
IBM i
7.4

Database
Geospatial Analytics

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
83.

This edition applies to IBM i 7.4 (product number 5770-SS1) and to all subsequent releases and modifications until
otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor
does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 2022, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Geospatial Analytics..1
What's new for IBM i 7.4..1
PDF file for Geospatial Analytics... 2
The nature of geospatial data.. 2

Geodetic data... 3
Geographic features, geospatial information, geospatial data, and geometries..................................3
Representing geographic features in a table .. 4

Key concepts.. 5
Geometries... 5

Geometry coordinates.. 7
Simple and non-simple geometries... 7
Empty geometries... 7
Interior, boundary, and exterior..7
Minimum bounding rectangle...8

Coordinate systems.. 8
Geographic coordinate systems... 8
Coordinate system syntax.. 11
Supported coordinate system units... 11

Spatial reference system..12
Geohashes and geohash covers.. 13
WKT and WKB data formats...14

Well-known text (WKT) format...14
Well-known binary (WKB) format...16

Working with geospatial data.. 17
Geospatial data types.. 17

Data types for single-unit features...18
Data types for multi-unit features.. 20
Data types for all features.. 21

Create a table with a geospatial column... 22
Alter a table to contain a geospatial column... 22
Populating geospatial columns..22
Returning geospatial data in well-known formats.. 23
Using geospatial functions... 24
Working with geospatial data in embedded SQL programs.. 25

Performance tuning... 25
Filtering...25

Filtering using a geohash cover.. 26
Filtering using a minimum bounding rectangle..28

Examples of filtering using a geohash... 30
Best practices and considerations.. 33
Geospatial functions..34

ST_AREA scalar function..37
ST_ASBINARY scalar function... 38
ST_ASTEXT scalar function.. 38
ST_BUFFER scalar function..39
ST_CONTAINS scalar function..40
ST_COVERS scalar function..42
ST_CROSSES scalar function..43
ST_DIFFERENCE scalar function... 44
ST_DISJOINT scalar function.. 44
ST_DISTANCE scalar function..45

 iii

ST_EQUALS scalar function..46
ST_FUZZYGEOHASHCOVER table function... 47
ST_FUZZYGEOHASHCOVEREXTEND table function..48
ST_GEOHASH table function.. 51
ST_GEOHASHCOVER table function.. 52
ST_GEOHASHCOVEREXTEND table function...53
ST_GEOHASHVALUE scalar function..56
ST_GEOMCOLLECTION scalar function... 57
ST_GEOMETRY scalar function.. 57
ST_GEOMETRYTYPE scalar function..58
ST_INTERSECTION scalar function... 59
ST_INTERSECTS scalar function..60
ST_ISSIMPLE scalar function...61
ST_ISVALID scalar function... 62
ST_LINESTRING scalar function..62
ST_MAXX scalar function... 63
ST_MAXY scalar function... 63
ST_MINX scalar function..64
ST_MINY scalar function..65
ST_MULTILINESTRING scalar function... 65
ST_MULTIPOINT scalar function..66
ST_MULTIPOLYGON scalar function.. 67
ST_NUMPOINTS scalar function.. 67
ST_OVERLAPS scalar function... 68
ST_POINT scalar function.. 68
ST_POLYGON scalar function...69
ST_SRSID scalar function...70
ST_SRSNAME scalar function...70
ST_SYMDIFFERENCE scalar function.. 71
ST_TOLINESTRING scalar function..72
ST_TOMULTILINE scalar function.. 72
ST_TOMULTIPOINT scalar function... 73
ST_TOMULTIPOLYGON scalar function.. 74
ST_TOPOINT scalar function..74
ST_TOPOLYGON scalar function...75
ST_TOUCHES scalar function... 76
ST_UNION scalar function..77
ST_WITHIN scalar function..77
ST_WKBTOSQL scalar function.. 78
ST_WKTTOSQL scalar function.. 79

Geospatial Analytics catalog views... 79
ST_COORDINATE_SYSTEMS catalog view... 79
ST_GEOMETRY_COLUMNS catalog view.. 80
ST_SPATIAL_REFERENCE_SYSTEMS catalog view... 80

Notices..83
Programming interface information.. 84
Trademarks.. 84
Terms and conditions...84

iv

Geospatial Analytics
The Db2® for IBM® i database provides support for geospatial data and functions. The geospatial
functions, with IBM Watson, adds industry-leading technology in the form of Geospatial Analytics in
Db2 for i. Geospatial Analytics is integrated into Db2 for i. These analytic functions include projection-
free ellipsoidal support and native geohashes, allowing you to use SQL to leverage Watson Geospatial
technology.

Geospatial Analytics can be used to generate and analyze geospatial information about geographic
features and to store and manage the data on which that information is based. A geographic feature
is anything in the real world that has an identifiable location. Examples of features are:

• An object, such as a river, forest, or mountain range.
• A space such as a safety zone around a hazardous site or the marketing area serviced by a particular

business.
• The location of an event, for example, an auto accident that occurred at a particular intersection, or a

sales transaction at a specific store.

Geospatial information refers to facts and figures about the locations of geographic features that the
database makes available to its users. Examples of geospatial information are:

• Locations of geographic features on a map, for example, the longitude and latitude of a city.
• The location of geographic features with respect to one another, for example, the location of all

hospitals and clinics within a city or the proximity of city residents to a particular earthquake zone.
• Ways in which geographic features are related to each other, for example, information that a certain

watershed or bridge is contained within a specific region.
• Measurements that apply to one or more geographic features, for example, the distance between an
office building and its lot line, or the length of the perimeter of a wildlife preserve.

Geospatial information, either by itself or in combination with traditional relational data, can help
institutions and businesses make decisions on things like choosing areas to provide services or
determining the locations of possible markets. For example, suppose the owner of a restaurant chain
wants to open new restaurants in nearby cities, and needs to answer to such questions as: Where in these
cities are concentrations of the types of people who typically frequent restaurants like mine? Where are
the major highways? Where are competing restaurants located? The analysis of geospatial data can help
to answer these questions.

What's new for IBM i 7.4
This section highlights the changes made to this topic for IBM® i 7.4.

What's new as of May 2023
“ST_GEOHASHVALUE scalar function” on page 56 scalar function was added.

What's new as of December 2022
This topic is new.

How to see what's new or changed
To help you see where technical changes have been made, the information center uses:

• The image to mark where new or changed information begins.
• The image to mark where new or changed information ends.

In PDF files, you might see revision bars (|) in the left margin of new and changed information.

© Copyright IBM Corp. 2022, 2022 1

To find other information about what's new or changed this release, see the Memo to users.

PDF file for Geospatial Analytics
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select Geospatial Analytics.

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader
You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (http://get.adobe.com/reader/) .

Code license and disclaimer information
IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS PROGRAM
DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR
TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF
THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT
APPLY TO YOU.

The nature of geospatial data
Geospatial data is made up of coordinates that identify a location. Geospatial Analytics works with
two-dimensional coordinates specified by x and y or longitude and latitude values.

A coordinate is a number that denotes either:

• A position along an axis relative to an origin, given a unit of length.
• A direction relative to a base line or plane, given a unit of angular measure.

Latitude is a coordinate that denotes an angle relative to the equatorial plane, usually in degrees.
Longitude is a coordinate that denotes an angle relative to the Greenwich meridian, also usually in
degrees. Thus, on a map, the position of Yellowstone National Park is defined by latitude 44.45 degrees

2 IBM i: Geospatial Analytics

http://get.adobe.com/reader/

north of the equator and longitude 110.40 degrees west of the Greenwich meridian. These coordinates
reference the center of Yellowstone National Park in the USA.

The definitions of latitude and longitude, their points, lines, and planes of reference, units of measure,
and other associated parameters are referred to collectively as a coordinate system. Coordinate systems
can be based on values other than latitude and longitude. These coordinate systems have their own
points, lines, and planes of reference, units of measure, and additional associated parameters (such as
the projection transformation).

The simplest geospatial data item consists of a single coordinate pair that defines the position of a single
geographic location. A more extensive geospatial data item consists of several coordinates that define a
linear path that a road or river might form. A third kind consists of coordinates that define the boundary of
an area; for example, the boundary of a land parcel or flood plain.

Each geospatial data item is an instance of a geospatial data type. The data type for coordinates that mark
a single location is ST_POINT; the data type for coordinates that define a linear path is ST_LINESTRING;
and the data type for coordinates that define the boundary of an area is ST_POLYGON. These types,
together with the other geospatial data types, are structured types that belong to a single hierarchy.

Geodetic data
Geodetic data is geospatial data that is expressed in latitude and longitude coordinates, using a
coordinate system that describes a round, continuous, closed surface.

Geospatial Analytics uses geodetic data which treats the earth as a globe that has no edges or seams
at the poles or the dateline. When the earth is treated as flat map, it requires projected coordinates to
transform spherical coordinates to planar coordinates. Geodetic data, which treats the earth as a globe,
uses latitude and longitude on an ellipsoidal model of the Earth's surface. Calculations such as line
intersection, area overlap, distance, and area, are accurate and precise, regardless of location.

Geographic features, geospatial information, geospatial data, and
geometries

Some basic concepts underlie the operations of Geospatial Analytics including geographic features,
geospatial information, geospatial data, and geometries.

Geospatial Analytics lets you obtain facts and figures that pertain to things that can be defined
geographically - that is, in terms of their location on earth, or within a region of the earth. These facts and
figures are referred to as geospatial information, and the things as geographic features, or features for
short.

For example, you could use Geospatial Analytics to determine whether any populated areas overlap the
proposed site for a landfill. The populated areas and the proposed site are both features. A finding as to
whether any overlap exists is an example of geospatial information. If overlap exists, the extent of overlap
is another example of geospatial information.

To produce geospatial information, Geospatial Analytics must process data that defines the locations of
features. Such data, called geospatial data, consists of coordinates that reference the locations on a
map or similar projection. For example, to determine whether one feature overlaps another, Geospatial
Analytics must determine where the coordinates of one of the features are situated with respect to the
coordinates of the other.

In the world of geospatial information technology, it is common to think of features as being represented
by symbols called geometries. Geometries are partly visual and partly mathematical. Consider their
visual aspect. The symbol for a feature that has width and breadth, such as a park or town, is a multisided
figure. Such a geometry is called a polygon. The symbol for a linear feature, such as a river or a road, is a
line. Such a geometry is called a linestring.

A geometry has properties that correspond to facts about the feature that it represents. Most of these
properties can be expressed mathematically. For example, the coordinates for a feature collectively
constitute one of the properties of the feature's corresponding geometry. Another property, called
dimension, is a numeric value that indicates whether a feature has length or breadth.

Geospatial Analytics 3

Geospatial data and certain geospatial information can be viewed in terms of geometries. Consider the
prior example of the populated areas and the proposed landfill site. The geospatial data for the populated
areas includes coordinates stored in a column of a table in a database. The convention is to regard what
is stored not simply as data, but as actual geometries. Because populated areas have width and breadth,
you can see that these geometries are polygons.

Like geospatial data, certain geospatial information is also viewed in terms of geometries. For example,
to determine whether a populated area overlaps a proposed landfill site, Geospatial Analytics must
compare the coordinates in the polygon that symbolizes the site with the coordinates of the polygons
that represent populated areas. The resulting information - that is, the areas of overlap - are themselves
regarded as polygons: geometries with coordinates, dimensions, and other properties.

Representing geographic features in a table
A geographic feature can be represented by data saved in a table.

For example, consider office buildings and residences. In the following sample tables, each row in the
BRANCHES table represents a branch office of a bank. Each row in the CUSTOMERS table represents a
customer of the bank. A subset of each row—specifically, the address, city, postal code, state, and country
—represents the location of the branch office or the customer's residence. The data in these columns,
taken as a whole, represents a geographic feature.

Table 1. BRANCHES table

NAME ADDRESS CITY ZIPCODE STATE COUNTRY

Airport-Multern 92467 Airport
Blvd

San Jose 95141 CA USA

Table 2. CUSTOMERS table

LASTNAME FIRSTNAME ADDRESS CITY ZIPCODE STATE COUNTRY

Kriner Endela 9 Concourt
Circle

San Jose 95141 CA USA

The values that denote the branch and customer addresses can be translated into values from which
geospatial information is generated. For example, in the CUSTOMER table, one branch office's address
is 92467 Airport Blvd, San Jose, CA 95141, USA. In the CUSTOMER table, one customer's address is
9 Concourt Circle, San Jose, CA 95141, USA. These addresses can be translated into coordinate values
that indicate where the branches and the customers' homes are located. The coordinate values can
then be used to indicate where these locations are with respect to one another. The BRANCH table
and CUSTOMER table can be altered to add a column to contain the coordinates that correspond to the
address. The following two tables have a new column, LOCATION, that is designated to contain such
values.

Table 3. BRANCHES table with a geospatial column

NAME ADDRESS CITY ZIPCODE STATE COUNTRY LOCATION

Airport-
Multern

92467
Airport Blvd

San Jose 95141 CA USA

Table 4. CUSTOMERS table with a geospatial column

LASTNAM
E

FIRSTNAM
E

ADDRESS CITY ZIPCODE STATE COUNTRY LOCATION

Kriner Endela 9 Concourt
Circle

San Jose 95141 CA USA

4 IBM i: Geospatial Analytics

Geospatial information is derived from the data stored in the LOCATION column. This data is referred to
as geospatial data.

Key concepts
This section describes geometries, coordinate systems, spatial reference systems, geohashing, and
supported data formats.

Geometries
For Geospatial Analytics, the operational definition of geometry is "a model of a geographic feature."

In Geospatial Analytics, the model can be expressed in terms of the feature's coordinates. The model
conveys information; for example, the coordinates identify the position of the feature with respect to
fixed points of reference. Also, the model can be used to produce additional information; for example,
the ST_OVERLAPS function can take the coordinates of two regions as input and return information as to
whether the regions overlap or not.

The coordinates of a feature that a geometry represents are regarded as properties of the geometry.
Several kinds of geometries have other properties as well; for example, area, length, and boundary.

The geometries supported by Geospatial Analytics form a hierarchy, which is shown in the following
figure. The geometry hierarchy is defined by the OpenGIS Consortium, Inc. (OGC) document "OpenGIS
Simple Features Specification for SQL". Seven members of the hierarchy are instantiable. That is, they
can be defined with specific coordinate values and rendered visually. The following figure shows these
instantiable geometry types in white boxes.

Figure 1. Hierarchy of geometries supported by Geospatial Analytics.

Geospatial Analytics 5

The spatial data types supported by Geospatial Analytics are implementations of the geometries shown in
the figure. See “Geospatial data types” on page 17 for details.

As the figure indicates, a superclass called geometry is the root of the hierarchy. The root type and other
proper subtypes in the hierarchy are not instantiable.

The subtypes are divided into two categories: base geometry subtypes and geometry collection subtypes.

The base geometries are:
Points

A single point. Points represent discrete features that are perceived as occupying the locus where
an east-west coordinate line (such as a parallel) intersects a north-south coordinate line (such as a
meridian). For example, suppose that the notation on a world map shows that each city on the map is
located at the intersection of a parallel and a meridian. A point could represent each city.

Linestrings
A line between two or more points. It does not have to be a straight line. Linestrings represent linear
geographic features such as streets, canals, and pipelines.

Polygons
A polygon or surface within a polygon. Polygons represent multisided geographic features such as
districts, forests, and wildlife habitats.

Geometry collection subtypes include both homogeneous collections and heterogeneous collections.

The heterogeneous collection is:
Geometry Collection

A geometry collection containing one or more geometry types. Geometry collections represent
multipart features with a variety of components such as a group of lakes (polygons) and rivers
(linestrings) that form a watershed.

The homogeneous collections are:

Multipoints
A geometry collection containing multiple points. Multipoints represent multipart features whose
components are each located at the intersection of an east-west coordinate line and a north-south
coordinate line. An example is an island chain whose members are each situated at an intersection of
a parallel and a meridian.

Multilinestrings
A geometry collection containing multiple linestrings. Multilinestrings represent multipart features
made up of more than one linear component such as river systems and highway systems.

Multipolygons
A geometry collection containing multiple polygons. Multipolygons represent multipart features made
up of multisided units or components such as the collective farmlands in a specific region or a system
of lakes.

Properties of geometries
The following properties are defined for geometries:

• The type that a geometry belongs to
• Geometry coordinates
• A geometry's interior, boundary, and exterior
• The quality of being simple or non-simple
• The quality of being empty or not empty
• A geometry's minimum bounding rectangle, sometimes called its envelope
• Dimension
• The identifier of the spatial reference system with which a geometry is associated

6 IBM i: Geospatial Analytics

Geometry coordinates
All geometries include at least one X coordinate and one Y coordinate, unless they are empty geometries,
in which case they contain no coordinates at all.

An X coordinate value denotes a location that is relative to a point of reference to the east or west. A Y
coordinate value denotes a location that is relative to a point of reference to the north or south. X and Y
coordinates are represented as double-precision floating point numbers.

Geospatial Analytics uses (longitude, latitude) ordering.

Simple and non-simple geometries
The values of linestrings, multipoints, and multilinestrings are considered either simple or non-simple.

A geometry is simple if it obeys all the topological rules imposed on its subtype and non-simple if it does
not.

• A linestring is simple if it does not pass through the same point twice except when the end points are
the same point.

• A multipoint is simple if none of its elements occupy the same coordinate space.
• Points, polygons, multipolygons, and empty geometries are always simple.

Any linestring, multipoint, or multilinestring that does not adhere to the rules for a simple geometry is
considered non-simple.

Empty geometries
A geometry is empty if it does not contain any points.

An empty geometry is considered a simple geometry. An empty geometry can only be assigned to the
ST_GEOMETRY type.

For example, an empty point is represented by the following WKT: 'point empty'

WKB cannot represent an empty geometry.

Interior, boundary, and exterior
All geometries occupy a position in space defined by their interiors, boundaries, and exteriors.

Interior
The interior is the space occupied by the geometry except for the boundary.

Exterior
The exterior of a geometry is all space not occupied by the geometry or the boundary.

Boundary
The boundary of a geometry serves as the interface between its interior and exterior.

These concepts apply to points, linestrings, and polygons with the following rules:

• Point

– A point has no boundary.
– The point is the interior.

• Linestring

– The endpoints are the boundary.
– The rest of the linestring is the interior.
– A linestring where the start and end are the same point (forming a linear ring) has no boundary.

• Polygon

– The boundary is its outer ring and any inner rings.

Geospatial Analytics 7

– The interior consists of the space enclosed by the outer ring, excluding any space defined by inner
rings within the polygon.

Minimum bounding rectangle
The minimum bounding rectangle (MBR) of a geometry is the bounding geometry formed by the minimum
and maximum (X,Y) coordinates.

The MBRs of geometries form a boundary rectangle except for the following special cases.

• The MBR of any point is the point itself, because its minimum and maximum X coordinates are the same
and its minimum and maximum Y coordinates are the same.

• The MBR of a horizontal or vertical linestring is a linestring represented by the boundary (the endpoints)
of the source linestring.

Coordinate systems
A coordinate system is a framework for defining the relative locations of things in a specified area; for
example, an area on the Earth's surface or the Earth's surface as a whole. Geospatial Analytics supports
the Geographic Coordinate System using WGS_1984 datum (GCS_WGS_1984).

Information about the coordinate system can be accessed through the
QSYS2.ST_COORDINATE_SYSTEMS catalog view.

Geographic coordinate systems
A geographic coordinate system uses a three-dimensional spherical surface to determine locations on the
Earth. Any location on the Earth can be referenced by a point with longitude and latitude coordinates.

For example, the figure below shows a geographic coordinate system where a location is represented by
the coordinates longitude 80 degree East and latitude 55 degree North.

Figure 2. A geographic coordinate system

The lines that run east and west each have a constant latitude value and are called parallels. They are
equidistant and parallel to one another, and form concentric circles around the Earth. The equator is the
largest circle and divides the Earth in half. It is equal in distance from each of the poles, and the value of
this latitude line is zero. Locations north of the equator have positive latitudes that range from 0 to +90
degrees, while locations south of the equator have negative latitudes that range from 0 to -90 degrees.
The figure below illustrates latitude lines.

8 IBM i: Geospatial Analytics

Figure 3. Latitude lines

The lines that run north and south each have a constant longitude value and are called meridians.
They form circles of the same size around the Earth, and intersect at the poles. The prime meridian is
the line of longitude that defines the origin (zero degrees) for longitude coordinates. One of the most
commonly used prime meridian locations is the line that passes through Greenwich, England. However,
other longitude lines, such as those that pass through Bern, Bogota, and Paris, have also been used as the
prime meridian. Geospatial Analytics uses the prime meridian that passes through Greenwich, England.
Locations east of the prime meridian up to its antipodal meridian (the continuation of the prime meridian
on the other side of the globe) have positive longitudes ranging from 0 to +180 degrees. Locations west of
the prime meridian have negative longitudes ranging from 0 to -180 degrees. The figure below illustrates
longitude lines.

