IBM i
Version 7.2

Programming
IBM PASE for i

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
67.

This edition applies to IBM i 7.2 (product number 5770-SS1) and to all subsequent releases and modifications until
otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor
does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.

© Copyright International Business Machines Corporation 2000, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

=] 00 o] o T U |

What's NEW FOF IBM i 7.2, .ciciiiiieiitenite ettt et ste st st e st e s e sbe e sae e sabeesbaesateesbaesateenbaesaseenbaesaseenseesasesnses 1
PDF file fOr IBM PASE fOF fvtiviiiisiieierieiitiseeiteseesieseesseseessesssesseessesssessesssessasssessesssesssessesssessesssesssessesssessens 1
IBM PASE fOF | OVEIVIEW. ..eiiuiiiieiitiirieiiieeste st esiteste st e stessteesseesbeessaessbeessaesaseesseessseenseesssesnseensesssessssesaeens 2
BT] i (o e o] g [T =Y o} =SSP 2
IBM PASE for i as a useful option for application development.......cccceccveeecieeccieeccieece e, 3
INSEALlING IBM PASE fOF iuuiiiuiiiiiiiiieiee ettt et ettt et ee e ee e e e e teeeeteeeesteeesssaeesssaeeessseeensasaessaeesnsseeansaeesnsanann 4
Planning fOr IBM PASE fOr fueiuiiiiiiieciiieciiie ettt eetee et e e te e e te e e tee s abae e abaeesabaeesabeeesnsaesensaesenseeesnses 5
Preparing programs to run in IBM PASE fOF i.uiiiciiiicieeciie ettt e tee e vee e s vee e vae s e aae s 7
Analyzing program compatibility With IBM PASE fOr ie.uuiiiiiieiiiieeieeccteeecteeecveeeve et 7
COMPILING YOUE AIX SOUICE...eiiiieeieieeeeieeeeitteeeitteesiteeeesteeeessaeesseeessaeessaeassasessasesssessssasesssesesssasesssesanns 7
Installing AIX COMPILErs 0N IBM i.uiicuiiiciiiiciieeeie ettt ettt re e e ae e e aae e e aae e e aaa e e aaeeenneeas 9
Installing the AIX compilers from the installation media.......cccoccevveenciiiiiieniienieinienieeeennn 10
PTF UPAate iINStIUCTIONS. . ciiciieeciee et ettt et e st e s tee e s e e e s be e e e baeeesaeeeasaeeenseessnnes 11
Copying the IBM PASE for i program t0 YOUr SYStEM......uiiiiieiciieecie ettt eeteeeetee e evee e vee e evee e 11
CaSE SENSITIVITY . eeiitiiieciiieecie ettt e et e e e tee e et e e e s tae e ebee e s baeessaaeensasesntaeessaseansaeessaeannes 12
Line-terminating characters in integrated file system files........ccoveeiiieceieciiiece e, 13
R a 1 =T Y= 1 TR 13
Customizing IBM PASE for i programs to use IBM i fUNCLIONS.......cccuiiieiieiciiecciee e 14
(0007 0}V Y= A T=T- o [Tl 11 C=Y R 15
COPYING EXPOI FILES...uuiiieiiie ettt cee e etee e e be e e e bee e e beeesbaeesbaeessaeesnsaeesnsanennes 16
IBM PASE for i APIs for accessing IBM i fUNCHIONS........oociiiiciieiciieecee e 16
Using IBM PASE for i programs in the IBM i @nVIrONMENT......ccuiiiiiiiiiiee et ee e e 17
Running IBM PASE for i programs and proCeAUIES........cccuieecieeeiiieeeiieeeiteeecireeeseeesseseesssseesssseesssseens 17
Running an IBM PASE for i program with QP2SHELLQ......cccverieriiiinieniiineenieeieeneesieesiee e 18
Running an IBM PASE for i program with QP2TERMOQ)....ccccvuiiiiiiieiieecciee et 18
Running an IBM PASE for i program from within IBM i programs........ccceceeveeeneenveensieenieesieennens 19
Examples: Running an IBM PASE for i program from within IBM i programs..........cccceevvenne. 19
Calling an IBM PASE for i procedure from within IBM i programs........cccocceevveervieeneesivesneesieesnnens 20
Example 1: Calling an IBM PASE for i procedure from within IBM i programs........c.cccceveeuen. 20

Example 2: An IBMi ILE program that uses pointer arguments in a call to an IBM PASE
L{oY N T o Yol =Yo U] T TSR 21
Using IBM PASE for i native methods from Java.......ccccceeeeceiieie ettt e 25
Working with environmMent Variables..........ocuii it 25
Calling IBM i programs and procedures from your IBM PASE for i programs........cccceeeeeeecveeesveeennne. 26
(08T LT oY= N o T e Yol =Y [0 T SR 26
Examples: Calling ILE ProCEAUIES.....ciucitiecieeeiteeeitee et e esiteeesteeesaeeesaaeeeeataeesaeeesnseeennsaeennenas 27
Calling IBM i programs from IBM PASE fO6 i.uuiiccuiieeiiiieciieecieeeette ettt etee s vee e e veeesvae e e 33
Example: Calling IBM i programs from IBM PASE fOr i...ccccieiciieeieiiieecieeecee e 33
Running IBM i commands from IBM PASE fOr i..cccuiiiiiiiiiiieccieeccieeetee ettt e vae e 35
Example: Running IBM i commands from IBM PASE fOr i ..cccvvviinvierieinieniieenienieeneesneenieens 35
How IBM PASE for i programs interact With IBM i......c..eeeiiiiiiiiiciiiecceeeee e 35
COMMIUNICATIONS. ..tieteiteeeieeiteete et e st e st e ste s bt e s teesbeesbeesete e beesaseenbaesaseeaseesssesnseenseesaseenseessseensesnnns 36
DAtADASE. . e teiie ettt ettt st st e e he e st e e s b e e s be e bae s be e baesabe e beesaaesreenes 36
Example: Calling Db2 for i CLI functions in an PASE for i program.....cc.cceeeeercverneeneessvesnneennns 37
(BN I =Y gt |1 = SRS 42
L E Y 2] L= 0 T ST 42
(€1 0e] o F= 1172 1 { o] T OO PP UTRPPPRUPRRPPRRON 44
MBS SAZE SEIVICES. ceeiuurieeitrieeiteeeiteeeiteeeiteeeiaeeessaeeastaeeassaeaassaeaassaeaassaeeassaeaansaeaanseesanseeaanseeannseesnnses 45
Printing output from IBM PASE for i appliCatioNnS......cccueeecieeeiiieciieecciee ettt 46
PSEUAO-TEIMINAL (PTY) i ittiiieiiieeiie ettt st stesre e st e ssbeesieesbeesbaesaaeesbeesasessbaesasessseenssesnseensaesssenn 46

