
IBM i
Version 7.2

Programming
IBM Rational Development Studio for i
ILE C/C++ Compiler Reference

IBM

SC09-4816-06

Note

Before using this information and the product it supports, read the information in “Notices” on page
121.

This edition applies to IBM® Rational® Development Studio for i (product number 5770-WDS) and to all subsequent
releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction
set computer (RISC) models nor does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 1993, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

ILE C/C++ Compiler Reference... 1

What is new for IBM i 7.2...3

PDF file for ILE C/C++ Compiler Reference...5

About ILE C/C++ Compiler Reference... 7
Prerequisite and Related Information... 7
Install Licensed Program Information...7
A Note About Examples..7
Control Language Commands.. 7
How to Read the Syntax Diagrams...7
Industry Standards...9

Predefined Macros... 11
ANSI/ISO Standard Predefined Macros.. 11
ILE C/C++ Predefined Macros..12

ILE C/C++ Pragmas..19
Pragma directive syntax...19
Scope of Pragma directives..20
Summary of Pragma Directives..20
Individual Pragma Descriptions...21

argopt.. 21
argument...23
cancel_handler... 24
chars..25
checkout..25
comment... 26
convert.. 27
datamodel... 27
define.. 28
descriptor..29
disable_handler.. 30
disjoint...31
do_not_instantiate... 31
enum... 32
exception_handler..36
hashome..39
implementation...39
info...39
inline..40
ishome...41
isolated_call.. 41
linkage... 42
map..43
mapinc...44
margins..47
namemangling.. 47
namemanglingrule..48
noargv0... 49

 iii

noinline (function)...50
nomargins... 50
nosequence...50
nosigtrunc... 50
pack...51
page...56
pagesize.. 56
pointer... 56
priority... 57
sequence...58
strings..59
weak.. 59

Control Language Commands... 61
Control Language Command Syntax..61
Control Language Command Options..65

MODULE.. 65
PGM... 65
SRCFILE...66
SRCMBR.. 66
SRCSTMF...67
TEXT.. 67
OUTPUT...68
OPTION... 68
CHECKOUT.. 73
OPTIMIZE..76
INLINE...76
MODCRTOPT... 78
DBGVIEW.. 78
DBGENCKEY..79
DEFINE..79
LANGLVL..80
ALIAS...80
SYSIFCOPT..81
LOCALETYPE... 82
FLAG.. 83
MSGLMT.. 83
REPLACE... 84
USRPRF... 84
AUT..84
TGTRLS..85
ENBPFRCOL.. 86
PFROPT... 87
PRFDTA... 87
TERASPACE...88
STGMDL...91
DTAMDL...91
RTBND...92
PACKSTRUCT.. 92
ENUM...93
MAKEDEP.. 93
PPGENOPT.. 93
PPSRCFILE.. 94
PPSRCMBR..95
PPSRCSTMF.. 95
INCDIR.. 96
CSOPT... 96
LICOPT.. 96

iv

DFTCHAR...97
TGTCCSID... 97
TEMPLATE .. 98
TMPLREG ..99
WEAKTMPL ...99
DECFLTRND.. 100

Using the ixlc Command to Invoke the C/C++ Compiler.. 103
Using ixlc in Qshell... 103
ixlc Command and Options Syntax..103
ixlc Command Options...104

I/O Considerations...113
Data Management Operations on Record Files...113
Data Management Operations on Stream Files.. 113
C Streams and File Types...113
DDS-to-C/C++ Data Type Mapping..114

Control Characters...117

Related information...119

Notices..121
Programming interface information..122
Trademarks..122
Terms and conditions.. 123

Index.. 125

 v

vi

ILE C/C++ Compiler Reference
This information is for programmers who are familiar with the C and C++ programming languages and who
plan to use the ILE C/C++ compiler to build new or maintain existing ILE C/C++ applications.

© Copyright IBM Corp. 1993, 2013 1

2 IBM i: ILE C/C++ Compiler Reference

What is new for IBM i 7.2
Read about new or significantly changed information.

• New ILE C/C++ predefined macros. See “ILE C/C++ Predefined Macros” on page 12.
• New LANGLVL(*EXTENDED0X) Control Language Command option value. See “LANGLVL” on page 80.

© Copyright IBM Corp. 1993, 2013 3

4 IBM i: ILE C/C++ Compiler Reference

PDF file for ILE C/C++ Compiler Reference
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select ILE C/C++ Compiler Reference.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) .

© Copyright IBM Corp. 1993, 2013 5

http://www.adobe.com/products/acrobat/readstep.html

6 IBM i: ILE C/C++ Compiler Reference

About ILE C/C++ Compiler Reference
Read this section for an overview of the compiler reference information.

You need experience in using applicable IBM i menus and displays or Control Language (CL) commands.
You also need knowledge of ILE as explained in ILE Concepts.

Prerequisite and Related Information
Use the IBM i Information Center as your starting point for looking up IBM i technical information. You can
access the Information Center from the following web site:

 http://www.ibm.com/systems/i/infocenter

The IBM i Information Center contains new and updated system information, such as software
installation, Linux, WebSphere®, Java™, high availability, database, logical partitions, CL commands, and
system application programming interfaces (APIs). In addition, it provides advisors and finders to assist in
planning, troubleshooting, and configuring your system hardware and software.

For other related information, see the “Related information” on page 119.

Install Licensed Program Information
On systems that will be making use of the ILE C/C++ compiler, the QSYSINC library must be installed.

A Note About Examples
Examples illustrating the use of the ILE C/C++ compiler are written in a simple style. The examples do not
demonstrate all of the possible uses of C or C++ language constructs. Some examples are only code
fragments and do not compile without additional code.

Control Language Commands
If you need prompting, type the CL command and press F4 (Prompt). If you need online help information,
press F1 (Help) on the CL command prompt display. CL commands can be used in either batch or
interactive mode, or from a CL program.

For more information about CL commands, see the CL and APIs section in the Programming category at
the IBM i Information Center web site:

 http://www.ibm.com/systems/i/infocenter

You need object authority to use CL commands. For more information about object authority, see the
Planning and setting up system security section in the Security category at the Information Center Web
site.

How to Read the Syntax Diagrams
• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ►►─── symbol indicates the beginning of a command, directive, or statement.

© Copyright IBM Corp. 1993, 2013 7

The ───► symbol indicates that the command, directive, or statement syntax is continued on the next
line.

The ►─── symbol indicates that a command, directive, or statement is continued from the previous line.

The ───►◄ symbol indicates the end of a command, directive, or statement.

Diagrams of syntactical units other than complete commands, directives, or statements start with the
►─── symbol and end with the ───► symbol.

Note: In the following diagrams, statement represents a C or C++ command, directive, or statement.
• Required items appear on the horizontal line (the main path).

statement required_item

• Optional items appear below the main path.
statement

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
statement required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.
statement

optional_choice1

optional_choice2

The item that is the default appears above the main path.

statement

default_item

alternate_item

• An arrow returning to the left above the main line indicates an item that can be repeated.

statement repeatable_item

A repeat arrow above a stack indicates that you can make more than one choice from the stacked items,
or repeat a single choice.

• Keywords appear in nonitalic letters and should be entered exactly as shown (for example, extern).

Variables appear in italicized lowercase letters (for example, identifier). They represent user-supplied
names or values.

• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

The following syntax diagram example shows the syntax for the #pragma comment directive. See “ILE
C/C++ Pragmas” on page 19 for information about the #pragma directive.

8 IBM i: ILE C/C++ Compiler Reference

 1 2 3 4 5 6 9 10
 →→─#──pragma──comment──(─┬─────compiler────────────────────────┬──)─→←
 │ │
 ├─────date────────────────────────────┤
 │ │
 ├─────timestamp───────────────────────┤
 │ │
 └──┬──copyright──┬──┬─────────────────┤
 │ │ │ │
 └──user───────┘ └──,─"characters"─┘

 7 8

 1 This is the start of the syntax diagram.
 2 The symbol # must appear first.
 3 The keyword pragma must appear following the # symbol.
 4 The keyword comment must appear following the keyword pragma.
 5 An opening parenthesis must be present.
 6 The comment type must be entered only as one of the types indicated: compiler, date,
timestamp, copyright, or user.
 7 A comma must appear between the comment type copyright or user, and an optional character
string.
 8 A character string must follow the comma. The character string must be enclosed in double
quotation marks.
 9 A closing parenthesis is required.
 10 This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct according to the
diagram shown above:

 #pragma comment(date)
 #pragma comment(user)
 #pragma comment(copyright,"This text will appear in the module")

Industry Standards
The Integrated Language Environment® C/C++ compiler and runtime library are designed according to the
following standards:

• Information Technology - Programming languages - C, ISO/IEC 9899:1990, also known as C89
• Information Technology - Programming languages - C, ISO/IEC 9899:1999, also known as C99
• Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also known as C++98
• Information Technology - Programming languages - C++, ISO/IEC 14882:2003(E), also known as

Standard C++
• Information Technology - Programming languages - Extension for the programming language C to

support decimal floating-point arithmetic, ISO/IEC WDTR 24732. This draft technical report has been
submitted to the C standards committee, and is available at http://www.open-std.org/JTC1/SC22/
WG14/www/docs/n1176.pdf.

ILE C supports a subset of C99 features.

ILE C++ supports a subset of C++0x features.

Note: C++0x is a new version of the C++ programming language standard. IBM continues to develop and
implement the features of the new standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the features of the C++0x standard is
complete, including the support of a new C++ standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source, binary, or listings and
other compiler interfaces, with earlier releases of IBM's implementation of the new features of the C++0x
standard and therefore they should not be relied on as a stable programming interface.

About ILE C/C++ Compiler Reference 9

C++0x has been ratified and published as ISO/IEC 14882:2011. All references to C++0x in this document
are equivalent to the ISO/IEC 14882:2011 standard. Corresponding information, including programming
interfaces, will be updated in a future release.

10 IBM i: ILE C/C++ Compiler Reference

Predefined Macros
Several predefined macros are recognized. Read this section for details on predefined macros.

The ILE C/C++ compiler recognizes the following predefined macros.

• “ANSI/ISO Standard Predefined Macros” on page 11
• “ILE C/C++ Predefined Macros” on page 12

ANSI/ISO Standard Predefined Macros
The ILE C/C++ compiler recognizes the following macros defined by the ANSI/ISO Standard. Unless
otherwise specified, macros when defined have a value of 1.
__DATE__

A character string literal containing the date when the source file was compiled. The date is in the
form:

 "Mmm dd yyyy"

where:

• Mmm represents the month in an abbreviated form (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, or Dec).

• dd represents the day. If the day is less than 10, the first d is a blank character.
• yyyy represents the year.

__FILE__
Defined as a character string literal containing the name of the source file.

__LINE__
Defined to be an integer representing the current source line number.

__STDC__
 Defined if the C compiler conforms to the ANSI standard. This macro is defined if the

language level is set to LANGLVL(*ANSI).
__STDC_VERSION__

 Defined to be an integer constant of type long int. This macro is defined only if __STDC__ is
also defined and has the value 199409L. This macro is not defined for C++.

__TIME__
Defined as a character string literal containing the time when the source file was compiled. The time is
in the form:

 "hh:mm:ss"

where:

• hh represents the hour.
• mm represents the minutes.
• ss represents the seconds.

__cplusplus
 Defined when compiling a C++ program, indicating that the compiler is a C++ compiler. This

macro has no trailing underscores. This macro is not defined for C.

Note:

1. Predefined macro names cannot be the subject of a #define or #undef preprocessor directive.

© Copyright IBM Corp. 1993, 2013 11

2. The predefined ANSI/ISO Standard macro names consist of two underscore (__) characters
immediately preceding the name, the name in uppercase letters, and two underscore characters
immediately following the name.

3. The value of __LINE__ changes during compilation as the compiler processes subsequent lines of
your source program.

4. The value of __FILE__ and __TIME__ changes as the compiler processes any #include files that
are part of your source program.

5. You can also change __LINE__ and __FILE__ using the #line preprocessor directive.

Examples

The following printf() statements display the values of the predefined macros __LINE__, __FILE__,
__TIME__, and __DATE__ and print a message indicating if the program conforms to ANSI standards
based on __STDC__:

#include <stdio.h>
#ifdef __STDC__
define CONFORM "conforms"
#else
define CONFORM "does not conform"
#endif
int main(void)
{
 printf("Line %d of file %s has been executed\n", __LINE__, __FILE__);
 printf("This file was compiled at %s on %s\n", __TIME__, __DATE__);
 printf("This program %s to ANSI standards\n", CONFORM);
}

Related Information

See the ILE C/C++ Language Reference for additional information on predefined macros.

ILE C/C++ Predefined Macros
The ILE C/C++ compiler provides the predefined macros described in this section. These macros are
defined when their corresponding pragmas are invoked in program source, or when their corresponding
compiler options are specified. Unless otherwise specified, macros when defined have a value of 1.
__ANSI__

Defined when the LANGLVL(*ANSI) compiler option is in effect. When this macro is defined, the
compiler allows only language constructs that conform to the ANSI/ISO C and C++ standards.

__ASYNC_SIG__
 Defined when the SYSIFCOPT(*ASYNCSIGNAL) compiler option is in effect.

 Defined when TERASPACE(*YES *TSIFC) STGMDL(*TERASPACE) DTAMDL(*LLP64)
RTBND(*LLP64) compiler options are in effect.

__BASE_FILE__
Indicates the fully qualified name of the primary source file.

__BOOL__
 Indicates that the bool keyword is accepted.

_CHAR_SIGNED __CHAR_SIGNED__
Defined when the #pragma chars(signed) directive is in effect, or when the DFTCHAR compiler
option is set to *SIGNED. If this macro is defined, the default character type is signed.

_CHAR_UNSIGNED __CHAR_UNSIGNED__
Defined when the #pragma chars(unsigned) directive is in effect, or when the DFTCHAR compiler
option is set to *UNSIGNED. If this macro is defined, indicates default character type is unsigned.

__cplusplus98__interface__
 Defined when the LANGLVL(*ANSI) compiler option is specified.

12 IBM i: ILE C/C++ Compiler Reference

__C99_BOOL
 Indicates support for the _Bool data type. Defined when the LANGLVL(*EXTENDED)

compiler option is in effect.
__C99_CPLUSCMT

 Indicates support for C++ style comments. Defined when the LANGLVL(*EXTENDED)
compiler option is in effect.

__C99_COMPOUND_LITERAL
Indicates support for compound literals.

 Defined when the LANGLVL(*EXTENDED) compiler option is in effect.

 Defined when the LANGLVL(*EXTENDED) or LANGLVL(*EXTENDED0X) compiler option is in
effect.

__C99_DESIGNATED_INITIALIZER
 Indicates support for designated initialization. Defined when the LANGLVL(*EXTENDED)

compiler option is in effect.
__C99_DUP_TYPE_QUALIFIER

 Indicates support for duplicated type qualifiers. Defined when the LANGLVL(*EXTENDED)
compiler option is in effect.

__C99_EMPTY_MACRO_ARGUMENTS
 Indicates support for empty macro arguments. Defined when the LANGLVL(*EXTENDED)

compiler option is in effect.
__C99_FLEXIBLE_ARRAY_MEMBER

 Indicates support for flexible array members. Defined when the LANGLVL(*EXTENDED)
compiler option is in effect.

__C99_FUNC__
Indicates support for the __func__ predefined identifier.

 Defined when the LANGLVL(*EXTENDED) compiler option is in effect.

 Defined when the LANGLVL(*EXTENDED) or LANGLVL(*EXTENDED0X) compiler option is in
effect.

__C99_HEX_FLOAT_CONST
Indicates support for hexadecimal floating constants.

 Defined when the LANGLVL(*EXTENDED) compiler option is in effect.

 Defined when the LANGLVL(*EXTENDED) or LANGLVL(*EXTENDED0X) compiler option is in
effect.

__C99_INLINE
 Indicates support for the inline function specifier. Defined when the LANGLVL(*EXTENDED)

compiler option is in effect.
__C99_LLONG

 Indicates support for C99-style long long data types and literals. Defined when the
LANGLVL(*EXTENDED) compiler option is in effect.

__C99_MACRO_WITH_VA_ARGS
Indicates support for function-like macros with variable arguments.

 Defined when the LANGLVL(*EXTENDED) compiler option is in effect.

 Defined when the LANGLVL(*EXTENDED) or LANGLVL(*EXTENDED0X) compiler option is in
effect.

Predefined Macros 13

__C99_MAX_LINE_NUMBER
Indicates that the maximum line number is 2147483647.

 Defined when the LANGLVL(*EXTENDED) compiler option is in effect.

Defined when the LANGLVL(*EXTENDED0X) compiler option is in effect.

__C99_MIXED_DECL_AND_CODE
 Indicates support for mixed declaration and code. Defined when the LANGLVL(*EXTENDED)

compiler option is in effect.
__C99_MIXED_STRING_CONCAT

 Indicates support for concatenation of wide string and non-wide string literals. Defined when
the LANGLVL(*EXTENDED0X) compiler option is in effect.

__C99_NON_CONST_AGGR_INITIALIZER
 Indicates support for non-constant aggregate initializers. Defined when the

LANGLVL(*EXTENDED) compiler option is in effect.
__C99_NON_LVALUE_ARRAY_SUB

 Indicates support for non-lvalue subscripts for arrays. Defined when the
LANGLVL(*EXTENDED) compiler option is in effect.

__C99_PRAGMA_OPERATOR
Indicates support for the _Pragma operator.

 Defined when the LANGLVL(*EXTENDED) compiler option is in effect.

 Defined when the LANGLVL(*EXTENDED) or LANGLVL(*EXTENDED0X) compiler option is in
effect.

__C99_RESTRICT
 Indicates support for the C99 restrict qualifier. Defined when the LANGLVL(*EXTENDED) or

LANGLVL(*EXTENDED0X) compiler option is in effect.
__C99_STATIC_ARRAY_SIZE

 Indicates support for the static keyword in array parameters to functions. Defined when the
LANGLVL(*EXTENDED) compiler option is in effect.

__C99_VAR_LEN_ARRAY
 Indicates support for variable length arrays. Defined when the LANGLVL(*EXTENDED)

compiler option is in effect.
__C99_VARIABLE_LENGTH_ARRAY

 Indicates support for variable length arrays. Defined when the LANGLVL(*EXTENDED) or
LANGLVL(*EXTENDED0X) compiler option is in effect.

__DIGRAPHS__
Indicates support for digraphs.

__EXTENDED__
 Defined when the LANGLVL(*EXTENDED) compiler option is in effect.

 Defined when the LANGLVL(*EXTENDED) or LANGLVL(*EXTENDED0X) compiler option is in
effect.

When this macro is defined, the compiler allows language extensions provided by the ILE C/C++
compiler implementation.

__FUNCTION__
Indicates the name of the function currently being compiled. For C++ programs, expands to the actual
function prototype.

__HHW_AS400__
Indicates that the host hardware is an IBM i processor.

14 IBM i: ILE C/C++ Compiler Reference

__HOS_OS400__
 Indicates that the host operating system is IBM i.

__IBMC__
 Indicates the version of the C compiler. It returns an integer of the form VRM where:

V represents the version

R represents the release

M represents the modification level

For example, using the IBM i 7.2 compiler with the TGTRLS(*CURRENT) compiler option, __IBMC__
returns the integer value 720.

__IBMCPP__
 Indicates the version of the AIX® XL C++ compiler upon which the ILE C++ compiler is based.

It returns an integer representing the compiler version. For example, using the IBM i 7.2 compiler with
the TGTRLS(*CURRENT) compiler option, __IBMCPP__ returns the integer value 1110. 1110 means
the ILE C++ compiler is based on the XL C++ V11.1 compiler.

__IBM__ALIGN
 Indicates support for the __align specifier.

__IBM_ATTRIBUTES
 Indicates support for type, variable, and function attributes. Defined when the

LANGLVL(*EXTENDED) or LANGLVL(*EXTENDED0X) compiler option is in effect.
__IBM_COMPUTED_GOTO

 Indicates support for computed goto statements. Defined when the LANGLVL(*EXTENDED)
or LANGLVL(*EXTENDED0X) compiler option is in effect.

__IBM_DFP__
Indicates support for decimal floating-point types.

 Defined when the LANGLVL(*EXTENDED) compiler option is in effect.

 Defined when the LANGLVL(*EXTENDED) or LANGLVL(*EXTENDED0X) compiler option is in
effect.

__IBM_EXTENSION_KEYWORD
 Indicates support for the __extension__ keyword. Defined when the LANGLVL(*EXTENDED)

or LANGLVL(*EXTENDED0X) compiler option is in effect.
__IBM_INCLUDE_NEXT

Indicates support for the #include_next preprocessing directive.
__IBM_LABEL_VALUE

 Indicates support for labels as values. Defined when the LANGLVL(*EXTENDED) or
LANGLVL(*EXTENDED0X) compiler option is in effect.

__IBM_LOCAL_LABEL
 Indicates support for local labels. Defined when the LANGLVL(*EXTENDED) or

LANGLVL(*EXTENDED0X) compiler option is in effect.
__IBM_MACRO_WITH_VA_ARGS

 Indicates support for variadic macro extensions. Defined when the LANGLVL(*EXTENDED) or
LANGLVL(*EXTENDED0X) compiler option is in effect.

__IBM_TYPEOF__
Indicates support for the __typeof__ or typeof keyword. This macro is always defined for C.

For C++, it is defined when the LANGLVL(*EXTENDED) or LANGLVL(*EXTENDED0X) compiler option is
in effect.

Predefined Macros 15

__IBMCPP_AUTO_TYPEDEDUCTION
 Indicates support for the auto type deduction feature. Defined when the

LANGLVL(*EXTENDED0X) compiler option is in effect.
__IBMCPP_C99_PREPROCESSOR

 Indicates support for the C99 preprocessor features adopted in the C++0x standard. Defined
when the LANGLVL(*EXTENDED0X) compiler option is in effect.

__IBMCPP_DECLTYPE
 Indicates support for the decltype feature. Defined when the LANGLVL(*EXTENDED0X)

compiler option is in effect.
__IBMCPP_DELEGATING_CTORS

 Indicates support for the delegating constructors feature. Defined when the
LANGLVL(*EXTENDED0X) compiler option is in effect.

__IBMCPP_EXTENDED_FRIEND
 Indicates support for the extended friend declarations feature. Defined when the

LANGLVL(*EXTENDED0X) compiler option is in effect.
__IBMCPP_EXTERN_TEMPLATE

 Indicates support for the explicit instantiation declarations feature. Defined when the
LANGLVL(*EXTENDED) or LANGLVL(*EXTENDED0X) compiler option is in effect.

__IBMCPP_INLINE_NAMESPACE
 Indicates support for the inline namespace definitions feature. Defined when the

LANGLVL(*EXTENDED0X) compiler option is in effect.
__IBMCPP_STATIC_ASSERT

 Indicates support for the static assertions feature. Defined when the
LANGLVL(*EXTENDED0X) compiler option is in effect.

__IFS_IO__
Defined when the SYSIFCOPT(*IFSIO) or SYSIFCOPT(*IFS64IO) compiler option is specified.

__IFS64_IO__
Defined when the SYSIFCOPT(*IFS64IO) compiler option is specified. When this macro is defined,
_LARGE_FILES and _LARGE_FILE_API are also defined in the relevant IBM-supplied header files.

__ILEC400__
 Indicates that the ILE C compiler is being used.

__ILEC400_TGTVRM__
 Same as the __OS400_TGTVRM__ macro.

_LARGE_FILES
Defined when the SYSIFCOPT(*IFS64IO) compiler option is in effect and system header file types.h is
included.

_LARGE_FILE_API
Defined when the SYSIFCOPT(*IFS64IO) compiler option is in effect and system header file types.h is
included.

__LLP64_IFC__
Defined when the DTAMDL(*LLP64) compiler option is in effect.

__LLP64_RTBND__
 Defined when the RTBND(*LLP64) compiler option is in effect.

__LONGDOUBLE64
Indicates that the size of a long double type is 64 bits. This macro is always defined.

_LONG_LONG
Indicates support for IBM long long data types.

 Defined when the LANGLVL(*EXTENDED) compiler option is in effect.

16 IBM i: ILE C/C++ Compiler Reference

 Defined when the LANGLVL(*EXTENDED) or LANGLVL(*EXTENDED0X) compiler option is in
effect.

__NO_RTTI__
 Defined when the OPTION(*NORTTI) compiler option is in effect.

__OPTIMIZE__
 Indicates the level of optimization in effect. The macro is undefined for OPTIMIZE(10). For

other OPTIMIZE settings, the macro is defined as follows:

2 for OPTIMIZE(20)

3 for OPTIMIZE(30)

4 for OPTIMIZE(40)

__OS400__
This macro is always defined when the compiler is used with the IBM i operating system.

__OS400_TGTVRM__
Defines an integer value that maps to the version/release/modification level of the operating system
that the generated object is intended to run on. For example, if the target release is set using the
TGTRLS(V7R2M0) compiler option, this macro returns the integer value 720.

__POSIX_LOCALE__
Defined when the LOCALETYPE(*LOCALE) or LOCALETYPE(*LOCALEUCS2) or
LOCALETYPE(*LOCALEUTF) compiler option is specified.

__RTTI_DYNAMIC_CAST__
 Defined when the OPTION(*RTTIALL) or OPTION(*RTTICAST) compiler option is specified.

__RTTI_TYPE_INFO__
 Defined when the OPTION(*RTTIALL) or OPTION(*RTTITYPE) compiler option is specified.

__SIZE_TYPE__
 Indicates the underlying type of size_t on the current platform. For IBM i, it is unsigned int.

__SRCSTMF__
 Defined when the SRCSTMF compiler option specifies the location of the source file being

compiled.
__TERASPACE__

Defined when the TERASPACE(*YES *TSIFC) compiler option is specified.
__THW_AS400__

Indicates that the target hardware is an IBM i processor.
__TIMESTAMP__

A character string literal containing the date and time when the source file was last changed.

The date and time are in the form:

 "Day Mmm dd hh:mm:ss yyyy"

where:

Day represents the day of the week (Mon, Tue, Wed, Thu, Fri, Sat, or Sun).

Mmm represents the month in an abbreviated form (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,
Nov, or Dec).

dd represents the day. If the day is less than 10, the first d is a blank character.

hh represents the hour.

mm represents the minutes.

ss represents the seconds.

yyyy represents the year.

Predefined Macros 17

Note: Other compilers might not support this macro. If the macro is supported on other compilers,
the date and time values might be different from the values shown here.

__TOS_OS400__
Indicates that the target operating system is IBM i.

__UCS2__
Defined when the LOCALETYPE(*LOCALEUCS2) compiler option is specified.

__UTF32__
Defined when the LOCALETYPE(*LOCALEUTF) compiler option is specified.

__wchar_t
Indicates that the typedef wchar_t has been defined.

 This macro is defined in the standard header file stddef.h.

 This macro is defined by the C++ compiler.

18 IBM i: ILE C/C++ Compiler Reference

ILE C/C++ Pragmas
Read this section for an overview of pragma directives.