Figure 4. Longitude lines

The latitude and longitude lines can cover the globe to form a grid, called a graticule. The point of origin of
the graticule is (0,0), where the equator and the prime meridian intersect. The equator is the only place on
the graticule where the linear distance corresponding to one degree latitude is approximately equal the
distance corresponding to one degree longitude. Because the longitude lines converge at the poles, the
distance between two meridians is different at every parallel. Therefore, as you move closer to the poles,
the distance corresponding to one degree latitude will be much greater than that corresponding to one
degree longitude.

It is also difficult to determine the lengths of the latitude lines using the graticule. The latitude lines are
concentric circles that become smaller near the poles. They form a single point at the poles where the
meridians begin. At the equator, one degree of longitude is approximately 111.321 kilometers, while at 60
degrees of latitude, one degree of longitude is only 55.802 km (this approximation is based on the Clarke
1866 spheroid). Therefore, because there is no uniform length of degrees of latitude and longitude, the
distance between points cannot be measured accurately by using angular units of measure. The figure
below shows the different dimensions between locations on the graticule.

Geospatial Analytics 9

Figure 5. Different dimensions between locations on the graticule

A coordinate system can be defined by either a sphere or a spheroid approximation of the Earth's shape.
Because the Earth is not perfectly round, a spheroid can help maintain accuracy for a map, depending on
the location on the Earth. A spheroid is an ellipsoid, that is based on an ellipse, whereas a sphere is based
on a circle.

The shape of the ellipse is determined by two radii. The longer radius is called the semimajor axis, and the
shorter radius is called the semiminor axis. An ellipsoid is a three-dimensional shape formed by rotating
an ellipse around one of its axes.

The figure below shows the sphere and spheroid approximations of the Earth and the major and minor
axes of an ellipse.

10 IBM i: Geospatial Analytics

Figure 6. Sphere and spheroid approximations

A datum is a set of values that defines the position of the spheroid relative to the center of the Earth.
The datum provides a frame of reference for measuring locations and defines the origin and orientation of
latitude and longitude lines. Some datums are global and intend to provide good average accuracy around
the world. A local datum aligns its spheroid to closely fit the Earth's surface in a particular area. Therefore,
the coordinate system's measurements are not accurate if they are used with an area other than the one
that they were designed for.

Coordinate system syntax
The coordinate system syntax is a string representation of a coordinate system.

The well-known text (WKT) format of spatial reference systems provides a standard textual
representation for coordinate system information. The definitions of the well-known text representation
are defined by the OGC Simple Features for SQL specification and the ISO SQL/MM Part 3: Spatial
standard.

The WKT for the supported coordinate system for Geospatial Analytics, GCS_WGS_1984, is:

GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS
84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.01745329251994328,AUTHORITY["EPSG
","9122"]],AUTHORITY["EPSG","4326"]]'

Supported coordinate system units
The database uses a specific coordinate systems syntax and supported coordinate system values to
provide a standard textual representation for coordinate system information.

The default units for the supported coordinate for Geospatial Analytics, GCS_WGS_1984, is as follows:

Geospatial Analytics 11

Supported linear unit
Table 5. Supported linear unit

Unit Conversion factor

Meter 1.0

Supported angular unit
Table 6. Supported angular unit

Unit Valid range for latitude Valid range for
longitude

Conversion factor

Decimal Degree -90 and 90 degrees
(inclusive)

-180 and 180 degrees
(inclusive)

pi/180

Supported spheroid
Table 7. Supported spheroid

Name Semi-major axis Inverse flattening

WGS 1984 6378137.0 298.257223563

Supported prime meridian
Table 8. Supported prime meridian

Location Coordinates

Greenwich 0° 0' 0"

Spatial reference system
A spatial reference system is a set of parameters that is used to represent a geometry.

These parameters are:

• The name of the coordinate system from which the coordinates are derived.
• The numeric identifier that uniquely identifies the spatial reference system.
• Coordinates that define the maximum possible extent of space that is referenced by a specified range of

coordinates.
• Numbers that, when applied in certain mathematical operations, convert coordinates received as input

into values that can be processed with maximum efficiency.

The numeric identifier for a spatial reference system determines which spatial reference system is used to
represent the geometry. The only spatial reference system identifier supported by Geospatial Analytics is
SRS ID 4326 (WGS84_SRS_4326).

The spatial reference system is shown in the table below, along with the coordinate system on which the
spatial reference system is based.

Table 9. The spatial reference system

Spatial reference system SRS ID Coordinate system

WGS84_ SRS_4326 4326 GCS_WGS _1984

12 IBM i: Geospatial Analytics

Information about the spatial reference system known to the database can be accessed through the
QSYS2.ST_SPATIAL_REFERENCE_SYSTEMS catalog view.

Geohashes and geohash covers
You can use geohashes and geohash covers to simplify certain operations.

A geohash is a number that uniquely identifies a specific region. The geohash algorithm divides the earth
into regions, called cells, and converts the latitude and longitude of the center of each cell into a number
that uniquely identifies it. The size of each cell is determined by the depth value, which is specified by the
user of the algorithm. The smaller the depth value, the larger the cell size.

A geohash cover is the set of geohash cells that are needed to completely cover a particular geometry.
A larger depth corresponds to smaller cells, which usually results in more exact coverage (that is, a
proportionally smaller area of the geohash cover that is outside of the geometry). However, when the cells
are smaller, more cells are needed to compose the geohash cover.

A single-point geometry is always associated with a single cell; however, a non-single-point geometry
such as a linestring, polygon, multi-polygon, or multi-point geometry might touch several cells.

Figure 7. Examples of geohash covers of a single geometry at 3 different depths

The number of geohash values in a geohash cover increases with increasing depth.

The following table lists some of the most commonly used depths their corresponding approximate cell
sizes.

Geohash Depth Approximate Cell Size Description Examples

45 0.1 km2 Single point or address GPS-location or house

28 3 km2 Small region city block

23 100 km2 Medium-sized region forest or lake

18 3,000 km2 Large region county or postal code
area

13 100,000 km2 Very large (huge) region state or country

When using geohash covers, the following considerations apply:

• Geohash values of two geometries that are to be compared should be computed using the same depth
for a meaningful comparison.

• Carefully consider the depth that you choose when computing geohash values. If the depth that you
are using is too large, it can cause many geohash values to be generated. Generating more than 10,000
geohash values for a single geometry is not allowed and returns a failure. If this error is encountered,
choose a smaller depth value.

Geospatial Analytics 13

WKT and WKB data formats
Geospatial Analytics supports industry-standard spatial data formats.

Well-known text (WKT) format
The OpenGIS Consortium Simple Features for SQL specification defines the well-known text format to
exchange geometry data in ASCII format. This format is also referenced by the ISO SQL/MM Part: 3
Spatial standard.

The well-known text format of a geometry is defined as follows:

Syntax

POINT point-tagged-text

LINESTRING linestring-tagged-text

POLYGON polygon-tagged-text

MULTIPOINT multipoint-tagged-text

MULTILINESTRING multilinestring-tagged-text

MULTIPOLYGON multipolygon-tagged-text

FULLEARTH

point-tagged-text
EMPTY

(point-coordinates)

linestring-tagged-text
EMPTY

(linestring-points)

polygon-tagged-text
EMPTY

(polygon-rings)

multipoint-tagged-text
EMPTY

(multipoint-parts)

multilinestring-tagged-text
EMPTY

(multilinestring-parts)

multipolygon-tagged-text
EMPTY

(multipolygon-parts)

14 IBM i: Geospatial Analytics

point-coordinates
x-coordinate y-coordinate

linestring-points

point-coordinates ,

,

point-coordinates

polygon-rings
,

(linestring-points linestring-points)

multipoint-parts
,

(point-coordinates)

multilinestring-parts
,

(linestring-points)

multipolygon-parts
,

(polygon-rings)

x-coordinate
An expression that returns a numeric value that represents the X coordinate of a point.

y-coordinate
An expression that returns a numeric value that represents the Y coordinate of a point.

To indicate an empty geometry, the keyword EMPTY is specified instead of any coordinates. To indicate
the full earth, the keyword FULLEARTH is specified. Empty geometry and full earth can only be assigned
to the ST_GEOMETRY type.

Examples
The following table provides some examples of well-known text formats.

Table 10. Geometry types and well-known text formats

Geometry type WKT format

point POINT(10 20)

linestring LINESTRING(10 10, 20 20, 21 30)

polygon POLYGON((0 0, 0 40, 40 40, 40 0, 0 0))

multipoint MULTIPOINT((0 0), (10 20), (15 20), (30 30))

multilinestring MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

multipolygon MULTIPOLYGON(((10 10, 10 20, 20 20, 20 15, 10
10)),
 ((60 60, 70 70, 80 60, 60 60)))

Geospatial Analytics 15

Table 10. Geometry types and well-known text formats (continued)

Geometry type WKT format

geometry collection GEOMETRYCOLLECTION(POINT (10 10), POINT
(30 30),
 LINESTRING (15 15, 20 20))

empty geometry POINT EMPTY

full earth FULLEARTH

Well-known binary (WKB) format
The OpenGIS Consortium Simple Features for SQL specification defines the well-known binary format.
This format is also defined by the International Organization for Standardization (ISO) SQL/MM Part: 3
Spatial standard.

The basic building block for well-known binary formats is the byte stream for a point, which consists of
two double precision floating point values. The byte streams for other geometries are built using the byte
streams for geometries that are already defined.

The following example illustrates the basic building block for well-known binary formats.

// Basic Type definitions
// byte : 1 byte
// uint32 : 32 bit unsigned integer (4 bytes)
// double : double precision number (8 bytes)

// Building Blocks : Point, LinearRing

Point {
 double x;
 double y;
};

LinearRing {
 uint32 numPoints;
 Point points[numPoints];
};

enum wkbGeometryType {
 wkbPoint = 1,
 wkbLineString = 2,
 wkbPolygon = 3,
 wkbMultiPoint = 4,
 wkbMultiLineString = 5,
 wkbMultiPolygon = 6
};

enum wkbByteOrder {
 wkbXDR = 0, // Big Endian
 wkbNDR = 1 // Little Endian
};

WKBPoint {
 byte byteOrder;
 uint32 wkbType; // 1=wkbPoint
 Point point;
};

WKBLineString {
 byte byteOrder;
 uint32 wkbType; // 2=wkbLineString
 uint32 numPoints;
 Point points[numPoints];
};

WKBPolygon {
 byte byteOrder;
 uint32 wkbType; // 3=wkbPolygon
 uint32 numRings;
 LinearRing rings[numRings];

16 IBM i: Geospatial Analytics

};

WKBMultiPoint {
 byte byteOrder;
 uint32 wkbType; // 4=wkbMultipoint
 uint32 num_wkbPoints;
 WKBPoint WKBPoints[num_wkbPoints];
};

WKBMultiLineString {
 byte byteOrder;
 uint32 wkbType; // 5=wkbMultiLineString
 uint32 num_wkbLineStrings;
 WKBLineString WKBLineStrings[num_wkbLineStrings];
};

wkbMultiPolygon {
 byte byteOrder;
 uint32 wkbType; // 6=wkbMultiPolygon
 uint32 num_wkbPolygons;
 WKBPolygon wkbPolygons[num_wkbPolygons];
};

WKBGeometry {
 union {
 WKBPoint point;
 WKBLineString linestring;
 WKBPolygon polygon;
 WKBMultiPoint mpoint;
 WKBMultiLineString mlinestring;
 WKBMultiPolygon mpolygon;
 }
};

The following figure shows an example of a geometry in well-known binary format.

Figure 8. Spatial data in WKB format. (B=1) of type polygon (T=3) with 2 linears (NR=2), where each ring
has 3 points (NP=3).

Working with geospatial data
In order to work with geospatial data, create geospatial columns in a table and populate the table with
that data. This geospatial data can then be queried using geospatial functions.

Geospatial data types
Geospatial Analytics provides a hierarchy of geospatial data types.

The figure below shows this hierarchy. In this figure, the instantiable types have a white background; the
uninstantiable types have a shaded background.

Instantiable data types are ST_Point, ST_LineString, ST_Polygon, ST_GeomCollection, ST_MultiPoint,
ST_MultiPolygon, and ST_MultiLineString.

Data types that are not instantiable are ST_Geometry, ST_Curve, ST_Surface, ST_MultiSurface, and
ST_MultiCurve.

Geospatial Analytics 17

Figure 9. Hierarchy of spatial data types. Data types named in white boxes are instantiable. Data types
named in shaded boxes are not instantiable.

The hierarchy includes:

• Data types for geographic features that can be perceived as forming a single unit; for example,
individual residences and isolated lakes.

• Data types for geographic features that are made up of multiple units or components; for example,
canal systems and groups of islands in a lake.

• A data type for geographic features of all kinds.

Db2 for i provides these data types as user-defined data types in schema QSYS2.

Data types for single-unit features
Use ST_POINT, ST_LINESTRING, and ST_POLYGON to store coordinates that define the space occupied by
features that can be perceived as forming a single unit.

ST_POINT
The ST_POINT data type is a zero-dimensional geometry that occupies a single location in coordinate
space. Use ST_POINT when you want to indicate the point in space that is occupied by a discrete
geographic feature. The feature might be a very small one, such as a water well; a very large one, such as
a city; or one of intermediate size, such as a building complex or park.

In each case, the point in space can be located at the intersection of an east-west coordinate line (for
example, a parallel) and a north-south coordinate line (for example, a meridian). An ST_POINT data item
includes an X coordinate and a Y coordinate that define such an intersection. The X coordinate indicates
where the intersection lies on the east-west line; the Y coordinate indicates where the intersection lies on
the north-south line.

18 IBM i: Geospatial Analytics

ST_LINESTRING
The ST_LINESTRING data type is a one-dimensional object stored as a sequence of points defining a
linear path. Use ST_LINESTRING for coordinates that define the space that is occupied by linear features;
for example, streets, canals, and pipelines.

Figure 10. Examples of ST_LINESTRING objects

ST_POLYGON
The ST_POLYGON data type is a two-dimensional surface stored as a sequence of points defining its
exterior bounding ring and 0 or more interior rings. Use ST_POLYGON when you want to indicate the
extent of space covered by a multi-sided feature; for example, a voting district, a forest, or a wildlife
habitat. An ST_POLYGON data item consists of the coordinates that define the boundary of such a feature.

The ST_POLYGON is always simple. The exterior and any interior rings define the boundary of an
ST_POLYGON, and the space enclosed between the rings defines the interior of ST_POLYGON. The rings of
an ST_POLYGON can intersect at a tangent point, but never cross. ST_POLYGON has an area.

Figure 11. Examples of ST_POLYGON objects

In some cases, ST_POLYGON and ST_POINT can be used for the same feature. For example, suppose that
you need spatial information about an apartment complex. If you want to represent the point in space
where each building in the complex is located, you would use ST_POINT to store the X and Y coordinates
that define each such point. Otherwise, if you want to represent the area occupied by the complex as a
whole, you would use ST_POLYGON to store the coordinates that define the boundary of this area.

Geospatial Analytics 19

Data types for multi-unit features
Use ST_MULTIPOINT, ST_MULTILINESTRING, ST_MULTIPOLYGON, and ST_GEOMCOLLECTION to store
coordinates that define spaces occupied by features that are made up of multiple units.

A multi-unit feature is not intended as a collection of individual entities. Rather, multi-unit refers to an
aggregate of the parts that makes up the whole.

ST_MULTIPOINT
The ST_MULTIPOINT data type is a collection of ST_POINTs. Use ST_MULTIPOINT when you are
representing features made up of units whose locations are each referenced by an X coordinate and
a Y coordinate. For example, consider a table whose rows represent island chains. The X coordinate and Y
coordinate for each island has been identified. If you want the table to include these coordinates and the
coordinates for each chain as a whole, define an ST_MULTIPOINT column to hold these coordinates.

ST_MULTILINESTRING
The ST_MULTILINESTRING data type is a collection of ST_LINESTRINGs. Use ST_MULTILINESTRING
when you are representing features made up of linear units, and you want to store the coordinates for the
locations of these units and the location of each feature as a whole. For example, consider a table whose
rows represent river systems. If you want the table to include coordinates for the locations of the systems
and their components, define an ST_MULTILINESTRING column to hold these coordinates.

Figure 12. Examples of ST_MULTILINESTRING

ST_MULTIPOLYGON
The ST_MULTIPOLYGON data type is a collection of ST_MULTIPOLYGONS. Use ST_MULTIPOLYGON when
you are representing features made up of multi-sided units, and you want to store the coordinates for
the locations of these units and the location of each feature as a whole. For example, consider a table
whose rows represent rural counties and the farms in each county. If you want the table to include
coordinates for the locations of the counties and farms, define an ST_MULTIPOLYGON column to hold
these coordinates.

20 IBM i: Geospatial Analytics

Figure 13. Examples of ST_MULTIPOLYGON

ST_GEOMCOLLECTION
The ST_GEOMCOLLECTION data type is a collection of geometries. Use ST_GEOMCOLLECTION when you
are representing features made up of different heterogeneous geometric objects.

Figure 14. Examples of ST_GEOMCOLLECTION

Data types for all features
You can use ST_GEOMETRY when you are not sure which of the other data types to use.

Because ST_GEOMETRY is the root of the hierarchy to which the other geospatial data types belong,
a column defined as the ST_GEOMETRY data type can contain a representation of any of the other
geospatial data types.

The actual geospatial type contained in an ST_GEOMETRY column is called the dynamic type. For
example, if an instance of an ST_GEOMETRY column contains a representation of a polygon, the dynamic
type is ST_POLYGON.

Geospatial Analytics 21

Create a table with a geospatial column
The geospatial data types can be used to create columns for storing geospatial data.

Use the CREATE TABLE SQL statement to create a table with a geospatial column that represents the
location of the business.

CREATE TABLE BRANCHES
 (ID INT,
 NAME VARCHAR(30),
 ADDRESS VARCHAR(100),
 CITY VARCHAR(50),
 POSTAL_CODE VARCHAR(5),
 STATE CHAR(2),
 COUNTRY VARCHAR(20),
 LOCATION QSYS2.ST_POINT);

Alter a table to contain a geospatial column
An existing table can be modified to add a geospatial column to store geospatial data.

Example: Use the ALTER TABLE SQL statement to add a geospatial column to an existing table to
represent a customer's location.

CREATE TABLE CUSTOMERS
 (ID VARCHAR(7),
 LAST_NAME VARCHAR(30),
 FIRST_NAME VARCHAR(30),
 ADDRESS VARCHAR(100),
 CITY VARCHAR(50),
 POSTAL_CODE VARCHAR(5),
 STATE CHAR(2),
 COUNTRY VARCHAR(20));

ALTER TABLE CUSTOMERS ADD COLUMN LOCATION QSYS2.ST_POINT;

The geospatial data types are stored in a non-standard format. If a column contains WKB data, it cannot
be directly altered to a Geospatial Analytics data type. The data must be explicitly converted to a
geometry using a scalar function such as ST_GEOMETRY. No validation of data occurs when altering a
BLOB column to one of the geometry data types, so while a direct alter of the column will be successful,
the data in the column will not be usable.

Populating geospatial columns
You can populate geospatial columns with geospatial data that you create using constructor functions or
by using other geospatial functions to derive it from existing business data or other spatial data.

Geospatial Analytics provides scalar functions that construct geometries from coordinates, well-known
text (WKT), or well-known binary (WKB). Using these functions, you can generate geospatial data to insert
into geospatial columns.

To insert geospatial data use the INSERT statement with a constructor function. The constructor functions
validates that the WKT or WKB is valid, that the latitude and longitude values passed in are valid and
not out of bounds, and that the WKT or WKB text passed in is of the same geometry type as the return
value of the constructor. For example, a WKT defining a linestring cannot be passed to the ST_POINT
function. If you are unsure which geometry will be passed to the constructor function, the base geometry
constructor, ST_GEOMETRY, can be used. ST_GEOMETRY is the only constructor function that accepts an
empty geometry.

22 IBM i: Geospatial Analytics

Example of inserting a ST_POINT geometry type into a geospatial column
The following example creates a geospatial column for ST_POINT values and then inserts two points.
The first INSERT statement creates a point geometry from the WKT representation. The second INSERT
statement creates a point geometry from numeric coordinate values.

CREATE TABLE SAMPLE_POINTS (ID INT, GEOM QSYS2.ST_POINT);

-- The center of Yellowstone National Park in the USA, using WKT
INSERT INTO SAMPLE_POINTS VALUES
 (100, QSYS2.ST_POINT('point (-110.40 44.45)'));

-- The center of Yosemite National Park in the USA, using (longitude, latitude)
INSERT INTO SAMPLE_POINTS VALUES
 (101, QSYS2.ST_POINT(-119.539, 37.865));

Attempting to insert a linestring or any other geospatial type which is not a point when using the
ST_POINT constructor function results in an SQL error.

Example of inserting different geometry types into a geospatial column
The following example creates a geospatial column that can contain any ST_GEOMETRY value. Then it
inserts a point value using WKT and a polygon value also using WKT.