ST =T oL U] 1 USRSt 47

WOTK MAN@EEMENT...ci ittt ettt st e st e sttt e s te e s sateesssbeesseeessteessseesassaesanseesansaessnseenns 48
Debugging your IBM PASE fOr i PrOZIamS......ciicueiiiieiiiieiiiieesiteessitesssreesssseessseesssseesssseesssseesssseessssesssnnes 48
OPtIMIZING PEITOIMANCE. ..i ittt ittt ettt ettt see e e s te e s s te e s s te e s sateesesteesseeessaeeessseaesnnseesnseessnsens 49
IBM PASE fOr i Shells and ULILITIES....ciieuieieiieeeiieeeieeeete ettt s st e s aee e s ane e saeas 49

IBM PASE fOr i COMMANGS....utiiiiiieiiiieeiiieeesite ettt eitesstte e sbeeesbeeesbaeesbteesbaeessaessseesssseessseeessseessnns 50
IBM PASE fOr i SYSTEM ULILITY.ceiieeei ettt e e e e e e e e s et e e e e e sree e e e ensaeeeeennens 60
IBM PASE for i qsh, qsh_inout, and gsh_out commands.........cccceeuiiriiieiciicciie e 62
EXQMPLES: IBM PASE fOF futiiiiiiiiieieiiiieeeeecite e e e e ctte e e e ecttee e s e s ttee e s e eateeessesnstaaeseenssasessessaseessnnssnesssssseneensnes 63
Related INTOIMATION...iciiiieiieeeteeee et ee e s bt e e s bbe e s ate e sbte e s saaessateesnssaessenesnsenas 64

[\ 0] { [=Y - TR .

Programming interface iINfOrmMation.......ci ittt sae e s saee e ssaee s 68
=T =T g = T OO RS URPSROI 68
RICIEa T Lo [ot] oo [) Ao 1< F S PSPURPRTR 69

IBM PASE for i

With IBM® Portable Application Solutions Environment for i (PASE for i), you can port IBM AIX®
applications to the IBM i platform with minimal effort.

PASE for i provides an integrated runtime environment that allows you to run selected applications
without the complexity of managing operating systems, such as AIX or Linux. PASE for i also provides
industry-standard and defacto-standard shells and utilities that provide you with a powerful scripting
environment.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 64.

What's new for IBMi 7.2

Read about new or significantly changed information for the PASE for i topic collection.
The following changes have been made to PASE foriin IBMi 7.2:
« PASE for i is derived from AIX 7.1, Technology Level 1.

How to see what's new or changed
To help you see where technical changes have been made, the information center uses:

« The ¥ image to mark where new or changed information begins.
« The € image to mark where new or changed information ends.

In PDF files, you might see revision bars (|) in the left margin of new and changed information.
To discover other information about what's new or changed this release, see the Memo to users.

Related concepts

Installing AIX compilers on IBM i
You can use these AIX compilers to develop, compile, build, and run PASE for i applications entirely within
the PASE for i environment on your system.

IBM PASE for i shells and utilities

PASE for i includes three shells (Korn, Bourne, and C shell) and provides many utilities that run as PASE
for i programs. PASE for i shells and utilities provide an extensible scripting environment that includes a
large number of industry-standard and defacto-standard commands.

Related information
Runtime functions for use by IBM PASE for i programs
IBM PASE for i locales

PDF file for IBM PASE for i

You can view and print a PDF file of the information for PASE for i.

To view or download the PDF version of this document, select PASE for i.

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.

© Copyright IBM Corp. 2000, 2013 1

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)-'-ﬁ.

Related reference

Related information for IBM PASE for i

IBM Redbooks publications, Web sites, and other information center topic collections contain information
that relates to the PASE for i topic collection. You can view or print any of the PDF files.

IBM PASE for i overview

PASE for i enables you to run many of your AIX applications on the IBM i operating system with little or no
change, and effectively expands your platform solution portfolio.

Cross-platform application development and deployment are crucial components of any effective
business computing environment. Equally important are the ease of use and integration of functions that
your IBM i server offers. As your business moves into an increasingly open computing environment, you
are likely to find that achieving these often divergent goals can be difficult, time-consuming, and
expensive. For instance, you might want the benefit of a familiar application that runs on and makes use
of the capabilities of the AIX operating system, but you do not want the added burden of managing both
the AIX and IBM i operating systems.

This is where PASE for i helps.

IBM PASE for i concepts

PASE for i is an integrated runtime environment for AIX applications running on the IBM i operating
system.

PASE for i supports the application binary interface (ABI) of AIX and provides a broad subset of the
support provided by AIX shared libraries, shells, and utilities. PASE for i also supports the direct
processing of IBM PowerPC® machine instructions, so it does not have the drawbacks of an environment
that only emulates the machine instructions.

PASE for i applications:

« Can be written in C, C++, Fortran, or PowerPC assembler

« Use the same binary executable format as AIX PowerPC applications

* RuninanIBMijob

« Use IBM i system functions, such as file systems, security, and sockets

Keep in mind that PASE for i is not a UNIX operating system on the IBM i operating system. PASE for i is
designed to run AIX programs on the IBM i operating system with little or no change. Programs from any
other environment, such as UNIX or Linux, need to be written such that they can be compiled on AIX as
the first step toward running in PASE for i.

The PASE for i integrated run time runs on the Licensed Internal Code kernel on the IBM i operating
system. The system provides integration of many common IBM i functions across PASE for i and other
runtime environments (including Integrated Language Environment® (ILE) and Java™). PASE for i
implements a broad subset of AIX system calls. System support for PASE for i enforces system security
and integrity by controlling what memory an PASE for i program can access and restricting the program to
use only unprivileged machine instructions.

Rapid application deployment with minimal effort

In many cases, your AIX programs can run in PASE for i with little or no change. The level of AIX
programming skills you need varies depending on the design of your AIX program. In addition, by

2 IBMi: IBM PASE fori

http://www.adobe.com/products/acrobat/readstep.html

providing additional IBM i application integration in your program design (for instance, with CL
commands), you can minimize configuration concerns for your application users.

PASE for i adds another porting option for solution developers who want to share in the success of the
IBM i marketplace. By providing a means to cut porting time significantly, PASE for i can improve the time
to market and return on investment for solutions developers.

A broad subset of AIX technology on IBM i

PASE for i implements an application run time that is based on a broad subset of AIX technology,
including:

« Standard C and C++ run time (both threadsafe and non-threadsafe)
« Fortran run time (both threadsafe and non-threadsafe)

« pthreads threading package

« iconv services for data conversion

Berkeley Software Distributions (BSD) equivalent support

X Window System client support with Motif widget set
 Pseudo terminal (PTY) support

Applications are developed and compiled on an AIX workstation running a level of AIX that is compatible
with a level supported by PASE for i, and then these applications are run on the IBM i operating system.

Alternatively, you can install one of the supported compiler products in the PASE for i environment to
develop, compile, build, and run your applications completely within PASE for i.

PASE for i also includes the Korn, Bourne, and C shells and nearly 200 utilities that provide a powerful
scripting environment.