Pragma directive syntax
There are two forms of pragma directives supported in the ILE C/C++ compilers:

#pragma name

This form uses the following syntax:

#pragma name syntax

pragma name (suboptions)

The name is the pragma directive name, and the suboptions are any required or optional suboptions that
can be specified for the pragma, where applicable.

_Pragma ("name")

This form uses the following syntax:

_Pragma("name") syntax

_Pragma (" name (suboptions) ")

For example, the statement:

_Pragma ("pack(1)")

is equivalent to:

#pragma pack(1)

For all forms of pragma statements, you can specify more than one name and suboptions in a single
#pragma statement.

The name on a pragma is subject to macro substitutions, unless otherwise stated. The compiler ignores
unrecognized pragmas, issuing an informational message (C++) or warning message (C) indicating the
unrecognized pragma.

If you have any pragmas that are not common to both C and C++ in code that is compiled by both
compilers, you should add conditional compilation directives around the pragmas. (These directives are
not strictly necessary since unrecognized pragmas are ignored.) For example, #pragma info is only
recognized by the C++ compiler, so you might decide to add conditional compilation directives around the
pragma.

#ifdef __cplusplus
#pragma info(none)
#endif

© Copyright IBM Corp. 1993, 2013 19

Scope of Pragma directives
Many pragma directives can be specified at any point within the source code in a compilation unit; others
must be specified before any other directives or source code statements. The individual descriptions for
each pragma describe any constraints on the placement of the pragma.

In general, if you specify a pragma directive before any code in your source program, it applies to the
entire compilation unit, including any header files that are included. For a directive that can appear
anywhere in your source code, it applies from the point at which it is specified, until the end of the
compilation unit.

You can further restrict the scope of the application of a pragma by using complementary pairs of pragma
directives around a selected section of code. For example, using #pragma datamodel directives as
follows requests that only the selected parts of your source code use a particular data model setting:

/* Data model may be P128 or LLP64 */
#pragma datamodel(P128)
/* Data model P128 is now in effect */
#pragma datamodel(pop)
/* Prior data model is now in effect */

Many pragma directives provide "pop“ or "reset" suboptions that allow you to enable and disable pragma
settings in a stack-based fashion; examples of these suboptions are provided in the relevant pragma
descriptions.

Summary of Pragma Directives
The ILE C/C++ compiler recognizes the following pragmas:

Table 1. Pragmas Recognized by the ILE C/C++ Compiler

Pragma Name Valid with Valid with

“argopt” on page 21 Yes Yes

“argument” on page 23 Yes No

“cancel_handler” on page 24 Yes Yes

“chars” on page 25 Yes Yes

“checkout” on page 25 Yes No

“comment” on page 26 Yes Yes

“convert” on page 27 Yes No

“datamodel” on page 27 Yes Yes

“define” on page 28 No Yes

“descriptor” on page 29 Yes Yes

“disable_handler” on page 30 Yes Yes

“disjoint” on page 31 No Yes

“do_not_instantiate” on page 31 No Yes

“enum” on page 32 Yes Yes

“exception_handler” on page 36 Yes Yes

“hashome” on page 39 No Yes

20 IBM i: ILE C/C++ Compiler Reference

Table 1. Pragmas Recognized by the ILE C/C++ Compiler (continued)

Pragma Name Valid with Valid with

“implementation” on page 39 No Yes

“info” on page 39 No Yes

“inline” on page 40 Yes No

“ishome” on page 41 No Yes

“isolated_call” on page 41 No Yes

“linkage” on page 42 Yes No

“map” on page 43 Yes Yes

“mapinc” on page 44 Yes No

“margins” on page 47 Yes No

“namemangling” on page 47 No Yes

“namemanglingrule” on page 48 No Yes

“noargv0” on page 49 Yes No

“noinline (function)” on page 50 Yes No

“nomargins” on page 50 Yes No

“nosequence” on page 50 Yes No

“nosigtrunc” on page 50 Yes No

“pack” on page 51 Yes Yes

“page” on page 56 Yes No

“pagesize” on page 56 Yes No

“pointer” on page 56 Yes Yes

“priority” on page 57 No Yes

“sequence” on page 58 Yes No

“strings” on page 59 Yes Yes

“weak” on page 59 No Yes

Individual Pragma Descriptions

argopt

argopt syntax
#pragma argopt (function_name

typedef_of_function_name

typedef_of_function_ptr

function_ptr

)

ILE C/C++ Pragmas 21

Description

Argument Optimization (argopt) is a pragma which might improve runtime performance. Applied to a
bound procedure, optimizations can be achieved by:

• Passing space pointer parameters into general-purpose registers (GPRs).
• Storing a space pointer returned from a function into a GPR.

Parameters
function_name

Specifies the name of the function for which optimized procedure parameter passing is to be
specified. The function can be either a static function, an externally-defined function, or a function
defined in the current compilation unit that is called from outside the current compilation unit.

typedef_of_function_name
Specifies the name of the typedef of the function for which optimized procedure parameter passing is
to be specified.

typedef_of_function_ptr
Specifies the name of the typedef of the function pointer for which optimized procedure parameter
passing is to be specified.

function_ptr
Specifies the name of the function pointer for which optimized procedure parameter passing is to be
specified.

Notes on Usage

Specifying #pragma argopt directive does not guarantee that your program will be optimized.
Participation in argopt is dependent on the translator.

Do not specify #pragma argopt together with #pragma descriptor for the same declaration. The compiler
supports using only one or the other of these pragmas at a time.

A function must be declared (prototyped), or defined before it can be named in a #pragma argopt
directive.

Void pointers will not be optimized since they are not space pointers.

Use of #pragma argopt is not supported in struct declarations.

The #pragma argopt cannot be specified for functions which have OS-linkage or built-in linkage (for
functions which have a #pragma linkage (function_name, OS) directive or #pragma
linkage(function_name, builtin) directive associated with them, and vice versa).

The #pragma argopt will be ignored for functions which are named as handler functions in #pragma
exception_handler or #pragma cancel_handler directives, and error handling functions such as
signal() and atexit(). The #pragma argopt directive cannot be applied to functions with a variable
argument list.

#pragma argopt scoping

The #pragma argopt must be placed in the same scope as the function, the function pointer, typedef of a
function pointer, or typedef of a function that it operates on. If the #pragma argopt is not in the same
scope, an error is issued.

#include <stdio.h>

long func3(long y)
{
printf("In func3()\n");
printf("hex=%x,integer=%d\n",y, y);
}
#pragma argopt (func3) /* file scope of function */
int main(void)
 {
 int i, a=0;
 typedef long (*func_ptr) (long);
 #pragma argopt (func_ptr) /* block scope of typedef */

22 IBM i: ILE C/C++ Compiler Reference

 /* of function pointer */
 struct funcstr
 {
 long (*func_ptr2) (long);
 #pragma argopt (func_ptr2) /* struct scope of function */
 /* pointer */
 };
struct funcstr func_ptr3;
for (i=0; i<99; i++)
 {
 a = i*i;
 if (i == 7)
 {
 func_ptr3.func_ptr2(i);
 }
 }
 return i;
}

argument

argument syntax
pragma argument (function_name , OS

, nowiden

, VREF

, nowiden

, nowiden

)

Description

Specifies the argument passing and receiving mechanism to be used for the procedure or typedef named
by function_name.

This pragma identifies procedures as externally bound-procedures only. The procedure may be defined in
and called from the same source as the pragma argument directive. If the pragma argument directive is
specified in the same compilation unit as the definition of the procedure named in that directive, the
arguments to that procedure will be received using the method specified in that pragma directive.

For information about making calls to external programs, see pragma “linkage” on page 42 .

Parameters
function_name

Specifies the name of the externally-bound procedure.
OS

OS indicates that arguments are passed, or received (if the pragma directive is in the same
compilation unit as the procedure definition), using the OS-Linkage argument method. Non-address
arguments are copied to temporary locations and widened (unless nowiden has been specified), and
the address of the copy is passed to the called procedure. Arguments that are addresses or pointers
are passed directly to the called procedure.

VREF
VREF is similar to OS-linkage with the exception that address arguments are also passed and received
using the OS-Linkage method.

nowiden
Specifies that the arguments are not widened before they are passed or received. This parameter can
be used by itself without specifying an argument type. For example, #pragma argument (myfunc,
nowiden), indicates that procedure myfunc will pass and receive its arguments with the typical by-
value method, but unwidened.

ILE C/C++ Pragmas 23

Notes on Usage

This pragma controls how parameters are passed to bound-procedures and how they are received. The
function name specified in the #pragma argument directive can be defined in the current compilation
unit. The #pragma argument directive must precede the function it names.

Specifying a #pragma argument directive in the same compilation unit as the affected procedure tells the
compiler that the procedure is to receive (as well as to send) its arguments as specified in the pragma
argument directive. This is useful for ILE C written bound-procedures specified in a pragma argument.
The user must ensure that if the call to the procedure and the definition are in separate compilation units,
the pragma argument directives must match in regards to their passing method (OS, VREF, and nowiden).

For example, in the two source files below, the address of a temporary copy of the argument will be
passed to foo in Program 1. Program 2, foo will receive the address of the temporary copy, dereference
it, and assign that value to the parameter a. If the two pragma directives differ, behavior is undefined.

Program 1 Program 2

#pragma argument(foo, OS, nowiden)
void foo(char);
void main() {
 foo(10);
}

#pragma argument(foo, OS, nowiden)
void foo(char a) { a++; }

Warnings are issued, and the #pragma argument directive is ignored if any of the following occurs:

• The #pragma argument directive does not precede the declaration or definition of the named function
in the compilation unit.

• The function_name in the directive is not the name of a procedure or a typedef of a procedure.
• A typedef named in the directive has been used in the declaration or definition of a procedure before

being used in the directive.
• A #pragma argument directive has already been specified for this function.
• A #pragma linkage directive has already been specified for this function.
• The function has already been called before the #pragma argument directive.

cancel_handler

cancel_handler syntax
pragma cancel_handler (function_name , 0

, com_area

)

Description

Specifies that the function named is to be enabled as a user-defined ILE cancel handler at the point in the
code where the #pragma cancel_handler directive is located.

Any cancel handler that is enabled by a #pragma cancel_handler directive is implicitly disabled when the
call to the function containing the directive is finished. The call is removed from the call stack, if the
handler has not been explicitly disabled by the #pragma disable_handler directive.

Parameters
function_name

Specifies the name of the function to be used as a user-defined ILE cancel handler.
com_area

Used to pass information to the exception handler. If no com_area is required, specify zero as the
second parameter of the directive. If a com_area is specified on the directive, it must be a variable of
one of the following data types: integral, float, double, struct, union, array, enum, pointer, or packed

24 IBM i: ILE C/C++ Compiler Reference

decimal. The com_area should be declared with the volatile qualifier. It cannot be a member of a
structure or a union.

See the C/C++ Runtime Library Functions for information about <except.h> and the typedef
_CNL_Hndlr_Parms_T, a pointer which is passed to the cancel handler.

Notes on Usage

The handler function can take only 16-byte pointers as parameters.

This #pragma directive can only occur at a C language statement boundary and inside a function
definition.

The compiler issues an error message if any of the following occurs:

• The directive occurs outside a C function body or inside a C statement.
• The handler function is not declared or defined.
• The identifier that is named as the handler function is not a function.
• The com_area variable is not declared.
• The com_area variable does not have a valid object type.
• The handler function specified is defined with argument optimization (#pragma argopt).

See the ILE C/C++ Programmer's Guide for examples and more information about using the #pragma
cancel_handler directive.

chars

chars syntax

pragma chars (

unsigned

signed)

Description

Specifies that the compiler is to treat all char objects as signed or unsigned. This pragma must appear
before any C code or directive (except for the #line directive) in a source file.

Parameters
unsigned

All char objects are treated as unsigned integers.
signed

All char objects are treated as signed integers.

checkout

checkout syntax
pragma checkout (suspend

resume

)

Description

Specifies whether the compiler should give compiler information when a CHECKOUT compiler option
value other than *NONE is specified.

Parameters
suspend

Specifies that the compiler suspend informational messages.

ILE C/C++ Pragmas 25

resume
Specifies that the compiler resume informational messages.

Notes on Usage

#pragma checkout directives can be nested. This means that a #pragma checkout (suspend) directive
will have no effect if a previously specified #pragma checkout (suspend) directive is still in effect. This is
also true for the #pragma checkout resume directive.

Example

/* Assume CHECKOUT(*PPTRACE) had been specified */
#pragma checkout(suspend) /* No CHECKOUT diagnostics are performed */
 ...
#pragma checkout(suspend) /* No effect */
 ...
#pragma checkout(resume) /* No effect */
 ...
#pragma checkout(resume) /* CHECKOUT(*PPTRACE) diagnostics continue */

comment

comment syntax
pragma comment (compiler

date

timestamp

copyright

user , " characters "

)

Description

Emits a comment into the program or service program object. This can be shown by DSPPGM or
DSPSRVPGM with DETAIL(*COPYRIGHT). This pragma must appear before any C code or directive (except
for the #line directive) in a source file.

Parameters

Valid settings for the comment pragma can be:
compiler

The name and version of the compiler is emitted into the end of the generated program object.
date

The date and time of compilation is emitted into the end of the generated program object.
timestamp

The last modification date and time of the source is emitted into the end of the generated program
object.

copyright
The text that is specified by characters is placed by the compiler into the generated program object
and is loaded into memory when the program is run.

user
The text specified by characters is placed by the compiler into the generated object. However, it is not
loaded into memory when the program is run.

Notes on Usage

The copyright and user comment types are virtually the same for the ILE C/C++ compiler. One has no
advantage over the other.

26 IBM i: ILE C/C++ Compiler Reference

The maximum number of characters in the text portion of a #pragma comment(copyright) or #pragma
comment(user) directive is 256.

The maximum number of #pragma comment directives that can appear in a single compilation unit is
1024.

convert

convert syntax
pragma convert (ccsid)

Description

Specifies the Coded Character Set Identifier (CCSID) to use for converting the string literals from that
point onward in a source file during compilation. The conversion continues until the end of the source file
or until another #pragma convert directive is specified. Use #pragma convert (0) to disable the previous
#pragma convert directive. The CCSID of the string literals before conversion is the same CCSID as the
root source member. CCSIDs 905 and 1026 are not supported. The CCSID can be either EBCDIC or ASCII.

Parameters
ccsid

Specifies the coded character set identifier to use for converting the strings and literals in the source
file. The value can be 0 - 65535. See ILE C/C++ Runtime Library Functions for more information about
code pages.

Notes on Usage

By default, runtime library functions that parse format strings (such as printf() and scanf()) expect
the format strings to be coded in CCSID 37. If the LOCALETYPE(*LOCALEUTF) compile option is specified,
then the runtime library functions expect the format strings to be coded in the CCSID of the last locale set
in the program (or UTF-8 if the program does not set the locale).

String and character constants that are specified in hex, for example (0xC1), are not converted.

Substitution characters are not used when converting to a target CCSID that does not contain the same
symbol set as the source CCSID. The compilation fails.

If a CCSID with the value 65535 is specified for the C compiler, it behaves the same as if a value of 0 is
specified. For the C++ compiler the CCSID of the root source member is assumed. If the source file CCSID
value is 65535, the job CCSID is assumed for the source file. If the file CCSID is 65535 and the job CCSID
is not 65535, the job CCSID is assumed for the file CCSID. If the file CCSID is 65535 and the job CCSIDis
also 65535, but the system CCSID value is not 65535, the system CCSID value is assumed for the file
CCSID. If the file, job and system CCSID values are 65535, CCSID 037 is assumed.

For include processing, the CCSID at the start of the header is the CCSID in effect at the point of the
#include. At the end of the header file, the CCSID is changed back to the CCSID that was in effect at the
point of the #include. Good programming practice dictates that within a header file, any convert(ccsid)
pragmas should have a corresponding convert(0) pragma before the end of the header file.

If the LOCALETYPE(*LOCALE) compiler option is specified for the C compiler, wide-character literals are
not converted. For the C++ compiler, wide-character literals are converted to the code page requested by
the convert pragma. If the LOCALETYPE(*LOCALEUTF) or LOCALETYPE(*LOCALEUCS2) compiler option is
specified, wide-character literals are not converted. See Using Unicode Support for Wide-Character
Literals in the ILE C/C++ Programmer's Guide for more information.

datamodel

ILE C/C++ Pragmas 27

datamodel syntax

pragma datamodel (

P128

LLP64

pop

)

Description

Specifies a data model to apply to a section of code. The data model setting determines the interpretation
of pointer types in absence of an explicit modifier.

This pragma overrides the data model specified by the DTAMDL compiler command line option.

Parameters
P128, p128

The size of pointers declared without the __ptr64 keyword will be 16 bytes.
LLP64, llp64

The size of pointers declared without the __ptr128 keyword will be 8 bytes.
pop

Restores the previous data model setting. If there is no previous data model setting, the setting
specifed by the DTAMDL compiler command line option is used.

Note on Usage

This pragma and its settings are case-sensitive when used in C++ programs.

Specifying #pragma datamodel(LLP64) or #pragma datamodel(llp64) has effect only when the
TERASPACE(*YES) compiler option is also specified.

The data model specified by this pragma remains in effect until another data model is specified, or until
#pragma datamodel(pop) is specified.

Example

This pragma is recommended for wrapping header files, without having to add pointer modifiers to pointer
declarations. For example:

 // header file blah.h
 #pragma datamodel(P128) // Pointers are now 16-byte
 char* Blah(int, char *);
 #pragma datamodel(pop) // Restore previous setting of datamodel

You can also specify data models using the __ptr64 and __ptr128 pointer modifiers. These modifers
override the DTAMDL compiler option, and the #pragma datamodel setting for a specific pointer
declaration.

The __ptr64 modifier should only be used if the TERASPACE(*YES) compiler option is also specified. The
__ptr128 modifier can be used at any time.

The following example shows the declarations of a process local pointer and a tagged space pointer:

 char * __ptr64 p; // an 8-byte, process local pointer
 char * __ptr128 t; // a 16-byte, tagged space pointer

For more information, see Using Teraspace in the ILE C/C++ Programmer's Guide, and Teraspace and
single-level store in the ILE Concepts.

define

define syntax
pragma define (template_class_name)

28 IBM i: ILE C/C++ Compiler Reference

Description

The #pragma define directive forces the definition of a template class without actually defining an object
of the class. The pragma can appear anywhere that a declaration is allowed. It is used when organizing
your program for the efficient or automatic generation of template functions.

descriptor

pragma descriptor (void function_name (od_specifiers))

descriptor syntax
od_specifiers

""

void

*
, ""

void

*

Description

An operational descriptor is an optional piece of information that is associated with a function argument.
This information is used to describe an argument's attributes, for example, its data type and length. The
#pragma descriptor directive is used to identify functions whose arguments have operational descriptors.

Operational descriptors are useful when passing arguments to functions that are written in other
languages that may have a different definition of the data types of the arguments. For example, C defines
a string as a contiguous sequence of characters ended by and including the first null character. In another
language, a string may be defined as consisting of a length specifier and a character sequence. When
passing a string from a C function to a function written in another language, an operational descriptor can
be provided with the argument to allow the called function to determine the length and type of the string
being passed.

The ILE C/C++ compiler generates operational descriptors for arguments that are passed to a function
specified in a #pragma descriptor directive. The generated descriptor contains the descriptor type, data
type, and length for each argument that is identified as requiring an operational descriptor. The
information in an operational descriptor can be retrieved by the called function using the ILE APIs CEEGSI
and CEEDOD. For more information about CL commands, see the CL and APIs section in the Programming
category at the IBM i Information Center web site:

 http://www.ibm.com/systems/i/infocenter

For the operational descriptor to determine the correct string length when passed through a function, the
string has to be initialized.

The ILE C compiler supports operational descriptors for describing strings.

Note: A character string in ILE C/C++ is defined by using any one of the following ways:

• char string_name[n]
• char * string_name
• A string literal

Parameters

function_name
The name of the function whose arguments require operational descriptors.

ILE C/C++ Pragmas 29

od_specifiers
A list of symbols, that consists of "", void, or *, separated by commas, that specify which of a
function's arguments are to have operational descriptors. An od_specifier list is similar to the
argument list of a function except that an od_specifier list for a function can have fewer specifiers than
its argument list.

• If a string operational descriptor is required for an argument, "" or * should be specified in the
equivalent position for the od_specifier parameter.

• If an operational descriptor is not required for an argument then void is specified for that parameter
in the equivalent position for the od_specifier list.

Notes on Usage

Do not specify #pragma descriptor together with #pragma argopt for the same declaration. The compiler
supports using only one or the other of these pragmas at a time.

The compiler issues a warning and ignores the #pragma descriptor directive if any of the following
conditions occur:

• The identifier specified in the pragma directive is not a function.
• The function is already specified in another pragma descriptor.
• The function is declared as static.
• The function has already been specified in a #pragma linkage directive.
• The function specified is a user entry procedure, for example, main().
• The function is not prototyped before its #pragma descriptor directive.
• A call to the function occurs before its #pragma descriptor directive.

When using operational descriptors consider the following restrictions:

• Operational descriptors are only generated for functions that are called by their function name.
Functions that are called by function pointer do not have operational descriptors generated.

• Operational descriptors are not allowed for C++ function declaration.
• If there are fewer od_specifiers than function arguments, the remaining od_specifiers default to void.
• If a function requires a variable number of arguments, the #pragma descriptor directive can specify that

operational descriptors are to be generated for the required arguments but not for the variable
arguments.

• It is not valid to do pointer arithmetic on a literal or array while it is also used as an argument that
requires an operational descriptor, unless explicitly cast to char *. For example, if F is a function that
takes as an argument a string, and F requires an operational descriptor for this argument, then the
argument on the following call to F is not valid: F(a + 1) where "a" is defined as char a[10].

disable_handler

disable_handler syntax
pragma disable_handler

Description

Disables the handler most recently enabled by either the exception_handler or cancel_handler pragma.

This directive is only needed when a handler has to be explicitly disabled before the end of a function.
This is done since all enabled handlers are implicitly disabled at the end of the function in which they are
enabled.

Notes on Usage

30 IBM i: ILE C/C++ Compiler Reference

This pragma can only occur at a C language statement boundary and inside a function definition. The
compiler issues an error message if the #pragma disable_handler is specified when no handler is
currently enabled.

disjoint

disjoint syntax

pragma disjoint (* identifier , * identifier)

Description

This directive informs the compiler that none of the identifiers listed shares the same physical storage,
which provides more opportunity for optimizations. If any identifiers actually share physical storage, the
pragma may cause the program to give incorrect results.

An identifier in the directive must be visible at the point in the program where the pragma appears. The
identifiers in the disjoint name list cannot refer to any of the following items:

• a member of a structure, or union
• a structure, union, or enumeration tag
• an enumeration constant
• a typedef name
• a label

Example

 int a, b, *ptr_a, *ptr_b;
 #pragma disjoint(*ptr_a, b) // *ptr_a never points to b
 #pragma disjoint(*ptr_b, a) // *ptr_b never points to a
 one_function()
 {
 b = 6;
 *ptr_a = 7; // Assignment does not alter the value of b
 another_function(b); // Argument "b" has the value 6
 }

Because external pointer ptr_a does not share storage with and never points to the external variable b,
the assignment of 7 to the object that ptr_a points to will not change the value of b. Likewise, external
pointer ptr_b does not share storage with and never points to the external variable a. The compiler can
assume that the argument of another_function has the value 6 and will not reload the variable from
memory.

do_not_instantiate

do_not_instantiate syntax
pragma do_not_instantiate template class name

Description

Prevents the specified template declaration from being instantiated. You can use this pragma to suppress
the implicit instantiation of a template for which a definition is supplied.

Parameters
template_class_name

The name of the template class that should not be instantiated.

ILE C/C++ Pragmas 31

Notes on Usage

If you are handling template instantiations manually (that is, compiler options TEMPLATE(*NONE) and
TMPLREG(*NONE) are in effect), and the specified template instantiation exists in another compilation
unit, using #pragma do_not_instantiate ensures that you do not get multiple symbol definitions
during the link step.

#pragma do_not_instantiate on a class template specialization is treated as an explicit instantiation
declaration of the template. This pragma provides a subset of the functionality of the explicit instantiation
declarations feature, which is introduced by the C++0x standard. It is provided for compatibility purposes
only and is not recommended. New applications should use explicit instantiation declarations instead.
See “LANGLVL” on page 80 and "Explicit instantiation(C++ only)" in ILE C/C++ Language Reference.

Examples

The following example shows the usage of the pragma:

#pragma do_not_instantiate Stack <int>

enum

enum syntax
#pragma enum (1

2

4

int

small

pop

system_default

user_default

)

enum syntax
#pragma enum (1

2

4

8

int

intlong

small

pop

system_default

user_default

)

Description

Specifies the number of bytes the compiler uses to represent enumerations. The pragma affects all
subsequent enum definitions until the end of the compilation unit or until another #pragma enum
directive is encountered. If more than one pragma is used, the most recently encountered pragma is in
effect. This pragma overrides the ENUM compiler option, described on page “ENUM” on page 93.

Parameters

32 IBM i: ILE C/C++ Compiler Reference

1, 2, 4, 8
Specifies that enumerations be stored in 1, 2, 4, or 8-byte containers. The sign of the container is
determined by the range of values in the enumeration, but preference is given to signed when the
range permits either. The pragma enum(8) directive is only available in C++.

int
Causes enumerations to be stored in the ANSI C or C++ Standard representation of an enumeration,
which is 4-bytes signed. In C++ programs, the int container may become 4-bytes unsigned if a value
in the enumeration exceeds 231-1, as per the ANSI C++ Standard.

intlong
Specifies that enumerations occupy 8 bytes of storage if the range of values in the enumeration
exceeds the limit for int. If the range of values in the enumeration does not exceed the limit for int, the
enumeration will occupy 4 bytes of storage and is represented as though enum(int) was specified. The
pragma enum(intlong) directive is only available in C++

small
Causes subsequent enumerations to be placed into the smallest possible container, given the values
in the enumeration. The sign of the container is determined by the range of values in the enumeration,
but preference is given to unsigned when the range permits either.

pop
Selects the enumeration size previously in effect, and discards the current setting.

system_default
Selects the default enumeration size, which is the small option.

user_default
Selects the enumeration size specified by the ENUM compiler option.