CREATE TABLE SAMPLE_GEOMETRY (ID INT, GEOM QSYS2.ST_GEOMETRY);

-- A point defining the center of Yellowstone National Park in the USA
INSERT INTO SAMPLE_GEOMETRY VALUES
 (100,
 QSYS2.ST_POINT('point (-110.40 44.45)'));

-- A polygon defining the approximate boundary of the area of Yellowstone National Park
INSERT INTO SAMPLE_GEOMETRY VALUES
 (200,
 QSYS2.ST_POLYGON('polygon ((-111.1259 45.1207, -110.0009 45.0659, -109.8106 44.7134,
-109.9895 44.1307,
 -111.0974 44.1269, -111.1719 45.0544, -111.1259 45.1207))'));

Returning geospatial data in well-known formats
To return geospatial data in an industry-standard spatial data format, use the ST_ASTEXT or
ST_ASBINARY scalar functions.

Example 1: Converting geometry objects to well-known text (WKT) format

Converting geometry objects to WKT formats allow geometries to be exchanged in text form.

The ST_ASTEXT function converts a geometry value to a WKT string. The following example selects values
from the SAMPLE_GEOMETRY table. The query returns CLOB values containing UTF-8 character strings.

SELECT id, QSYS2.ST_ASTEXT(geom) AS geometry_wkt
 FROM sample_geometry;

ID GEOMETRY_WKT
------ --------------------------------
 100 POINT (-110.39999999999999 44.449999999999996)
 200 POLYGON ((-111.1259 45.1207, -111.1719 45.0544, -111.0974 44.1269,
 -109.98949999999999 44.1307, -109.8106 44.7134, -110.0009 45.0659,
 -111.1259 45.1207))

Example 2: Converting geometry objects to Well-known binary (WKB) format

Converting geometry objects to WKB formats allow geometries to be exchanged in binary form. The
WKB format consists of binary data structures that must be BLOB values. These BLOB values represent

Geospatial Analytics 23

binary data structures that must be managed by a database application program written in a supported
programming language and for which there is a language binding.

The ST_ASBINARY function converts a geometry value to the WKB format. The following example selects
values from the SAMPLE_GEOMETRY table.

SELECT id, QSYS2.ST_ASBINARY(geom) AS geometry_wkb
 FROM sample_geometry;

ID GEOMETRY_WKB
------ --------------------------------
 100 0000000001C05B9999999999994046399999999999
 200 00000000030000000100000007C05BC80EBEDFA44040468F7318FC5048C05BCB0068DB8BAC
 404686F694467382C05BC63BCD35A8584046103E425AEE63C05B7F53F7CED916404610BAC7
 10CB29C05B73E0DED288CE40465B50B0F27BB3C05B800EBEDFA4404046886F69446738C05B
 C80EBEDFA44040468F7318FC5048

Using geospatial functions
Db2 for i provides functions that perform various operations on geospatial data. Many of these functions
can be categorized according to the type of operation that they perform.

This section lists the main functional categories and provides an example of each one.

Table 11. Geospatial function operations

Category of function Example of operation

Derives new geometries from existing ones Derive the sales area of a store from its location

Returns information about specific geometries Return the extent, in square miles, of the sales area
of Store 10

Makes comparisons Determine whether the location of a customer's
home lies within the sales area of Store 10

Converts geometries to and from data exchange
formats

Convert customer information in WKT format into a
geometry, so that the information can be added to
the database

Example 1: Derives new geometries from existing ones
In this example, the function ST_BUFFER derives a geometry representing a store's sales area from a
geometry representing the store's location. The sales area is a circle of 10 km (10000 meters) around the
store location.

UPDATE stores
 SET sales_area = QSYS2.ST_BUFFER(location, 10000)
 WHERE id = 10;

Example 2: Returns information about specific geometries
In this example, the ST_AREA function returns a numeric value that represents the sales area of store 10.
The function will return the area in the same units as the units of the coordinate system that is being used
to define the area's location.

SELECT QSYS2.ST_AREA(sales_area)
 FROM stores
 WHERE id = 10;

24 IBM i: Geospatial Analytics

Example 3: Makes comparisons
In this example, the ST_WITHIN function compares the coordinates of the geometry representing a
customer's residence with the coordinates of a geometry representing the sales area of store 10. The
function's output will signify whether the residence lies within the sales area.

SELECT c.first_name, c.last_name, QSYS2.ST_WITHIN(c.location, s.sales_area)
 FROM customers as c. stores AS s
 WHERE s.id = 10;

Example 4: Converts geometries to and from data exchange formats.
In this example, customer information coded in WKT is converted into a geometry, so that it can be stored
in the database.

INSERT INTO customer (id, first_name, last_name, location)
VALUES (123, 'Mary', Smith', QSYS2.ST_POINT('point (-92.503 44.058)'));

Working with geospatial data in embedded SQL programs
When interacting with geospatial data types in embedded SQL, host variables should be declared as
either BLOB or VARBINARY data types.

Geospatial data types do not have an equivalent host language data type. The appropriate host variable
data type to use is either a BLOB or a VARBINARY host variable. The rules for defining these variables are
described in the Embedded SQL Programming topic: Embedded SQL Programming.

Example
In an ILE RPG program using embedded SQL, add the location of a customer to a column in the
CUSTOMER table. First, the geospatial location is calculated and saved in a VARBINARY host variable.
Then that location is updated in the appropriate row in the CUSTOMER table.

 Dcl-S PointValue SQLTYPE(VARBINARY:1000);

 exec sql
 set :PointValue = QSYS2.ST_POINT('point (45 30)');
 exec sql
 update customer set location = :pointvalue
 where cust_id = 17;

 return;

Performance tuning
There are several measures you can take to improve the performance of applications that use spatial
data.

Filtering
Identifying relationships between geometries, such as distance, intersections, and containment, requires
Cartesian joins that typically need extensive calculations. When the tables contain large numbers of
objects, this can result in long execution times. To improve performance, you can use filters to reduce the
number of objects that need to be processed.

Sometimes, the data required by a filter is already available in a table. For example, in a table of
geospatial objects that contains the postal code of each object, you might employ a filter to compare
only objects that share the same postal code. However, if the data needed for filtering is not available, it
can be calculated and added to an additional column or table that contains numeric values that represent
the geometries. You can then add predicates to your queries to filter data based on these values.

Geospatial Analytics 25

The numeric values that represent a geometry are based on a geohash. There are several different types
of geohash:
Geohash

A geohash is a number that uniquely identifies a specific region. A point resides in a single region and
is represented by a single geohash value.

Geohash cover
A geohash cover is the set of geohash cells that are needed to completely cover a particular geometry.
A line or a polygon can cross multiple regions and can therefore be represented by a set of geohash
cover values.

Minimum bounding rectangle (MBR)
The MBR of a geometry is the bounding geometry formed by the minimum and maximum (X,Y)
coordinates. A geohash minimum bounding rectangle cover is the set of geohash cells that are needed
to cover the MBR completely.

When determining whether to use a geohash cover or a minimum bounding rectangle, consider the
following:

• A geohash cover is more precise then a geohash MBR. Because of this more geometries may be filtered
out before calling the more time consuming geospatial functions.

• The creation of a geohash MBR is faster then the creation of a geohash cover. Therefore, it takes less
time to generate the geohash values when using a geohash MBR.

Filtering using a geohash cover
You can use a geohash cover to filter geometry objects when querying geospatial data, which will greatly
improving query performance.

A geohash cover is the set of geohash cells that are needed to completely cover a particular geometry.
The ST_GEOHASH, ST_GEOHASHCOVER, and ST_GEOHASHCOVEREXTEND table functions can be used to
generate a geohash, a geohash cover, or extend a geohash cover by a given distance.

Figure 15. Geohash cover

You can use geohash covers to quickly determine whether it is possible that two geometries intersect:

• If their geohash covers share at least one cell, their maximum separation is the length of one cell
diagonal. They might intersect (see Figure 16 on page 27), or they might not (see Figure 17 on page
27).

26 IBM i: Geospatial Analytics

• However, if their geohash covers do not share any cells, you can be certain that they do not intersect
(see Figure 18 on page 28). If geometries do not intersect, they can be filtered out of the query before
intensive spatial functions are run, improving performance.

Figure 16. The geohash covers of the two geometries share a common cell, and the geometries intersect

Figure 17. The geohash covers of the two geometries share a common cell, but the geometries do not
intersect

Geospatial Analytics 27

Figure 18. The geohash covers of the two geometries do not share any cells

Filtering using a minimum bounding rectangle
One way to filter objects for spatial processing is by using a minimum bounding rectangle.

A geohash minimum bounding rectangle cover is the set of geohash cells that are needed to
cover the minimum bounding rectangle (MBR) completely. The ST_FUZZYGEOHASHCOVER and
ST_FUZZYGEOHASHCOVEREXTEND table functions can be used to a create a geohash MBR cover or
extend a geohash MBR cover by a given distance.

Figure 19. Geohash MBR cover

You can use fuzzy geohash covers to quickly determine whether it is possible that two geometries
intersect:

28 IBM i: Geospatial Analytics

• If the fuzzy geohash covers share at least one cell, their maximum separation is the length of one cell
diagonal. They might intersect (see Figure 20 on page 29), or they might not (see Figure 21 on page
29).

• However, if their geohash covers do not share any cells, you can be certain that they do not intersect
(see Figure 22 on page 30). If geometries do not intersect, they can be filtered out of the query before
intensive spatial functions are run, improving performance.

Figure 20. The fuzzy geohash covers of the two geometries share two common cells, and the geometries
intersect

Figure 21. The fuzzy geohash covers of the two geometries share two common cells, but the geometries do
not intersect

Geospatial Analytics 29

Figure 22. The fuzzy geohash covers of the two geometries do not share any cells

Examples of filtering using a geohash
These examples demonstrate how to improve query performance by filtering using geohashs.

Example 1
For this example, geohash filtering will be added to a query to improve performance.

The tables used in the example are the US_STATES table and the WALKING_PATHS table. The US_STATES
table contains a row for each state in the United States. The WALKING_PATHS table contains a row for
every walking path in a national park in the United States. These tables are defined as follows:

CREATE TABLE US_STATES (STATE_ID CHAR(2) PRIMARY KEY,
 STATE_FULL_NAME VARCHAR(50),
 STATE_GEO QSYS2.ST_POLYGON);

CREATE TABLE WALKING_PATHS (WALKING_ID VARCHAR(10) PRIMARY KEY,
 WALKING_GEO QSYS2.ST_LINESTRING);

The following query is being enhanced to use geohashes. It returns a row for every walking path that is
completely contained inside the state of Minnesota (MN) in the United States.

SELECT WALKING_ID,
 STATE_FULL_NAME,
 QSYS2.ST_ASTEXT(WALKING_GEO),
 QSYS2.ST_ASTEXT(STATE_GEO)
 FROM US_STATES S, WALKING_PATHS W
 WHERE S.STATE_ID = 'MN'
 AND QSYS2.ST_CONTAINS(STATE_GEO, WALKING_GEO) = 1;

1. First, note the primary key and geometry column of each of the base tables.

• In US_STATES, the primary key is STATE_ID and the geometry column is STATE_GEO which contains
a ST_POLYGON that represent the geometry of the state.

• In WALKING_PATHS, the primary key is WALKING_ID and the geometry column is WALKING_GEO
which contains a ST_LINESTRING that represents the geometry of the path.

The primary key will be used to enforce a one to many relationship between the base table and the
geohash table we are about to create. This guarantees all the entries in the geohash table have a

30 IBM i: Geospatial Analytics

parent row in the base table. While a primary key is not required, it is a best practice for a relational
data model.

2. Determine the size of the geometries to be covered, and use this information to decide which depth to
use. The geohash covers of the two geometries that are compared must be computed using the same
depth. For this example, a depth of 13 is selected. This is the recommended depth when working with
a very large region, like a state.

3. Create a geohash filter table that corresponds to each geospatial column in a base table. Define a
foreign key to enforce the dependency of the rows in the geohash table to the corresponding row in the
base table.

Use the ST_GEOHASHCOVER table function to populate each of the geohash filter tables with the
geohash values that correspond to the geohash covers of the geometries. Multiple geohash values are
generally returned for each geohash cover that is generated. This means that multiple rows will be
inserted into the table for each row containing a geometry value in the base table.

-- Create and populate the geohash values that correspond to the US_STATES table
CREATE TABLE US_STATES_HASH (STATE_ID CHAR(2),
 GEOHASH BIGINT,
 FOREIGN KEY (STATE_ID) REFERENCES US_STATES(STATE_ID));
INSERT INTO US_STATES_HASH (SELECT S.STATE_ID, T.GEOHASH
 FROM US_STATES S,
 TABLE(QSYS2.ST_GEOHASHCOVER(S.STATE_GEO, 13)) T);

-- Create and populate the geohash values that correspond to the WALKING_PATHS table
CREATE TABLE WALKING_PATHS_HASH (WALKING_ID VARCHAR(10),
 GEOHASH BIGINT,
 FOREIGN KEY (WALKING_ID) REFERENCES
WALKING_PATHS(WALKING_ID));
INSERT INTO WALKING_PATHS_HASH (SELECT P.WALKING_ID, T.GEOHASH
 FROM WALKING_PATHS P,
 TABLE(QSYS2.ST_GEOHASHCOVER(P.WALKING_GEO, 13)) T);

4. Rewrite the original query to use the filter tables to reduce the amount of data that needs to be
compared by the ST_CONTAINS scalar function. The tables containing the geohash values are joined
to the corresponding base tables. An additional predicate is added to the WHERE clause so only
rows where there is a state geohash value equal to a walking path geohash are compared by the
ST_CONTAINS function.

SELECT W.WALKING_ID,
 STATE_FULL_NAME,
 QSYS2.ST_ASTEXT(WALKING_GEO) AS PATH_GEOMETRY,
 QSYS2.ST_ASTEXT(STATE_GEO) AS STATE_GEOMETRY
 FROM US_STATES S JOIN US_STATES_HASH SH ON S.STATE_ID = SH.STATE_ID,
 WALKING_PATHS W JOIN WALKING_PATHS_HASH WH ON W.WALKING_ID = WH.WALKING_ID
 WHERE S.STATE_ID = 'MN' AND
 SH.GEOHASH = WH.GEOHASH AND
 QSYS2.ST_CONTAINS(STATE_GEO, WALKING_GEO) = 1;

Example 2
In this example, we want to find every city (a point) that is less than 10 kilometers in distance from a
certain trail (a linestring).

The table used in the example is the US_CITIES table, which contains a row for each city in the United
States. The geometry used to represent a city is an ST_POINT. Since a point is represented by a single
geohash value, the geohash value can be stored in an additional column in the table. The create table
statement for the US_CITIES table is:

CREATE TABLE US_CITIES (CITY_ID VARCHAR(10),
 CITY_NAME VARCHAR(50),
 STATE_ID CHAR(2),
 CITY_GEO QSYS2.ST_POINT,
 CITY_GEOHASH BIGINT);

There are several ways to populate the CITY_GEOHASH column. For this example, the geohash will use a
depth of 23, approximately the size of a forest or lake. Here are a few ways to generate the geohash value.

Geospatial Analytics 31

1. To set geohash values for every row in a table that has a point value defined for a city but does not yet
have a geohash value calculated, use an UPDATE statement to set the CITY_GEOHASH column.

UPDATE US_CITIES SET CITY_GEOHASH = (SELECT GEOHASH FROM
TABLE(QSYS2.ST_GEOHASH(CITY_GEO,23)))
 WHERE CITY_GEOHASH IS NULL;

2. A trigger can be used to populate the CITY_GEOHASH column when a new city is inserted into the
US_CITIES table. The following create trigger statement uses the value assigned to the CITY_GEO
column to generate the corresponding geohash value. Once this trigger has been created, every future
insert into the US_CITIES table will fire this trigger, assigning a value to the CITY_GEOHASH column as
part of the insert operation.

CREATE TRIGGER GEOHASH_CITIES
 BEFORE INSERT ON US_CITIES
 REFERENCING NEW AS N FOR EACH ROW
 BEGIN
 SET N.CITY_GEOHASH = (SELECT GEOHASH FROM TABLE(QSYS2.ST_GEOHASH(N.CITY_GEO,23)));
 END;

The other construct that is used in this example is an ST_LINESTRING global variable which will contain
the trail value. The variable is defined like this:

CREATE VARIABLE TRAIL QSYS2.ST_LINESTRING;

At some point in the application, the global variable is assigned a linestring value that corresponds to
a specific state trail. This is not a piece of information that is stored in a table, so no geohash value is
permanently associated with it.

SET TRAIL = QSYS2.ST_LINESTRING('linestring (-92.51864276919596 44.05903689443092,
 -92.57146126853864 44.10851586848976,
 -92.64386916754349 44.20339334725808)');

For this example, filtering will be added to the following query to improve performance. The query returns
a row for every city that is less than 10 kilometers from the trail that is contained in the TRAIL global
variable.

SELECT * FROM US_CITIES C
 WHERE QSYS2.ST_DISTANCE(C.CITY_GEO, TRAIL) < 10000;

1. A geohash value is available in the US_CITIES table for each city. We know it was calculated with a
depth of 23.

2. The global variable is a linestring and needs a geohash cover to compare with the geohash value for
each city. To have a meaningful compare, the depth for the geohash cover must also use a depth of 23.
The geohash cover values for the linestring will be generated when the query is run.

3. Rewrite the original query to use the CITY_GEOHASH column to reduce the amount of data that needs
to be considered for the ST_DISTANCE calculation. For this example, an exact geohash value for the
linestring is not needed, so the faster ST_FUZZYGEOHASHCOVEREXTEND table function is used to
generate the geohash minimum bounding rectangle to use as the filter. The EXTEND version of the
function is used to get the geohash regions that form a 10 kilometer buffer around the linestring for
the trail. The extended geohash values are needed since the query wants to find all cities within a 10
kilometer distance of the trail.

The rewrite of the query is as follows:

WITH TRAIL_GEOHASH AS
 (SELECT * FROM TABLE(QSYS2.ST_FUZZYGEOHASHCOVEREXTEND(TRAIL, 23, 10000)))
SELECT * FROM US_CITIES C,
 TRAIL_GEOHASH T
WHERE C.CITY_GEOHASH = T.GEOHASH AND
 QSYS2.ST_DISTANCE(C.CITY_GEO, TRAIL) < 10000;

32 IBM i: Geospatial Analytics

Best practices and considerations
When using Geospatial Analytics, there are certain things you need to consider.

Best practices
1. When inserting or updating geospatial data for a column defined as a geometry type, the constructor

functions should be used to enforce data correctness. For example, to insert a value into a column
defined as an ST_POINT data type, use a statement like the following:

INSERT INTO mytable (geopoint) VALUES ST_POINT('point (30 40)');

Without using these functions, data that does not conform to the geometry type can be inserted into
the column.

2. Geometry type arguments passed to geospatial functions expect properly formatted geometry values.
Use a constructor function to guarantee the value is a correctly formatted geometry value. For
example, when working with data in a global variable, use a statement like the following to ensure
the content of myline_gvar is correctly formed:

CREATE VARIABLE myline_gvar QSYS2.ST_LINESTRING;
SET myline_gvar = QSYS2.ST_LINESTRING('linestring(10 10, 20 20)');
SELECT * FROM mytable t where QSYS2.ST_INTERSECTS(t.linestring_column, myline_gvar) = 1;

3. When using an untyped parameter marker or the NULL value, use the CAST specification to provide
a data type for the parameter marker or NULL value that function resolution can use to find the
correct function. For more information, see Using parameter markers or the NULL values as function
arguments

4. The geospatial functions and geospatial data types reside in the QSYS2 library. If you use an
unqualified function or geospatial data type, the SQL path is used to locate the object. When using
unqualified geospatial functions and data types, ensure QSYS2 is included in the SQL path. For more
information, see Unqualified function, procedure, specific name, type, and variables.

5. Most of the system-provided geospatial functions are defined with the MODIFIES SQL DATA attribute.
When creating a procedure or function that uses one of these functions, the MODIFIES SQL DATA
attribute needs to be included in the routine definition.

Considerations
Java™ environment

Because the geospatial functions use functionality provided by Java, a Java environment is created in the
current job. This requires the following conditions.

1. A JVM must not already exist in the job (with the exception of a JVM created by the Java stored
procedures support).

2. The job CCSID cannot be 65535.
3. PASE must be installed and operational. The CHKPRDOPT PRDID(5770SS1) OPTION(33) CL command

can be used to verify that PASE is installed.
4. The Geospatial functions are implemented via LANGUAGE JAVA functions and always run in the

default activation group, ACTGRP(*DFTACTGRP). Therefore, these functions should not be used within
programs that were built with ACTGRP(*NEW).

Well-Known Text (WKT) Considerations

There are cases where WKT is adjusted to a preferred representation.:

• Polygon WKT and the right-hand rule
The right-hand rule is used to determine the ordering of points. Polygons are defined by a linear ring
that describes the polygon's boundary. On a globe, the same boundary can be used to represent two
different polygons depending which side of the linear ring is the interior of the polygon and which
side of the linear ring is the exterior of the polygon. Consider a polygon that describes London and

Geospatial Analytics 33

a polygon that describe the full Earth except for London. These two polygons would have the same
boundary but different interiors. In order to determine which side of the boundary is the interior of
the polygon you are trying to define, the "right-hand rule", as defined by RFC 7946: The GeoJSON
format, is used. This rule states that for exterior rings, points must be defined in a counterclockwise
direction, and for holes, points must be defined clockwise. Since many existing data sets have
polygons defined in the incorrect order due to lack of awareness of this rule, Geospatial Analytics
adjusts the order of the points. It assumes the area of interest is smaller than half of the full Earth.