PASE for i uses IBM investment in a common processor technology for the AIX and IBM i operating
systems. The PowerPC processor switches from IBM i mode into AIX mode to run an application in the
PASE for i run time.

Applications running in PASE for i are integrated with the IBM i integrated file system and Db2° for i. They
can call (and be called by) Java and ILE applications. In general, they can take advantage of all aspects of
the IBM i operating environment, such as security, message handling, communication, and backup and
recovery. At the same time, they take advantage of application interfaces that are derived from AIX
interfaces.

Related concepts

IBM PASE for i shells and utilities

PASE for i includes three shells (Korn, Bourne, and C shell) and provides many utilities that run as PASE
for i programs. PASE for i shells and utilities provide an extensible scripting environment that includes a
large number of industry-standard and defacto-standard commands.

Related reference

Compiling your AIX source

You can install one of the AIX compiler products that support installation on IBM i to compile your
programs in the PASE for i environment.

IBM PASE for i as a useful option for application development

You can use the API analysis tool to determine whether an application is suitable for PASE for i. PASE for i
is not the best solution under some circumstances.

PASE for i provides considerable flexibility when you are deciding how to port your AIX applications to
your system. Of course, PASE for i is only one of several options you can use to port AIX applications.

IBM PASE fori 3

API analysis

Your starting point for determining whether an application is suitable for PASE for i is an analysis of the
application: the APIs, libraries, and utilities that the application uses and how effectively the application
will run on the IBM i operating system. For more information about how code analysis fits into the
procedures for porting applications to PASE for i, see “Preparing programs to run in IBM PASE for i” on

page 7.

Characteristics of a potential PASE for i application

Here are some useful guidelines that you might consider when making the decision whether to use PASE
fori:

- Is the AIX application a highly computation-intensive application?

PASE for i provides a good environment for running computation-intensive applications on the IBM i
operating system by providing highly optimized math libraries.

« Does the application rely heavily on functions that are supported only in PASE for i (or only partially
supported in ILE), such as fork(), X Window System, or pseudo-terminal (PTY) support?

PASE for i provides support for the fork() and exec() functions, which do not currently exist on the IBM i
operating system (except through the spawn () function, which incorporates the fork () function with
the exec () function).

« Does the application use a complicated AIX system-based build process or testing environment?

PASE for i lets you use AIX system-based build processes, which are especially useful when you have
an existing, complicated process that is not readily transferred onto a new operating system.

« Does the application have dependencies on an ASCII character set?
PASE for i provides good support for applications with these needs.
 Does the application do a lot of pointer manipulation, or does it convert (cast) integers to pointers?

PASE for i supports both 32- and 64-bit AIX addressing models with low performance cost and the
ability to convert integers to pointers.

When PASE for i might not be the best solution

PASE for i is generally not a good choice for code that provides a large number of callable interfaces that
must be called from ILE and that has any of the following characteristics:

« Code that needs higher performance call and return than provided by either starting or ending PASE for i
on each call or by calling an PASE for i procedure in an already-active PASE for i program (using the
Qp2CallPase () API).

« Code that needs to share memory or namespace between an ILE caller and the library code. An PASE
for i program does not implicitly share memory or namespace with ILE code that called it. (However, ILE
code that is called from PASE for i can share or use PASE for i memory.)

Installing IBM PASE for i

PASE for i is an optionally installable component of the operating system. You need to install PASE for i to
use it or to run some software that requires PASE for i support.

Some system software, such as the enhanced Domain Name System (DNS) server and the ILE C++
compiler, requires PASE for i support; therefore, you might still need to install PASE for i even if you are
not planning to directly use PASE for i.

PASE for i is free of charge on all IBM i servers.
To install PASE for i on your system, follow these steps:
1. OnanIBMicommand line, enter GO LICPGM.

4 IBMi: IBM PASE for i

2. Select 11 (Install licensed program).
3. Select Option 33 (5770-SS1 - Portable Application Solutions Environment).
4. Optional: Install additional locales.

The PASE for i product installs only the locale objects that are associated with the language features
that you have installed on the IBM i operating system. If you need locales that are not included with
the language features on your system, you need to order and install additional IBM i language
features.

Licensing note for software developers who are porting an application to PASE for i:

PASE for i provides a subset of the AIX runtime libraries on the IBM i system. The IBM i license authorizes
you to use any library code shipped with IBM i. This license does not imply a license to AIX libraries that
were not shipped with PASE for i. All AIX products are separately licensed by IBM.

As you begin porting your own applications to PASE for i, you might find that your application has
dependencies on AIX libraries that were not shipped with PASE for i. Before porting these libraries to the
IBM i system, you should determine which software product provided those libraries and examine the
terms and conditions of the license agreement for that software product. It might be necessary to work
with IBM or a third party to port additional middleware dependencies to the IBM i system. You should
investigate every licensing agreement involved with the code you are porting before you start porting. If
you need to find out about license agreements in place against libraries that you believe belong to IBM,
contact your IBM marketing representative, one of the IBM porting centers, the Custom Technology
Center in Rochester, or PartnerWorld® for Developers.

Related concepts

Globalization

Because the PASE for i run time is based on the AIX run time, PASE for i programs can use the same rich
set of programming interfaces for locales, character string manipulation, date and time services, message
catalogs, and character encoding conversions supported on AIX.

Related information
IBM PASE for i locales

Planning for IBM PASE for i

PASE for i provides an AIX runtime environment on the IBM i operating system so that you can port your
AIX applications to the system with minimal effort.

In fact, many AIX programs run in PASE for i with no change. This is because PASE for i supplies many of
the same shared libraries that are available on AIX, and it provides a broad subset of AIX utilities that run
directly on the IBM i PowerPC processor in the same way that they run on the System p PowerPC
processor.

Keep in mind these points as you begin to work with PASE for i:

- There is a correlation between the target AIX binary release and the release of PASE for i where
the binary application will run.

If you compile your PASE for i applications on AIX, the binary version of the application created on AIX
needs to be compatible with the version of PASE for i in which you want to run the application. The
following table shows which AIX binary versions are compatible with different versions of PASE for i. For
example, an application created for AIX release 5.3 can only run in PASE forion IBMi 5.4 and
subsequent releases. Similarly, an application created for AIX release 6.1 can run on IBMi 7.1, but not
on any of the previous releases.

AIX release IBMiV5R3 IBMiV5R4 IBMi6.1 IBMi7.1 IBMi7.2
5.1 (32- or 64-bit) X X X X X
5.2 (32- or 64-hit) X X X X X

IBM PASE fori 5

AIX release IBMi V5R3 IBMiV5R4 IBMi6.1 IBMi7.1 IBMi7.2
5.3 (32- or 64-bit) X X X X
6.1 (32- or 64-hit) X X
7.1 (32- or 64-bit) X

« PASE for i does not provide the AIX kernel on the IBM i operating system.

