
After you have started journaling for physical files, you can set up explicit journaling of access paths.

You can use the Start Journal Access Path (STRIRNAP) command to start journaling access paths owned
by physical files or logical files. When you start journaling access paths for a physical file, the system
journals any of these, if they exist:

« Keyed access paths

Access paths for primary key constraints

« Access paths for unique constraints
 Access paths for referential constraints

« Encoded vector access paths

< Many access paths with sort sequence tables

Some access paths that use an international component for Unicode (ICU) sort sequence table may be
too complex to be journaled.

All underlying physical files must be journaled to the same journal before you can start journaling for an
access path. The entries created when you journal an access path are used to recover the access path
after the system ends abnormally. They are not used when you apply or remove journal entries. You can
specify RCVSIZOPT(*RMVINTENT) for the journal to have the system remove these entries when they are
no longer needed for recovery. This reduces the disk storage requirements for the journal receiver.

You cannot start journaling for an access path that is in use. The STRIRNAP command must obtain an
*EXCL lock on the logical file.

The recommended procedure for starting access path journaling is as follows:

1. Use the STRIRNAP command to start journaling the access path.

2. Save all the underlying physical files, specifying ACCPTH(*YES).

If you have target recovery times for access paths set up on your system, you might not need to set up
explicit journaling for access paths.

Related concepts

Reasons to journal access paths
If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely.

Related reference
Start Journal Access Path (STRIRNAP) command

Journaling data areas and data queues
When you start journaling for a data area or a data queue, the system writes journal entries for all changes
to the data area or data queue.

The following restrictions apply for journaling data areas and data queues:

- For data areas, only local external data area objects may be journaled. The special data areas (*LDA,
*GDA, *PDA) and DDM data areas cannot be journaled.

« For data queues, only local data queues are supported. DDM data queues cannot be journaled.

56 IBM i: Journal management

When you start journaling a data area, you specify whether you want after-images saved, or both before-
images and after-images.

To start journaling for data areas and data queues, follow these steps.

1. With IBM Navigator for i, connect to the system with the data area or data queue you want to journal.
2. Expand File Systems.

3. Expand Integrated File System.

4. Expand QSYS.LIB.

5. Select the library with the data area or data queue.

6. Select the data area or data queue you want to journal and select the Journaling action.

Or, after you have created the journal, use one the following commands or API for each data area or data
queue you want to journal:

« Start Journal (STRJIRN) command
- Start Journal Object (STRJIRNOBJ) command
« Start Journal (QjoStartJournal) API

Related reference

Start Journal (STRIRN) command

Start Journal Object (STRJIRNOBJ) command
Start Journal (QjoStartJournal) API

Related information

CL programming

Work Management

Automatically starting journaling
You can automatically journal objects created into libraries or directories.

« Objects created in, moved into, or restored into a journaled library will automatically start journaling. To
start library journaling, see “Journaling libraries” on page 53.

- To automatically start journaling for integrated file system objects, see the discussion of journal
inheritance in “Journaling integrated file system objects” on page 54.

Restore impacts for library-based objects

Library journaling provides more options for journaling during the restore operation. When using the
*RESTORE keyword on the Start journal library STRIRNLIB INHRULES parameter, even if an object was
not journaled at save time, the operating system automatically records the restore operation to the
journal the library is journaled to. However, if the object was journaled at save time and that journal still
exists on the system, the library's journal are ignored. In this case, the operating system still records the
restore operation to the journal used at save time.

You can use the *RSTOVRIRN keyword on the Start journal library STRIRNLIB INHRULES parameter to
override the journal used at save time. After you specify the *RSTOVRIRN keyword, the operating system
always records the restore operation to the library's journal. In this case, any journal used at save time is
ignored.

If the object being restored still exists on the system, the *RSTOVRIRN keyword is ignored during the
restore operation.

If you changed the journal of your object using the *RSTOVRJRN keyword, save your object as soon as
possible to enable future recovery operations with the Apply Journaled Changes (APYJRNCHG), Apply
Journaled Changes Extend (APYJRNCHGX), and Remove Journaled Changes (RMVIRNCHG) commands.
The save operation records the journal receiver and the new journal as the journal receiver and journal
to use for recovering your object from the point of its last save. The save operation also updates the last
saved date of your object, if UPDHST(*YES) is specified on the save command.

Journal management 57

See the Start Journal Library (STRIRNLIB) command for more information on using the *RSTOVRIRN
keyword with library journaling.

Related tasks

Journaling integrated file system objects
You can journal integrated file system objects if they are in the "root"(/), QOpenSys, and user-defined file
systems.

Changing journaling attributes of journaled objects without ending journaling

This topic provides information about how to change the journaling attributes of a journaled object
without ending journaling.

Use the Change Journal Object (CHGIRNOBJ) command to change journaling attributes of journaled
objects without ending and restarting journaling. You can use the CHGIJRNOBJ command to do the
following:

- Change whether you are journaling both before and after images or just after images.
« Change whether you are omitting open, close, and force journal entries from the journal receiver.

Change whether you are journaling objects that are created in a directory.

Remove the partial transaction state from a database file.
« Change what objects in libraries automatically start journaling.
« Change whether journal entries for an object are filtered by remote journal filtering by object.

Except for removing the partial transaction state from a database file, the objects whose attributes you
are changing must currently be journaled. Also, you can only change one attribute at a time.

Before and after images

Use the Images (IMAGES) parameter to change if you are journaling only after images or both before and
after images. The object whose journaling attributes you are changing must already be journaled. You can
change this journaling attribute for the following object types:

« Database physical files
- Data areas

Omitting journal entries

Use the Omit Journal Entries (OMTJIRNE) parameter to change whether to omit open, close, and force
journal entries from the journal receiver. The object whose journaling attributes you are changing must
already be journaled. You can change this journaling attribute for the following object types:

« Database physical files
 Integrated file system stream files
- Integrated file system directories

Journal new objects in a directory

Use the New Objects Inherit Journaling (INHERIT) parameter to change whether journaling starts
automatically for objects that are created in a journaled integrated file system directory after the attribute
is changed.

Partial transaction state

Note: Use of this parameter can result in loss of data. Use this parameter only as a last resort, if the
appropriate journal receivers are unavailable to do an apply or remove journaled changes operation.

Use the Partial Transactions (PTLTNS) parameter to allow an object that contains partial transactions to
be used. You use this parameter only for one of the following reasons:

58 IBMi: Journal management

 You are unable to apply or remove the journaled changes to complete or remove the transactions
because the journal receivers are unavailable.

« The object was involved in a rollback operation that was ended early and there is no saved version of the
object to use.

Only use this parameter as a last resort because the partial transactions remain within the object.

Inherit rules

Use the inherit rules (INHRULES) parameter to change which objects automatically start journaling when
created, moved, or restored into a journaled library after the attribute is changed.

Remote journal filter

Use the remote journal filter (RMTIRNFTR) parameter to change whether journal entries deposited for an
object are eligible for remote journal filtering by object.

Consideration for distributed files

When you successfully change the journal attributes for a distributed file, the system distributes the
request to change a journal attribute to the other servers in the group. All servers are attempted even if
there is a failure at any one server. When the journaling attribute has been changed on a server in the
node group, it remains that way even if there is a failure at any of the other servers.

Related tasks

Example: Recovering objects with partial transactions

If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Related reference
Change Journaled Object (CHGIJRNOBJ) command

Ending journaling

This topic provides information about how to end journaling and why ending journaling might be
necessary.

You may need to end journaling for several reasons:

- Ifajournal is damaged and you need to delete it, you must first end journaling for all objects assigned to
the journal.

- In some situations, you might want to end journaling before running a large batch application, if that
application has exclusive use of the object. This is done either to improve the speed of the batch
application or to reduce the auxiliary storage needed for the journal receiver. If you do this, use this
method:

. End journaling for the objects.

. If journaling physical files save them specifying ACCPTH(*YES).
. If journaling other object types, save them.

. Run the batch application.

. Start journaling for the objects.

. Save the physical files, specifying ACCPTH(*YES).

7. Save the other journaled objects.

o O AW N P

To end journaling, proceed as follows:

1. End journaling for access paths with the End Journal Access Path (ENDJRNAP) command
2. With IBM Navigator for i, connect to the system with the object that you want stop journaling.

Journal management 59

a) Expand Journal Management.

b) Select Set Database/Library to use with Journal Tasks and specify the database and library that
contain the object you want to end journaling for.

c) Select Journals.

d) Select the journal to which the object is journaled and the Show Journaled Objects action.
e) Select the correct tab for the object type of the object you want to end journaling for.

f) Select the object and the End Journaling action.

Or, use the following commands or API to end journaling:

« End Journal Library (ENDJRNLIB) command for libraries

« End Journal Access Path (ENDJRNAP) command for access paths

« End Journal Physical File (ENDJRNPF) command for database files

« End Journal (ENDJRN) command for integrated file system objects

« End Journal Object (ENDJRNOBJ) command for other objects

« End Journal (QjoEndJournal) API forintegrated file system objects, data areas, and data queues.

You must end journaling for any access paths based on a physical file before you can end journaling for
the physical file.

In the following cases, the system implicitly ends journaling:

« When you delete an object, journaling is ended for the object.
« When you remove a physical file member, journaling is ended for the member.

- When you remove a physical file member, journaling is ended for any access paths associated with the
member unless an access path is shared and journaled by another file member.

- When you delete afile, journaling is ended for any access paths associated with the file unless an
access path is shared and journaled by another file.

When you successfully end journaling on a distributed file, the system distributes the end journal request
to the other systems in the node group. All systems are attempted even if there is a failure at any one
system. Once journaling is ended on a system in the node group, it stays ended even if there is a failure at
any of the other systems.

Even if a distributed file is not locally journaled, and if you specify the file name and the journal name on
the ENDJRNPF command, the system will still attempt to distribute the end-journal request to the other
systems in the file node group.

Related concepts

Distributed database administration

Related reference

End Journal Access Path (ENDJRNAP) command

End Journal Physical File (ENDJRNPF) command

End Journal (ENDJRN) command

End Journal Object (ENDJRNOBJ) command

End Journal Library (ENDJRNLIB) command

End Journal (QjoEndJournal) API

Managing journals
This topic provides instructions for managing your journaling environment.
Managing your journaling environment requires these basic tasks:

« Keep records of which objects you are journaling.
« Evaluate the impact on journaling when new applications or logical files are added.

60 IBM i: Journal management

 Regularly detach, save, and delete journal receivers.

Your journal receivers enable you to recover changes to your important objects. They also provide an audit
trail of activity that occurs on your system.

Protect your journal receivers by regularly detaching them and saving them; or you can have the system
take over the job of changing journal receivers by specifying system journal-receiver management.

Related concepts

Manual versus system journal-receiver management

When you create a journal with System i Navigator or the Create Journal (CRTIRN) command, you can
select to have either system managed or user managed journal receivers.

Swapping, deleting, saving and restoring journals and receivers

The management tasks that you need to perform most often for journaling are swapping journal receivers
and saving and deleting journal receivers.

Swapping journal receivers

An important task for journal management is to swap journal receivers. You typically swap journal
receivers when they reach their storage threshold. You can swap journal receivers either with IBM
Navigator for i or with the Change Journal (CHGJRN) command. If you use system journal-receiver
management, the system changes journal receivers for you.

You can use Navigator for i or the Change Journal (CHGJRN) command to change the attributes of the
journal. You can also use the Navigator for i or the CHGIJRN command to change the receiver for a journal
(detach the current receiver, create and attach a new receiver) and to reset the sequence number for
journal entries.

When you swap a journal receiver, the old journal receiver becomes detached. When you detach a journal
receiver, you cannot reattach it to any journal. You can do these things with a detached journal receiver:

- Save or restore it.

- Display entries.

« Retrieve entries.

- Receive entries.

« Use it to apply or remove journaled changes.

« Use it to compare journaled images.

 Display its status or position in a receiver chain.
« Delete it.

» Replicate it with the remote journal function.

You must swap journal receivers to change the following journaling attributes:

« Manual or system journal management (MNGRCV parameter)
« Receiver size options (RCVSIZOPT parameter)

« Minimized entry specific data (MINENTDTA parameter)

« Journal receiver threshold value (THRESHOLD parameter)
Fixed-length data (FIXLENDTA parameter)

Journal object limit (JRNOBILMT parameter)

« Reset journal sequence numbers (SEQOPT parameter)

To use Navigator for i to swap a journal receiver, follow these steps:

1. With Navigator for i connect to the system you want to use.
2. Expand Journal Management.

Journal management 61

3. Select Set Database/Library to use with Journal Tasks and specify the database/library that you
want to work with.

. Select Journals.
. Select the journal you want to use and the Change Receivers action.
. Optionally, you can change any options you want.

N o oo~

. Click OK. The Change Receivers dialog closes. The new journal receiver is automatically created and
attached.

You can also use JRNRCV(*GEN) on the Change Journal (CHGJRN) command to create the

new receiver with the same attributes as the currently attached receiver, and in the same library.
These attributes include the owner, private authorities, public authority, object auditing, ASP identifier,
threshold, and text.

Note: The system will call all user exit programs registered on the QIBM_QJO_CHG_JRNRCV exit point
whenever a journal receiver is detached from a journal. See Change Journal Receiver Exit Program for
more information.

CAUTION: If you use save-while-active operations to save objects before they reach a
commitment boundary, ensure that you save the journal receiver after you detach it. If you delete
the journal receiver before it is saved, you can lose the ability to recover any pending transactions
for those objects.

Related concepts

Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTIRN) command, you can
select to have either system managed or user managed journal receivers.

Threshold (disk space) for journal receivers

When you create a journal receiver with System i Navigator or the Create Journal Receiver (CRTIJRNRCV)
command, you specify a disk space threshold that indicates when you want the system to warn you or
take action.

Related tasks
Save your server while it is active

Journal receiver chains

Journal receivers that are associated with a journal (that is presently or previously attached to the journal)
are linked in one or more receiver chains. Each journal receiver, except the first one, has a previous
receiver that was detached when the current receiver was attached. Each journal receiver, except the one
that is currently attached, also has a next receiver.

The following figure illustrates the process by which journal receiver chains are created. If you leave
the previously attached receivers RCVA7 through RCVA9 online, you can use them to apply changes, to
remove changes, or to display journal entries without restoring them first.

62 IBMi: Journal management

Jaurnal

JHMNA
[] Currently
- Attached
RCVA1D Receiver
Mext i
_ Pravious
Receiver By AD ' Journal
Recaiver
RCVAE |4 |
——r
HCWVAT
-
1 Receivars RCVAT
through RCVAG have
E;‘f;;‘:p been saved and
deleted from the
system.

This figure shows four journal receivers for journal JRNA. Journal receivers RCVA7, RCVAS8, and RCVA9 are
online. Journal receiver RCVA10 is currently attached to journal JRNA. Journal receivers RCVA1L through
RCVAG are saved to backup media and not are not on the system.

If a complete copy of a receiver is missing in a chain of journal receivers linked together in the previously
described relationship, the result is a chain break. Avoid receiver chain breaks. A receiver chain break
indicates that any changes made between the last entry in the last receiver in one chain and the first entry
in the first receiver in the next chain are not available in any journal receiver on the system.

Note: If you use save-while-active operations to save objects before they reach a commitment boundary,
it is crucial that you keep track of your journal receiver chains.

Using a save-while-active operation to save objects before they reach a commitment boundary can result
in objects saved to the media that have partial transactions. A break in a journal receiver chain can
prevent you from recovering these objects with partial transactions.

A set of receivers for a journal that has one or more receiver chain breaks has multiple receiver chains.
Receiver chain breaks result from the following:

« You restored an old journal receiver and its next receiver is not on the system.

« Ajournal receiver was saved while it was attached, a partial receiver is restored, and no complete copy
of the receiver is on the system or restored.

- Areceiver that has not had its storage freed by a save operation is restored, and the next receiver has
had its storage freed by a save operation.

« The journal is restored. All journal receivers associated with the previous copy of the journal (before
the journal was deleted and restored) will not be in the same receiver chain as the currently attached
journal receiver.

« The user or the system deleted a damaged or destroyed journal receiver from the middle of a chain.

« Ajournal receiver from another system is restored. The journal receiver will be associated with a journal
at restore time if the associated library and journal on the source system had the same library name and
journal name as the library and journal on the target system.

« You chose to replicate specific receivers instead of all receivers in the receiver directory chain. This
occurred while replicating journal receivers from a source system to a target system.

You cannot use the following commands and API across multiple receiver chains:

Journal management 63

« Apply Journaled Changes (APYJRNCHG) command

 Apply Journaled Changes Extend (APYJRNCHGX) command
« Remove Journaled Changes (RMVJRNCHG) command
 Receive Journal Entries (RCVIRNE) command

« Display Journal (DSPJRN) command

« Retrieve Journal Entries (RTVIJRNE) command

« Compare Journal Images CMPJRNIMG command

- Retrieve Journal Entries (QjoRetrieveJournalEntries) API

If multiple receiver chains exist, you need to determine:

- Whether any journal entries are missing.

« Whether your data will be valid if you use more than one receiver chain.

If you decide to proceed, you must run a separate command for each receiver chain.

You can use the Work with Journal Attributes (WRKJRNA) command to display the receiver chain (F15)
and work with journal receivers.

Related tasks

Displaying information for journaled objects, journals, and receivers
IBM Navigator for i, Control Language commands, and APIs provide several ways for you to display
information about journaled objects, journals, and journal receivers.

Save your server while it is active

Example: Recovering objects with partial transactions

If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Resetting the sequence number of journal entries

Normally, when you change journal receivers, you continue the sequence number of journal entries. When
the sequence number becomes very large, consider resetting the sequence to start the numbering at 1.
You can reset the sequence number only when all changes are forced to auxiliary storage for all journaled
objects and commitment control is not active for the journal. Resetting the sequence number has no
effect on how the new journal receiver is named.

Some conditions prevent you from resetting the sequence number, such as an active commit cycle. If the
system cannot reset the sequence number, you receive message CPF7018.

If you use system journal-receiver management for a journal and RCVSIZOPT(*MAXOPT3) is not specified,
the sequence number for the journal is reset to 1 whenever you restart the system or vary on the
independent disk pool containing the journal. When you restart the system or vary on an independent
disk pool, the system performs the change journal operation for every journal on the system or disk pool
that specifies system journal-receiver management. The operation that the system performs is equivalent
to CHGIRN JRN(xxx) JRNRCV(*GEN) SEQOPT(*RESET). The sequence number is not reset if journal
entries exist that are needed for commitment control IPL recovery. When RCVSIZOPT(*MAXOPT3) is
specified, the sequence number is only reset when you restart your system or vary on an independent
disk pool if it is approaching the maximum value.

If you specify RCVSIZOPT(*MAXOPT1), RCVSIZOPT(*MAXOPT2), or RCVSIZOPT(*SYSDFT) for the journal
to which you attached the receiver, the maximum sequence number is 9 999 999 999. If you specify
RCVSIZOPT(*MAXOPT3), the maximum sequence number is 18 446 744 073 709 551 600. If you do not
specify a receiver-size option, the maximum sequence number is 2 147 483 136. If these numbers are
reached, journaling stops for that journal. Whenever you change journal receivers, the system tells you
what the starting sequence number is through message CPF7019. Also, when you are approaching the
sequence number limit, CPF7019 is additionally sent to the QSYSOPR message queue every time you
change journal receivers.

64 IBMi: Journal management

The system sends a warning message (CPI70E7) to the journal's message queue when the sequence
number exceeds 2 147 000 000. If you specified RCVSIZOPT(*MAXOPT1), RCVSIZOPT(*MAXOPT2),

or RCVSIZOPT(*SYSDFT) for the journal that you attached the receiver to, the system sends

the warning message when the sequence number exceeds 9 900 000 000. If you specified
RCVSIZOPT(*MAXOPT3), the system sends the warning message when the sequence number

exceeds 18 446 644 000 000 000 000. If you use system change-journal management support
(MNGRCV(*SYSTEM)) for the journal, the system attempts to change the journal and reset the sequence
number one time. The message is sent only if the attempt is not successful.

To reset the sequence numbers for journal entries proceed as follows:

1. With IBM Navigator for i, connect to the system you want to use.
2. Expand Journal Management.

3. Select Set Database/Library to use with Journal Tasks and specify the database and library that you
want to work with.

. Select Journals.
. Select the journal you want to use.
. Select the Change Receivers action and click Reset sequence number.

. Click OK. The Change Receivers dialog closes. The new journal receiver is automatically created and
attached.

N oy o B~

Note: If you attempt to use the CHGIRN command with the same journal receiver name and
SEQOPT(*CONT), you might receive the message CPF701A. To recover, delete the journal receiver and
use the CHGIRN command again.

To change the sequence number with the Change Journal (CHGJRN) command, specify the
SEQOPT(*RESET) parameter.

Related reference
Change Journal (CHGJRN) command

Deleting journal receivers
Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal
management task is to delete journal receivers after you no longer need them.

When you determine whether to delete a journal receiver, consider the following:
« Journal receivers you need for recovery

Do not delete a journal receiver that has not been saved if you need that journal for recovery. Any
journal receiver that you need to perform an apply or remove journaled changes operation is needed for
recovery.

Note: Use care when you delete journal receivers if you use save-while-active operations to save
objects before they reach a commitment boundary. Ensure that you save the journal receivers before
you delete them. If an object is saved before it reaches a commitment boundary it can have partial
transactions. If you need to restore objects with partial transactions, you must have access to the
journal receivers that were attached during the partial transactions to avoid data loss.

To determine if a journal receiver has been saved, in IBM Navigator for i select the journal receiver, and
select the Properties action. If the Saved field shows no date, then you have not saved the journal
receiver.

If you have saved the journal receiver, but the journaled objects are not saved, then you still need that
journal receiver for recovery. If you have space on your system, wait to delete journal receivers until it is
unlikely that you need them for a recovery. (You saved the journaled object). Restoring journal receivers
before applying or removing journaled changes may significantly increase your recovery time.

Although it is not recommended, the system does not prevent you from deleting a receiver you
detached and is not saved or that is required to provide adequate recovery. If you try to delete a
journal receiver that was once attached but has not been saved, the system issues an inquiry message.
You can then continue or cancel the delete operation. You can use the system reply list to specify the

Journal management 65

reply the system is to send for this inquiry message (rather than explicitly responding to each inquiry
message).

« Journal receivers you do not need for recovery

If you are journaling only for access path protection or commitment control, most likely you do not
need the journal receivers to recover journaled changes. You do not need to save these journal receivers
before deleting them.

To make your journaling tasks easier, you can even automate the deletion of these journal receivers by
specifying the following:

— Specify system journal-receiver management.

— Specify automatic deletion of journal receivers.

When you specify automatic deletion of journal receivers, the system does not send a message when it
deletes a journal receiver. By specifying automatic deletion for journal receivers, you indicate that you
do not need the journal receivers for user recovery.

« Where the journal receiver is in the receiver chain

To ensure logical recovery, the system does not allow you to delete a journal receiver from the middle of
the receiver chain unless one of the following conditions exists:

— The journal is using automatic deletion of journal receivers.
— Thejournal is a remote journal.

However, if a journal receiver is damaged, you can delete it from the middle of the chain. If an attached
journal receiver is damaged, you must perform a change journal operation to detach the damaged
receiver before you can delete it.

The rules for deleting journal receivers are as follows:

« You cannot delete a journal receiver that is attached to a local journal. You must perform a change
journal operation to detach a journal receiver before you delete it.

» You must delete journal receivers in the same order they were attached to a journal.

 You can delete a damaged or inoperable receiver regardless of the previous restriction. However, if an
attached receiver is damaged, you must detach it before you delete it.

« You cannot delete a journal receiver that is attached to a remote journal if the remote journal has a
journal state of active. If you attempt to delete a receiver that is attached to a remote journal, the
system sends the inquiry message CPA705E. The results of the reply to the message are the same as
those that occur with message CPA7025.

To delete journal receivers, take the following steps.

1. With Navigator for i, connect to the system you want to use.
2. Expand Journal Management.

3. Set Database/Library to use with Journal Tasks and specify the database and library that you want
to work with.

4. Click Show All Journal Tasks.

5. Select the journal receivers list.

6. Select the journal receiver you want to delete and click Delete.
7. At the Confirm Object Deletion dialog click Delete.

You can also use the Delete Journal Receiver (DLTJIRNRCV) command to delete journal receivers.
If you use the DLTIRNRCY command, an exit point is available to use with an exit program to help
automate journal receiver deletion.

One example of using this exit point is a situation where your application is using the data in the

journal receiver. The application is dependent on the journal receiver being present until your application
processing is complete. By registering an exit program with the QIBM_QJO_DLT_JRNRCYV exit point,

the program will be called every time a journal receiver is deleted from the system. If your program

66 IBM i: Journal management

determines that your application is not yet done with the receiver, it can indicate that the journal receiver
is not eligible for deletion.

If you must delete the receiver regardless of what an exit program indicates, you can specify
*IGNEXITPGM for the DLTOPT parameter on the DLTJRNRCV command. This parameter value requests
that any user exit programs that are registered for QIBM_QJO_DLT_JRNRCYV exit point be ignored.

You can also use the following values for the DLTOPT parameter:

*IGNTGTRCV
Ignore target receiver. If you specify this value, the system does not verify that all remote journals that
are associated with this journal, and are immediately downstream on a target system, have full copies
of this journal receiver. The delete operation will continue, even if a remote journal does not have a full
copy.

*IGNINQMSG
Ignore inquiry message. Inquiry message CPA7025 will not be presented, even if this receiver has not
been fully saved. Also, inquiry message CPA705E is not presented to the user even if the receiver is
attached to a remote journal. The delete operation continues.

Related concepts

Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.

Automatic deletion of journal receivers

If you choose system journal receiver management, you can also have the system delete journal receivers
that are no longer needed for recovery. You can only specify this if you are using system journal receiver
management.

Related tasks

Inactivating the replication of journal entries to a remote journal

When you end replication of journal entries to a remote journal, it is recommended that the replication of
entries be ended from the source system whenever possible, rather than from the target system. Usually,
ending replication from the target system for a remote journal is only necessary when the source system
has failed, and the system has not ended the remote journal function.

Related reference
QIBM_QJO_DLT_JRNRCYV exit point

Deleting journals

Each journal on the system causes additional time and resource to be used when you restart the system
or vary on an independent disk pool after an abnormal end. If you no longer need a journal, you can delete
it.

The system does not allow you to delete a journal if any of the following conditions exist:

 You are journaling objects to it.

« Commitment control is active, and the journal is associated with a commitment definition.

Note: If you have certain types of referential constraints defined, the system starts commitment control
if it is not already started. For example, if you have defined a cascaded delete constraint for an

object, the system starts commitment control if you open the object for a delete operation. The default
commitment definition that is created is active until the job ends.

« Any of the associated remote journals have a journal state *ACTIVE.
If you no longer need a journal and its associated receivers, perform the following steps:
1. Use the Work with Journal Attributes (WRKIRNA) command to determine the following:

« Which objects are being journaled to this journal.
« Whether or not commitment control is active and the journal is associated with it.

Journal management 67

2. If commitment control is active and the journal is associated with it, end commitment control with the
End Commitment Control (ENDCMTCTL) command.

3. End journaling for all objects associated with the journal.

4. If any commitment definitions are active that use this journal as the default journal, use the ENDJOB
command to end the jobs that are using the commitment definitions. This includes commitment
control that is started because of a referential constraint.

5. If any remote journals have a journal state of *ACTIVE, inactivate them.
6. Delete the journal by doing the following steps:

a) With IBM Navigator for i, connect to the system you want to use.

b) Expand Journal Management.

c) Select Set Database/Library to use with Journal Tasks and specify the database and library that
you want to work with.

d) Select Journals..
e) Select the journal you want to delete and the Delete action.
f) At the Confirm Object Deletion dialog click Delete.

7. Delete the journal receiver.

You can also use the Delete Journal (DLTIRN) command to delete the journal and the Delete Journal
Receiver (DLTIJRNRCV) command to delete the journal receiver.

Related tasks

Ending journaling

This topic provides information about how to end journaling and why ending journaling might be
necessary.

Inactivating the replication of journal entries to a remote journal

When you end replication of journal entries to a remote journal, it is recommended that the replication of
entries be ended from the source system whenever possible, rather than from the target system. Usually,
ending replication from the target system for a remote journal is only necessary when the source system
has failed, and the system has not ended the remote journal function.

Deleting journal receivers
Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal
management task is to delete journal receivers after you no longer need them.

Related reference
Delete Journal (DLTIRN) command
Delete Journal Receiver (DLTIJRNRCV) command

Saving and restoring journals and journal receivers
You must save the journal receivers when they are no longer attached, so that you have all the journal
entries saved.

Using a save-while-active operation to save objects before they reach a commitment boundary can result
in objects that are saved with partial transactions. Saving journal receivers ensures that they are available
to recover objects that are restored with partial transactions.

When you save a journal receiver that is no longer attached, you can free storage. However, a journal
receiver whose storage has been freed must be restored before you can use it for recovery.

Notes:

« Saving journals and journal receivers in the Back up your server topic provides more information
about saving journals and journal receivers. Example: Recover objects with partial transactions has
instructions for recovering objects with partial transactions.

« Read the Code example disclaimer for important legal information.

68 IBMi: Journal management

Related concepts

Back up your server topic

Related tasks

Example: Recovering objects with partial transactions

If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Using SAVCHGOBJ to save journal receivers

One technique for saving journal receivers is to use the Save Changed Object (SAVCHGOBJ) command.
When you use the SAVCHGOBJ command to save journal receivers, ensure that you omit the attached
journal receiver.

In the following example, all your journal receivers are in a library called RCVLIB. The currently attached
journal receiver is MYJRCV0004.

SAVCHGOBJ 0BJ(*ALL) OMITOBJ(MYJRCVOOO4) LIB(RCVLIB) OBJTYPE(*JRNRCV)
DEV (media-device-name) ENDOPT (xLEAVE)

This example saves all journal receivers that have any new entries since the entire library was saved but
omits the currently attached journal receiver MYJRCV0004.

A possible disadvantage to using the SAVCHGOBJ command to save journal receivers is that you can
accidentally save the journal receivers that are currently attached. Those journal receivers are saved as
partial receivers. If you need to do a recovery, you may need to handle the error condition that occurs
when you attempt to restore the partial receiver over the receiver that is currently on the system and has
not yet been saved. Also, partial journal receivers make tasks such as displaying entries and performing
apply and remove journaled changes operations more difficult. Therefore you must avoid saving attached
journal receivers.

Note: Read the Code example disclaimer for important legal information.

Related reference
Save Changed Objects (SAVCHGOBJ) command

Methods to save journal receivers
Following are three methods to save journal receivers. The first method saves journal receivers
individually. The two other methods save the journal receiver automatically.

Saving journal receivers individually

Use the Work with Journal Attributes (WRKJRNA) command to display the receiver directory for each
journal. The receiver directory tells which journal receivers have not yet been saved. Then use the Save
Object (SAVOBJ) command to save them.

The advantage to using this technique is that each journal receiver is saved only once. You will not have
problems with duplicate names and partial receivers if you need to restore. The disadvantage to this
technique is that it requires manual effort to determine the names of the journal receivers to be saved.

Saving journal receivers by name - Automated method 1

You can use a combination of system journal-receiver management and a control language (CL) program
to automate most journal management tasks. Do the following:

« Specify a threshold size for the journal receiver.
 Specify MNGRCV(*SYSTEM), DLTRCV(*NO), and a message queue for the journal.