• Multipoint WKT
If the same point is defined multiple times in a multipoint geometry, the duplicate point is removed.

Geospatial functions
At the core of Geospatial Analytics are the scalar functions and table functions provided as part of Db2 for
i.

The implementation of these geospatial functions follows the "OGC Simple Features for SQL" specification
and parts of the ISO SQL/MM Part 3: Spatial standard.

The geospatial functions fall into the following categories:

• Construction of geometries from data exchange formats or coordinate data
• Conversion of a geometry into a data exchange format
• Comparison of geometries and discovery of relations between geometries
• Construction of new geometries from existing geometries
• Information about geometries
• Creation of geohashes

Construction of geometries from data exchange formats or coordinate data
The following scalar functions create a geometry of the ST_GEOMETRY type or one of its subtypes from
coordinate data, or from a well-known text (WKT), or a well-known binary (WKB) data exchange format:

Table 12. Geospatial scalar functions that construct geometries from data exchange formats or
coordinate data

Function Use Function Name

Construct any geometry from a WKT, WKB “ST_GEOMETRY scalar function” on page 57

Construct any geometry from a WKT object “ST_WKTTOSQL scalar function” on page 79

Construct any geometry from a WKB object “ST_WKBTOSQL scalar function” on page 78

Construct a specific geometry from a WKT or WKB “ST_GEOMCOLLECTION scalar function” on page
57

“ST_LINESTRING scalar function” on page 62

“ST_MULTILINESTRING scalar function” on page
65

“ST_MULTIPOINT scalar function” on page 66

“ST_MULTIPOLYGON scalar function” on page 67

“ST_POINT scalar function” on page 68

“ST_POLYGON scalar function” on page 69

Construct a specific geometry from coordinates “ST_POINT scalar function” on page 68

34 IBM i: Geospatial Analytics

https://www.rfc-editor.org/rfc/rfc7946#section-3.1.6
https://www.rfc-editor.org/rfc/rfc7946#section-3.1.6

Conversion of a geometry to a different geometry type
The following scalar functions convert one geometry type to a different geometry type:

Table 13. Geospatial scalar functions that convert one geometry type to a different geometry type

Function Use Function Name

Convert a geometry into a linestring geometry “ST_TOLINESTRING scalar function” on page 72

Convert a geometry into a multiline geometry “ST_TOMULTILINE scalar function” on page 72

Convert a geometry into a multipoint geometry “ST_TOMULTIPOINT scalar function” on page 73

Convert a geometry into a multipolygon geometry “ST_TOMULTIPOLYGON scalar function” on page
74

Convert a geometry into a point geometry “ST_TOPOINT scalar function” on page 74

Convert a geometry into a polygon geometry “ST_TOPOLYGON scalar function” on page 75

Conversion of a geometry into a data exchange format
The following scalar functions convert a geometry of the ST_GEOMETRY type or one of its subtypes into a
data exchange format:

Table 14. Geospatial scalar functions that convert a geometry of the ST_GEOMETRY type or one of its
subtypes into a data exchange format

Function Use Function Name

Convert a geometry into a WKT object “ST_ASTEXT scalar function” on page 38

Convert a geometry into a WKB object “ST_ASBINARY scalar function” on page 38

Comparison of geometries and discovery of relations between geometries
These geospatial scalar functions return information that is the result of a comparison between
geometries. They return information about ways in which geographic features relate to one another or
compare with one another.

Table 15. Geospatial scalar functions that compare geometries and find relations between geometries

Function Use Function Name

Check whether two items geometries are identical “ST_EQUALS scalar function” on page 46

Determine the distance between geometries “ST_DISTANCE scalar function” on page 45

Determine whether geometries intersect “ST_CROSSES scalar function” on page 43

“ST_DISJOINT scalar function” on page 44

“ST_INTERSECTS scalar function” on page 60

“ST_OVERLAPS scalar function” on page 68

“ST_TOUCHES scalar function” on page 76

Determine whether a geometry contains another
one

“ST_CONTAINS scalar function” on page 40

“ST_COVERS scalar function” on page 42

“ST_WITHIN scalar function” on page 77

Geospatial Analytics 35

Construction of new geometries from existing geometries
The following scalar functions modify properties of a geometry of type ST_GEOMETRY or one of its
subtypes to construct a new geometry:

Table 16. Geospatial scalar functions that construct new geometries from existing geometries

Function Use Function Name

Create new geometries with different space
configurations

“ST_BUFFER scalar function” on page 39

“ST_DIFFERENCE scalar function” on page 44

“ST_INTERSECTION scalar function” on page 59

“ST_SYMDIFFERENCE scalar function” on page
71

Create a new geometry by combining multiple
geometries

“ST_UNION scalar function” on page 77

Information about geometries
The following scalar functions return information about geometric properties such as coordinates,
measures, and boundaries:

Table 17. Geospatial scalar functions that return information about properties of geometries

Function Use Function Name

Return information about geometry types “ST_GEOMETRYTYPE scalar function” on page 58

Return information to indicate whether a geometry
is simple

“ST_ISSIMPLE scalar function” on page 61

Return information about geometry dimensions “ST_AREA scalar function” on page 37

Return information about geometry definitions “ST_NUMPOINTS scalar function” on page 67

Return information about coordinates and
measures

“ST_ISVALID scalar function” on page 62

“ST_MAXX scalar function” on page 63

“ST_MAXY scalar function” on page 63

“ST_MINX scalar function” on page 64

“ST_MINY scalar function” on page 65

Return information about spatial reference
systems

“ST_SRSID scalar function” on page 70

“ST_SRSNAME scalar function” on page 70

Creation of geohashes
The following table functions create geohashes

Table 18. Geospatial table functions that create geohash data

Function Use Function Name

Create the geohash value for a specific point “ST_GEOHASHVALUE scalar function” on page 56

“ST_GEOHASH table function” on page 51

36 IBM i: Geospatial Analytics

Table 18. Geospatial table functions that create geohash data (continued)

Function Use Function Name

Create the set of geohash cells that are needed to
completely cover a particular geometry

“ST_GEOHASHCOVER table function” on page 52

“ST_GEOHASHCOVEREXTEND table function” on
page 53

Create the set of geohash cells that are needed
to create a boundary box around a particular
geometry

“ST_FUZZYGEOHASHCOVER table function” on
page 47

“ST_FUZZYGEOHASHCOVEREXTEND table
function” on page 48

ST_AREA scalar function
The ST_AREA function takes a geometry object as an input parameter and returns a double precision
floating point number containing the area covered by the specified geometry, measured in square meters.

If geometry is a polygon or multipolygon, the area covered by the geometry is returned. The area of a
point, linestring, multipoint, or multilinestring is 0 (zero). If geometry is null, the result is the null value. If
geometry is an empty geometry, the result is 0.

ST_AREA (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that determines
the area.

The result of the function is DOUBLE.

Example

Find the area covered by multiple sales regions. The sales regions are polygons stored in the
SAMPLE_POLYGON table. The area is calculated by applying the ST_AREA function.

CREATE TABLE sample_polygons (sales_region INTEGER, geometry QSYS2.ST_POLYGON);

INSERT INTO sample_polygons (sales_region, geometry) VALUES
 (1, QSYS2.ST_POLYGON('polygon((0 0, 0 10, 10 10, 10 0, 0 0))')),
 (2, QSYS2.ST_POLYGON('polygon((20 0, 30 20, 40 0, 20 0))')),
 (3, QSYS2.ST_POLYGON('polygon((20 30, 25 35, 30 30, 20 30))'));

The following SELECT statement retrieves the sales region ID and area.

SELECT sales_region, QSYS2.ST_AREA(geometry) as area
 FROM sample_polygons;

Results:

SALES_REGION AREA
------------ ---------------------
 1 1.2359653226125652E12
 2 2.5100581570625015E12
 3 2.6341713503349957E11

Geospatial Analytics 37

ST_ASBINARY scalar function
The ST_ASBINARY function takes a geometry object as an input parameter and returns a BLOB containing
the corresponding well-known binary (WKB) format.

If geometry is null, the result is the null value. There is no WKB representation for an empty geometry. If
geometry is empty, an error is returned.

ST_ASBINARY (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes to be converted to the corresponding WKB
format.

The result of the function is BLOB(2G).

Example

Insert the WKB value of a point into a table. Return its value in WKT format.

CREATE TABLE sample_points(id INTEGER, wkb BLOB(32K));

INSERT INTO sample_points values (10, QSYS2.ST_ASBINARY(QSYS2.ST_POINT(10, 20)));

SELECT id, QSYS2.ST_ASTEXT(QSYS2.ST_POINT(wkb)) as point, wkb FROM sample_points;

Results:

ID POINT WKB
---- ------------------- --
 10 POINT (10.0 20.0) 000000000140240000000000004034000000000000

ST_ASTEXT scalar function
The ST_ASTEXT function takes a geometry object as an input parameter and returns a CLOB containing
the corresponding well-known text (WKT) format.

If geometry is null, the result is the null value. If geometry is empty, "POINT EMPTY" is returned.

ST_ASTEXT (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes to be converted to the corresponding WKT
format.

The result of the function is CLOB(2G).

Example

View the well-known text representation of a variety of geometries. The query lists the WKT
representation of the geometries by converting the geometry to text using the ST_ASTEXT function.

CREATE TABLE sample_geometries(id INTEGER, geometry QSYS2.ST_GEOMETRY);

INSERT INTO sample_geometries VALUES
 (1, QSYS2.ST_POINT('point(50 50)')),
 (2, QSYS2.ST_LINESTRING('linestring(20 10, 21 13, 22 14)')),
 (3, QSYS2.ST_POLYGON('polygon((-10 -12, -11 -14, -13 -14, -13 -12, -10 -12))'));

SELECT id, QSYS2.ST_GEOMETRYTYPE(geometry) AS geospatial_text, QSYS2.ST_ASTEXT(geometry) AS wkt
 FROM sample_geometries;

38 IBM i: Geospatial Analytics

Results:

ID GEOSPATIAL_TEXT WKT
-- ---------------- --
 1 ST_POINT POINT (50.0 50.0)
 2 ST_LINESTRING LINESTRING (20.0 10.0, 21.0 13.0, 22.0 14.0)
 3 ST_POLYGON POLYGON ((-10.0 -12.0, -13.0 -12.0, -13.0 -14.0, -11.0 -14.0,
 -10.0 -12.0))

ST_BUFFER scalar function
The ST_BUFFER function takes a geometry object and a distance in meters as input parameters and
returns a new resulting geometry where each point on the boundary of the resulting geometry is the
specified distance away from the specified geometry.

Any circular curve in the boundary of the resulting geometry is approximated by linear strings. For
example, the buffer around a point, which would result in a circular region, is approximated by a polygon
whose boundary is a linestring. The default number of polygon edges to be used in approximating a circle
is eight.

If geometry is null, the result is the null value. An empty geometry cannot be buffered. If geometry is
empty, an error is returned.

ST_BUFFER (geometry , distance)

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry to create the buffer
around.

distance
A double precision floating point value that specifies the distance to be used for the buffer around
geometry. This distance is measured in meters.

The result of the function is ST_GEOMETRY.

Example

Apply a buffer of 10 kilometers to a variety of geometries.

CREATE TABLE sample_geometries(id INTEGER, geometry QSYS2.ST_GEOMETRY);

INSERT INTO sample_geometries VALUES
 (1, QSYS2.ST_POINT('point(50 50)')),
 (2, QSYS2.ST_LINESTRING('linestring(20 10, 21 13, 22 14)')),
 (3, QSYS2.ST_POLYGON('polygon((-10 -12, -11 -14, -13 -14, -13 -12, -10 -12))'));

SELECT id, QSYS2.ST_GEOMETRYTYPE(geometry) AS spatial_text,
QSYS2.ST_ASTEXT(QSYS2.ST_BUFFER(geometry, 10000)) AS buffer_10k
 FROM sample_geometries;

Results:

ID SPATIAL_TEXT BUFFER_10K
---- --------------- --
 1 ST_POINT POLYGON ((49.942004 50.089817,
 49.860139 50.037124999999996,
 49.860355 49.962706999999995,
 49.94222 49.910154,
 50.05778 49.910154,
 50.139644999999994 49.962706999999995,
 50.139860999999996 50.037124999999996,
 50.057995999999996 50.089817,
 49.942004 50.089817))
 2 ST_LINESTRING POLYGON ((20.924315999999997 13.063383,
 20.919014 13.047649,
 20.907192 13.035749,
 20.907564 13.013665,

Geospatial Analytics 39

 19.913235999999998 10.027735999999999,
 19.901574999999998 9.992343,
 19.935903 9.926048,
 20.007758 9.903068,
 20.075072 9.936854,
 20.086748999999998 9.972241,
 21.080956 12.952326999999999,
 22.066225 13.937234,
 22.093018999999998 13.963849,
 22.092132 14.038262999999999,
 22.037253999999997 14.090266999999999,
 21.960532 14.089376999999999,
 21.933739 14.062748,
 20.944551 13.07335,
 20.924315999999997 13.063383))
 3 ST_POLYGON POLYGON ((-9.946252999999999 -11.925657,
 -9.962472 -11.909965,
 -9.979156 -11.910055,
 -9.994169 -11.902935,
 -10.015716 -11.91025,
 -12.961767 -11.910366999999999,
 -12.961972 -11.910166,
 -12.999749999999999 -11.910167999999999,
 -13.037528 -11.909965,
 -13.037735999999999 -11.910166,
 -13.038027999999999 -11.910166,
 -13.064748 -11.936299,
 -13.091617 -11.962287,
 -13.091619 -11.962572999999999,
 -13.091826 -11.962776,
 -13.091838 -11.99974,
 -13.092056999999999 -12.036705,
 -13.091852 -12.036907,
 -13.092582 -13.999794,
 -13.092758 -14.036812,
 -13.092595999999999 -14.03697,
 -13.092597 -14.037192,
 -13.065621 -14.063378,
 -13.038753999999999 -14.089671,
 -13.038525 -14.089671,
 -13.038364 -14.089827999999999,
 -13.000197 -14.089832,
 -11.021272 -14.089919,
 -11.006274999999999 -14.097042,
 -10.984385 -14.089768,
 -10.961246 -14.089671,
 -10.949489999999999 -14.078166999999999,
 -10.933695 -14.072913999999999,
 -10.923525999999999 -14.052754,
 -10.907242 -14.036812,
 -10.907319 -14.020617,
 -9.923986 -12.052576,
 -9.907943 -12.036705,
 -9.90804 -12.02038,
 -9.900763999999999 -12.005688,
 -9.908251 -11.984605,
 -9.908382999999999 -11.962287,
 -9.92025 -11.950809999999999,
 -9.925723999999999 -11.935388999999999,
 -9.946252999999999 -11.925657))

ST_CONTAINS scalar function
The ST_CONTAINS function takes two geometry objects as input parameters and returns the integer 1 if
the first geometry completely contains the second geometry. Otherwise, it returns the integer 0 (zero) to
indicate that the first geometry does not completely contain the second.

The ST_CONTAINS function returns the exact opposite result of the ST_WITHIN function.

If geometry1 or geometry2 is null, the result is the null value. If geometry1 or geometry2 is empty, 0 (zero)
is returned. If both geometry1 and geometry2 are empty, 0 is returned.

ST_CONTAINS (geometry1 , geometry2)

40 IBM i: Geospatial Analytics

geometry1
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is to be tested
to completely contain geometry2.

geometry2
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is to be tested
to be completely within geometry1.

The result of the function is INTEGER.

Notes
One geometry (geometry1) contains another (geometry2) if the interiors of the geometries intersect and
the interior or boundary of geometry2 does not intersect the exterior of geometry1.

The figure below shows examples of ST_CONTAINS:

• A multipoint geometry contains a point or multipoint geometry when all of the points are within the first
geometry.

• A polygon geometry contains a multipoint geometry when all of the points are either on the boundary of
the polygon or in the interior of the polygon.

• A linestring geometry contains a point, multipoint, or linestring geometry when all of the points are
within the first geometry.

• A polygon geometry contains a point, linestring or polygon geometry when the second geometry is in the
interior of the polygon.

Figure 23. ST_CONTAINS. The dark geometries represent geometry1 and the gray geometries represent
geometry2. In all cases, geometry1 contains geometry2 completely.

Example

Use the ST_CONTAINS function to determine which points are contained by a polygon.

CREATE TABLE sample_points(point_id INTEGER, point QSYS2.ST_POINT);
CREATE TABLE sample_polygons(polygon_id INTEGER, polygon QSYS2.ST_POLYGON);

INSERT INTO sample_points VALUES
 (1, QSYS2.ST_POINT(10, 20)),
 (2, QSYS2.ST_POINT('point(41 41)'));

INSERT INTO sample_polygons VALUES

Geospatial Analytics 41

 (100, QSYS2.ST_POLYGON('polygon((0 0, 0 40, 40 40, 40 0, 0 0))'));

SELECT polygon_id,
 point_id,
 CASE QSYS2.ST_CONTAINS(polygon, point)
 WHEN 0 THEN 'does not contain'
 WHEN 1 THEN 'contains'
 END AS contains
FROM sample_points, sample_polygons;

Results:

POLYGON_ID POINT_ID CONTAINS
----------- --------- -----------------
 100 1 contains
 100 2 does not contain

ST_COVERS scalar function
The ST_COVERS function takes two geometry objects as input parameters and returns the integer 1 if
the first geometry completely covers the second geometry. Otherwise, it returns the integer 0 (zero) to
indicate that the first geometry does not completely cover the second.

If geometry1 or geometry2 is null, the result is the null value. If geometry1 or geometry2 is empty, 0 (zero)
is returned. If both geometry1 and geometry2 are empty, 1 is returned.

ST_COVERS (geometry1 , geometry2)

geometry1
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is to be tested
to completely contain geometry2.

geometry2
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is to be tested
to be completely covered by geometry1.

The result of the function is INTEGER.

Notes
One geometry (geometry1) covers another (geometry2) if any of the following conditions are true:

• the interior of geometry1 intersects the interior of geometry2 and the interior or boundary of geometry2
does not intersect the exterior of geometry1.

• the interior of geometry1 intersects the boundary of geometry2 and the interior or boundary of
geometry2 does not intersect the exterior of geometry1.

• the boundary of geometry1 intersects the interior of geometry2 and the interior or boundary of
geometry2 does not intersect the exterior of geometry1.

• the boundaries of either geometry intersect and the interior or boundary of geometry2 does not
intersect the exterior of geometry1.

Example

Use the ST_COVERS function to determine which points are covered by a polygon.

CREATE TABLE sample_points(point_id INTEGER, point QSYS2.ST_POINT);
CREATE TABLE sample_polygons(polygon_id INTEGER, polygon QSYS2.ST_POLYGON);

INSERT INTO sample_points VALUES
 (1, QSYS2.ST_POINT(10, 20)),
 (2, QSYS2.ST_POINT('point(41 41)'));

INSERT INTO sample_polygons VALUES
 (100, QSYS2.ST_POLYGON('polygon((0 0, 0 40, 40 40, 40 0, 0 0))'));

42 IBM i: Geospatial Analytics

SELECT polygon_id,
 point_id,
 CASE QSYS2.ST_COVERS(polygon, point)
 WHEN 0 THEN 'does not cover'
 WHEN 1 THEN 'covers'
 END AS covers
FROM sample_points, sample_polygons;

Results:

POLYGON_ID POINT_ID COVERS
----------- --------- -----------------
 100 1 covers
 100 2 does not cover

ST_CROSSES scalar function
The ST_CROSSES function takes two geometry objects as input parameters and returns the integer 1 if the
first geometry crosses the second. Otherwise, the integer 0 (zero) is returned.

If the intersection of the two geometries results in a geometry that has a dimension that is one less than
the maximum dimension of the two geometries, and if the resulting geometry is not equal to either of the
two geometries, then 1 is returned. Otherwise, the result is 0 (zero).

If geometry1 is a polygon or a multipolygon, or if geometry2 is a point or multipoint, the result is the null
value. If geometry1 or geometry2 is null, the result is the null value. When null processing doesn't apply, if
geometry1 or geometry2 is empty, 0 (zero) is returned.

ST_CROSSES (geometry1 , geometry2)

geometry1
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is to be tested
for crossing geometry2.

geometry2
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is to be tested
to determine if it is crossed by geometry1.

The result of the function is INTEGER.

Example

Use the ST_CROSSES function to determine if a linestring crosses a polygon.