The value ranges that can be accepted by the enum settings are shown below:

Table 2. Value Ranges Accepted by the enum Settings

Range of
Element Values

Enum Options

small

(default
)

1 2 4
8

(C++
only)

int
intlong

(C++ only)

0 .. 127
1 byte
unsign
ed

1 byte
signed

2
bytes
signed

4
bytes
signed

8
bytes
signed

4 bytes
signed

4 bytes
signed

0 .. 255
1 byte
unsign
ed

1 byte
unsign
ed

2
bytes
signed

4
bytes
signed

8
bytes
signed

4 bytes
signed

4 bytes
signed

-128 .. 127 1 byte
signed

1 byte
signed

2
bytes
signed

4
bytes
signed

8
bytes
signed

4 bytes
signed

4 bytes
signed

0 .. 32767

2
bytes
unsign
ed

ERROR
2

bytes
signed

4
bytes
signed

8
bytes
signed

4 bytes
signed

4 bytes
signed

0 .. 65535

2
bytes
unsign
ed

ERROR

2
bytes
unsign
ed

4
bytes
signed

8
bytes
signed

4 bytes
signed

4 bytes
signed

-32768 .. 32767
2

bytes
signed

ERROR
2

bytes
signed

4
bytes
signed

8
bytes
signed

4 bytes
signed

4 bytes
signed

ILE C/C++ Pragmas 33

Table 2. Value Ranges Accepted by the enum Settings (continued)

Range of
Element Values

Enum Options

small

(default
)

1 2 4
8

(C++
only)

int
intlong

(C++ only)

0 .. 2147483647

4
bytes
unsign
ed

ERROR ERROR
4

bytes
signed

8
bytes
signed

4 bytes
signed

4 bytes
signed

0 .. 4294967295

4
bytes
unsign
ed

ERROR ERROR

4
bytes
unsign
ed

8
bytes
signed

C++ 4 bytes
unsigned

C ERROR

4 bytes
unsigned

-2147483648 ..
2147483647

4
bytes
signed

ERROR ERROR
4

bytes
signed

8
bytes
signed

4 bytes
signed

4 bytes
signed

0 .. (263 -1)

(C++ only)

8
bytes
unsign
ed

ERROR ERROR ERROR
8

bytes
signed

ERROR 8 bytes
signed

0.. 2 64

(C++ only)

8
bytes
unsign
ed

ERROR ERROR ERROR

8
bytes
unsign
ed

ERROR 8 bytes
unsigned

-2 63 .. (2
63-1)

(C++ only)

8
bytes
signed

ERROR ERROR ERROR
8

bytes
signed

ERROR 8 bytes
signed

Examples

The examples below show various uses of the #pragma enum and compiler options:

1. You cannot change the storage allocation of an enum by using #pragma enum within the declaration of
an enum. The following code segment generates a warning and the second occurrence of the enum
option is ignored:

#pragma enum (small)
 enum e_tag { a, b,
#pragma enum (int) /* error: cannot be within a declaration */
 c
 } e_var;

#pragma enum (pop) /* second pop isn't required */

2. The range of enum constants must fall within the range of either unsigned int or int (signed int) for the
C compiler. The range of enum constants must fall within the range of either unsigned long long or long
long (signed long long) for the C++ compiler. For example, the following code segments contain errors
when the C compiler is used, but will compile successfully when the C++ compiler is used.:

#pragma enum (small)
 enum e_tag { a=-1,
 b=2147483648 /* C compiler error: larger than maximum int */
 } e_var;
#pragma enum (pop)

#pragma enum (small)
 enum e_tag { a=0,

34 IBM i: ILE C/C++ Compiler Reference

 b=4294967296 /* C compiler error: larger than maximum int */
 } e_var;
#pragma enum (pop)

3. One use for the pop option is to pop the enumeration size set at the end of an include file that specifies
an enumeration storage different from the default in the main file. For example, the following include
file, small_enum.h, declares various minimum-sized enumerations, then resets the specification at the
end of the include file to the last value on the option stack:

#ifndef small_enum_h
#define small_enum_h
/*
 * File small_enum.h
 * This enum must fit within an unsigned char type
*/
#pragma enum (small)
 enum e_tag {a, b=255};
 enum e_tag u_char_e_var; /* occupies 1 byte of storage */

/* Pop the enumeration size to whatever it was before */
#pragma enum (pop)
#endif

The following source file, int_file.c, includes small_enum.h:

/*
 * File int_file.c
 * Defines 4 byte enums
*/
#pragma enum (int)
 enum testing {ONE, TWO, THREE};
 enum testing test_enum;

/* various minimum-sized enums are declared */
#include "small_enum.h"

/* return to int-sized enums. small_enum.h has popped the enum size
*/
 enum sushi {CALIF_ROLL, SALMON_ROLL, TUNA, SQUID, UNI};
 enum sushi first_order = UNI;

The enumerations test_enum and first_order both occupy 4 bytes of storage and are of type int. The
variable u_char_e_var defined in small_enum.h occupies 1 byte of storage and is represented by an
unsigned char data type.

4. If the code fragment below is compiled with the ENUM = *SMALL option:

enum e_tag {a, b, c} e_var;

the range of enum constants is 0 through 2. This range falls within all of the ranges described in the
table above. Based on priority, the compiler uses predefined type unsigned char.

5. If the code fragment below is compiled with the ENUM = *SMALL option:

enum e_tag {a=-129, b, c} e_var;

the range of enum constants is -129 through -127. This range only falls within the ranges of short
(signed short) and int (signed int). Because short (signed short) is smaller, it will be used to represent
the enum.

6. If you compile a file myprogram.c using the command:

CRTBNDC MODULE(MYPROGRAM) SRCMBR(MYPROGRAM) ENUM(*SMALL)

all enum variables within your source file will occupy the minimum amount of storage, unless #pragma
enum directives override the ENUM option.

7. If you compile a file yourfile.c that contains the following lines:

enum testing {ONE, TWO, THREE};
enum testing test_enum;

#pragma enum (small)

ILE C/C++ Pragmas 35

enum sushi {CALIF_ROLL, SALMON_ROLL, TUNA, SQUID, UNI};
enum sushi first_order = UNI;

#pragma enum (int)
enum music {ROCK, JAZZ, NEW_WAVE, CLASSICAL};
enum music listening_type;

using the command:

CRTBNDC MODULE(YOURFILE) SRCMBR(YOURFILE)

the enum variables test_enum and first_order will be minimum-sized (that is, each will only occupy 1
byte of storage). The other enum variable, listening_type, will be of type int and occupy 4 bytes of
storage.

exception_handler

exception_handler syntax
pragma exception_handler (function_name

label

, 0

, com_area

,

class1 , class2

, ctl_action

, msgid_list

)

Description

Enables a user-defined ILE exception handler at the point in the code where the #pragma
exception_handler is located.

Any exception handlers enabled by #pragma exception_handler that are not disabled using #pragma
disable_handler are implicitly disabled at the end of the function in which they are enabled.

Parameters
function

Specifies the name of the function to be used as a user-defined ILE exception handler.
label

Specifies the name of the label to be used as a user-defined ILE exception handler. The label must be
defined within the function where the #pragma exception_handler is enabled. When the handler gets
control, the exception is implicitly handled and control resumes at the label defined by the handler in
the invocation containing the #pragma exception_handler directive. The call stack is canceled from
the newest call to, but not including, the call containing the #pragma exception_handler directive.
The label can be placed anywhere in the statement part of the function definition, regardless of the
position of the #pragma exception_handler.

com_area
Used for the communications area. If no com_area should be specified, zero is used as the second
parameter of the directive. If a com_area is specified on the directive, it must be a variable of one of
the following data types: integral, float, double, struct, union, array, enum, pointer, or packed decimal.
The com_area should be declared with the volatile qualifier. It cannot be a member of a structure or a
union.

class1, class2
Specifies the first four bytes and the last four bytes of the exception mask. The <except.h> header file
describes the values that you can use for the class masks. It also contains macro definitions for these
values. class1 and class2 must evaluate to integer constant expressions after any necessary macro
expansions. You can monitor for the valid class2 values of:

• _C2_MH_ESCAPE
• _C2_MH_STATUS

36 IBM i: ILE C/C++ Compiler Reference

• _C2_MH_NOTIFY, and
• _C2_FUNCTION_CHECK.

ctl_action
Specifies an integer constant to indicate what action should take place for this exception handler. If
handler is a function, the default value is _CTLA_INVOKE. If handler is a label, the default value is
_CTLA_HANDLE. This parameter is optional.

The following are valid exception control actions that are defined in the <except.h> header file:

#define name Defined value and action

_CTLA_INVOKE Defined to 1. This control action will cause the function named on
the directive to be invoked and will not handle the exception. If
the exception is not explicitly handled, processing will continue.
This is valid for functions only.

_CTLA_HANDLE Defined to 2. The exception is handled and messages are logged
before calling the handler. The exception will no longer be active
when the handler gets control. Exception processing ends when
the exception handler returns. This is valid for functions and
labels.

_CTLA_HANDLE_NO_MSG Defined to 3. The exception is handled but messages are not
logged before calling the handler. The exception will no longer be
active when the handler gets control. Exception messages are not
logged. Msg_Ref_Key in the typedef _INTRPT_Hndlr_Parms_T is
set to zero. Exception processing ends when the exception
handler returns. This is valid for functions and labels.

_CTLA_IGNORE Defined to 131. The exception is handled and messages are
logged. Control is not passed to the handler function named on the
directive and exception will no longer be active. Execution
resumes at the instruction immediately following the instruction
that caused the exception. This is valid for functions only.

_CTLA_IGNORE_NO_MSG Defined to 132. The exception is handled and messages are not
logged. Control is not passed to the handler function named on the
directive and exception will no longer be active. Execution
resumes at the instruction immediately following the instruction
that caused the exception. This is valid for functions only.

msgid_list
Specifies an optional string literal that contains the list of message identifiers. The exception handler
will take effect only when an exception occurs whose identifiers match one of the identifiers on the
list of message identifiers. The list is a series of 7-character message identifiers where the first three
characters are the message prefix and the last four are the message number. Each message identifier
is separated by one or more spaces or commas. This parameter is optional, but if it is specified,
ctl_action must also be specified.

For the exception handler to get control, the selection criteria for class1 and class2 must be satisfied.
If the msgid_list is specified, the exception must also match at least one of the message identifiers in
the list, based on the following criteria:

• The message identifier matches the exception exactly.
• A message identifier, whose two rightmost characters are 00, will match any exception identifier

that has the same five leftmost characters. For example, a message identifier of CPF5100 will
match any exceptions whose message identifier begins with CPF51.

• A message identifier, whose four rightmost characters are 0000, will match any exception identifier
that has the same prefix. For example, a message identifier of CPF0000 will match any exception
whose message identifier has the prefix CPF (CPF0000 to CPF9999).

ILE C/C++ Pragmas 37

• If msgid_list is specified, but the exception that is generated is not one specified in the list, the
exception handler will not get control.

Notes on Usage

The handler function can take only 16-byte pointers as parameters.

The macro _C1_ALL, defined in the <except.h> header file, can be used as the equivalent of all the valid
class1 exception masks. The macro _C2_ALL, defined in the <except.h> header file, can be used as the
equivalent of all four of the valid class2 exception masks.

You can use the binary OR operator to monitor for different types of messages. For example,

#pragma exception_handler(myhandler, my_comarea, 0, _C2_MH_ESCAPE | \
 _C2_MH_STATUS | _C2_MH_NOTIFY, _CTLA_IGNORE, "MCH0000")

will set up an exception monitor for three of the four class2 exception classes that can be monitored.

The compiler issues an error message if any of the following occurs:

• The directive occurs outside a C function body or inside a C statement.
• The handler that is named is not a declared function or a defined label.
• The com_area variable has not been declared or does not have a valid object type.
• Either of the exception class masks is not a valid integral constant
• The ctl_action is one of the disallowed values when the handler that is specified is a label

(_CTLA_INVOKE, _CTLA_IGNORE, _CTLA_IGNORE_NO_MSG).
• The msgid_list is specified, but the ctl_action is not.
• A message in the msgid_list is not valid. Message prefixes that are not in uppercase are not considered

valid.
• The messages in the string are not separated by a blank or comma.
• The string is not enclosed in “ ” or is longer than 4 KB.
• The handler function specified is defined with argument optimization (#pragma argopt).

If a label is used as a user-defined exception handler, some of the code between the exception_handler
pragma and the disable_handler pragma could be skipped if an exception occurs. Therefore, any
declaration or statement in the exception range may be skipped causing variables to not be initialized or
variable length arrays to not have storage allocated (since storage is allocated for variable length arrays at
the time of their declaration). In the following example

1. The assignment to z may cause an exception if i is zero. If so, control branches to LABEL.
2. If an exception occurs, ptr will not set to &z and vla will not have its storage allocated.
3. The use of *ptr and vla[0] may be illegal if ptr is not initialized and the storage for vla is not

allocated.

void func(unsigned int i)
{
 unsigned int *ptr = NULL;
 unsigned int z;
#pragma exception_handler(LABEL,0, _C1_ALL, _C2_ALL)
 z = 45/i; // 1
 ptr = &z; // 2
 unsigned int vla[z];
#pragma disable_handler
LABEL:
 vla[0] = *ptr; // 3
 return;
}

In addition, because variable length arrays declare their storage at run time and that may cause a storage
allocation exception, it is recommended to have an exception handler enabled for variable length array
declarations.

38 IBM i: ILE C/C++ Compiler Reference

See the ILE C/C++ Programmer's Guide for examples and more information about using the #pragma
exception_handler directive.

hashome

hashome syntax
pragma hashome (className

, " AllInlines "

)

Description

Informs the compiler that the specified class has a home module that will be specified by #pragma
ishome. This class's virtual function table, along with certain inline functions, will not be generated as
static. Instead, they will be referenced as externals in the compilation unit of the class in which #pragma
ishome was specified.

Parameters
className

Specifies the name of a class that requires the above mentioned external referencing. className
must be a class and it must be defined.

AllInlines
specifies that all inline functions from within className should be referenced as being external. This
argument is case insensitive.

A warning will be produced if there is a #pragma ishome without a matching #pragma hashome.

See also “ishome” on page 41.

implementation

implementation syntax
pragma implementation (string_literal)

Description

The #pragma implementation directive tells the compiler the name of the file containing the function-
template definitions that correspond to the template declarations in the include file which contains the
pragma. This pragma can appear anywhere that a declaration is allowed. It is used when organizing your
program for the efficient or automatic generation of template functions.

info

info syntax
pragma info (all

none

restore

nogroup

group

,

)

Description

This pragma can be used to control which diagnostic messages are produced by the compiler.

ILE C/C++ Pragmas 39

Parameters

all
Generates all diagnostic messages while this pragma is in effect.

none
Turns off all diagnostic messages while this pragma is in effect.

restore
Restores the previous setting of pragma info.

nogroup
Suppresses all diagnostic messages associated with a specified diagnostic group. To turn off a
specific group of messages, prepend the group name with "no". For example, nogen will suppress
CHECKOUT messages. Valid group names are listed below.

group
Generates all diagnostic messages associated with the specified diagnostic group. Valid group names
are:
lan

Display information about the effects of the language level
gnr

Generate messages if the compiler creates temporary variables
cls

Display information about class use
eff

Warn about statements with no effect
cnd

Warn about possible redundancies or problems in conditional expressions
rea

Warn about unreachable statements
par

List the function parameters that are not used
por

List the non-portable usage of the C/C++ language
trd

Warn about the possible truncation or loss of data
use

Check for unused auto or static variables
gen

List the general CHECKOUT messages

inline

inline syntax
pragma inline (function_name)

Description

The #pragma inline directive specifies that function_name is to be inlined. The pragma can appear
anywhere in the source, but must be at file scope. The pragma has no effect if the INLINE(*ON) compiler
option parameter is not specified. If #pragma inline is specified for a function, the inliner will force the
function specified to be inlined on every call. The function will be inlined in both selective (*NOAUTO) and
automatic (*AUTO) INLINE mode.

40 IBM i: ILE C/C++ Compiler Reference

Inlining replaces function calls with the actual code of the function. It reduces function call overhead, and
exposes more code to the optimizer, allowing more opportunities for optimization.

Notes on Usage

• Inlining takes place only if compiler optimization is set to level 30 or higher.
• Directly recursive functions will not be inlined. Indirectly recursive functions will be inlined until direct

recursion is encountered.
• Functions calls with variable argument lists will not be inlined if arguments are encountered in the

variable portion of the argument list.
• If a function is called through a function pointer, then inlining will not occur.
• The pragma inline directive will be ignored if function_name is not defined in the same compilation unit

that contains the pragma.
• A function's definition will be discarded if all of the following are true:

– The function is static.
– The function has not had its address taken.
– The function has been inlined everywhere it is called.

This action can decrease the size of the module and program object where the function is used.

See "Function Call Performance" in the ILE C/C++ Programmer's Guide for more information about
function inlining.

ishome

ishome syntax
pragma ishome (className)

Description

Informs the compiler that the specified class's home module is the current compilation unit. The home
module is where items, such as the virtual function table, are stored. If an item is referenced from outside
of the compilation unit, it will not be generated outside its home. The advantage of this is the minimization
of code.

Parameters
className

Specifies the literal name of the class whose home will be the current compilation unit.
A warning will be produced if there is a #pragma ishome without a matching #pragma hashome.

See also “hashome” on page 39.

isolated_call

isolated_call syntax
pragma isolated_call (function)

Description

Lists a function that does not have or rely on side effects, other than those side effects implied by its
parameters.

Parameters

ILE C/C++ Pragmas 41

function
Specifies a primary expression that can be an identifier, operator function, conversion function, or
qualified name. An identifier must be of type function or a typedef of function. If the name refers to an
overloaded function, all variants of that function are marked as isolated calls.

Notes on Usage

The pragma informs the compiler that the function listed does not have or rely on side effects, other than
those side effects implied by its parameters. Functions are considered to have or rely on side effects if
they:

• Access a volatile object
• Modify an external object
• Modify a static object
• Modify a file
• Access a file that is modified by another process or thread
• Allocate a dynamic object, unless it is released before returning
• Release a dynamic object, unless it was allocated during the same invocation
• Change system state, such as rounding mode or exception handling
• Call a function that does any of the previous

Essentially, any change in the state of the runtime environment is considered a side effect. Modifying
function arguments passed by pointer or by reference is the only side effect that is allowed. Functions
with other side effects can give incorrect results when listed in #pragma isolated_call directives.

Marking a function as isolated_call indicates to the optimizer that external and static variables cannot be
changed by the called function and that pessimistic references to storage can be deleted from the calling
function where appropriate. Instructions can be reordered with more freedom, resulting in fewer pipeline
delays, and faster execution in the processor. Multiple calls to the same function with identical
parameters can be combined, calls can be deleted if their results are not needed, and the order of calls
can be changed.

The function specified is permitted to examine non-volatile external objects and return a result that
depends on the non-volatile state of the runtime environment. The function can also modify the storage
pointed to by any pointer arguments passed to the function, that is, calls by reference. Do not specify a
function that calls itself or relies on local static storage. Listing such functions in the #pragma
isolated_call directive can give unpredictable results.

linkage

linkage syntax
pragma linkage (program_name

typedef_name

, OS

, nowiden

)

Description

Identifies a given function or function typedef as being an external program subject to IBM i parameter
passing conventions.

This pragma allows calls only to external programs. For information about making calls to bound
procedures, see #pragma “argument” on page 23 .

Parameter
program_name

Specifies the name of an external program. The external name must be specified in uppercase
characters and be no longer than 10 characters in length, unless the #pragma map directive is

42 IBM i: ILE C/C++ Compiler Reference

specified to meet IBM i program naming conventions. However, if the name specified in #pragma map
is too long, it will be truncated to 255 characters during #pragma linkage processing.

typedef_name
Specifies a typedef affected by this pragma.

OS
Specifies that the external program is called using IBM i calling conventions.

nowiden
If specified, arguments are not widened before they are copied and passed.

Notes on Usage

This pragma lets an IBM i program call an external program. The external program can be written in any
language.

The pragma can be applied to functions, function types, and function pointer types. If it is applied to a
function typedef, the effect of the pragma also applies to all functions and new typedefs declared using
that original typedef.

This directive can appear either before or after the program name (or type) is declared. However, the
program cannot have been called, nor a type been used in a declaration, before the pragma directive.

The function or function pointer can only return either an int or a void.

Arguments on the call are passed according to the following IBM i argument-passing conventions:

• Non-address arguments are copied to temporary locations, widened (unless nowiden has been
specified) and the address of the copy is passed to the called program.

• Address arguments are passed directly to the called program.

The compiler issues a warning message and ignores the #pragma linkage directive if:

• The program is declared with a return type other than int or void.
• The function contains more than 256 parameters.
• Another pragma linkage directive has already been specified for the function or function type.
• The function has been defined in the current compilation unit.
• The specified function has already been called, or the type already used in a declaration.
• #pragma argopt or #pragma argument has already been specified for the named function or type.
• The object named in the pragma directive is not a function or function type.
• The name of the object specified in the pragma directive must not exceed 10 characters, or the name

will be truncated.

map

map syntax
pragma map (name1 , " name2 ")

map syntax
pragma map (name1

(arg_list)

, " name2 ")

Description

Converts all references to an identifier to another, externally defined identifier.

Parameters

ILE C/C++ Pragmas 43

name1
The name used in the source code. For C, name1 can represent a data object or function with external
linkage. For C++, name1 can represent a data object, a non-overloaded or overloaded function, or
overloaded operator, with external linkage. If the name to be mapped is not in the global namespace,
it must be fully qualified.

name1 should be declared in the same compilation unit in which it is referenced, but should not be
defined in any other compilation unit. name1 must not be used in another #pragma map directive
anywhere in the program.

arg_list
The list of arguments for the overloaded function or operator function designated by name1. If name1
designates an overloaded function, the function must be parenthesized and must include its argument
list if it exists. If name1 designates a non-overloaded function, only name1 is required, and the
parentheses and argument list are optional.

name2
The name that appears in the object code. If name2 exceeds 65535 bytes in length, a message is
issued and the pragma is ignored.

name2 can be declared or defined in the same compilation unit in which name1 is referenced. name2
must not be the same as that used in another #pragma map directive in the same compilation unit.

Notes on Usage

The #pragma map directive can appear anywhere in the program.

In order for a function to be actually mapped, the map target function (name2) must have a definition
available at link time.

If name2 specifies a function name that uses C++ linkage, then name2 must be specified using its
mangled name. For example,

int foo(int, int);
#pragma map(foo, "bar__FiT1")

int main()
{
 return foo(4,5);
}

int bar(int a, int b)
{
 return a+b;
}

mapinc

44 IBM i: ILE C/C++ Compiler Reference

mapinc syntax

pragma mapinc ("include_name" , "

*LIBL/

*CURLIB/

library_name/

file_name (*ALL

format_name

) " , "options" , "

d

p

z

_P 1BYTE_CHAR

"

, "union_type_name"

, "prefix_name"

)

Description

Indicates that data description specifications (DDS) are to be included in a module. The directive
identifies the file and DDS record formats, and provides information about the fields to be included. This
pragma, along with its associated include directive, causes the compiler to automatically generate
typedefs from the record formats that are specified in the external file descriptions.

Parameters
include_name

This is the name that you refer to on the #include directive in the source program.
library_name

This is the name of the library that contains the externally described file
file_name

This is the name of the externally described file.
format_name

This is a required parameter which indicates the DDS record format that is to be included in your
program. You can include more than one record format (format1 format2), or all the formats in a file
(*ALL).

options
The possible options are:
input

Fields declared as either INPUT or BOTH in the DDS are included in the typedef structure.
Response indicators are included in the input structure when the keyword INDARA is not specified
in the external file description (DDS source) for device files.

output
Fields declared as either OUTPUT or BOTH in DDS are included in the typedef structure. Option
indicators are included in the output structure when the keyword INDARA is not specified in the
external file description (DDS source) for device files.

ILE C/C++ Pragmas 45

both
Fields declared as INPUT, OUTPUT, or BOTH in DDS are included in the typedef structure. Option
and response indicators are included in both structures when the keyword INDARA is not
specified in the external file description (DDS source) for device files.

key
Fields that are declared as keys in the external file description are included. This option is only
valid for database files and DDM files.

indicators
A separate 99-byte structure for indicators is created when the indicator option is specified. This
option is only valid for device files.

lname
This option allows the use of file names of up to 128 characters in length. If the file name has
more than 10 characters then the name will be converted to an associated short name. The short
name will be used to extract the external file definition. When the file has a short name of 10
characters or less the name is not converted to an associated short name. Record field names up
to 30 characters in length will be generated in the typedefs by the compiler.

lvlchk
A typedef of an array of struct is generated (type name _LVLCHK_T) for the level check
information. A pointer to an object of type _LVLCHK_T is also generated and is initialized with the
level check information (format name and level identifier).

nullflds
If there is at least one null-capable field in the record format of the DDS, a null map typedef is
generated containing a character field for every field in the format. With this typedef, the user can
specify which fields are to be considered null (set value of each null field to 1, otherwise set to
zero). Also, if the key option is used along with option nullflds, and there is at least one null-
capable key field in the format, an additional typedef is generated containing a character field for
every key field in the format.

For physical and logical files you can specify input, both, key, lvlchk, and nullflds. For device
files you can specify input, output, both, indicator, and lvlchk.

The data type can be one or more of the following and must be separated by spaces.
d

Packed decimal data type.
p

Packed fields from DDS are declared as character fields.
z

Zoned fields from DDS are declared as character fields. This is the default because the compiler
does not have a zoned data type.

_P
Packed structure is generated.

1BYTE_CHAR
Generates a single byte character field for one byte characters that are defined in DDS.

" "
Default values of d and z are used.

union_type_name
A union definition of the included type definitions is created with the name union_type_name_t. This
parameter is optional.

prefix_name
Specifies the first part of the generated typedef structure name. If the prefix is not specified, the
library and file_name are used.

Notes on Usage

46 IBM i: ILE C/C++ Compiler Reference

See Using Externally Described Files in a Program in the ILE C/C++ Programmer's Guide for more
information about using the #pragma mapinc directive with externally described files.

margins

margins syntax
pragma margins (left margin , right margin

*

)

Description

Specifies the left margin to be used as the first column, and the right margin to be used as the last
column, when scanning the records of the source member where the #pragma directive occurs.

The margin setting applies only to the source member in which it is located and has no effect on any
source members named on include directives in the member.

Parameters
left margin

Must be a number greater than zero but less than 32 754. The left margin should be less than the right
margin.

right margin
Must be a number greater than zero but less than 32 754, or an asterisk (*). The right margin should
be greater than the left margin. The compiler scans between the left margin and the right margin. The
compiler scans from the left margin specified to the end of the input record, if an asterisk is specified
as the value of right margin.

Notes on Usage

The #pragma margins directive takes effect on the line following the directive and remains in effect until
another #pragma margins or nomargins directive is encountered or the end of the source member is
reached.

The #pragma margins and #pragma sequence directives can be used together. If these two #pragma
directives reserve the same columns, the #pragma sequence directive has priority, and the columns are
reserved for sequence numbers.

For example, if the #pragma margins directive specifies margins of 1 and 20, and the #pragma sequence
directive specifies columns 15 to 25 for sequence numbers, the margins in effect are 1 and 14, and the
columns reserved for sequence numbers are 15 to 25.

If the margins specified are not in the supported range or the margins contain non-numeric values, a
warning message is issued during compilation and the directive is ignored.

See also pragmas “nomargins” on page 50 and “sequence” on page 58.

namemangling

namemangling syntax

pragma namemangling (

ansi

v6

v5

v3

compat

, num_chars

pop

)

ILE C/C++ Pragmas 47

Description

Chooses the name mangling scheme for external symbol names generated from C++ source code. The
option and pragma are provided to ensure binary compatibility with link modules created with previous
versions of the compiler. If you do not need to ensure backwards compatibility, it is recommended that
you do not change the default setting of this option.