« Use a CL program to monitor the journal message queue for the message (CPF7020) that indicates that
the system has successfully detached the journal receiver.

« Your CL program can then save the receiver that was detached and optionally delete it.

Journal management 69

Saving journal receivers by name - Automated method 2

An alternate method of automatically saving journal receivers is to use a high level language program that
uses the Retrieve Journal Information (QjoRetrieveJournalInformation) API. The program can use this API
to determine the journal receiver directory and which receivers are not saved. The program can then save
the journal receivers that are not marked as saved. You can set up this program to run on a regular basis
or as part of normal processing.

Related information
CL Programming

Correct order for restoration of journaled objects
You must restore journals and their associated objects in the correct order when not using deferred
journaling support.

For the system to automatically reestablish your journaling environment when not using deferred
journaling support, objects must be restored in this sequence:

1. Journals

2. Based-on physical files

3. Dependent logical files

4. Other journaled object types
5. Journal receivers

You can restore journal receivers at any point after you restore the journals. You do not need to restore
them after the journaled objects.

When these objects are in the same library, the system restores them in the correct sequence. When
these objects are in different libraries or directories, you must restore them in the correct sequence, or
you must manually reestablish your journaling environment after the restore operation.

You can restore journal receivers in any sequence. After restoring them, use option 9 (Associate receivers
with journal) from the Woxrk with Journal (WRKJRN) command display to build the receiver chain in
the correct sequence. You can also use Option 9 to build the receiver chain if you restore the journal after
the journal receivers. The journal must be on the system for the receiver chain to be built.

If you restore journaled objects before restoring the journal, you must start journaling again.

Your journals and journal receivers can be in different libraries. If this is true, you must ensure that

the library that will contain the journal receivers is on the system before restoring the journal. Ensuring
this will also ensure that the journal receiver is created in the desired library, since a journal receiver is
created when the journal is restored. Only the library needs to be on the system, not the journal receivers
in that library. If you do not ensure this, you may need to create a journal receiver in the desired journal
receiver library. You would then have to run the Change Journal (CHGJRN) command to attach the
new receiver to your journal.

Related concepts

Journal receiver chains

Journal receivers that are associated with a journal (that is presently or previously attached to the journal)
are linked in one or more receiver chains. Each journal receiver, except the first one, has a previous
receiver that was detached when the current receiver was attached. Each journal receiver, except the one
that is currently attached, also has a next receiver.

Deferring object journaling during restore
Using deferred journaling support allows the system to manage the reestablishment of journaling of
objects after a restore.

Related tasks

Starting journaling
This topic provides information about how to start journaling for all object types.

Related reference
Change Journal (CHGJRN) command

70 IBMi: Journal management

Related information
Backup and Recovery

Deferring object journaling during restore
Using deferred journaling support allows the system to manage the reestablishment of journaling of
objects after a restore.

Previously, restoring journaled objects from multiple libraries or from a library other than the library of
the dependent journal was difficult to manage. If a journaled object was restored before the library of
the journal, the object was not journaled. After the journal was restored, the user had to manually start
journaling for each of the restored objects. With deferred journaling, the journaling of objects during
restore can be deferred when there is a dependency on a journal in a library that does not yet exist.
The journal information is cached and used to start journaling after the journal becomes available. This
eliminates the manual effort that is required to restart journaling.

To defer the journaling of objects on restore when the journal does not yet exist, specify the Defex ID
(DFRID) parameter on the Restore Library (RSTLIB) or Restore Object (RSTOBJ) command.
Specifying the same defer ID for multiple restore operations provides an association between the
deferred journaling information and the dependent journal.

When the journal becomes available, the Restore Deferred Objects (RSTDFROBJ) command
can be used with the previously specified defer ID to start journaling using the deferred journaling
information.

After the deferred journaling operation completes, use the Remove Defer ID (RMVDFRID) command
to remove the deferred journaling information from the cache.

When journaling is started for the object because of a RSTDFROBJ, the restore and create journal entries
for these objects will not be generated because the object which deferred start journaling was created
before the creation of the journals.

If a user has save system (*SAVSYS) special authority and uses the RSTLIB command and specifies the
*NONSYS, *ALLUSR, or *IBM values for the Saved Library (SAVLIB) parameter and specifying *DFT
for the DFRID parameter, the system manages the deferred journaling information. In all other cases, if
the user omits the DFRID parameter, the user must manage the start journaling requests.

Multiple restore operations can run concurrently using the same defer ID. It is best to wait until all

of the restore operations are complete for that defer ID before issuing the RSTDFROBJ or RMVDFRID
commands. Issuing the RSTDFROBJ command while restores are still running can cause extra work in
processing. Issuing the RMVDFRID command while restores are still running can cause deferred journaling
information to be lost.

If a journaled object is restored with either the RSTLIB or RSTOBJ with a defer ID specified and the object
is renamed or moved to a different library before the issuance of the RSTDFROBJ command, journaling
will not be started for that object.

When an object is restored into a journaled library with a *RESTORE inherit rule defined and a Defer ID
specified, the Defer ID takes precedence. If the journal the object was journaled to at save time does not
exist a deferral record is written and the object is not journaled to the journal specified by the *RESTORE
inherit rule.

When restoring an object into a journaled library that has a *RSTOVRJRN inherit rule defined, the object
attempts to automatically start journaling to the journal used by the library, regardless of whether the
object was journaled when it was saved, what the journal target was at save time, or if a defer id was
specified on the restore.

Deferred restore examples

This command restores all the saved non-system libraries to the system from tape. The system manages
the deferred journaling for objects that are restored before their journal is restored. The system attempts
to automatically start journaling of the dependent objects when the journal is finally restored.

RSTLIB SAVLIB(*NONSYS) DEV(TAPO1) DFRID(*DFT)

Journal management 71

The next examples show libraries that are being restored using a DFRID. Library JRNLIB contains

the journals that the objects in library OBJLIB were journaled to. The objects in OBJLIB cannot start
journaling until after the journals in JRNLIB are restored. A defer ID is specified, so the start journaling
requests are deferred. Use the RSTDFROBJ command to start journaling these files. The RMVDFRID
command removes information about objects that were deferred during the restore operation.

RSTLIB SAVLIB(OBJLIB) DEV(TAPEO1) ENDOPT(*xLEAVE) DFRID(ABC)
RSTLIB SAVLIB(JRNLIB) DEV(TAPEO1) ENDOPT(*xLEAVE) DFRID(ABC)
RSTDFROBJ DFRID(ABC)
RMVDFRID DFRID(ABC)

Related reference

Restore Library (RSTLIB) command

Restore Deferred Objects (RSTDFROBJ) command
Remove Defer ID (RMVDFRID) command

Evaluation of how system changes affect journal management

After you have established your journaling environment, you need to keep up with changes that occur on
your system.

When you add new applications, evaluate whether to journal the objects.

If you use SMAPP, the system automatically considers new access paths when deciding how to meet your
target recovery times for access paths.

Journaling places some limits on what changes you can make. For example:
« You cannot protect a logical file, either explicitly or with SMAPP, if the underlying physical files are
journaled to different journals.

= You cannot move an object to a different disk pool from the disk pool of the library that contains its
journal.

Keeping records of journaled objects

You must always have a current list of objects that you are journaling and their assigned journals. Print a
new list whenever you add or remove objects from the journal.

To print a list, follow these steps:

1. Type WRKIRN.

. Specify *ALL for both the Journal and Library fields.

. Press Enter twice.

. Write down the names of all the journals or use the PRINT key for each panel of the display.

. For each journal in the list that is used to journal objects, type WRKIRNA IRN(library-name/
journal-name) OUTPUT (xPRINT). Additionally, the WRKIRNA command can send the journaled
objects to an outfile. The print and outfile option on the WRKIRNA command also allows subsetting
the output of the journaled object types.

g b 0N

Keep the lists with your most recent set of backup media that you used to save the entire system. You
can also use the Retrieve Journal Information (QjoRetrieveJournalInformation) APIto
retrieve information about your journaling environment.

You might need this list for the following reasons:

 You need to recover your journaling environment; for example, if the journal is damaged or deleted.
Although you can recover your journaling environment by restoring the objects, in many cases starting
journaling for the objects is a quicker and safer method.

 You create new access paths. The system cannot protect access paths, either explicitly or by using
SMAPP, if the underlying physical files are not journaled to the same journal.

72 IBMi: Journal management

« You want to move objects to another disk pool. Journaled objects must be in the same disk pool as the
journal, unless the objects are in the system disk pool and the journal is in a nonlibrary basic disk pool.

Choose the method for saving journal receivers that works best for your organization. Then be sure to
keep track of what you do. Label your save media so that you know which journal receiver media volumes
are required to apply journal changes to the last complete saved copy of the journaled objects.

Think through possible recovery scenarios. For example, assume this is your save procedure:
 You save all user libraries and directories on Sunday evening.

« You save changed objects every evening.

 You save journal receivers every 2 hours during normal business hours.

Given the preceding list, what are your recovery steps if you lose a journaled object at 3 p.m. on
Thursday?

Related concepts

Plan a backup and recovery strategy

Related reference

Retrieve Journal Information (QjoRetrieveJournallnformation) API

Security management for journals

You can use journal management to provide an audit trail of changes that were made to your objects. You
can determine which program or user made changes to objects by using the journal entries.

By specifying the FIXLENDTA parameter of the Change Journal (CHGJRN) or Create Journal (CRTIRN)
commands you can specify that the following data is included in the journal entry:

« The job name.

« The effective user profile name.

« The program name.

« The program library name and the auxiliary storage pool device name that contains the program library.

« The system sequence number. The system sequence number gives a relative sequence to all journal
entries in all journal receivers on the system.

« The remote address, the address family and the remote port.

- The thread identifier. The thread identifier helps distinguish between multiple threads running in the
same job.

« The logical unit of work identifier. The logical unit of work identifies work related to specific commit
cycles.

- The transaction identifier. The transaction identifier identifies transactions related to specific commit
cycles.

For database physical files, you can determine what changes were made to specific records by

using the Compare Journal Images (CMPJRNIMG) command.However, you cannot use the
CMPJRNIMG command for journal entries that have minimized entry-specific data. If you specified

the MINENTDTA(*FILE) or MINENTDTA(*FLDBDY) parameter on the Cxreate Journal (CRTJRN) or
Change Journal (CHGJRN) commands, you might have minimized entry-specific data.

Use Journal management to provide an audit trail because of the following reasons:

« No one, even the security officer, can remove or change the journal entries.
- Journal entries represent a chronological sequence of events.

« Each journal entry in the system is sequentially numbered without gaps until the CHGIJRN command
resets the sequence number.

Note: When you display the journal entries, there can be gaps in the sequence numbers because some
journal entries are only used internally by the system. These gaps occur if you are using commitment

Journal management 73

control, database file journaling, or access-path journaling. To view the entries in the gaps, you can use
the INCHIDENT parameter on the Display Jouxrnal (DSPJRN) command.

« The journal contains entries that indicate when each journal receiver was changed and the name of the
next journal receiver in the chain.

« Whenever journaling for an object is ended or whenever an object is restored an entry is written.

Remember that the date and time recorded in the journal entries depends on the date and time entered
during an IPL and therefore, may not represent the actual date and time. Also, if you use shared files, the
program name that appears in the journal entry is the name of the program that first opened the shared
file.

A special journal, that is called the audit (QAUDJRN) journal, can provide a record of many security-
relevant events that occur on the system.

Related concepts

Security

Related information

Security Reference

Displaying information for journaled objects, journals, and receivers

IBM Navigator for i, Control Language commands, and APIs provide several ways for you to display
information about journaled objects, journals, and journal receivers.

You can use Navigator for i to display information such as whether the object is journaled, the name of the
object's journal, what library the object's journal is in, and which journaling options are being used. You
can use Navigator for i to display journaling information for the following object types:

Tables (database files)

Libraries (through the QSYS.LIB file system)
Data Areas (through the QSYS.LIB file system)

« Data Queues (through the QSYS.LIB file system)
Integrated file system directories

Integrated file system stream files
« Integrated file system symbolic links

Using Navigator for i, you can get information about one object at time using the Journaling action, or
about groups of objects journaled to a given journal using the Show Journaled Objects action. Use the
following commands and APIs to get information about journaled objects:

« Display File Description (DSPFD) command

Display Object Description (DSPOBJD) command
Display Object Links (DSPLNK) command

Get Attributes (QpOlGetAttr()) API

List Objects (QUSLOBJ) API

Open List of Objects (QGYOLOBJ) API

Work with Object Links (WRKLNK)

Ways that you can display information about journal receivers are as follows:

- IBM Navigator for i Journal Receivers properties dialog

Display Journal Receiver Attributes (DSPJRNRCVA) command

Retrieve Journal Information (QjoRetrieveJournallnformation) API

Work with Journal Attributes (WRKJRNA) command

Retrieve Journal Receiver Information (QjoRtvIrnReceiverInformation) API

74 IBMi: Journal management

These methods can identify:

« The journal receivers currently attached to the journal.

« Adirectory of the journal receivers still on the system that are associated with the journal.
« The names of all of the objects that are being journaled instead of the journal.

« The commitment control uses of this journal.

« The attributes of the journal.

« Information about all remote journals that are associated with the journal.

- Fixed-length data

« ASP of the journal receiver

« Minimized entry data

« The next and previous journal receiver information

You can find the status of a journal receiver by using the WRKIRNA command, then pressing F15
(Receiver directory) from the Work with Journal Attributes display. You can also use the DSPJRNRCVA
command. Or in Navigator for i, you can the find status of a journal receiver by doing the following steps:

1. With Navigator for i, connect to the system with the journal receiver
2. Expand Journal Management.

3. Select Set Database/Library to use with Journal Tasks and specify the database and library that you
want to work with.

4. Click Show All Journal Tasks.
5. Select the Journal Receivers list.
6. Select the journal receiver, and the Properties action.

When the journal receiver is in partial status, the partial status of a journal receiver indicates the
following:

« The disk unit on which the journal receiver is stored is damaged. No more journal entries can be
recorded.

« Ajournal receiver was saved while it was attached to the journal. This means that additional entries
may have been recorded in the journal receiver after the save operation occurred. The receiver was later
restored, and no complete version is available.

« The journal receiver is associated with a remote journal. It does not contain all the journal entries that
are in the associated journal receiver that is attached to the source journal.

A partial receiver does not contain all the entries that are recorded in the journal while this receiver was
attached. It does contain entries that are recorded up to the last save operation.

- The most complete version of the journal receiver is no longer on the system because it was destroyed
during a failure.

« You have restored an older, partial version.

Working with inoperable journal receivers

If you have specified journaling for any objects, the system ensures that you have corrected problems
that affect journaling before continuing with operations on those objects. If the attached journal receiver
becomes inoperable, the operation that writes a journal entry is interrupted and the system sends an
inquiry message that notifies the system operator.

The operator can swap the journal receiver with System i Navigator or the Change Journal (CHGJRN)
command. You can then respond to the inquiry message. A receiver can become inoperable if the receiver
is damaged, the maximum sequence number has been reached, or there is no more space.

Related tasks

Swapping journal receivers

Journal management 75

An important task for journal management is to swap journal receivers. You typically swap journal
receivers when they reach their storage threshold. You can swap journal receivers either with IBM
Navigator for i or with the Change Journal (CHGIRN) command. If you use system journal-receiver
management, the system changes journal receivers for you.

Related reference
Change Journal (CHGJRN) command

Comparing journal images

You can use the Compare Journal Images (CMPJRNIMG) command to compare and list the differences
between the before-image of a record and the after-image of that record, or the after-image of a record
with the previous after-image of that record.

Note: If you are using maximum receiver-size option RCVSIZOPT(*MAXOPT3) and your entry sequence
numbers exceed 9 999 999 999, specify the FROMENTLRG and TOENTLRG parameters when you use the
CMPIRNIMG command.

You can only use the CMPIJRNIMG command for journaled physical database files. You cannot use the
CMPJIRNIMG command for journal entries that have minimized entry-specific data. If you specified the
minimized entry-specific data (MINENTDTA(*FILE) or MINENTDTA(*FLDBDY) parameter on the Create
Journal (CRTJIRN) or Change Journal (CHGIRN) commands, the journal entries might have minimized
entry-specific data, preventing you from being able to compare journaled images.

If the journaled files have null-capable fields, the null value indicators corresponding to the fields in the
before-image of the record are compared with the null value indicators corresponding to the fields in the
after-image of the record. A field-by-field basis compare does this.

The printed output from the CMPJRNIMG command shows the before-images and after-images of a
record followed by a line that indicates (with asterisks) the specific change in the record on a character-
by-character basis. If you compare the after-images, the output shows the previous after-image of the
record and the current after-image of the record, followed by a line indicating the changes.

If you use this command to compare journal images for a file that contains any fields of data type BLOB
(binary large object), CLOB (character large object), or DBCLOB (double-byte character large object),
these fields are not included in the comparison. All other fields in the file are compared.

Working with IBM-supplied journals

The operating system and some licensed programs use journals to provide audit trails and assist with
recovery.

The following table lists some of the IBM-supplied journals:

Journal name Library name | Description

QACGJIRN QSYS Keeps job accounting information. Job Accounting
in the Work Management topic describes the use of
this optional journal.

QAOSDIAIJRN QUSRSYS Provides recovery for the document library files
and the distribution files. Used by Integrated
xSeries Server.

QASOSCFG QUSRSYS The journal for the QASOSCFG physical file.

The QASOSCEFG file stores secure client SOCKets
Secure (SOCKS) configuration data. The Client
SOCKS support topic provides more information
about SOCKS.

QAUDJRN QSYS Keeps an audit record of security-relevant activity
on the system. The Security Reference describes
this optional journal.

76 IBM i: Journal management

Journal name

Library name

Description

QCQIMIRN

QUSRSYS

Provides an audit trail for Managed System
Services.

QDSNX

QUSRSYS

Provides an audit trail for DSNX activity.

QIPFILTER

QUSRSYS

Provides information for troubleshooting and
auditing IP filter rules. See the IP filtering

and network address translation topic for more
information about IP filtering rules.

QIPNAT

QUSRSYS

Provides information for troubleshooting and
auditing network address translation (NAT). See
the IP filtering and network address translation
topic for more information about NAT.

QLYJRN

QUSRSYS

Keeps a log of transactions made to the Application
Development Manager datastore files.

QLYPRILOG

QUSRSYS

Keeps the project logs for the Application
Development Manager licensed program. Used by
the system if recovery is necessary.

QLZALOG

QUSRSYS

Used by the licensed management program to log
requests that exceed the usage limit of a license.

QPFRADJ

QSYS

Keeps a log of dynamic performance tuning
information. Job Accounting in the Work
Management topic describes using this optional
journal.

QPMCCCAIJRN

QUSRSYS

A system managed journal used internally by
performance data collectors to insure the integrity
of their database transactions.

QSNADS

QUSRSYS

Provides an audit trail for SNADS activity.

QSZAIR

QUSRSYS

A journal for Storage Management Services (SMS)

QSNMP

QUSRSYS

Provides an audit trail for network management
information. Simple Network Management Protocol
(SNMP) describes using this journal.

QSXJIRN

QUSRSYS

Provides a log of the activity that occurs in the
database files for service-related activity. Keep the
information in this journal for 30 days.

QTOVDBJRN

QUSRSYS

A journal for virtual private networking (VPN).

QVPNOO0O1

QUSRSYS

Provides an audit trail for Virtual Private
Networking (VPN) connections. TCP/IP
Configuration and Reference describes this journal.

QYPSDBJRN

QUSRSYS

A journal for the systems management platform

QZCAIJRN

QUSRSYS

Contains a record for each SNMP PDU in and out
of the SNMP agent, by PDU type (SNMP GET, SNMP
GETNEXT, SNMP SET, SNMP TRAP).

QZMF

QUSRSYS

Provides an audit trail for the mail server
framework. AnyMail/400 Mail Server Framework
Support provides more information about this
journal.

Journal management 77

http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415412.pdf
http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415412.pdf
http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415411.pdf
http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415411.pdf

If you are using licensed programs or system functions that require these journals, consult the
documentation for those functions for instructions on how to manage the journals and journal receivers.

In general, you swap journal receivers to detach the journal receiver and create and attach a new receiver
on a regular basis. You may need to save detached receivers before deleting them, or you may be able to

delete them without saving them. This depends on how the journal receivers are being used and whether
the journal is using system journal-receiver management.

In some cases, you can use the automatic cleanup function of Operational Assistant to remove detached
journal receivers that are no longer needed.

Related concepts

Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTIRN) command, you can
select to have either system managed or user managed journal receivers.

Related tasks

Swapping journal receivers

An important task for journal management is to swap journal receivers. You typically swap journal
receivers when they reach their storage threshold. You can swap journal receivers either with IBM
Navigator for i or with the Change Journal (CHGJRN) command. If you use system journal-receiver
management, the system changes journal receivers for you.

Sending your own journal entries

You can use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJIRNE) API
to add your own entries to a journal. The system places these entries in the journal's attached journal
receiver along with the system-created journal entries.

To help identify your entries, you can associate each entry with a particular journaled object. If you use
the QJOSIRNE API, you can include the commit cycle identifier with the journal entry and send a larger
amount of entry-specific data.

You may add entries to the journal to identify significant events (such as a checkpoint) or to help in the
recovery of your applications. On the SNDJRNE command, the data specified on the ENTDTA parameter
becomes the Entry-Specific Data field in the journal entry, and the TYPE parameter value becomes the
entry type field. On the QJOSIRNE API, you use the entry data parameter to specify the entry-specific
data and the journal entry type parameter to specify the entry type. For both the command and API
deposits, the entries journal code is 'U'.

The maximum user entry data size for the QJOSIRNE API is 15 MB, which is the maximum journal

entry size for a journal that does not have one of the receiver maximums chosen (RCVSIZOPT(*MAXOPT1/
*MAXOPT2/*MAXOPT3)). If the length of the entry data is greater than 32KB, then a pointer to the entry
data will be returned when retrieving the entry. If the retrieve interface is expecting pointers, the data can
be accessed through the pointer returned on the retrieve. Otherwise, the data returned by the retrieve
interface will be *POINTER.

The QJOSIRNE API optionally returns the following values in the location specified by the receiver
variable:

« Number of bytes returned in the receiver variable

Number of bytes available that could have been returned in the receiver variable

Sequence number of the journal entry that was just deposited
- Journal receiver name
« Journal receiver library

Independent Auxiliary Storage Pool (IASP) name

78 IBMi: Journal management

Changing the state of local journals

Local journals can be in one of two states, active or standby. When the journal state of a local journal is
active, journal entries are allowed to be deposited to the journal receiver.

Journal standby state is a separately purchased feature that prevents most journal entries from being
deposited into the journal. Standby state is enabled by option 42 of theIBM i operating system. You can
start or end journaling objects while the journal is in standby. However, when a journal is in standby state,
you cannot use explicit commitment control. Also, records within database files that have referential
integrity constraints cannot be modified, when the underlying journal is in standby state unless RESTRICT
is specified on the ON UPDATE or ON DELETE attribute for the constraint. Additionally, records within
database files that have data links defined cannot be modified when the underlying journal is in standby
state.

An example of when you might want to put a journal into standby state is if the journal is on a backup
system and you want the replicated copies of your objects on that system to incur very low overhead
until role swap time. By having the journal in standby state until role swap time, a switchover to the
target system can be accomplished more quickly because all objects on the backup system can remain
journaled thus allowing the switchover processing to skip the costly step of starting journaling for all
objects. Until the journal leaves standby state and reverts to active state the backup system is not
incurring the overhead of journaling because most journal entries are not deposited when the journal is in
standby state.

If there is an attempt to deposit a journal entry when the journal is in standby state, no entry is deposited,
nor are any error messages sent to the application. In order to flag the transitions in and out of standby
state, journal codes 'J' and entry types 'SI' and 'SX' are deposited when the local journal is put into and
out of standby. Even though the journal state is standby, and most journal entries are not deposited, there
are a few critical journal entries that will be deposited in a journal. Use the Journal entry information
finder to see if a journal entry is still deposited even though the journal is in standby state.

Additionally, when a journal is in standby state the system elects not to provide System-Managed
Access-Path Protection (SMAPP) for any access paths built over files journaled to the journal and flags
the access paths as not eligible for SMAPP protection. These access paths remain not eligible until

the underlying journal leaves standby state and reverts to active state. Because the access paths are

not eligible for protection, in some select instances system performance may be negatively impacted
when a journal is changed to standby state, This would most likely occur if the access paths are large
and are actively being changed. Under those conditions the underlying SMAPP mechanism attempts to
compensate by enabling SMAPP protection for multiple small access paths whose keys are changing and
whose underlying physical files are not associated with journals in standby state.

Also, abnormal IPL duration or the vary on of an independent Auxiliary Storage Pool (ASP) duration may
be affected if standby state is chosen because some access paths that are no longer eligible for protection
may need to be rebuilt.

If performance degrades after switching to standby state, then some investigation should be done

to determine if standby state is a primary contributing factor. To reduce any potential performance
impact, INCACCPTH(*ELIGIBLE) can be specified on the Change Recovery for Access Paths (CHGRCYAP)
command. Specifying INCACCPTH(*ELIGIBLE) will reduce potential overhead but will expose you to a
potentially longer IPL or vary on of an independent ASP. As with many other options, deciding to use
standby state is a trade off between run time performance and IPL or independent ASP vary on duration.

To ensure that switching to standby state is not causing undo IPL or independent ASP vary on concerns,
use the Display Recovery for Access paths (DSPRCYAP) command periodically to display the estimated
access path recovery time. If this value is much larger than the target access path recovery time and the
total not eligible recovery time is greater than zero, then use F13 (Display Not Eligible Access Paths) to
display a list of the not eligible access paths. This will identify the access paths not eligible for SMAPP
protection along with a reason for their not eligible status. If the access paths with the highest estimated
rebuild times are not eligible due to standby, then you may wish to reconsider your standby choice. In lieu
of standby, you may want to consider journal caching, which often provides nearly as much performance
relief.

Journal management 79

When a local journal is created, the journal state of that journal is *ACTIVE. This means that journal
entries can be deposited to the local journal. If a local journal is in standby state, journal entries with
journal code 'J' and entry type 'LA" are deposited when the local journal is activated.

If a local journal has been put in standby state, activate it by doing the following;:

1. With IBM Navigator for i connect to the system you want to use.
2. Expand Journal Management.

3. Select Set Database/Library to use with Journal Tasks and specify the database and library you
want to work with.

4. Select Journals.
5. Select the journal, and select Properties.
6. On the Journal Properties dialog select Active for the Journal State.

You can also use the Change Journal State (QjoChangeJournalState) API or Change Journal (CHGJIRN)
command to activate the local journal.

Related reference

Change Journal State (QjoChangeJournalState) API
Change Journal (CHGJRN) command

Related information

Journal entry information finder

Work with messages on the journal message queue

The journal message queue is used to communicate information about the journal environment. This
will include messages for normal journal processing and error situations. You may wish to monitor the
journal message queue for messages. The Woxrk with Journal Attributes (WRKJRNA) command
indicates the message queue associated with the journal. The Display message queue (DSPMSGQ)
command can be used to display the messages on the queue.

The messages that are sent to the journal message queue are listed as follows:

CP16956
Not able to call exit programs registered for the QIBM_QJO_CHG_JRNRCYV related exit point. The
system will retry.

CPI7019
Journal &1 approaching limit of journaled objects.

CPI7020
A journal's recovery count is being exceeded. This may affect system performance.

CPI70B7
Changes for a journaled object could not be forced to disk. User action may be required.

CPI70E1
The system was not able to delete a journal receiver due to an unexpected exception. You should
investigate why this error occurred.

CPI70E3
A system managed change journal operation to attach a new journal receiver could not be
accomplished. User action is required to attach a new journal receiver at this time.

CPI70E5
A system managed change journal operation could not be accomplished because a journal or journal
receiver was not available. No user action is required, the system will retry the operation when the
specified manage receiver delay time has passed.

CPI70E6
A journal receiver was not available. If the system is to delete the journal receiver, it will try again
when the delete receiver delay time has passed. The reason code on this message may indicate that

80 IBMi: Journal management

an exit program is preventing the deletion of the journal receiver. If this condition persists you may
need to investigate why the message is being issued.

CPI70E7

The sequence number for a journal is approaching its maximum allowed value. The sequence number
for the journal should be reset via a change journal command. Journaling will stop if the sequence
number is not reset and the maximum sequence number is reached.

CPF7020

A journal receiver was detached from a journal. No action is required, but you may wish to save off the
journal receiver at this time.

CPF7099

The threshold has been reached for a journal receiver that is attached to a user managed journal. You
should attach a new journal receiver at this time.

Scenario: Journal management

This topic provides the steps that a fictitious company, JKL Toy company, takes as it implements journal
management.

Sharon Jones, the system administrator for the JKL Toy Company, is responsible for backing up their
servers and making sure that their servers can be recovered in the event of a natural disaster or system
failure. As security officer, she is also responsible for ensuring the security of the servers.

The JKL Toy Company has a network that consists of a development server, a production server, and an
HTTP server. The following diagram shows the network layout:

JKLDEWV JKLPROD

Firensrall

Ferimeter /
nebwork Router

JELINTZ2

JEL_Toy_ Private com JEL_Toy.com

Related tasks
Scenario: Backup using BRMS

Journal management 81

JKLPROD

JKLPROD is the system that JKL uses for all of their customer orders and where their business
applications are installed (inventory control, customer orders, contracts and pricing, accounts receivable).
The information about this server is extremely critical to their business and changes often.

Also, there are several users who have remote access to the system from home connection. In addition,
even though the company's web site is static, the company has plans to establish a transactional site.
Because of the importance of the information about JKLPROD, Sharon wants to be able to audit the
activity that occurs on the system.

JKLPROD journaling strategy

Since the objects on JKLPROD are crucial to JKL, and since they change often, Sharon has decided that
they are good candidates for journaling.

« Since there are access paths that are critical to her operation, Sharon journals access paths.
« Sharon already separates the information about JKLPROD on separate disk pools:

— Disk pool 2 - inventory control

— Disk pool 3 - customer orders

— Disk pool 4 - contracts and pricing
— Disk pool 5 - accounts receivable

Since the journal and the journaled objects must be in the same disk pool, Sharon creates four journals.

« Since she wants to audit the activity that occurs on the system, and since people have remote access to
the system, Sharon journals fixed-length data using the following values:

— Job name (*JOB)

— User profile (*USR)

— Program name (*PGM)

— Remote address (*RMTADR)

« Since Sharon is using the FIXLENDTA parameter, she cannot minimize the fixed-length portion of the
journal entries.

« Because she is using the FIXLENDTA parameter for all of the journals, and since she is journaling access
paths Sharon uses the character-based interface to set up journaling.

Related concepts

Planning which objects to journal
When you plan which objects to journal, consider the following:

Reasons to journal access paths
If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely.

IBM Navigator for i versus the character-based interface for journaling objects

There are two environments that you can use for journal management: IBM Navigator for i and the
character-based interface. Navigator for i provides a graphical interface for journaling that is easy to use
and does not require the use of control language (CL) commands. The character-based interface requires
the use of CL commands or APIs, but has more functionality than Navigator for i. Some of this function is
also available through the System i Navigator.

82 IBMi: Journal management

JKLINT

JKLINT is the system that JKL uses for their Web site and e-mail. While this data is critical to their
business, it is fairly static.

They need 24x7 availability for the critical data on this server, and they accomplish that by having a
second server, JKLINT2, that shadows JKLINT. They use a high availability replication solution to copy the
data from JKLINT to JKLINT2. Then, if JKLINT goes down, they can switch to JKLINT2.