CREATE TABLE sample_linestrings(linestring_id INTEGER, linestring QSYS2.ST_LINESTRING);
CREATE TABLE sample_polygons(polygon_id INTEGER, polygon QSYS2.ST_POLYGON);

INSERT INTO sample_linestrings VALUES
 (10, QSYS2.ST_LINESTRING('linestring(40 50, 50 40)')),
 (20, QSYS2.ST_LINESTRING('linestring(20 20, 60 60)'));

INSERT INTO sample_polygons VALUES
 (100, QSYS2.ST_POLYGON('polygon((30 30, 30 50, 50 50, 50 30, 30 30))'));

SELECT linestring_id, polygon_id, QSYS2.ST_CROSSES(linestring, polygon) AS crosses
 FROM sample_linestrings, sample_polygons;

Results

LINESTRING_ID POLYGON_ID CROSSES
------------- ---------- ---------
 10 100 0
 20 100 1

Geospatial Analytics 43

ST_DIFFERENCE scalar function
The ST_DIFFERENCE function takes two geometry objects as input parameters and returns the part of the
first geometry that does not intersect with the second geometry.

If geometry1 or geometry2 is null, the result is the null value. If geometry1 is empty, an empty geometry is
returned. If geometry2 is empty, geometry1 is returned.

Syntax

ST_DIFFERENCE (geometry1 , geometry2)

geometry1
A value of type ST_GEOMETRY that represents the first geometry to use to compute the difference to
geometry2.

geometry2
A value of type ST_GEOMETRY that represents the second geometry that is used to compute the
difference to geometry1.

The result of the function is ST_GEOMETRY.

Example 1

Find the difference between two disjoint polygons.

VALUES QSYS2.ST_ASTEXT(
 QSYS2.ST_DIFFERENCE(QSYS2.ST_POLYGON('polygon((10 10, 10 20, 20 20, 20 10, 10 10))'),
 QSYS2.ST_POLYGON('polygon((30 30, 30 50, 50 50, 50 30, 30 30))')));

Results:

00001
--
POLYGON ((10.0 10.0, 20.0 10.0, 20.0 20.0, 10.0 20.0, 10.0 10.0))

Example 2

Find the difference between two intersecting polygons.

VALUES QSYS2.ST_ASTEXT(
 QSYS2.ST_DIFFERENCE(QSYS2.ST_POLYGON('polygon((30 30, 30 50, 50 50, 50 30, 30 30))'),
 QSYS2.ST_POLYGON('polygon((40 40, 40 60, 60 60, 60 40, 40 40))')));

Results:

00001

POLYGON ((30.0 50.0, 30.0 30.0, 50.0 30.0, 50.0 40.432460999999996, 40.0 40.0,
 40.0 50.431312999999996, 30.0 50.0))

ST_DISJOINT scalar function
The ST_DISJOINT function takes two geometry objects as input and returns the integer 1 if the specified
geometries do not intersect. If the geometries do intersect, then the integer 0 (zero) is returned.

ST_DISJOINT returns the exact opposite result of ST_INTERSECTS.

If geometry1 or geometry2 is null, the result is the null value. If geometry1 or geometry2 is empty, 1 is
returned.

44 IBM i: Geospatial Analytics

ST_DISJOINT (geometry1 , geometry2)

geometry1
A value of type ST_GEOMETRY that represents the geometry that is tested to be disjoint with
geometry2.

geometry2
A value of type ST_GEOMETRY that represents the geometry that is tested to be disjoint with
geometry1.

The result of the function is INTEGER.

Notes
Two geometries are disjoint if all of the following conditions are true:

• the interior of geometry1 does not intersect the interior of geometry2.
• the interior of geometry1 does not intersect the boundary of geometry2.
• the boundary of geometry1 does not intersect the interior of geometry2.
• the boundaries of geometry1 and geometry2 do not intersect.

Example

Determine if a polygon is disjoint from other polygons.

CREATE TABLE sample_polygons (polygon_id INTEGER, geometry QSYS2.ST_POLYGON);

INSERT INTO sample_polygons VALUES
 (10, QSYS2.ST_POLYGON('polygon((30 30, 30 50, 50 50, 50 30, 30 30))')),
 (20, QSYS2.ST_POLYGON('polygon((40 40, 40 60, 60 60, 60 40, 40 40))'));

CREATE VARIABLE my_polygon QSYS2.ST_POLYGON;
SET my_polygon = QSYS2.ST_POLYGON('polygon((20 30, 30 30, 30 40, 20 40, 20 30))');

SELECT polygon_id, QSYS2.ST_DISJOINT(my_polygon, geometry) AS disjoint
 FROM sample_polygons;

Results:

POLYGON_ID DISJOINT
----------- ---------
 10 0
 20 1

ST_DISTANCE scalar function
The ST_DISTANCE function takes two geometry objects as input parameters and returns the shortest
distance, in meters, between any point in the first geometry to any point in the second geometry.

If geometry1 or geometry2 is null, the result is the null value. If geometry1 or geometry2 is empty, an error
is returned.

ST_DISTANCE (geometry1 , geometry2)

geometry1
A value of type ST_GEOMETRY that represents the geometry that is used to compute the distance to
geometry2.

geometry2
A value of type ST_GEOMETRY that represents the geometry that is used to compute the distance to
geometry1.

The result of the function is DOUBLE.

Geospatial Analytics 45

Examples

Find the distance between two points.

CREATE VARIABLE point1 QSYS2.ST_POINT;
CREATE VARIABLE point2 QSYS2.ST_POINT;

SET point1 = QSYS2.ST_POINT('point(10 10)');
SET point2 = QSYS2.ST_POINT('point(11 11)');

SELECT QSYS2.ST_ASTEXT(point1) AS point1,
 QSYS2.ST_ASTEXT(point2) AS point2,
 QSYS2.ST_DISTANCE(point1, point2) as distance
 FROM sysibm.sysdummy1;

Results:

POINT1 POINT2 DISTANCE
------------------ ----------------- ------------------
POINT (10.0 10.0) POINT (11.0 11.0) 156115.9051873017

Example 2

Find the distance between different polygons.

CREATE VARIABLE linestring2 QSYS2.ST_LINESTRING;
CREATE VARIABLE polygon2 QSYS2.ST_POLYGON;

SET linestring2 = QSYS2.ST_LINESTRING('linestring(18 19, 19 19.5)');
SET polygon2 = QSYS2.ST_POLYGON('polygon((20 0, 20 20, 30 20, 30 0, 20 0))');

SELECT QSYS2.ST_GEOMETRYTYPE(linestring2) AS geometry1,
 QSYS2.ST_GEOMETRYTYPE(polygon2) AS geometry2,
 QSYS2.ST_DISTANCE(linestring2, polygon2) as distance
 FROM sysibm.sysdummy1;

Results:

GEOMETRY1 GEOMETRY2 DISTANCE
-------------- ----------- -------------------
ST_LINESTRING ST_POLYGON 104933.77710129759

ST_EQUALS scalar function
The ST_EQUALS function takes two geometry objects as input parameters and returns the integer 1 if the
latitude and longitude of the geometries are equal. Otherwise, the integer 0 (zero) is returned.

The order of the points used to define the geometry is not relevant for the test for equality.

If geometry1 or geometry2 is null, the result is the null value. If geometry1 or geometry2 is empty, 0 (zero)
is returned. If both geometry1 and geometry2 are empty, 1 is returned.

ST_EQUALS (geometry1 , geometry2)

Parameters
geometry1

A value of type ST_GEOMETRY that represents the geometry that is to be compared with geometry2.
geometry2

A value of type ST_GEOMETRY that represents the geometry that is to be compared with geometry1.

The result of the function is INTEGER.

46 IBM i: Geospatial Analytics

Example

Compare two polygons to determine if they are the same. Two geometries are equal if the coordinates are
the same but in a different order. This is demonstrated by the first row in the following table.

CREATE TABLE sample_geometry (geometry_id INTEGER, geometry QSYS2.ST_GEOMETRY);
INSERT INTO sample_geometry VALUES
 (10, QSYS2.ST_POLYGON('polygon((50 30, 30 30, 30 50, 50 50, 50 30))')),
 (20, QSYS2.ST_POLYGON('polygon((10 20, 50 50, 30 50, 30 40, 10 20))'));

CREATE VARIABLE my_polygon QSYS2.ST_POLYGON;
SET my_polygon = QSYS2.ST_POLYGON('polygon((50 30, 50 50, 30 50, 30 30, 50 30))');

SELECT geometry_id, QSYS2.ST_EQUALS(geometry, my_polygon) AS equals
 FROM sample_geometry;

Results:

GEOMETRY_ID EQUALS
------------- -------
 10 1
 20 0

ST_FUZZYGEOHASHCOVER table function
The ST_FUZZYGEOHASHCOVER table function takes a geometry object and a depth as input parameters
and returns a table with one column containing the geohash cover of the minimum bounding rectangle of
the specified geometry at the specified depth.

A geohash cover is the set of geohash cells that are needed to completely cover a given geometry. A
larger depth corresponds to smaller cells, and therefore results in more exact coverage and less area of
the geohash cover that is outside of the geometry. However, when the cells are smaller, more cells are
needed.

The minimum bounding rectangle of a geometry is the bounding geometry formed by the minimum and
maximum (X,Y) coordinates. See “Minimum bounding rectangle” on page 8 for more information.

ST_FUZZYGEOHASHCOVER (geometry , depth)

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry for which the
geohash cover values are to be calculated. If the specified geometry is NULL or empty, one row with a
geohash value of NULL is returned.

depth
An integer value in the range 1 - 45 that determines the size of the geohash cell. The following table
lists some of the most commonly used depths their corresponding approximate cell sizes.

Geohash Depth Approximate Cell Size Description Examples

45 .1 km2 Single point or address GPS-location or house

28 3 km2 Small region city block

23 100 km2 Medium-sized region forest or lake

18 3,000 km2 Large region county or postal code
area

13 100,000 km2 Very large region state or country

Geohash values of two geometries that are to be compared should be computed using the same
depth for a meaningful comparison.

Geospatial Analytics 47

The result of the function is a table containing rows with the format shown in the following table. The
column is nullable.

Table 19. Format of the resulting table for ST_FUZZYGEOHASHCOVER

Column name Data type Contains

GEOHASH BIGINT A geohash value of the minimum bounding
rectangle of the specified point geometry at the
specified depth.

Notes
The number of rows returned by this function cannot exceed 10,000. See “Geohashes and geohash
covers” on page 13 for more information on selecting an appropriate depth value.

Example

The following SQL statement returns the geohash values that cover the minimum bounding box of the
specified polygon geometry at depth 18:

SELECT geohash
 FROM TABLE(
 QSYS2.ST_FUZZYGEOHASHCOVER(QSYS2.ST_POLYGON('polygon((3 3, 3 5, 4 4, 3 3))'), 18));

Results:

GEOHASH

6920906727361609728
6920977096105787392
6920941911733698560
6921012280477876224
6921047464849965056
6921117833594142720
6921082649222053888
6921153017966231552
6921469677315031040
6921540046059208704
6921504861687119872
6921575230431297536
6921610414803386368
6921680783547564032

ST_FUZZYGEOHASHCOVEREXTEND table function
The ST_FUZZYGEOHASHCOVEREXTEND table function takes a geometry object, a depth, and a distance
as input parameters and returns a table with one column containing the geohash cover of the minimum
bounding rectangle of the specified geometry at the specified depth plus a buffer zone surrounding the
specified geometry.

A geohash cover is the set of geohash cells that are needed to completely cover a given geometry. A
larger depth corresponds to smaller cells, and therefore results in more exact coverage and less area of
the geohash cover that is outside of the geometry. However, when the cells are smaller, more cells are
needed.

The buffer zone is the geometry that surrounds the geohash cover by a specified distance.

The minimum bounding rectangle of a geometry is the bounding geometry formed by the minimum and
maximum (X,Y) coordinates. See “Minimum bounding rectangle” on page 8 for more information.

48 IBM i: Geospatial Analytics

Figure 24. Geohash extension where the distance is less than the length of the side of one cell

Figure 25. Geohash extension where the distance is greater than the length of the side of one cell

ST_FUZZYGEOHASHCOVEREXTEND (geometry , depth , distance)

Geospatial Analytics 49

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry for which the
geohash cover values are to be calculated. If the specified geometry is NULL or empty, one row with a
geohash value of NULL is returned.

depth
An integer value in the range 1 - 45 that determines the size of the geohash cell. The following table
lists some of the most commonly used depths and the corresponding approximate cell sizes.

Geohash Depth Approximate Cell Size Description Examples

45 .1 km2 Single point or address GPS-location or house

28 3 km2 Small region city block

23 100 km2 Medium-sized region forest or lake

18 3,000 km2 Large region county or postal code
area

13 100,000 km2 Very large region state or country

Geohash values of two geometries that are to be compared must be computed using the same depth
for a meaningful comparison.

distance
The distance from the edge of the input cell that determines the size of the buffer zone. The value
cannot be negative or null. The unit of measure is meters.

The result of the function is a table containing rows with the format shown in the following table. The
column is nullable.

Table 20. Format of the resulting table for ST_FUZZYGEOHASHCOVEREXTEND

Column name Data type Contains

GEOHASH BIGINT A geohash value of the minimum bounding
rectangle of the specified point geometry at the
specified depth after it has been extended in all
dimensions by the specified distance.

Notes
The number of rows returned by this function cannot exceed 10,000. See “Geohashes and geohash
covers” on page 13 for more information on selecting an appropriate depth value.

Example

The following SQL statement returns the geohash values that cover the minimum bounding box of the
specified polygon geometry at depth 18 with a buffer of 25 kilometers:

SELECT geohash
 FROM TABLE(
 QSYS2.ST_FUZZYGEOHASHCOVEREXTEND(QSYS2.ST_POLYGON('polygon((3 3, 3 5, 4 4, 3 3))'),
 18,
 25000));

Results:

GEOHASH

6918619743175835648
6919393799361789952
6919464168105967616
6919675274338500608

50 IBM i: Geospatial Analytics

6920132671175655424
6920906727361609728
6920977096105787392
6921188202338320384
6920167855547744256
6920941911733698560
6921012280477876224
6921223386710409216
6920273408664010752
6921047464849965056
6921117833594142720
6921328939826675712
6920308593036099584
6921082649222053888
6921153017966231552
6921364124198764544
6920695621129076736
6921469677315031040
6921540046059208704
6921751152291741696
6920730805501165568
6921504861687119872
6921575230431297536
6921786336663830528
6920836358617432064
6921610414803386368
6921680783547564032
6921891889780097024

ST_GEOHASH table function
The ST_GEOHASH table function takes an ST_POINT object and a depth as input parameters and returns a
table with one column containing the geohash of the specified point geometry at the specified depth.

A geohash is a number that uniquely identifies a specific region. The geohash algorithm divides the Earth
into regions, called cells, and converts the latitude and longitude of the center of each cell into a number
that uniquely identifies it. The size of each cell is determined by the depth value. The smaller the depth
value, the larger the cell size.

ST_GEOHASH (point_geometry , depth)

point_geometry
A value of type ST_POINT that represents the point geometry for which the geohash is to be
calculated. If the specified geometry is NULL or empty, one row with a geohash value of NULL is
returned.

depth
An integer value in the range 1 - 45 that determines the size of the geohash cell. The following list
contains some commonly used depths their corresponding approximate cell sizes.

Geohash Depth Approximate Cell Size Description Examples

45 .1 km2 Single point or address GPS-location or house

28 3 km2 Small region city block

23 100 km2 Medium-sized region forest or lake

18 3,000 km2 Large region county or postal code
area

13 100,000 km2 Very large region state or country

Geohash values of two geometries that are to be compared should be computed using the same
depth for a meaningful comparison.

The result of the function is a table containing one row with the format shown in the following table. The
column is nullable.

Geospatial Analytics 51

Table 21. Format of the resulting table for ST_GEOHASH

Column name Data type Contains

GEOHASH BIGINT The geohash value of the specified point geometry
at the specified depth.

Example

The following SQL statement returns the geohash value that covers the specified point geometry at depth
18:

SELECT geohash FROM TABLE(QSYS2.ST_GEOHASH(QSYS2.ST_POINT('point(10 20)'), 18));

Results:

GEOHASH

6970727798239395840

ST_GEOHASHCOVER table function
The ST_GEOHASHCOVER table function takes a geometry object and a depth as input parameters and
returns a table with one column containing the geohash cover of the specified geometry at the specified
depth.

A geohash cover is the set of geohash cells that are needed to completely cover a given geometry. A
larger depth corresponds to smaller cells, and therefore results in more exact coverage and less area of
the geohash cover that is outside of the geometry. However, when the cells are smaller, more cells are
needed.

ST_GEOHASHCOVER (geometry , depth)

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry for which the
geohash cover values are to be calculated. If the specified geometry is NULL or empty, one row with a
geohash value of NULL is returned.

depth
An integer value in the range 1 - 45 that determines the size of the geohash cell. The following list
contains some commonly used depths their corresponding approximate cell sizes.

Geohash Depth Approximate Cell Size Description Examples

45 .1 km2 Single point or address GPS-location or house

28 3 km2 Small region city block

23 100 km2 Medium-sized region forest or lake

18 3,000 km2 Large region county or postal code
area

13 100,000 km2 Very large region state or country

Geohash values of two geometries that are to be compared should be computed using the same
depth for a meaningful comparison.

The result of the function is a table containing rows with the format shown in the following table. The
column is nullable.

52 IBM i: Geospatial Analytics

Table 22. Format of the resulting table for ST_GEOHASHCOVER

Column name Data type Contains

GEOHASH BIGINT A geohash value of the specified point geometry at
the specified depth.

Notes
The number of rows returned by this function cannot exceed 10,000. See “Geohashes and geohash
covers” on page 13 for more information on selecting an appropriate depth value.

Example

The following SQL statement returns the geohash values that cover the specified polygon geometry at
depth 18:

SELECT geohash
 FROM TABLE(
 QSYS2.ST_GEOHASHCOVER(QSYS2.ST_POLYGON('polygon((3 3, 3 5, 4 4, 3 3))'), 18));

Results:

GEOHASH

6920906727361609728
6920941911733698560
6921047464849965056
6921117833594142720
6921082649222053888
6921153017966231552
6921469677315031040
6921540046059208704
6921504861687119872
6921610414803386368

ST_GEOHASHCOVEREXTEND table function
The ST_GEOHASHCOVEREXTEND table function takes a geometry object, a depth, and a distance as input
parameters and returns a table with one column containing the geohash cover of the specified geometry
at the specified depth plus a buffer zone surrounding the specified geometry.

A geohash cover is the set of geohash cells that are needed to completely cover a given geometry. A
larger depth corresponds to smaller cells, and therefore results in more exact coverage and less area of
the geohash cover that is outside of the geometry. However, when the cells are smaller, more cells are
needed.

The buffer zone is the geometry that surrounds the geohash cover by a specified distance.

Geospatial Analytics 53

Figure 26. Geohash extension where the distance is less than the length of the side of one cell

Figure 27. Geohash extension where the distance is greater than the length of the side of one cell

ST_GEOHASHCOVEREXTEND (geometry , depth , distance)

54 IBM i: Geospatial Analytics

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry for which the
geohash cover values are to be calculated. If the specified geometry is NULL or empty, one row with a
geohash value of NULL is returned.

depth
An integer value in the range 1 - 45 that determines the size of the geohash cell. The following table
lists some of the most commonly used depths their corresponding approximate cell sizes.

Geohash Depth Approximate Cell Size Description Examples

45 .1 km2 Single point or address GPS-location or house

28 3 km2 Small region city block

23 100 km2 Medium-sized region forest or lake

18 3,000 km2 Large region county or postal code
area

13 100,000 km2 Very large region state or country

Geohash values of two geometries that are to be compared should be computed using the same
depth for a meaningful comparison.

distance
The distance from the edge of the input cell that determines the size of the buffer zone. The value
cannot be negative or null. The unit of measure is meters.

The result of the function is a table containing rows with the format shown in the following table. The
column is nullable.

Table 23. Format of the resulting table for ST_GEOHASHCOVEREXTEND

Column name Data type Contains

GEOHASH BIGINT A geohash value of the specified point geometry at
the specified depth after it has been extended in all
dimensions by the specified distance.

Notes
The number of rows returned by this function cannot exceed 10,000. See “Geohashes and geohash
covers” on page 13 for more information on selecting an appropriate depth value.

Example

The following SQL statement returns the geohash values that cover the specified polygon geometry at
depth 18 with a buffer of 25 kilometers:

SELECT geohash
FROM TABLE(
 QSYS2.ST_GEOHASHCOVEREXTEND(QSYS2.ST_POLYGON('polygon((3 3, 3 5, 4 4, 3 3))'),
 18,
 25000));

Results:

GEOHASH

6919393799361789952
6920132671175655424
6920906727361609728
6920167855547744256
6920941911733698560

Geospatial Analytics 55

6921012280477876224
6920273408664010752
6921047464849965056
6921117833594142720
6920308593036099584
6921082649222053888
6921153017966231552
6921364124198764544
6920695621129076736
6921469677315031040
6921540046059208704
6920730805501165568
6921504861687119872
6921575230431297536
6920836358617432064
6921610414803386368

ST_GEOHASHVALUE scalar function
The ST_GEOHASHVALUE scalar function takes an ST_POINT object and a depth as input parameters and
returns a number representing the geohash of the specified point geometry at the specified depth.

A geohash is a number that uniquely identifies a specific region. The geohash algorithm divides the Earth
into regions, called cells, and converts the latitude and longitude of the center of each cell into a number
that uniquely identifies it. The size of each cell is determined by the depth value. The smaller the depth
value, the larger the cell size.