Instead, any low-level system functions that are needed by a shared library are routed to the IBM i
kernel or to the integrated IBM i functions. In this regard, PASE for i bridges the gap across the AIX and
IBM i operating systems. Your code uses the same syntax for the APIs in the shared libraries as you can
find on AIX, but your PASE for i program runs within an IBM i job and is managed by the IBM i operating
system just like any other IBM i job.

- In most cases, the APIs you call in PASE for i behave in exactly the same manner as they do on AIX.
Some APIs, however, might behave differently in PASE for i, or might not be supported in PASE for i.

Because of this, your plan for preparing PASE for i programs should begin with a thorough code analysis.
For more information about code analysis, see “Analyzing program compatibility with IBM PASE for i”

on page 7.
« Consider some of the differences that exist between the AIX and IBM i platforms:

— AIXis generally case-sensitive, but certain IBM i file systems are not.

— AIX generally uses ASCII for data encoding, but the IBM i operating system generally uses Extended
Binary Coded Decimal Interchange Code (EBCDIC). This is a consideration if you want to manage the
details of calling ILE code from your PASE for i program. For example, you must explicitly code PASE
for i programs to handle character encoding conversions on strings when you make calls from PASE
forito arbitrary ILE procedures. PASE for i runtime support includes the iconv(), iconv_close(), and
iconv_open() functions for character encoding conversion.

Note: PASE for i and ILE have independent implementations of iconv () interfaces, each with its
own translation tables. The translations supported by PASE fori iconv () support can be modified
and extended by users because they are stored as byte stream files in the integrated file system.

— AIX applications expect that lines (for example, in files and shell scripts) will end with a line feed (LF),
but personal computer (PC) software and IBM i software typically end lines with a carriage return and
line feed (CRLF).

— Some of the scripts and programs you use on AIX might use hardcoded paths to standard utilities,
and you might need to modify the path to reflect the paths you are using in PASE for i. You should
analyze your program's compatibility with the IBM i operating system.

PASE for i automatically handles some of these issues. For example, when you use the PASE for i runtime
service that the system provides (including any system call or runtime function in a shared library shipped
with IBM i option 33), PASE for i performs ASCII-to-EBCDIC conversions as needed, although generally
no conversions are done for data that is read or written to a file descriptor (byte stream file or socket).

You can use other low-level functions, such as _TLECALL (), to extend the functionality of your PASE for i
program with calls to ILE functions and APIs, but as mentioned above you might need to handle data
conversion. Also, coding these extensions into your program requires the use of additional header and
export files.

Related concepts
Analyzing program compatibility with IBM PASE for i

6 IBMi: IBM PASE fori

The first step in an assessment of the portability of a C application to the IBM i operating system is the
analysis of the interfaces that are used in your application.

Preparing programs to run in IBM PASE for i

The steps to prepare AIX programs to run effectively on the IBM i operating system vary with the nature
of your program and your actual needs for IBM i system-unique interfaces and functions.

If you are attempting to port an application to PASE for i, you must first ensure that the application will
compile using an AIX compiler. In some cases, you need to modify your program to achieve this
requirement.

Analyzing program compatibility with IBM PASE for i

The first step in an assessment of the portability of a C application to the IBM i operating system is the
analysis of the interfaces that are used in your application.

« Obtain a list of libraries used by your application.

Library analysis helps identify some of the middleware APIs that your application uses. You can run the
following command against each of your commands and shared objects to get a list of libraries required
by your application:

dump -H binary_name

« Check your code for hardcoded path names.

If you run programs that change credentials or want your programs or scripts to run even when the
PASE for i environment variable PASE_EXEC_QOPENSYS=N, you might need to change hardcoded path
names.

Because /usr/bin/ksh is an absolute path (starting at the root), if it is not found or if it is not a byte
stream file, PASE for i searches the /Q0penSys file system for path name /Q0penSys/usr/bin/ksh.
QShell utility programs are not byte stream files, so PASE for i searches the /QOpenSys file system
even when the original (absolute) path is a symbolic link to a QShell utility program, such

as /usxr/bin/sh.

» Check for unsupported system calls.

The PASE for i kernel exports some system calls that are implemented by the AIX kernel but are
unsupported by PASE for i. The default behavior for an unsupported system call is to send exception
message MCH3204 that contains the name of the unsupported system call. Additionally, the system will
deliver PASE for i signal SIGILL to the calling process.

You may need to modify your application source to avoid use of any unsupported system calls. You can
also use the PASE_SYSCALL_NOSIGILL environment variable to alter the system behavior for
unsupported system calls.

Related concepts

Planning for IBM PASE for i

PASE for i provides an AIX runtime environment on the IBM i operating system so that you can port your
AIX applications to the system with minimal effort.

Related information
PASE for i environment variables

Compiling your AIX source
You can install one of the AIX compiler products that support installation on IBM i to compile your
programs in the PASE for i environment.

When your program uses AIX interfaces only, you can compile with any required AIX headers and link
with AIX libraries to prepare binary files for PASE for i. Keep in mind that PASE for i does not support
applications that are statically bound with AIX system-supplied shared libraries.

IBM PASE fori 7

PASE for i programs are structurally identical to AIX programs for PowerPC.

PASE for i (option 33 of the operating system) does not include a compiler. You use an AIX system to
compile PASE for i programs, or you can optionally install one of the AIX compiler products that support
installation in PASE for i to compile your programs in the PASE for i environment.

Using AIX compilers on the System p platform

You can build PASE for i programs using any AIX compiler and linker that generate output that is
compatible with the AIX application binary interface (ABI) for PowerPC. PASE for i provides instruction
emulation support for binary files that use POWER® architecture instructions that do not exist in PowerPC
(except for IBM POWER instructions for cache management).

Using AIX compilers in PASE for i

IBM i supports the installation of the following separately available AIX compilers in the PASE for i
environment:

« IBM XL C/C++ for AIX
« IBM XL C for AIX
« IBM XL Fortran for AIX

Using these products, you can develop, compile, build, and run your PASE for i applications entirely within
the PASE for i environment on your system.

Development tools

Many development tools that you use on AIX (for example, 1d, ar, make, yacc) are included with PASE
for i. Many AIX tools from other sources (for instance, the open-source tool gcc) can also work in PASE
fori.

The IBM Tools for Developers for i5/0S PRPQ (5799-PTL) also contains a wide array of tools to help with
the development, building, and porting of IBM i applications. For more information about this PRPQ, see
the IBM Tools for Developers for i5/0S Web site.

Compiler notes for handling of pointers

« The x1c compiler provides limited support for 16-byte alignment (for type long double) by using the
combination of -qlngdbl128 and -galign=natural. Type ILEpointer requires these compiler
options to ensure that machine interface (MI) pointers are 16-byte aligned within structures. Using
option -qldb1128 forces type long double to be a 128-bit type that requires use of libc128.a to handle
operations like printf for long double fields.

An easy way to get option -qlngdb1128 and link with libc128.a is to use the x1¢c128 command instead
of the x1c command.