Since Sharon is using a high availability solution she uses remote journaling with the two servers.
Scenarios: Remote journal management and recovery description shows the different ways that Sharon
can set up remote journaling between JKLINT and JKLINT2.

Related information

Scenarios: Remote journal management and recovery
These scenarios describe the possible ways that JKL Toy Company can use remote journal management.
JKL Toy Company uses the server JKLINT as their web server.

JKLDEV

JKLDEV is JKL's development server. Though it does not require 24x7 availability, the data on it represent
many person hours of work by the developers. Therefore it is important that in the event of a crash, the
system be brought to a current state. Also, since it is a development server, changes to the data occur
often.

JKLDEV is used by both web and database developers. So several different types of data are stored on
this server, including stream files and database files.

JKLDEYV journaling strategy

Since many of the objects on JKLDEV are important and changes often, Sharon has decided that they are
good candidates for journaling.

JKLDEV is used by both web and database developers, so there are several physical files, and many
stream files that she wants to journal. Sharon has decided to do the following:

« Since none of the access paths are critical to her operation, Sharon does not journal access paths.
 To simplify setup and recovery, Sharon assigns all of the objects to one journal.

« Since there are many stream files to journal, Sharon journals the integrated file system directories, in
addition to individual files. She elects to use the Current folder and all subfolders option and Journal
new files and folders option. This choice ensures that the objects currently in the directory and in any
subfolders are journaled and objects that are created in the future are also journaled.

« Since journaling with the Journal new files and folders option can quickly make the journal receiver
size grow quickly, she uses system journal-receiver management.

- Because it supports all of the options she has chosen, Sharon sets up journaling on System i Navigator.

Related concepts

Planning which objects to journal
When you plan which objects to journal, consider the following:

Reasons to journal access paths
If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely.

Object assignment to journals

You can use one journal to manage all the objects you are journaling. Or, you can set up several journals
if groups of objects have different backup and recovery requirements. Every journal has a single attached
receiver. All journal entries for all objects being managed by the journal are written to the same journal
receiver.

Manual versus system journal-receiver management

Journal management 83

When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.

Recovery operations for journal management
This topic provides instructions about how to use journaling to recover data on your system.

You can perform recovery tasks if you have an abnormal system end, need to recover a damaged journal,
journal receiver, or journaled object.

Determining recovery needs using journal status

You can use the Work with Journal (WRKJRN) command to display the damage status of a journal and
display whether or not the last IPL was normal.

Option 5 on the Work with Journal display shows the current status of the journal. It shows if the last
system end was Normal or Abnormal, and if the journal is damaged. The damage status is None or Full.

=l Session A - [24 x 80] _ (O] x|

File Edit WView Communication Actions Window Help

2| B3 S @lE = % 2 2] @l

Cisplay Journal Status
Journall RCHASTEST Library & LJGFL

Abnormal

Library
QGFL

Bottom
Press Enter to continue.

Fa=Ex:it FlZ2=Cancel

al-0a1

<31 1502 - Session successfully started

If the last system end was abnormal, this display indicates whether the system synchronized the
journaled objects or not. This indicates if the system synchronized each object in use during the abnormal
end to match the entries in the attached journal receiver during the previous initial program load (IPL) or
vary on of an independent disk pool.

If the last system end was normal, the display indicates that all objects are synchronized with the journal.
If the journal is damaged, the display indicates that the system was unable to determine whether or not
all objects are synchronized.

The display also presents information about the currently attached receiver and its damage status. The
damage status of the receiver can be None, Partial, or Full. If the journal damage is such that the system
cannot determine the status of the attached journal receiver, no attached receiver shows on the display.

84 IBMi: Journal management

If some objects are not synchronized or damage has been detected, a message appears indicating the
form of recovery that you must perform.

Recovery for journal management after abnormal system end

This topic describes the recovery actions that take place in the event of an abnormal system end.

If the system abnormally ends while you are journaling objects, the system does the following:

1.

Brings all journals, journal receivers, and objects you are journaling to a usable and predictable
condition during the IPL or vary on of an independent disk pool, including any access paths being
journaled and in use at the time the system abnormally ended.

. Checks all recently recorded entries in the journal receivers that were attached to a journal.

3. Places an entry in the journal to indicate that an abnormal system end occurred. When the system

completes the IPL or vary on of an independent disk pool, all entries are available for processing.

. Checks that the journal receivers attached to journals can be used for normal processing of the journal

entries. If some of the objects you are journaling could not be synchronized with the journal, the
system sends message CPF3172 to the history log (QHST) that identifies the journals that could not be
synchronized. If a journal or a journal receiver is damaged, the system sends a message to the history
log identifying the damage that occurred (message CPF3171 indicates that the journal is damaged,
and messages CPF3173 or CPF3174 indicate that the journal receiver is damaged). If a journal or
journal receiver is found to no longer exist within a library, the system sends message CPI70EE to the
history log.

. Recovers each object that was in use at the time the system ended abnormally, using the normal

system recovery procedures for objects.

In addition, if an object being journaled was opened for output, update, or delete operations, the system
performs the following functions so changes to that object will not be lost:

1.

2.

Ensures that the changes appear in the object. Changes that do not appear in the journal receiver are
not in the object.

Places an entry in the journal receiver that indicates whether the object was synchronized with the
journal. For database files, if the file could not be synchronized with the journal, the system places
message CPF3175 in the history log identifying the failure, and you must correct the problem. For
other journaled objects, the system places message CPF700C in the history log identifying the failure,
and you must correct the problem.

A synchronization failure can occur if the data portion of the object is damaged, a journal receiver required
to perform the synchronization is damaged, or the journal is inoperable.

After an abnormal system end, perform the following steps:

1.
2.

Perform a manual IPL.

Check the history log to determine if there are any damaged objects, objects that are not synchronized,
or any damaged journals or journal receivers.

. If necessary, recover the damaged journals or journal receivers as described in Recover a damaged

journal receiver and Recover a damaged journal.

. If there is a damaged object:

a) Delete the object.
b) Restore the object from the latest saved version.
c) Allocate the object so no one else can access it.

d) Restore the needed journal receivers if they are not online. Journal receivers do not need to be
restored in a particular sequence. The system establishes the receiver chains correctly when they
are restored.

e) Use the APYJRNCHG or APYJRNCHGX command to apply the changes to the object.
f) Deallocate the object.

Journal management 85

5. If an object could not be synchronized, use the information in the history log and in the journal to
determine why the object could not be synchronized and how to proceed with recovery. For example,
you may need to use the DFU or a user-written program to bring a database file to a usable condition.

6. Determine which applications or programs were active, and determine where to restart the
applications from the information in the history log and in the journal.

If a journaled access path is in use during an abnormal system end, that access path does not appear on
the Edit Rebuild Access Path display.

If the maintenance for the access path is immediate or delayed, the system automatically recovers the
access path during IPL or vary on of an independent disk pool. A status message is displayed for each
access path whose maintenance is immediate or delayed as it is being recovered during an IPL or vary
on of an independent disk pool. The system places message CPF3123 in the system history log for
each access path that is recovered through the journal during the IPL or vary on of an independent disk
pool. This message appears for access paths that are explicitly journaled and for access paths that are
protected by SMAPP.

Related tasks

Recovering from a damaged journal receiver
If a journal receiver becomes damaged, the system sends message CPF8136 or message CPF8137 to the
system operator and the job log.

Recovering a damaged journal
If a journal becomes damaged, the system sends message CPF8135 to the system operator and to the job
log.

Recovering from a damaged journal receiver

If a journal receiver becomes damaged, the system sends message CPF8136 or message CPF8137 to the
system operator and the job log.

If a journal receiver becomes damaged, there are two ways you can recover from it:
« Recover from a damaged receiver manually

1. If the damaged receiver is currently attached to a journal, swap the journal receiver to attach a new
receiver and detach the damaged receiver.

2. If the journal receiver is not currently attached to a journal and you have a complete saved copy of
the receiver (that is, one that was saved after the receiver was detached), then delete the journal
receiver and restore a previously saved copy. If no complete saved copy of the journal receiver exits,
then you may wish to read as many entries as possible before deleting the journal receiver.

3. If the journal receiver was never attached to a journal, delete the receiver and create it again or
restore it.

If the journal receiver is partially damaged, all journal entries except those in the damaged portion of
the journal receiver can be viewed using the Display Journal (DSPJRN) command. Using this list, you can
determine what you need to do to recover your objects. Applying or removing journal changes cannot be
done with a partially damaged journal receiver.

« Recover from a damaged receiver with the Work with Journal (WRKJRN) command. It is recommended
that you use the WRKIRN command.

To use the Work with Journals display to recover damaged journal receivers, use Option 7 (Recover
damaged journal receivers). Option 7 checks to determine which journal receivers that are associated
with the specified journal are damaged. If none are damaged, a message appears.

If there are damaged journal receivers associated with the specified journal, the Recover Damaged
Journal Receivers display appears and lists those receivers.

The status fields initially show a value of Damaged. After recovery has been successfully completed, the
status shows a value of Recovered (receiver recovered).

86 IBMi: Journal management

To view the online help, type WRKJIRN at a command line, and press F1. The online help also contains a
description of the journal menus.

Recovery for a damaged journal receiver guides you through the following steps:

1. If the attached receiver is damaged, you must run a Change Journal (CHGJRN) command to attach a
new receiver.

Indicate that you want to create a new receiver. The system presents the Create Journal Receiver
(CRTIRNRCV) command prompt for receiver name and attributes. After you create the new receiver,
the system shows the CHGIJRN command prompt.

If the attached receiver is not damaged, the preceding step is omitted.

2. The damaged journal receiver is deleted.

3. A prompt for the restore of the damaged journal receiver is shown. Any of the values on the prompt
can be changed except the receiver name. Save information in the prompt is provided by the system.

Related tasks

Swapping journal receivers

An important task for journal management is to swap journal receivers. You typically swap journal
receivers when they reach their storage threshold. You can swap journal receivers either with IBM
Navigator for i or with the Change Journal (CHGJRN) command. If you use system journal-receiver
management, the system changes journal receivers for you.

Deleting journal receivers
Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal
management task is to delete journal receivers after you no longer need them.

Related reference

Work with Journal (WRKJRN) command

Display Journal (DSPJRN) command

Change Journal (CHGJRN) command

Create Journal Receiver (CRTJRNRCV) command

Recovering a damaged journal
If a journal becomes damaged, the system sends message CPF8135 to the system operator and to the job
log.
You can use the Work with Journals (WRKJRN) command to recover a damaged journal, or you can
perform the following steps:

1. End journaling for all libraries by using the End Journal Library (ENDJRNLIB) command.

2. End journaling for all access paths associated with the journal by using the End Journal Access Path
(ENDIRNAP) command.

3. End journaling for all physical files associated with the journal by using the End Journal Physical File
(ENDJIRNPF) command.

. End journaling for all integrated file system objects by using the End Journal (ENDJRN) command.
. End journaling for all other object types by using the End Journal Object (ENDJRNOBJ) command.
. Delete the damaged journal by using the Delete Journal (DLTIRN) command.

. Create a journal receiver (CRTJRNRCV command) and create a journal (CRTIRN command) with the
same name and in the same library as the damaged journal, or restore the journal from a previously
saved version.

N o o B~

Note: If you have remote journals associated with this journal, it is suggested that you restore a
previously saved version of the journal rather than creating the journal.

8. Start journaling the physical files that were journaled by using the Start Journal Physical File
(STRIRNPF) command.

Journal management 87

9. Start journaling the access paths that were journaled by using the Start Journal Access Path
(STRIRNAP) command.

10. Start journaling integrated file system objects with the Start Journal (STRIRN) command.
11. Start journaling other new object types with the Start Journal Object (STRIRNOBJ) command.
Note: You can also restore your journaling environment by deleting and restoring all the objects

that were being journaled. Objects that were journaled at the time of their save automatically begin
journaling at restore time if the journal is online.

12. Start journaling libraries with the Start Journal Library (STRIJRNLIB) command
13. Save the journaled objects to allow for later recovery.
14. Associate the old journal receivers with the new journal. Do the following:
a) Type WRKJRN and press the Enter key.
b) On the prompt display, enter the name of the journal.
¢) From the Work with Journals display, select option 9 (Associate receivers).
d) Press F12 to cancel the display.
e) Type WRKJIRNA JIRN(library-name/journal-name) and press the Enter key.
f) From the Work with Journal Attributes display, press F15 to display the receiver directory.

g) A new panel now gets displayed after selecting option 9. This new panel is called "Specify Journal
Receivers". Fill in *ALL for journal receiver name and put in the specific library name that the
receivers are located in. This is faster than searching the entire system looking at all receivers.

h) After receivers are attached, then Press F12 to cancel out of the "Work with Journals" display.

Each time a journal is restored, a new receiver chain is started because the last journal receiver in
the chain that existed prior to the restore process did not have the newly created receivers as its next
receivers.

Note: If the damaged journal had any remote journals associated with it and a previously saved version
of the journal was not restored, use the Add Remote Journal (QjoAddRemoteJournal) API or Add Remote
Journal (ADDRMTIRN) command to reassociate those remote journals. See the Add remote journals link
below for more information.

Related tasks

Adding remote journals
This topic provides instructions for adding a remote journal.

Associating receivers with journals

You can use Option 9 on the Work with Journals display if the journal was restored or created again. The
system associates all applicable receivers with the restored or recreated journal so that a restore of these
receivers is not necessary.

The system now displays the Specify Journal Receivers screen. There are new input lines so you can
enter specific receivers, generic receivers or *ALL. Additionally, the second input line allows a library to be
specified so the checking for valid receivers is now restricted to a specific library instead of searching the
entire system to find all receivers and checking all of these receivers to see if they should be associated
with this newly created journal. This new screen significantly speeds up the reassociation of receivers to a
journal.

The system displays the Specify Journal Receivers screen. There are input lines so you can enter specific
receivers, generic receivers or *ALL. Additionally, the second input line allows a library to be specified so

the checking for valid receivers is restricted to a specific library instead of searching the entire system to
find all receivers and checking all of these receivers to see if they should be associated with this journal.

This screen significantly speeds up the reassociation of receivers to a journal.

A journal receiver is associated with a journal if the journal receiver appears in the journal receiver
directory. A receiver that was previously attached to a journal but is not currently associated with a journal
cannot be used with the journal commands, such as:

88 IBMi: Journal management

Display Journal (DSPJRN)

Receive Journal Entry (RCVIRNE)

Retrieve Journal Entry (RTVIRNE)

Retrieve Journal Entries (QjoRetrieveJournalEntries) API
Apply Journaled Changes (APYJRNCHG)

Apply Journaled Changes Extend (APYJRNCHGX)
Remove Journaled Changes (RMVIRNCHG)

Related reference
Display Journal (DSPJRN) command

Receive Journal Entry (RCVIRNE) command

Retrieve Journal Entry (RTVIRNE) command

Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Apply Journaled Changes (APYJRNCHG) command

Apply Journaled Changes Extend (APYJRNCHGX) command

Remove Journaled Changes (RMVJRNCHG) command

Recovering a damaged journal with the WRKIRN command
The Woxrk with Journal (WRKJIRN) command can be used to recover a damaged journal.

The WRKIRN command associates the receivers with the recovered journals without you having to delete
and restore the receivers.

Option 6 on the Work with Journals display verifies that the journal is damaged before proceeding with
recovery. If the journal is not damaged, an informational message appears.

For a description of the Work with Journals display, see the WRKIRN command in the online command
help. To view the help, type WRKIRN on a command line, and press F1.

Recovery for a damaged journal guides you through the following steps:

1. The system attempts to determine which objects are currently being journaled to the indicated journal.

If the system cannot successfully build this list, a message appears before the recovery operation
begins. For each object type whose journaling is being ended, a status message is sent indicating how
many objects have ended.

. Journaling is ended for all access paths that are currently being journaled to the specified journal.

. Journaling is ended for all database files that are currently being journaled to the specified journal.
Journaling is ended for all objects.

. The system deletes the journal.

. The system presents the Recover Damaged Journal display, which asks you whether to restore or
create the journal and what state to create the journal. The state is *ACTIVE or *STANDBY. If you

have remote journals associated with your damaged journal it is suggested that you take the option to
restore a previously saved version of the journal.

a) If the journal will be restored, the system prompts for the values that are needed for the restore
operation.

b) If the journal will be created, the system prompts for the receiver name and attributes with the
CRTIRNRCV command prompt. The system prompts for values needed to create the journal with
the CRTIRN command prompt, with known values that are shown.

. Journaling is restarted for all objects for which it was previously ended. The screen displays after each

object type has been restarted. If there were no objects for a specific type, then that step is skipped.
A status message is sent periodically while journaling is being started to update you on how many
objects have started journaling.

. The system now displays the Specify Journal Receivers screen. There are new input lines so you

can enter specific receivers, generic receivers or *ALL. On the display you can enter a specific
receiver, a generic name for journal receivers, or *ALL. Additionally, a library name can be specified

Journal management 89

to limit the search for receivers to only a specific library when finding receivers to associate with
the newly created journal. Limiting the search to only certain receivers can significantly speed up the
reassociation processing.

A journal receiver is associated with a journal if the journal receiver appears in the journal receiver
directory. A receiver that was previously attached to a journal, but is not currently associated with a
journal, cannot be used with the journal commands such as Display Jouxrnal (DSPJRN), Apply
Journaled Changes (APYJRNCHG), Apply Journaled Changes Extend (APYJRNCHGX), and
Remove Journaled Changes (RMVJRNCHG).

As the recovery of a damaged journal proceeds, the Display Journal Recovery Status display appears. The
information about this display is updated as the operation progresses to indicate which steps have been
completed, which steps have been bypassed, and which step will be run next. Whenever a user action is
required, the status display is replaced by the appropriate prompt display.

The status field indicates the following operation status:

Pending. The step has not been started.

« Next. The step will be performed next (after the Enter key is pressed).
« Bypassed. The step was not performed. (It was not necessary).

« Complete. The step has been performed.

« Error. The step has been performed, but errors were encountered.

The first display you usually see after the first status display is the Recover Damaged Journal display. Use
this display to choose whether the journal is to be created or restored.

When the last step of the recovery process is complete, a message appears indicating that all objects for
which journaling was started must be saved to establish a new recovery point.

If the damaged journal had any remote journals associated with it and a previously saved version of
the journal was not restored, use the Add Remote Journal (QjoAddRemotedournal) APIorAdd
Remote Journal (ADDRMTJIRN) command to reassociate those remote journals.

Related tasks

Adding remote journals
This topic provides instructions for adding a remote journal.

Related reference

Work with Journal (WRKJIRN) command

Display Journal (DSPJRN) command

Apply Journaled Changes (APYJRNCHG) command

Apply Journaled Changes Extend (APYJRNCHGX) command
Remove Journaled Changes (RMVJRNCHG) command

Add Remote Journal (QjoAddRemoteJournal) API

Add Remote Journal (ADDRMTJRN) command

Recovery of journaled objects

One of the primary advantages of journaling is its ability to return a journaled object to its current state
since the last save.

You can recover from many types of damage to journaled objects by using journaled changes. For
example, an object is damaged and becomes unusable, an error in an application program caused records
to be improperly updated, or incorrect data was used to update an object. In each of these instances, only
restoring a saved version of the object can result in the loss of a significant amount of data.

If you use the Apply Journaled Changes (APYJRNCHG) or Apply Journaled Changes Extend
(APYJRNCHGX) command to apply journaled changes, significantly less data may be lost. You can use the
Remove Journaled Changes (RMVIRNCHG) command to recover from improperly updated records or
incorrect data if before-images have been journaled. This command removes (or backs out) changes that
were made to an object.

90 IBM i: Journal management

Use the APYJRNCHG command to apply changes to these object types:

e Library

« Database file

- Integrated file system object
« Data area

- Data queue

Use the APYJRNCHGX command to apply changes to database files.
Use the RMVIRNCHG command to remove changes that were made to these object types:

« Database file
« Data area

To recover an object by applying or removing journaled changes, the object must be currently journaled.
The journal entries must have the same journal identifier (JID) as the object. To ensure the journal
identifiers are the same, save the object immediately after journaling is started for the object.

To apply or remove journaled changes to or from a restored copy of the object, you must have already
saved the object while it was being journaled. Why you must save objects after you start journaling has
more information about saving journaled objects and about JIDs.

If you need to recover objects that were journaled to a journal that you deleted, restore the journal from
a saved copy or create a new journal with the same name in the same library. Then restore the object and
all the needed receivers before applying or removing journaled changes with that journal. You can use an
option on the Work with Journals display to reassociate any journal receivers that are still on the system.
To use the Work with Journals display, use the Woxrk with Journals (WRKJRN) command.

Some types of entries in the journal receiver cause the apply or remove process to possibly stop. These
entries are written by events that the system cannot reconstruct. Certain illogical conditions, such as a
duplicate key in a database file defined as unique, can also cause processing to end.

Use the Object Error Option (OBJERROPT) of the APYJRNCHG, APYJRNCHGX, or RMVIRNCHG commands
to determine how the system responds to an error. If you select OBJERROPT(*CONTINUE) and an error
occurs, processing of journal entries stops only for the object associated with that error. Processing
continues for the other objects. The system sends a diagnostic message indicating that the processing

of journaled changes for that object was not successful. The system also places an indication that
processing ended early for the specific object in any output file record. If you select OBJERROPT(*END),
processing ends for all objects when an error occurs.

Using save-while-active to save your journaled objects can help you recover your objects more

quickly when you need to apply or remove journaled changes specifying FROMENT(*LASTSAVE) or
FROMENTLRG(*LASTSAVE). When you use the save-while-active function to save your journaled objects,
the system saves and then restores information that indicates which starting journal sequence number
is needed for the apply or remove operation. When this information is available for all objects to which
you are applying or removing journaled changes, the system does not need to scan the journal receivers
to determine this starting point. Scanning journal receiver data to find the starting points can be time
consuming.

Also, using save-while-active when saving your objects allows you to restore a version of your object
which was not from the last save and to still specify FROMENT(*LASTSAVE) or FROMENTLRG(*LASTSAVE)
on the apply or remove command and successfully apply or remove changes.

Actions of applying or removing journaled changes by journal code shows how operations that apply and
remove journaled changes handle journal entry types. It shows which entry types cause processing to end
for an object and what processing is done when the entry is applied or removed.

You can use partial receivers to apply or remove changes from an object. If you attempt to restore a
saved receiver while a more current version of the receiver is on the system, an escape message is sent
to prevent you from restoring the receiver. The system makes sure that the most complete version is
preserved.

Journal management 91

You can use a partial receiver as the first receiver in the receiver chain for a RMVIJRNCHG command only if
you specify a sequence number for the FROMENT or FROMENTLRG parameter.

Related concepts

Why you must save objects after you start journaling
After you start journaling, it is essential that you save objects that you are journaling.

Using SAVCHGOBJ to save journal receivers

One technique for saving journal receivers is to use the Save Changed Object (SAVCHGOBJ) command.
When you use the SAVCHGOBJ command to save journal receivers, ensure that you omit the attached
journal receiver.

Applying journaled changes

If an object becomes damaged or is not usable you can recover the object using the Apply Jouxrnaled

Changes (APYJRNCHG) or Apply Journaled Changes Extend (APYJRNCHGX) command. If you

restore an object that was saved with partial transactions, then you must apply journaled changes to that
object before it is usable.

Difference between APYJRNCHG and APYJRNCHGX

There are slight differences between the Apply Journaled Changes (APYJRNCHG) command and
the Apply Journaled Changes Extend (APYJRNCHGX) command. The APYJRNCHGX command
only applies entries for database files and requires entries to be applied for all files in a library. The
APYJRNCHG command also applies entries for non-database objects.

Applying journaled changes to all objects

You can apply journaled changes to all objects that are journaled to the journal by specifying
OBJ(*ALLIRNOBJ) on the APYJRNCHG command.

Applying journaled changes and commitment control

You can ensure that commitment transaction boundaries are honored during the apply journaled changes
operations by using the commit boundary (CMTBDY) parameter. The default value for the CMTBDY
parameter is *YES. If the system encounters a journal entry that causes the apply or remove process

to stop for the object, the commitment boundary might not be honored.

Note: Regardless of the CMTBDY parameter value, any database file object-level operations that were
originally performed under commitment control are also performed under commitment control during the
apply. If the commitment control transaction was originally committed, the object-level operations are
committed when the corresponding commit entry is applied. If the commitment control transaction was
originally rolled back, the object-level operations are rolled back when the corresponding rollback entry is
applied. If the commitment control operation does not end within the range of journal entries being
applied, then the changes are rolled back.

Error handling

When the system encounters a journal entry it cannot process, it ends apply processing either for that
specific object or for the entire apply operation. You can specify how the system behaves when it
encounters a journal entry it cannot process with the Object Error Option (OBJERROPT) parameter on
the APYJRNCHG or APYJRNCHGX command. If you specify OBJERROPT(*CONTINUE), the system ends
apply processing for the specific object that has an error, but it continues apply processing for the

other objects in the apply operation. If you specify OBJERROPT(*END), the system ends processing for
the entire apply operation. The OBJERROPT parameter is also available for the Remove Journaled
Changes (RMVJRNCHG) command. Actions of applying or removing journaled changes by journal code
shows which entry types cause processing to end for an object.

92 IBM i: Journal management

Before you start applying changes
You must first reestablish the object to a condition that you know is undamaged.

» To reestablish the object, restore the last saved copy of the object. The object must have been saved
while it was being journaled.

« If you saved a database physical file by using the Copy File (CPYF) command, use the CPYF
command to restore the member by overlaying the contents of the existing object with the old values.

- If the member of a database physical file was just initialized, initialize the member again using the
Initialize Physical File Membex (INZPFM) command or a user-created application program.

- If a member of a database physical file was just reorganized, reorganize the member again using the
Reorganize Physical File Membexr (RGZPFM) command.

You must restore the needed journal receivers if any of the following are true:

- If the journal receivers were deleted since the object was last staved (or some other point).
- If the journal receivers were saved with their storage freed.

When you apply journaled changes to an object, the object cannot be in use by anyone else.

Starting and stopping points for applying journaled changes

When the condition of the object has been established, use the APYJRNCHG or APYJRNCHGX command
to apply the changes that are recorded in the journal to the object.

The system applies the changes to the object in the same order as they were originally made. You

must plan where you want to start and stop applying changes. Use the Display Jouxrnal (DSPJRN)
command to identify the desired starting and ending points. If you use a control language (CL) program for
your recovery procedures, use the following:

« Receive Journal Entxry (RCVIRNE) command to receive journal entries as they are written to the
journal receiver.

« Retrieve Journal Entry (RTVIRNE) command to retrieve a journal entry and place it in program
variables.

You can also use the QjoRetrieveJournalEntries API to retrieve the information into a High Level
Language (HLL) program.

Starting applying journal entries

On the APYJRNCHG or APYJRNCHGX command, specify the first journal entry to be applied to the object.
This entry can be selected from any of the following points:

« After the last save of the object
« From the first journal entry
« From an identified sequence number that corresponds to a date and time stamp

« From an identified sequence number that corresponds to the start or end of a particular job's use of the
object provided that you did not specify one of the following;:

OMTIRNE(*OPNCLO) when starting journaling or changing the journaling attributes for object.

OMTIRNE(*OPNCLOSYN) when starting journaling or changing the journaling attributes for a directory
or stream file.

RCVSIZOPT(*MINFIXLEN) for the journal at any time while the object was journaled.
A FIXLENDTA option that omitted the job name.
A specific sequence number

Note: If an object was restored with partial transactions, then you must specify FROMENT(*LASTSAVE)
or FROMENTLRG (*LASTSAVE).

Journal management 93

Stopping applying journal entries

You can stop applying the journal entries at the following;:

- The end of the data in the last journal receiver in the receiver range
« A particular entry in the journal

- A date and time stamp

« A commitment boundary

« The start or end of a particular job's use of the data in the object, provided you did not specify the
following:

OMTIRNE(*OPNCLO) when starting journaling or changing the journaling attributes for the object.

OMTIRNE(*OPNCLOSYN) when starting journaling or changing the journaling attributes for a directory
or stream file.

RCVSIZOPT(*MINFIXLEN) for the journal at any time while the object was journaled.
A FIXLENDTA option that omitted the job name.
« The journal entry that indicates when the object was last restored

« A specific sequence number

The apply and remove journaled changes output file

It is highly recommended that you use the apply and remove journaled changes output file when you
apply journaled changes. The output file contains a record for each object that the apply operation
processes. It contains a record for each object created and each object deleted during the apply. This
output file is especially useful when the apply ends early. It is much easier to query the output file for the
status of each object rather then searching through the job log messages. Also the messages are limited
to 512 while the output file is not limited.

Considerations for applying changes
Considerations for applying changes are as follows:

- When you apply journaled changes to integrated file system objects, you need to be aware of integrated
file system considerations.

« If you need to apply entries for less than 300 objects, and your database files have only one member, or
you will be applying changes to all members of the files, then you may wish to use the Forward Recovery
option through the Woxrk with Journals (WRKJRN) command.

Related concepts

Actions of applying or removing journaled changes by journal code

The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),
Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVIRNCHG)
command by journal code and entry type.

Use of the QAJRNCHG file
You can use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the
activity that occurs when you perform an apply or remove journaled changes operation.

Related reference

Apply Journaled Changes (APYJRNCHG) command

Apply Journaled Changes Extend (APYJRNCHGX) command
Copy File (CPYF) command

Initialize Physical File Member (INZPFM) command
Reorganize Physical File Member (RGZPFM) command
Display Journal (DSPJRN) command

Receive Journal Entry (RCVJRNE) command

94 IBM i: Journal management

Retrieve Journal Entry (RTVIRNE) command
Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Integrated file system considerations for applying journaled changes
If there is a create entry or delete entry in the range of journal entries to which you are applying journaled
changes, changes to a directory can cause the creation or deletion of an object.

If you are journaling a directory using the Journal new files and folders (INHERIT(*YES)) option and

an object is created into that directory, the system automatically starts journaling that new object and
deposits associated create and start journal object journal entries. The apply of these create and start
journal entries during the apply operation on the directory then creates the objects and starts journaling
for them during the apply operation. For any subsequent journaled entries for that object, the apply
operation applies any entries that it encounters for that object as well. Similarly, if an entry is encountered
which deletes (unlinks) an integrated file system object, that object is actually deleted as part of the apply
operation.

Additionally, the apply operation will start journaling for any integrated file system journal entry that adds
a link to the journaled directory, such as moving a nonjournaled object into the journaled directory, or
adding a new hard link to a nonjournaled object into this journaled directory. However, no entries will be
applied to these objects since the state of those objects is not fully know during the apply.

As objects are created, they are included in the maximum number of objects which can be applied as part
of one Apply Journaled Changes (APYJRNCHG) request.

Error handling considerations

When you apply journaled changes, you can use the Object Error Option (OBJERROPT) of the APYJRNCHG
command to specify how the system responds to errors. If you specify *CONTINUE, the system stops
applying changes to the object that encounters an error, but continues the apply operation for the
remaining objects.

For integrated file system objects, the system processes errors for directory-level operations separately
from object-level operations. For example, you perform an apply journaled changes operation for a
directory and a stream file in that directory. During the apply operation, an error occurs for the stream file
and the apply process ends for that stream file. You might expect some operations that are associated
with that stream file, such as remove link, to end also. But since remove link is a directory level operation,
the remove link operation still occurs, even though the apply operation ended for that stream file.