ST_GEOHASHVALUE (point_geometry , depth)

point_geometry
A value of type ST_POINT that represents the point geometry for which the geohash is to be
calculated. If the specified geometry is NULL or empty, NULL is returned.

depth
An integer value in the range 1 - 45 that determines the size of the geohash cell. The following list
contains some commonly used depths their corresponding approximate cell sizes.

Geohash Depth Approximate Cell Size Description Examples

45 .1 km2 Single point or address GPS-location or house

28 3 km2 Small region city block

23 100 km2 Medium-sized region forest or lake

18 3,000 km2 Large region county or postal code
area

13 100,000 km2 Very large region state or country

Geohash values of two geometries that are to be compared should be computed using the same
depth for a meaningful comparison.

The result of the function is BIGINT.

Example

The following SQL statement returns the geohash values for point geometries at depth 23:

CREATE TABLE EXAMPLE_POINTS (GEO_ID CHAR(5), GEO QSYS2.ST_POINT);

INSERT INTO EXAMPLE_POINTS VALUES
 ('11111', QSYS2.ST_POINT(10, 10)),
 ('22222', QSYS2.ST_POINT(15, 15)),
 ('33333', QSYS2.ST_POINT(-10, -10));

SELECT QSYS2.ST_GEOHASHVALUE(GEO, 23) AS GEOHASH FROM EXAMPLE_POINTS;

56 IBM i: Geospatial Analytics

Results:

GEOHASH

6935265249708736512
6975174223262121984
2288105687634411520

ST_GEOMCOLLECTION scalar function
The ST_GEOMCOLLECTION function constructs a geometry collection.

If wkt or wkb is null, the result is the null value. An empty geometry collection is not supported.

ST_GEOMCOLLECTION (wkt

wkb

)

wkt
An expression that returns a character or graphic string value that contains the well-known text (WKT)
format of the resulting geometry collection.

wkb
An expression that returns a binary string value that contains the well-known binary (WKB) format of
the resulting geometry collection.

The result of the function is ST_GEOMCOLLECTION. If the argument is null, the result is the null value.

For details about the supported formats, see “WKT and WKB data formats” on page 14.

Example

The ST_GEOMCOLLECTION function can be used to create and insert a multipoint, multiline, and
multipolygon from well-known text representation.

CREATE TABLE sample_geomcollections(id INTEGER,
 geometry QSYS2.ST_GEOMCOLLECTION);

INSERT INTO sample_geomcollections(id, geometry) VALUES
 (4001, QSYS2.ST_GEOMCOLLECTION('multipoint((1 2), (4 3), (5 6))')),
 (4002, QSYS2.ST_GEOMCOLLECTION('multilinestring((33 2, 34 3, 35 6),(28 4, 29 5, 31 8, 43 12),
 (39 3, 37 4, 36 7))')),
 (4003, QSYS2.ST_GEOMCOLLECTION('multipolygon(((3 3, 4 6, 5 3, 3 3)),
 ((8 24, 9 25, 1 28, 8 24)),
 ((13 33, 7 36, 1 40, 10 43, 13 33)))'));

SELECT id, QSYS2.ST_ASTEXT(geometry) AS GeomCollection
 FROM sample_geomcollections;

Results:

ID GEOMCOLLECTION
------------ ---
 4001 MULTIPOINT ((1.0 2.0), (4.0 3.0), (5.0 6.0))
 4002 MULTILINESTRING ((33.0 2.0, 34.0 3.0, 35.0 6.0),
 (28.0 4.0, 29.0 5.0, 31.0 8.0, 43.0 12.0),
 (39.0 3.0, 37.0 4.0, 36.0 7.0))
 4003 MULTIPOLYGON (((13.0 33.0, 10.0 43.0, 1.0 40.0, 7.0 36.0, 13.0 33.0)),
 ((3.0 3.0, 5.0 3.0, 4.0 6.0, 3.0 3.0)),
 ((8.0 24.0, 9.0 25.0, 1.0 28.0, 8.0 24.0)))

ST_GEOMETRY scalar function
The ST_GEOMETRY function constructs a geometry from a specified representation.

If wkt or wkb is null, the result is the null value. If wkt is 'POINT EMPTY', an empty geometry is returned.
There is no WKB representation for an empty geometry.

Geospatial Analytics 57

ST_GEOMETRY (wkt

wkb

)

wkt
An expression that returns a character or graphic string value that contains the well-known text (WKT)
format of the resulting geometry.

wkb
An expression that returns a binary string value that contains the well-known binary (WKB) format of
the resulting geometry.

The result of the function is ST_GEOMETRY. If the argument is null, the result is the null value.

For details about the supported formats, see “WKT and WKB data formats” on page 14.

Example

Use the ST_GEOMETRY function to construct a point, a linestring, and a polygon.

CREATE TABLE sample_geometries(id INTEGER, geometry QSYS2.ST_GEOMETRY);

INSERT INTO sample_geometries(id, geometry) VALUES
 (7001, QSYS2.ST_GEOMETRY('point(1 2)')),
 (7002, QSYS2.ST_GEOMETRY('linestring(33 2, 34 3, 35 6)')),
 (7003, QSYS2.ST_GEOMETRY('polygon((3 3, 4 6, 5 3, 3 3))'));

SELECT id, QSYS2.ST_ASTEXT(geometry) AS geometry
 FROM sample_geometries;

Results:

ID GEOMETRY
------ --
 7001 POINT (1.0 2.0)
 7002 LINESTRING (33.0 2.0, 34.0 3.0, 35.0 6.0)
 7003 POLYGON ((3.0 3.0, 5.0 3.0, 4.0 6.0, 3.0 3.0))

ST_GEOMETRYTYPE scalar function
The ST_GEOMETRYTYPE function takes a geometry object as an input parameter and returns the fully
qualified type name of the dynamic type of the specified geometry.

If geometry is null, the result is the null value. If geometry is empty, "EMPTYGEOMETRY" is returned.

ST_GEOMETRYTYPE (geometry)

geometry
A value of type ST_GEOMETRY for which the geometry type is to be returned.

The result of the function is VARCHAR(128).

Example

Determine the type of a geometry.

CREATE TABLE sample_geometries (id INTEGER, geometry QSYS2.ST_GEOMETRY);

INSERT INTO sample_geometries(id, geometry) VALUES
 (7101, QSYS2.ST_POINT('point(1 2)')),
 (7102, QSYS2.ST_LINESTRING('linestring(33 2, 34 3, 35 6)')),
 (7103, QSYS2.ST_POLYGON('polygon((3 3, 4 6, 5 3, 3 3))')),
 (7104, QSYS2.ST_MULTIPOINT('multipoint((1 2), (4 3))'));

SELECT id, QSYS2.ST_GEOMETRYTYPE(geometry) AS geometry_type
 FROM sample_geometries;

58 IBM i: Geospatial Analytics

Results:

ID GEOMETRY_TYPE
------ ----------------
 7101 ST_POINT
 7102 ST_LINESTRING
 7103 ST_POLYGON
 7104 ST_MULTIPOINT

ST_INTERSECTION scalar function
The ST_INTERSECTION function takes two geometry objects as input parameters and returns the
geometry that is the intersection of the two specified geometries.

The intersection is the common part of the first geometry and the second geometry.

If possible, the specific type of the returned geometry will be ST_POINT, ST_LINESTRING, or
ST_POLYGON. For example, the intersection of a point and a polygon is either empty or a single point,
represented as ST_POINT.

If geometry1 or geometry2 is null, the result is the null value. If geometry1 or geometry2 is empty, an
empty geometry is returned.

ST_INTERSECTION (geometry1 , geometry2)

geometry1
A value of type ST_GEOMETRY or one of its subtypes that represents the first geometry to compute
the intersection with geometry2.

geometry2
A value of type ST_GEOMETRY or one of its subtypes that represents the second geometry to compute
the intersection with geometry1.

The result of the function is ST_GEOMETRY.

The dimension of the returned geometry is that of the input with the lower dimension.

Example

Find the intersection of two geometries.

CREATE TABLE sample_geometries (id INTEGER, geometry QSYS2.ST_GEOMETRY);

INSERT INTO sample_geometries VALUES
 (2, QSYS2.ST_POLYGON('polygon((20 30, 30 30, 30 40, 20 40, 20 30))')),
 (3, QSYS2.ST_POLYGON('polygon((40 40, 40 60, 60 60, 60 40, 40 40))')),
 (4, QSYS2.ST_LINESTRING('linestring(60 60, 70 70)')),
 (5, QSYS2.ST_LINESTRING('linestring(30 30, 60 60)'));

CREATE VARIABLE my_linestring QSYS2.ST_LINESTRING;
SET my_linestring = QSYS2.ST_LINESTRING('linestring(30 30, 60 60)');

SELECT id, QSYS2.ST_ASTEXT(QSYS2.ST_INTERSECTION(my_linestring, geometry)) AS intersection
 FROM sample_geometries;

Results:

ID INTERSECTION
------ --
 2 LINESTRING (30.0 30.0, 30.0 30.0)
 3 LINESTRING (40.0 44.898573, 60.0 60.0)
 4 POINT (60.0 60.0)
 5 LINESTRING (30.0 30.0, 60.0 60.0)

Geospatial Analytics 59

ST_INTERSECTS scalar function
The ST_INTERSECTS function takes two geometry objects as input parameters and returns the integer
value 1 if the specified geometries intersect. If the geometries do not intersect, the integer value 0 (zero)
is returned.

ST_INTERSECTS returns the exact opposite result of ST_DISJOINT.

If geometry1 or geometry2 is null, the result is the null value. If geometry1 or geometry2 is empty, 0 (zero)
is returned.

ST_INTERSECTS (geometry1 , geometry2)

geometry1
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry to test for
intersection with geometry2.

geometry2
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry to test for
intersection with geometry1.

The result of the function is INTEGER.

Notes
Two geometries intersect if any of the following conditions are true:

• the interior of geometry1 intersects the interior of geometry2.
• the interior of geometry1 intersects the boundary of geometry2.
• the boundary of geometry1 intersects the interior of geometry2.
• the boundaries of either geometry intersect.

Example

Determine whether the various geometries in the SAMPLE_GEOMETRIES1 and SAMPLE_GEOMETRIES2
tables intersect.

CREATE TABLE sample_geometries1(id SMALLINT, geometry QSYS2.ST_GEOMETRY);
CREATE TABLE sample_geometries2(id SMALLINT, geometry QSYS2.ST_GEOMETRY);

INSERT INTO sample_geometries1(id, geometry) VALUES
 (1, QSYS2.ST_POINT('point(55 15)')),
 (10, QSYS2.ST_LINESTRING('linestring(80 80, 90 80)')),
 (20, QSYS2.ST_POLYGON('polygon((50 10, 50 20, 70 20, 70 10, 50 10))'));

INSERT INTO sample_geometries2(id, geometry) VALUES
 (101, QSYS2.ST_POINT('point(55 15)')),
 (102, QSYS2.ST_POINT('point(65 20)')),
 (103, QSYS2.ST_POINT('point(80 80)')),
 (110, QSYS2.ST_LINESTRING('linestring(85 25, 85 85)')),
 (120, QSYS2.ST_POLYGON('polygon((65 50, 65 15, 80 15, 80 50, 65 50))')),
 (121, QSYS2.ST_POLYGON('polygon((20 20, 20 40, 40 40, 40 20, 20 20))'));

SELECT sg1.id AS sg1_id, QSYS2.ST_GEOMETRYTYPE(sg1.geometry) AS sg1_type,
 sg2.id AS sg2_id, QSYS2.ST_GEOMETRYTYPE(sg2.geometry) AS sg2_type,
 CASE QSYS2.ST_INTERSECTS(sg1.geometry, sg2.geometry)
 WHEN 0 THEN 'Geometries do not intersect'
 WHEN 1 THEN 'Geometries intersect'
 END AS intersects
 FROM sample_geometries1 sg1, sample_geometries2 sg2
 ORDER BY sg1.id;

Results:

SG1_ID SG1_TYPE SG2_ID SG2_TYPE INTERSECTS

60 IBM i: Geospatial Analytics

------ ------------- ------ ------------- -----------------------
 1 ST_POINT 101 ST_POINT Geometries intersect
 1 ST_POINT 102 ST_POINT Geometries do not intersect
 1 ST_POINT 103 ST_POINT Geometries do not intersect
 1 ST_POINT 110 ST_LINESTRING Geometries do not intersect
 1 ST_POINT 120 ST_POLYGON Geometries do not intersect
 1 ST_POINT 121 ST_POLYGON Geometries do not intersect
 10 ST_LINESTRING 101 ST_POINT Geometries do not intersect
 10 ST_LINESTRING 102 ST_POINT Geometries do not intersect
 10 ST_LINESTRING 103 ST_POINT Geometries intersect
 10 ST_LINESTRING 110 ST_LINESTRING Geometries intersect
 10 ST_LINESTRING 120 ST_POLYGON Geometries do not intersect
 10 ST_LINESTRING 121 ST_POLYGON Geometries do not intersect
 20 ST_POLYGON 101 ST_POINT Geometries intersect
 20 ST_POLYGON 102 ST_POINT Geometries intersect
 20 ST_POLYGON 103 ST_POINT Geometries do not intersect
 20 ST_POLYGON 110 ST_LINESTRING Geometries do not intersect
 20 ST_POLYGON 120 ST_POLYGON Geometries intersect
 20 ST_POLYGON 121 ST_POLYGON Geometries do not intersect

ST_ISSIMPLE scalar function
The ST_ISSIMPLE function takes a geometry object as an input parameter and returns the integer value 1
if the specified geometry is simple. Otherwise, the integer value 0 (zero) is returned.

Points are always simple.

If geometry is null, the result is the null value. An empty geometry is a simple geometry.

ST_ISSIMPLE (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry to be tested.

The result of the function is INTEGER.

Example

Return an indication of whether a geometry is simple or not.

CREATE TABLE sample_geometries1 (id INTEGER, geometry QSYS2.ST_GEOMETRY);

INSERT INTO sample_geometries1 VALUES
 (1, QSYS2.ST_GEOMETRY('point EMPTY')),
 (2, QSYS2.ST_POINT('point (21 33)')),
 (3, QSYS2.ST_MULTIPOINT('multipoint((10 10), (20 20), (30 30))')),
 (4, QSYS2.ST_MULTIPOINT('multipoint((10 10), (20 20), (30 30), (20 20))')),
 (5, QSYS2.ST_LINESTRING('linestring(60 60, 70 60, 70 70)')),
 (6, QSYS2.ST_LINESTRING('linestring(20 20, 30 30, 30 20, 20 30)')),
 (7, QSYS2.ST_POLYGON('polygon((40 40, 50 40, 50 50, 40 40))'));

SELECT id,
 CASE QSYS2.ST_ISSIMPLE(geometry)
 WHEN 0 THEN 'Geometry is not simple'
 WHEN 1 THEN 'Geometry is simple'
 END AS simple
 FROM sample_geometries1;

Results:

ID SIMPLE
--- ----------------
 1 Geometry is simple
 2 Geometry is simple
 3 Geometry is simple
 4 Geometry is simple
 5 Geometry is simple
 6 Geometry is not simple
 7 Geometry is simple

Geospatial Analytics 61

ST_ISVALID scalar function
The ST_ISVALID function takes a geometry as an input parameter and returns 1 if it is valid. Otherwise 0
(zero) is returned.

A geometry is valid if the attributes are consistent and the internal representation is not corrupted.

If geometry is null, the result is the null value. An empty geometry is valid.

ST_ISVALID (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes.

The result of the function is INTEGER.

Example

This example creates several geometries and uses ST_ISVALID to check if they are valid. Geometries that
use the constructor routines, such as ST_GEOMETRY, do not allow invalid geometries to be constructed.
Any type of empty geometry must be constructed as an ST_GEOMETRY.

CREATE TABLE sample_geoms (id INTEGER, geometry QSYS2.ST_GEOMETRY);

INSERT INTO sample_geoms VALUES
 (1, QSYS2.ST_GEOMETRY('point EMPTY')),
 (2, QSYS2.ST_POLYGON('polygon((40 20, 90 20, 90 50, 40 50, 40 20))')),
 (3, QSYS2.ST_MULTIPOINT('multipoint((10 10), (50 10), (10 30))')),
 (4, QSYS2.ST_LINESTRING('linestring (10 10, 20 10)')),
 (5, BLOB('point(10 10)'));

SELECT id, QSYS2.ST_ISVALID(geometry) Is_Valid
FROM sample_geoms;

Results:

ID IS_VALID
---- -------
 1 1
 2 1
 3 1
 4 1
 5 0

ST_LINESTRING scalar function
The ST_LINESTRING function constructs a linestring from specified inputs.

If wkt or wkb is null, the result is the null value. An empty linestring is not supported.

ST_LINESTRING (wkt

wkb

)

wkt
An expression that returns a character or graphic string value that contains the well-known text (WKT)
format of the resulting linestring.

wkb
An expression that returns a binary string value that contains the well-known binary (WKB) format of
the resulting linestring.

The result of the function is ST_LINESTRING. If the argument is null, the result is the null value.

For details about the supported formats, see “WKT and WKB data formats” on page 14.

62 IBM i: Geospatial Analytics

Example

Use the ST_LINESTRING function to insert lines into a table using a well-known text line representation.

CREATE TABLE sample_lines(id SMALLINT, geometry QSYS2.ST_LINESTRING);
INSERT INTO sample_lines(id, geometry) VALUES
 (10, QSYS2.ST_LINESTRING('linestring(50 50, 85 75)')),
 (20, QSYS2.ST_LINESTRING('linestring(1 10, 2 20)'));

SELECT id, QSYS2.ST_ASTEXT(geometry) AS linestring
 FROM sample_lines;

Results:

ID LINESTRING
---- ----------------------------------
 10 LINESTRING (50.0 50.0, 85.0 75.0)
 20 LINESTRING (1.0 10.0, 2.0 20.0)

ST_MAXX scalar function
The ST_MAXX function takes a geometry object as an input parameter and returns a double precision
floating point value of the maximum X coordinate.

If geometry is null or an empty geometry, the result is the null value.

ST_MAXX (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes for which the maximum X coordinate is returned.

The result of the function is DOUBLE.

Example

Finds the maximum X coordinate of each polygon in SAMPLE_POLYGONS.

CREATE TABLE sample_polygons (id INTEGER, geometry QSYS2.ST_POLYGON);

INSERT INTO sample_polygons VALUES
 (1, QSYS2.ST_POLYGON('polygon ((11 12, 11 14, 12 13, 11 12))')),
 (2, QSYS2.ST_POLYGON('polygon ((0 0, 0 4, 5 4, 5 0, 0 0))')),
 (3, QSYS2.ST_POLYGON('polygon ((-12 -13, -8 -4, -9 -4, -12 -13))'));

SELECT id, QSYS2.ST_MAXX(geometry) max_x
 FROM sample_polygons;

Results:

ID MAX_X
---- -------
 1 12.0
 2 5.0
 3 -8.0

ST_MAXY scalar function
The ST_MAXY function takes a geometry object as an input parameter and returns a double precision
floating point value of the maximum Y coordinate.

If geometry is null or an empty geometry, the result is the null value.

ST_MAXY (geometry)

Geospatial Analytics 63

geometry
A value of type ST_GEOMETRY or one of its subtypes for which the maximum Y coordinate is returned.

The result of the function is DOUBLE.

Example

Finds the maximum Y coordinate of each polygon in SAMPLE_POLYGONS.

CREATE TABLE sample_polygons (id INTEGER, geometry QSYS2.ST_POLYGON);

INSERT INTO sample_polygons VALUES
 (1, QSYS2.ST_POLYGON('polygon ((11 12, 11 14, 12 13, 11 12))')),
 (2, QSYS2.ST_POLYGON('polygon ((0 0, 0 4, 5 4, 5 0, 0 0))')),
 (3, QSYS2.ST_POLYGON('polygon ((-12 -13, -8 -4, -9 -4, -12 -13))'));

SELECT id, QSYS2.ST_MAXY(geometry) max_y
 FROM sample_polygons;

Results:

ID MAX_Y
---- --------------------
 1 14.0
 2 4.003798353045168
 3 -3.9999999999999996

ST_MINX scalar function
The ST_MINX function takes a geometry object as an input parameter and returns a double precision
floating point value of the minimum X coordinate.

If geometry is null or an empty geometry, the result is the null value.

ST_MINX (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes for which the minimum X coordinate is returned.

The result of the function is DOUBLE.

Example

Finds the minimum X coordinate of each polygon in SAMPLE_POLYGONS.

CREATE TABLE sample_polygons (id INTEGER, geometry QSYS2.ST_POLYGON);

INSERT INTO sample_polygons VALUES
 (1, QSYS2.ST_POLYGON('polygon ((11 12, 11 14, 12 13, 11 12))')),
 (2, QSYS2.ST_POLYGON('polygon ((0 0, 0 4, 5 4, 5 0, 0 0))')),
 (3, QSYS2.ST_POLYGON('polygon ((-12 -13, -8 -4, -9 -4, -12 -13))'));

SELECT id, QSYS2.ST_MINX(geometry) min_x
 FROM sample_polygons;

Results:

ID MIN_X
---- -------
 1 11.0
 2 0.0
 3 -12.0

64 IBM i: Geospatial Analytics

ST_MINY scalar function
The ST_MINY function takes a geometry object as an input parameter and returns a double precision
floating point value of the minimum Y coordinate.