Parameters
ansi

The name mangling scheme fully supports the most recent language features of Standard C++,
including function template overloading. ansi is the default.

v6
The name mangling scheme is the same as used in the V5R3M0, V5R4M0, and V6R1M0 versions of
the compiler.

v5
The name mangling scheme is the same as used in the V5R1M0 and V5R2M0 versions of the
compiler.

v3
The name mangling scheme is the same as in versions of the compiler before V5R1M0.

compat
This option is the same as v3, described previously.

num_chars
Specifies the maximum number of allowable characters in the mangled names. If you do not specify
this suboption, the default maximum is 64000 characters for all settings except v3 and compat, for
which the default maximum is 255 characters.

pop
Discards the current pragma setting and reverts to the setting specified by the previous pragma
directive. If no previous pragma was specified, the default setting of ansi is used.

Note on Usage

The #pragma namemangling directive is not supported if the RTBND(*LLP64) compile option is used.

namemanglingrule

namemanglingrule syntax

pragma namemanglingrule (fnparmtype,

on

off

pop

fnparmscmp,

on

off

pop

)

Description

Provides fine-grained control over the name mangling scheme in effect for selected portions of source
code, specifically with respect to the mangling of cv-qualifiers in function parameters.

The #pragma namemanglingrule directive allows you to control whether top-level cv-qualifiers are
mangled in function parameters or whether intermediate-level cv-qualifiers are to be considered when
the compiler compares repeated function parameters for equivalence.

Defaults

fnparmtype, on when #pragma namemangling(ansi|v6) is in effect. Otherwise, the default is
fnparmtype, off.

48 IBM i: ILE C/C++ Compiler Reference

fnparmscmp, on when #pragma namemangling(ansi) is in effect. Otherwise, the default is
fnparmscmp, off.

Parameters
fnparmtype, on

Top-level cv-qualifiers are not encoded in the mangled name of a function parameter. Also, top-level
cv-qualifiers are ignored when repeated function parameters are compared for equivalence; function
parameters that differ only by the use of a top-level cv-qualifier are considered equivalent and are
mangled according to the compressed encoding scheme. This setting is compatible with ILE C++
V5R3M0 and later releases.

fnparmtype, off
Top-level cv-qualifiers are encoded in the mangled name of a function parameter. Also, repeated
function parameters that differ by the use of cv-qualifiers are not considered equivalent and are
mangled as separate parameters. This setting is compatible with ILE C++ V5R2M0 and earlier
releases.

fnparmtype, pop
Reverts to the previous fnparmtype setting in effect. If no previous settings are in effect, the default
fnparmtype setting is used.

fnparmscmp, on
Intermediate-level cv-qualifiers are considered when repeated function parameters are compared for
equivalence; repeated function parameters that differ by the use of intermediate-level cv-qualifiers
are mangled as separate parameters. This setting is compatible with ILE C++ V7R1M0 and later
releases.

fnparmscmp, off
Intermediate-level cv-qualifiers are ignored when repeated function parameters are compared for
equivalence; function parameters that differ only by the use of an intermediate-level cv-qualifier are
considered equivalent and are mangled according to the compressed encoding scheme. This setting
is compatible with ILE C++ V6R1M0 and earlier releases.

fnparmscmp, pop
Reverts to the previous fnparmscmp setting in effect. If no previous settings are in effect, the default
fnparmscmp setting is used.

Notes on Usage

1. #pragma namemanglingrule is allowed in global, class, and function scopes. It has no effect on a
block scope function declaration with external linkage.

2. Different pragma settings can be specified in front of function declarations and definitions. If #pragma
namemanglingrule settings in subsequent declarations and definitions conflict, the compiler ignores
those settings and issues a warning message.

3. The #pragma namemanglingrule directive is not supported if the RTBND(*LLP64) compile option is
used.

noargv0

noargv0 syntax
pragma noargv0

Description

Specifies that the source program does not make use of argv[0]. This pragma can improve performance of
applications that have a large number of small C programs, or a small program that is called many times.

Notes on Usage

The #pragma noargv0 must appear in the compilation unit where the main() function is defined,
otherwise it is ignored.

ILE C/C++ Pragmas 49

argv[0] will be NULL when the noargv0 pragma directive is in effect. Other arguments in the argument
vector will not be affected by this directive. If the #pragma noargv0 directive is not specified, argv[0] will
contain the name of the program that is currently running.

noinline (function)

noinline syntax
pragma noinline (function_name)

Description

Specifies that a function will not be inlined. The settings on the INLINE compiler option will be ignored for
this function_name.

Notes on Usage

The first pragma specified will be the one that is used. If #pragma inline is specified for a function after
#pragma noinline has been specified for it, a warning will be issued to indicate that #pragma noinline has
already been specified for that function.

The #pragma noinline directive can only occur at file scope. The pragma will be ignored, and a warning is
issued if it is not found at file scope.

nomargins

nomargins syntax
pragma nomargins

Description

Specifies that the entire input record is to be scanned for input.

Notes on Usage

The #pragma nomargins directive takes effect on the line following the directive and remains in effect
until a #pragma margins directive is encountered or the end of the source member is reached.

See also pragma “margins” on page 47.

nosequence

nosequence syntax
pragma nosequence

Description

Specifies that the input record does not contain sequence numbers.

Notes on Usage

The #pragma nosequence directive takes effect on the line following the directive and remains in effect
until a #pragma sequence directive is encountered or the end of the source member is reached.

See also pragma “sequence” on page 58.

nosigtrunc

50 IBM i: ILE C/C++ Compiler Reference

nosigtrunc syntax
pragma nosigtrunc

Description

Specifies that no exception is generated at runtime when overflow occurs with packed decimals in
arithmetic operations, assignments, casting, initialization, or function calls. This directive suppresses the
signal that is raised in packed decimal overflow. The #pragma nosigtrunc directive can only occur at
filescope. A warning message will be issued if the #pragma nosigtrunc directive is encountered at
function, block or function prototype scope, and the directive will be ignored.

Notes on Usage

This #pragma directive has file scope and must be placed outside a function definition; otherwise it is
ignored. A warning message may still be issued during compilation for some packed decimal operations if
overflow is likely to occur. See the ILE C/C++ Programmer's Guide for more information about packed
decimal errors.

pack

pack syntax
pragma pack (

1

2

4

8

16

default

system

pop

reset

)

Description

The #pragma pack directive specifies the alignment rules to use for the members of the structure, union,
or (C++ only) class that follows it. In C++, packing is performed on declarations or types. This is different
from C, where packing is also performed on definitions.

You can also use the PACKSTRUCT option with the compiler commands to cause packing to be performed
along specified boundaries. See “PACKSTRUCT” on page 92 for more information.

Parameters

1, 2, 4, 8, 16
Structures and unions are packed along the specified byte boundaries.

default
Selects the alignment rules specified by compiler option PACKSTRUCT.

system
Selects the default IBM i alignment rules.

pop, reset
Selects the alignment rules previously in effect, and discards the current rules. This is the same as
specifying #pragma pack ().

In the examples that follow, the words struct or union can be used in place of class.

ILE C/C++ Pragmas 51

The #pragma pack settings are stack based. All pack values are pushed onto a stack as the user's source
code is parsed. The value on the top of that stack is the current packing value. When a #pragma pack
(reset), #pragma pack(pop), or #pragma pack() directive is given, the top of the stack is popped and the
next element in the stack becomes the new packing value. If the stack is empty, the value of the
PACKSTRUCT compiler option, if specified, is used. If not specified, the default setting of NATURAL
alignment is used.

The setting of the PACKSTRUCT compiler option is overridden by the #pragma pack directive, but always
remains on the bottom of the stack. The keyword _Packed has the highest precedence with respect to
packing options, and cannot be overridden by the #pragma pack directive or the PACKSTRUCT compiler
option.

By default, all members use their natural alignment. Members cannot be aligned on values greater than
their natural alignment. Char types can only be aligned along 1-byte boundaries. Short types can only be
aligned along 1 or 2-byte boundaries, and int types can be aligned along on 1, 2, or 4-byte boundaries.

All 16-byte pointers will be aligned on a 16-byte boundary. _Packed, PACKSTRUCT, and #pragma pack
cannot alter this. 8-byte teraspace pointers may have any alignment, although 8-byte alignment is
preferred.

Related Operators and Specifiers

__align Specifier

The __align specifier lets you specify the alignment of a Data Item or a ILE C/C++ aggregate (such as a
struct or union for ILE C, as well as classes for ILE C++). However, __align does not affect the alignment
of members within an aggregate, only the alignment of the aggregate as a whole. Also, because of
restrictions for certain members of an aggregate, such as 16-byte pointers, the alignment of an aggregate
is not guaranteed to be aligned in memory on the boundary specified by __align. For example, an
aggregate that has a 16-byte pointer as its only member cannot have any other alignment other than 16-
byte alignment because all 16-byte pointers must be aligned on the 16-byte boundary.

__align syntax
declarator __align (

1

2

4

8

16

) identifer ;

struct_specifier syntax
struct_specifier __align (

1

2

4

8

16

)

identifer

{

struct_declaration_list } ;

You can also use the __align specifier to explicitly specify alignment when declaring or defining data
items, as shown in some of the examples that follow.

The __align specifier:

• Can only be used with declarations of first-level variables and aggregate definitions. It ignores
parameters and automatics.

52 IBM i: ILE C/C++ Compiler Reference

• Cannot be used on individual elements within an aggregate definition, but it can be used on an
aggregate definition nested within another aggregate definition.

• Cannot be used in the following situations:

– Individual elements within an aggregate definition.
– Variables declared with incomplete type.
– Aggregates declared without definition.
– Individual elements of an array.
– Other types of declarations or definitions, such as function and enum.
– Where the size of variable alignment is smaller than the size of type alignment.

_Packed Specifier

_Packed can be associated with struct, union, and in C++, class definitions. In C++, _Packed must be
specified on a typedef. It has the same effect as #pragma pack(1). The following code shows examples of
valid and invalid usages of _Packed. In these examples, the keywords struct, union, and class can be
used interchangeably.

typedef _Packed class SomeClass { /* ... */ } MyClass; // OK
typedef _Packed union AnotherClass {} PUnion; // OK
typedef _Packed struct {} PAnonStruct; // Invalid, struct must be named
Class Stack { /* ... */ };
_Packed Stack someObject; // Invalid, specifier _Packed must be
 // associated with a typedef in C++
_Packed struct SomeStruct { }; // OK for C, invalid for C++
_Packed union SomeUnion { }; // OK for C, invalid for C++

__alignof Operator

unary-expression:
 __alignof unary-expression
 __alignof (type-name)

The __alignof operator returns the alignment of its operand, which may be an expression or the
parenthesized name of a type. The alignment of the operand is determined according to IBM i alignment
rules. However, it should not be applied to an expression that has function type or an incomplete type, to
the parenthesized name of such a type, or to an expression that designates a bit-field member. The type
of the result of this operator is size_t.

Examples

In the examples that follow, the words union and class might be used in place of the word struct.

1. Popping the #pragma pack Stack

Specifying #pragma pack (pop), #pragma pack (reset), or #pragma pack() pops the stack by one and
resets the alignment requirements to the state that was active before the previous #pragma pack was
seen. For example,

 // Default alignment requirements used
 .
 .
 #pragma pack (4)
 struct A { };
 #pragma pack (2)
 struct B { };
 struct C { };
 #pragma pack (reset)
 struct D { };
 #pragma pack ()
 struct E { };
 #pragma pack (pop)
 struct F { };

When struct A is mapped, its members are aligned according to #pragma pack(4). When struct B
and struct C are mapped, their members are aligned according to pragma pack(2).

ILE C/C++ Pragmas 53

The #pragma pack (reset) pops the alignment requirements specified by #pragma pack(2) and resets
the alignment requirements as specified by #pragma pack(4).

When struct D is mapped, its members are aligned according to pragma pack(4). The #pragma pack
() pops the alignment requirements specified by #pragma pack(4) and resets the alignment
requirements to the default values used at the beginning of the file.

When struct E is mapped, its members are aligned as specified by the default alignment
requirements (specified on the command line) active at the beginning of the file.

The #pragma pack (pop) has the same affect as the previous #pragma pack directives in that it pops
the top value from the pack stack. However, the default pack value, as specified in the PACKSTRUCT
compiler option, cannot be removed from the pack stack. That default value is used to align struct F.

2. __align & #pragma pack

__align(16) struct S {int i;}; /* sizeof(struct S) == 16 */
struct S1 {struct S s; int a;}; /* sizeof(struct S1) == 32 */
#pragma pack(2)
struct S2 {struct S s; int a;} s2; /* sizeof(struct S2) == 32 */
 /* offsetof(S2, s1) == 0 */
 /* offsetof(S2, a) == 16 */

3. #pragma pack

In this example, since the data types are by default packed along boundaries smaller than those
specified by #pragma pack (8), they are still aligned along the smaller boundary (alignof(S2) = 4).

#pragma pack(2)
struct S { /* sizeof(struct S) == 48 */
 char a; /* offsetof(S, a) == 0 */
 int* b; /* offsetof(S, b) == 16 */
 char c; /* offsetof(S, c) == 32 */
 short d; /* offsetof(S, d) == 34 */
} S; /* alignof(S) == 16 */

struct S1 { /* sizeof(struct S1) == 10 */
 char a; /* offsetof(S1, a) == 0 */
 int b; /* offsetof(S1, b) == 2 */
 char c; /* offsetof(S1, c) == 6 */
 short d; /* offsetof(S1, d) == 8 */
} S1; /* alignof(S1) == 2 */

#pragma pack(8)
struct S2 { /* sizeof(struct S2) == 12 */
 char a; /* offsetof(S2, a) == 0 */
 int b; /* offsetof(S2, b) == 4 */
 char c; /* offsetof(S2, c) == 8 */
 short d; /* offsetof(S2, d) == 10 */
} S2; /* alignof(S2) == 4 */

4. PACKSTRUCT Compiler Option

If the following is compiled with PACK STRUCTURE set to 2:

struct S1 { /* sizeof(struct S1) == 10 */
 char a; /* offsetof(S1, a) == 0 */
 int b; /* offsetof(S1, b) == 2 */
 char c; /* offsetof(S1, c) == 6 */
 short d; /* offsetof(S1, d) == 8 */
} S1; /* alignof(S1) == 2 */

5. #pragma pack

If the following is compiled with PACK STRUCTURE set to 4:

#pragma pack(1)
struct A { // this structure is packed along 1-byte boundaries
 char a1;
 int a2;
};

#pragma pack(2)
struct B { // this class is packed along 2-byte boundaries
 int b1;

54 IBM i: ILE C/C++ Compiler Reference

 float b2;
 float b3;
};

#pragma pack(pop) // this brings pack back to 1-byte boundaries
struct C {
 int c1;
 char c2;
 short c3;
};

#pragma pack(pop) // this brings pack back to the compile option,
struct D { // 4-byte boundaries
 int d1;
 char d2;
};

6. __align

int __align(16) varA; /* varA is aligned on a 16-byte boundary */

7. _Packed

struct A { /* sizeof(A) == 24 */
 int a; /* offsetof(A, a) == 0 */
 long long b; /* offsetof(A, b) == 8 */
 short c; /* offsetof(A, c) == 16 */
 char d; /* offsetof(A, d) == 18 */
};

_Packed struct B { /* sizeof(B) == 15 */
 int a; /* offsetof(B, a) == 0 */
 long long b; /* offsetof(B, b) == 4 */
 short c; /* offsetof(B, c) == 12 */
 char d; /* offsetof(B, d) == 14 */
};

Layout of struct A, where * = padding:

|a|a|a|a|*|*|*|*|b|b|b|b|b|b|b|b|c|c|d|*|*|*|*|*|

Layout of struct B, where * = padding:

|a|a|a|a|b|b|b|b|b|b|b|b|c|c|d|

8. __alignof

struct A {
 char a;
 short b;
};

struct B {
 char a;
 long b;
} varb;

int var;

In the code sample above:

• __alignof(struct A) = 2
• __alignof(struct B) = 4
• __alignof(var) = 4
• __alignof(varb.a) = 1

__align(16) struct A {
 int a;
 int b;
};

#pragma pack(1)
struct B {

ILE C/C++ Pragmas 55

 long a;
 long b;
};

struct C {
 struct {
 short a;
 int b;
 } varb;
} var;

In the code sample above:

• __alignof(struct A) = 16
• __alignof(struct B) = 4
• __alignof(var) = 4
• __alignof(var.varb.a) = 4

page

page syntax
pragma page (

n
)

Description

Skips n pages of the generated source listing. If n is not specified, the next page is started.

pagesize

pagesize syntax
pragma pagesize (

n
)

Description

Sets the number of lines per page to n for the generated source listing. The pagesize pragma may not
affect the option listing page (sometimes called the Prolog).

pointer

pointer syntax
pragma pointer (typedef_name , pointer_type)

Description

Allows the use of IBM i pointer types:

• space pointer
• system pointer
• invocation pointer
• label pointer
• suspend pointer
• open pointer

56 IBM i: ILE C/C++ Compiler Reference

A variable that is declared with a typedef that is named in the #pragma pointer directive has the pointer
type associated with typedef_name in the directive. The <pointer.h> header file contains typedefs and
#pragma directives for these pointer types. Including this header file in your source code allows you to
use these typedefs directly for declaring pointer variables of these types.

Parameters

pointer_type
which can be one of:
SPCPTR

Space pointer
OPENPTR

Open pointer
SYSPTR

System pointer
INVPTR

Invocation pointer
LBLPTR

Label code pointer
SUSPENDPTR

Suspend pointer

Notes on Usage

The compiler issues a warning and ignores the #pragma pointer directive if any of the following errors
occur:

• The pointer type that is named in the directive is not one of SPCPTR, SYSPTR, INVPTR, LBLPTR,
SUSPENDPTR, or OPENPTR.

• The typedef named is not declared before the #pragma pointer directive.
• The identifier that is named as the first parameter of the directive is not a typedef.
• The typedef named is not a typedef of a void pointer.
• The typedef named is used in a declaration before the #pragma pointer directive.

The typedef named must be defined at file scope.

See the ILE C/C++ Programmer's Guide for more information about using IBM i pointers.

priority

priority syntax
pragma priority (n)

Description

The #pragma priority directive specifies the order in which static objects are to be initialized at runtime.

The value n is an integer literal in the range of INT_MIN to INT_MAX. The default value is 0. A negative
value indicates a higher priority; a positive value indicates a lower priority.

The first 1024 priorities (INT_MIN to INT_MIN + 1023) are reserved for use by the compiler and its
libraries. The #pragma priority can appear anywhere in the source file many times. However, the priority
of each pragma must be greater than the previous pragma's priority. This is necessary to ensure that the
runtime static initialization occurs in the declaration order.

Example

//File one called First.C

ILE C/C++ Pragmas 57

#pragma priority (1000)
class A { public: int a; A() {return;} } a;
#pragma priority (3000)
class C { public: int c; C() {return;} } c;
class B { public: int b; B() {return;} };
extern B b;
main()
{
 a.a=0;
 b.b=0;
 c.c=0;
}

//File two called Second.C
#pragma priority (2000)
class B { public: int b; B() {return;} } b;

In this example, the execution sequence of the runtime static initialization is:

1. Static initialization with priority 1000 from file First.C
2. Static initialization with priority 2000 from file Second.C
3. Static initialization with priority 3000 from file First.C

sequence

sequence syntax
pragma sequence (left_column , right_column

*

)

Description

Specifies the columns of the input record that are to contain sequence numbers. The column setting
applies only to the source setting in which it is located and has no effect on any source members named
on include directives in the member.

Parameters
left column

Must be greater than zero but less than 32 754. The left column should be less than the right column.
right column

Must be greater than zero but less than 32 754. The right column should be greater than or equal to
the left column. An asterisk (*) that is specified as the right column value indicates that sequence
numbers are contained between left column and the end of the input record.

Notes on Usage

The #pragma sequence directive takes effect on the line following the directive. It remains in effect until
another #pragma sequence or #pragma nosequence directive is encountered or the end of the source
member is reached.

The #pragma margins and #pragma sequence directives can be used together. If these two #pragma
directives reserve the same columns, the #pragma sequence directive has priority, and the columns are
reserved for sequence numbers.

For example, if the #pragma margins directive specifies margins of 1 and 20 and the #pragma sequence
directive specifies columns 15 to 25 for sequence numbers, the margins in effect are 1 and 14, and the
columns reserved for sequence numbers are 15 to 25.

If the margins specified are not in the supported range or the margins contain non-numeric values, a
warning message is issued during compilation and the directive is ignored.

See also pragmas “nosequence” on page 50 and “margins” on page 47.

58 IBM i: ILE C/C++ Compiler Reference

strings

strings syntax
pragma strings (readonly

writeable

)

Description

Specifies that the compiler may place strings into read-only memory or must place strings into writeable
memory. Strings are writeable by default. This pragma must appear before any C or C++ code in a file.

Note: This pragma will override the *STRDONLY compiler option.

weak

weak syntax
pragma weak identifier

= identifier2

Description

Identifies an identifier to the compiler as being a weak global symbol.

Parameters
identifier

Specifies the name of an identifier considered to be a weak global symbol.
identifier2

If identifer2 is specified, then identifier is considered to be a weak global symbol whose value is the
same as identifier2. For this pragma to have effect, identifier2 must be defined in the same
compilation unit.

This pragma can appear anywhere in a program, and identifies a specified identifier as being a weak
global symbol. Identifier should not be defined, but it may be declared. If it is declared, and identifier2 is
specified, identifier must be of a type compatible to that of identifier2.

Example.

 #pragma weak func1 = func2

ILE C/C++ Pragmas 59

60 IBM i: ILE C/C++ Compiler Reference

Control Language Commands
Read this section for an overview of the Control Language (CL) commands that are used with the ILE C/C+
+ compiler. Syntax diagrams and parameter description tables are provided.

This table describes the CL commands that are used with the IBM i compiler.

Table 3. Control Language Commands

Action Command Description

Create C Module CRTCMOD Creates a module object
(*MODULE) based on the source
you provide.Create C++ Module CRTCPPMOD

Create Bound C Program CRTBNDC Creates a program object (*PGM)
based on the source you provide.

Create Bound C++ Program CRTBNDCPP

CL commands and their parameters can be entered in either uppercase or lowercase. In this reference,
they are always shown in uppercase. For example:

CRTCPPMOD MODULE(ABC/HELLO) SRCSTMF('/home/usr/hello.C') OPTIMIZE(40)

ILE C/C++ language statements must be entered exactly as shown. For example, fopen, _Ropen,
because the ILE C/C++ compiler is case sensitive.

Variables appear in lowercase italic letters, for example, file-name, characters, and string. They represent
user-supplied names or values.

Language statements may contain punctuation marks, parentheses, arithmetic operators, or other such
symbols. You must enter them exactly as shown in the syntax diagram.

You can also invoke the compiler and its options through the Qshell command line environment. For more
information about Qshell command and option formats, see “Using the ixlc Command to Invoke the C/C+
+ Compiler” on page 103.

Control Language Command Syntax
The syntax diagrams in this section show all parameters and options of the CRTCMOD, CRTCPPMOD,
CRTBNDC, and CRTBNDCPP commands, and the default values for each option. In most cases the
keywords are identical for any of the commands. Differences are noted where they exist. For detailed
descriptions of each option, see “Control Language Command Options” on page 65.

© Copyright IBM Corp. 1993, 2013 61

CRTCMOD
1

CRTCPPMOD
2

MODULE (

*CURLIB/

library-name/

module-name)

CRTBNDC
1

CRTBNDCPP
2

PGM (

*CURLIB/

library-name

program-name)

SRCFILE(

*LIBL/

*CURLIB/

library-name/

QCSRC
13

QCPPSRC
2 4

source-file-name

)

SRCMBR(

*MODULE
5

*PGM
6

member-name

)

SRCSTMF(

path-name

)

TEXT(

*SRCMBRTXT

*BLANK

' description '

)

OUTPUT(

*NONE

*PRINT

filename

TITLE

*BLANK

title SUBTITLE

*BLANK

subtitle

)

OPTION(OPTION Details) CHECKOUT(CHECKOUT Details)

OPTIMIZE(

10

20

30

40

)

INLINE(INLINE Details)

MODCRTOPT(
7

*NOKEEPILDTA

*KEEPILDTA

)

DBGVIEW(

*NONE

*ALL

*STMT

*SOURCE

*LIST

)

DBGENCKEY(

*NONE

character-value

)

DEFINE(

*NONE

' name '

' name = value '

)

LANGLVL(

*EXTENDED

*ANSI

*LEGACY
2

*EXTENDED0X
2

)

ALIAS(

*ANSI

*NOADDRTAKEN

*NOALLPTRS

*NOTYPEPTR

*NOANSI

*ADDRTAKEN

*ALLPTRS

*TYPEPTR

)

SYSIFCOPT(

*NOIFSIO
8

*IFS64IO
9

*IFSIO

*NOASYNCSIGNAL
10

*ASYNCSIGNAL
11

)

LOCALETYPE(

*LOCALE

*LOCALEUCS2

*CLD
1

*LOCALEUTF

) FLAG(

0

10

20

30

)

MSGLMT(

*NOMAX

0 32767

30

0

10

20

)

REPLACE(

*YES

*NO) USRPRF(
12

*USER

*OWNER)

AUT(

*LIBCRTAUT

*CHANGE

*USE

*ALL

*EXCLUDE

authorization-list-name

)

TGTRLS(

*CURRENT

*PRV

release-level

)

ENBPFRCOL(
*PEP

*ENTRYEXIT

*FULL

*ALLPRC

*NONLEAF

)

PFROPT(

*SETFPCA

*NOSETFPCA

*NOSTRDONLY

*STRDONLY

)

PRFDTA(

*NOCOL

*COL)

TERASPACE(

*NO

*YES

*NOTSIFC

*TSIFC

)

STGMDL(

*SNGLVL

*TERASPACE

*INHERIT

) DTAMDL(

*P128

*LLP64)

RTBND(

*DEFAULT

*LLP64)

PACKSTRUCT(

*NATURAL

1

2

4

8

16

)

ENUM(

*SMALL

1

2

4

*INT

) MAKEDEP(

*NODEP

file-name)

PPGENOPT(

*NONE

*DFT

*RMVCOMMENT

*NORMVCOMMENT

*GENLINE

*NOGENLINE

*GENLINE

*NOGENLINE

*RMVCOMMENT

*NORMVCOMMENT

)

PPSRCFILE(
7

*CURLIB/

library-name/

file-name)

PPSRCMBR(
7

*MODULE

membername)

PPSRCSTMF(
7

pathname

*SRCSTMF

)

INCDIR(

*NONE

directory-name)

CSOPT(

*NONE

' compiler-service-options-string '

)

LICOPT(

*NONE

' Licensed-Internal-Code-Options-String '

)

DFTCHAR(

*UNSIGNED

*SIGNED)

TGTCCSID(

*SOURCE

*JOB

*HEX

coded-character-set-identifier

)

TEMPLATE(
2 7 13

*NONE

TEMPLATE Details)

TMPLREG(
2 7 13

*NONE

*DFT

' path-name '

)

WEAKTMPL(
2 13

*YES

*NO)

DECFLTRND(

*HALFEVEN

*DOWN

*UP

*HALFUP

*HALFDOWN

*FLOOR

*CEILING

)

OPTION Details

62 IBM i: ILE C/C++ Compiler Reference

*NOAGR
1

*AGR
1

*NOBITSIGN
2

*BITSIGN
2

*DIGRAPH
1

*NODIGRAPH
1

*NOEVENTF

*EVENTF

*NOEXPMAC

*EXPMAC

*NOFULL

*FULL

*GEN
7

*NOGEN
7

*NOINCDIRFIRST

*INCDIRFIRST

*LOGMSG

*NOLOGMSG

*LONGLONG
2

*NOLONGLONG
2

*NORTTI
2

*RTTIALL
2

*RTTITYPE
2

*RTTICAST
2

*NOPPONLY
17

*PPONLY
17

*NOSECLVL
1

*SECLVL
1

*NOSHOWINC

*SHOWINC

*NOSHOWSKP
1

*SHOWSKP
1

*SHOWSRC

*NOSHOWSRC

*NOSHOWSYS

*SHOWSYS

*NOSHOWUSR

*SHOWUSR

*STDINC

*NOSTDINC

*NOSTDLOGMSG

*STDLOGMSG

*NOSTRUCREF
1

*STRUCREF
1

*NOSYSINCPATH

*SYSINCPATH

*NOXREF

*XREF

*NOXREFREF

*XREFREF

CHECKOUT Details

Control Language Commands 63

*NONE

*ALL

*USAGE

*NOCLASS
2

*CLASS
2

*NOCOND

*COND

*NOCONST
1

*CONST
1

*NOEFFECT

*EFFECT

*NOENUM
1

*ENUM
1

*NOEXTERN
1

*EXTERN
1

*NOGENERAL

*GENERAL

*NOGOTO

*GOTO

*NOINIT
1

*INIT
1

*NOLANG
2

*LANG
2

*NOPARM

*PARM

*NOPORT

*PORT

*NOPPCHECK
1

*PPCHECK
1

*NOPPTRACE

*PPTRACE

*NOREACH

*REACH

*NOTEMP
2

*TEMP
2

*NOTRUNC

*TRUNC

*NOUNUSED

*UNUSED

INLINE Details

*OFF

*ON

*AUTO

*NOAUTO INLINE Details (continued)

INLINE Details (continued)

250

1-65535

*NOLIMIT 2000

1-65535

*NOLIMIT *NO

*YES

TEMPLATE Details
*TEMPINC

directory-pathname
1

1-65535

*NO

*WARN

*ERROR

Syntax diagram
Notes:

64 IBM i: ILE C/C++ Compiler Reference

1 C compiler only
2 C++ compiler only
3 C compiler default setting
4 C++ compiler default setting
5 Create Module command only
6 Create Bound Program command only
7 Create module command only
8 C compiler default setting
9 C++ compiler default setting
10 C compiler only
11 C compiler only
12 Create Bound Program command only
13 Applicable only when using the Integrated File System (IFS)

Control Language Command Options
The following pages describe the keywords for the CRTCMOD, CRTCPPMOD, CRTBNDC, and CRTBNDCPP
commands. In most cases the keywords are identical for any of the commands. Differences are noted
where they exist.