Therefore even though object-level operations for an object might end, directory-level operations that are
associated with that object still occur.

Commitment control considerations

Many journaled integrated file system operations use system initiated commitment control for the
duration of the operation. These operations are not considered completed successfully unless the
commitment control cycle is committed. Commitment control, here, refers to commitment control that
the system initiates. Integrated file system operations cannot be included in a user initiated commitment
control cycle.

For integrated file system journal entries that are part of a commitment control cycle, do not apply
individual entries from within the cycle without applying the entire commit cycle. Using the Commit
Boundary (CMTBDY(*YES)) parameter on the APYJRNCHG command can help enforce this. If you do not
use this option and choose a specific starting point, start from the Start of commit cycle (C SC) entry

for that cycle. Likewise, if you choose to end applying a journaled change at a specific point, end on the
Commit (C CM) or Rollback (C RB) entry for that cycle.

Related concepts
Actions of applying or removing journaled changes by journal code

Journal management 95

The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),
Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVIRNCHG)
command by journal code and entry type.

Applying journaled changes with the WRKIRN command

The Woxrk with Jouxrnal (WRKJRN) command can be used to recover any journaled object. When you
select option 2, you choose from a list of object types for recovery. Choose an object type to view the
journaled objects of that type and the current status for each object.

The status field for each object indicates the following:

« Not journaled

« Different journal
« Not found

« Damaged

« Not Synchronized
» Restore complete
 Recovered

- Deleted

- Database files

Note: The WRKIRN command support should be considered only if you are applying changes for less than
300 objects.

You can use the Work With Forward Recovery display to perform the following tasks:

Add object to list
To add an object to the list on the display, use Option 1 (Add member to list). Do this if you want to
restore those objects. This task is not available for Integrated File System objects.

Apply journaled changes
To apply journaled changes to an object, use Option 2 (Apply journaled changes). This option applies
journaled changes and changes the status to Recovered (if the apply operation was successful). If the
apply operation was not successful, messages appear indicating why and the last successful status is
displayed. If any required receivers are missing or damaged while running the APYJRNCHG command,
the system prompts for the restore of the missing or damaged receivers.

If any of the objects in the list have a status of Damaged, the system prompts you with the command
necessary to recover the object. For objects that are damaged, recovery involves deleting the object,
a restore of the last save of the object, followed by the Apply Journaled Changes (APYJRNCHG)
command. The system guides you through the recovery of physical files as follows:

Note: The recovery is similar for data areas, data queues, and integrated file system objects,
except for the dependent logical files references. Also, the restore command names are different
for integrated file systems it is RST, but for all others its RSTOBJ.

« For physical files, the system identifies all the logical files dependent on the specified damaged file. The
Dependent Logical Files display appears identifying these files.

« The dependent logical files are deleted.
« The system deletes the files to be recovered (or restored).

- The system displays prompts for the restore of files to be recovered. After all restores are completed
successfully, the files to be recovered are allocated exclusively to prevent any other processing. This
allocation is maintained until the recovery procedures are complete.

« The system displays prompts for the restores of the dependent logical files.
« An APYJRNCHG command is prompted.

« If the APYJRNCHG command encounters a required journal receiver that is not online, the system
prompts for the restore of the required receiver and again starts the APYJRNCHG command.

96 IBM i: Journal management

When the recovery process is complete, the status field for the member indicates Recovered (if the
operation was successful). If the operation failed, the status field remains unchanged, and messages
appear indicating why the operation failed.

Restore objects
If you wish to restore any objects, use Option 3 (Restore). This is particularly useful for objects with
a status of Not Found. Objects that are restored successfully have a status of Restore Complete.
Objects that are not restored keep their old status. A message is sent indicating that the restore did
not complete successfully. All objects that are restored are included in the list of objects to recover.

Note: The last save information is provided for the restore operation. If either of the following are true,
then you must use the RSTOBJ command instead of Option 3 (Restore):

« The device provided is tape, diskette, or optical and you choose to restore from a save file (*SAVF).

« The device provided is a save file (*SAVF) and you choose to restore from tape, diskette, or optical
media.

If you choose option 3 to restore a damaged object, the restore process involves deleting the object
prior to prompting to restore the object. The process is similar for all object types except there are
extra steps if restoring damaged physical files that have dependent logical files. The system guides
you through the restore process of damaged physical files as follows:

« The system identifies all the logical files dependent on the specified damaged physical file.
- The Dependent Logical Files display appears identifying these logical files.

« The system deletes the files to be restored.

« The system then prompts with a restore command for the physical files.

« Once the physical files are restored, the system prompts with a restore command to restore the
logical files.

Remove object from list
To remove an object from the list, use Option 4 (Remove object or member from list). Option 4
removes objects from the list of objects to be recovered.

Removing journaled changes

Depending on the type of damage to the journaled object and the amount of activity since the object

was last saved, removing changes from the object can be easier than applying changes to the object. Use
the Remove Journaled Changes (RMVIRNCHG) command to remove changes from an object if you are
journaling before-images.

The RMVIRNCHG command removes changes in reverse chronological order, starting with the most
recent change.

On the RMVIRNCHG command, you identify the first journal entry to be removed from the object. This
entry can be from:

« The last journal entry that is contained within the range of journal receivers specified.
- The entry that corresponds to the last save of the object.
« Anidentified sequence number.

You can control the changes that are removed from the object. For example, assume that an application
updated data incorrectly for a period of time. In this case, you can remove the changes from the object
until that application first opened the object.

You can stop removing journaled changes at:

« The start of the commit cycle for a transaction.

« The end of data in the journal receivers. This corresponds to the first journal entry that was recorded on
the range of journal receivers that are specified.

« An identified sequence number that corresponds to a particular entry in the journal.

Journal management 97

« The start of a particular job's use of the object. You can only specify this if you did not specify any the
following:

— To exclude open and close journal entries (OMTIRNE(*OPNCLO)) when starting journaling for the file

— To minimize fixed-length entries RCVSIZOPT(*MINFIXLEN) for the journal at any time while the
object was journaled.

— To omit a FIXLENDTA option that includes the job name.

You can ensure that commitment transaction boundaries are honored on the remove journaled changes
operations by using the CMTBDY parameter on these commands.

If the system encounters a journal entry that causes the apply or remove process to stop, the
commitment boundary may not be honored.

Error handling

When the system encounters a journal entry it cannot process, it ends remove processing either for that
specific object or for the entire remove operation. You can specify how the system behaves when it
encounters a journal entry it cannot process with the Object Error Option (OBJERROPT) on the Remove
Journaled Changes (RMVIRNCHG) command. If you specify OBJERROPT(*CONTINUE), the system ends
remove processing for the specific object, but it continues remove processing for the other objects in the
remove operation. If you specify OBJERROPT(*END), the system ends processing for the entire remove
operation. Actions of applying or removing journaled changes by journal code shows which entry types
cause processing to end for an object.

Starting and ending points

Use the Display Journal (DSPIJRN) command to identify the required starting and ending points. If you use
a control language (CL) program for your recovery procedures, use the following:

« Receive Journal Entry (RCVJRNE) command to receive journal entries as they are written to the journal
receiver.

« Retrieve Journal Entry (RTVIRNE) command to retrieve a journal entry and place it in program variables.

You can also use the Retrieve Journal Entries (QjoRetrieveJournalEntries) API to retrieve the information
into a High Level Language (HLL) program.

Another way to remove journaled changes is to Remove journaled changes with the WRKJRN command
and follow the command prompts.

The apply and remove journaled changes output file

It is highly recommended that you use the apply and remove journaled changes output file when you
remove journaled changes. The output file contains a record for each object that the remove operation
processes. It contains a record for each object created and each object deleted during the remove. This
output file is especially useful when the remove ends early. It is much easier to query the output file

for the status of each object rather then searching through the job log messages. Also the messages are
limited to 512 while the output file is not limited.

Related concepts

Actions of applying or removing journaled changes by journal code

The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),
Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG)
command by journal code and entry type.

Use of the QAJRNCHG file

98 IBM i: Journal management

You can use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the
activity that occurs when you perform an apply or remove journaled changes operation.

Removing journaled changes with the WRKIRN command
Remove journaled changes with the Work With Journal (WRKJRN) command by selecting Option 3
(Backout recovery).

After selecting Option 3, a menu display gives you the option to select either physical files or data areas
as the object type. Then, after selecting one of the object types, a list of the journaled objects of that type
is displayed.

The Work with Backout Recovery display is useful because the system guides you through the process.
However, it can be used for journaling access paths, database files, and data areas only.

The same options on the Work with Forward Recovery display are available on the Work with Backout
Recovery display, except the option to restore the object. However, the option to restore the object is not
valid for backout recovery. The status field that is shown on the Work with Backout Recovery display is
either blank or it indicates the same status as for forward recovery, except for Restore Complete.

The status field for each object indicates the following:

» Not found
« Damaged

Not synchronized
Recovered

Not journaled

Different journal

Tasks with the Work With Backout Recovery display
You can use the Work With Backout Recovery display to perform the following tasks:

Add object to list
To add an object to the list select Option 1 (Add object to list).

Remove journaled changes
To remove journaled changes, select Option 2 (Remove journaled changes). Option 2 shows the
Remove Journaled Changes (RMVIJRNCHG) command prompt, removes the journaled changes, and
changes the status to Recovered (if the operation was successful). If any required journal receivers
are missing or damaged while the RMVIJRNCHG command is running, the system displays prompts for
the necessary restore procedures for the missing or damaged receivers. If the remove operation was
not successful, messages appear indicating why the status remains the same.

If any objects in the list have a status of Not Found or Damaged when on the Work with Backout
Recovery display, the operation is not allowed. These objects must be recovered in a forward fashion
after they have been restored. Forward recovery of specific files must be used for this type of
recovery.

Remove object from list
Use Option 4 (Remove object from list) to remove objects from the list.

Related tasks
Applying journaled changes with the WRKJRN command

Journal management 99

The Woxrk with Journal (WRKJRN) command can be used to recover any journaled object. When you
select option 2, you choose from a list of object types for recovery. Choose an object type to view the
journaled objects of that type and the current status for each object.

Use of the QAJRNCHG file
You can use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the
activity that occurs when you perform an apply or remove journaled changes operation.

When you specify to create the output file, the system uses the QAJRNCHG output file in the QSYS library
with the format name QJOAPYRM as a model.

The words in parenthesis in the Field column indicate the column heading used in the output file.
See the following commands for the all of the parameters used with this output file:

- Apply Journaled Changes (APYJRNCHG) command
« Apply Journaled Changes Extend (APYJRNCHGX) command
« Remove Journaled Changes (RMVJIRNCHG) command

The following table describes the fields that the output file creates.

Relative Field Format Description
offset

Fields defining the header information

1 Command (QJOCMD) Char (10) Indicates if APYJRNCHG, APYJRNCHGX, or
RMVJIRNCHG was used.
11 Detail option (QJODET) |Char (1) Specifies the level of detail that was selected for

this output file:

A = DETAIL(*ALL) The file contains information
about the command and an entry for each
object that was applied to, whether it existed
when the apply command started or it was
created during the apply.

E = DETAIL(*ERR) The file contains information
about the command and an entry only for each
object that was not successfully applied to. If
the apply ends early for an object an entry is
included for it.

12 System (QJOSYS) Char (8) The name of the system where the apply or remove
journaled changes operation was performed.

20 Release (QJOSRL) Char (6) The release of i5/0S that the system performing
the apply or remove operation uses.

26 Journal name (QJOJRN) [Char (10) | The name of the journal.

36 Library name (QJOJLB) |[Char (10) |The name of the library for the journal.

46 ASP device (QJOASP) Char (10) | The name of the auxiliary storage pool (ASP) device
for the library.

56 Commit boundary Char (1) Indicates if a commit boundary was used in the

(QJOCMT) apply or remove operation.

Y = CMTBDY(*YES) was specified
N = CMTBDY(*NO) was specified

57 Reserved (QJORS1) Char (30) Reserved

100 IBM i: Journal management

Relative Field Format Description
offset
Results summary fields
87 Number of objects Char (10) [Total number of objects processed during the apply
(QIJONOB) or remove operation.
97 Total entries (QJONEN) | Char (20) | Total number of entries processed during the apply
or remove operation.
117 Last entry (QJOLST) Char (20) [Last entry examined in the apply or remove
operation.
137 End partial LUW Char (1) At least one transaction was omitted because
(QIoLuw) CMTBYD(*YES) was specified and the ending
sequence number was not at a commit boundary.
Y =Yes
N = No
138 Reserved (QJORS2) Char (20) Reserved
Object apply or remove information
158 Object deleted Char (1) Indicates if the object was deleted during the apply
(QJO0SD) or remove operation.
Y =Yes
N = No
159 Object created Char (1) Indicates if the object was created during the apply
(QJ00SC) or remove operation.
Y =Yes
N = No
160 Early end (QJOOSE) Char (1) Indicates if the apply or remove operation ended
early for this object.
Y =Yes
N = No
161 Change not made Char (1) Indicates that a change was found for this object
(QJ00SsU) after an early end to the apply operation.
Y =Yes
N = No
162 End reason code Hex (1) Reason code for early end. See message MCH4801
(QJORCD) for the possible values.
163 End message ID Char (7) Message identifier associated with an early end to
(QIOMID) the apply operation.
170 Error condition Hex (4) Error condition associated with an early end to the
(QJOENO) apply operation.
174 Partial transactions Char (1) Changes for partial transactions remain for this

remain (QJOPTL)

object.

Y =Yes
N = No

Journal management 101

Relative Field Format Description
offset
175 Partial transactions Char (1) Indicates whether partial transactions were
removed (QJOPTR) removed for this object.
Y =Yes
N = No
176 Reserved (QJORS3) Char (20) Reserved
196 Starting sequence Char (20) | Specified starting sequence number for the apply
number (QJOSSN) or remove operation.
216 Starting receiver name | Char (10) [The name of the first receiver from which entries
(QJOSRC) were applied or removed.
226 Receiver library Char (10) | The library for the starting journal receiver.
(QJIOSLB)
236 Ending sequence Char (20) | Specified ending sequence number for the apply or
number (QJOESN) remove operation.
256 Ending receiver name Char (10) | The name of the last or ending receiver from which
(QJOERC) entries were applied or removed.
266 Library name (QJOERL) |Char (10) |The library for the ending journal receiver.
276 First entry applied or Char (20) [The first entry of the apply or remove operation.
removed (QJOASN)
296 Last entry applied or Char (20) [The last entry of the apply or remove operation.
removed (QJOAEN)
316 Number of entries Char (20) [The number of journal entries that were applied or
(QJONUM) removed.
336 Partial transaction Char (20) | Starting sequence number for any partial
starting sequence transactions that were removed. For integrated file
number (QJOBSN) system objects, this field is always zero.
356 Partial transaction Char (20) | Ending sequence number for any partial
ending sequence transactions that were removed. For integrated file
number (QJOBEN) system objects and data areas, this field is always
zero.
376 Number of partial Char (20) [Count of number of entries removed for partial
transaction removed transactions. For integrated file system objects and
(QJOBNM) data areas, this number is always zero.
396 No entries applied Char (1) Indicates why no entries were applied to the
indicator (QJONAIN) object.
1 = The object was created during apply, but did
not get journaled or can never be journaled.
2 = The object existed before the apply and
was journaled as a result of the apply. However,
no entries were applied because it could not
be determined that the correct version of the
object was on the server at the time of the
apply.
397 Reserved (QJORS4) Char (19) Reserved

102 IBM i: Journal management

Relative Field Format Description
offset
Object identification information
416 Object type (QJOOTP) Char (10) [The type of object.
426 Object name (QJOONM) | Char (10) | The name of the object.
436 Object library (QJOOLB) [Char (10) |The object's library.
446 Member name Char (10) |Member name.
(QJOOMB)
456 FID (QJOOFD) Char (16) [The file identifier of an integrated file system
object.
472 Path indicator (QJOAPI) |Char (1) The absolute or relative path indicator. The
possible values for this field are:
0 = The path contains an absolute path name.
The Relative directory FID field is hex zeros.
1 =The path contains a relative path name. The
Relative directory FID field is valid and can be
used to form a complete path name.
This field only applies to integrated file system
objects.
473 Relative directory FID Char (16) [The path contains a relative path name. The
(QJIORPI) Relative directory FID field is valid and can be
used to form a complete path name. This field only
applies to integrated file system objects.
489 Path name CCSID Hex (4) The coded character set identifier (CCSID) for the
(QJorceC) path name. This field only applies to integrated file
system objects.
493 Path name region ID Char (2) The region or country identifier for national
(QIOPRE) language support. This field only applies to
integrated file system objects.
495 Path name language ID | Char (3) The language identifier national language support.
(QJOPLN) This field only applies to integrated file system
objects.
498 Reserved (QJORS5) Char (3) Reserved
501 Path name type Hex (4) The possible values for this field are:
(QJOPNT) _ . . .
0 = The path name is a character string with a
one byte delimiter.
2 = The path name is a character string with a
two byte delimiter.
This field only applies to integrated file system
objects.
505 Path name length Hex (4) The length of the path name. This field only applies
(QJOPNL) to integrated file system objects.
509 Path name delimiter Char (2) The path name delimiter. This field only applies to
(QJOPND) integrated file system objects.
511 Reserved (QJORS6) Char (8) Reserved

Journal management 103

Relative Field Format Description
offset

519 Path name (QJOPNM) Char The path name. The length of this field is variable,
(5000) depending on the path name. This field only
applies to integrated file system objects.

Related reference

Apply Journaled Changes (APYJRNCHG) command

Apply Journaled Changes Extend (APYJRNCHGX) command
Remove Journaled Changes (RMVJRNCHG) command

Journaled changes with trigger programs
The system does not call trigger programs when it is applying or removing journal entries.

If an event occurs that would normally cause a trigger program to run, it is up to you to ensure that the
processing performed by the trigger program is recovered correctly.

Normal recovery processing will work correctly if all of the following are true:

« The trigger program only performs processing on object types which can be journaled and applied.
« The processed object types are journaled.

- Journaled changes are applied to or are removed from all the objects that are affected by the trigger
program.

If additional work is performed by the trigger program or objects other than object types which can be
journaled and applied are updated, you must use user-written programs to recover the work performed by
the trigger program.

If you use trigger programs to perform these actions, consider using the Send Journal Entry (QJOSJRNE)
API to send journal entries when trigger programs are called. To help with recovery, you can develop a
program to retrieve these entries and perform the same operations.

The output format for journal entries (except the *TYPEZ, *TYPE2, and *TYPE3 formats) and the
QjoRetrievedournalEntries API interface include information about whether a journal entry was created
because of actions that were performed when a trigger program was called.

Related concepts

Sending your own journal entries

You can use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJIRNE) API
to add your own entries to a journal. The system places these entries in the journal's attached journal
receiver along with the system-created journal entries.

Related reference

Work with triggers and constraints

Send Journal Entry (QJOSJRNE) API

Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Journaled changes with referential constraints
When you apply or remove journaled changes, journal management does not support referential
constraints.

In the following cases, files may be in CHECK PENDING status after you have applied or removed
journaled changes:

« When you restore a file that already exists, the referential constraints for the system copy of the file are
used. Some of the journaled changes that you apply may have been valid with the referential constraints
that were associated with the saved copy. However, they are not necessarily valid with the current
referential constraints. If you have changed the referential constraints on the file, considering doing one
of the following before applying or removing journaled changes:

104 IBM i: Journal management

— Deleting the system copy and then restoring the file
— Recreating the changes to the referential constraints

When you apply or remove journaled changes, the system attempts to verify the referential constraints
at the end of the command, before returning control to you. This may result in a CHECK PENDING
status.

- Some referential constraints cause an action to another file. You may define a constraint so that deleting
arecord in one file causes a related record to be deleted in another file. Because referential constraints
are not enforced when you apply journaled changes, the second delete operation does not happen
automatically. However, if you are journaling both files and applying journaled changes to both files, the
system applies the journal entry for the second file when it encounters it.

If one of the files in a referential constraint was not journaled or is not included when you apply or
remove journaled changes, the referential constraint will probably be put in CHECK PENDING status.

The output format for journal entries (except the *TYPEZ, *TYPE2, and *TYPE3 formats) and the
QjoRetrieveJournalEntries API interface include information about whether a journal entry was created
because of changes that occurred to a record that was part of a referential constraint.

Related concepts

Work with triggers and constraints

Related reference

Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Actions of applying or removing journaled changes by journal code

The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),
Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVIRNCHG)
command by journal code and entry type.

If All is specified for the Entry Type, it indicates that all entry types for that journal code have the
specified actions taken by the APYJRNCHG, APYJRNCHGX, or RMVIRNCHG command.

When the system ends applying or removing journaled changes has detailed information about when an
apply or remove journaled changes action ends automatically.

Actions by journal code and entry type

Journa | Entry |Operation APYJRNCHG APYJRNCHGX RMVIRNCHG

lcode |[type

A All Ignores Ignores Ignores

B AA Change audit attribute Attribute is Ignores Ignores
changed

B Al Start of apply Ends for this Ignores Ignores
object3

B AT End of apply Ends for this Ignores Ignores
object3

B BD Integrated file system Ignores Ignores Ignores

object deleted

B BO Begin create Ignores Ignores Ignores

B B1 Create summary Object is created [Ignores Ignores
and linked

B B2 Link to existing object Object is linked [Ignores Ignores

B B3 Rename, move object Object is moved [Ignores Ignores
or renamed

Journal management 105

Journa | Entry Operation APYJRNCHG APYJRNCHGX RMVIRNCHG
lcode [type
B B4 Remove link (parent Object link is Ignores Ignores
directory) removed
B B5 Remove link (link) Object link is Ignores Ignores
removed
B B6 Bytes cleared, after-image |Object is updated | Ignores Ignores
B B7 Created object authority Authority is Ignores Ignores
information changed
B CS Integrated file system Ignores Ignores Ignores
object closed
B ET End journaling for object Ends for this Ignores Ignores
object3
B FA Integrated file system Attribute is Ignores Ignores
object attribute changed changed
B FC Integrated file system Ignores Ignores Ignores
object forced
B FF Storage for object freed Ignores Ignores Ignores
B FR Integrated file system Ends for this Ignores Ignores
object restored object3
B FS Integrated file system Ignores Ignores Ignores
object saved
B FW Start of save Ignores Ignores Ignores
B JA Change journaled objects | Journal attribute |Ignores Ignores
attribute changed
B JT Start journaling for object | Ignores Ignores Ignores
B OA Change object authority Authority is Ignores Ignores
changed
B OF Integrated file system Ignores Ignores Ignores
object opened
B 0G Change primary group Primary group is | Ignores Ignores
changed
B (0] Object in use at Ignores Ignores Ignores
abnormal end, object is
synchronized?!
B Ol Object in use at abnormal | Ends for this Ignores Ignores
end, object is not object3
synchronized?!
B 00 Change Object Owner Owner is Ignores Ignores
changed
B RN Rename file identifier File identifier Ignores Ignores
renamed
B TR Integrated file system Object is Ignores Ignores
object truncated truncated

106 IBM i: Journal management

Journa | Entry Operation APYJRNCHG APYJRNCHGX RMVIRNCHG

lcode [type

B WA Write, after-image Object is updated | Ignores Ignores

C All Ignores Ignores Ignores

D AC Add RI constraint Constraint is Constraint is Ignores
added added

D CG Change file File is changed File is changed Ignores

D CT Create database file Ignores File is created Ignores

D DC Remove RI constraint Constraint is Constraint is Ignores
removed removed

D DD End of apply Ends for this Ends for this Ignores
object3 object3

D DF Delete file Ignores Ignores Ignores

D DG Start of Apply Ends for this Ends for this Ignores
object3 object3

D DH File saved Ignores Ignores Ignores

D DJ Changed journaled object | Journal attribute |Ignores Ignores

attribute changed

D DT Delete file File is deleted File is deleted Ignores

D DW Start of save Ignores Ignores Ignores

D Dz File restored Ends for this Ends for this Ignores
object3 object3

D EF End journal for file Ends for this Ends for this Ignores
object3 object3

D FM File moved File is moved® File is moved Ignores

D FN File renamed File is renamed | Fileisrenamed [Ignores

D GC Change constraint Constraint is Constraint is Ignores
changed changed

D GO Change owner Owner is Owner is Ignores
changed changed

D GT Grant authority Authority is Authority is Ignores
granted granted

D 1D File in use Ignores Ignores Ignores

D JF Start journaling file Ignores Ignores Ignores

D LF Logical file association Apply list Apply list Ignores
updated updated

D MA Member added List of objects List of objects Ignores
being applied is [being applied is
updated. updated.

D RV Revoke authority Authority is Authority is Ignores
revoked revoked

D TC Create trigger Trigger is created | Trigger is created | Ignores

Journal management 107

Journa | Entry Operation APYJRNCHG APYJRNCHGX RMVIRNCHG
lcode [type
D TD Remove trigger Trigger is Trigger is Ignores
removed removed
D TG Change trigger Trigger is Trigger is Ignores
changed changed
D TQ Refresh table Table is Table is Ignores
refreshed refreshed
D ZB Change Object Attribute Attribute Attribute Ignores
Changed Changed
E EA Update data area, after Data area Ignores Ignores
image modified
E EB Update data area, before Ignores Ignores Data area
image modified
E ED Data area is deleted Ends for this Ignores Ends for this
object3 object3
E EE Create data area Data area is Ignores Ignores
created
E EG Start journal for data area |Ignores Ignores Ends for this
object3
E EH End journal for data area Ends for this Ignores Ignores
object3
E EI Data area in use, object Ignores Ignores Ignores
synchronized?!
E EI Data area in use, object not | Ends for this Ignores Ends for this
synchronized?! object3 object3
E EK Change journaled objects | Attribute Ignores Ignores
attribute changed
E EL Data area restored Ends for this Ignores Ends for this
object3 object3
E EM Data area moved Data area is Ignores Ignores
moved
E EN Data area renamed Data area is Ignores Ignores
renamed
E EQ Data area changes applied |Ends for this Ignores Ends for this
object3 object3
E ES Data area saved Ignores Ignores Ignores
E EU RMVIRNCHG command Ends for this Ignores Ends for this
started object3 object3
E EW Start of save for dataarea |Ignores Ignores Ignores
E EX Data area changes Ends for this Ignores Ends for this
removed object3 object3
E EY APYJRNCHG command Ends for this Ignores Ends for this
started object3 object3

108 IBM i: Journal management

Journa | Entry Operation APYJRNCHG APYJRNCHGX RMVIRNCHG

lcode [type

E ZA Change authority Object authority |Ignores Ignores

changed

E ZB Change object attribute Attribute Ignores Ignores

changed

E Z0 Change owner Owner changed |[Ignores Ignores

E ZP Change primary group Primary group Ignores Ignores

changed

E ZT Change audit attribute Audit attribute Ignores Ignores

changed

F AY Journaled changes applied |Ends for this Ends for this Ends for this

object3 object3 object3

F CB Change File member Member is Member is Ignores

changed changed

F CE Change end of data Member end of Member end of Ends for this

data changed? data changed? |object3
F CH File changed Ignores Ignores Ignores
F CL Member closed Ignores Ignores Ignores
F CR Member cleared Member cleared [Member cleared |Ends for this
of all records? of all records? object 3

F C1 End Rollback IF CMTBDY(*NO) |IF CMTBDY(*NO) |[IF CMTBDY(*NO)
is selected, ends |is selected, ends |is selected, ends
for this object. If |for this object. If |for this object. If
CMTBDY(*YES) is | CMTBDY(*YES) is | CMTBDY(*YES) is
selected, selected, selected,
ignores. ignores. ignores.

F DE Member deleted record Ignores Ignores Ignores
count

F DM Delete member Member is Member is Ignores

deleted deleted

F EJ End journaling Ends for this Ends for this Ignores

object3 object3

F EP End journaling access Ignores Ignores Ignores
paths

F FD Member forced to auxiliary |Ignores Ignores Ignores
storage

F FI Internal format information | Ignores Ignores Ignores

F U Member in use at abnormal | Ignores Ignores Ignores
end, object synchronized?

F U Member in use at Ends for this Ends for this Ends for this
abnormal end, object not object object object
synchronized?