« The x1c/x1C compiler currently does not provide a way to force 16-byte alignment for static or
automatic variables. The compiler only guarantees relative alignment for 128-bit long double fields
within structures. The PASE for i version of malloc always provides 16-byte aligned storage, and you
can arrange 16-byte alignment of stack storage.

« Header file as400_types.h also relies on type long long to be a 64-bit integer. x1c compiler option -
glonglong ensures this geometry (which is not the default for all commands that run the x1c
compiler).

Examples

The following examples are intended for use when you are compiling your PASE for i programs on an AIX
system. If you are using a compiler installed in PASE for i to compile your programs, you do not need to
specify compiler options for the locations of IBM i system-unique header files or IBM i system-unique
exports because these files will be found in their default path locations of /usr/include/ and /usr/
1lib/ onanIBMi system.

8 IBMi: IBM PASE fori

Example 1

The following command on an AIX system creates an PASE for i program named testpgm that can use
IBM i system-unique interfaces exported by libc.a:

x1lc -o testpgm -qldbl128 -glonglong -galign=natural
-bI:/mydir/as400_libc.exp testpgm.c

This example assumes that the IBM i system-unique header files are copied to the AIX directory /usr/
include and that the IBM i system-unique exports files are copied to the AIX directory /mydiz.

Example 2

The following example assumes IBM i system-unique headers and export files are in /pase/1lib:

xlc -o as400_test -qldbl128 -qglonglong -galign=natural -H16
-1 c128
-I /pase/lib
-bI:/pase/lib/as400_libc.exp as400_test.c

Example 3

The following example builds the same program as example 2 with the same options; however, the
x1c_r command is used for a multithreaded program to ensure that the compiled application links with
threadsafe runtime libraries:

xlc_r -0 as400_test -gqldbl128 -glonglong -galign=natural -H16
-1 c128
-I /pase/lib
-bI:/pase/lib/as400_libc.exp as400_test.c

In the examples, if you are using PASE for i support for IBM Db2 for i call level interfaces (CLIs), you also
need to specify -bI:/pase/include/libdb400.exp on your build command.

The -bI directive tells the compiler to pass the parameter to the 1d command. The directive specifies an
export file containing exported symbols from a library to be imported by the application.

Related concepts

IBM PASE for i concepts

PASE for i is an integrated runtime environment for AIX applications running on the IBM i operating
system.

IBM PASE for i shells and utilities

PASE for i includes three shells (Korn, Bourne, and C shell) and provides many utilities that run as PASE
for i programs. PASE for i shells and utilities provide an extensible scripting environment that includes a
large number of industry-standard and defacto-standard commands.

Related information
IBM Tools for Developers for IBM i Web site

Installing AIX compilers on IBM i
You can use these AIX compilers to develop, compile, build, and run PASE for i applications entirely within
the PASE for i environment on your system.

You can install any of the following separately available AIX compilers on IBM i for use by the PASE for i
environment:

« IBM XL C/C++ for AIX
« IBM XL C for AIX
« IBM XL Fortran for AIX

Related concepts
What's new for IBMi 7.2

IBM PASE fori 9

https://www.ibm.com/partnerworld/wps/servlet/ContentHandler/pw_com_porting_tools_index

Read about new or significantly changed information for the PASE for i topic collection.

Related information
XL C/C++ for AIX

XL C for AIX

XL Fortran for AIX

Installing the AIX compilers from the installation media

PASE for i does not support the AIX smit or installp utilities, which are typically used to install
applications on systems running AIX. Installation of the XL C/C++ for AIX, XL C for AIX, or XL Fortran for
AIX product is accomplished through a nondefault installation script that is included in the respective
compiler's installation media.

In addition to the compiler installation media, you also need the following programs installed on your
system to successfully install and use the compiler:
« 5770-SS1 Option 33 - PASE fori

« 5770-SS1 Option 13 - System Openness Includes, containing the compiler header files found in
the /usr/include integrated file system directory

« Perl
The compiler installation scripts require Perl. Here are two ways to install Perl:

— 5799-PTL - Tools for Developers for i5/0S PRPQ, which includes Perl and many other useful
development tools. For additional information about Tools for Developers for i5/0S PRPQ, see the

IBM Tools for Developers for IBM i Web site <3 (www.ibm.com/partnerworld/wps/servlet/
ContentHandler/pw_com_porting_tools_index).

— CPAN Perl Ports (Binary Distributions) Web site £ 3 (www.cpan.org/ports/#0s400) - A Perl Port binary
distribution for PASE for i.

To install the XL C/C++ for AIX, XL C for AIX, or XL Fortran for AIX product on IBM i, follow the steps
documented in the related AIX compiler Knowledge Center.

1. Select a version of the compiler to be updated.

For XL C/C++ for AIX, go to the XL C/C++ for AIX IBM Knowledge Centers¥ and select a version of XL
C/C++ for AIX compiler.

Note: XL C/C++ for AIX 13.1.2 is the recommended minimum release.

For XL C for AIX, go to the XL C for AIX IBM Knowledge Center® and select a version of XL C for AIX
compiler.

Note: XL C for AIX 13.1.2 is the recommended minimum release.

For XL Fortran for AIX, go to the XL Fortran for AIX IBM Knowledge Centers&¥ and select a version of
XL Fortran for AIX compiler.

Note: XL Fortran for AIX 15.1.2 is the recommended minimum release.

. Click on the Basic Installation link.

. Click on the Advanced Installation link.

. Click on the Tasks for advanced installation link.

. Click on the Installing on an IBM i PASE System link and follow the instructions for installation from
CD.

The compiler is now installed for use in PASE for i. Here are some example directory locations which will
vary depending on the AIX compiler version installed:

g b 0N

« The XL C/C++ for AIX version 13.1.2 compiler commands (for example, x1c) can be found in directory /
Q0penSys/xlc/opt/IBM/x1c/13.1.2/bin.

10 IBMi: IBM PASE for i

http://www.ibm.com/software/products/en/xlcpp-aix
http://www.ibm.com/software/products/en/xlcaix
http://www.ibm.com/software/products/en/xlfortran-aix
https://www.ibm.com/partnerworld/wps/servlet/ContentHandler/pw_com_porting_tools_index
http://www.cpan.org/ports/#os400
http://www.ibm.com/support/knowledgecenter/SSGH3R/welcome?lang=en
http://www.ibm.com/support/knowledgecenter/SSGH2K/welcome?lang=en
http://www.ibm.com/support/knowledgecenter/SSGH4D/welcome?lang=en

« The XL C for AIX version 13.1.2 compiler commands (for example, x1c) can be found in directory /
Q0penSys/xlc/opt/IBM/x1c/13.1.2/bin.

« The XL Fortran for AIX compiler commands (for example, x1£) can be found in directory /
QOpenSys/x1f/opt/IBM/x1£f/15.1.2/bin.