The term object is used throughout the descriptions and has one of two meanings:

• If you are using the CRTCMOD or CRTCPPMOD commands, object means module object.
• If you are using the CRTBNDC or CRTBNDCPP commands, object means program object.

MODULE
Valid only on the CRTCMOD and CRTCPPMOD commands. Specifies the module name and library for the
compiled ILE C or C++ module object.
MODULE Syntax

MODULE(

*CURLIB/

library-name/

module-name)

*CURLIB
This is the default library value. The object is stored in the current library. If a job does not have a
current library, QGPL is used.

library-name
Enter the name of the library where the object is to be stored.

module-name
Enter a name for the module object.

PGM
Valid only on the CRTBNDC and CRTBNDCPP commands. Specifies the program name and library for the
compiled ILE C or C++ program object.
PGM Syntax

PGM(

*CURLIB/

library-name/

program-name)

*CURLIB
This is the default library value. The object is stored in the current library. If a job does not have a
current library, QGPL is used.

Control Language Commands 65

library-name
Enter the name of the library where the object is to be stored.

program-name
Enter a name for the program object.

SRCFILE
Specifies the source physical file name and library of the file that contains the ILE C or C++ source code
that you want to compile.
SRCFILE Syntax

SRCFILE(

*LIBL/

*CURLIB/

library-name/

QCSRC
12

QCPPSRC
3 4

source-file-name

)

Notes:
1 C Compiler only
2 C Compiler default setting
3 C++ Compiler only
4 C++ Compiler default setting

*LIBL
This is the default library value. The library list is searched to find the library where the source file is
located.

*CURLIB
The current library is searched for the source file. If a job does not have a current library, QGPL is
used.

library-name
Enter the name of the library that contains the source file.

QCSRC
The default name for the source physical file that contains the member with the ILE C source code
that you want to compile.

QCPPSRC
The default name for the source physical file that contains the member with the ILE C++ source code
that you want to compile.

source-file-name
Enter the name of the file that contains the member with the ILE C or C++ source code.

SRCMBR
Specifies the name of the member that contains the ILE C or C++ source code.
SRCMBR Syntax

SRCMBR(

*MODULE
1

*PGM
2

member-name

)

Notes:
1 Create Module command only

66 IBM i: ILE C/C++ Compiler Reference

2 Create Bound Program command only

*MODULE
Valid only with the CRTCMOD or CRTCPPMOD commands. The module name that is supplied on the
MODULE parameter is used as the source member name. This is the default when a member name is
not specified.

*PGM
Valid only with the CRTBNDC or CRTBNDCPP commands. The program name that is supplied on the
PGM parameter is used as the source member name. This is the default when a member name is not
specified.

member-name
Enter the name of the member that contains the ILE C or C++ source code.

SRCSTMF
Specifies the path name of the stream file containing the ILE C or C++ source code that you want to
compile.
SRCSTMF Syntax

SRCSTMF(

path-name

)

The path name can be either absolutely or relatively qualified. An absolute path name starts with '/'; a
relative path name starts with a character other than '/'. If absolutely qualified, then the path name is
complete. If relatively qualified, the path name is completed by pre-pending the job's current working
directory to the path name.

Note:

1. The SRCMBR and SRCFILE parameters cannot be specified with the SRCSTMF parameter.
2. If SRCSTMF is specified, then the following compiler options are ignored:

• TEXT(*SRCMBRTXT)
• OPTION(*STDINC)
• OPTION(*SYSINCPATH)

3. The SRCSTMF parameter is not supported in a mixed-byte environment.

TEXT
Allows you to enter text that describes the object and its function.
TEXT Syntax

TEXT(

*SRCMBRTXT

*BLANK

' description '

)

*SRCMBRTXT
Default setting. The text description that is associated with the source file member is used for the
compiled object. If the source file is an inline file or a device file, this field is blank.

*BLANK
Specifies that no text appears.

description
Enter descriptive text no longer than 50 characters, and enclose it in single quotation marks. The
quotation marks are not part of the 50-character string. Quotation marks are supplied when the
CRTCMOD or CRTCPPMOD prompt screens are used.

Control Language Commands 67

OUTPUT
Specifies if the compiler listing is required or not.
OUTPUT Syntax

OUTPUT(

*NONE

*PRINT

filename

TITLE

*BLANK

title SUBTITLE

*BLANK

subtitle

)

*NONE
Does not generate the compiler listing. When a listing is not required, use this default to improve
compile time performance. When *NONE is specified, the following listing-related options are ignored
if they are specified on the OPTION keyword: *AGR, *EXPMAC, *FULL, *SECLVL, *SHOWINC,
*SHOWSKP, *SHWSRC, *SHOWSYS, *SHOWUSR, *SHWSRC, *STRUCREF, *XREF, or *XREFREF.

*PRINT
Generate the compiler listing as a spool file.

The spool file name in WRKSPLF will have the same name as the object (program or module) being
created.

filename
The compiler listing is saved in the file name specified by this string.

The listing name must be in Integrated File System (IFS) format, for example /home/mylib/listing/
hello.lst. A data management file listing in library mylib should be specified as /QSYS.LIB/mylib.lib/
listing.file/hello.mbr. If the string does not begin with a "/", it will be considered a subdirectory of the
current directory or library. If the file does not exist, the file will be created.

Data authority *WX is required to create an IFS listing. Data authority *WX, object authority
*OBJEXIST and *OBJALTER are required to create a data management file listing via IFS.

TITLE
Specifies the title for the compiler listing. Possible TITLE values are:
*BLANK

No title is generated.
title

Specify a title string (maximum 98 characters) for the listing.
SUBTITLE

Specifies the subtitle for the compiler listing. Possible SUBTITLE values are:
*BLANK

No title is generated.
subtitle

Specify a subtitle string (maximum 98 characters) for the listing file.

OPTION
Specifies the options to use when the ILE C or C++ source code is compiled. You can specify them in any
order, separated by a blank space. Unless noted otherwise in the option descriptions, when an option is
specified more than once, or when two options conflict, the last one that is specified is used.

OPTION Syntax

OPTION(OPTION Details)

OPTION Details

68 IBM i: ILE C/C++ Compiler Reference

*NOAGR
1

*AGR
1

*NOBITSIGN
2

*BITSIGN
2

*DIGRAPH
1

*NODIGRAPH
1

*NOEVENTF

*EVENTF

*NOEXPMAC

*EXPMAC

*NOFULL

*FULL

*GEN
3

*NOGEN
3

*NOINCDIRFIRST

*INCDIRFIRST

*LOGMSG

*NOLOGMSG

*LONGLONG
2

*NOLONGLONG
2

*NORTTI
2

*RTTIALL
2

*RTTITYPE
2

*RTTICAST
2

*NOPPONLY
13

*PPONLY
13

*NOSECLVL
1

*SECLVL
1

*NOSHOWINC

*SHOWINC

*NOSHOWSKP
1

*SHOWSKP
1

*SHOWSRC

*NOSHOWSRC

*NOSHOWSYS

*SHOWSYS

*NOSHOWUSR

*SHOWUSR

*STDINC

*NOSTDINC

*NOSTDLOGMSG

*STDLOGMSG

*NOSTRUCREF
1

*STRUCREF
1

*NOSYSINCPATH

*SYSINCPATH

*NOXREF

*XREF

*NOXREFREF

*XREFREF

Notes:
1 C compiler only
2 C++ compiler only
3 Create Module command only

The possible options are:

*NOAGR
Accepted but ignored by the C++ compiler. Default setting. Does not generate an aggregate structure
map in the compiler listing.

*AGR
Accepted but ignored by the C++ compiler. Generates an aggregate structure map in the compiler
listing. This map provides the layout of all structures in the source program, and shows whether
variables are padded or not. OUTPUT(*PRINT) must be specified.

The *AGR option overrides the *STRUCREF option.

Control Language Commands 69

*NOBITSIGN
Default setting. Bitfields are unsigned.

*BITSIGN
Bitfields are signed.

*NODIGRAPH
Default setting. Digraph character sequences are not recognized by the compiler. Syntax errors might
result if digraphs are encountered with this setting in effect.

*DIGRAPH
Digraph character sequences can be used to represent characters not found on some keyboards.
Digraph character sequences appearing in character or string literals are not replaced during
preprocessing.

*NOEVENTF
Default setting. Does not create an event file for use by Cooperative Development Environment/400
(CODE/400).

*EVENTF
Creates an event file for use by Cooperative Development Environment/400 (CODE/400). The event
file is created as a member in file EVFEVENT in the library where the created module or program
object is to be stored. If the file EVFEVENT does not exist, it is automatically created. The event file
member name is the same as the name of the object being created. An Event File is normally created
when you create a module or program from within CODE/400. CODE/400 uses this file to provide error
feedback integrated with the CODE/400 editor.

*NOEXPMAC
Default setting. Does not expand the macros in the source section of the listing or in the debug listing
view.

*EXPMAC
Expands all macros in the source section of a listing view. If this suboption is specified together with
DBGVIEW(*ALL) or DBGVIEW(*LIST), the compiler issues an error message and stops compilation.

*NOFULL
Default setting. Does not show all compiler-output information in the listing or in the debug listing
view.

*FULL
Shows all compiler-output information in the listing or in the debug listing view. This setting turns on
all listing-related options. If *FULL is specified, you can turn off an individual listing option by
specifying the *NO setting for that option after the *FULL option. If this suboption is specified together
with DBGVIEW(*ALL) or DBGVIEW(*LIST), the compiler issues an error message and stops
compilation.

*GEN
Valid only with the CRTCMOD and CRTCPPMOD commands. Default setting. All phases of the
compilation process are carried out.

 Specifying OPTION(*PPONLY) overrides the PPGENOPT(*NONE) and OPTION(*GEN) option
settings. Instead, the following settings are implied:

• PPGENOPT(*DFT) PPSRCFILE(QTEMP/QACZEXPAND) PPSRCMBR(*MODULE) for a data
management source file, or,

• PPGENOPT(*DFT) PPSRCSTMF(*SRCSTMF) for an IFS source file.

*NOGEN
Valid only with the CRTCMOD and CRTCPPMOD commands. Compilation stops after syntax checking.
No object is created.

*NOINCDIRFIRST
Default setting. The compiler searches for user include files in the root source directory first, and then
in the directories specified by the INCDIR option.

70 IBM i: ILE C/C++ Compiler Reference

*INCDIRFIRST
The compiler searches for user include files as follows:

1. If you specify a directory in the INCDIR parameter, the compiler searches for file_name in that
directory.

2. If more than one directory is specified, the compiler searches the directories in the order that they
appear on the command line.

3. Searches the directory where your current root source file resides.
4. If the INCLUDE environment variable is defined, the compiler searches the directories in the order

they appear in the INCLUDE path.
5. If the *NOSTDINC compiler option is not chosen, search the default include directory /QIBM/

include.

*LOGMSG
Default setting. Compilation messages are put into the job log.

When you specify this option and the FLAG parameter, messages with the severity specified on the
FLAG parameter (and higher) are placed in the job log.

When you specify this option and a maximum number of messages on the MSGLMT parameter,
compilation stops when the number of messages, at the specified severity, have been placed in the
job log.

*NOLOGMSG
Does not put the compilation messages into the job log.

*LONGLONG
Default setting. The compiler recognizes and uses the longlong data type.

*NOLONGLONG
The compiler does not recognize the longlong data type.

*NORTTI
Default setting. The compiler does not generate information needed for RunTime Type Information
(RTTI) typeid and dynamic_cast operators.

*RTTIALL
The compiler generates the information needed for the RTTI typeid and dynamic_cast operators.

*RTTITYPE
The compiler generates the information needed for the RTTI typeid operator, but the information for
the dynamic_cast operator is not generated. This option is not supported if the RTBND(*LLP64)
compile option is specified.

*RTTICAST
The compiler generates the information needed for the RTTI dynamic_cast operator, but the
information for the typeid operator is not generated. This option is not supported if the
RTBND(*LLP64) compile option is specified.

*NOPPONLY
Valid only with the CRTCMOD command. Default setting. The compiler runs the entire compile
sequence when *GEN is left as the default for OPTION.

Specifying PPGENOPT with any setting other than *NONE overrides the OPTION(*NOPPONLY) and
OPTION(*GEN) option settings.

Note: The PPGENOPT compiler option replaces OPTION(*NOPPONLY). Support for
OPTION(*NOPPONLY) may be removed in future releases.

*PPONLY
Valid only with the CRTCMOD command. The preprocessor is run and the output is saved in the source
file QACZEXPAND in library QTEMP. The member-name is the same as the name specified on the

Control Language Commands 71

MODULE parameter. The rest of the compilation sequence is not run. When the job is submitted in
batch mode, the output is deleted once the job is complete.

If you specify SRCSTMF, then the compiler saves the output in a stream file in your current directory.
The file name is the same as the file on SRCSTMF with a ".i" extension.

Specifying OPTION(*PPONLY) overrides the PPGENOPT(*NONE) and OPTION(*GEN) option settings.
Instead, the following settings are implied:

• PPGENOPT(*DFT) PPSRCFILE(QTEMP/QACZEXPAND) PPSRCMBR(*MODULE) for a data
management source file, or,

• PPGENOPT(*DFT) PPSRCSTMF(*SRCSTMF) for an IFS source file.

Note: The PPGENOPT compiler option replaces OPTION(*PPONLY). Support for OPTION(*PPONLY)
might be removed in future releases.

*NOSECLVL
Default setting. Does not generate the second-level message text in the listing.

*SECLVL
Generates the second-level message text in the listing. OUTPUT(*PRINT) must be specified.

*NOSHOWINC
Default setting. Does not expand the user include files or the system include files in the source listing
or in the debug listing view.

*SHOWINC
Expands both the user-include files and the system-include files in the source section of the listing or
in the debug listing view. OUTPUT(*PRINT) or DBGVIEW(*ALL, *SOURCE, or *LIST) must be specified.

This setting turns on the *SHOWUSR and *SHOWSYS settings, but those settings can be overridden by
specifying *NOSHOWUSR or *NOSHOWSYS or both after *SHOWINC.

*NOSHOWSKP
Default setting. Does not include the statements that the preprocessor has ignored in the source
section of the listing or in the debug listing view. The preprocessor ignores statements as a result of a
preprocessor directive evaluating to false (zero).

*SHOWSKP
Includes all statements in the source listing or in the debug listing view, regardless of whether the
preprocessor has skipped them. OUTPUT(*PRINT) or DBGVIEW(*ALL or *LIST) must be specified.

*SHOWSRC
Default setting. Shows the source statements in the source listing or in the debug listing view.
OUTPUT(*PRINT) or DBGVIEW(*ALL, *SOURCE, or *LIST) must be specified.

*NOSHOWSRC
Does not show the source statements in the source listing or in the debug listing view. The
*EXPMAC,*SHOWINC,*SHOWUSR,* *SHOWSKP listing options can override this setting if specified
after the*NOSHOWSRC option.

*NOSHOWSYS
Default setting. Does not expand the system include files on the #include directive in the source
listing or in the debug listing view.

*SHOWSYS
Expands the system include files on the #include directive in the source listing or in the debug listing
view. An OUTPUT option, or DBGVIEW parameter value of *ALL, *SOURCE or *LIST must be specified.
System include files on the #include directive are enclosed in angle brackets (< >).

*NOSHOWUSR
Default setting. Does not expand the user include files on the #include directive in the source listing
or in the debug listing view.

*SHOWUSR
Expands the user include files on the #include directive in the source listing or in the debug listing
view. OUTPUT(*PRINT) or DBGVIEW(*ALL, *SOURCE, or *LIST) must be specified. User-include files

72 IBM i: ILE C/C++ Compiler Reference

on the #include directive are enclosed in double quotation marks (" "). Use this option to print the
typedef that is generated when you use #pragma mapinc in your ILE C or C++ program to process
externally described files.

*STDINC
Default setting. The compiler includes the default include path (/QIBM/include for IFS source stream
files; QSYSINC for data management source file members) at the end of the search order.

*NOSTDINC
The compiler removes the default include path (/QIBM/include for IFS source stream files; QSYSINC
for data management source file members) from the search order.

*NOSTDLOGMSG
Default setting. The compiler does not produce stdout compiler messages.

*STDLOGMSG
The compiler produces stdout compiler messages when working in the Qshell environment. This
option has no effect when compiling with TGTRLS(*PRV).

*NOSTRUCREF
Default setting. Does not generate an aggregate structure map of all referenced struct or union
variables in the compiler listing.

*STRUCREF
Generates an aggregate structure map of all referenced struct or union variables in the compiler
listing. This map provides the layout of all referenced structures in the source program, and shows
whether variables are padded or not.

*NOSYSINCPATH
Default setting. The search path for user includes is not affected.

*SYSINCPATH
Changes the search path of user includes to the system include search path. In function this option is
equivalent to changing the double-quotes in the user #include directive (#include "file_name") to
angle brackets (#include <file_name>).

*NOXREF
Does not generate the cross-reference table in the listing. *NOXREF is the default.

*XREF
Generates the cross-reference table that contains a list of the identifiers in the source code together
with the line number in which they appear. An OUTPUT option must be specified.

The *XREF option overrides the *XREFREF option.

*NOXREFREF
Default setting. Does not generate the cross-reference table in the listing.

*XREFREF
Generates the cross-reference table, including only referenced identifers and variables in the source
code, together with the line number in which they appear. An OUTPUT option must be specified.

The *XREF option overrides the *XREFREF option.

CHECKOUT
Specifies options you may select to generate informational messages that indicate possible programming
errors. When you specify an option more than once, or when two options conflict, the last one that is
specified is used.

Note: CHECKOUT may produce many messages. To prevent these messages from going to the job log
specify OPTION(*NOLOGMSG) and the source listing option OUTPUT(*PRINT).

CHECKOUT Syntax

Control Language Commands 73

CHECKOUT(CHECKOUT Details)

CHECKOUT Details

*NONE

*ALL

*USAGE

*NOCLASS
1

*CLASS
1

*NOCOND

*COND

*NOCONST
2

*CONST
2

*NOEFFECT

*EFFECT

*NOENUM
2

*ENUM
2

*NOEXTERN
2

*EXTERN
2

*NOGENERAL

*GENERAL

*NOGOTO

*GOTO

*NOINIT
2

*INIT
2

*NOLANG
1

*LANG
1

*NOPARM

*PARM

*NOPORT

*PORT

*NOPPCHECK
2

*PPCHECK
2

*NOPPTRACE

*PPTRACE

*NOREACH

*REACH

*NOTEMP
1

*TEMP
1

*NOTRUNC

*TRUNC

*NOUNUSED

*UNUSED

Notes:
1 C++ compiler only
2 C compiler only

The possible options are:
*NONE

Default setting. Disables all of the options for CHECKOUT.
*ALL

Enables all of the options for CHECKOUT.
*USAGE

• Equivalent to specifying *ENUM, *EXTERN, *INIT, *PARM, *PORT, *GENERAL, and
*TRUNC. All other CHECKOUT options are disabled.

• Equivalent to specifying *COND. All other CHECKOUT options are disabled.

*NOCLASS
Default setting. Does not display info about class use.

*CLASS
Display info about class use.

*NOCOND
Default setting. Does not warn about possible redundancies or problems in conditional expressions.

74 IBM i: ILE C/C++ Compiler Reference

*COND
Warn about possible redundancies or problems in conditional expressions.

*NOCONST
Default setting. Does not warn about operations involving constants.

*CONST
Warn about operations involving constants.

*NOEFFECT
Default setting. Does not warn about statements with no effect.

*EFFECT
Warn about statements with no effect.

*NOENUM
Default setting. Does not list the usage of enumerations.

*ENUM
Lists the usage of enumerations.

*NOEXTERN
Default setting. Does not list the unused variables that have external declarations.

*EXTERN
Lists the unused variables that have external declarations.

*NOGENERAL
Default setting. Does not list the general CHECKOUT messages.

*GENERAL
Lists the general CHECKOUT messages.

*NOGOTO
Default setting. Does not list the occurrence and usage of goto statements.

*GOTO
Lists the occurrence and usage of goto statements.

*NOINIT
Default setting. Does not list the automatic variables that are not explicitly initialized.

*INIT
Lists the automatic variables that are not explicitly initialized.

*NOLANG
Default setting. Does not display information about the effects of the language level.

*LANG
Display information about the effects of the language level.

*NOPARM
Default setting. Does not list the function parameters that are not used.

*PARM
Lists the function parameters that are not used.

*NOPORT
Default setting. Does not list the non-portable usage of the C or C++ language.

*PORT
Lists the non-portable usage of the C or C++ language.

*NOPPCHECK
Default setting. Does not list the preprocessor directives.

*PPCHECK
Lists all preprocessor directives.

*NOPPTRACE
Default setting. Does not list the tracing of include files by the preprocessor.

Control Language Commands 75

*PPTRACE
Lists the tracing of include files by the preprocessor.

*NOREACH
Default setting. Does not warn about unreachable statements.

*REACH
Warn about unreachable statements.

*NOTEMP
Default setting. Does not display information about temporary variables.

*TEMP
Display information about temporary variables.

*NOTRUNC
Default setting. Does not warn about the possible truncation or loss of data.

*TRUNC
Warn about the possible truncation or loss of data.

*NOUNUSED
Default setting. Does not check for unused auto or static variables.

*UNUSED
Check for unused auto or static variables.

OPTIMIZE
Specifies the level of the object's optimization.
OPTIMIZE Syntax

OPTIMIZE(

10

20

30

40

)

10
Default setting. Generated code is not optimized. This level has the shortest compile time.

20
Some optimization is performed on the code.

30
Full optimization is performed on the generated code.

40
All optimizations done at level 30 are performed on the generated code. In addition, code is
eliminated from procedure prologues and epilogues that enables instruction trace and call trace
system functions. Eliminating this code enables the creation of leaf procedures. A leaf procedure
contains no calls to other procedures. Procedure call performance to a leaf procedure is significantly
faster than to a normal procedure.

INLINE
Allows the compiler to consider replacing a function call with the called function's instructions. Inlining a
function eliminates the overhead of a call and can result in better optimization. Small functions that are
called many times are good candidates for inlining.

Note: When specifying an INLINE option, all preceding INLINE options must also be specified, including
their defaults.

INLINE Syntax

76 IBM i: ILE C/C++ Compiler Reference

INLINE(

*OFF

*ON

*AUTO

*NOAUTO INLINE Details

)

INLINE Details (continued)

250

1-65535

*NOLIMIT 2000

1-65535

*NOLIMIT *NO

*YES

The possible INLINE options are:
Inliner

Specifies whether inlining is to be used.
*OFF

Default setting. Specifies that inlining will not be performed on the compilation unit.
*ON

Specifies that inlining will be performed on the compilation unit. If a debug listing view is
specified, the inliner is turned off.

Mode
Specifies whether the inliner should attempt to automatically inline functions depending on their
Threshold and Limit.
*AUTO

Specifies that the inliner should determine if a function can be inlined based on the specified
Threshold and Limit. The #pragma noinline directive overrides *AUTO. This is the default.

*NOAUTO
Specifies that only the functions that have been marked for inlining should be considered
candidates for inlining. Functions marked for inlining include C functions for which the #pragma
inline directive was specified, C++ functions declared with the inline keyword, and C++ functions
marked for inlining by language rules.

Threshold
Specifies the maximum size of a function that can be a candidate for automatic inlining. The size is
measured in Abstract Code Units. Abstract Code Units are proportional in size to the executable code
in the function; C and C++ code is translated into Abstract Code Units by the compiler.
250

Specifies a threshold of 250. This is the default.
1-65535

Specifies a threshold from 1 to 65535.
*NOLIMIT

Defines the threshold as the maximum size of the program.
Limit

Specifies the maximum relative size a function can grow before auto-inlining stops.
2000

Specifies a limit of 2000. This is the default.