F IT Identity Value File identity File identity Ignores

changed changed

Journal management 109

Journa | Entry Operation APYJRNCHG APYJRNCHGX RMVIRNCHG
lcode [type
F 1z Member initialized Initialized Initialized Initialized
records inserted |records inserted |records deleted
in member in member from member
F Jc Change journal attribute Ignores Ignores Ignores
F IM Start journaling member Ignores Ignores Ends for this
object3
F JP Start journaling access Ignores Ignores Ignores
paths
F MC Create member Member is Member is Ignores
created created
F MD Member deleted Ignores Ignores Ends for this
object3
F MF Member saved with Ends for this Ends for this Ends for this
storage freed object3 object3 object3
F MM Member moved Member is Member is Ignores
moved moved
F MN Member renamed Member is Member is Ignores
renamed renamed
F MO Member changed Ends for this Ends for this Ends for this
object3 object3 object3
F MR Member restored Ends for this Ends for this Ends for this
object3 object3 object3
F MS Member saved Ignores Ignores Ignores
F OoP Member opened Ignores Ignores Ignores
F PD Access path deleted Ignores Ignores Ignores
F PM Logical owning member of |Ignores Ignores Ignores
access path moved
F PN Logical owning member of |Ignores Ignores Ignores
access path renamed
F RC Journaled changes Ends for this Ends for this Ends for this
removed object3 object3 object3
F RG Member reorganized Ignores Ignores Ends for this
object3
F RM Member reorganized Member is Member is Ignores
reorganized reorganized
F SA Start of APYJRNCHG Ends for this Ends for this Ends for this
object3 object3 object3
F SR Start of RMVIJRNCHG Ends for this Ends for this Ends for this
object3 object3 object3
F SS Start of save active Ignores Ignores Ignores
I All Ignores Ignores Ignores

110 IBMi: Journal management

Journa | Entry Operation APYJRNCHG APYJRNCHGX RMVIRNCHG
lcode [type
J All Ignores Ignores Ignores
(Except
SIand
SX)
J SI Enter Ends Ignores Ignores
JRNSTATE(*STANDBY)
J SX Exit JRNSTATE(*STANDBY) |Ignores Ignores Ends
L All Ignores Ignores Ignores
M All Ignores Ignores Ignores
P All Ignores Ignores Ignores
Q QA Create data queue Data queue is Ignores Ignores
created
Q QB Start data queue journaling | Ignores Ends for this Ignores
object
Q QcC Data queue cleared, no key | Data queue is Ignores Ignores
cleared
Q QD Data queue deleted Data queue is Ignores Ignores
deleted
Q QE End data queue journaling | Ends for this Ignores Ignores
object4
Q QF Change journaled object Attribute Ignores Ignores
attribute changed
Q QG Data queue attributes Data queue Ignores Ignores
changed attributes
changed
Q QH Data queue changes Ends for this Ignores Ignores
applied object?
Q QI Queue in use, object Ignores Ignores Ignores
synchronized
0 (0] Queue in use, object not Ends for this Ignores Ignores
synchronized object4
0 0QJ Data queue cleared, has Data queue is Ignores Ignores
key cleared
Q QK Send data queue entry, has | Entry is sent Ignores Ignores
key
Q QL Receive data queue entry, [Entryisreceived |Ignores Ignores
has key
Q oM Data queue moved Data queue is Ignores Ignores
moved®
Q ON Data queue renamed Data queue is Ignores Ignores

renamed

Journal management 111

Journa | Entry Operation APYJRNCHG APYJRNCHGX RMVIRNCHG
lcode [type
Q QR Receive data queue entry, [Entryisreceived |Ignores Ignores
no key
Q QS Send data queue entry, no | Entry is sent Ignores Ignores
key
Q QW APYJRNCHG command Ends for this Ignores Ignores
started object 4
Q QX Start of save for data queue | Ignores Ignores Ignores
Q QY Data queue saved Ignores Ignores Ignores
Q QZz Data queue restored Ends for this Ignores Ignores
object 4
Q VE Internal entry Ignores Ignores Ignores
Q VQ Internal entry Ends for this Ignores Ignores
object 4
Q VW Internal entry Entries Ignores Ignores
resequenced
Q ZA Change authority Object authority [Ignores Ignores
changed
Q ZB Object attribute change Attribute Ignores Ignores
changed
Q Z0 Change owner Owner changed [Ignores Ignores
Q ZP Change primary group Primary group Ignores Ignores
changed
Q ZT Change audit attribute Audit attribute Ignores Ignores
changed
R BR Before-image updated for |Ignores Ignores Record updated
rollback operation with before-
image
R DL Record deleted Record deleted Record deleted Record updated
with before-
image
R DR Record deleted for rollback | Record deleted Record deleted Record updated
operation
R IL Increment record limit Ignores Ignores Ignores
R PT Record written to member | Record written to | Record written to | Record deleted
member member from member
R PX Record added directly to Record added Record added Record deleted
member from member
R uB Record updated (before- Ignores Ignores Record updated
image) with before-
image
R up Record updated (after- Record updated [Record updated [Ignores
image) with after-image |with after-image

112 IBM i: Journal management

Journa | Entry Operation APYJRNCHG APYJRNCHGX RMVIRNCHG
lcode [type
R UR After-image updated for Record updated |Record updated |Ignores
rollback operation with after-image |with after-image
All Ignores Ignores Ignores
T All Ignores Ignores Ignores
u User- User entry Ignores Ignores Ignores
specifie
d
Y LF Logical file association Apply list Ignores Ignores
updated
Y YA Change library attributes Library attributes | Ignores Ignores
are changed
Y YB Start library journaling Ignores Ignores Ignores
Y YD Library deleted Library is deleted | Ignores Ignores
Y YE End library journaling Ends for this Ignores Ignores
object3
Y YH Library changes applied Ends for this Ignores Ignores
object3
Y YI Library in use, object Ignores Ignores Ignores
synchronized?!
Y YI Library in use, object not Ends for this Ignores Ignores
synchronized?! object3
Y YK Change journal attribute Attribute is Ignores Ignores
changed
Y YN Library renamed Library is Ignores Ignores
renamed
Y YO Object added Apply list Ignores Ignores
updated
YS Library saved Ignores Ignores Ignores
YW Start of save for library Ignores Ignores Ignores
YY APYJRNCHG command Ends for this Ignores Ignores
started object3
Y YZ Library restored Ends for this Ignores Ignores
object3
Y ZA Change authority Object authority |Ignores Ignores
is changed
Y ZB Object attribute change Attribute is Ignores Ignores
changed
Y Z0 Change owner Owner is Ignores Ignores
changed
Y ZP Change primary group Primary group is | Ignores Ignores

changed

Journal management 113

Journa | Entry Operation APYJRNCHG APYJRNCHGX RMVIRNCHG

lcode [type

Y T Change audit attribute Audit attribute is | Ignores Ignores
changed

Notes:

1The Flag field in the journal entry indicates whether the object is synchronized (0 = object was
synchronized; 1 = object was not synchronized).

2Applying journaled changes stops at this entry if referential constraints that this entry violates are
active during the apply operation.

3Any changes found for the object that follow this entry are not applied. If any additional changes are
found for this object an indication will be returned in the end of apply or remove journal entry, and in any
output file generated. If you specify *END for the Object Error Option (OBJERROPT) when you issue the
apply or remove journaled changes command, the entire apply or remove operation ends.

4Any changes found for the object that follow this entry will NOT be applied when
OBJERROPT(*CONTINUE) is specified. If any additional changes are found for this object, an indication
will be returned in the end of apply/remove journal entry and in any outfile generated.

5If the attribute change is to add before images, then the apply ends for the object.

6If this entry was cut as part of automatically starting journaling the object due to library inheritance,
then the apply ends for this object.

Related concepts

Journal entry information

This topic provides information and tasks for working with journal entries.
Related tasks

When the system ends applying or removing journaled changes
The system ends applying or removing journaled changes as a result from one of the following items:

Related reference

Apply Journaled Changes (APYJRNCHG) command

Apply Journaled Changes Extend (APYJRNCHGX) command
Remove Journaled Changes (RMVJRNCHG) command

When the system ends applying or removing journaled changes

The system ends applying or removing journaled changes as a result from one of the following items:
« Certain journaled entries

- A format error for a database physical file (such as an undefined entry for that file member)

« A logical error for a database physical file (such as updating a record that has not been inserted or a
duplicate key exception)

« Alogical error for a data queue (such as inserting a keyed entry into a non-keyed queue)
« Unexpected error processing an entry

When one of the previous items occur, the apply or remove journaled changes action can end either

for the object or for the entire apply or remove operation. You can determine this behavior by using

the Object Error Option (OBJERROPT) parameter on the Apply Journaled Changes (APYJRNCHG), Apply
Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG) commands.

When OBJERROPT(*END) is specified, for entries that end applying or removing journaled changes, a
message identifying the reason for the end is placed in the job log, and the corresponding change is not
made to the object. The message contains the sequence number of the journal entry on which the failing
condition was detected. When OBJERROPT(*CONTINUE) is specified, message CPD7016 indicates what

114 IBMi: Journal management

entry the apply or removed stopped at, and the reason code. This information is also available in the
output file if one was generated. To correct the problem do the following:

1. Analyze the error.
2. Make the necessary correction.
3. Start applying or removing journal changes again using the appropriate sequence number.

For example, if the entry that causes a RMVIJRNCHG command to end is entry code F of type RG, you
must reorganize the physical file member referred to in the journal entry. Use the same options that were
originally specified on the reorganize request when the journal entry was recorded in the journal receiver.
Resume removing journal changes by starting with the journal entry that follows the 'F RG' reorganize
physical file member journal entry.

When you apply or remove journaled changes you also have the option to have the system send
information about the operation to an output file. You can specify whether information is sent about

all objects in the operation or only objects that have errors. To specify that the system sends information
to an output file use the Output (QUTPUT) option on the APYJRNCHG, APYJRNCHGX, or RMVIRNCHG
commands.

The APYJRNCHG, APYJRNCHGX, and RMVJRNCHG commands send an escape message and ends the
operation if any required journal receiver defined by the RCVRNG parameter is not on the system

and associated with the journal. Use the WRKIRNA command to select the Work with journal receiver
directory display, to see which journal receivers are on the system and associated with the journal.
The escape message contains the name of the required journal receiver if the reason code of message
CPF7053 is 1 or if message CPF9801 is sent.

When the processing of applying or removing journaled changes ends with an escape message, the
objects can be partially changed. To determine how many changes were applied or removed for each
object do one of the following:

- Review the diagnostic messages in the job log prior to the final escape message for each object.
« Use the DSPIJRN command to display the journal entries indicating completion of the command.

- If you specified to have the system send information to an output file, review the output file. The output
file contains a record for each object that was processed. You can view that object's record to determine
if processing completed successfully for that object.

The command completion journal entries by object type are as follows:

Database physical file members
F journal code and an entry type of AY or RC D journal code and entry type of DD

Integrated file system objects
B journal code and entry type of AJ

Data area objects
E journal code and entry type of EQ or EX
Data queue objects
Q journal code and entry type of QH
Library objects
Y journal code and entry type of YH
The Count field in the journal entry contains the number of journal entries that are applied or removed.

The system puts out a maximum of 512 diagnostic messages from Apply or Remove Journaled Changes.
Therefore, it is recommended that you create an output file to determine how many changes were applied
or removed for each object.

Related concepts
Use of the QAJRNCHG file

Journal management 115

You can use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the
activity that occurs when you perform an apply or remove journaled changes operation.

Example: Applying journaled changes
This topic provides examples of the Apply Journaled Changes (APYJRNCHG) command applied to a
database physical file, integrated file system object, data queues, and data area.

The following examples show database physical files, data areas, and integrated file system objects being
processed separately. However, you can use one APYJRNCHG command if you use the OBJ parameter for
files and data areas, and the OBJPATH parameter for the integrated file system objects on one command
call.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer information.

All journaled objects

This example recovers all objects that are journaled to the journal JRN2 in one apply operation. For

this example, assume that journal JRN2 is using the receiver size-option RCVSIZOPT(*MAXOPT3). Since
the ending sequence number is greater than 9 999 999 999, the TOENTLRG parameter is required. The
example starts applying journaled changes from the last save of the objects, to entry sequence number
500 000 000 000.

By default, the system honors the commitment boundaries. So if there is an object whose commitment
boundary ends after sequence number 500 000 000 000, the the apply operations will not apply any
changes to that object for any commit cycles that end after sequence number 500 000 000 000. The
apply operation continues for the other objects that are journaled to the journal.

APYJRNCHG JRN(JRN2) OBJ(*ALLJRNOBJ)
FROMENT (xLASTSAVE) TOENTLRG (500000000000)
RCVRNG (xLASTSAVE)

Database physical file

The following command applies the changes in journal JRNA to all the members of all files in the library
DSTPRODLIB that are being journaled to journal JRNA.

APYJRNCHG JRN(JRNLIB/JRNA) FILE((DSTPRODLIB/*ALL))
FROMENTLRG (*LASTSAVE) TOENTLRG (*LASTRST)

Because the RCVRNG parameter is not specified, the system determines the range of journal receivers to
use as a result of the save information for the files. The FROMENTLRG parameter defaults to apply the
changes that begin with the first journal entry after the save of the object. The earliest required receiver
is the receiver that contains the D DW journal entry indicating the earliest start of save entry for any file in
DSTPRODLIB.

If the file was last saved with the save-while-active function, the saved copy of each file member includes
all object-level changes in the journal entries up to the corresponding F SS journal entry. In this case, the
system applies changes that begin with the first journal entry that follows the F SS entry.

If the file was last saved when it was not in use (normal save), the saved copy of each member includes all
object-level changes in the journal entries up to the corresponding F MS member saved journal entry. In
this case, the system applies changes that begin with the first journal entry that follows the F MS entry.

The following command applies the changes to the file from the journal receiver that is currently attached
to the journal:

APYJRNCHG JRN(JRNLIB/JRNA) FILE((LIBA/FILEA MBR1))
RCVRNG (*CURRENT) FROMENTLRG (xFIRST)
TOENTLRG (*¥LASTRST) OUTPUT (xOUTFILE)
OUTFILE(MYFILE) DETAIL (*ERR)

116 IBM i: Journal management

The *CURRENT journal receiver is the journal receiver that is attached to journal JRNA at the beginning
of the operation. The system applies the changes from the first journal entry in this receiver to the entry
before the object was last restored. Changes are applied to member MBR1 of the file FILEA.

Because OUTPUT(*OUTFILE) is specified, an output file with the name MYFILE is created. The output
file contains a record for each object, if any, for which the apply ends early because DETAIL(*ERR) is
specified.

The following command applies the changes in the journal JRNA to all members of the file FILEA
beginning with the first journal entry after the file member was last saved:

APYJRNCHG JRN(JRNLIB/JRNA) FILE((LIBA/FILEA %ALL))
TOJOBC (000741/USERP/WORKSTP)

The operation continues until the specified job closes any of the members in the file that it opened. The
operation is not restricted only to those journal entries that are recorded by the specified job.

Note: This example works only if you do not specify OMTIRNE (*OPNCLO) when starting journaling for the
file and you did not specify RCVSIZOPT(*MINFIXLEN) or you did not use a FIXLENDTA option that would
have omitted the job name for the journal at any time while the file was journaled).

Integrated file system object

The following command applies the changes in journal JRNA to the objects in the directory MyDirectory,
and its subdirectories, that are being journaled to journal JRNA:

APYJRNCHG JRN(JRNLIB/JRNA) OBJPATH(('/MyDirectory')) SUBTREE(xALL)

Because the RCVRNG parameter is not specified, the system determines the range of journal receivers

to use as a result of the save information for the objects. Because the FROMENT or the FROMENTLRG
parameters are not specified, the system applies the changes that begin with the journal entry for the last
save of each of the objects.

If the object was last saved with the save-while-active function, the saved copy of each object includes all
changes in the journal entries up to the corresponding B FW journal entry. In this case, the system applies
changes that begin with the first journal entry that follows the B FW entry.

If the object was last saved when it was not in use (normal save), the saved copy of each object includes
all changes in the journal entries up to the corresponding B FS saved journal entry. In this case, the
system applies changes that begin with the first journal entry that follows the B FS entry.

Data area

The following command applies the changes to the data area DATAL from the journal receiver that is
currently attached to the journal:

APYJRNCHG JRN(JRNLIB/JRNA) OBJ((LIBA/DATAL1 %*DTAARA))
RCVRNG (*CURRENT) FROMENTLRG (xFIRST)
TOENTLRG (*LASTRST)

The *CURRENT journal receiver is the journal receiver that is attached to journal JRNA at the beginning
of the operation. The system applies the changes from the first journal entry in this receiver to the entry
before the object was last restored. Changes are applied to data area DATA1.

Note: Read the Code example disclaimer for important legal information.

Related reference
Apply Journaled Changes (APYJRNCHG) command

Journal management 117

Example: Removing journaled changes

Even though the following examples show database physical files and data areas being processed
separately, you can do them with one Remove Journaled Changes (RMVIRNCHG) command if you use
the OBJ parameter for both object types.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer information.

Database physical file

The following command removes the changes in journal JRNA from the all the members of FILEA:

RMVIRNCHG JRN(JRNLIB/JRNA) FILE(DSTPRODLIB/FILEA)
FROMENT (*xLAST) TOENT (xFIRST)
RCVRNG (*CURRENT)

The *CURRENT journal receiver is the journal receiver that is attached to journal JRNA at the beginning of
the operation. The system starts removing the changes beginning with the latest entry for that member in
this receiver and continues to the earliest entry for that member in this receiver.

The following command removes the changes in journal JRNA from all the members of FILEA:

RMVIRNCHG JRN(JRNLIB/JRNA) FILE(DSTPRODLIB/FILEA)
FROMENT (*xLAST) TOENT (xFIRST)
RCVRNG (JRNLIB/RCVA10 JRNLIB/RCVA8)
OUTPUT (*xOUTFILE) OUTFILE(MYFILE)

The system starts removing the changes beginning with the last entry (the latest entry) for that member
in journal receiver RCVAL10 and continues to the first entry (the earliest entry) for that member on journal
receiver RCVAS.

Because OUTPUT(*OUTFILE) is specified, an output file with the name MYFILE is created. The output file
contains a record for each object that the remove operation processes. See Use the apply and remove
journaled changes output file for an explanation of each field in the record.

Data area

The following removes the changes in JRNA from data area DATAL from the last save entry to entry
number 1003.

RMVIRNCHG JRN(JRNLIB/JRNA) 0BJ((LIBA/DATA1 *DTAARA))
RCVRNG (xCURRENT) FROMENT (xLASTSAVE) TOENT (1003)

If the last save operation used the save-while-active function, the system starts by removing changes
from the entry preceding the last E EW start of save entry. If the last save operation was a normal save
operation, the system starts by removing changes from the entry that precedes the last E ES data area
saved entry. In the example, journaled changes are removed back to entry 1003.

Note: Read the Code example disclaimer for important legal information.

Related concepts

Use of the QAJRNCHG file

You can use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the
activity that occurs when you perform an apply or remove journaled changes operation.

Related reference
Remove Journaled Changes (RMVJRNCHG) command

118 IBM i: Journal management

Example: Recovering objects with partial transactions

If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Another reason that an object can have partial transactions is if a long-running rollback was forced to end.
However, if an object has partial transactions because of a long-running rollback, you cannot recover it
with an apply or remove journaled changes operation.

If you perform save-while-active operations that can result in objects that are saved with partial
transaction, it is recommended that you use Backup, Recovery, and Media Services (BRMS). You can
use BRMS to automate your backup and recovery operations. BRMS automatically applies changes to
objects with partial transactions and restores them to a usable state. For more detailed information see
the BRMS topic.

When you recover objects with partial transactions, all of the journal receivers that are required for the
recovery operation must be on the system. The recovery operation might require more journal receivers
than just the last one you detached. The system looks for the last journal receiver with an journal entry for
the object that indicates one of the following;:

« The last regular save.
« The last save-while-active in which the object was saved without any partial transactions.

« The earliest SC (start commit) entry for any open transactions that affect the saved object for a save
with partial transactions.

1. Starting with receiver MYRCVO5 the apply journaled changes operation starts.
2. The systems finds the SS entry that indicates the object was saved with partial transactions.

3. If journal receiver MYRCVO5 has the CM entry that indicates the transaction for the object was
committed, the apply journaled changes operation applies the changes.

4. If journal receiver MYRCVO05 does not have the CM entry, the system looks back to previous journal
receivers.

5. Since the SC entry is not in MYRCV04, the system looks in MYRCVO03.
6. The system finds the SC entry in MYRCVO03 and the transaction is rolled back to that point.

Journal management 119

Previous Journal Receivers

MYRCVO04 MYRCVO03

Seq Type File Seq Type File

05 UPr DB o1 UuP DB

06 UFr DB 02 ur DB

| 07 UP DB |—)| 03 SC DB

MYRCVOS o8 UFr DB 04 ur DB
Seq Type File]

i L This journal receiver This journal receiver

_ does nol have the has the journal entry
11 S5 DB raquired joumal antry, that indicates the commil

transaction slarted.

Current journal receiver
for object with partial
transactions.

v
13 MS DB

15 CM DB

If MYRCVOS has a
CM entry, the partial
transaction is commited.

As the figure shows, even if you are performing an apply journaled changes operation, it is still possible
that the transaction can be rolled back and you will need previous journal receivers.

Here is an example of restoring a single object with partial transactions. In this example, an object,
OBJ1linlibrary LIB1, was saved with a save-while-active operation while it had pending transactions. The
save-while-active operation is the object's most recent save. Journaled changes start from the last save
and end at the last sequence number in the journal receiver.

One way to restore OBJ1 is to use the Apply Journaled Changes (APYJRNCHG) command. The default
value for FROMENT is *LASTSAVE. The TOENT parameter uses the *LASTRST value to apply journaled
changes up to the journal entry when the object was last restored.

APYJRNCHG JRN(JRN1) FILE(LIB1/0BJ1)
FROMENT (*LASTSAVE) TOENT (*LASTRST)
RCVRNG (xLASTSAVE)

Another way to restore OBJ1 is to use the Remove Journaled Changes (RMVIJRNCHG) command. The
command removes the changes in journal JRN1 from the all the members of OBJ1. Starting with the last
save journal entry, only changes for journal entries for any partial transactions are removed, back to the
start of the commit transaction.

120 IBM i: Journal management

RMVJIRNCHG JRN(JRNA1) FILE(LIB1/0BJ1)
FROMENT (xLASTSAVE) TOENT (xCOMMITSTART)
RCVRNG (xLASTSAVE)

Here is another example showing how to remove partial transaction status from an object with partial
transactions. This example uses the Change Journal Object (CHGIJRNOBJ) command, because the journal
receivers are not available to perform an apply or remove journaled changes operation. The Partial
Transactions (PTLTNS) parameter allows the object to be used, but does not complete the transactions.
The object, BRKNOBJ, still has changes caused by the partial transactions, but you are able to open the
file.

CHGJRNOBJ OBJECT (LIB1/BRKNOBJ *FILE) PTLTNS (xALWUSE)

c Attention: Only use the following command as a last resort. You will lose data if you use this
command. You should only use this command for the following reasons:

= You have objects with partial transaction as a result of the termination of a long-running rollback
and you have no saved version to restore.

» You have objects with partial transactions as a result of a save-while-active operation, and the
journal receivers required to apply or remove journaled changes have been lost, destroyed, or
damaged beyond repair.

Related concepts
BRMS topic

Journal entry information
This topic provides information and tasks for working with journal entries.

The system creates different types of journal entries in the journal receiver for different kinds of activities.
You cannot access the information in journal receivers directly. Several system commands provide
formatted information from a journal receiver:

« Use the Display Jouxrnal (DSPJRN) command to display entries, print them, or write them to an
output file.

« Use the Receive Journal Entxry (RCVIRNE) command to specify an exit program. When entries
are added to the journal receiver, they are also passed to the exit program. The exit program can, for
example, write entries to save media or send them to another system.

« Use the Retrieve Journal Entry (RTVJIRNE) command to retrieve journal entries to a CL
program.

« Usethe Retrieve Journal Entries (QjoRetrieveJournalEntries) APIto retrieve journal
entries into a high level language program.

Note: When working with multiple journal entries, the RCVJRNE command is usually the most efficient
interface to get the journal entry information.

When the system formats journal entries for you with the DSPIJRN and RTVJRNE commands, it uses one of
several layouts. These layouts include a fixed-length portion and a variable-length portion. The variable-
length portion includes entry-specific data and null value indicators, if applicable. The fixed-length portion
of the journal entry appears as separate fields in these layouts.

« Journal entry information finder - The Journal code finder shows all the journal codes and entry types
for journal entries. You can search for individual codes, display codes by category, or display all journal
codes.

Journal code descriptions

Fixed-length portion of the journal entry

Variable-length portion of the journal entry

Work with journal entry information

Journal management 121

Note: For information about which journal codes are affected by applying or removing journaled changes
see Actions of applying or removing journaled changes by journal code.

Related concepts

Actions of applying or removing journaled changes by journal code

The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),
Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVIRNCHG)
command by journal code and entry type.

Journal code descriptions
This topic provides a description of all of the journal codes and categories.
Following are descriptions of all the possible journal codes or categories of journal entries.

Journal Code A - System Accounting Entry
Journal entries with a journal code of A contain information about job accounting. See Job Accounting
in the Work Management topic for a detailed description of the contents of converted journal entries
with journal code A.

Journal Code B- Integrated File System
Journal entries with a journal code of B contain information about changes to integrated file system
objects. The only integrated file system objects that are supported are those with an object of type
*STMF, *DIR or *SYMLNK. These objects must be in the "root"(/), QOpenSys, and User-defined file
systems. See the Integrated file system topic for more information about file systems.

Journal Code C - Commitment Control Operation
Journal entries with a journal code of C contain commitment control information.

Journal Code D - Database File Operation
Journal entries with a journal code of D contain file level information about changes for a physical file,
not an individual member.

Journal Code E - Data Area Operation
Journal entries with a journal code of E contain information about changes to journaled data areas.
See Work Management on the V5R1 Supplemental Manuals Web site for more information about data
areas.

Journal Code F - Database File Member Operation
Journal entries with a journal code of F contain file level information about changes for a physical file
member that are being journaled to this journal. (If you use a logical file in a program, the file level
information reflects the physical file on which the logical file is based.) Journal entries with journal
code F can also contain file level information for access paths that are associated with physical or
logical file members that are being journaled to this journal.

Journal Code I - Internal Operation
Journal entries with a journal code of I contain information about access paths or indexes or other
internal operations. Entries with a journal code of I are displayed only if IRN(*INTSYSJRN) is specified
or INCHIDENT(*YES) is specified on the DSPJRN command.

Journal Code J - Journal or Receiver Operation
Journal entries with a journal code of J contain information about the journal and the journal
receivers.

Journal Code L - License Management
Journal entries with a journal code of L contain information about license management, such as
changes to the usage limit and usage limit violations.

Journal Code M - Network Management Data
Journal entries with a journal code of M contain information about Network Management, including
TCP/IP.

Journal Code P - Performance Tuning Entry
Journal entries with a journal code of P contain information about performance. For the description of
the layout of these entries, see Work Management on the V5R1 Supplemental Manuals Web site.

122 IBM i: Journal management

Journal Code Q - Data Queue Operation
Journal entries with a journal code of Q contain information about changes to journaled data queues.
See CL Programming: Communicate between programs and procedures for more information about
data queues.

Journal Code R - Operation on Specific Record
Journal entries with a journal code of R contain information about a change to a specific record in
the physical file member that is being journaled to the journal. For a given physical file member, the
record-level journal entries appear in the journal in the order that the changes were made to the file.

Journal Code S - Distributed Mail Services
Journal entries with a journal code of S contain information about SNA distribution services (SNADS),
X.400, and mail server framework.

Journal Code T - Audit Trail Entry
Journal entries with a journal code of T contain auditing information.

Journal Code U - User-Generated Entry
Journal entries with a code of U are sent to the journal receiver by the Send Journal Entry
(SNDJIRNE) command or by the Send Journal Entry (QJOSJIRNE) APIL.

Journal Code Y - Library Entry
Journal entries with a journal code of Y contain information about changes to libraries.

Related concepts

Sending your own journal entries

You can use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSIRNE) API
to add your own entries to a journal. The system places these entries in the journal's attached journal
receiver along with the system-created journal entries.

All journal entries by code and type

Journal Entry type | Description Notes®
code
A DP Direct print information See Work Management for the layout of the entry

specific data.

A JB Job resource information [see Work Management for the layout of the entry
specific data.

A SP Spooled print information | see Work Management for the layout of the entry
specific data.

B AA Change audit attribute The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system change
audit attribute (B AA) journal entry” on page 233.

B Al Start of apply

B AT End of apply The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.
See the layout for the “APYJRNCHG (B AT,D DD, E
EQ, F AY, Q QH, Y YH) and RMVJRNCHG (E EX, F RC)
journal entries” on page 191.

B BD Int.egrated file system Even if this journal has a journal state of *STANDBY,

object deleted this entry type will still be deposited in the journal

receiver.

Journal management 123

Journal
code

Entry type

Description

Notes®

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system object
deleted (B BD) journal entry” on page 243 .

BO

Begin create

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system begin
create (B BO) journal entry” on page 233.

Bl

Create summary

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system create-
summary (B B1) journal entry” on page 239.

B2

Link to existing object

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system link to
existing object (B B2) journal entry” on page 241.

B3

Rename, move object

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system rename,
move object (B B3) journal entry” on page 245.

B4

Remove link (parent
directory)

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system remove
link (parent directory) (B B4) journal entry” on page
244,

B5

Remove link (link)

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system remove
link (link) (B B5) journal entry” on page 244.

Bé6

Bytes cleared, after-image

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system bytes
cleared, after-image (B B6) journal entry” on page
233.

B7

Created object authority
information.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

124 IBM i: Journal management

Journal
code

Entry type

Description

Notes®

This journal entry may have data which

can only be accessed by using either the
QjoRetrieveJournalEntries API or the RCVIRNE
command. For the RCVJRNE command, use

the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 311

See the layout for the “Integrated file system created
object authority (B B7) journal entry” on page 238.

CS

Integrated file system
object closed

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system object
closed (B CS) journal entry” on page 243.

ET

End journaling for object

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system end
journaling for object (B ET) journal entry” on page 241.

FA

Integrated file system
object attribute changed

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system object
attribute changed (B FA) journal entry” on page 242.

FC

Integrated file system
object forced

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system object
forced (B FC) journal entry” on page 243.

FF

Storage for object freed

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system storage
for object freed (B FF) journal entry” on page 247.

FR

Integrated file system
object restored

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

Journal management 125

Journal Description

code

Entry type

Notes®

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Object restored (B FR, D DZ, E
EL, FMR,JRR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 287.

Integrated file system
object saved

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Object saved (B FS, D DH, E ES,
F MS, Q QY, Y YS) journal entries” on page 288.

Start of save for save-
while-active

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Start of save-while-active (B
FW, D DW, E EW, F SS, Q QX, Y YW) journal entries” on
page 293.

Change journaled object
attribute

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Change journaled object
attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal
entries” on page 198.

Start journaling for object

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Start journal (B JT, D JF, EEG, F
JM, Q OB) journal entries” on page 295.

Change object authority

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system change
object authority (B OA) journal entry” on page 234.

Integrated file system
object opened

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

126 IBM i: Journal management

Journal
code

Entry type

Description

Notes®

See the layout for the “Integrated file system object
opened (B OF) journal entries” on page 243.

oG

Change primary group

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system change
primary group (B OG) journal entry” on page 236.

Ol

Object in use at abnormal
end

See the layout for the “IPL (J IA, J IN) and in-use (B
OI,CBA,DID,EEI FIU,IDA,JJI, QQI)journal
entries” on page 250.

00

Change object owner

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system change
object owner (B O0) journal entry” on page 236.

RN

Rename file identifier

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system rename
file identifier (B RN) journal entry” on page 245.

TR

Integrated file system
object truncated

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Integrated file system object
truncated (B TR) journal entry” on page 244.

WA

Write, after-image

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

This journal entry may have data which

can only be accessed by using either the
QjoRetrieveJournalEntries API or the RCVIRNE
command. For the RCVJRNE command, use

the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 311

See the layout for the “Integrated file system write,
after-image (B WA) journal entry” on page 247.

BA

Commit in use at
abnormal end

See the layout for the “IPL (J IA, J IN) and in-use (B
OI,CBA,DID, E EI, FIU,I DA, JJI, Q QI) journal
entries” on page 250.

BC

Start commitment control
(STRCMTCTL)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

Journal management 127

Journal
code

Entry type | Description

Notes®

C CM Set of record changes

committed (COMMIT)

See the layout for the “COMMIT (C CM) journal entry”
on page 203.

Rollback ended early

See the layout for the “Rollback ended early (C CN, F
C1) journal entries” on page 291.

Internal entry

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

End commitment control
(ENDCMTCTL)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

A logical unit of work
(LUW) has ended

See the layout for the “Logical unit of work (C LW)
journal entry” on page 253 and the following;:

» “Logical unit of work (C LW) journal entry - header
record” on page 263

 “Logical unit of work (C LW) journal entry - local
record” on page 273

» “Logical unit of work (C LW) journal entry - API
record” on page 254

» “Logical unit of work (C LW) journal entry - DDL
record” on page 257

« “Logical unit of work (C LW) journal entry - RMT
record” on page 275

 “Logical unit of work (C LW) journal entry - DDM
record” on page 260

Prepare commit block

See the layout for the “Prepare commit (C PC) journal
entries” on page 290.

Set of record changes
rolled back (ROLLBACK)

See the layout for the “ROLLBACK (C RB) journal
entry” on page 291.

R1 Rollback started

Start of savepoint

This is the start of the savepoint or nested commit
cycle where it is written to the journal and occurs
when the application creates an SQL SAVEPOINT. The
system can also create an internal nested commit
cycle to handle a series of database functions as

a single operation. The entry-specific data for this
journal entry is all internal data.

Commit transaction
started

See the layout for the “Start of commit cycle (C SC)
journal entry” on page 293.

Release of savepoint

This is the release of the savepoint or commit of
nested commit cycle. Entries are written to the journal
when the application releases an SQL SAVEPOINT or
when the system commits an internal nested commit
cycle.

128 IBM i: Journal management

Journal
code

Entry type

Description

Notes®

See the layout for the “Savepoint released (C SQ) and
savepoint rolled back (C SU) journal entries” on page
292.

Su

Rollback of save point

This is the release of the savepoint or commit of
nested commit cycle. Entries are written to the journal
when the application releases an SQL SAVEPOINT or
when the system commits an internal nested commit
cycle.

See the layout for the “Savepoint released (C SQ) and
savepoint rolled back (C SU) journal entries” on page
292.