Note: You can add the directory that contains the compiler commands to the $PATH environment
variable. The $PATH environment variable specifies the directories to be searched to find a command. For
example, if you have installed XL C/C++ for AIX version 13.1.2, you can change the $PATH environment
variable as follows to avoid specifying the command path when you use the compiler commands:

export $PATH=$PATH:/Q0penSys/xlc/opt/IBM/x1c/13.1.2/bin

Related information
XL C/C++ for AIX

XL C for AIX

XL Fortran for AIX

PTF update instructions

Installation of program temporary fixes (PTFs) for the XL C/C++ for AIX, XL C for AIX, or XL Fortran for AIX
product is accomplished through the same nondefault installation script that is used for the initial
compiler installation.

Before installing the PTFs, you must have already installed the compilers using the previous steps in this
topic.

To install PTFs for the XL C/C++ for AIX, XL C for AIX, or XL Fortran for AIX product on IBM i, follow the
steps documented in the related AIX compiler Knowledge Center.

1. Select a version of the compiler to be updated.

For XL C/C++ for AIX, go to the XL C/C++ for AIX IBM Knowledge Center"¥ and select a version of XL
C/C++ for AIX compiler.

Note: XL C/C++ for AIX 13.1.2 is the recommended minimum release.

For XL C for AIX, go to the XL C for AIX IBM Knowledge Centers¥ and select a version of XL C for AIX
compiler.

Note: XL C for AIX 13.1.2 is the recommended minimum release.

For XL Fortran for AIX, go to the XL Fortran for AIX IBM Knowledge Centerd¥ and select a version of
XL Fortran for AIX compiler.

Note: XL Fortran for AIX 15.1.2 is the recommended minimum release.

2. Click on the Basic Installation link.

3. Click on the Advanced Installation link.

4. Click on the Tasks for advanced installation link.

5. Click on the Installing on an IBM i PASE System link.

6. Click on the Installing PTF updates on the PASE system link and follow the instructions.
Related information

XL C/C++ for AIX

XL C for AIX

XL Fortran for AIX

Copying the IBM PASE for i program to your system
You must copy the AIX binary files that you want to run in PASE for i into the integrated file system.

All of the file systems that are available in the integrated file system are available within PASE for i.

IBM PASE fori 11

http://www.ibm.com/software/products/en/xlcpp-aix
http://www.ibm.com/software/products/en/xlcaix
http://www.ibm.com/software/products/en/xlfortran-aix
http://www.ibm.com/support/knowledgecenter/SSGH3R/welcome?lang=en
http://www.ibm.com/support/knowledgecenter/SSGH2K/welcome?lang=en
http://www.ibm.com/support/knowledgecenter/SSGH4D/welcome?lang=en
http://www.ibm.com/software/products/en/xlcpp-aix
http://www.ibm.com/software/products/en/xlcaix
http://www.ibm.com/software/products/en/xlfortran-aix

When you move files across operating systems, be aware of your application's sensitivity to mixed case
and of the difference between line-terminating characters that AIX uses and those that the IBM i
operating system uses. These differences might create problems for you.

You can transfer your PASE for i program and related files to and from your system by using File Transfer
Protocol (FTP), Server Message Block (SMB), or remote file systems.
Related reference

Copying header files
Use this information to copy header files from the system running IBM i to the system running AIX.

Copying export files
Use this information to copy the export files from the system running IBM i to an AIX directory.

Related information
Integrated file system

Case sensitivity
If your application is sensitive to mixed case, move it into the /QOpenSys file system, or into a user-
defined file system that has been created as case-sensitive.

The interfaces of operating systems, such as AIX and Linux, generally differentiate between uppercase
and lowercase letters. On the IBM i operating system, that is not always the case. You should be aware of
several situations in particular where case sensitivity might cause complications with existing codes.

Case sensitivity on a directory or file basis depends on the file system you are using on the IBM i operating
system. The /Q0penSys file system is case-sensitive, and you can create a user-defined file system
(UDFS) that is case-sensitive.

Examples

The following examples are problems stemming from case sensitivity that you might encounter.

Example 1

In this example, the shell does a character comparison of the generic name prefix against what is
returned by readdir (). However, the QSYS.LIB file system returns directory entries in uppercase, so
none of the entries matches the lowercase generic name prefix.

$ 1s -d /gsys.lib/v4r5mO.1lib/qwobj*
/qsys.lib/v4xr5m0.1ib/qwobj* not found
$ 1s -d /qsys.lib/v4r5m0.1ib/QWOBJ*
/qsys.lib/v4r5m0.1ib/QWOBJ.FILE

Example 2
This example is similar to the first example except that, in this case, the £ind utility is doing the
comparison, and not the shell.

$ find /qsys.lib/v4r5m0.1ib/ -name 'qwobjx' -print

$ find /qsys.lib/v4r5m0.1ib/ -name 'QWOBJ*' -print
/qsys.lib/v4r5m0.1ib/QWOBJ.FILE

Example 3

The ps utility expects user names to be case-sensitive and therefore does not recognize a match between
the uppercase name specified for the -u option and lowercase names returned by the PASE for i runtime
function getpwuid():

$ ps -uTIMMS -f
UID PID PPID C STIME TTY TIME CMD
$ ps -utimms -f
UID PID PPID C STIME TTY TIME CMD

12 IBMi: IBM PASE for i

timms 617 570 0 10:54:00 - 0:00 /QOpenSys/usr/bin/-sh -i
timms 660 617 0 11:14:56 - 0:00 ps -utimms -f

Related information
File system comparison

Line-terminating characters in integrated file system files
The AIX and IBM i operating systems use different line-terminating characters in text files; for example, in
files and shell scripts.

The AIX applications that are the source for your PASE for i programs expect that lines (for example, in
files and shell scripts) will end with a line feed (LF). However, PC software and typical IBM i software
often ends lines with a carriage return and line feed (CRLF).

CRLF used with FTP

One example of where this difference can cause problems is when you use File Transfer Protocol (FTP) to
transfer source files and shell scripts from the AIX operating system to the IBM i operating system. The
FTP standard calls for data sent in text mode to use carriage return and line feed (CRLF) at the end of a
line. On AIX, the FTP utility removes carriage returns (CRs) when it processes an inbound file in text
mode. IBM i FTP always writes exactly what is presented in the data stream and always retains CRLF for
text mode, which causes problems with the PASE for i run time and utilities.

Where possible, use binary mode transfer from an AIX operating system to avoid this problem. Text files
transferred from personal computers will, in most cases, have CRLF delimiting lines in the file.
Transferring the files first to AIX will correct the problem. The following command can be used as a
means to remove the CR from files in the current directory:

awk '§ gsub(/\r$/, ""); print $0 %' < oldfile > newfile

CRLF used with IBM i and PC editors

You can also experience problems when you edit your files or shell scripts with editors on your system or
with editors on your workstation (such as Windows Notepad editor). These editors use CRLF as a new line
separator, and not the LF that PASE for i expects.

Numerous editors are available (for instance, the ez editor) that do not use CRLF as new line separators.

Transferring files
You can transfer your PASE for i program and related files to and from your system, using File Transfer
Protocol, Server Message Block, or remote file systems.