Control Language Commands 77

1-65535
Specifies a limit from 1 to 65535.

*NOLIMIT
Limit is defined as the maximum size of the program. System limits may be encountered.

Report
Specifies whether to produce an inliner report with the compiler listing.
*NO

The inliner report is not produced. This is the default.
*YES

The inliner report is produced. OUTPUT(*PRINT) must be specified to produce the inliner report.

MODCRTOPT
Valid only with the CRTCMOD and CRTCPPMOD commands. Specifies the options to use when the
*MODULE object is created. You can specify these options in any order, separated by spaces. When an
option is specified more than once, or when two options conflict, the last one specified is used.
MODCRTOPT Syntax

MODCRTOPT(
1

*NOKEEPILDTA

*KEEPILDTA

)

Notes:
1 Create Module command only

*NOKEEPILDTA
Default setting. Intermediate language data is not stored with the *MODULE object.

*KEEPILDTA
Intermediate language data is stored with the *MODULE object.

DBGVIEW
Specifies which level of debugging is available for the created program object. It also specifies which
source views are available for source-level debugging. Requesting a debug listing view will turn inlining
off.
DBGVIEW Syntax

DBGVIEW(

*NONE

*ALL

*STMT

*SOURCE

*LIST

)

The possible options are:
*NONE

Default setting. Disables all of the debug options for debugging the compiled object.
*ALL

Enables all of the debug options for debugging the compiled object and produces a source view, as
well as a listing view. If this suboption is specified together with OPTION(*FULL) or
OPTION(*EXPMAC), the compiler issues an error message and stops compilation.

*STMT
Allows the compiled object to be debugged using program statement numbers and symbolic
identifiers.

78 IBM i: ILE C/C++ Compiler Reference

Note: To debug an object using the *STMT option you need a spool file listing.

*SOURCE
Generates the source view for debugging the compiled object. The OPTION(*NOSHOWINC,
*SHOWINC, *SHOWSYS, *SHOWUSR) determines the content of the source view that is created.

Note: The root source should not be modified, renamed or moved after the module has been created.
It must be in the same library/file/member, in order to use this view for debugging.

*LIST
Generates the listing view for debugging the compiled object. The listing options (*EXPMAC,
*NOEXPMAC, *SHOWINC, *SHOWUSR, *SHOWSYS, *NOSHOWINC, *SHOWSKP, *NOSHOWSKP)
specified on the OPTION keyword determine the content of the listing view created, as well as the
spool file listing. If this suboption is specified together with OPTION(*FULL) or OPTION(*EXPMAC),
the compiler issues an error message and stops compilation.

DBGENCKEY
Specifies the encryption key to be used to encrypt program source that is embedded in debug views.
DBGENCKEY Syntax

DBGENCKEY(

*NONE

character-value

)

The possible options are:
*NONE

Default setting. No encryption key is specified.
character-value

Specify the key to be used to encrypt program source that is embedded in debug views stored in the
module object. The length of the key can be between 1 byte and 16 bytes. A key of length 1 byte to 15
bytes is padded to 16 bytes with blanks for the encryption. Specifying a key of length zero is the same
as specifying *NONE.

If the key contains any characters which are not invariant over all code pages, it is up to the user to
ensure that the target system uses the same code page as the source system, otherwise the key
might not match, and decryption might fail. If the encryption key must be entered on systems with
differing code pages, it is recommended that the key is made of characters which are invariant for all
EBCDIC code pages.

DEFINE
Specifies preprocessor macros that take effect before the file is processed by the compiler. The format
DEFINE(macro) is equivalent to specifying DEFINE('macro=1').
DEFINE Syntax

DEFINE(

*NONE

' name '

' name = value '

)

*NONE
Default setting. No macro is defined.

name or name=value
A maximum of 32 macros may be defined, and the maximum length of a macro is 80 characters.
Enclose each macro in single quotation marks. The quotation marks are not part of the 80 character

Control Language Commands 79

string and are not required when the CRTCMOD or CRTCPPMOD prompt screens are used. Single
quotation marks are required for case-sensitive macros. Separate macros with blank spaces. If value
is not specified, the compiler assigns a value of 1 to the macro.

Note: Macros, that are defined in the command, override any macro definition of the same name in the
source. A warning message is generated by the compiler. Function-like macros such as #define max(a,b)
((a)>;(b):(a)?(b)) cannot be defined on the command.

LANGLVL
Specifies which group of language features are included when the source is compiled. When no LANGLVL
is specified, the language level defaults to *EXTENDED.
LANGLVL Syntax

LANGLVL(

*EXTENDED

*ANSI

*LEGACY
1

*EXTENDED0X
1

)

Notes:
1 C++ compiler only

*EXTENDED
Default setting. Defines the preprocessor variable __EXTENDED__ and undefines other language-
level variables. ISO standard C and C++, and the IBM language extensions and system-specific
features are available. This parameter should be used when all the functions of ILE C or C++ are to be
available.

*ANSI
Defines the preprocessor variables __ANSI__ and __STDC__ for C and C++ compilations,
__cplusplus98__interface__ for C++ compilations only, and undefines other language-level variables.
Only ISO standard C and C++ is available.

*LEGACY
Undefines other language-level variables. Allow constructs compatible with older levels of the C++
language.

*EXTENDED0X
Defines the same preprocessor variables as *EXTENDED does, and also defines an individual
preprocessor variable for each C++11 language feature supported in this release. This option causes
the compiler to use all the capabilities of ILE C++ and currently supported C++11 features that are
implemented in this version of ILE C++ compiler. See “Extensions for C++0x compatibility” in ILE C/C+
+ Language Reference.
See also “ILE C/C++ Predefined Macros” on page 12

ALIAS
Indicates whether a program contains certain categories of aliasing or whether a program does not
conform to C/C++ standard aliasing rules. The compiler limits the scope of some optimizations when
there is a possibility that different names are aliases for the same storage location.
ALIAS Syntax

80 IBM i: ILE C/C++ Compiler Reference

ALIAS(

*ANSI

*NOADDRTAKEN

*NOALLPTRS

*NOTYPEPTR

*NOANSI

*ADDRTAKEN

*ALLPTRS

*TYPEPTR

)

*ANSI|*NOANSI
When *ANSI is in effect, type-based aliasing is used during optimization, which restricts the lvalues
that can be safely used to access a data object. The optimizer assumes that pointers can only point to
an object of the same type.

When *NOANSI is in effect, the optimizer makes worst case aliasing assumptions. It assumes that a
pointer of a given type can point to an external object or any object whose address is already taken,
regardless of type.

*ADDRTAKEN|*NOADDRTAKEN
When *ADDRTAKEN is in effect, variables are disjoint from pointers unless their address is taken. Any
class of variable for which an address has not been recorded in the compilation unit will be
considered disjoint from indirect access through pointers.

When *NOADDRTAKEN is specified, the compiler generates aliasing based on the aliasing rules that
are in effect.

*ALLPTRS|*NOALLPTRS
When *ALLPTRS is in effect, pointers are never aliased (this also implies *TYPEPTR). Specifying
*ALLPTRS is an assertion to the compiler that no two pointers point to the same storage location. The
suboption *ALLPTRS is only valid if *ANSI is also specified.

*TYPEPTR|*NOTYPEPTR
When *TYPEPTR is in effect, pointers to different types are never aliased. Specifying *TYPEPTR is an
assertion to the compiler that no two pointers of different types point to the same storage location.
The suboption *TYPEPTR is only valid if *ANSI is also specified.

Note:

1. If conflicting ALIAS settings are specified, the last setting specified is used. For example, if
ALIAS(*TYPEPTR *NOTYPEPTR) is specified, *NOTYPEPTR is used.

2. ALIAS makes assertions to the compiler about the code that is being compiled. If the assertions about
the code are false, then the code generated by the compiler may result in unpredictable behaviour
when the application is run.

3. The following are not subject to type-based aliasing.

• Signed and unsigned types. For example, a pointer to a signed int can point to an unsigned int.
• Character pointer types can point to any type
• Types qualified as volatile or const. For example, a pointer to a const int can point to an int.

SYSIFCOPT
Specifies which integrated file system options will be used for C or C++ stream I/O operations in the
module that is created.

Control Language Commands 81

SYSIFCOPT Syntax

SYSIFCOPT(

*NOIFSIO
1

*IFS64IO
2

*IFSIO

*NOASYNCSIGNAL
3

*ASYNCSIGNAL
3

)

Notes:
1 C compiler default setting
2 C++ compiler default setting
3 C compiler only

*IFS64IO
Default setting for the C++ compiler. The object that is created will use 64–bit Integrated File System
APIs that support C and C++ stream I/O operations on files greater than two gigabytes in size. Using
this option is equivalent to specifying SYSIFCOPT(*IFSIO *IFS64IO).

*NOIFSIO
Default setting for the C compiler. The object that is created will use the IBM i Data Management file
system for C and C++ stream I/O operations.

*IFSIO
The object that is created will use the Integrated File System APIs for C and C++ stream I/O
operations on files up to two gigabytes in size.

*NOASYNCSIGNAL
Default setting. Does not enable runtime mapping of synchronous signalling functions to
asynchronous signalling functions.

*ASYNCSIGNAL
Enable runtime mapping of synchronous signalling functions to asynchronous signalling functions.
Specifying this option causes C runtime environment to map the synchronous signal() function to
the asynchronous sigaction() function, and the synchronous raise() function to the
asynchronous kill() function.

LOCALETYPE
Specifies the type of locale support to be used by the object that is created.
LOCALETYPE Syntax

LOCALETYPE(

*LOCALE

*LOCALEUCS2

*CLD
1

*LOCALEUTF

)

Notes:
1 C compiler only

*LOCALE
Default setting. Objects compiled with this option use the locale support provided with the ILE C/C++
compiler and runtime, using locale objects of type *LOCALE. This option is only valid for programs that
run on V3R7 and later releases of the IBM i operating system.

*LOCALEUCS2
Objects compiled with this option store wide-character literals in two-byte form in the UNICODE
CCSID (13488).

82 IBM i: ILE C/C++ Compiler Reference

*CLD
Objects compiled with this option use the locale support provided with earlier releases of the ILE C
compiler and runtime, using locale objects of type *CLD.

*LOCALEUTF
Module and program objects created with this option use the locale support provided by *LOCALE
objects. Wide-character types will contain four-byte utf-32 values. Narrow character types will
contain utf-8 values.

FLAG
Specifies the level of messages that are to be displayed in the listing. Only the first-level text of the
message is included unless OPTION(*SECLVL) is specified.
FLAG Syntax

FLAG(

0

10

20

30

)

0
Default setting. All messages starting at the informational level are displayed.

10
All messages starting at the warning level are displayed.

20
All messages starting at the error level are displayed.

30
All messages starting at the severe error level are displayed.

MSGLMT
Specifies the maximum number of messages at a given severity that can occur before compilation stops.
MSGLMT Syntax

MSGLMT(

*NOMAX

0 32767

30

0

10

20

)

*NOMAX
Default setting. Compilation continues regardless of the number of messages that have occurred at
the specified message severity level.

0 32767
Specifies the maximum number of messages that can occur at, or above, the specified message
severity level before compilation stops. The valid range is 0 to 32 767.

30
Default setting. Specifies that message-limit messages at severity 30 can occur before compilation
stops.

0
Specifies that message-limit messages at severity 0 to 30 can occur before compilation stops.

10
Specifies that message-limit messages at severity 10 to 30 can occur before compilation stops.

Control Language Commands 83

20
Specifies that message-limit messages at severity 20 to 30 can occur before compilation stops.

REPLACE
Specifies whether the existing version of the object is to be replaced by the current version.
REPLACE Syntax

REPLACE(

*YES

*NO)

*YES
Default setting. The existing object is replaced by the new version. The old version is moved to the
library, QRPLOBJ, and renamed based on the system date and time. The text description of the
replaced object is changed to the name of the original object. The old object is deleted at the next IPL
if it has not been deleted.

*NO
The existing object is not replaced. When an object with the same name exists in the specified library,
a message is displayed and compilation stops.

USRPRF
Valid only with the CRTBNDC and CRTBNDCPP commands. Specifies the user profile that is used when the
compiled ILE C or C++ program object is run, including the authority that the program object has for each
object. The profile of either the program owner or the program user is used to control which objects are
used by the program object.
USRPRF Syntax

USRPRF(
1

*USER

*OWNER)

Notes:
1 Create Bound Program command only

*USER
Default setting. The profile of the user that is running the program object is used.

*OWNER
The collective sets of object authority in the user profiles of both the program owner and the program
user are used to find and access objects during the program object's processing time. Objects that are
created by the program are owned by the program's user.

AUT
Specifies the object authority to users who do not have specific authority to the object. The user may not
be on the authorization list, or whose group has no specific authority to the object.
AUT Syntax

AUT(

*LIBCRTAUT

*CHANGE

*USE

*ALL

*EXCLUDE

authorization-list-name

)

84 IBM i: ILE C/C++ Compiler Reference

*LIBCRTAUT
Default setting. Public authority for the object is taken from the CRTAUT keyword of the target library
(the library that contains the created object). This value is determined when the object is created. If
the CRTAUT value for the library changes after the object is created, the new value does not affect any
existing objects.

*CHANGE
Provides all data authority and the authority to perform all operations on the object except those that
are limited to the owner or controlled by object authority and object management authority. The
object can be changed, and basic functions can be performed on it.

*USE
Provides object operational authority, read authority, and authority for basic operations on the object.
Users without specific authority are prevented from changing the object.

*ALL
Provides authority for all operations on the object except those that are limited to the owner or
controlled by authorization list management authority. Any user can control the object's existence,
specify its security, and perform basic functions on it, but cannot transfer its ownership.

*EXCLUDE
Users without special authority cannot access the object.

authorization-list-name
Enter the name of an authorization list of users and authorities to which the module object is added.
The object is secured by this authorization list, and the public authority for the object is set to *AUTL.
The authorization list must exist on the system when the command is issued.

TGTRLS
Specifies the release level of the operating system for the object that is being created.
TGTRLS Syntax

TGTRLS(

*CURRENT

*PRV

release-level

)

*CURRENT
Default setting. The object is used on the release of the operating system that is running on your
system. For example, when V2R3M5 is running on your system, *CURRENT indicates you want to use
the object on a system with Version 2 Release 3 Modification 5 installed. You can also use the object
on a system with any subsequent release of the operating system that is installed.

Note: If V2R3M5 is running on your system, and you intend to use the object you are creating on a
system with V2R3M0 installed, specify TGTRLS(V2R3M0), not TGTRLS(*CURRENT).

*PRV
The object is used on the previous release of the operating system. For example, if V2R3M5 is being
run on the your system, specify *PRV if you want to use the object you are creating on a system with
V2R2M0 installed. You can also use the object on a system with any subsequent release of the
operating system that is installed.

release-level
Specify the release in the format VxRxMx. The object can be used on a system with the specific
release or with any subsequent release of the installed operating system. Values depend on the
current version, release, and modification level, and they change with each new release. If you specify
a release-level that is earlier than the earliest release level supported by this command, you will
receive an error message indicating the earliest supported release.

Compiling for an operating system release earlier than V5R1M0 may cause some settings of the following
compiler options to be ignored:

• “CHECKOUT” on page 73

Control Language Commands 85

• “OPTION” on page 68
• “OUTPUT” on page 68
• “PRFDTA” on page 87

The following options are ignored completely when compiling for an operating system release earlier than
V5R1M0:

• “CSOPT” on page 96
• “DFTCHAR” on page 97
• “DTAMDL” on page 91
• “ENUM” on page 93
• “INCDIR” on page 96
• “LICOPT” on page 96
• “MAKEDEP” on page 93
• “PACKSTRUCT” on page 92
• “PPGENOPT” on page 93
• “STGMDL” on page 91
• “TGTCCSID” on page 97

ENBPFRCOL
Specifies whether performance data measurement code should be generated in the object. The collected
data can be used by the system performance tool to profile performance of an application. Generating
performance measurement code in a created object results in slightly larger objects and might affect
performance.

Note: Starting in V6R1M0, this parameter no longer affects the created objects. It exists solely for
compatibility with releases earlier than V6R1M0.

ENBPFRCOL Syntax

ENBPFRCOL(
*PEP

*ENTRYEXIT

*FULL

*ALLPRC

*NONLEAF

)

*PEP
Default setting. Performance statistics are gathered on the entry and exit of the program entry
procedure only. Choose this value when you want to gather overall performance information for an
application. This support is equivalent to the support that was formerly provided with the TPST tool.

*ENTRYEXIT *NONLEAF
Performance statistics are gathered on the entry and exit of all the program's procedures that are not
leaf procedures. This includes the program PEP.

This choice is useful if you want to capture information about functions that call other functions in
your application.

*ENTRYEXIT *ALLPRC
Performance statistics are gathered on the entry and exit of all the object's procedures (including
those that are leaf procedures). This includes the program PEP.

This choice is useful if you want to capture information about all functions. Use this option when you
know that all the programs called by your application were compiled with either the *PEP,
*ENTRYEXIT, or *FULL option. Otherwise, if your application calls other objects that are not enabled
for performance measurement, the performance tool charges their use of resources against your
application. This makes it difficult to determine where resources are actually being used.

86 IBM i: ILE C/C++ Compiler Reference

*FULL *NONLEAF
Performance statistics are gathered on entry and exit of all procedures that are not leaf procedures.
Statistics are gathered before and after each call to an external procedure.

*FULL *ALLPRC
Performance statistics are gathered on the entry and exit of all procedures that include leaf
procedures. Also, statistics are gathered before and after each call to an external procedure.

Use this option if your application calls other objects that were not compiled with either the *PEP,
*ENTRYEXIT, or *FULL option. This option allows the performance tools to distinguish between
resources that are used by your application and those resources used by objects it calls (even if those
objects are not enabled for performance measurement). This option is the most expensive, but allows
for selectively analyzing various programs in an application.

*NONE
No performance data is collected for this object. Use this parameter when no performance
information is needed, and a smaller object size is required.

PFROPT
Specifies various options available to boost performance. You can specify them in any order, separated by
one or more blanks. When an option is specified more than once, or when two options conflict, the last
option specified is used.
PFROPT Syntax

PFROPT(

*SETFPCA

*NOSETFPCA

*NOSTRDONLY

*STRDONLY

)

*SETFPCA
Default setting. Causes the compiler to set the floating-point computational attributes to achieve the
ANSI semantics for floating-point computations.

*NOSETFPCA
No computational attributes will be set. This option is used when the object being created does not
have any floating-point computations in it.

*NOSTRDONLY
Specifies that the compiler must place strings into writable memory. This is the default.

*STRDONLY
Specifies that the compiler may place strings into read-only memory.

PRFDTA
Specifies whether program profiling should be turned on for the module or program. Profiling can lead to
better performance of your programs or service programs by improving the use of cache lines and
memory pages in ILE applications.
PRFDTA Syntax

PRFDTA(

*NOCOL

*COL)

Note: You cannot profile a stand-alone *MODULE object.

*NOCOL
Default setting. The collection of profiling data is not enabled. The module will not collect profiling
data when it is included in a program or service program object.

Control Language Commands 87

*COL
The collection of profiling data is enabled. The module will collect profiling data when it is included in
a program or service program object.

Use this option to generate code that will collect data at object creation time. This data will consist of
the number of times basic blocks within procedures are executed, as well as the number of times
procedures are called.

Note: *COL has an effect only when the optimization level of the module is *FULL (30) or greater.

TERASPACE
Specifies whether the created object can recognize and work with addresses that reference teraspace
storage locations.
TERASPACE Syntax

TERASPACE(

*NO

*YES

*NOTSIFC

*TSIFC

)

*NO
Default setting. The created object cannot recognize teraspace storage addresses.

Note: Starting in V6R1M0, all modules are enabled to handle addressing of storage allocated from
teraspace. However, if *NO is specified, the compiler facilities listed in the *YES description are not
available.

*YES
The created object can handle teraspace storage addresses, including parameters passed from other
teraspace-enabled programs and service programs. In addition, the following compiler facilities are
enabled:

• Pointers can be qualified with __ptr64 to allow creation of 8-byte pointers used to access teraspace
storage.

• The teraspace storage model can be specified with the STGMDL(*TERASPACE) compiler option.
• The LLP64 data model can be specified with the DTAMDL(*LLP64) compiler option or the #pragma
datamodel(llp64) directive.

• Pointer difference arithmetic returns a signed long long result instead of a ptrdiff_t result.

*NOTSIFC
The compiler does not use teraspace versions of storage functions, such as malloc() or shmat().
*NOTSIFC is the default if TERASPACE(*YES) is specified.

*TSIFC
The compiler will use teraspace versions of storage functions, such as malloc() or shmat(),
without requiring changes to the program source code. The compiler defines the __TERASPACE__
macro, and maps certain storage function names to their teraspace-enabled equivalents. For
example, selecting this compiler option causes the malloc() storage function to be mapped to
_C_TS_malloc().

The DTAMDL (see page “DTAMDL” on page 91) and STGMDL (see page “STGMDL” on page 91)
compiler options can be used together with the TERASPACE compiler option. Valid combinations of these
options are shown in the following tables, along with the effects of selecting those combinations.

88 IBM i: ILE C/C++ Compiler Reference

Table 4. Valid Combinations of DTAMDL, STGMDL, and TERASPACE Compiler Options

DTAMDL(*P128)
STGMDL

(*SNGLVL) (*TERASPACE) (*INHERIT)

• Module/program is
designed to use
single-level store
working storage.

• Generated code
supports execution
using:

– single-level store
working storage

– single-level store
dynamic storage

• Working storage can
only be accessed
using 16–byte space
pointers.

• Default pointer size is
16 bytes.

• Module/program is
designed to use
teraspace working
storage.

• Generated code
supports execution
using:

– teraspace working
storage

– single-level store
dynamic storage

– teraspace dynamic
storage

• Working storage can
be accessed using
either:

– process local
pointers

– 16–byte space
pointers

• Default pointer size is
16 bytes.

• Depending on the storage
model of the calling
program, the module is
designed to use either:

– single-level store working
storage

– teraspace working
storage

• Depending on the storage
model of the calling
program, generated code
supports execution using:

– single-level store working
storage

– teraspace working
storage

– single-level store dynamic
storage

– teraspace dynamic
storage

• Default pointer size is 16
bytes.

TERASPACE(*NO) Default setting Invalid combination Invalid combination

TERASPACE(*YES
*NOTSIFC)

• Generated code also
supports execution
using teraspace

• Default is to use
single-level store
version of dynamic
storage interfaces.

• Default is to use
single-level store
version of dynamic
storage interfaces.

• Default is to use single-level
store version of dynamic
storage interfaces.

TERASPACE(*YES
*TSIFC)

• Generated code also
supports execution
using teraspace.

• Default is to use
teraspace version of
dynamic storage
interfaces.

• __TERASPACE__
macro is defined.

• Default is to use
teraspace version of
dynamic storage
interfaces.

• __TERASPACE__
macro is defined.

• Default is to use teraspace
version of dynamic storage
interfaces.

• __TERASPACE__ macro is
defined.

Control Language Commands 89

DTAMDL(*LLP64)
STGMDL

(*SNGLVL) (*TERASPACE) (*INHERIT)

• Module/program is
designed to use
single-level store
working storage.

• Generated code
supports execution
using:

– single-level store
working storage

– single-level store
dynamic storage

– teraspace
• Working storage can

only be accessed
using 16–byte space
pointers.

• Default pointer size is
8 bytes.

• Module/program is
designed to use
teraspace working
storage.

• Generated code
supports execution
using:

– teraspace working
storage

– single-level store
dynamic storage

– teraspace dynamic
storage

• Working storage can be
accessed using either:

– process local
pointers

– 16–byte space
pointers

• Default pointer size is 8
bytes.

• Depending on the storage
model of the calling
program, the module is
designed to use either:

– single-level store working
storage

– teraspace working
storage

• Depending on the storage
model of the calling
program, generated code
supports execution using:

– single-level store working
storage

– teraspace working
storage

– single-level store dynamic
storage

– teraspace dynamic
storage

• Working storage can be
accessed using either:

– (conditionally) process
local pointers

– 16–byte space pointers
• Default pointer size is 8

bytes.

TERASPACE(*NO) Invalid combination Invalid combination Invalid combination

TERASPACE(*YES
*NOTSIFC)

• Default is to use
single-level storage
version of dynamic
storage interfaces.

• __LLP64_IFC__
macro is defined.

• Default is to use single-
level storage version of
dynamic storage
interfaces.

• __LLP64_IFC__ macro
is defined.

• Default is to use single-level
storage version of dynamic
storage interfaces.

• __LLP64_IFC__ macro is
defined.

TERASPACE(*YES
*TSIFC)

• Default is to use
teraspace version of
dynamic storage
interfaces.

• __TERASPACE__ and
__LLP64_IFC__
macros are defined.

Recommended settings
for most effective use of

teraspace

• Default is to use
teraspace version of

dynamic storage
interfaces.

• __TERASPACE__ and
__LLP64_IFC__ macros

are defined.

• Default is to use teraspace
version of dynamic storage
interfaces.

• __TERASPACE__ and
__LLP64_IFC__ macros are
defined.

To make the most effective use of teraspace, you can specify the following combination of options:

90 IBM i: ILE C/C++ Compiler Reference

 TERASPACE(*YES *TSIFC) STGMDL(*TERASPACE) DTAMDL(*LLP64)

For more information about teraspace storage, see Using Teraspace in the ILE C/C++ Programmer's Guide
and Teraspace and single-level store in the ILE Concepts.

STGMDL
Specifies the type of storage (static and automatic) that the module object uses.
STGMDL Syntax

STGMDL(

*SNGLVL

*TERASPACE

*INHERIT

)

*SNGLVL
Default setting. The module or program uses the traditional single level storage model. Static and
automatic storage for the object is allocated from single-level store, and can only be accessed using
16-byte pointers. The module can optionally access teraspace dynamic storage if the
TERASPACE(*YES) option is specified.

*TERASPACE
The module or program uses the teraspace storage model. Teraspace storage model provides up to a
1-terabyte local address space for a single job. Static and automatic storage for the object is allocated
from teraspace and can be accessed using either 8-byte or 16-byte pointers.

*INHERIT
Valid only with the CRTCMOD and CRTCPPMOD commands. The module created can use either single
level or teraspace storage. The type of storage used depends on the type of storage required by the
caller.

Use of STGMDL(*TERASPACE) or STGMDL(*INHERIT) together with TERASPACE(*NO) is flagged as an
error by the compiler, and compilation stops.

For more information about valid combinations for the STGMDL, TERASPACE, and DTAMDL compiler
options, see “TERASPACE” on page 88.

For more information about the types of storage available on IBM i platforms, see Teraspace and single-
level store in ILE Concepts.

DTAMDL
Specifies how pointer types are interpreted in absence of an explicit modifier. The __ptr64 and __ptr128
type modifiers and the datamodel pragma override the setting of the DTAMDL compiler option.
DTAMDL Syntax

DTAMDL(

*P128

*LLP64)

*P128
Default setting. The default size of pointer variables is 16 bytes.