AC

Add referential integrity
constraint

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

CG

Change file

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

CT

Create database file

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

DC

Remove referential
integrity constraint

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,D GO,D GT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

DD

End of apply or remove

See the layout for the “APYJRNCHG (B AT,D DD, E
EQ, F AY, Q QH, Y YH) and RMVJRNCHG (E EX, F RC)
journal entries” on page 191.

DF

File was deleted

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

DG

Start of apply or remove

DH

File saved

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

See the layout for the “Object saved (B FS, D DH, E ES,
F MS, Q QY, Y YS) journal entries” on page 288.

DJ

Change journaled object
attribute

See the layout for the “Change journaled object
attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal
entries” on page 198.

Journal management 129

Journal
code

Entry type

Description

Notes®

D

DT

Delete file

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

DW

Start of save-while-active
save

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

See the layout for the “Start of save-while-active (B
FW, D DW, E EW, F SS, Q QX, Y YW) journal entries” on
page 293.

DZ

File restored

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Object restored (B FR, D DZ, E
EL, F MR, JRR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 287.

EF

Journaling for a physical
file ended (ENDJRNPF)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

FM

File moved to a different
library (MOVOBJ or
RNMOBJ OBJTYPE(*LIB))

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Moving and renaming objects
(DFM, D FN, EEM, EEN, F MM, F MN, F PM, F PN, J

MJ, Q QM, Q ON) journal entries” on page 281.

FN

File renamed (RNMOBJ)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Moving and renaming objects
(DFM, DFN, EEM, EEN, F MM, F MN, F PM, F PN, J

MJ, Q QM, Q ON) journal entries” on page 281.

GC

Change constraint

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,

DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, FDM,F

MC) journal entries” on page 283.

130 IBM i: Journal management

Journal
code

Entry type

Description

Notes®

D

GO

Change owner

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

GT

Grant authority

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

ID

File in use

See the layout for the “IPL (J IA, J IN) and in-use (B
OI,CBA,DID,EEI FIU,IDA,JJI,QQI)journal
entries” on page 250.

JF

Journaling for a physical
file started (STRIRNPF
(JRNPF))

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Start journal (B JT, D JF, EEG, F
JM, Q OB) journal entries” on page 295.

LF

Logical file associated
with based on physical file

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Logical file associated with the
library or based on physical file (D LF, Y LF) journal

entry” on page 252.

M1

Create mask

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,

DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, FDM,F

MC) journal entries” on page 283.

M2

Drop mask

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,

DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, FDM,F

MC) journal entries” on page 283.

M3

Alter mask

See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT,D GC, D GO, D GT, DM1, D M2, D M3,D P1,

DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, FDM, F

MC) journal entries” on page 283.

MA

Member added to file

P1

Create permission

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,D GT,DM1,DM2,DM3,DP1,

DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F

MC) journal entries” on page 283.

P2

Drop permission

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,

DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, FDM, F

MC) journal entries” on page 283.

Journal management 131

Journal
code

Entry type

Description

Notes®

D

P3

Alter permission

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

RV

Revoke authority

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

TC

Add trigger

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,D GO,D GT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

TD

Remove trigger

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

TG

Change trigger

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, FDM,F
MC) journal entries” on page 283.

TQ

Refresh table

See the layout for the “Object level (D AC, D CG, D CT,
DDC,DDT,DGC,DGO,DGT,DM1,DM2,DM3,DP1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

ZB

Change object attribute

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QPOLIRNL.H.

See the layout for the “Change object attribute (E ZB,
D ZB, J ZB, Q ZB, Y ZB) journal entry” on page 199.

EA

Update data area, after
image

Neither the before-image nor after-image is deposited
into the journal if the after-image is exactly the same
as the before-image.

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Update data area (E EA, E EB)
journal entries” on page 296.

EB

Update data area, before
image

Neither the before-image nor after-image is deposited
into the journal if the after-image is exactly the same
as the before-image.

132 IBMi: Journal management

Journal
code

Entry type

Description

Notes®

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Update data area (E EA, E EB)
journal entries” on page 296.

ED

Data area deleted

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

EE

Create data area

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Create data area (E EE) journal
entry” on page 208.

EG

Start journal for data area

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Start journal (B JT, D JF, EEG, F
JM, Q OB) journal entries” on page 295.

EH

End journal for data area

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

EI

Data area in use

EK

Change journaled object
attribute

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Change journaled object
attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal
entries” on page 198.

EL

Data area restored

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Object restored (B FR, D DZ, E
EL, FMR,JRR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 287.

EM

Data area moved

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

Journal management 133

Journal
code

Entry type

Description

Notes®

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Moving and renaming objects
(DFM,DFN, EEM, EEN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 281.

EN

Data area renamed

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Moving and renaming objects
(DFM,DFN,EEM, EEN, F MM, FMN, F PM, F PN, J
MJ, Q QM, Q ON) journal entries” on page 281.

EQ

Data area changes applied

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “APYJRNCHG (B AT,D DD, E
EQ, F AY, Q QH, Y YH) and RMVJRNCHG (E EX, F RC)
journal entries” on page 191.

ES

Data area saved

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Object saved (B FS, D DH, E ES,
F MS, Q QY, Y YS) journal entries” on page 288.

EU

Remove journaled
changes (RMVIRNCHG)
command started

EW

Start of save for data area

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Start of save-while-active (B
FW, D DW, E EW, F SS, Q QX, Y YW) journal entries” on

page 293.

EX

Data area changes
removed

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “APYJRNCHG (B AT, D DD, E
EQ, F AY, Q QH, Y YH) and RMVJIRNCHG (E EX, F RC)
journal entries” on page 191.

134 IBM i: Journal management

Journal Entry type | Description Notes®

code

E EY Apply journaled changes

(APYJRNCHG) command
started

E ZA Change authority The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Change authority (E ZA, J ZA, Q
ZA, Y ZA) journal entry” on page 193.

E ZB Change object attribute | The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Change object attribute (E ZB,
D ZB, JZB, Q ZB, Y ZB) journal entry” on page 199.

E Z0 Ownership change The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Ownership change (E ZO, J ZO,
Q Z0, Y Z0) journal entries” on page 290.

E ZP Change primary group The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.

See the layout for the “Change primary group (E ZP, J
ZP, Q ZP, Y ZP) journal entry” on page 200.

E ZT Auditing change The entry-specific data for these journal entries is laid

out in the QSYSINC include file, QWCJIRNL.H.
See the layout for the “Auditing Change (E ZT, J ZT, Q
ZT, Y ZT) journal entries” on page 193.
F AY Journaled changes See the layout for the “APYJRNCHG (B AT, D DD, E
applied to a physical file | g, F AY, Q QH, Y YH) and RMVIRNCHG (E EX, F RC)
member (APYJRNCHG) journal entries” on page 191.
F CB Physical file member See the layout for the “Object level (D AC, D CG, D CT,
changed D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
DP2,DP3,DRV,DTC,DTD,DTG,D TQ, FCB, F DM, F
MC) journal entries” on page 283.
F CE Change end of data for See the layout for the “Change end of data (F CE)
physical file member journal entry” on page 198.

F CH Change file As of V5R1MO, the journal entry D CG is also being
sent for the change file operations. IBM strongly
recommends that you do your processing based on
the D CG entry instead of the F CH entry because the F
CH entry may be retired in a future release.

F CL Physical file member

closed (for shared files, a
close entry is made for the
last close operation of the
file)

See the layout for the “Database file OPEN (F OP) and
database file CLOSE (F CL) journal entries” on page
220.

Journal management 135

Journal Entry type | Description Notes®

code

F CR Physical file member
cleared (CLRPFM)

F C1 Rollback ended early See the layout for the “Rollback ended early (C CN, F

C1) journal entries” on page 291.

F DE Physical file member
deleted record count

F DM Delete member Even if this journal has a journal state of *STANDBY,

this entry type will still be deposited in the journal
receiver.

See the layout for the “Object level (D AC, D CG, D CT,
D DC,DDT,D GC,D GO, D GT,DM1,DM2,DM3,D P1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

F EJ Journaling for a physical | Even if this journal has a journal state of *STANDBY,
file member ended this entry type will still be deposited in the journal
(ENDIRNPF) receiver.

F EP Journaling access path for [Even if this journal has a journal state of *STANDBY,
a database file member this entry type will still be deposited in the journal
ended (ENDJRNAP) receiver.

F FD Physical ﬁ!e member See the layout for the “Force data to auxiliary storage
forc'e.d (written) to (F FD) journal entry” on page 232.
auxiliary storage

F FI System-generated journal
entry format information

F IT Identity value See the layout for the “Identity Value (F IT) journal

entries” on page 247.

F IU Physical file memberin | gee the layout for the “IPL (3 IA, 3 IN) and in-use (B
use at the time of OI, C BA, DID, E EI, F IU, I DA, J JI, Q QI) journal
abnormal system end entries” on page 250.

F Iz Physical file member This journal entry may have data which

initialized (INZPFM)

can only be accessed by using either the
QjoRetrieveJournalEntries API or the RCVIRNE
command. For the RCVJRNE command, use

the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 311.

See the layout for the “INZPFM (F IZ) journal entry” on

page 248.

136 IBM i: Journal management

Journal Entry type | Description Notes®

code

F JC Cha.nge journaled object | gee the layout for the “Change journaled object
attribute attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal

entries” on page 198.

F M Journaling for a physical | Even if this journal has a journal state of *STANDBY,
file member started this entry type will still be deposited in the journal
(STRIRNPF) receiver.

See the layout for the “Start journal (B JT, D JF, E EG, F
JM, Q OB) journal entries” on page 295.

F JpP Journaling access path for | Even if this journal has a journal state of *STANDBY,
a database file member | this entry type will still be deposited in the journal
started (STRIRNAP) receiver.

F MC Create member See the layout for the “Object level (D AC, D CG, D CT,

D DC,DDT,D GC,D GO, D GT,DM1,DM2,DM3,D P1,
DP2,DP3,DRV,DTC,DTD,DTG,DTQ, FCB, F DM, F
MC) journal entries” on page 283.

F MD Physical file member Even if this journal has a journal state of *STANDBY,
deleted. This entry is this entry type will still be deposited in the journal
created when you remove | receiver.
the member (RMVM) or
delete the file (DLTF)
containing the member.

F MF Physical file member These entries do not indicate that they occurred as the
saved with storage freed | ggult of a trigger program, even if a trigger program
(SAVOBJ, SAVCHGOBJ, or [caysed the event. That information is not available at
SAVLIB) the time the entry is written to the journal.

F MM Physical file containing Even if this journal has a journal state of *STANDBY,
the mgmber moved this entry type will still be deposited in the journal
to a different library receiver.

(MOVOBJ or RNMOBJ]))

OBJTYPE(*LIB)) See the layout for the “Moving and renaming objects
(DFM,DFN, EEM, EEN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 281.

F MN Physical file containing Even if this journal has a journal state of *STANDBY,
the member renamed this entry type will still be deposited in the journal
(RNMM or RNMOBJ) receiver.

See the layout for the “Moving and renaming objects
(DFM,DFN, EEM, EEN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q ON) journal entries” on page 281.

F MO Allow use with partial See the layout for the “Allow use with partial
transactions transactions (F MO) journal entry” on page 190.

F MR Physical file member

restored (RSTOBJ or
RSTLIB)

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

Journal management 137

Journal Entry type | Description Notes®

code
See the layout for the “Object restored (B FR, D DZ, E
EL, FMR,JRR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 287.

F MS Physical file member These entries do not indicate that they occurred as the
saved (SAVOBJ, SAVLIB, | result of a trigger program, even if a trigger program
or SAVCHGOBJ) caused the event. That information is not available at

the time the entry is written to the journal.
See the layout for the “Object saved (B FS, D DH, E ES,
F MS, Q QY, Y YS) journal entries” on page 288.

F opP Physical file member See the layout for the “Database file OPEN (F OP) and
opened (for sh_ared files, |database file CLOSE (F CL) journal entries” on page
an open entry is added for [520,
the first open operation -
for the file)

F PD Database file member's_ Even if this journal has a journal state of *STANDBY,
access path deleted (this | this entry type will still be deposited in the journal
entry is created when receiver.
you remove the member]))])
(RMVM) or delete the Th'e object' name for this entry might be m.lsleadl.ng.
file (DLTF) containing the [It is the original name the path haq when Journalmg.
member) started. The name is not updated if the access path is

moved, renamed, or if it is implicitly shared by another
logical file.

See the layout for the “Delete access path (F PD)
journal entry” on page 220.

F PM The logical owner of a After you have installed VAR2MO or a later release,
journaled access path this journal type is no longer generated.
gﬁidrgg\segé%%\é%%{%» See the layout for the “Moving and renaming objects

(DFM,DFN, EEM, EEN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q ON) journal entries” on page 281.

F PN The logical owner of a After you have installed VAR2MO or a later release,
journaled access path this journal type is no longer generated.
was renamed (RNMOBJ or « . . .
RNMM) See the layout for the “Moving and renaming objects

(DFM,DFN, EEM, EEN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q ON) journal entries” on page 281.

F RC Journaled changes See the layout for the “APYIRNCHG (B AT, D DD, E
remqved from a EQ, F AY, Q QH, Y YH) and RMVJIRNCHG (E EX, F RC)
physical file member journal entries” on page 191.

(RMVJIRNCHG)

F RG PhVSica_l file member See the layout for the “RGZPFM (F RG) journal entry”
reorganized (RGZPFM) on page 291.

F RM Member reorganized

F SA The point at which the

APYJRNCHG command
started running

138 IBM i: Journal management

Journal Entry type | Description Notes®
code
F SR The point at which the
RMVJIRNCHG command
started running
F SS The start of the save of These entries do not indicate that they occurred as the
a physmal file member result of a trigger program, even if a trigger program
using the save-while- caused the event. That information is not available at
active function the time the entry is written to the journal.
See the layout for the “Start of save-while-active (B
FW, D DW, E EW, F SS, Q QX, Y YW) journal entries” on
page 293.
I DA Directory in use at See the layout for the “IPL (3 IA, J IN) and in-use (B
abnormal end OI, C BA, DID, E EI, F IU, I DA, J JI, Q QI) journal
entries” on page 250.
I DK Internal entry
I 1B Internal recovery
I IC Access path protection
I IE Directory recovery
I IF Access path protection
I IG Access path restored
I IH Access path protection
I II Access path in use at
abnormal end
I IK Access path protection
I IO Access path protection
I IQ Access path protection
I v Access path protection
I Iw Access path protection
I IX Start of save for access
path
I Iy Access path saved
I UE Unknown entry type
J CI Journal caching started Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.
J CX Journal caching ended

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

Journal management 139

Journal Entry type | Description Notes®

code

J EZ End J:ournaling forjournal | Even if this journal has a journal state of *STANDBY,

receiver this entry type will still be deposited in the journal
receiver.

J IA® System IPL after See the layout for the “IPL after abnormal end (J IA)

abnormal end journal entries” on page 248.
J IN System IPL after normal [see the layout for the “IPL after normal end (3 IN)
end journal entries” on page 248.
J I Journal receiverin use at [gee the layout for the “IPL (3 IA, J IN) and in-use (B
abnormal end OI, C BA, DID, E EI, F IU, I DA, J JI, Q QI) journal
entries” on page 250.
J J0 Journal quiesce ASP Even if this journal has a journal state of *STANDBY,
activity this entry type will still be deposited in the journal
receiver.
See the layout for the “Quiesce ASP activity (J JQ)
journal entries” on page 248.
J JR Start journaling for journal [Even if this journal has a journal state of *STANDBY,
receiver this entry type will still be deposited in the journal
receiver.
J KR Keep journal receivers for
recovery

J LA Activate local journal Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

J LI Inactivate local journal Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

J MJ Journal receiver moved Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.
The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJIRNL.H.
See the layout for the “Moving and renaming objects
(DFM,DFN, EEM, EEN, F MM, F MN, F PM, F PN, J
MJ, Q OM, Q ON) journal entries” on page 281.

J NK Do not keep journal

receivers for recovery
J NR Identifier for the next

journal receiver (the
receiver that was attached
when the indicated
receiver was detached)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “CHGJRN (J NR, J PR) journal
entries” on page 203.

140 IBM i: Journal management

Journal Entry type | Description Notes®

code

J PR Identifier for the previous | Even if this journal has a journal state of *STANDBY,
journal receiver (the this entry type will still be deposited in the journal
receiver that was receiver.
detached when the _
indicated receiver was See the layout for the “CHGJIRN (J NR, J PR) journal
attached) entries” on page 203.

J RD Dele.tion of a journal Even if this journal has a journal state of *STANDBY,
receiver (DLTJRNRCV) this entry type will still be deposited in the journal

receiver.
See the layout for the “Delete receiver (J RD, J RF)
journal entries” on page 220.

J RF Storage for a journal See the layout for the “Delete receiver (J RD, J RF)
receiver freed (SAVOBJ, | journal entries” on page 220.

SAVCHGOBJ, or SAVLIB)

J RR Restore operation fora | These entries do not indicate that they occurred as the
journal receiver (RSTOBJ | result of a trigger program, even if a trigger program
or RSTLIB) caused the event. That information is not available at

the time the entry is written to the journal.

See the layout for the “Object restored (B FR, D DZ, E
EL, F MR, JRR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 287.

J RS Save operation for a These entries do not indicate that they occurred as the
journal receiver (SAVOBJ, | result of a trigger program, even if a trigger program
SAVCHGOBJ, or SAVLIB) | caused the event. That information is not available at

the time the entry is written to the journal.

See the layout for the “Object restored (B FR, D DZ, E
EL, F MR, JRR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 287.

J SI E*nter journal state Even if this journal has a journal state of *STANDBY,
(*STANDBY) this entry type will still be deposited in the journal

receiver.

J SL Severed link Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

This is the start of the savepoint or nested commit
cycle where it is written to the journal and occurs
when the application creates an SQL SAVEPOINT. The
system can also create an internal nested commit
cycle to handle a series of database functions as

a single operation. The entry-specific data for this
journal entry is all internal data.

J SX Exit journal state

(*STANDBY)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

Journal management 141

Journal Entry type | Description Notes®
code
J UA User independent See the layout for the “User IASP vary on abnormal (J
auxiliary storage pool vary | ya) journal entries” on page 297.
on abnormal
J UN User independent See the layout for the “User IASP vary on normal (J
auxiliary storage pool vary | yn) journal entries” on page 297.
on normal
J XP Internal entry Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.
J ZA Change authority for The entry-specific data for these journal entries is laid
journal receiver out in the QSYSINC include file, QSYJRNL.H.
See the layout for the “Change authority (E ZA, J ZA, Q
ZA, Y ZA) journal entry” on page 193.
J ZB pha”ge attri.bute for The entry-specific data for these journal entries is laid
journal receiver out in the QSYSINC include file, QSYJRNL.H.
See the layout for the “Change object attribute (E ZB,
D ZB, JZB, Q ZB, Y ZB) journal entry” on page 199.
J 20 Char?ge owner for journal | The entry-specific data for these journal entries is laid
receiver out in the QSYSINC include file, QSYIJRNL.H.
See the layout for the “Ownership change (E Z0, J ZO,
Q Z0, Y ZO) journal entries” on page 290.
J ZP F:hange primary group for | The entry-specific data for these journal entries is laid
journal receiver out in the QSYSINC include file, QSYJRNL.H.
See the layout for the “Change primary group (E ZP, J
ZP, Q ZP, Y ZP) journal entry” on page 200.
J ZT Change audit attribute for | The entry-specific data for these journal entries is laid
journal receiver out in the QSYSINC include file, QSYJRNL.H.
See the layout for the “Auditing Change (E ZT, J ZT, Q
ZT, Y ZT) journal entries” on page 193.
L LK License key is not valid See the layout for the “License key not valid (L LK)
journal entry” on page 252.
L LL Usage limit changed See the layout for the “Usage limit changed (L LL)
journal entry” on page 296.
L LU Usage limit exceeded See the layout for the “Usage limit exceeded (L LU)
journal entry” on page 296.
M MP Modification of QoS
policies
M SN Simple Network See Simple Network Management Protocol (SNMP)

Management Protocol
(SNMP) information

Support % for information about the entry specific
data for SNMP journal entries.

142 IBM i: Journal management

http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415412.pdf
http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415412.pdf

Journal Entry type | Description Notes®

code

M TF IP filter rules actions See the layout for the “IP Packet Filter (M TF) journal
entry” on page 250.

M ™ IP NAT rules actions See the layout for the “IP NAT rules actions (M TN)
journal entry” on page 249.

M TS Virtual private networking

(VPN) information

P TP Performance shared pool |See Work Management for the layout of the entry

change specific data.

Q QA Create data queue The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Create data queue (Q QA)
journal entry” on page 214.
Q QB Start data queue Even if this journal has a journal state of *STANDBY,
journaling this entry type will still be deposited in the journal
receiver.
The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.
See the layout for the “Start journal (B JT, D JF, EEG, F
JM, Q OB) journal entries” on page 295.
Q QC Data queue cleared, no See the layout for the “Database file OPEN (F OP) and
key database file CLOSE (F CL) journal entries” on page
220.

Q QD Data queue deleted Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

There is no entry-specific data for this entry.

Q QE End data queue journaling [Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

There is no entry-specific data for this entry.
Q QF Change journal object The entry-specific data for these journal entries is laid
attribute out in the QSYSINC include file, QMHQJIRNL.H.
See the layout for the “Change journaled object
attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal
entries” on page 198.
Q QG Data queue attributes The entry-specific data for these journal entries is laid

changed

out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Data queue attributes changed
(Q QG) journal entry” on page 219.

Journal management 143

Journal
code

Entry type | Description

Notes®

Q QH Data queue changes

applied

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “APYJRNCHG (B AT, D DD, E
EQ, F AY, Q QH, Y YH) and RMVJIRNCHG (E EX, F RC)
journal entries” on page 191.

Queue in use at abnormal
end

There is no entry-specific data for this entry.

Data queue cleared, has
key

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Data queue cleared, has key (Q
QJ) journal entry” on page 219.

Send data queue entry,
has key

This journal entry may have data which

can only be accessed by using either the
QjoRetrieveJournalEntries API or the RCVIRNE
command. For the RCVJRNE command, use

the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 311.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Send data queue, has key (Q
QK) journal entry” on page 292.

Receive data queue entry,
has key

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Received data queue, has key
(Q QL) journal entry” on page 290.

Data queue moved

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Moving and renaming objects
(DFM,DFN, EEM, EEN, F MM, F MN, F PM, F PN, J
MJ, Q OM, Q ON) journal entries” on page 281.

Data queue renamed

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

144 IBM i: Journal management

Journal
code

Entry type

Description

Notes®

See the layout for the “Moving and renaming objects
(DFM,DFN, EEM, EEN, F MM, F MN, F PM, FPN, J
MJ, Q QM, Q QN) journal entries” on page 281.

OR

Receive data queue entry,
no key

This entry only has entry-specific data which
the system uses for internal processing. There is
no structure for it in the QSYSINC include file,
QMHQJIRNL.H.

QS

Send data queue entry, no
key

This journal entry may have data which

can only be accessed by using either the
QjoRetrieveJournalEntries API or the RCVIRNE
command. For the RCVJRNE command, use

the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 311.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Send data queue, no key (Q QS)
journal entry” on page 293.

Qw

Apply journaled changes
(APYJRNCHG) command
started

The entry specific data for this entry varies, and
only represents data required internally by the
operation system. Therefore, the entry layout is not
documented.

(0,4

Start of save for data
queue

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Start of save-while-active (B
FW, D DW, E EW, F SS, Q QX, Y YW) journal entries” on
page 293.

QY

Data queue saved

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Object saved (B FS, D DH, E ES,
F MS, Q QY, Y YS) journal entries” on page 288.

Qz

Data queue restored

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

Journal management 145

updated for rollback
operation

Journal Entry type | Description Notes®

code
The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.
See the layout for the “Object restored (B FR, D DZ, E
EL, FMR,JRR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 287.

Q VE Internal entry This is an internal entry. No layout of entry-specific
data is provided.

Q VQ Internal entry This is an internal entry. No layout of entry-specific
data is provided.

Q VW Internal entry This is an internal entry. No layout of entry-specific
data is provided.

Q ZA Change authority The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.
See the layout for the “Change authority (E ZA, J ZA, Q
ZA, Y ZA) journal entry” on page 193.

Q ZB Change object attribute The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.
See the layout for the “Change object attribute (E ZB,
D ZB, JZB, Q ZB, Y ZB) journal entry” on page 199.

Q 20 Ownership change The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.
See the layout for the “Ownership change (E Z0, J ZO,
Q Z0, Y Z0) journal entries” on page 290.

Q ZP Change primary group The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.
See the layout for the “Change primary group (E ZP, J
ZP, Q ZP, Y ZP) journal entry” on page 200.

Q ZT Auditing change The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.
See the layout for the “Auditing Change (E ZT, J ZT, Q
ZT,Y ZT) journal entries” on page 193.

R BR Before-image of record This journal entry may have data which

can only be accessed by using either the
QjoRetrieveJournalEntries API or the RCVIRNE
command. For the RCVJRNE command, use

the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is

not visible, the incomplete data indicator will be on
and *POINTER will appear in the Entry Specific Data.
For more information, refer to Work with pointers in
journal entries.

146 IBM i: Journal management

Journal
code

Entry type

Description

Notes®

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.

See the layout for the “Journal code R, all journal entry
types except IL” on page 251.

DL

Record deleted in the
physical file member

This journal entry may have data which

can only be accessed by using either the
QjoRetrieveJournalEntries API or the RCVIRNE
command. For the RCVJRNE command, use

the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 311

See the layout for the “Journal code R, all journal entry
types except IL” on page 251.

DR

Record deleted for
rollback operation

This journal entry may have data which

can only be accessed by using either the
QjoRetrieveJournalEntries API or the RCVIRNE
command. For the RCVIRNE command, use

the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 311.

See the layout for the “Journal code R, all journal entry
types except IL” on page 251.

IL

Increment record limit

These entries have entry-specific data which the
system uses for internal processing.

PT

Record added to a
physical file member. If
the file is set up to reuse
deleted records, then you
may receive either a PT
or PX journal entry for the
change

This journal entry may have data which

can only be accessed by using either the
QjoRetrieveJournalEntries API or the RCVIRNE
command. For the RCVJRNE command, use

the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 311.

See the layout for the “Journal code R, all journal entry
types except IL” on page 251.

PX

Record added directly
by RRN (relative record
number) to a physical file

This journal entry may have data which
can only be accessed by using either the
QjoRetrieveJournalEntries API or the RCVIRNE

Journal management 147

Journal
code

Entry type

Description

Notes®

member. If the file is
set up to reuse deleted
records, then you may
receive either a PT or
PX journal entry for the
change

command. For the RCVJRNE command, use

the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to“Working with pointers in
journal entries” on page 311.

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.

See the layout for the “Journal code R, all journal entry
types except IL” on page 251.

uB

Before-image of a record
that is updated in the
physical file member
(this entry is present
only if IMAGES(*BOTH)
is specified on the
STRIRNPF command)

Neither the before-image nor after-image is deposited
into the journal if the after-image is exactly the same
as the before-image.

This journal entry may have data which

can only be accessed by using either the
QjoRetrieveJournalEntries API or the RCVIRNE
command. For the RCVJRNE command, use

the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 311.

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.

See the layout for the “Journal code R, all journal entry
types except IL” on page 251.

upP

After-image of a record
that is updated in the
physical file member

Neither the before-image nor after-image is deposited
into the journal if the after-image is exactly the same
as the before-image.

This journal entry may have data which

can only be accessed by using either the
QjoRetrieveJournalEntries API or the RCVIRNE
command. For the RCVJRNE command, use

the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 311.

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding

148 IBM i: Journal management

Journal Entry type | Description Notes®
code
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.
See the layout for the “Journal code R, all journal entry
types except IL” on page 251.
R UR After-image of a record This journal entry may have data which
that is updated for can only be accessed by using either the
rollback information QjoRetrieveJournalEntries API or the RCVIRNE
command. For the RCVJRNE command, use
the ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 311.
This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.
See the layout for the “Journal code R, all journal entry
types except IL” on page 251.
S AL SNA alert focal point
information
S CF Mail configuration See the layout for the “Change distribution queues (S
information CF) journal entry” on page 195.
S DX X.400 process debug
entry
S ER Mail error information See the layout for the “Distribution errors (S ER)
journal entry” on page 222.
S LG Mail logging table See the layout for the “Completed distributions (S LG)
information journal entry” on page 204.
S MX A change was made to
X.400 MTA configuration
S NG Non-delivery mail
generated
S NL New mail logging table
information
S NX A change was made to
X.400 delivery notification
S RT Mail routing information

See the layout for the “Change routing table and
secondary system name table (S RT) journal entries”
on page 201.

Journal management 149

Journal Entry type | Description Notes®
code
S RX A change was made to
X.400 route configuration
S SH SMTP configuration
changed
S SJ Mail delivery request
generated
S SY Mail system information | see the layout for the “Mail server framework system
level events (S SY) journal entry” on page 280.
S SZ Mail delivery task
completed
S ™ Transferring mail status
changed
S UXx A change was made to
X.400 ® user or probe
S XE DSNX error entry See the layout for the “Distribution errors (S XE)
journal entries” on page 229.
S XL DSNX logging entry See the layout for the “DSNX log (S XL) journal entries”
on page 230.
S XX An error was detected by
the X.400 process
T AD A chapge was made to the | see the layout for the Security Reference: Layout of
auditing attribute audit journal entries.
T AF All authority failures See the layout for the Security Reference: Layout of
audit journal entries.
T AP A change was made to See the layout for the Security Reference: Layout of
program adopt audit journal entries.
T AU Attribute change See the layout for the Security Reference: Layout of
audit journal entries.
T AX Row and column access | see the layout for the Security Reference: Layout of
control audit journal entries.
T CA Changes to object See the layout for the Security Reference: Layout of
authority (authorization audit journal entries.
list or object)
T CD A change was madetoa |see the layout for the Security Reference: Layout of
command string audit journal entries.
T (60] Create object

See the layout for the Security Reference: Layout of
audit journal entries.

150 IBM i: Journal management

Journal Entry type | Description Notes®
code
T cp Create, change, restore See the layout for the Security Reference: Layout of
user profiles audit journal entries.
T cQ A change was made toa | see the layout for the Security Reference: Layout of
change request descriptor | 5dit journal entries.
T cu Cluster operation See the layout for the Security Reference: Layout of
audit journal entries.
T cv Connection verification See the layout for the Security Reference: Layout of
audit journal entries.
T cy Cryp_tographic See the layout for the Security Reference: Layout of
configuration audit journal entries.
T DI Directory services See the layout for the Security Reference: Layout of
audit journal entries.
T DO All delete operations on | see the layout for the Security Reference: Layout of
the system audit journal entries.
T DS DST security officer See the layout for the Security Reference: Layout of
password reset audit journal entries.
T EV Environment variable See the layout for the Security Reference: Layout of
audit journal entries.
T GR General purpose audit See the layout for the Security Reference: Layout of
record audit journal entries.
T GS A descriptor was given See the layout for the Security Reference: Layout of
audit journal entries.
T M Intrusion monitor See the layout for the Security Reference: Layout of
audit journal entries.
T IP Inter-process See the layout for the Security Reference: Layout of
communication event audit journal entries.
T IR IP rules actions See the layout for the Security Reference: Layout of
audit journal entries.
T IS Internet security See the layout for the Security Reference: Layout of
management audit journal entries.
T JD Changes to the USER See the layout for the Security Reference: Layout of
parameter of a job audit journal entries.
description
T JS A change was made to job

data

See the layout for the Security Reference:

Layout of

audit journal entries.