If geometry is null or an empty geometry, the result is the null value.

ST_MINY (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes for which the minimum Y coordinate is returned.

The result of the function is DOUBLE.

Example

Finds the minimum Y coordinate of each polygon in SAMPLE_POLYGONS.

CREATE TABLE sample_polygons (id INTEGER, geometry QSYS2.ST_POLYGON);

INSERT INTO sample_polygons VALUES
 (1, QSYS2.ST_POLYGON('polygon ((11 12, 11 14, 12 13, 11 12))')),
 (2, QSYS2.ST_POLYGON('polygon ((0 0, 0 4, 5 4, 5 0, 0 0))')),
 (3, QSYS2.ST_POLYGON('polygon ((-12 -13, -8 -4, -9 -4, -12 -13))'));

SELECT id, QSYS2.ST_MINY(geometry) min_y
 FROM sample_polygons;

Results:

ID MIN_Y
---- -------------------
 1 12.000000000000002
 2 0.0
 3 -12.999999999999998

ST_MULTILINESTRING scalar function
The ST_MULTILINESTRING function constructs a multilinestring from a specified input.

If wkt or wkb is null, the result is the null value. An empty multilinestring is not supported.

ST_MULTILINESTRING (wkt

wkb

)

wkt
An expression that returns a character or graphic string value that contains the well-known text (WKT)
format of the resulting multilinestring.

wkb
An expression that returns a binary string value that contains the well-known binary (WKB) format of
the resulting multilinestring.

The result of the function is ST_MULTILINESTRING. If the argument is null, the result is the null value.

For details about the supported formats, see “WKT and WKB data formats” on page 14.

Geospatial Analytics 65

Example

Use the ST_MULTILINESTRING function to create and insert a multilinestring from a well-known text
linestring representation. The multilinestring consists of three strings.

CREATE TABLE sample_multi_lines (id SMALLINT, geometry QSYS2.ST_MULTILINESTRING);

INSERT INTO sample_multi_lines(id, geometry) VALUES
 (1110, QSYS2.ST_MULTILINESTRING ('multilinestring ((33 2, 34 3, 35 6),
 (28 4, 29 5, 31 8, 43 12),
 (39 3, 37 4, 36 7))'));

SELECT id, QSYS2.ST_ASTEXT(geometry) AS multilinestring
 FROM sample_multi_lines;

Results:

ID MULTILINESTRING
---- --
1110 MULTILINESTRING ((33.0 2.0, 34.0 3.0, 35.0 6.0),
 (28.0 4.0, 29.0 5.0, 31.0 8.0, 43.0 12.0),
 (39.0 3.0, 37.0 4.0, 36.0 7.0))

ST_MULTIPOINT scalar function
The ST_MULTIPOINT function constructs a multipoint from a specified input.

If wkt or wkb is null, the result is the null value. An empty multipoint is not supported.

ST_MULTIPOINT (wkt

wkb

)

wkt
An expression that returns a character or graphic string value that contains the well-known text (WKT)
format of the resulting multipoint.

wkb
An expression that returns a binary string value that contains the well-known binary (WKB) format of
the resulting multipoint.

The result of the function is ST_MULTIPOINT. If the argument is null, the result is the null value.

For details about the supported formats, see “WKT and WKB data formats” on page 14.

Example

Use the ST_MULTIPOINT function to create and insert a multipoint from a well-known text line
representation. The multipoint consists of three points.

CREATE TABLE sample_multi_points (id SMALLINT, geometry QSYS2.ST_MULTIPOINT);
INSERT INTO sample_multi_points(id, geometry) VALUES
 (1110, QSYS2.ST_MULTIPOINT ('multipoint ((1 20), (4 3), (5 6))'));

SELECT id, QSYS2.ST_ASTEXT(geometry) AS multipoints
 FROM sample_multi_points;

Results:

ID MULTIPOINTS
---- --
1110 MULTIPOINT ((1.0 20.0), (4.0 3.0), (5.0 6.0))

66 IBM i: Geospatial Analytics

ST_MULTIPOLYGON scalar function
The ST_MULTIPOLYGON function constructs a multipolygon from a specified input.

If wkt or wkb is null, the result is the null value. An empty multipolygon is not supported.

ST_MULTIPOLYGON (wkt

wkb

)

wkt
An expression that returns a character or graphic string value that contains the well-known text (WKT)
format of the resulting multipolygon.

wkb
An expression that returns a binary string value that contains the well-known binary (WKB) format of
the resulting multipolygon.

The result of the function is ST_MULTIPOLYGON. If the argument is null, the result is the null value.

For details about the supported formats, see “WKT and WKB data formats” on page 14.

Example

Use the ST_MULTIPOLYGON function to create and insert a multipolygon from a well-known text
multipolygon representation.

CREATE TABLE sample_multi_polygon (id SMALLINT, geometry QSYS2.ST_MULTIPOLYGON);
INSERT INTO sample_multi_polygon(id, geometry) VALUES
 (1110, QSYS2.ST_MULTIPOLYGON ('multipolygon(((3 3, 4 6, 5 3, 3 3)),((8 24, 9 25, 1 28, 8 24)),
 ((13 33, 7 36, 1 40, 10 43, 13 33)))'));

SELECT id, QSYS2.ST_ASTEXT(geometry) AS multipolygons
 FROM sample_multi_polygon;

Results:

ID MULTIPOLYGONS
---- ---
1110 MULTIPOLYGON (((13.0 33.0, 10.0 43.0, 1.0 40.0, 7.0 36.0, 13.0 33.0)),
 ((3.0 3.0, 5.0 3.0, 4.0 6.0, 3.0 3.0)),
 ((8.0 24.0, 9.0 25.0, 1.0 28.0, 8.0 24.0)))

ST_NUMPOINTS scalar function
The ST_NUMPOINTS function takes a geometry as an input parameter and returns the number of points
that were used to define that geometry. For example, if the geometry is a polygon and five points were
used to define that polygon, then the returned number is 5.

If geometry is null, the result is the null value. If geometry is empty, 0 (zero) is returned.

ST_NUMPOINTS (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes for which the number of points is returned.

The result of the function is INTEGER.

Example

For a variety of geometries in a table, use ST_NUMPOINTS to determine how many points are within each
geometry.

CREATE TABLE sample_geometries (id VARCHAR(18), geometry QSYS2.ST_GEOMETRY);

Geospatial Analytics 67

INSERT INTO sample_geometries (id, geometry)
 VALUES (1, QSYS2.ST_POINT('point (44 14)')),
 (2, QSYS2.ST_LINESTRING('linestring (0 0, 20 20)')),
 (3, QSYS2.ST_POLYGON('polygon((0 0, 0 40, 40 40, 40 0, 0 0))')),
 (4, QSYS2.ST_MULTIPOINT('multipoint((0 0), (10 20), (15 20), (30 30))')),
 (5, QSYS2.ST_MULTILINESTRING('MultiLineString((10 10, 20 20), (15 15, 30 15))')),
 (6, QSYS2.ST_MULTIPOLYGON('MultiPolygon(((10 10, 10 20, 20 20, 20 15, 10 10)),
 ((60 60, 70 70, 80 60, 60 60)))'));

SELECT id, QSYS2.ST_GEOMETRYTYPE(geometry) AS spatial_type,
 QSYS2.ST_NUMPOINTS (geometry) AS num_points
 FROM sample_geometries;

Results:

ID SPATIAL_TYPE NUM_POINTS
-- --------------- ----------
 1 ST_POINT 1
 2 ST_LINESTRING 2
 3 ST_POLYGON 5
 4 ST_MULTIPOINT 4
 5 ST_MULTILINESTRING 4
 6 ST_MULTIPOLYGON 9

ST_OVERLAPS scalar function
The ST_OVERLAPS function takes two geometries as input parameters. If the intersection of the
geometries results in a geometry of the same dimension but is not equal to either of the given geometries,
it returns 1. Otherwise, it returns 0 (zero).

If geometry1 or geometry2 is null, the result is the null value. If geometry1 or geometry2 is empty, 0 (zero)
is returned.

ST_OVERLAPS (geometry1 , geometry2)

geometry1
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is tested to
overlap with geometry2.

geometry2
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is tested to
overlap with geometry1.

The result of the function is an INTEGER.

Example

Determine if two lines overlap.

VALUES CASE QSYS2.ST_OVERLAPS(QSYS2.ST_LINESTRING('linestring(50 12, 50 10, 60 8)'),
 QSYS2.ST_LINESTRING('linestring(50 10, 50 12, 45 10)'))
 WHEN 0 THEN 'Lines do not overlap'
 WHEN 1 THEN 'Lines overlap'
 END;

Results:

Lines overlap

ST_POINT scalar function
The ST_POINT function constructs a point from specified inputs.

If x-coordinate, y-coordinate, wkt or wkb is null, the result is the null value. An empty point is not
supported.

68 IBM i: Geospatial Analytics

ST_POINT (x-coordinate , y-coordinate

wkt

wkb

)

x-coordinate
An expression that returns a numeric value that specifies the X coordinate for the resulting point.

y-coordinate
An expression that returns a numeric value that specifies the Y coordinate for the resulting point.

wkt
An expression that returns a character or graphic string value that contains the well-known text (WKT)
format of the resulting point.

wkb
An expression that returns a binary string value that contains the well-known binary (WKB) format of
the resulting point.

The result of the function is ST_POINT. If any of the arguments is null, the result is the null value.

For details about the supported formats, see “WKT and WKB data formats” on page 14.

Example

Use the ST_POINT function to insert two points into a table. One point uses x- and y-coordinate values
and the other point provides a well-known text (WKT) point representation.

CREATE TABLE sample_points (id SMALLINT, geometry QSYS2.ST_POINT);
INSERT INTO sample_points(id, geometry)
 VALUES(10, QSYS2.ST_POINT(10, 20)),
 (20, QSYS2.ST_POINT('point (30 40)'));

SELECT id, QSYS2.ST_ASTEXT(geometry) AS points
 FROM sample_points;

Results:

ID POINTS
---- ----------------------------------
 10 POINT (10.0 20.0)
 20 POINT (30.0 40.0)

ST_POLYGON scalar function
The ST_POLYGON function constructs a polygon from a specified input.

If wkt or wkb is null, the result is the null value. An empty polygon is not supported.

ST_POLYGON (wkt

wkb

)

wkt
An expression that returns a character or graphic string value that contains the well-known text (WKT)
format of the resulting polygon.

wkb
An expression that returns a binary string value that contains the well-known binary (WKB) format of
the resulting polygon.

The result of the function is ST_POLYGON. If the argument is null, the result is the null value.

For details about the supported formats, see “WKT and WKB data formats” on page 14.

Geospatial Analytics 69

Example

Use the ST_POLYGON function to create and insert two polygons from a well-known text polygon
representation.

CREATE TABLE sample_polygons (id INTEGER, geometry QSYS2.ST_POLYGON);
INSERT INTO sample_polygons VALUES
 (1101, QSYS2.ST_POLYGON('polygon((10 20, 10 40, 20 30, 10 20))')),
 (1102, QSYS2.ST_POLYGON('polygon((10 20, 10 40, 30 40, 30 20, 10 20),
 (15 25, 15 35, 25 35, 25 35, 15 25))'));

SELECT id, QSYS2.ST_ASTEXT(geometry) as polygons FROM sample_polygons;

Results:

ID POLYGONS
---- --
1101 POLYGON ((10.0 20.0, 20.0 30.0, 10.0 40.0, 10.0 20.0))
1102 POLYGON ((10.0 20.0, 30.0 20.0, 30.0 40.0, 10.0 40.0, 10.0 20.0),
 (15.0 25.0, 15.0 35.0, 25.0 35.0, 25.0 35.0, 15.0 25.0))

ST_SRSID scalar function
The ST_SRSID function takes a geometry as an input parameter and returns the integer value of the
spatial reference system identifier.

If geometry is null, the result is the null value. If geometry is empty, the default spatial reference system
identifier is returned.

ST_SRSID (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry for which the
spatial reference system identifier is to be set or returned.

The result of the function is INTEGER.

Example

The ID of the spatial reference system that is associated with each point can be found by using the
ST_SRSID function.

CREATE TABLE sample_points (id INTEGER, geometry QSYS2.ST_POINT);

INSERT INTO sample_points VALUES
 (1, QSYS2.ST_POINT('point (80 80)')),
 (2, QSYS2.ST_POINT('point (-92.50358 44.05847)'));

SELECT id, QSYS2.ST_SRSID(geometry) srsid
 FROM sample_points;

Results:

ID SRSID
---- -------
 1 4326
 2 4326

ST_SRSNAME scalar function
The ST_SRSNAME function takes a geometry as an input parameter and returns the name of the spatial
reference system in which the specified geometry is represented.

If geometry is null, the result is the null value. If geometry is empty, the default spatial reference system
name is returned.

70 IBM i: Geospatial Analytics

ST_SRSNAME (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry for which the name
of the spatial reference system is returned.

The result of the function is VARCHAR(128).

Example

The name of the spatial reference system that is associated with each point can be found by using the
ST_SRSNAME function.

CREATE TABLE sample_points (id INTEGER, geometry QSYS2.ST_POINT);

INSERT INTO sample_points VALUES
 (1, QSYS2.ST_POINT('point (80 80)')),
 (2, QSYS2.ST_POINT('point (-92.50358 44.05847)'));

SELECT id, QSYS2.ST_SRSNAME(geometry) srsname
 FROM sample_points;

Results:

ID SrsName
---- -------
 1 WGS84_SRS_4326
 2 WGS84_SRS_4326

ST_SYMDIFFERENCE scalar function
The ST_SYMDIFFERENCE function takes two geometry objects as input parameters and returns the
geometry object that is the symmetrical difference of the two geometries. The symmetrical difference is
the non-intersecting part of the two specified geometries.

If the geometries are equal, an empty geometry is returned. The resulting geometry is represented in the
most appropriate spatial type.

If geometry1 or geometry2 is null, the result is the null value. If geometry1 and geometry2 are empty,
an empty geometry is returned. If only one of geometry1 and geometry2 is empty, the other geometry is
returned.

ST_SYMDIFFERENCE (geometry1 , geometry2)

geometry1
A value of type ST_GEOMETRY or one of its subtypes that represents the first geometry to compute
the symmetrical difference with geometry2.

geometry2
A value of type ST_GEOMETRY or one of its subtypes that represents the second geometry to compute
the symmetrical difference with geometry1.

The result of the function is ST_GEOMETRY.

Example

Find the symmetrical difference of two polygons.

SELECT QSYS2.ST_ASTEXT(QSYS2.ST_SYMDIFFERENCE
 (QSYS2.ST_POLYGON('polygon((10 10,10 20,20 20,20 10,10 10))'),
 QSYS2.ST_POLYGON('polygon((30 30,30 50,50 50,50 30,30 30))')))
 AS SYMMETRICAL_DIFFERENCE
 FROM SYSIBM.SYSDUMMY1;

Geospatial Analytics 71

Results:

SYMMETRICAL_DIFFERENCE

GEOMETRYCOLLECTION (POLYGON ((10.0 10.0, 20.0 10.0, 20.0 20.0, 10.0 20.0, 10.0 10.0)),
 POLYGON ((30.0 30.0, 50.0 30.0, 50.0 50.0, 30.0 50.0, 30.0 30.0)))

ST_TOLINESTRING scalar function
The ST_TOLINESTRING function takes a geometry as an input parameter and converts it to a linestring.

The specified geometry must be a linestring.

If geometry is null, the result is the null value. An empty linestring is not supported.

ST_TOLINESTRING (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is converted to
a linestring.
A geometry can be converted to a linestring if it is a linestring. If the conversion cannot be performed,
then an exception condition is raised.

The result of the function is ST_LINESTRING.

Example

In this example, the ST_TOLINESTRING function is used to return a linestring converted to
ST_LINESTRING from the static type of ST_GEOMETRY.

CREATE TABLE sample_geometries (id INTEGER, geometry QSYS2.ST_GEOMETRY);
CREATE TABLE sample_linestrings (id INTEGER, line QSYS2.ST_LINESTRING);

INSERT INTO sample_geometries
 VALUES (1, QSYS2.ST_LINESTRING ('linestring (0 10, 0 0, 10 0)'));

INSERT INTO sample_linestrings
 (SELECT ID, QSYS2.ST_TOLINESTRING(geometry)
 FROM sample_geometries);

SELECT id, QSYS2.ST_ASTEXT(line) AS lines FROM sample_linestrings;

Results:

ID LINES
-------- --------------------
 1 LINESTRING (0.0 10.0, 0.0 0.0, 10.0 0.0)

ST_TOMULTILINE scalar function
The ST_TOMULTILINE function takes a geometry as an input parameter and converts it to a
multilinestring.

The geometry must be a multilinestring or a linestring.

If geometry is null, the result is the null value. An empty multilinestring is not supported.

ST_TOMULTILINE (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is converted to
a multilinestring.

72 IBM i: Geospatial Analytics

A geometry can be converted to a multilinestring if it a linestring or a multilinestring. If the conversion
cannot be performed, an exception condition is raised.

The result of the function is ST_MULTILINESTRING.

Example

In the following SELECT statement, the ST_TOMULTILINE function is used to return multilinestrings
converted to ST_MULTILINESTRING from the static type of ST_GEOMETRY.

CREATE TABLE sample_geometries (id INTEGER, geometry QSYS2.ST_GEOMETRY);
CREATE TABLE sample_multilinestrings (id INTEGER, multiline QSYS2.ST_MULTILINESTRING);

INSERT INTO sample_geometries
 VALUES (1, QSYS2.ST_MULTILINESTRING ('multilinestring ((0 10, 0 0, 10 0),(23 43, 27 34, 35
12))')),
 (2, QSYS2.ST_LINESTRING ('linestring (0 10, 0 0, 10 0)'));

INSERT INTO sample_multilinestrings
 (SELECT ID, QSYS2.ST_TOMULTILINE(geometry)
 FROM sample_geometries);

SELECT id, QSYS2.ST_ASTEXT(multiline) AS multilines FROM sample_multilinestrings;

Results:

ID MULTILINES
------- --
 1 MULTILINESTRING ((0.0 10.0, 0.0 0.0, 10.0 0.0), (23.0 43.0, 27.0 34.0, 35.0 12.0))
 2 MULTILINESTRING ((0.0 10.0, 0.0 0.0, 10.0 0.0))

ST_TOMULTIPOINT scalar function
The ST_TOMULTIPOINT function takes a geometry as an input parameter and converts it to a multipoint.

The specified geometry must be a point or a multipoint.

If geometry is null, the result is the null value. An empty multipoint is not supported.

ST_TOMULTIPOINT (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is converted to
a multipoint.
A geometry can be converted to a multipoint if it is a point or a multipoint. If the conversion cannot be
performed, then an exception condition is raised.

The result of the function is ST_MULTIPOINT.

Example

In the following SELECT statement, the ST_TOMULTIPOINT function is used to return multipoints
converted to ST_MULTIPOINT from the static type of ST_GEOMETRY.

CREATE TABLE sample_geometries (id INTEGER, geometry QSYS2.ST_GEOMETRY);
CREATE TABLE sample_multipoints (id INTEGER, multipoint QSYS2.ST_MULTIPOINT);

INSERT INTO sample_geometries
 VALUES (1, QSYS2.ST_MULTIPOINT('multipoint ((0 0), (0 4))')),
 (2, QSYS2.ST_POINT('point (30 40)'));

INSERT INTO sample_multipoints
 (SELECT ID, QSYS2.ST_TOMULTIPOINT(geometry)
 FROM sample_geometries);

SELECT id, QSYS2.ST_ASTEXT(multipoint) AS multipoint FROM sample_multipoints;

Geospatial Analytics 73

Results:

ID MULTIPOINT
------- --
 1 MULTIPOINT ((0.0 0.0), (0.0 4.0))
 2 MULTIPOINT ((30.0 40.0))

ST_TOMULTIPOLYGON scalar function
The ST_TOMULTIPOLYGON function takes a geometry as an input parameter and converts it to a
multipolygon.

The specified geometry must be a polygon or a multipolygon.

If geometry is null, the result is the null value. An empty multipolygon is not supported.

ST_TOMULTIPOLYGON (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is converted to
a multipolygon.
A geometry can be converted to a multipolygon if it is a polygon or a multipolygon. If the conversion
cannot be performed, then an exception condition is raised.

The result of the function is ST_MULTIPOLYGON.

Example

This example creates several geometries and then uses ST_TOMULTIPOLYGON to return multipolygons.