*LLP64
The default size of pointer variables is 8 bytes, and the compiler defines the macro __LLP64_IFC__.

Use of DTAMDL(*LLP64) together with TERASPACE(*NO) is flagged as an error by the compiler, and
compilation stops.

See pragma “datamodel” on page 27 for more information.

For more information about valid combinations for the STGMDL, TERASPACE, and DTAMDL compiler
options, see “TERASPACE” on page 88.

Control Language Commands 91

RTBND

Specifies the runtime binding directory for the object created.
RTBND Syntax

RTBND(

*DEFAULT

*LLP64)

*DEFAULT
Default setting. The object created uses the default binding directory.

*LLP64
The object created uses the 64-bit runtime binding directory and the compiler defines the macro
__LLP64_RTBND__.

PACKSTRUCT
Specifies the alignment rules to use for members of structures, unions, and classes in the source code.
PACKSTRUCT sets the packing value to be used for the members of structures and for the structures
themselves.

If the data types are by default packed along boundaries smaller than those boundaries specified by
#pragma pack, they are still aligned along the smaller boundaries. For example:

• Type char is always aligned along a 1-byte boundary.
• 16-byte pointers are aligned on a 16-byte boundary. PACKSTRUCT, _Packed, and #pragma pack cannot

alter this alignment.
• 8-byte pointers can have any alignment, but 8-byte alignment is preferred.

For more information about packing and alignment, see pragma “pack” on page 51.

PACKSTRUCT Syntax

PACKSTRUCT(

*NATURAL

1

2

4

8

16

)

*NATURAL
Default setting. The natural alignment for the members of structures is used.

1
Structures and unions are packed along 1-byte boundaries.

2
Structures and unions are packed along 2-byte boundaries.

4
Structures and unions are packed along 4-byte boundaries.

8
Structures and unions are packed along 8-byte boundaries.

16
Structures and unions are packed along 16-byte boundaries.

92 IBM i: ILE C/C++ Compiler Reference

ENUM
Specifies the number of bytes the compiler uses to represent enumerations. This becomes the default
enumeration size for the object. A #pragma enum directive overrides this compile option.
ENUM Syntax

ENUM(

*SMALL

1

2

4

*INT

)

*SMALL
Default setting. Use the smallest possible size for an enum, as appropriate to the given enum value.

1
Make all enum variables 1 byte in size, signed if possible

2
Make all enum variables 2 bytes in size, signed if possible

4
Make all enum variables 4 bytes in size, signed if possible

*INT

• Use the ANSI C Standard enum size (4-bytes signed).

• Use the ANSI C++ Standard enum size (4-bytes signed; unless the enumeration value >
231-1).

MAKEDEP
Creates an output file containing targets suitable for inclusion in a description file for the Qshell make
command.
MAKEDEP Syntax

MAKEDEP(

*NONE

file-name)

*NONE
Default setting. The option is disabled and no file is created.

file-name
Specifies an IFS path indicating the location and name of the resulting output file.

The output file contains a line for the input file and an entry for each include file. It has the general
form:

file_name.o:file_name.c
file_name.o:include_file_name

Include files are listed according to the search order rules for the #include preprocessor directive. If
an include file is not found, it is not added to the output file. Files with no include statements produce
output files containing one line that lists only the input file name.

PPGENOPT
Valid only with the CRTCMOD or CRTCPPMOD commands. Lets you specify outputs generated by the
preprocessor.
PPGENOPT Syntax

Control Language Commands 93

PPGENOPT(

*NONE

*DFT

*RMVCOMMENT

*NORMVCOMMENT

*GENLINE

*NOGENLINE

*GENLINE

*NOGENLINE

*RMVCOMMENT

*NORMVCOMMENT

)

*NONE
Default setting. No outputs are generated by the preprocessor. Selecting this option disables the
PPSRCFILE, PPSRCMBR, and PPSRCSTMF options.

*DFT
Equivalent to specifying PPGENOPT(*RMVCOMMENT *GENLINE).

*RMVCOMMENT
Preserves comments during preprocessing.

*NORMVCOMMENT
Does not preserve comments during preprocessing.

*NOGENLINE
Suppresses #line directives in the preprocessor output.

*GENLINE
Produces #line directives in the preprocessor output.

Notes:

1. Specifying the PPGENOPT compiler option with any setting other than *NONE forces the input of
either of the following options:

• PPSRCFILE and PPSRCMBR
• PPSRCSTMF

2. Specifying PPGENOPT with any setting other than *NONE overrides the
OPTION(*NOPPONLY) and OPTION(*GEN) option settings.

3. Specifying OPTION(*PPONLY) overrides the PPGENOPT(*NONE) and OPTION(*GEN)
option settings. Instead, the following settings are implied:

• PPGENOPT(*DFT) PPSRCFILE(QTEMP/QACZEXPAND) PPSRCMBR(*MODULE) for a data
management source file.

• PPGENOPT(*DFT) PPSRCSTMF(*SRCSTMF) for an IFS source file.

PPSRCFILE
Valid only with the CRTCMOD or CRTCPPMOD commands. This option is used together with the PPGENOPT
option to define where the preprocessor output object is stored.
PPSRCFILE Syntax

PPSRCFILE(
1

*CURLIB/

library-name/

file-name)

Notes:
1 Create Module command only

94 IBM i: ILE C/C++ Compiler Reference

*CURLIB
Default setting. The object is stored in the current library. If a job does not have a current library,
QGPL is used.

library-name
The name of the library where the preprocessor output is stored.

file-name
The physical file name under which the preprocessor output is stored. The file is created if it does not
already exist.

Notes:

1. The PPSRCMBR and PPSRCFILE options cannot be specified with the PPSRCSTMF option.

2. Specifying OPTION(*PPONLY) for a data management file implies the following settings:

• PPGENOPT(*DFT) PPSRCFILE(QTEMP/QACZEXPAND) PPSRCMBR(*MODULE)

PPSRCMBR
Valid only with the CRTCMOD or CRTCPPMOD commands. This option is used together with the PPGENOPT
option to define the name of the member where preprocessor output is stored.
PPSRCMBR Syntax

PPSRCMBR(
1

*MODULE

membername)

Notes:
1 Create Module command only

*MODULE
The module name that is supplied on the MODULE parameter is used as the source member name.
This is the default when a member name is not specified.

member-name
Enter the name of the member that will contain the preprocessor output.

Notes:

1. The PPSRCMBR and PPSRCFILE options cannot be specified with the PPSRCSTMF option.

2. Specifying OPTION(*PPONLY) for a data management file implies the following settings:

• PPGENOPT(*DFT) PPSRCFILE(QTEMP/QACZEXPAND) PPSRCMBR(*MODULE)

PPSRCSTMF
Valid only with the CRTCMOD or CRTCPPMOD commands. This option is used together with the PPGENOPT
option to define the IFS stream path name where preprocessor output is stored.
PPSRCSTMF Syntax

PPSRCSTMF(
1

pathname

*SRCSTMF

)

Notes:
1 Create Module command only

path-name
Enter the IFS path of the file that will contain the preprocessor output. The path name can be either
absolutely or relatively qualified. An absolute path name starts with '/'; a relative path name starts
with a character other than '/'. If absolutely qualified, then the path name is complete. If relatively

Control Language Commands 95

qualified, the path name is completed by pre-pending the job's current working directory to the path
name.

*SRCSTMF
If this setting is chosen, you must also select the SRCSTMF command option. Preprocessor output is
saved to the current directory under the same base filename specified by the SRCSTMF command
option, but with a filename extension of .i.

Notes:

1. The PPSRCMBR and PPSRCFILE options cannot be specified with the PPSRCSTMF option.
2. The SRCSTMF parameter is not supported in a mixed-byte environment.

3. Specifying OPTION(*PPONLY) for an IFS file implies the following settings:

• PPGENOPT(*DFT) PPSRCSTMF(*SRCSTMF)

INCDIR
Lets you redefine the path used to locate include header files when compiling a source stream file. This
option is ignored if the source file's location is not defined as an IFS path with the SRCSTMF compiler
option, or if the full absolute path name is specified on the #include directive.
INCDIR Syntax

INCDIR(

*NONE

directory-name)

*NONE
Default setting. No directories are inserted at the start of the default user include path.

directory-name
Specifies a directory name to be inserted at the start of the default user include path. More than one
directory name can be entered. Directories are inserted at the start of the default user include path in
the order they are entered.

CSOPT
This option lets you specify one or more compiler service options. Valid option strings will be described in
PTF cover letters and release notes.
CSOPT Syntax

CSOPT(

*NONE

' compiler-service-options-string '

)

*NONE
Default setting. No compiler service options selected.

compiler-service-options-string
Specified compiler service options are used when creating a module object.

LICOPT
Specifies one or more Licensed Internal Code compile time options. This parameter allows individual
compile time options to be selected, and is intended for the advanced programmer who understands the
potential benefits and drawbacks of each selected type of compiler option.
LICOPT Syntax

96 IBM i: ILE C/C++ Compiler Reference

LICOPT(

*NONE

' Licensed-Internal-Code-options-string '

)

The possible options are:
*NONE

Default setting. No compile time optimization is selected.
Licensed-Internal-Code-options-string

The selected Licensed Internal Code compile time options are used when creating the module/
program object. Certain options may reduce your ability to debug the created module/program. See
ILE Concepts for more information about LICOPT options.

DFTCHAR
Instructs the compiler to treat all variables of type char as either signed or unsigned.
DFTCHAR Syntax

DFTCHAR(

*UNSIGNED

*SIGNED)

*UNSIGNED
Default setting. Treats all variables declared as type char as type unsigned char. The
_CHAR_UNSIGNED macro is defined.

*SIGNED
Treats all variables declared as type char as type signed char, and defines the _CHAR_SIGNED
macro. This setting is ignored if the TGTRLS option specifies a target release earlier than V5R1M0.

TGTCCSID
Specifies the target coded character set identifier (CCSID) of the created object. The object's CCSID
identifies the coded character set identifier in which the module's character data is stored. This includes
character data used to describe literals, comments and identifier names described by the source, with the
exception of identifier names for CCSIDs 5026, 930 and 290.

If an ASCII CCSID is entered, the compiler issues an error message and assumes a CCSID of 37.

If an ASCII CCSID is entered, the compiler issues no error message. Translation occurs to the ASCII
CCSID but the created module has a CCSID of 65535.

The TGTCCSID option will also determine the CCSID of character values used in listings. However, listings
sent to a spool file will be in the job's CCSID because that is the CCSID of the spool file.

This option is ignored when targeting a compile for a release previous to V5R1.

TGTCCSID Syntax

TGTCCSID(

*SOURCE

*JOB

*HEX

coded-character-set-identifier

)

*SOURCE
Default setting. The CCSID of the root source file is used.

Control Language Commands 97

*JOB
The CCSID of the current job is used.

*HEX
The CCSID 65535 is used, indicating that character data is treated as bit data and is not converted.

coded-character-set-identifier
Specifies a specific CCSID to be used.

TEMPLATE

Specifies options to customize C++ template generation.
TEMPLATE Syntax

TEMPLATE(
12 3

*NONE

TEMPLATE Details)

TEMPLATE Details
*TEMPINC

directory-pathname
1

1-65535

*NO

*WARN

*ERROR

Notes:
1 C++ compiler only
2 Create Module command only
3 Applicable only when using the Integrated File System (IFS)

The possible options are:
*NONE

No automatic template instantiation file is created. The compiler instantiates all templates whose full
implementation is known if an object of that template class is defined, or if a call is made to that
template function within the module. If the full implementation is not known (for example, you have a
template class definition, but not the definition of the methods of that template class), that template
is not instantiated within the module.

Note: This can cause code duplication in program executables where template specifications are
used in more than one module.

*TEMPINC
Templates are generated into a directory named tempinc which is created in the directory where the
root source file was found. If the source file is not a stream file, a file named TEMPINC will be created
in the library where the source file resides. The TEMPLATE(*TEMPINC) and TMPLREG options are
mutually exclusive.

directory-pathname
Same as *TEMPLATE(*TEMPINC), except that template instantiation files are generated to a specified
directory location. The directory path can be relative to the current directory, or it can be an absolute
directory path.

If the specified directory does not exist, it is created.

Note:

An error condition results if the specified directory path contains a directory that does not exist, for
example, TEMPLATE(/source/subdir1/tempinc) when subdir1 does not exist.

98 IBM i: ILE C/C++ Compiler Reference

1-65535
Specifies the maximum number of template include files to be generated by the
*TEMPLATE(*TEMPINC) option for each header file. If not specified, this setting defaults to 1. The
maximum value for this setting is 65535.

*NO
Default setting if TEMPLATE(*NONE) is not in effect. If specified, the compiler does not parse to
reduce the number of errors issued in code written for previous versions of the compiler.

Note: Regardless of the setting of this and the next two options, error messages are produced for
problems that appear outside implementations. For example, errors found during the parsing or
semantic checking of constructs such as the following, always cause error messages:

• return type of a function template
• parameter list of a function template
• member list of a class template
• base specifier of a class template

*WARN
Parses template implementations and issues warning messages for semantic errors. Error messages
are also issued for errors found while parsing.

*ERROR
Treats problems in template implementations as errors, even if the template is not instantiated.

TMPLREG

Valid only with the CRTCPPMOD command. Maintains a record of all templates as they are encountered in
the source and ensures that only one instantiation of each template is made. The TMPLREG and
TEMPLATE(*TEMPINC) parameters are mutually exclusive.
TMPLREG Syntax

TMPLREG(
12 3

*NONE

*DFT

' path-name '

)

Notes:
1 C++ compiler only
2 Create Module command only
3 Applicable only when using the Integrated File System (IFS)

The possible options are:
*NONE

Default setting. Do not use the template registry file to keep track of template information.
*DFT

If the source file is a stream file, the template registry file is created in the source directory with the
default name 'templateregistry'. If the source file is not a stream file, a file QTMPLREG with the
member QTMPLREG will be created in the library where the source resides.

path-name
Specifies a path name for the stream file in which to store the template registry information.

WEAKTMPL

Control Language Commands 99

Specifies whether weak definitions are used for static members of a template class. Weakly defined static
members of a template class will prevent the collisions of multiple definitions in a program or service
program.
WEAKTMPL Syntax

WEAKTMPL(

*YES

*NO)

The possible options are:
*YES

Default setting. Weak definitions will be used for static members of a template class.
*NO

Weak definitions will not be used for static members of a template class.

Some programs require strong static data members when they are linked to other modules. You can
override the default only at compilation time.

DECFLTRND
Specifies the compile time rounding mode for the evaluation of constant decimal floating-point
expressions. This option does not affect the runtime decimal floating-point rounding mode, which is set
using the setca built-in function.
DECFLTRND Syntax

DECFLTRND(

*HALFEVEN

*DOWN

*UP

*HALFUP

*HALFDOWN

*FLOOR

*CEILING

)

The possible options are:
*HALFEVEN

Default setting. Round to the nearest value. In a tie, choose even. For example, 5.22 rounds to 5.2,
5.67 rounds to 5.7, 5.55 rounds to 5.6, 5.65 rounds to 5.6.

*DOWN
Round toward zero, or truncate the result. For example, 5.22 rounds to 5.2, 5.67 rounds to 5.6, 5.55
rounds to 5.5, 5.65 rounds to 5.6

*UP
Round away from zero. For example, 5.22 rounds to 5.3, 5.67 rounds to 5.7, 5.55 rounds to 5.6, 5.65
rounds to 5.7.

*HALFUP
Round to the nearest value. In a tie, round away from zero. For example, 5.22 rounds to 5.2, 5.67
rounds to 5.7, 5.55 rounds to 5.6, 5.65 rounds to 5.7.

*HALFDOWN
Round to the nearest value. In a tie, round toward zero. For example, 5.22 rounds to 5.2, 5.67 rounds
to 5.7, 5.55 rounds to 5.5, 5.65 rounds to 5.6.

*FLOOR
Round toward negative affinity. For example, 5.22 rounds to 5.2, 5.67 rounds to 5.6, 5.55 rounds to
5.5, 5.65 rounds to 5.6

100 IBM i: ILE C/C++ Compiler Reference

*CEILING
Round toward positive infinity. For example, 5.22 rounds to 5.3, 5.67 rounds to 5.7, 5.55 rounds to
5.6, 5.65 rounds to 5.7.

Control Language Commands 101

102 IBM i: ILE C/C++ Compiler Reference

Using the ixlc Command to Invoke the C/C++
Compiler

Read this section for an overview of the ixlc Qshell command.

The ixlc command lets you invoke the compiler and specify compiler options from a IBM i Qshell
command line. Module binder commands can be specified. The ixlc command can be used together with
AIX make files to control compilation.

Using ixlc in Qshell
When using the IBM i version of ixlc on the character-based interface Qshell command line, you can:

• Compile data management source code residing on a IBM i platform.
• Compile IFS source code residing on a IBM i platform.
• Use header files residing on the IBM i platform.

ixlc Command and Options Syntax
Basic syntax for the ixlc command is:

ixlc

-? -c -+ -prtmsgid pgm_source

compiler_opts -B " binder_cmd "

where:
ixlc

Basic compiler command invocation. By default, the ixlc command instructs the compiler to create a
bound program.

-?
Specifying this flag displays help for the ixlc command.

-c
Specifying this flag instructs the compiler to create a module.

-+
Specifying this flag invokes the C++ compiler.

-prtmsgid
Specifying this flag causes additional information on compiler error messages to be displayed. The
additional information includes the line number, column number, message identifier, and message
severity.

pgm_source
Specifies the name of the program source file being compiled. You can compile an IFS source
program or data management source program by providing the source name as:

 qsys.lib/.../name.mbr

© Copyright IBM Corp. 1993, 2013 103

Alternately, you can also compile a data management source program by using the -
qsrcfile(library/file) and -qsrcmbr(member) Qshell compiler options to identify the
location of the program source.

compiler_opts
Specifies the ixlc name of an ILE C/C++ compiler option.

-B"binder_cmd"
Specifies a binder command and options. For example:

 -B"CRTPGM PGM(library/target) MODULE(...)"

Notes on Usage

1. ixlc commands and options are case sensitive.
2. It is possible to specify conflicting options when invoking the compiler. If this occurs, options specified

later on the command line will override options specified earlier. For example, invoking the compiler
by specifying :

 ixlc hello.c -qgen -qnogen

is equivalent to specifying:

 ixlc hello.c -qnogen

3. Some option settings are cumulative, and can be specified more than once on the command line
without cancelling out earlier specifications of that same option. These options include:

• settings within the OPTION compiler option group
• settings within the CHECKOUT compiler option group
• ALIAS compiler option
• DEFINE compiler option
• PPGENOPT compiler option

ixlc Command Options
The table below shows the mappings of Create Module and Create Bound Program compiler options to
their ixlc equivalents. Compiler options may have language and usage restrictions that are not shown in
this table. For information on such restrictions, refer to the reference information for that option.

Table 5. ixlc Command Options

Create Module/Create
Bound Program Options Option Settings ixlc Equivalents and Notes

“MODULE” on page 65,
“PGM” on page 65

[*CURLIB/ | libraryname/]name -o[*CURLIB/ |
libraryname/]name

If library is not specified, the target object goes to the current library as specified
by the current user profile. If the user does not have a current library, QGPL is
assumed.

“SRCFILE” on page 66 [*LIBL/ | *CURLIB/ | libraryname/]
filename

-qsrcfile=[*LIBL/ |
*CURLIB/ | libraryname/]
filename

“SRCMBR” on page 66 *MODULE | mbrname -qsrcmbr=mbrname

“SRCSTMF” on page 67 pathname (none, uses default pathname)

“TEXT” on page 67 *SRCMBRTEXT | *BLANK | text -qtext="text"

104 IBM i: ILE C/C++ Compiler Reference

Table 5. ixlc Command Options (continued)

Create Module/Create
Bound Program Options Option Settings ixlc Equivalents and Notes

“OUTPUT” on page 68 *NONE -qnoprint

*PRINT -qprint

filename -qoutput="filename"

Using the ixlc Command to Invoke the C/C++ Compiler 105

Table 5. ixlc Command Options (continued)

Create Module/Create
Bound Program Options Option Settings ixlc Equivalents and Notes

“OPTION” on page 68 *AGR | *NOAGR -qagr

*BITSIGN | *NOBITSIGN -qbitfields=signed
-qbitfields=unsigned

*DIGRAPH | *NODIGRAPH -qdigraph
-qnodigraph

*EVENTF | *NOEVENTF -qeventf
-qnoeventf

*EXPMAC | *NOEXPMAC -qexpmac
-qnoexpmac

*FULL | *NOFULL -qfull
-qnofull

*GEN | *NOGEN -qgen
-qnogen

*INCDIRFIRST | *NOINCDIRFIRST -qidirfirst

*LOGMSG | *NOLOGMSG -qlogmsg
-qnologmsg

*LONGLONG | *NOLONGLONG -qlonglong
-qnolonglong

*NORTTI | *RTTIALL | *RTTITYPE |
*RTTICAST

-qnortti
-qrtti=all
-qrtti=typeinfo
-qrtti=dynamiccast

*PPONLY | *NOPPONLY -qpponly

*SECLVL | *NOSECLVL -qseclvl
-qnoseclvl

*SHOWINC | *NOSHOWINC -qshowinc
-qnoshowinc

*SHOWSKP | *NOSHOWSKP -qshowskp
-qnoshowskp

*SHOWSRC | *NOSHOWSRC -qsource
-qnosource

*SHOWSYS | *NOSHOWSYS -qshowsys
-qnoshowsys

*SHOWUSR | *NOSHOWUSR -qshowusr

*STDINC | *NOSTDINC -qstdinc
-qnostdinc

*STDLOGMSG | *NOSTDLOGMSG -qstdlogmsg
-qnostdlogmsg

*STRUCREF | *NOSTRUCREF -qrefagr

*SYSINCPATH | *NOSYSINCPATH -qsysincpath
-qnosysincpath

*XREF | *NOXREF -qxref=full
-qxref

*XREFREF | *NOXREFREF -qattr=full -qattr

106 IBM i: ILE C/C++ Compiler Reference

Table 5. ixlc Command Options (continued)

Create Module/Create
Bound Program Options Option Settings ixlc Equivalents and Notes

“CHECKOUT” on page 73 *NONE | *USAGE | *ALL -qinfo=cnd
-qinfo=all

*CLASS | *NOCLASS -qinfo=cls

*COND | *NOCOND -qinfo=cnd

*CONST | *NOCONST -qinfo=cns

*EFFECT | *NOEFFECT -qinfo=eff

*ENUM | *NOENUM -qinfo=enu

*EXTERN | *NOEXTERN -qinfo=ext

*GENERAL | *NOGENERAL -qinfo=gen

*GOTO | *NOGOTO -qinfo=got

*INIT | *NOINIT -qinfo=ini

*LANG | *NOLANG -qinfo=lan

*PARM | *NOPARM -qinfo=par

*PORT | *NOPORT -qinfo=por

*PPCHECK | *NOPPCHECK -qinfo=ppc

*PPTRACE | *NOPPTRACE -qinfo=ppt

*REACH | *NOREACH -qinfo=rea

*TEMP | *NOTEMP -qinfo=gnr

*TRUNC | *NOTRUNC -qinfo=trd

*UNUSED | *NOUNUSED -qinfo=use

“OPTIMIZE” on page 76 10 | 20 | 30 | 40 -qoptimize=10
-qoptimize=20
-qoptimize=30
-qoptimize=40
-O

-O is equivalent to specifying -
qoptimize=40

Using the ixlc Command to Invoke the C/C++ Compiler 107

Table 5. ixlc Command Options (continued)

Create Module/Create
Bound Program Options Option Settings ixlc Equivalents and Notes

“INLINE” on page 76 *OFF -qnoinline

*ON
*AUTO | *NOAUTO
250 | 1-65535 | *NOLIMIT
2000 | 1-65535 | *NOLIMIT
*NO | *YES

-qinline="opt1 opt2 opt3
opt4"

where:

• opt1 is one of:

– auto
– noauto

• opt2 is one of:

– 250
– 1–65536
– *NOLIMIT

• opt3 is one of:

– 2000
– 1–65536
– *NOLIMIT

• opt4 is one of:

– norpt
– rpt

One selection from each option
group must be specified.
Selections must be separated with
a space. For example:

-qinline="auto 400 3000 rpt"

“MODCRTOPT” on page
78

*KEEPILDATA | *NOKEEPILDATA -qildta
-qnoildta

“DBGVIEW” on page 78 *NONE | *ALL | *STMT | *SOURCE | *LIST -qdbgview=none
-qdbgview=all
-qdbgview=stmt
-qdbgview=source
-qdbgview=list
-g

-g is equivalent to specifying -
qdbgview=all

“DBGENCKEY” on page 79 *NONE | character value -qdbgenckey=string

“DEFINE” on page 79 *NONE | name | name=value -Dname

Defines name with a value of 1.