« Copying programs using File Transfer Protocol

« Copying programs using Server Message Block

- Copying programs using remote file systems

Copying programs using File Transfer Protocol

You can use the IBM i File Transfer Protocol (FTP) daemon and client to transfer a file into or out of the
IBMiintegrated file system. Transfer your files in binary mode. Use the FTP subcommand binary to set
this mode.

You must use naming format 1 (the NAMEFMT 1 subcommand of the IBM i FTP command) when placing
files into the integrated file system. This format allows the use of path names, and transfers the files into
stream files. To enter into naming format 1, you can either:

« Change the directory using path names.

This automatically puts the session into name format 1. Using this method, the first directory is
prefaced by a slash (/). For example:

IBM PASE fori 13

cd /QO0penSys/usr/bin

« Use the FTP subcommand quote site namefmt 1 foraremote client, or use namefmt 1 as a local
client.

Copying programs using Server Message Block

The IBM i operating system supports Server Message Block (SMB) client and server components. With
NetServer configured and running, PASE for i has access to SMB servers in the network through the /QNTC
file system. On an AIX or a Linux operating system, a SAMBA server is required to provide the same
service. Installing a configured and operational operating system, such as AIX, can make directories and
files available to PASE for i.

Copying programs using remote file systems

On the IBM i operating system, you can mount Network File System (NFS) file systems to a mount point in
the integrated file system file space. AIX supports NFS, as well as Distributed File System (DFS) and
Andrew File System (AFS®) (using DFS-to-NFS and AFS-to-NFS translators) so that these file systems can
be exported and mounted by the IBM i operating system. This, in turn, lets PASE for i applications use
these file systems. Security authorization is validated through the user ID number and group ID number
of IBM i user profile for the directory path or file being accessed. You might want to ensure that a user
profile that is intended to be the same person across multiple platforms has the same user ID on all of the
systems.

The IBM i operating system is best used as an NFS server. In this case, you need to mount NFS file
systems from your AIX operating system onto a directory in the IBM i integrated file system, and AIX
writes programs directly onto the IBM i operating system when they build.

Note: IBM i NFS is currently not supported in multithreaded applications.

Related information
File Transfer Protocol

Customizing IBM PASE for i programs to use IBM i functions

If you want your AIX application to take advantage of IBM i functions that are not directly supported by
system-supplied PASE for i shared libraries, you need to perform some additional steps to prepare your
application.

Complete the following steps to do the preparation:

1. Code your AIX application to call any required PASE for i runtime functions that coordinate your access
to the IBM i system-unique functions.

2. If you are compiling your PASE for i programs on an AIX system, perform the following steps before
you compile your customized application:

a) Copy required IBM i system-unique header files to your AIX system.
b) Copy required IBM i system-unique export files to your AIX system.

Related concepts

Calling IBM i programs and procedures from your IBM PASE for i programs
PASE for i provides methods for calling ILE procedures, Java programs, OPM programs, IBM i APIs, and
CL commands that give you integrated access to IBM i functions.

How IBM PASE for i programs interact with IBM i

14 IBMi: IBM PASE for i

As you customize your PASE for i programs to use IBM i functions, you need to consider the ways in which
your program will interact with them.

Related information
Runtime functions for use by IBM PASE for i programs

Copying header files
Use this information to copy header files from the system running IBM i to the system running AIX.

PASE for i augments standard AIX run time with header files for IBM i system-unique support. These are
provided by PASE for i and the IBM i operating system.

Copying the header files from IBM i to AIX in the header file search path

You can copy the header file into the /usr/include AIX directory, or to any other directory on the header
file search path for your compiler.

If you use a directory other than /usx/include, you can add it to the header file search path with the -I
option on the AIX compiler command.

Copying PASE for i header files

The PASE for i header files are located in the following IBM i directory: /QOpenSys/QIBM/ProdData/
0S400/PASE/include

PASE for i provides the following header files.

Header file Explanation

as400_protos.h This header file provides miscellaneous PASE for i system-unique functions to
ILE.

as400_types.h This header file declares unique IBM i parameter types for calls to ILE.

This header file declares type ILEpointex for 16-byte machine interface (MI)
pointers, which relies on type long double to be a 128-bit field.

Other types declared in as400_types.h rely on type long long to be a 64-bit
integer. AIX compilers must be run with options -qlngdbl1128, -
galign=natural, and -qlonglong to ensure proper size and alignment of
types declared in as400_types.h.

0s400msg.h This header file declares the functions to send and receive IBM i messages.

Copying IBM i header files

If you plan to access other IBM i functions in your PASE for i application, you might find it helpful to copy
to your development machine the header files for the IBM i functions that you are using. Note that
generally you cannot run an IBM i program or procedure directly from an PASE for i application.

IBM i system-provided header files are located in the /QIBM/include directory.

If your application needs any of the IBM i API header files, you must first convert them from EBCDIC to
ASCII before you copy the converted files to an AIX directory.

One way to convert an EBCDIC text file to ASCII is to use the PASE for i Rfile utility.

The following example uses the PASE for i Rfile utility to read IBM i header file /QIBM/include/
qgusec.h, convert the data to the PASE for i coded character set identifier (CCSID), strip trailing blanks
from each line, and then write the result into byte stream file ascii_qusec.h:

IBM PASE fori 15

Rfile -r /QIBM/include/qusec.h > ascii_qusec.h

Related concepts

Database

PASE for i supports the Db2 for i call level interfaces (CLIs). DB2 CLIs on AIX and IBM i are not exact
subsets of each other, so there are minor differences in a few interfaces. Some APIs in one
implementation might not exist in another.

Calling IBM i programs and procedures from your IBM PASE for i programs
PASE for i provides methods for calling ILE procedures, Java programs, OPM programs, IBM i APIs, and
CL commands that give you integrated access to IBM i functions.

Related tasks

Calling ILE procedures
You can follow these steps to prepare and call ILE procedures from your PASE for i programs.

Related reference

Copying the IBM PASE for i program to your system
You must copy the AIX binary files that you want to run in PASE for i into the integrated file system.

Copying export files
Use this information to copy the export files from the system running IBM i to an AIX directory.

The export files, located in the following IBM i directory, are the suggested way to build your applications
that require access to IBM i system-specific functions:

/Q0penSys/QIBM/ProdData/0S400/PASE/1ib

You can copy these files to any AIX directory. Use the -bI: option on the AIX 1d command (or compiler
command) to define symbols not found in the shared libraries on the AIX system.

PASE for i provides the following export files.

Export file Function

as400_Llibc.exp This file is the export file for IBM i system-unique functions in libc.a.

The as400_libc.exp file defines all the exports from the PASE for i version of libc.a
that are not exported by the AIX versions of those libraries.

libdb400.exp This file is the export file for IBM i database functions.

The libdb400.exp file defines the exports from the PASE for i libdb400.a library
(Db2 fori call level interfaces (CLIs) support).