CREATE TABLE sample_geometries (id INTEGER, geometry QSYS2.ST_GEOMETRY);
CREATE TABLE sample_multipolygons (id INTEGER, multipolygon QSYS2.ST_MULTIPOLYGON);

INSERT INTO sample_geometries
 VALUES (1, QSYS2.ST_MULTIPOLYGON('multipolygon (((0 0, 0 4, 5 4, 5 0, 0 0)),
 ((10 10, 10 15, 13 17, 10 10)))')),
 (2, QSYS2.ST_POLYGON('polygon ((0 0, 0 4, 5 4, 5 0, 0 0))'));

INSERT INTO sample_multipolygons
 (SELECT ID, QSYS2.ST_TOMULTIPOLYGON(geometry)
 FROM sample_geometries);

SELECT id, QSYS2.ST_ASTEXT(multipolygon) AS multipolygons FROM sample_multipolygons;

Results:

ID MULTIPOLYGONS
------- --
 1 MULTIPOLYGON (((10.0 10.0, 13.0 17.0, 10.0 15.0, 10.0 10.0)),
 ((0.0 0.0, 5.0 0.0, 5.0 4.0, 0.0 4.0, 0.0 0.0)))
 2 MULTIPOLYGON (((0.0 0.0, 5.0 0.0, 5.0 4.0, 0.0 4.0, 0.0 0.0)))

ST_TOPOINT scalar function
The ST_TOPOINT function takes a geometry as an input parameter and converts it to a point.

The specified geometry must be a point.

If geometry is null, the result is the null value. An empty point is not supported.

ST_TOPOINT (geometry)

74 IBM i: Geospatial Analytics

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is converted to
a point.
A geometry can be converted to a point if it is a point. If the conversion cannot be performed, an
exception condition is raised.

The result of the function is ST_POINT.

Example

This example creates three geometries in SAMPLE_GEOMETRIES and converts each to a point.

CREATE TABLE sample_geometries (id INTEGER, geometry QSYS2.ST_GEOMETRY);
CREATE TABLE sample_points (id INTEGER, point QSYS2.ST_POINT);

INSERT INTO sample_geometries
 VALUES (1, QSYS2.ST_POINT ('point (30 40)'));

INSERT INTO sample_points
 (SELECT ID, QSYS2.ST_TOPOINT(geometry)
 FROM sample_geometries);

SELECT id, QSYS2.ST_ASTEXT(point) AS points FROM sample_points;

Results:

ID POINTS
------- ----------------------------
 1 POINT (30.0 40.0)

ST_TOPOLYGON scalar function
The ST_TOPOLYGON function takes a geometry as an input parameter and converts it to a polygon.

The specified geometry must be a polygon.

If geometry is null, the result is the null value. An empty polygon is not supported.

ST_TOPOLYGON (geometry)

geometry
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is converted to
a polygon.
A geometry can be converted to a polygon if it is a polygon. If the conversion cannot be performed,
then an exception condition is raised.

The result of the function is ST_POLYGON.

Example

This example creates three geometries in SAMPLE_GEOMETRIES and converts each to a polygon. The
ST_TOPOLYGON function is used to return polygons converted to ST_POLYGON from the static type of
ST_GEOMETRY.

CREATE TABLE sample_geometries (id INTEGER, geometry QSYS2.ST_GEOMETRY);
CREATE TABLE sample_polygons (id INTEGER, polygon QSYS2.ST_POLYGON);

INSERT INTO sample_geometries
 VALUES (1, QSYS2.ST_POLYGON ('polygon ((0 0, 0 4, 5 4, 5 0, 0 0))'));

INSERT INTO sample_polygons
 (SELECT ID, QSYS2.ST_TOPOLYGON(geometry)
 FROM sample_geometries);

SELECT id, QSYS2.ST_ASTEXT(polygon) AS polygons FROM sample_polygons;

Geospatial Analytics 75

Results:

ID POLYGONS
-------- --
 1 POLYGON ((0.0 0.0, 5.0 0.0, 5.0 4.0, 0.0 4.0, 0.0 0.0))

ST_TOUCHES scalar function
The ST_TOUCHES function takes two geometry objects as input parameters and returns the integer value
1 if the specified geometries spatially touch. Otherwise, the integer value 0 (zero) is returned.

Two geometries touch if the interiors of both geometries do not intersect, but the boundary of one of the
geometries intersects with either the boundary or the interior of the other geometry.

If both geometry1 and geometry2 are points or multipoints, 0 (zero) is returned because points do not
have a boundary. If geometry1 or geometry2 is null, the result is the null value. If geometry1 or geometry2
is empty, 0 (zero) is returned.

ST_TOUCHES (geometry1 , geometry2)

geometry1
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is to be tested
to touch geometry2.

geometry2
A value of type ST_GEOMETRY or one of its subtypes that represents the geometry that is to be tested
to touch geometry1.

The result of the function is INTEGER.

Example

Use the ST_TOUCHES function to determine which geometries touch each other.

CREATE TABLE sample_geometries (id INTEGER, geometry QSYS2.ST_GEOMETRY);

INSERT INTO sample_geometries VALUES
 (1, QSYS2.ST_POLYGON('polygon ((20 30, 30 30, 30 40, 20 40, 20 30))')),
 (2, QSYS2.ST_POLYGON('polygon ((30 30, 30 50, 50 50, 50 30, 30 30))')),
 (3, QSYS2.ST_POLYGON('polygon ((40 40, 40 60, 60 60, 60 40, 40 40))')),
 (4, QSYS2.ST_LINESTRING('linestring(60 60, 70 70)')),
 (5, QSYS2.ST_LINESTRING('linestring(30 30, 60 60)'));

SELECT a.id, b.id, QSYS2.ST_TOUCHES(a.geometry, b.geometry) touches
 FROM sample_geometries a, sample_geometries b
 WHERE b.id >= a.id;

Results:

ID ID TOUCHES
--- --- -------
 1 1 0
 1 2 1
 1 3 0
 1 4 0
 1 5 1
 2 2 0
 2 3 0
 2 4 0
 2 5 0
 3 3 0
 3 4 1
 3 5 0
 4 4 0
 4 5 1
 5 5 0

76 IBM i: Geospatial Analytics

ST_UNION scalar function
The ST_UNION function takes two geometry objects as input parameters and returns the geometry object
that is the union of the specified geometries.

The resulting geometry is represented in the most appropriate spatial type. If it can be represented as a
point, linestring, or polygon, then one of those types is used. Otherwise, the multipoint, multilinestring, or
multipolygon type is used.

If geometry1 or geometry2 is null, the result is the null value. If one of geometry1 and geometry2 is
empty, the other geometry is returned. If both geometry1 and geometry2 are empty, an empty geometry is
returned.

ST_UNION (geometry1 , geometry2)

geometry1
A value of type ST_GEOMETRY or one of its subtypes that is combined with geometry2.

geometry2
A value of type ST_GEOMETRY or one of its subtypes that is combined with geometry1.

The result of the function is ST_GEOMETRY.

Example

Find the union of two intersecting polygons.

VALUES QSYS2.ST_ASTEXT(QSYS2.ST_UNION(
 QSYS2.ST_POLYGON('polygon((30 30, 30 50, 50 50, 50 30, 30 30))'),
 QSYS2.ST_POLYGON('polygon((40 40, 40 60, 60 60, 60 40, 40 40))')));

Result:

POLYGON ((50.0 40.432460999999996, 60.0 40.0, 60.0 60.0, 40.0 60.0, 40.0 50.431312999999996,
 30.0 50.0, 30.0 30.0, 50.0 30.0, 50.0 40.432460999999996))

ST_WITHIN scalar function
The ST_WITHIN function takes two geometries as input parameters and returns 1 if the first geometry is
completely within the second geometry. Otherwise, 0 (zero) is returned.

ST_WITHIN performs the same logical operation that ST_CONTAINS performs with the parameters
reversed. ST_WITHIN returns the exact opposite result of ST_CONTAINS.

If geometry1 or geometry2 is null, the result is the null value. If geometry1 or geometry2 is empty, 0 (zero)
is returned.

ST_WITHIN (geometry1 , geometry2)

geometry1
A value of type ST_GEOMETRY or one of its subtypes that is to be tested to be fully within geometry2.

geometry2
A value of type ST_GEOMETRY or one of its subtypes that is to be tested to fully contain geometry1.

The result of the function is INTEGER.

Notes
One geometry (geometry1) in within another (geometry2) if the interiors of the geometries intersect and
the interior or boundary of geometry1 does not intersect the exterior of geometry2.

Geospatial Analytics 77

Example

Find points from the SAMPLE_POINTS table that are in the polygons in the SAMPLE_POLYGONS table.

CREATE TABLE sample_points (id INTEGER, geometry QSYS2.ST_POINT);
CREATE TABLE sample_polygons (id INTEGER, geometry QSYS2.ST_POLYGON);

INSERT INTO sample_points (id, geometry)
 VALUES (1, QSYS2.ST_POINT(10, 20)),
 (2, QSYS2.ST_POINT('point (41 41)')),
 (3, QSYS2.ST_POINT('point (1 1)'));

INSERT INTO sample_polygons (id, geometry)
 VALUES (100, QSYS2.ST_POLYGON('polygon ((0 0, 0 40, 40 40, 40 0, 0 0))'));

SELECT QSYS2.ST_ASTEXT(a.geometry) AS point, QSYS2.ST_ASTEXT(b.geometry) AS polygon
 FROM sample_points a, sample_polygons b
 WHERE QSYS2.ST_WITHIN(a.geometry, b.geometry) = 1;

Results:

POINT POLYGON
----------------- ---
POINT (10.0 20.0) POLYGON ((0.0 0.0, 40.0 0.0, 40.0 40.0, 0.0 40.0, 0.0 0.0))
POINT (1.0 1.0) POLYGON ((0.0 0.0, 40.0 0.0, 40.0 40.0, 0.0 40.0, 0.0 0.0))

ST_WKBTOSQL scalar function
The ST_WKBTOSQL function takes a well-known binary (WKB) format of a geometry as an input
parameter and returns the corresponding geometry.

If wkb is null, the result is the null value. There is no WKB representation for an empty geometry. For
details about the supported formats, see “WKT and WKB data formats” on page 14

The ST_WKBTOSQL function is identical to the ST_GEOMETRY(wkb) function.

Syntax

ST_WKBTOSQL (wkb)

Parameters
wkb

A value of type VARBINARY or BLOB that contains the WKB format of the resulting geometry.

Return type
The result of the function is ST_GEOMETRY.

Example

The ST_WKBTOSQL function is used to return the coordinates of the geometries in the WKB column.

CREATE TABLE sample_geometries(id INTEGER, wkb BLOB(32K));

INSERT INTO sample_geometries VALUES
 (10, QSYS2.ST_ASBINARY(QSYS2.ST_POINT('point (44 14)'))),
 (11, QSYS2.ST_ASBINARY(QSYS2.ST_POINT('point (24 13)'))),
 (12, QSYS2.ST_ASBINARY(QSYS2.ST_POLYGON('polygon ((50 20, 50 40, 70 30, 50 20))')));

SELECT id, QSYS2.ST_ASTEXT(QSYS2.ST_WKBTOSQL(wkb)) AS geometry FROM sample_geometries;

Results:

ID GEOMETRY

78 IBM i: Geospatial Analytics

----- ---
 10 POINT (44.0 14.0)
 11 POINT (24.0 13.0)
 12 POLYGON ((50.0 20.0, 70.0 30.0, 50.0 40.0, 50.0 20.0))

ST_WKTTOSQL scalar function
The ST_WKTTOSQL function takes a well-known text (WKT) format of a geometry and returns the
corresponding geometry.

If wkt is null, the result is the null value. If wkt is 'POINT EMPTY', an empty geometry is returned. For
details about the supported formats, see “WKT and WKB data formats” on page 14

The ST_WKTTOSQL function is identical to the ST_GEOMETRY(wkt) function.

ST_WKTTOSQL (wkt)

wkt
A value of type VARCHAR or CLOB that contains the WKT format of the resulting geometry.

The result of the function is ST_GEOMETRY.

Example

Use the ST_WKTTOSQL to create and insert geometries using their well-known text representations.

CREATE TABLE sample_geometries (id INTEGER, geometry QSYS2.ST_GEOMETRY);

INSERT INTO sample_geometries
 VALUES (10, QSYS2.ST_WKTTOSQL('point (44 14)')),
 (11, QSYS2.ST_WKTTOSQL('point (24 13)')),
 (12, QSYS2.ST_WKTTOSQL('polygon ((50 20, 50 40, 70 30, 50 20))'));

SELECT id, CAST(QSYS2.ST_ASTEXT(geometry) AS VARCHAR(120)) geometries
 FROM sample_geometries;

Results:

ID GEOMETRIES
----- ---
 10 POINT (44.0 14.0)
 11 POINT (24.0 13.0)
 12 POLYGON ((50.0 20.0, 70.0 30.0, 50.0 40.0, 50.0 20.0))

Geospatial Analytics catalog views
Use the geospatial catalog views to obtain useful information about your geospatial data.

ST_COORDINATE_SYSTEMS catalog view
The ST_COORDINATE_SYSTEMS catalog view contains information about coordinate systems.

Authorization: None required.

The following table describes the columns in the view. The system name is ST_COORD. The schema is
QSYS2.

Table 24. ST_COORDINATE_SYSTEMS view

Column Name System Column Name Data Type Description

COORDSYS_NAME COORD_NAME VARCHAR(128) Name of this coordinate system. The name is unique
within the database.

COORDSYS_TYPE COORD_TYPE VARCHAR(128) Type of this coordinate system:

GEOGRAPHIC
Three-dimensional. Uses X and Y coordinates.

Geospatial Analytics 79

Table 24. ST_COORDINATE_SYSTEMS view (continued)

Column Name System Column Name Data Type Description

DEFINITION DEFINITION VARGRAPHIC(2048) CCSID
1200

Well-known text format of the definition of this
coordinate system.

ORGANIZATION ORG VARCHAR(256)

Nullable

Name of the organization (for example, a standards
body such as the European Petrol Survey Group, or
EPSG) that defined this coordinate system.

Contains the null value if
ORGANIZATION_COORDSYS_ID is null.

ORGANIZATION_
COORDSYS_ID

ORG_ID INTEGER

Nullable

Numeric identifier assigned to this coordinate system
by the organization that defined the coordinate
system. When not null, the combination of this
identifier and the value in the ORGANIZATION
column uniquely identify the coordinate system.

Contains the null value if there is no ID assigned to
the coordinate system.

ST_GEOMETRY_COLUMNS catalog view
The ST_GEOMETRY_COLUMNS catalog view returns all columns in all tables on the system that are
defined with a geospatial data type.

For additional information about these columns, query the QSY2.SYSCOLUMNS2 catalog view.

Authorization: The view is shipped with *PUBLIC *EXCLUDE.

The following table describes the columns in the view. The system name is ST_GEOCOLS. The schema is
QSYS2.

Table 25. ST_GEOMETRY_COLUMNS view

Column Name System Column Name Data Type Description

COLUMN_NAME COL_NAME VARCHAR(128) The name of a column that is defined as a geospatial
type.

TABLE_SCHEMA TABSCHEMA VARCHAR(128) That name of the schema that contains the table.

TABLE_NAME TABNAME VARCHAR(128) The name of the table that contains the column.

DATA_TYPE_SCHEMA TYPESCHEMA VARCHAR(128) The schema containing the geospatial data type.

DATA_TYPE_NAME TYPENAME VARCHAR(128) The name of the geospatial data type.

SPATIAL_REFERENCE_SYSTEM
_NAME

SRS_NAME VARCHAR(128) Name of the spatial reference system associated with
this spatial reference.

SPATIAL_REFERENCE_SYSTEM
_ID

SRS_ID INTEGER Numeric identifier of the spatial reference system.

SYSTEM_COLUMN_NAME SYS_CNAME VARCHAR(10) The system name for the column.

SYSTEM_TABLE_SCHEMA LIB_NAME VARCHAR(10) The system name for the schema.

SYSTEM_TABLE_NAME FILE_NAME VARCHAR(10) The system name for the table.

ST_SPATIAL_REFERENCE_SYSTEMS catalog view
The ST_SPATIAL_REFERENCE_SYSTEMS catalog view contains information about registered spatial
reference systems.

Each spatial reference system represents a coordinate system. The spatial reference system also includes
factors to convert coordinates that use the coordinate system into values that the database can process
with maximum efficiency. Db2 for i supports a single spatial reference system.

Authorization: None required.

The following table describes the columns in the view. The system name is ST_REFSYS. The schema is
QSYS2.

80 IBM i: Geospatial Analytics

Table 26. ST_SPATIAL_REFERENCE_SYSTEMS view

Column Name System Column Name Data Type Description

SPATIAL_REFERENCE_SYSTEM
_NAME

SRS_NAME VARCHAR(128) Name of the spatial reference system. This name is
unique within the database.

SPATIAL_REFERENCE_SYSTEM
_ID

SRS_ID INTEGER Numeric identifier of the spatial reference system.
Each spatial reference system has a unique numeric
identifier.

MIN_X MIN_X DOUBLE Minimum possible value for X coordinates in the
geometries to which this spatial reference system
applies.

MAX_X MAX_X DOUBLE Maximum possible value for X coordinates in the
geometries to which this spatial reference system
applies.

MIN_Y MIN_Y DOUBLE Minimum possible value for Y coordinates in the
geometries to which this spatial reference system
applies.

MAX_Y MAX_Y DOUBLE Maximum possible value for Y coordinates in the
geometries to which this spatial reference system
applies.

COORDSYS_NAME COORD_NAME VARCHAR(128) Identifying name of the coordinate system on which
this spatial reference system is based.

Geospatial Analytics 81

82 IBM i: Geospatial Analytics

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2022, 2022 83

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information
This publication documents intended Programming Interfaces that allow the customer to write programs
to obtain the services of IBM i.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Oracle, Inc. in the United States, other
countries, or both.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

84 Notices

http://www.ibm.com/legal/copytrade.shtml

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 85

86 IBM i: Geospatial Analytics

IBM®

Product Number: 5770-SS1

	Contents
	Geospatial Analytics
	What's new for IBM i 7.4
	PDF file for Geospatial Analytics
	The nature of geospatial data
	Geodetic data
	Geographic features, geospatial information, geospatial data, and geometries
	Representing geographic features in a table

	Key concepts
	Geometries
	Geometry coordinates
	Simple and non-simple geometries
	Empty geometries
	Interior, boundary, and exterior
	Minimum bounding rectangle

	Coordinate systems
	Geographic coordinate systems
	Coordinate system syntax
	Supported coordinate system units

	Spatial reference system
	Geohashes and geohash covers
	WKT and WKB data formats
	Well-known text (WKT) format
	Well-known binary (WKB) format

	Working with geospatial data
	Geospatial data types
	Data types for single-unit features
	Data types for multi-unit features
	Data types for all features

	Create a table with a geospatial column
	Alter a table to contain a geospatial column
	Populating geospatial columns
	Returning geospatial data in well-known formats
	Using geospatial functions
	Working with geospatial data in embedded SQL programs

	Performance tuning
	Filtering
	Filtering using a geohash cover
	Filtering using a minimum bounding rectangle

	Examples of filtering using a geohash

	Best practices and considerations
	Geospatial functions
	ST_AREA scalar function
	ST_ASBINARY scalar function
	ST_ASTEXT scalar function
	ST_BUFFER scalar function
	ST_CONTAINS scalar function
	ST_COVERS scalar function
	ST_CROSSES scalar function
	ST_DIFFERENCE scalar function
	ST_DISJOINT scalar function
	ST_DISTANCE scalar function
	ST_EQUALS scalar function
	ST_FUZZYGEOHASHCOVER table function
	ST_FUZZYGEOHASHCOVEREXTEND table function
	ST_GEOHASH table function
	ST_GEOHASHCOVER table function
	ST_GEOHASHCOVEREXTEND table function
	ST_GEOHASHVALUE scalar function
	ST_GEOMCOLLECTION scalar function
	ST_GEOMETRY scalar function
	ST_GEOMETRYTYPE scalar function
	ST_INTERSECTION scalar function
	ST_INTERSECTS scalar function
	ST_ISSIMPLE scalar function
	ST_ISVALID scalar function
	ST_LINESTRING scalar function
	ST_MAXX scalar function
	ST_MAXY scalar function
	ST_MINX scalar function
	ST_MINY scalar function
	ST_MULTILINESTRING scalar function
	ST_MULTIPOINT scalar function
	ST_MULTIPOLYGON scalar function
	ST_NUMPOINTS scalar function
	ST_OVERLAPS scalar function
	ST_POINT scalar function
	ST_POLYGON scalar function
	ST_SRSID scalar function
	ST_SRSNAME scalar function
	ST_SYMDIFFERENCE scalar function
	ST_TOLINESTRING scalar function
	ST_TOMULTILINE scalar function
	ST_TOMULTIPOINT scalar function
	ST_TOMULTIPOLYGON scalar function
	ST_TOPOINT scalar function
	ST_TOPOLYGON scalar function
	ST_TOUCHES scalar function
	ST_UNION scalar function
	ST_WITHIN scalar function
	ST_WKBTOSQL scalar function
	ST_WKTTOSQL scalar function

	Geospatial Analytics catalog views
	ST_COORDINATE_SYSTEMS catalog view
	ST_GEOMETRY_COLUMNS catalog view
	ST_SPATIAL_REFERENCE_SYSTEMS catalog view

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