Journal management 151

Journal Entry type | Description Notes®
code
T KF Key ring file name See the layout for the Security Reference: Layout of
audit journal entries.
T LD Alink, unlink, or lookup See the layout for the Security Reference: Layout of
operation to a directory audit journal entries.
T ML A change was made to See the layout for the Security Reference: Layout of
office services mail audit journal entries.
T MO Db2® Mirror Setup Tools | see the layout for the Security Reference: Layout of
audit journal entries.
T Mé Db2 Mirror . See the layout for the Security Reference: Layout of
Communication Services | qydit journal entries.
T M7 Db2 .Mirror Replication See the layout for the Security Reference: Layout of
Services audit journal entries.
T M8 Db2 'Mirror Product See the layout for the Security Reference: Layout of
Services audit journal entries.
T M9 Db2 Mirror Replication See the layout for the Security Reference: Layout of
State audit journal entries.
T NA Changes to network See the layout for the Security Reference: Layout of
attributes audit journal entries.
T ND Directory search See the layout for the Security Reference: Layout of
violations audit journal entries.
T NE End point violations See the layout for the Security Reference: Layout of
audit journal entries.
T oM Object management See the layout for the Security Reference: Layout of
change audit journal entries.
T OR Object restored See the layout for the Security Reference: Layout of
audit journal entries.
T ow Changes to object See the layout for the Security Reference: Layout of
ownership audit journal entries.
T o1 Single optical object See the layout for the Security Reference: Layout of
access audit journal entries.
T 02 Dual optical object access | see the layout for the Security Reference: Layout of
audit journal entries.
T 03 Optical volume access See the layout for the Security Reference: Layout of

audit journal entries.

152 IBM i: Journal management

Journal Entry type | Description Notes®
code
T PA Changes to programs See the layout for the Security Reference: Layout of
(CHGPGM) that will audit journal entries.
now adopt the owner's
authority
T PF PTF operations See the layout for the Security Reference: Layout of
audit journal entries.
T PG Changes to an object’s See the layout for the Security Reference: Layout of
primary group audit journal entries.
T PO A ;hange was made to See the layout for the Security Reference: Layout of
printed output audit journal entries.
T PS Profile swap See the layout for the Security Reference: Layout of
audit journal entries.
T PU PTF object changes See the layout for the Security Reference: Layout of
audit journal entries.
T PW Passwqrds used thatare | gee the layout for the Security Reference: Layout of
not valid audit journal entries.
T RA Restore of objects when | gee the layout for the Security Reference: Layout of
authority changes audit journal entries.
T RJ Restore of job | See the layout for the Security Reference: Layout of
descriptions that contain | 5ydit journal entries.
user profile names
T RO Restore of objects when | see the layout for the Security Reference: Layout of
ownership information audit journal entries.
changes
T RP Restore of programs . See the layout for the Security Reference: Layout of
that adopt their owner's | aydit journal entries.
authority
T RQ A cha!ﬁge request See the layout for the Security Reference: Layout of
descriptor was restored audit journal entries.
T RU Restore O_f authority for See the layout for the Security Reference: Layout of
user profiles audit journal entries.
T RZ The primary group for See the layout for the Security Reference: Layout of
an object was changed | audit journal entries.
during a restore operation
T SD A change was made to the | see the layout for the Security Reference: Layout of
system directory audit journal entries.
T SE Changes to subsystem See the layout for the Security Reference: Layout of

routing

audit journal entries.

Journal management 153

Journal Entry type | Description Notes®
code
T SF A change was mgde toa | see the layout for the Security Reference: Layout of
spooled output file audit journal entries.
T SG Asynchronous signals See the layout for the Security Reference: Layout of
audit journal entries.
T SK Secure sockets See the layout for the Security Reference: Layout of
connection audit journal entries.
T SM A change was made by See the layout for the Security Reference: Layout of
system management audit journal entries.
T SO A change was made by See the layout for the Security Reference: Layout of
server security audit journal entries.
T ST A change was made by See the layout for the Security Reference: Layout of
system tools audit journal entries.
T SV Changes to system values | see the layout for the Security Reference: Layout of
audit journal entries.
T VA Changes to access control | see the layout for the Security Reference: Layout of
list audit journal entries.
T VC Connection started or See the layout for the Security Reference: Layout of
ended audit journal entries.
T VF Server files were closed [5ee the layout for the Security Reference: Layout of
audit journal entries.
T VL An account limit was See the layout for the Security Reference: Layout of
exceeded audit journal entries.
T VN A logon or logoff operation | see the layout for the Security Reference: Layout of
on the network audit journal entries.
T VO Actions on validation lists | see the layout for the Security Reference: Layout of
audit journal entries.
T VP A network password error | see the layout for the Security Reference: Layout of
audit journal entries.
T VR A network resources was | See the layout for the Security Reference: Layout of
accessed audit journal entries.
T VS A server session started | See the layout for the Security Reference: Layout of
or ended audit journal entries.
T VU A network profile was See the layout for the Security Reference: Layout of

changed

audit journal entries.

154 IBM i: Journal management

Journal Entry type | Description Notes®

code

T (A% Service status was See the layout for the Security Reference: Layout of
changed audit journal entries.

T XD Extension of the directory | see the layout for the Security Reference: Layout of
services entry audit journal entries.

T X0 Network authentication | see the layout for the Security Reference: Layout of

audit journal entries.
T X1 Identity token See the layout for the Security Reference: Layout of
audit journal entries.

T X2 Query manager profile See the layout for the Security Reference: Layout of
changes audit journal entries.

T X3 Reserved for future audit | see the layout for the Security Reference: Layout of
entry audit journal entries.

T X4 Reserved for future audit [gee the layout for the Security Reference: Layout of
entry audit journal entries.

T X5 Reserved for future audit | see the layout for the Security Reference: Layout of
entry audit journal entries.

T X6 Reserved for future audit | see the layout for the Security Reference: Layout of
entry audit journal entries.

T X7 Reserved for future audit | see the layout for the Security Reference: Layout of
entry audit journal entries.

T X8 Reserved for future audit | see the layout for the Security Reference: Layout of
entry audit journal entries.

T X9 Reserved for future audit | see the layout for the Security Reference: Layout of
entry audit journal entries.

T YC A change was made to See the layout for the Security Reference: Layout of
DLO change access audit journal entries.

T YR A change was made to See the layout for the Security Reference: Layout of
DLO read access audit journal entries.

T ZC A change was made to See the layout for the Security Reference: Layout of
object change access audit journal entries.

T ZR A ghange was made to See the layout for the Security Reference: Layout of
object read access audit journal entries.

u User-specified. The Entry-

specific data is the
value specified on the
ENTDTA parameter of
the SNDJRNE command

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal

receiver.

Journal management 155

attribute

Journal Entry type | Description Notes®
code
or with the entry
data parameter for the
QJOSIRNE API
Y LF ngical ﬁl? associated The entry-specific data for these journal entries is laid
with the library out in the QSYSINC include file, QLIJRNL.H.
See the layout for the “Logical file associated with the
library or based on physical file (D LF, Y LF) journal
entry” on page 252.

Y YA Change library attributes | The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.
See the layout for the “Change library attributes (Y YA)
journal entry” on page 199.

Y YB Journaling for library Even if this journal has a journal state of *STANDBY,

started this entry type will still be deposited in the journal

receiver.
The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.
See the layout for the “Journaling for library started (Y
YB) journal entry” on page 251.

Y YD Library deleted Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

There is no entry-specific data for this entry.
Y YE Journaling for library Even if this journal has a journal state of *STANDBY,
ended this entry type will still be deposited in the journal
receiver.
There is no entry-specific data for this entry.

Y YH Library changes applied | The entry-specific data for these journal entries is laid

out in the QSYSINC include file, QLIJRNL.H.
See the layout for the “APYJRNCHG (B AT, D DD, E
EQ, F AY, Q OH, Y YH) and RMVJIRNCHG (E EX, F RC)
journal entries” on page 191.
Y Y1 Libdrary inuse at abnormal | There is no entry-specific data for this entry.
en
Y YK Change journaled object

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Change journaled object
attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal
entries” on page 198.

156 IBM i: Journal management

Journal
code

Entry type

Description

Notes®

Y

YN

Library renamed

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Library renamed (Y YN) journal
entry” on page 252.

YO

Object added to library

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Object added to library (Y YO)
journal entry” on page 282.

YS

Library saved

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Object saved (B FS, D DH, E ES,
F MS, Q QY, Y YS) journal entries” on page 288.

YW

Start of save for library

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Start of save-while-active (B
FW, D DW, E EW, F SS, Q QX, Y YW) journal entries” on
page 293.

YY

Apyjrnchg command
started

YZ

Library restored

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Object restored (B FR, D DZ, E
EL, FMR,JRR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 287.

ZA

Change authority

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

Journal management 157

Journal
code

Entry type

Description

Notes®

See the layout for the “Object restored (B FR, D DZ, E
EL, FMR,JRR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 287.

ZB

Object attribute change

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Change object attribute (E ZB,
D ZB, J ZB, Q ZB, Y ZB) journal entry” on page 199.

Z0

Change owner

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Ownership change (E ZO, J ZO,
Q Z0, Y Z0) journal entries” on page 290.

ZP

Change primary group

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Change primary group (E ZP, J
ZP, Q ZP, Y ZP) journal entry” on page 200.

ZT

Change audit attribute

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Auditing Change (E ZT, J ZT, Q
ZT, Y ZT) journal entries” on page 193.

Fixed-length portion of the journal entry

This topic provides the layouts of the fixed-length portion of the journal entries.

When you use the Display Journal (DSPIRN) command, Receive Journal Entry (RCVIRNE) command,
Retrieve Journal Entry (RTVIRNE) command, or the Retrieve Journal Entries (QjoRetrieveJournalEntries)
API you can select one of the formats in which to receive the layout for the fixed-length portion of the

jo

urnal entry:
*TYPEL
*TYPE2
*TYPE3
*TYPE4
*TYPES

*TYPE1 format
The *TYPEL format shows the fields that are common for all journal entry types. These fields are
shown when you request *TYPE1 for the output file format or the entry type format.

*TYPE2 format
If you request OUTFILFMT(*TYPE2) on the DSPJRN command, or ENTFMT(*TYPE2) on the RCVIRNE
or RTVJRNE command, then the fixed-length portion of each converted journal entry is the same as
the format in *TYPE1L, except for the information that follows the commit cycle identifier field. The
fields of the prefix that follow the commit cycle identifier are shown in *TYPE2 field descriptions.

TYPES3 field descriptions
A third value, *TYPE3, is supported on the OUTFILFMT parameter for the DSPJRN command, and
the ENTFMT parameter for the RCVIJRNE and RTVIJRNE commands. If either OUTFILFMT(*TYPE3) is
specified on the DSPJRN command or ENTFMT(*TYPE3) is specified on the RCVIRNE or RTVIJRNE

158 IBM i: Journal management

command, the information in the prefix portion of a converted journal entry is shown in *TYPE3 field
descriptions. *TYPE3 has the same information as the *TYPE1 and *TYPE2 formats, except that it has
a different date format and a null-values indicator.

*TYPEA4 field descriptions
A fourth value, *TYPEA4, is supported on the OUTFILFMT parameter for the DSPJRN command and
the ENTFMT parameter for the RCVIRNE and RTVIRNE commands. If either OUTFILFMT(*TYPEA4) is
specified on the DSPIRN command or ENTFMT(*TYPE4) is specified on the RCVIRNE or RTVIRNE
command, the information in the prefix portion of a converted journal entry is shown in Table 4.
*TYPE4 output includes all of the *TYPE3 information, plus information about journal identifiers,
triggers, and referential constraints and entries which will be ignored by the APYJRNCHG or
RMVIRNCHG commands.

*TYPES field descriptions
The *TYPES format is only available with the DSPJRN and RTVJRNE commands. The *TYPE5 format
is supported on the OUTFILFMT parameter for the DSPJRN command and ENTFMT parameter
of the RTVIRNE command. If you specify OUTFILFMT(*TYPE5) on the DSPJRN command or
ENTFMT(*TYPES) on the RTVIJRNE command, the information in the prefix portion of a converted
journal entry is shown in Table 5. *TYPES output includes all of the *TYPE4 information, plus
information about the following:

- System sequence number
 Thread identifier

« Remote address

« Address family

« Remote port

« Arm number

« Receiver name

» Receiver library name

 Receiver library ASP device name
e Program library name

« Program library ASP device nhame
« Program library ASP number

« Logical unit of work

- Transaction identifier

 Receiver library ASP number

« Object type

« File type

« Nested commit level

The RCVIRNE command also supports the *TYPEPTR and *JRNENTFMT formats. The layout of the
journal entry data for the *TYPEPTR interface is the same as the RINEQ100 format which is described
in the QjoRetrieveJournalEntries API.

The layout of the journal entry data for the *JRNENTFMT interface is the same as either the RINE0100
format or the RINE0200 format of the QjoRetrieveJournalEntries API. You can select which format to
use by selecting the RINEO100 or the RINE0200 value for the Journal Entry Format (JRNENTFMT)
parameter of the RCVJRNE command.

You can find the field descriptions for layouts *TYPEZL, *TYPE2, *TYPE3, *TYPE4, and *TYPES5 in the
Journal entry information finder.

Related reference
Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Journal management 159

Related information
Journal entry information finder

Layouts for the fixed-length portion of journal entries

Use this topic to determine layouts for the fixed-length portion of journal entries.

TYPE1 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE1 for the output file format or the entry type

format. The uppercase field names shown in parentheses are used in the system-supplied output file
QSYS/QADSPJIRN. The field names that are in italics are the variable names for these fields in the
QjoRetrieveJournalEntries API header file. These variables are under the type definition for the
RINE0100 format. The QjoRetrieveJdournalEntries API header is in the QJOURNAL.H file of the
QSYSINC library.

Relativ
e offset

Field

Format

Description

1

Entry length (JOENTL)

Zoned (5,0)

Specifies the length of the journal entry
including the entry length field, all subsequent
positions of the journal entry, and any portion
of the journal entry that was truncated if the
length of the output record is less than the
length of the record created for the journal
entry.

If the journal entry has the incomplete data
indicator on, then this length does not include
that additional data which could be pointed
to. This length includes the length of the data
that is actually returned, which includes entry
specific data of up to 32 766 bytes.

Sequence number
(JOSEQN, Seq_Number)

Zoned (10,0)

Assigned by the system to each journal entry.
It is initially set to 1 for each new or restored
journal and is incremented until you request
that it be reset when you attach a new
receiver. There are occasional gaps in the
sequence numbers because the system uses
internal journal entries for control purposes.
These gaps occur if you use commitment
control, journal physical files, or journal
access paths.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the sequence number
is larger than 9 999 999 999.

160 IBM i: Journal management

Relativ
e offset

Field

Format

Description

16

Journal code (JOCODE,
Jrn_Code)

Char (1)

Identifies the primary category of the journal
entry:

A = System accounting entry

B = Integrated file system operation
C = Commitment control operation
D = Database file operation

E = Data area operation

F = Database file member operation
I = Internal operation

J = Journal or receiver operation

L = License management

M = Network management data

P = Performance tuning entry

Q = Data queue operation

R = Operation on a specific record
S = Distributed mail services

T = Audit trail entry

U = User-generated entry (added by the
SNDJIRNE command or QJOSIRNE API)

The journal codes are described in more detail
in Journal code descriptions.

17

Entry type (JOENTT,
Entry _Type)

Char (2)

Further identifies the type of user-created or
system-created entry. See the Journal code
finder for descriptions of the entry types.

19

Date stamp (JODATE)

Char (6)

Specifies the system date when the entry was
added and is in the format of the job attribute
DATFMT. The system cannot assure that the
date stamp is always in ascending order for
sequential journal entries because you can
change the value of the system date.

25

Time stamp (JOTIME)

Zoned (6,0)

Corresponds to the system time (in the format
hhmmess) when the entry was added. The
system cannot assure that the time stamp

is always in ascending order for sequential
journal entries because you can change the
value of the system time.

31

Job name (JOJOB,
Job_Name)

Char (10)

Specifies the name of the job that added the
entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection
of this information, then *OMITTED is given
for the job name.

2. If the job name was not available when the

journal entry was deposited, then *NONE is
written for the job name.

Journal management 161

Relativ
e offset

Field

Format

Description

41

User name (JOUSER,
User_Name)

Char (10)

Specifies the user profile name of the user
that started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then blanks are written for
the user name.

51

Job number (JONBR,
Job_Number)

Zoned (6,0)

Specifies the job number of the user that
started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then zeroes are written for
the job number.

57

Program name (JOPGM,
Program_Name)

Char (10)

Specifies the name of the program that added
the entry. If an application or CL program did
not add the entry, the field contains the name
of a system-supplied program such as QCMD
or QPGMMENU. If the program name is the
special value *NONE, then one of the following
is true:

« The program name does not apply to this
journal entry.

- The program name was not available when
the journal entry was made.

For example, the program name is not
available if the program was destroyed.

Notes:

1. If the program that deposited the journal
entry is an original program model
program, this data will be complete.
Otherwise, this data will be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, *OMITTED is given for the
program name.

67

Object name (JOOBJ,
Object)

Char (10)

Specifies the name of the object for which the
journal entry was added.? This is blank for
some entries.

If the journaled object is an integrated file
system object, then this field is the first 10
bytes of the file identifier.

77

Library name (JOLIB)

Char (10)

Specifies the name of the library containing
the object?.

If the journaled object is an integrated file
system object, then the first 6 characters
of this field are the last 6 bytes of the file
identifier.

162 IBM i: Journal management

Relativ
e offset

Field

Format

Description

87

Member name (JOMBR)

Char (10)

Specifies the name of the physical file
member or is blank if the object is not a
physical file.

97

Count/relative record
number (JOCTRR,
Count_Rel_Rec_Num)

Zoned (10,0)

Contains either the relative record number
(RRN) of the record that caused the journal
entry or a count that is pertinent to the
specific type of journal entry. The following
tables show specific values for this field, if
applicable:

« APYJRNCHG and RMVJRNCHG journal
entries

Change end of data journal entry
CHGJRN journal entries
COMMIT journal entry

« INZPFM journal entry

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the count or relative
record number is larger than 9 999 999 999.

107

Indicator flag (JOFLAG,
Indicator_Flag)

Char (1)

Contains an indicator for the operation. The
following tables show specific values for this
field, if applicable:

« APYJRNCHG and RMVIRNCHG journal
entries

« COMMIT journal entry
« INZPFM journal entry
« IPL and in-use journal entries

« Journal code R (all journal entry types
except IL)

« ROLLBACK journal entry
« Start-journal journal entries

108

Commit cycle
identifier (JOCCID,
Commit_Cycle_Id)

Zoned (10,0)

Contains a number that identifies the commit
cycle. A commit cycle is from one commit or
rollback operation to another.

The commit cycle identifier is found in

every journal entry that is associated with a
commitment transaction. If the journal entry
was not made as part of a commitment
transaction, this field is zero.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the commit cycle
identifier is larger than 9 999 999 999.

Journal management 163

Relativ | Field Format Description
e offset

118 Incomplete data Char (2) Indicates whether this entry has data that is
(JOINCDAT, not being retrieved for one of the following
Incomplete_Data) reasons:

« The length of the entry-specific data
exceeds 32 766 hytes.

« The entry is associated with a database
file that has one or more fields of data
type BLOB (binary large object), CLOB
(character large object), or DBCLOB (double-
byte character large object).

The possible values are:

0 = This entry has all possible data

1 = This entry has incomplete data.
Any data which is marked as incomplete,
can only be viewed by using either
the QjoRetrieveJournalEntries API, or the

command RCVIRNE with any of the following
parameters:

« ENTFMT(*TYPEPTR)
« ENTFMT(*JRNENTFMT)

« RTNPTR (with any value specified other than
*NONE)

119 Minimized entry specific Char (2) Indicates whether this entry has minimized
data (JOMINESD, entry specific data.
Min_ESD) The possible values are:
0 = This entry has all possible data
1 = This entry has incomplete data.
2 = This entry has entry specific data that
has been minimized on field boundaries.

120 Reserved field (JORES) Char (6) Always contains zeros. Contains hexadecimal
zeros in the output file.

Note:

11f the journal receiver was attached prior to installing VAR2MO on your system, then the following items
are true:

 If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVJIRNE, or RTVIRNE command, then
the fully qualified name is the most recent name of the file when the newest receiver in the receiver
range was the attached receiver and when the file was still being journaled.

- If afile name is specified or if library *ALL is specified on the FILE parameter, the current fully qualified
name of the file appears in the converted journal entry.

If the journal receiver was attached while VAR2MO or a later release was running on the system, the fully
qualified name is the name of the object at the time the journal entry was deposited.

164 IBM i: Journal management

*TYPE2 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE2 for the output file format or the entry type

format. The uppercase field names shown in parentheses are used in the system-supplied output file
OSYS/QADSPIR2. The field names that are in italics are the variable names for these fields in the
QjoRetrieveJournalEntries API header file. These variables are under the type definition for the
RINE0100 format. The QjoRetrieveJournalEntries API header is in the QJOURNAL.H file of the
QSYSINC library.

Offset |Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry
including the entry length field, all subsequent
positions of the journal entry, and any portion
of the journal entry that was truncated if the
length of the output record is less than the
length of the record created for the journal
entry.

If the journal entry has the incomplete data
indicator on, then this length does not include
that additional data which could be pointed
to. This length includes the length of the data
that is actually returned, which includes entry
specific data of up to 32 766 bytes.

6 Sequence number Zoned (10,0) Assigned by the system to each journal entry.
(JOSEQN, Seg_Number) It is initially set to 1 for each new or restored
journal and is incremented until you request
that it be reset when you attach a new
receiver. There are occasional gaps in the
sequence numbers because the system uses
internal journal entries for control purposes.
These gaps occur if you use commitment
control, journal physical files, or journal
access paths.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the sequence number
is larger than 9 999 999 999.

Journal management 165

Offset

Field

Format

Description

16

Journal code (JOCODE,
Jrn_Code)

Char (1)

Identifies the primary category of the journal
entry:

A = System accounting entry

B = Integrated file system operation
C = Commitment control operation
D = Database file operation

E = Data area operation

F = Database file member operation
I = Internal operation

J = Journal or receiver operation

L = License management

M = Network management data

P = Performance tuning entry

Q = Data queue operation

R = Operation on a specific record

S = Distributed mail services

T = Audit trail entry

U = User-generated entry (added by the
SNDJIRNE command or QJOSIRNE API)

The journal codes are described in more detail
in Journal code descriptions.

17

Entry type (JOENTT,
Entry _Type)

Char (2)

Further identifies the type of user-created or
system-created entry. See the Journal code
finder for descriptions of the entry types.

19

Date stamp (JODATE)

Char (6)

Specifies the system date when the entry was
added and is in the format of the job attribute
DATFMT. The system cannot assure that the
date stamp is always in ascending order for
sequential journal entries because you can
change the value of the system date.

25

Time stamp (JOTIME)

Zoned (6,0)

Corresponds to the system time (in the format
hhmmess) when the entry was added. The
system cannot assure that the time stamp

is always in ascending order for sequential
journal entries because you can change the
value of the system time.

31

Job name (JOJOB,
Job_Name)

Char (10)

Specifies the name of the job that added the
entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection
of this information, then *OMITTED is given
for the job name.

2. If the job name was not available when the
journal entry was deposited, then *NONE is
written for the job name.

166 IBM i: Journal management

Offset

Field

Format

Description

41

User name (JOUSER,
User_Name)

Char (10)

Specifies the user profile name of the user
that started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then blanks are written for
the user name.

51

Job number (JONBR,
Job_Number)

Zoned (6,0)

Specifies the job number of the user that
started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then zeroes are written for
the job number.

57

Program name (JOPGM,
Program_Name)

Char (10)

Specifies the name of the program that added
the entry. If an application or CL program did
not add the entry, the field contains the name
of a system-supplied program such as QCMD
or QPGMMENU. If the program name is the
special value *NONE, then one of the following
is true:

« The program name does not apply to this
journal entry.

- The program name was not available when
the journal entry was made.

For example, the program name is not
available if the program was destroyed.

Notes:

1. If the program that deposited the journal
entry is an original program model
program, this data will be complete.
Otherwise, this data will be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, *OMITTED is given for the
program name.

67

Object name (JOOBJ,
Object)

Char (10)

Specifies the name of the object for which the
journal entry was added.? This is blank for
some entries.

If the journaled object is an integrated file
system object, then this field is the first 10
bytes of the file identifier.

77

Library name (JOLIB)

Char (10)

Specifies the name of the library containing
the object?.

If the journaled object is an integrated file
system object, then the first 6 characters
of this field are the last 6 bytes of the file
identifier.

Journal management 167

Offset

Field

Format

Description

87

Member name (JOMBR)

Char (10)

Specifies the name of the physical file
member or is blank if the object is not a
physical file.

97

Count/relative record
number (JOCTRR,
Count_Rel_Rec_Num)

Zoned (10,0)

Contains either the relative record number
(RRN) of the record that caused the journal
entry or a count that is pertinent to the
specific type of journal entry. The following
tables show specific values for this field, if
applicable:

« APYJRNCHG and RMVJRNCHG journal
entries

« Change end of data journal entry
« CHGJRN journal entries

« COMMIT journal entry

« INZPFM journal entry

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the count or relative
record number is larger than 9 999 999 999.

107

Indicator flag (JOFLAG,
Indicator_Flag)

Char (1)

Contains an indicator for the operation. The
following tables show specific values for this
field, if applicable:

« APYJRNCHG and RMVIRNCHG journal
entries

« COMMIT journal entry
« INZPFM journal entry
« IPL and in-use journal entries

« Journal code R (all journal entry types
except IL)

« ROLLBACK journal entry
« Start-journal journal entries

108

Commit cycle
identifier (JOCCID,
Commit_Cycle_Id)

Zoned (10,0)

Contains a number that identifies the commit
cycle. A commit cycle is from one commit or
rollback operation to another.

The commit cycle identifier is found in

every journal entry that is associated with a
commitment transaction. If the journal entry
was not made as part of a commitment
transaction, this field is zero.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the commit cycle
identifier is larger than 9 999 999 999.

168 IBM i: Journal management

Offset

Field

Format

Description

118

User profile (JOUSPF,
User_Profile)

Char (10)

Specifies the name of the user profile under
which the job was running when the entry was
created.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given for
the user profile.

128

System name (JOSYNM,
System_Name)

Char (8)

Specifies the name of the system on which the
entry is being displayed, printed, retrieved, or
received if the journal receiver was attached
prior to installing VAR2MO on the system.

If the journal receiver was attached while

the system was running V4R2MO or a later
release, the system name is the system where
the journal entry was actually deposited.

136

Incomplete data
(JOINCDAT,
Incomplete_Data)

Char (1)

Indicates whether this entry has data that is
not being retrieved for one of the following
reasons:

« The length of the entry-specific data
exceeds 32 766 bytes.

« The entry is associated with a database
file that has one or more fields of data
type BLOB (binary large object), CLOB
(character large object), or DBCLOB (double-
byte character large object).

The possible values are:

0 = This entry has all possible data
1 = This entry has incomplete data

Any data which is marked as incomplete,

can only be viewed by using either the
QjoRetrieveJournalEntries API, or the
command RCVIRNE with any of the following
parameters:

« ENTFMT(*TYPEPTR)
« ENTFMT(*JRNENTFMT)

« RTNPTR (with any value specified other than
*NONE)

137

Minimized entry specific
data (JOMINESD,
Min_ESD)

Char (1)

Indicates whether this entry has minimized
entry specific data.

The possible values are:

0 = This entry has complete entry specific
data.

1 = This entry has minimized entry specific
data.

2 = This entry has entry specific data that
has been minimized on field boundaries.

Journal management 169

Offset |Field Format Description

138 Reserved field (JORES) Char (18) Always contains zeros. Contains hexadecimal
zeros in the output file.

Note:

11f the journal receiver was attached prior to installing V4AR2MO on your system, then the following
items are true:

 If *ALLFILE is specified for the FILE parameter on the DSPJIRN, RCVIRNE, or RTVIRNE command, then
the fully qualified name is the most recent name of the file when the newest receiver in the receiver
range was the attached receiver and when the file was still being journaled.

- If afile name is specified or if library *ALL is specified on the FILE parameter, the current fully qualified
name of the file appears in the converted journal entry.

If the journal receiver was attached while VAR2MO or a later release was running on the system, the fully
qualified name is the name of the object at the time the journal entry was deposited.

*TYPE3 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE3 for the output file format or the entry type

format. The uppercase field names shown in parentheses are used in the system-supplied output file
QSYS/QADSPJR3. The field names that are in italics are the variable names for these fields in the
QjoRetrieveJdournalEntries API header file. These variables are under the type definition for the
RINE0100 format. The QjoRetrieveJournalEntries API headeris in the QJOURNAL.H file of the
QSYSINC library.

Offset |Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry
including the entry length field, all subsequent
positions of the journal entry, and any portion
of the journal entry that was truncated if the
length of the output record is less than the
length of the record created for the journal
entry.

If the journal entry has the incomplete data
indicator on, then this length does not include
that additional data which could be pointed
to. This length includes the length of the data
that is actually returned, which includes entry
specific data of up to 32 766 bytes.

6 Sequence number Zoned decimal Assigned by the system to each journal entry.
(JOSEQN, Seq_Number) (10,0) It is initially set to 1 for each new or restored
journal and is incremented until you request
that it be reset when you attach a new
receiver. There are occasional gaps in the
sequence numbers because the system uses
internal journal entries for control purposes.
These gaps occur if you use commitment
control, journal physical files, or journal
access paths.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the sequence number
is larger than 9 999 999 999.

170 IBM i: Journal management

Offset

Field

Format

Description

16

Journal code (JOCODE,
Jrn_Code)

Char (1)

Identifies the primary category of the journal
entry:

A = System accounting entry

B = Integrated file system operation
C = Commitment control operation
D = Database file operation

E = Data area operation

F = Database file member operation
I = Internal operation

J = Journal or receiver operation

L = License management

M = Network management data

P = Performance tuning entry

Q = Data queue operation

R = Operation on a specific record
S = Distributed mail services

T = Audit trail entry

U = User-generated entry (added by the
SNDJIRNE command or QJOSIRNE API)

The journal codes are described in more detail
in Journal code descriptions.

17

Entry type (JOENTT,
Entry _Type)

Char (2)

Further identifies the type of user-created or
system-created entry. See the Journal code
finder for descriptions of the entry types.

19

Time stamp (JOTMST,
Time_Stamp)

Char (26)

Corresponds to the system date and time
when the journal entry was added in the
journal receiver. The time stamp is in SAA
format. The system cannot assure that the
time stamp is always in ascending order for
sequential journal entries because you can
change the value of the system time.

45

Job name (JOJOB,
Job_Name) 1

Char (10)

Specifies the name of the job that added the
entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection
of this information, then *OMITTED is given
for the job name.

2. If the job name was not available when the

journal entry was deposited, then *NONE is
written for the job name.

55

User name (JOUSER,
User_Name)

Char (10)

Specifies the user profile name of the user
that started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then blanks are written for
the user name.

Journal management 171

Offset

Field

Format

Description

65

Job number (JONBR,
Job_Number)

Zoned (6,0)

Specifies the job number of the user that
started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then zeroes are written for
the job number.