108 IBM i: ILE C/C++ Compiler Reference

Table 5. ixlc Command Options (continued)

Create Module/Create
Bound Program Options Option Settings ixlc Equivalents and Notes

“LANGLVL” on page 80 *EXTENDED | *ANSI | *LEGACY |
*EXTENDED0X

-qlanglvl=extended
-qlanglvl=ansi
-qlanglvl=compat366
-qlanglvl=extended0x

“ALIAS” on page 80 *ANSI | *NOANSI | *ADDRTAKEN |
*NOADDRTAKEN | *ALLPTRS |
*NOALLPTRS | *TYPEPTR | *NOTYPEPTR

-qalias=ansi
-qalias=noansi
-qalias=addrtaken
-qalias=noaddrtaken
-qalias=allptrs
-qalias=noallptrs
-qalias=typeptr
-qalias=notypeptr

“SYSIFCOPT” on page 81 *NOIFSIO | **IFSIO | *IFS64IO -qnoifsio
-qifsio
-qifsio=64

*ASYNCSIGNAL | *NOASYNCSIGNAL -qasyncsignal
-qnoasyncsignal

“LOCALETYPE” on page
82

*LOCALE | *LOCALEUCS2 | *LOCALEUTF
| *CLD

-qlocale=locale
-qlocale=localeucs2
-qlocale=localeutf
-qlocale=cld

“FLAG” on page 83 0 | 10 | 20 | 30 -qflag=0
-qflag=10
-qflag=20
-qflag=30

“MSGLMT” on page 83 *NOMAX | 0-32767
30 | 0 | 10 | 20

-qmsglmt="limit severity"
where: limit can be *nomax or
any integer from 0-32767, and
severity can be any one of 0, 10,
20, or 30. The default is: -
qmsglmt="*nomax 30"

“REPLACE” on page 84 *YES | *NO -qreplace
-qnoreplace

“USRPRF” on page 84 *USER | *OWNER -quser
-qowner

“AUT” on page 84 *LIBCRTAUT | *CHANGE | *USE | *ALL
| *EXCLUDE

-qaut=libcrtaut
-qaut=change
-qaut=use
-qaut=all
-qaut=exclude

Using the ixlc Command to Invoke the C/C++ Compiler 109

Table 5. ixlc Command Options (continued)

Create Module/Create
Bound Program Options Option Settings ixlc Equivalents and Notes

“TGTRLS” on page 85 *CURRENT | *PRV | release_lvl -qtgtrls=*current
-qtgtrls=*prv
-qtgtrls=VxRxMx

“ENBPFRCOL” on page 86 *PEP -qenbpfrcol=pep

*ENTRYEXIT *NONLEAF -
qenbpfrcol=entryexitnonlea
f

*ENTRYEXIT *ALLPRC -
qenbpfrcol=entryexitallprc

*FULL *NONLEAF -qenbpfrcol=fullnonleaf

*FULL *ALLPRC -qenbpfrcol=fullallprc

“PFROPT” on page 87 *SETFPCA | *NOSETFPCA -qsetfpca
-qnosetfpca

*NOSTRDONLY | *STRDONLY -qnoro
-qro

“PRFDTA” on page 87 *NOCOL | *COL -qnoprofile
-qprofile

-qprfdta=*NOCOL
-qprfdta=*COL

“TERASPACE” on page 88 *NO -qteraspace=no

*YES *NOTSIFC -qteraspace=notsifc

*YES *TSIFC -qteraspace=tsifc

“STGMDL” on page 91 *SNGLVL | *TERASPACE | *INHERIT -qstoragemodel=snglvl
-qstoragemodel=teraspace
-qstoragemodel=inherit

“DTAMDL” on page 91 *P128 | *LLP64 -qdatamodel=P128
-qdatamodel=LLP64

“RTBND” on page 92 *DEFAULT | *LLP64 -qrtbnd
-qrtbnd=llp64

“PACKSTRUCT” on page
92

1 | 2 | 4 | 8 | 16 | *NATURAL -qalign=1
-qalign=2
-qalign=4
-qalign=8
-qalign=16
-qalign=natural

110 IBM i: ILE C/C++ Compiler Reference

Table 5. ixlc Command Options (continued)

Create Module/Create
Bound Program Options Option Settings ixlc Equivalents and Notes

“ENUM” on page 93 1 | 2 | 4 | *INT | *SMALL -qenum=1
-qenum=2
-qenum=4
-qenum=int
-qenum=small

“MAKEDEP” on page 93 *NODEP | filename -Mmakefile

“PPGENOPT” on page 93 *NONE | *DFT -P

*RMVCOMMENT | *NORMVCOMMENT -qppcomment
-qnoppcomment

*GENLINE | *NOGENLINE -qppline
-qnoppline

“PPSRCFILE” on page 94 *CURLIB/filename -qppsrcfile=*CURLIB/
filename

libraryname/filename -qppsrcfile=libraryname/
filename

filename -qppsrcfile=filename

“PPSRCMBR” on page 95 *MODULE | mbrname -qppsrcmbr=*module
-qppsrcmbr=mbrname

“PPSRCSTMF” on page 95 pathname | *SRCSTMF -qppfile=filename
-qppfile=*srcstmf

“INCDIR” on page 96 *NONE | pathname -Ipathname

When used on the command line, specifies directories on a IBM i platform.
Include environment variables are overwritten.

“CSOPT” on page 96 string -qcsopt=string

“LICOPT” on page 96 *NONE | string -qlicopt=string

“DFTCHAR” on page 97 *SIGNED | *UNSIGNED -qchar=signed
-qchar=unsigned

“TGTCCSID” on page 97 *SOURCE | *JOB | *HEX | ccsid# -qtgtccsid=source
-qtgtccsid=job
-qtgtccsid=hex
-qtgtccsid=ccsid#

Using the ixlc Command to Invoke the C/C++ Compiler 111

Table 5. ixlc Command Options (continued)

Create Module/Create
Bound Program Options Option Settings ixlc Equivalents and Notes

“TEMPLATE ” on page 98 *NONE | pathname -qnotempinc
-qtempinc=pathname

1 - 65535 -qtempmax=1-65535

*NO | *WARN | *ERROR -qtmplparse=no
-qtmplparse=warn
-qtmplparse=error

“TMPLREG ” on page 99 *DFT | *NONE -qtmplreg
-qnotmplreg

“WEAKTMPL ” on page 99 *YES | *NO -qweaktmpl
-qnoweaktmpl

“DECFLTRND” on page
100

*HALFEVEN | *DOWN | *UP | *HALFUP
| *HALFDOWN | *FLOOR | *CEILING

-ydn
-ydz
-ydi
-ydna
-ydnz
-ydm
-ydp

112 IBM i: ILE C/C++ Compiler Reference

I/O Considerations
Read this section for an overview of I/O considerations.

This section provides information about:

• Data Management Operations on Record Files
• Data Management Operations on Stream Files
• C Streams and File Types
• DDS-to-C/C++ Data Type Mapping

Data Management Operations on Record Files
For more information about data management operations and ILE C/C++ functions available for record
files, see the Database file management section in the Files and file systems category at the IBM i
Information Center web site:

 http://www.ibm.com/systems/i/infocenter

Data Management Operations on Stream Files
To use stream files (type=record) with record I/O functions you must cast the FILE pointer to an RFILE
pointer.

For more information about data management operations and ILE C/C++ functions available for stream
files, see the Database file management section in the Files and file systems category at the IBM i
Information Center web site:

 http://www.ibm.com/systems/i/infocenter

C Streams and File Types
The following table summarizes which file types are supported as streams.

Table 6. Processing C Stream and File Types

Stream Database Diskette Tape Printer Display ICF DDM Save

TEXT Yes No No Yes No No Yes No

BINARY:
Character at a
time

Yes No No Yes No No Yes No

BINARY:
Record at a
time

Yes Yes Yes Yes Yes Yes Yes Yes

© Copyright IBM Corp. 1993, 2013 113

DDS-to-C/C++ Data Type Mapping
The following table shows DDS data types and the corresponding ILE C/C++ declarations that are used to
map fields from externally described files to your ILE C/C++ program. The ILE C/C++ compiler creates
fields in structure definitions based on the DDS data types in the externally described file.

Table 7. DDS-to-C/C++ Data Type Mappings

DDS Data Type Length
Decimal
Position C/C++ Declaration

Indicator 1 0 char INxx_INyy[n]; for unused indicators xx through
yy char INxx; for used indicator xx

A - alphanumeric 1-32766 none char field[n]; (where n = 1 to 32766)

A - alphanumeric
variable length
VARLEN keyword

1-32740 none _Packed struct { short len; char data[n]; } field; where
n is the maximum length of field

B - binary 1-4 0 short int field;

B - binary 1-4 1-4 char field[2];

B - binary 5-9 0 int field;

B - binary 5-9 1-9 char field[4];

H - hexadecimal 1 none char field;

H - hexadecimal 2-32766 none char field[n]; (where n = 2 to 32766)

H - hexadecimal
variable length
VARLEN keyword

1-32740 none _Packed struct { short len; char data[n]; } field; where
n is the maximum length of field

G - graphic variable
length VARLEN
keyword

4-1000 none _Packed struct { short len; wchar_t data[n]; } field;
(where n = 4 to 1000)

P - packed decimal 1-31 0-31 decimal (n,p) where n is length and p is decimal
position on option d

S - zoned decimal 1-31 0-31 char field[n]; (where n = 1 to 31)

F - floating point 1 1 float field;

F - floating point 1 1 double field;

J - DBCS only 4-32766 none char field[n]; (where n = 4 to 32766 and n is an even
number)

E - DBCS either 4-32766 none char field[n]; (where n = 4 to 32766 and n is an even
number)

O - DBCS open 4-32766 none char field[n]; (where n = 4 to 32766)

J - DBCS only
variable length
VARLEN keyword

4-32740 none _Packed struct { short len; char data[n]; } field; (where
n = 4 to 32740 and n is an even number)

E - DBCS either
variable length
VARLEN keyword

4-32740 none _Packed struct { short len; char data[n]; } field; (where
n = 4 to 32740 and n is an even number)

114 IBM i: ILE C/C++ Compiler Reference

Table 7. DDS-to-C/C++ Data Type Mappings (continued)

DDS Data Type Length
Decimal
Position C/C++ Declaration

O - DBCS open
variable length
VARLEN keyword

4-32740 none _Packed struct { short len; char data[n]; } field; (where
n = 4 to 32740)

T - time 8 none char field[8];

L - date 6, 8, or
10

none char field[n]; (where n = 6, 8 or 10)

Z - time stamp 26 none char field[26];
1The C declaration (float or double) is based on what is specified in the FLTPCN (floating-point precision)
keyword in the DDS: *SINGLE (default) is float, *DOUBLE is double.

You can find more information in the DDS Reference at the IBM i Information Center web site:

 http://www.ibm.com/systems/i/infocenter

I/O Considerations 115

116 IBM i: ILE C/C++ Compiler Reference

Control Characters
Read this section for details on internal hexadecimal representation for control characters.

The following table identifies the internal hexadecimal representation of operating system control
sequences used by the ILE C/C++ compiler and library.

Table 8. Internal Hexadecimal Representation

Print representation Internal representation

NUL (null) 0x00

SOH (start of heading) 0x01

STX (start of text) 0x02

ETX (end of text) 0x03

SEL (select) 0x04

HT (horizontal tab) 0x05

RNL (required new line) 0x06

DEL (delete) 0x07

GE (graphic escape) 0x08

SPS (superscript) 0x09

RPT (repeat) 0x0a

VT (vertical tab) 0x0b

FF (form feed) 0x0c

CR (carriage return) 0x0d

SO (shift out) 0x0e

SI (shift in) 0x0f

DLE (data link escape) 0x10

DC1 (device control 1) 0x11

DC2 (device control 2) 0x12

DC3 (device control 3) 0x13

RES/ENP (restore or enable presentation) 0x14

NL (new line) 0x15

BS (backspace) 0x16

POC (program-operator communication) 0x17

CAN (cancel) 0x18

EM (end of medium) 0x19

UBS (unit backspace) 0x1a

CU1 (customer use 1) 0x1b

© Copyright IBM Corp. 1993, 2013 117

Table 8. Internal Hexadecimal Representation (continued)

Print representation Internal representation

IFS (interchange file separator) 0x1c

IGS (interchange group separator) 0x1d

IRS (interchange record separator) 0x1e

IUS/ITB (interchange unit separator or
intermediate transmission block)

0x1f

DS (digit select) 0x20

SOS (start of significance) 0x21

FS (field separator) 0x22

WUS (word underscore) 0x23

BYP/INP (bypass or inhibit presentation) 0x24

LF (line feed) 0x25

ETB (end of transmission block) 0x26

ESC (escape) 0x27

SA (set attributes) 0x28

SM/SW (set mode or switch) 0x2a

CSP (control sequence prefix) 0x2b

MFA (modify field attribute) 0x2c

ENQ (enquiry) 0x2d

ACK (acknowledge) 0x2e

BEL (bell) 0x2f

SYN (synchronous idle) 0x32

IR (index return) 0x33

PP (presentation position) 0x34

TRN 0x35

NBS (numeric backspace) 0x36

EOT (end of transmission) 0x37

SBS (subscript) 0x38

IT (indent tab) 0x39

RFF (required form feed) 0x3a

CU3 (customer use 3) 0x3b

DC4 (device control 4) 0x3c

NAK (negative acknowledge) 0x3d

SUB (substitute) 0x3f

(blank character) 0x40

118 IBM i: ILE C/C++ Compiler Reference

Related information
Read this section for information about related topics.

For additional information about topics related to ILE C/C++ programming, refer to the following IBM
publications:

• CL Programming, SC41-5721-06 section in the Programming category at the IBM i Information Web site
provides a wide-ranging discussion of IBM i programming topics. Topics include a general discussion on
objects and libraries, CL programming, controlling flow and communicating between programs, working
with objects in CL programs, and creating CL programs. Other topics include predefined and impromptu
messages and message handling, defining and creating user-defined commands and menus,
application testing, including debug mode, breakpoints, traces, and display functions.

• GDDM Programming Guide, SC41-0536-00, provides information about using IBM i Graphical Data
Display Manager (GDDM) to write graphics application programs. Includes many example programs and
information to help users understand how the product fits into data processing systems.

• GDDM Reference, SC41-3718-00, provides information about using IBM i Graphical Data Display
Manager (GDDM) to write graphics application programs. This manual provides detailed descriptions of
all graphics functions available in GDDM. Also provides information about high-level language interfaces
to GDDM.

• IBM Rational Development Studio for i: ILE C/C++ Programmer's Guide, SC09-2712-07, provides
programming information about the ILE C/C++ compiler. It includes programming considerations for
interlanguage program and procedure calls, locales, handling exceptions, database, and device files.
Examples are provided and performance tips for programming are also discussed.

• IBM Rational Development Studio for i: ILE C/C++ Language Reference, SC09-7852-03, provides
reference information about the ILE C/C++ compiler, including elements of the language, statements,
and preprocessor directives. Examples are provided and considerations for programming are also
discussed.

• ILE C/C++ Runtime Library Functions, SC41-5607-05, provides reference information about ILE C/C++
library functions, including Standard C library functions and ILE C/C++ library extensions. Examples are
provided and considerations for programming are also discussed.

• ILE Concepts, SC41-5606-08, explains concepts and terminology pertaining to the Integrated
Language Environment architecture of the IBM i. Topics covered include creating modules, binding,
running programs, debugging programs, and handling exceptions.

• The Application programming interfaces section in the Programming category at the IBM i Information
Web site, provides information for the experienced application and system programmers who want to
use the application programming interfaces (APIs). Provides getting started information and examples
to help the programmer use APIs.

© Copyright IBM Corp. 1993, 2013 119

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/books_web/sc410536.pdf
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/books_web/sc413718.pdf
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/rzaha/sc092712.pdf

120 IBM i: ILE C/C++ Compiler Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 1993, 2013 121

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
This ILE C/C++ Compiler Reference publication documents intended Programming Interfaces that allow
the customer to write programs to obtain the services of IBM i.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

122 Notices

http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Oracle, Inc. in the United States, other
countries, or both.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 123

124 IBM i: ILE C/C++ Compiler Reference

Index

Special Characters
__ANSI__ 12
__ASYNC_SIG__ 12
__BASE_FILE__ 12
__BOOL__ 12
__C99_BOOL 13
__C99_COMPOUND_LITERAL 13
__C99_CPLUSCMT 13
__C99_DESIGNATED_INITIALIZER 13
__C99_DUP_TYPE_QUALIFIER 13
__C99_EMPTY_MACRO_ARGUMENTS 13
__C99_FLEXIBLE_ARRAY_MEMBER 13
__C99_FUNC__ 13
__C99_HEX_FLOAT_CONST 13
__C99_INLINE 13
__C99_LLONG 13
__C99_MACRO_WITH_VA_ARGS 13
__C99_MAX_LINE_NUMBER 14
__C99_MIXED_DECL_AND_CODE 14
__C99_MIXED_STRING_CONCAT 14
__C99_NON_CONST_AGGR_INITIALIZER 14
__C99_NON_LVALUE_ARRAY_SUB 14
__C99_RESTRICT 14
__C99_STATIC_ARRAY_SIZE 14
__C99_VAR_LEN_ARRAY 14
__C99_VARIABLE_LENGTH_ARRAY 14
__CHAR_SIGNED__ 12
__CHAR_UNSIGNED__ 12
__cplusplus 11
__cplusplus98__interface__ 12
__DATE__ 11
__DIGRAPHS__ 14
__EXTENDED__ 14
__FILE__ 11
__FUNCTION__ 14
__HHW_AS400__ 14
__HOS_OS400__ 15
__IBM_ALIGN 15
__IBM_ATTRIBUTES 15
__IBM_COMPUTED_GOTO 15
__IBM_DFP__ 15
__IBM_EXTENSION_KEYWORD 15
__IBM_INCLUDE_NEXT 15
__IBM_LABEL_VALUE 15
__IBM_LOCAL_LABEL 15
__IBM_MACRO_WITH_VA_ARGS 15
__IBM_TYPEOF__ 15
__IBMC__ 15
__IBMCPP__ 15
__IBMCPP_AUTO_TYPEDEDUCTION 16
__IBMCPP_C99_PREPROCESSOR 16
__IBMCPP_DECLTYPE 16
__IBMCPP_DELEGATING_CTORS 16
__IBMCPP_EXTENDED_FRIEND 16
__IBMCPP_EXTERN_TEMPLATE 16
__IBMCPP_INLINE_NAMESPACE 16

__IBMCPP_STATIC_ASSERT 16
__IFS_IO__ 16
__IFS64_IO__ 16
__ILEC400__ 16
__ILEC400_TGTVRM__ 16
__LINE__ 11
__LLP64_IFC__ 16
__LLP64_RTBND__ 16
__LONGDOUBLE64 16
__NO_RTTI__ 17
__OPTIMIZE__ 17
__OS400__ 17
__OS400_TGTVRM__ 17
__POSIX_LOCALE__ 17
__RTTI_DYNAMIC_CAST__ 17
__RTTI_TYPE_INFO__ 17
__SIZE_TYPE__ 17
__SRCSTMF__ 17
__STDC__ 11
__STDC_VERSION 11
__TERASPACE__ 17
__THW_AS400__ 17
__TIME__ 11
__TIMESTAMP__ 17
__TOS_OS400__ 18
__UCS2__ 18
__UTF32__ 18
__wchar_t 18
_C99_PRAGMA_OPERATOR 14
_LARGE_FILE_API 16
_LARGE_FILES 16
_LONG_LONG 16

A
argopt pragma 21
argument optimization

scoping 22
argument pragma 23

C
cancel_handler pragma 24
chars pragma 25
checkout pragma 25
comment pragma 26
control characters 117
Control Language commands

CRTBNDC 61
CRTBNDCPP 61
CRTCMOD 61
CRTCPPMOD 61
options

ALIAS 80
AUT 84
CHECKOUT 73
CSOPT 96

 125

Control Language commands (continued)
options (continued)

DBGENCKEY 79
DBGVIEW 78
DECFLTRND 100
DEFINE 79
DFTCHAR 97
DTAMDL 91
ENBPFRCOL 86
ENUM 93
FLAG 83
INCDIR 96
INLINE 76
LANGLVL 80
LICOPT 96
LOCALETYPE 82
MAKEDEP 93
MODCRTOPT 78
MODULE 65
MSGLMT 83
OPTIMIZE 76
OPTION 68
OUTPUT 68
PACKSTRUCT 92
PFROPT 87
PGM 65
PPGENOPT 93
PPSRCFILE 94
PPSRCMBR 95
PPSRCSTMF 95
PRFDTA 87
REPLACE 84
RTBND 92
SRCFILE 66
SRCMBR 66
SRCSTMF 67
STGMDL 91
SYSIFCOPT 81
TEMPLATE 98
TERASPACE 88
TEXT 67
TGTRLS 85
TMPLREG 99
USRPRF 84
WEAKTMPL 99

Control Language Commands 61
convert pragma 27
Create Bound C Program command

options 65
Create Bound C++ Program command

options 65
Create C Module command

options 65
Create C++ Module command

options 65
CRTBNDC

options 65
CRTBNDCPP

options 65
CRTCMOD

options 65
CRTCPPMOD

options 65

D
data management operation

record files 113
stream files 113

data model 27
datamodel pragma 27
define pragma 28
descriptor pragma 29
disable_handler pragma 30
disjoint pragma 31
do_not_instantiate pragma 31

E
enum pragma 32
exception_handler pragma 36

F
file type 113

H
hashome pragma 39

I
implementation pragma 39
info pragma 39
inline pragma 40
ishome pragma 41
isolated_call pragma 41
ixlc

command 103
command options 104

L
linkage pragma 42

M
macros

__ANSI__ 12
__ASYNC_SIG__ 12
__BASE_FILE__ 12
__BOOL__ 12
__C99_DESIGNATED_INITIALIZER 13
__C99_MIXED_STRING_CONCAT 14
__C99_RESTRICT 14
__CHAR_SIGNED__ 12
__CHAR_UNSIGNED__ 12
__cplusplus 11
__cplusplus98__interface__ 12
__DIGRAPHS__ 14
__EXTENDED__ 14
__FUNCTION__ 14
__HHW_AS400__ 14
__HOS_OS400__ 15
__IBM_ALIGN 15
__IBM_ATTRIBUTES 15

126

macros (continued)
__IBM_COMPUTED_GOTO 15
__IBM_DFP__ 15
__IBM_EXTENSION_KEYWORD 15
__IBM_INCLUDE_NEXT 15
__IBM_LABEL_VALUE 15
__IBM_LOCAL_LABEL 15
__IBM_MACRO_WITH_VA_ARGS 15
__IBM_TYPEOF__ 15
__IBMC__ 15
__IBMCPP__ 15
__IBMCPP_AUTO_TYPEDEDUCTION 16
__IBMCPP_C99_PREPROCESSOR 16
__IBMCPP_DECLTYPE 16
__IBMCPP_DELEGATING_CTORS 16
__IBMCPP_EXTENDED_FRIEND 16
__IBMCPP_EXTERN_TEMPLATE 16
__IBMCPP_INLINE_NAMESPACE 16
__IBMCPP_STATIC_ASSERT 16
__IFS_IO__ 16
__IFS64_IO__ 16
__ILEC400__ 16
__ILEC400_TGTVRM__ 16
__LLP64_IFC__ 16
__LLP64_RTBND__ 16
__LONGDOUBLE64 16
__NO_RTTI__ 17
__OPTIMIZE__ 17
__OS400__ 17
__OS400_TGTVRM__ 17
__POSIX_LOCALE__ 17
__RTTI_DYNAMIC_CAST__ 17
__RTTI_TYPE_INFO__ 17
__SIZE_TYPE__ 17
__SRCSTMF__ 17
__TERASPACE__ 17
__THW_AS400__ 17
__TIMESTAMP__ 17
__TOS_OS400__ 18
__UCS2__ 18
__UTF32__ 18
__wchar_t 18
_C99__BOOL 13
_C99__CPLUSCMT 13
_C99__DUP_TYPE_QUALIFIER 13
_C99__EMPTY_MACRO_ARGUMENTS 13
_C99__FLEXIBLE_ARRAY_MEMBER 13
_C99__INLINE 13
_C99__LLONG 13
_C99__MIXED_DECL_AND_CODE 14
_C99__NON_CONST_AGGR_INITIALIZER 14
_C99__NON_LVALUE_ARRAY_SUB 14
_C99__STATIC_ARRAY_SIZE 14
_C99__VAR_LEN_ARRAY 14
_C99_COMPOUND_LITERAL 13
_C99_FUNC__ 13
_C99_HEX_FLOAT_CONST 13
_C99_MACRO_WITH_VA_ARGS 13
_C99_MAX_LINE_NUMBER 14
_C99_PRAGMA_OPERATOR 14
_C99_VARIABLE_LENGTH_ARRAY 14
_LARGE_FILE_API 16
_LARGE_FILES 16
_LONG_LONG 16

macros (continued)
DATE 11
FILE 11
LINE 11
STDC 11
STDC_VERSION 11
TIME 11

map pragma 43
mapinc pragma 44
margins pragma 47

N
namemangling pragma 47
namemanglingrule pragma 48
noargv0 pragma 49
noinline pragma 50
nomargins pragma 50
nosequence pragma 50
nosigtrunc pragma 50

O
operational descriptor pragma 29

P
pack pragma 51
page pragma 56
pagesize pragma 56
pointer pragma 56
pragma

argopt 21
argument 23
cancel_handler 24
chars 25
checkout 25
comment 26
convert 27
datamodel 27
define 28
disable_handler 30
disjoint 31
do_not_instantiate 31
enum 32
exception_handler 36
hashome 39
implementation 39
info 39
inline 40
ishome 41
isolated_call 41
linkage 42
map 43
mapinc 44
margins 47
namemangling 47
namemanglingrule 48
noargv0 49
noinline 50
nomargins 50
nosequence 50
nosigtrunc 50

 127

pragma (continued)
operational descriptor 29
pack 51
page 56
pagesize 56
pointer 56
priority 57
scope of 20
sequence 58
strings 59
summary table 20
syntax of 19
weak 59

Pragma scope 20
pragma summary 20
Pragma syntax 19
predefined macros 11
priority pragma 57

Q
Qshell 103

S
sequence pragma 58
single level storage model 88
stream type 113
strings pragma 59
structures

packing
using #pragma pack 51

T
templates

pragma define 28
pragma implementation 39

teraspace 88

U
unions

packing
using #pragma pack 51

W
weak pragma 59

128

IBM®

SC09-4816-06

	Contents
	ILE C/C++ Compiler Reference
	What is new for IBM i 7.2
	PDF file for ILE C/C++ Compiler Reference
	About ILE C/C++ Compiler Reference
	Prerequisite and Related Information
	Install Licensed Program Information
	A Note About Examples
	Control Language Commands
	How to Read the Syntax Diagrams
	Industry Standards

	Predefined Macros
	ANSI/ISO Standard Predefined Macros
	ILE C/C++ Predefined Macros

	ILE C/C++ Pragmas
	Pragma directive syntax
	Scope of Pragma directives
	Summary of Pragma Directives
	Individual Pragma Descriptions
	argopt
	argument
	cancel_handler
	chars
	checkout
	comment
	convert
	datamodel
	define
	descriptor
	disable_handler
	disjoint
	do_not_instantiate
	enum
	exception_handler
	hashome
	implementation
	info
	inline
	ishome
	isolated_call
	linkage
	map
	mapinc
	margins
	namemangling
	namemanglingrule
	noargv0
	noinline (function)
	nomargins
	nosequence
	nosigtrunc
	pack
	Related Operators and Specifiers
	__align Specifier
	_Packed Specifier
	__alignof Operator

	Examples

	page
	pagesize
	pointer
	priority
	sequence
	strings
	weak

	Control Language Commands
	Control Language Command Syntax
	Control Language Command Options
	MODULE
	PGM
	SRCFILE
	SRCMBR
	SRCSTMF
	TEXT
	OUTPUT
	OPTION
	CHECKOUT
	OPTIMIZE
	INLINE
	MODCRTOPT
	DBGVIEW
	DBGENCKEY
	DEFINE
	LANGLVL
	ALIAS
	SYSIFCOPT
	LOCALETYPE
	FLAG
	MSGLMT
	REPLACE
	USRPRF
	AUT
	TGTRLS
	ENBPFRCOL
	PFROPT
	PRFDTA
	TERASPACE
	STGMDL
	DTAMDL
	RTBND
	PACKSTRUCT
	ENUM
	MAKEDEP
	PPGENOPT
	PPSRCFILE
	PPSRCMBR
	PPSRCSTMF
	INCDIR
	CSOPT
	LICOPT
	DFTCHAR
	TGTCCSID
	TEMPLATE
	TMPLREG
	WEAKTMPL
	DECFLTRND

	Using the ixlc Command to Invoke the C/C++ Compiler
	Using ixlc in Qshell
	ixlc Command and Options Syntax
	ixlc Command Options

	I/O Considerations
	Data Management Operations on Record Files
	Data Management Operations on Stream Files
	C Streams and File Types
	DDS-to-C/C++ Data Type Mapping

	Control Characters
	Related information

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

	Index
	Special Characters
	A
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	Q
	S
	T
	U
	W