71

Program name (JOPGM,
Program_Name)

Char (10)

Specifies the name of the program that added
the entry. If an application or CL program did
not add the entry, the field contains the name
of a system-supplied program such as QCMD
or QPGMMENU. If the program name is the
special value *NONE, then one of the following
is true:

« The program name does not apply to this
journal entry.

e The program name was not available when
the journal entry was made.

For example, the program name is not
available if the program was destroyed.

Notes:

1. If the program that deposited the journal
entry is an original program model
program, this data will be complete.
Otherwise, this data will be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, *OMITTED is given for the
program name.

81

Object name (JOOBJ,
Object)

Char (10)

Specifies the name of the object for which the
journal entry was added.? This is blank for
some entries.

If the journaled object is an integrated file
system object, then this field is the first 10
bytes of the file identifier.

91

Library name (JOLIB)

Char (10)

Specifies the name of the library containing
the object?.

If the journaled object is an integrated file
system object, then the first 6 characters
of this field are the last 6 bytes of the file
identifier.

101

Member name (JOMBR)

Char (10)

Specifies the name of the physical file
member or is blank if the object is not a
physical file.

172 IBM i: Journal management

Offset

Field

Format

Description

111

Count/relative record
number (JOCTRR,
Count_Rel_Rec_Num)

Zoned (10,0)

Contains either the relative record number
(RRN) of the record that caused the journal
entry or a count that is pertinent to the
specific type of journal entry.

« APYJRNCHG and RMVJRNCHG journal
entries

« Change end of data journal entry
« CHGJRN journal entries

- COMMIT journal entry

« INZPFM journal entry

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the count or relative
record number is larger than 9 999 999 999.

121

Indicator flag (JOFLAG,
Indicator_Flag)

Char (1)

Contains an indicator for the operation. The
following tables show specific values for this
field, if applicable:

« APYJRNCHG and RMVJRNCHG journal
entries

- COMMIT journal entry
« INZPFM journal entry
« IPL and in-use journal entries

« Journal code R (all journal entry types
except IL)

« ROLLBACK journal entry
« Start-journal journal entries

122

Commit cycle
identifier (JOCCID,
Commit_Cycle_Id)

Zoned (10,0)

Contains a number that identifies the commit
cycle. A commit cycle is from one commit or
rollback operation to another.

The commit cycle identifier is found in

every journal entry that is associated with a
commitment transaction. If the journal entry
was not made as part of a commitment
transaction, this field is zero.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the commit cycle
identifier is larger than 9 999 999 999.

132

User profile (JOUSPF,
User_Profile)

Char (10)

Specifies the name of the user profile under
which the job was running when the entry was
created.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given for
the user profile.

Journal management 173

Offset

Field

Format

Description

142

System name (JOSYNM,
System_Name)

Char (8)

Specifies the name of the system on which the
entry is being displayed, printed, retrieved, or
received if the journal receiver was attached
prior to installing VAR2MO on the system.

If the journal receiver was attached while

the system was running VAR2MO or a later
release, the system name is the system where
the journal entry was actually deposited.

150

Incomplete data
(JOINCDAT,
Incomplete_Data)

Char (1)

Indicates whether this entry has data that is
not being retrieved for one of the following
reasons:

« The length of the entry-specific data
exceeds 32 766 bytes.

- The entry is associated with a database
file that has one or more fields of data
type BLOB (binary large object), CLOB
(character large object), or DBCLOB (double-
byte character large object).

The possible values are:

0 = This entry has all possible data
1 = This entry has incomplete data.

Any data which is marked as incomplete,

can only be viewed by using either the
QjoRetrieveJournalEntries API, or the
command RCVIRNE with any of the following
parameters:

« ENTFMT(*TYPEPTR)
« ENTFMT(*JRNENTFMT)

« RTNPTR (with any value specified other than
*NONE)

151

Minimized entry specific
data (JOMINESD,
Min_ESD)

Char (1)

Indicates whether this entry has minimized
entry specific data.

The possible values are:

0 = This entry has complete entry specific
data.

1 = This entry has minimized entry specific
data.

2 = This entry has entry specific data that
has been minimized on field boundaries.

152

Reserved field (JORES)

Char (18)

Always contains zeros. Contains hexadecimal
zeros in the output file.

174 IBM i: Journal management

Offset |Field Format Description

Note:

11f the journal receiver was attached prior to installing V4R2MO on your system, then the following items
are true:

» If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVIRNE, or RTVIRNE command, then
the fully qualified name is the most recent name of the file when the newest receiver in the receiver
range was the attached receiver and when the file was still being journaled.

- If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully qualified
name of the file appears in the converted journal entry.

If the journal receiver was attached while VAR2MO or a later release was running on the system, the fully
qualified name is the name of the object at the time the journal entry was deposited.

*TYPEA4 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE4 for the output file format or the entry type format.
The uppercase field names shown in parentheses are used in the system-supplied output file QSYS/
QADSPIR4. The field names which are in italics are the variable names for these fields in the
QjoRetrieveJdournalEntries API header file. These variables are under the type definition for the
RINE0100 format. The QjoRetrieveJdournalEntries API headeris in the QJOURNAL.H file of the
QSYSINC library.

Offset |Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry
including the entry length field, all subsequent
positions of the journal entry, and any portion
of the journal entry that was truncated if the
length of the output record is less than the
length of the record created for the journal
entry.

If the journal entry has the incomplete data
indicator on, then this length does not include
that additional data which could be pointed
to. This length includes the length of the data
that is actually returned, which includes entry
specific data of up to 32 766 bytes.

6 Sequence number Zoned decimal Assigned by the system to each journal entry.
(JOSEQN, Seq_Number) (10,0) It is initially set to 1 for each new or restored
journal and is incremented until you request
that it be reset when you attach a new
receiver. There are occasional gaps in the
sequence numbers because the system uses
internal journal entries for control purposes.
These gaps occur if you use commitment
control, journal physical files, or journal
access paths.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the sequence number
is larger than 9 999 999 999.

Journal management 175

Offset

Field

Format

Description

16

Journal code (JOCODE,
Jrn_Code)

Char (1)

Identifies the primary category of the journal
entry:

A = System accounting entry

B = Integrated file system operation
C = Commitment control operation
D = Database file operation

E = Data area operation

F = Database file member operation
I = Internal operation

J = Journal or receiver operation

L = License management

M = Network management data

P = Performance tuning entry

Q = Data queue operation

R = Operation on a specific record
S = Distributed mail services

T = Audit trail entry

U = User-generated entry (added by the
SNDJIRNE command or QJOSIRNE API)

The journal codes are described in more detail
in Journal code descriptions.

17

Entry type (JOENTT,
Entry _Type)

Char (2)

Further identifies the type of user-created or
system-created entry. See the Journal code
finder for descriptions of the entry types.

19

Time stamp (JOTMST,
Time_Stamp)

Char (26)

Corresponds to the system date and time
when the journal entry was added in the
journal receiver. The time stamp is in SAA
format. The system cannot assure that the
time stamp is always in ascending order for
sequential journal entries because you can
change the value of the system time.

45

Job name (JOJOB,
Job_Name) 1

Char (10)

Specifies the name of the job that added the
entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection
of this information, then *OMITTED is given
for the job name.

2. If the job name was not available when the

journal entry was deposited, then *NONE is
written for the job name.

55

User name (JOUSER,
User_Name)

Char (10)

Specifies the user profile name of the user
that started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then blanks are written for
the user name.

176 IBM i: Journal management

Offset

Field

Format

Description

65

Job number (JONBR,
Job_Number)

Zoned (6,0)

Specifies the job number of the user that
started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then zeroes are written for
the job number.

71

Program name (JOPGM,
Program_Name)

Char (10)

Specifies the name of the program that added
the entry. If an application or CL program did
not add the entry, the field contains the name
of a system-supplied program such as QCMD
or QPGMMENU. If the program name is the
special value *NONE, then one of the following
is true:

« The program name does not apply to this
journal entry.

e The program name was not available when
the journal entry was made.

For example, the program name is not
available if the program was destroyed.

Notes:

1. If the program that deposited the journal
entry is an original program model
program, this data will be complete.
Otherwise, this data will be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, *OMITTED is given for the
program name.

81

Object name (JOOBJ,
Object)

Char (10)

Specifies the name of the object for which the
journal entry was added.? This is blank for
some entries.

If the journaled object is an integrated file
system object, then this field is the first 10
bytes of the file identifier.

91

Library name (JOLIB)

Char (10)

Specifies the name of the library containing
the object?.

If the journaled object is an integrated file
system object, then the first 6 characters
of this field are the last 6 bytes of the file
identifier.

101

Member name (JOMBR)

Char (10)

Specifies the name of the physical file
member or is blank if the object is not a
physical file.

Journal management 177

Offset

Field

Format

Description

111

Count/relative record
number (JOCTRR,
Count_Rel_Rec_Num)

Zoned (10,0)

Contains either the relative record number
(RRN) of the record that caused the journal
entry or a count that is pertinent to the
specific type of journal entry.

« APYJRNCHG and RMVJRNCHG journal
entries

« Change end of data journal entry
« CHGJRN journal entries

- COMMIT journal entry

« INZPFM journal entry

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the count or relative
record number is larger than 9 999 999 999.

121

Indicator flag (JOFLAG,
Indicator_Flag)

Char (1)

Contains an indicator for the operation. The
following tables show specific values for this
field, if applicable:

« APYJRNCHG and RMVJRNCHG journal
entries

- COMMIT journal entry
« INZPFM journal entry
« IPL and in-use journal entries

« Journal code R (all journal entry types
except IL)

« ROLLBACK journal entry
« Start-journal journal entries

122

Commit cycle
identifier (JOCCID,
Commit_Cycle_Id)

Zoned (10,0)

Contains a number that identifies the commit
cycle. A commit cycle is from one commit or
rollback operation to another.

The commit cycle identifier is found in

every journal entry that is associated with a
commitment transaction. If the journal entry
was not made as part of a commitment
transaction, this field is zero.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the commit cycle
identifier is larger than 9 999 999 999.

132

User profile (JOUSPF,
User_Profile)

Char (10)

Specifies the name of the user profile under
which the job was running when the entry was
created.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given for
the user profile.

178 IBM i: Journal management

Offset

Field

Format

Description

142

System name (JOSYNM,
System_Name)

Char (8)

Specifies the name of the system on which the
entry is being displayed, printed, retrieved, or
received if the journal receiver was attached
prior to installing VAR2MO on the system.

If the journal receiver was attached while

the system was running VAR2MO or a later
release, the system name is the system where
the journal entry was actually deposited.

150

Journal identifier (JOJID,
Jid)

Char(10)

Specifies the journal identifier (JID) for the
object. When journaling is started for an
object, the system assigns a unique JID to
that object. The JID remains constant even

if the object is renamed or moved. However,
if journaling is stopped, there is no guarantee
that the JID will be the same if journaling is
started again for the same object.

If no JID is associated with the entry, this field
has hexadecimal zeros.

160

Referential
constraint (JORCST,
Referential_Constraint)

Char(1)

Indicates whether this entry was recorded for
actions that occurred on records that are part
of a referential constraint.

The possible values are:

0 = This entry was not created as part of a
referential constraint.

1 = This entry was created as part of a
referential constraint.

161

Trigger (JOTGR, Trigger)

Char(1)

Indicates whether this entry was created as
result of a trigger program.

The possible values are:

0 = This entry was not created as the result
of a trigger program.

1 = This entry was created as the result of
a trigger program.

Journal management 179

Offset

Field

Format

Description

162

Incomplete data
(JOINCDAT,
Incomplete_Data)

Char (1)

Indicates whether this entry has data that is
not being retrieved for one of the following
reasons:

« The length of the entry-specific data
exceeds 32 766 hytes.

« The entry is associated with a database
file that has one or more fields of data
type BLOB (binary large object), CLOB
(character large object), or DBCLOB (double-
byte character large object).

The possible values are:

0 = This entry has all possible data.

1 = This entry has incomplete data.
Any data which is marked as incomplete,
can only be viewed by using either the
QjoRetrieveJournalEntries API, or the

command RCVIRNE with any of the following
parameters:

« ENTFMT(*TYPEPTR)
« ENTFMT(*JRNENTFMT)

« RTNPTR (with any value specified other than
*NONE)

163

Ignored by APYJRNCHG
or RMVIRNCHG (JOIGNAPY,
Ignore_during_APYRMYV)

Char (1)

Indicates whether this journal entry will be
ignored by the execution of the APYIRNCHG or
RMVIRNCHG commands, even though normally
this journal entry type has an effect during
those command invocations.

The possible values are:

0 = This entry is not ignored by the
APYJRNCHG or RMVIRNCHG commands.

1 = This entry is ignored by the APYJRNCHG
or RMVIRNCHG commands.

164

Minimized entry specific
data (JOMINESD,
Min_ESD)

Char (1)

Indicates whether this entry has minimized
entry specific data.

The possible values are:

0 = This entry has complete entry specific
data.

1 = This entry has minimized entry specific
data.

2 = This entry has entry specific data that
has been minimized on field boundaries.

165

Reserved area (JORES)

Char (5)

Always contains zeros. Contains hexadecimal
zeros in the output file.

180 IBM i: Journal management

Offset

Field

Format

Description

Note: 1If the journal receiver was attached prior to installing V4R2MO on your system, then the following
items are true:

» If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVIRNE, or RTVIRNE command, then
the fully qualified name is the most recent name of the file when the newest receiver in the receiver
range was the attached receiver and when the file was still being journaled.

- If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully qualified
name of the file appears in the converted journal entry.

If the journal receiver was attached while VAR2MO or a later release was running on the system, the fully
qualified name is the name of the object at the time the journal entry was deposited.

*TYPES field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPES for the output file format or the entry type

format. The uppercase field names shown in parentheses are used in the system-supplied output

file QSYS/QADSPIR5. The field names that are italics are the variable names for these fields in the
QjoRetrieveJdournalEntries API header file. These variables are under the type definition for the
RINEO200 format. The QjoRetrieveJdournalEntries API headeris in the QJOURNAL.H file of the
QSYSINC library.

Offset

Field

Format

Description

1

Entry length (JOENTL)

Zoned (5,0)

Specifies the length of the journal entry
including the entry length field, all subsequent
positions of the journal entry, and any portion
of the journal entry that was truncated if the
length of the output record is less than the
length of the record created for the journal
entry.

If the journal entry has the incomplete data
indicator on, then this length does not include
that additional data which could be pointed
to. This length includes the length of the data
that is actually returned, which includes entry
specific data of up to 32 766 bytes.

Sequence number
(JOSEQN, Seq_Number)

Char (20)

Assigned by the system to each journal entry.
It is initially set to 1 for each new or restored
journal and is incremented until you request
that it be reset when you attach a new
receiver. There are occasional gaps in the
sequence numbers because the system uses
internal journal entries for control purposes.
These gaps occur if you use commitment
control, journal physical files, or journal
access paths.

Journal management 181

Offset

Field

Format

Description

26

Journal code (JOCODE,
Jrn_Code)

Char (1)

Identifies the primary category of the journal
entry:

A = System accounting entry

B = Integrated file system operation

C = Commitment control operation

D = Database file operation

E = Data area operation

F = Database file member operation

I = Internal operation

J = Journal or receiver operation

L = License management

M = Network management data

P = Performance tuning entry

Q = Data queue operation

R = Operation on a specific record

S = Distributed mail services

T = Audit trail entry

U = User-generated entry (added by the
SNDJIRNE command or QJOSIRNE API)

The journal codes are described in more detail
in Journal code descriptions.

27

Journal entry type
(JOENTT, Entry_Type)

Char (2)

Further identifies the type of user-created or
system-created entry. See the Journal code
finder for descriptions of the entry types.

29

Time stamp (JOTSTP)

Char (26)

Corresponds to the system date and time
when the journal entry was added in the
journal receiver. The time stamp is in SAA
format. The system cannot assure that the
time stamp is always in ascending order for
sequential journal entries because you can
change the value of the system time.

55

Job name (JOJOB,
Job_Name)

Char (10)

Specifies the name of the job that added the
entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection
of this information, then *OMITTED is given
for the job name.

2. If the job name was not available when the
journal entry was deposited, then *NONE is
written for the job name.

65

User name (JOUSER,
User_Name)

Char (10)

Specifies the user profile name of the user
that started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then blanks are written for
the user name.

182 IBM i: Journal management

Offset

Field

Format

Description

75

Job number (JONBR,
Job_Number)

Zoned (6, 0)

Specifies the job number of the user that
started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then zeroes are written for
the job number.

81

Program name (JOPGM,
Program_Name)

Char (10)

Specifies the name of the program that added
the entry. If an application or CL program did
not add the entry, the field contains the name
of a system-supplied program such as QCMD
or QPGMMENU. If the program name is the
special value *NONE, then one of the following
is true:

« The program name does not apply to this
journal entry.

e The program name was not available when
the journal entry was made.

For example, the program name is not
available if the program was destroyed.

Notes:

1. If the program that deposited the journal
entry is an original program model
program, this data will be complete.
Otherwise, this data will be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, *OMITTED is given for the
program name.

91

Program library
name (JOPGMLIB,
Program_Library_Name)

Char (10)

The name of the library that contains

the program that added the library. If a
RCVSIZOPT or a FIXLENDTA option was
specified that omitted the collection of this
information, then *OMITTED will be returned
for the program library name.

IF *NONE is returned for Program name, then
*NONE is also returned for the program library
name.

101

Program library ASP device
name (JOPGMDEYV,
Program_ASP_Device_Nam
e)

Char (10)

The name of the ASP device that contains

the program. If a RCVSIZOPT or a FIXLENDTA
option was specified that omitted the
collection of this information, then *OMITTED
will be returned for the program library ASP
device name.

IF *NONE is returned for Program name, then
*NONE is also returned for the program library
ASP device name.

Journal management 183

Offset

Field

Format

Description

111

Program library ASP
number (JOPGMASP,
Program_ASP)

Zoned (5,0)

The number for the auxiliary storage pool that
contains the program that added the journal
entry. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then hexadecimal O will be
returned for the program library ASP number.

116

Object name (JOOBJ,
Object)

Char (10)

Specifies the name of the object for which the
journal entry was added.? This is blank for
some entries.

If the journaled object is an integrated file
system object, then this field is the first 10
bytes of the file identifier.

126

Object library (JOLIB)

Char (10)

Specifies the name of the library containing
the object?.

If the journaled object is an integrated file
system object, then the first 6 characters
of this field are the last 6 bytes of the file
identifier.

136

Member name (JOMBR)

Char (10)

Specifies the name of the physical file
member or is blank if the object is not a
physical filel.

146

Count or relative
record number (JOCTRR,
Count_Rel_Rec_Num)

Char (20)

Contains either the relative record number
(RRN) of the record that caused the journal
entry or a count that is pertinent to type of
journal entry.

166

Indicator flag (JOFLAG,
Indicator_Flag)

Char (1)

Contains an indicator for the operation. The
following tables show specific values for this
field, if applicable:

« APYJRNCHG and RMVJRNCHG journal
entries

« COMMIT journal entry
« INZPFM journal entry
« IPL and in-use journal entries

« Journal code R (all journal entry types
except IL)

« ROLLBACK journal entry
« Start-journal journal entries

167

Commit control
ID (JOCCID,
Commit_Cycle_Identifier)

Char (20)

Contains a number that identifies the commit
cycle. A commit cycle is from one commit or
rollback operation to another.

The commit cycle identifier is found in

every journal entry that is associated with a
commitment transaction. If the journal entry
was not made as part of a commitment
transaction, this field is zero.

184 IBM i: Journal management

Offset

Field

Format

Description

187

User profile (JOUSPF,
User_profile)

Char (10)

Specifies the name of the user profile under
which the job was running when the entry was
created.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given for
the user profile.

197

System name (JOSYNM,
System_Name)

Char (8)

Specifies the name of the system on which the
entry is being displayed, printed, retrieved, or
received if the journal receiver was attached
prior to installing VAR2MO on the system.

If the journal eceiver was attached while

the system was running V4AR2MO or a later
release, the system name is the system where
the journal entry was actually deposited.

205

Journal identifier (JOJID,
Jid)

Char (10)

Specifies the journal identifier (JID) for the
object. When journaling is started for an
object, the system assigns a unique JID to
that object. The JID remains constant even

if the object is renamed or moved. However,
if journaling is stopped, there is no guarantee
that the JID will be the same if journaling is
started again for the same object.

If no JID is associated with the entry, this field
has hexadecimal zeros.

215

Referential
constraint (JORCST,
Referential_Constraint)

Char (1)

Indicates whether this entry was recorded for
actions that occurred on records that are part
of a referential constraint.

The possible values are:

0 = This entry was not created as part of a
referential constraint.

1 =This entry was created as part of a
referential constraint.

216

Trigger (JOTGR, Trigger)

Char (1)

Indicates whether this entry was created as
result of a trigger program.

The possible values are:

0 = This entry was not created as the
result of a trigger program.

1 =This entry was created as the result of
a trigger program.

Journal management 185

Offset

Field

Format

Description

217

Incomplete data
(JOINCDAT,
Incomplete_Data)

Char (1)

Indicates whether this entry has data that is
not being retrieved for one of the following
reasons:

« The length of the entry-specific data
exceeds 32 766 hytes.

« The entry is associated with a database
file that has one or more fields of data
type BLOB (binary large object), CLOB
(character large object), or DBCLOB (double-
byte character large object).

The possible values are:

0 = This entry has all possible data

1 = This entry has incomplete data.
Any data which is marked as incomplete,
can only be viewed by using either the
QjoRetrieveJournalEntries API, or the

command RCVIRNE with any of the following
parameters:

« ENTFMT(*TYPEPTR)
« ENTFMT(*JRNENTFMT)

« RTNPTR (with any value specified other than
*NONE)

218

Ignored by APYJRNCHG
or RMVIRNCHG (JOIGNAPY,
Ignore_during_APYRMYV)

Char (1)

Indicates whether this journal entry will be
ignored by the execution of the APYJRNCHG
or RMVIRNCHG commands, even though
normally this journal entry type has an effect
during those command invocations.

The possible values are:

0 = This entry is not ignored by the
APYJRNCHG or RMVIRNCHG commands.

1 = This entry is ignhored by the APYJRNCHG
or RMVIRNCHG commands.

219

Minimized entry-specific
data (JOMINESD,
Min_ESD)

Char (1)

Indicates whether this entry has minimized
entry specific data.

The possible values are:

0 = This entry has complete entry specific
data.

1 = This entry has minimized entry specific
data.

2 = This entry has entry specific data that
has been minimized on field boundaries.

186 IBM i: Journal management

Offset |Field Format Description

220 Object indicator Char (1) An indicator with respect to the information in
(JOOBJIND, the object field2. The valid values are:
Object_Name_Indicator) 0 = Either the journal entry has no object

information or the object information in the
journal entry header does not necessarily
reflect the name of the object at the time
the journal entry was deposited into the
journal.

1 = The object information in the journal
entry header reflects the name of the
object at the time the journal entry was
deposited into the journal.

2 = The object information in the journal
entry header does not necessarily reflect
the name of the object at the time

the journal entry was deposited into the
journal. The object information may be
returned as a previously known name for
the object prior to the journal entry being
deposited into the journal or be returned as
*UNKNOWN.

221 System sequence number | Char (20) The system sequence number indicates the
(JOSYSSEQ, relative sequence of when this journal entry
System_Sequence_Number was deposited into the journal. You can
) use the sequence number to sequentially

order journal entries that are in separate
journal receivers. If a RCVSIZOPT or a
FIXLENDTA option was specified that omitted
the collection of this information, then
hexadecimal O will be returned for the system
sequence number.

241 Receiver name (JORCV) Char (10) The name assigned to the journal receiver

251 Receiver library name Char (10) The name of the library in which the journal
(JORCVLIB) receiver resides.

261 Receiver library ASP device | Char (10) The name of the ASP device for journal
name (JORCVDEV) receivers that reside on an independent disk

pool

271 Receiver library ASP Zoned (5,0) The number of the ASP on which the journal
number (JORCVASP) receiver resides.

276 Arm number (JOARM, Zoned (5,0) The number of the disk arm that contains the
Arm_Number) journal entry.

281 Thread identifier (JOTHDX, | Hexadecimal (8) |Identifies the thread within the process that
Thread_ID) added the journal entry. If a RCVSIZOPT

or a FIXLENDTA option was specified that
omitted the collection of this information, then
hexadecimal O will be returned for the thread
identifier.

289 Thread identifier formatted | Char (16) See Thread identifier.

(JOTHD)

Journal management 187

Offset

Field

Format

Description

305

Address family (JOADF,
Address_Family)

Char (1)

The address family identifies the format of
the remote address for this journal entry. If
a RCVSIZOPT or a FIXLENDTA option was
specified that omitted the collection of this
information, then O will be returned for the
address family.

The possible values are:

0 = This entry was not associated with any
remote address.

4 = The format of the remote address is
Internet protocol version 4.

6 = The format of the remote address is
Internet protocol version 6.

306

Remote port (JORPORT)

Zoned (5, 0)

The remote port of a the journal entries.

If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of
this information, then hexadecimal 0 will be
returned for the remote port.

311

Remote address (JORADR)

Char (46)

The remote address of a the journal entries.
If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of
this information, then hexadecimal O will be
returned for the remote address.

357

Logical unit of work
(JoLuw)

Char (39)

The logical unit of work identifies entries to be
associated with a given unit of work, usually
within a commit cycle. If a RCVSIZOPT or a
FIXLENDTA option was specified that omitted
the collection of this information, then blanks
will be returned for the logical unit of work.

396

Transaction identifier
(JOXID)

Char (140)

See the QSYSINC/H.XA header file for the
layout of this data. If a RCVSIZOPT or a
FIXLENDTA option was specified that omitted
the collection of this information, then the
displacement to the transaction identifieris O
and no transaction identifier is returned.

536

Object type (JOOBJTYP)

Char (7)

The type of object associated with this entry.
(*FILE, *DTAARA, etc)

543

File type indicator
(JOFILTYP)

Char (1)

The type of object associated with this entry.
('0'is physical, '1"is logical)

544

Nested commit level
(JOCMTLVL)

Char (7)

The nested transaction level at which this
entry was deposited.

551

Reserved

Char (5)

Reserved area. It always contains
hexadecimal zeros.

188 IBM i: Journal management

Offset |Field Format Description

Notes:

11f the journal receiver was attached prior to installing V4R2MO on your system, then the following items
are true:

» If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVIRNE, or RTVIRNE command, then
the fully qualified name is the most recent name of the file when the newest receiver in the receiver
range was the attached receiver and when the file was still being journaled.

- If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully qualified
name of the file appears in the converted journal entry.

If the journal receiver was attached while VAR2MO or a later release was running on the system, the fully
qualified name is the name of the object at the time the journal entry was deposited.

2This value will be returned only when retrieving journal entries from a remote journal and the remote
journal is currently being caught up from its source journal. A remote journal is being caught up from

its source journal when the Change Remote Journal (CHGRMTJIRN) command or Change Journal
State (QjoChangeJournalState) APIis called and is currently replicating journal entries to the
remote journal. After the call to the CHGRMTIRN command or QjoChangeJournalState API returns,
the remote journal is maintained with a synchronous or asynchronous delivery mode, and the remote
journal is no longer being caught up.

Related concepts

Journal code descriptions
This topic provides a description of all of the journal codes and categories.

Related information
Journal entry information finder

Variable-length portion of the journal entry
This topic provides the layouts of the variable-length portion of the journal entries.

For output formats *TYPEL and *TYPE2, the variable length portion of the journal entry includes just

the Entry-specific data field. The contents of the Entry-specific data field depends on the journal

entry code and entry type. For the layout of the output format *TYPEPTR or *JRNENTFMT, see the
QjoRetrieveJournalEntries API. For all other output formats, the variable-length portion of the converted
journal entry potentially has two fields:

* Null value indicators
« Entry-specific data

The Null Value Indicators field, contains relevant information only for entries with journal code R. Null
value indicators are present in journal entries for record level operations as follows:

« The corresponding physical file has null capable fields.
« The record image has been minimized in the entry specific data.

Otherwise, it contains blanks. If the record image has not been minimized in the entry specific data, the
Null Value Indicators field is a character string with one character for each field in the physical file that
has record images appearing in the journal. Each character has the following interpretation:

« 0 = corresponding field in the record is not NULL.
« 1 = corresponding field in the record is NULL.

If the record image was minimized on field boundaries (MINENTDTA(*FLDBDY), and it has been formatted
when reading (FMTMINDTA(*YES)) then each character has the following interpretation:

« 0 =The corresponding field was recorded and is not NULL.
« 1 =The corresponding field was recorded and is NULL.

Journal management 189

« 9 =The corresponding field was not recorded and it's default value was returned.

System-supplied output files

The following system-supplied output files define the Null Value Indicators and Entry-Specific Data fields
as variable-length character fields:

« QSYS/QADSPIR3
« QSYS/QADSPIR4
« QSYS/QADSPIR5

For additional details regarding the *TYPE3, *TYPE4, and *TYPES5 formats and the exact layout of these
two fields, see the following commands:

« Display Journal (DSPJRN)
« Receive Journal Entry (RCVIRNE)
« Retrieve journal entry (RTVIRNE)

Layouts for journal entry types

Use the Journal entry information finder to find the layout for the variable-length portion of the journal
entry. Some one journal entry types are described in other places than this topic. The Journal entry
information finder indicates those journal entries.

Some journal entry types are documented in QSYSINC library includes, as indicated in the Journal code
finder. Some entry types do not have entry-specific data.

These layouts include specific values for fields in the fixed-length portion of the entry and the fields in the
entry-specific portion of the entry. The offsets show the relative offset within the Entry-specific data field.
The beginning position of the Entry-specific data field depends on the format type that you specify. You
can also use the Journal entry information finder to see these layouts.

Related reference

Retrieve Journal Entries (QjoRetrieveJournalEntries) API
Display Journal (DSPJRN) command

Receive Journal Entry (RCVIJRNE) command

Retrieve journal entry (RTVIRNE) command

Layouts for variable-length portion of journal entries

The following tables contain the variable-length portion of the layouts for journal entries.

Allow use with partial transactions (F MO) journal entry

Relative | Field Format Description

offset

Entry-specific data. This data appears as one field in the standard output formats:

1 Reason code Char (1) 01 = Partial transactions exist due to restore.
02 = Partial transactions exist because a
rollback was ended early.

2 Reserved Char (3) Reserved. Set to zeros.

5 Number commit IDs Bin (32) The number of commit identifiers.

9 Reserved Char (72) Reserved. Set to zeros.

190 IBM i: Journal management

Relative | Field Format Description
offset
81 Commit IDs Bin (64) [*] The array of commit cycle identifiers for partial

transactions that remain in the object.

APYJRNCHG (B AT, D DD, E EQ, F AY, Q QH, Y YH) and RMVJIRNCHG (E EX, F RC)
journal entries

Relative
offset

Field

Format

Description

Specific values for this entry type:

Count or Relative Record
Number (JOCTRR)

Zoned (10,0)

Contains the number of journal entries applied or
removed. For *TYPES output files, the format of
this field is Char (20).

Flag (JOFLAG)

Char (1)

The results of the apply or remove operation:

0 = Command completed normally.
1 = Command completed abnormally.

Entry-specific data. This data appears as one field in the standard output formats:

1

First entry applied or
removed

Zoned (10,0)

The sequence number of the first entry actually
applied or removed. This field is set to -1 if the
actual value is larger than 9 999 999 999. See
the First entry applied or removed--large field for
the actual value.

11

Last entry applied or
removed.

Zoned (10,0)

The sequence number of the last entry actually
applied or removed. This field is set to -1 if the
actual va