Related concepts

Database

PASE for i supports the Db2 for i call level interfaces (CLIs). DB2 CLIs on AIX and IBM i are not exact
subsets of each other, so there are minor differences in a few interfaces. Some APIs in one
implementation might not exist in another.

Related reference

Copying the IBM PASE for i program to your system
You must copy the AIX binary files that you want to run in PASE for i into the integrated file system.

IBM PASE for i APIs for accessing IBM i functions

PASE for i provides a number of APIs for accessing ILE code and other IBM i functions. Which ones you
use depends on how much preparation and structure building you want to do yourself as opposed to how
much you want the compiler to do for you.

Related information

IBM PASE for i APIs

16 IBMi: IBM PASE for i

Using IBM PASE for i programs in the IBM i environment

Your PASE for i program can call other IBM i programs running in your job, and other IBM i programs can
call procedures in your PASE for i program.

Running IBM PASE for i programs and procedures
You can start an PASE for i program in a job and call PASE for i procedures from your ILE programs.

You can run your PASE for i program in any of several ways:

« Withinan IBMi job
« From an PASE for i interactive shell environment
« As a called program from an ILE procedure

Note: When you run an PASE for i program on the IBM i operating system, keep in mind that the PASE for i
environment variables are independent of ILE environment variables. Setting a variable in one
environment has no effect on the other environment.

ILE procedures that let you work with PASE for i programs

PASE for i provides a number of ILE procedure APIs that allow your ILE code to access PASE for i services
(without special programming in your PASE for i program):

» Qp2dlclose

« Qp2dlerror

- Qp2dlopen

* Qp2dlsym

e Qp2errnop

« Qp2free

* Qp2jobCCSID
* Qp2malloc

* Qp2paseCCSID
» Qp2ptrsize

Calling a procedure in an PASE for i program from ILE code

You can call a procedure in an PASE for i program from ILE code that runs in a thread that was not created
by PASE for i (for example, a Java thread or a thread created by ILE pthread_create()).

Qp2CallPase () automatically attaches the ILE thread to PASE for i (creating corresponding PASE for i
pthread structures), but only if the PASE for i environment variable PASE_THREAD_ATTACH was setto Y
when the PASE for i program started.

Returning results from PASE for i to IBM i programs

Using the IBM i _RETURN () function, you can call an PASE for i program and return results without ending
the PASE for i environment. This allows you to start an PASE for i program and then call procedures in that
program (using Qp2CallPase ()) after the QP2SHELL2 (but not QP2SHELL) or Qp2RunPase () API
returns.

Related information
IBM PASE for i ILE Procedure APIs
_RETURN()--Return Without Exiting IBM PASE for i

IBM PASE fori 17

Running an IBM PASE for i program with QP2SHELL()
You use QP2SHELL or QP2SHELL2 programs to run an PASE for i program from any IBM i command line
and within any high-level language program, batch job, or interactive job.

These programs run an PASE for i program in the job that calls it. The name of the PASE for i program is
passed as a parameter on the program.

The QP2SHELL() program runs the PASE for i program in a new activation group. The QP2SHELL2()
program runs in the caller's activation group.

Note: Neither the QP2SHELL program nor the QP2SHELL2 program does the special setup for standard
streams that most shells require for reliable operation (stdin, stdout, and stderr must be forkable file
descriptors). Therefore, the QP2SHELL and QP2SHELL2 programs must be used with additional
programming to run a shell or shell script. You can run a shell script without additional programming by
using either the API program QP2TERM or the QSH CL command.

The following example runs the 1s command from the IBM i command line:
call gp2shell parm('/QOpenSys/bin/1ls' '/")

If you pass values into QP2SHELL() using CL variables, the variables must be null-terminated. For
example, you need to code the above example in the following way:

PGM DCL VAR(&CMD) TYPE (xCHAR) LEN(20) VALUE (' /Q0penSys/bin/1s")
DCL VAR(&PARM1) TYPE (*CHAR) LEN(10) VALUE('/")
DCL VAR(&NULL) TYPE (xCHAR) LEN(1) VALUE(X'00")

CHGVAR VAR(&CMD) VALUE (&CMD *TCAT &NULL)
CHGVAR VAR (&PARM1) VALUE (&PARM1 xTCAT &NULL)

CALL PGM(QP2SHELL) PARM(&CMD &PARM1)

ENDIT:
ENDPGM

Related information
QP2SHELL() and QP2SHELL2()--Run an IBM PASE for i Shell Program

Running an IBM PASE for i program with QP2TERM()
You use this IBM i program to run an PASE for i program in an interactive shell environment.

Start an PASE for i interactive terminal session with the QP2TERM() program.

The following command writes the default Korn shell prompt (/Q0penSys/usxr/bin/sh) to the screen:

call gp2term

From this prompt, you run an PASE for i program in a separate batch job. QP2TERM() uses the interactive
job to display output and to accept input for files stdin, stdout, and stderr in the batch job.

The Korn shell is the default, but you can optionally specify the path name of any PASE for i program that
you want to run, as well as any argument strings to pass to the program.

You can run any PASE for i program and any of the utilities from the interactive session that you start with
QP2TERMY(); stdout and stderr are written and scrolled in the terminal screen.

Related concepts

IBM PASE for i shells and utilities

PASE for i includes three shells (Korn, Bourne, and C shell) and provides many utilities that run as PASE
for i programs. PASE for i shells and utilities provide an extensible scripting environment that includes a
large number of industry-standard and defacto-standard commands.

Related information
QP2TERM()--Run an IBM PASE for i Terminal Session

18 IBMi: IBM PASE for i

Running an IBM PASE for i program from within IBM i programs
You can call the Qp2CallPase() and Qp2CallPase2() ILE procedures from within other ILE
procedures to start and run an PASE for i program.

Use the Qp2RunPase () API to run an PASE for i program.
You specify the program name, argument strings, and environment variables.

The Qp2RunPase () API runs an PASE for i program in the job where it is called. It loads an PASE for i
program (including any necessary shared libraries) and then transfers control to the program.

This API gives you more control over how PASE for i runs than QP2SHELL () and QP2TERM().

Related information
Qp2RunPase()--Run an IBM PASE for i Program

Examples: Running an IBM PASE for i program from within IBM i programs
These examples show an ILE program that calls an PASE for i program, and the PASE for i program that is
called by the ILE program.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 64.

Example 1: An ILE program that calls an PASE for i program

The following ILE program calls an PASE for i program. Following this example is an example of the PASE
for i code that this program calls.

f##include <stdio.h>
#include <string.h>
#include <stdlib.h>
f#include <stdio.h>
f##include <unistd.h>

/* include file for QP2RunPase(). */

#include <qgp2user.h>

Sample:

A simple ILE C program to invoke an PASE

for i program using QP2RunPase() and

passing one string parameter.

Example compilation:
CRTCMOD MODULE(MYLIB/SAMPLEILE) SRCFILE(MYLIB/QCSRC)
CRTPGM PGM(MYLIB/SAMPLEILE)

void main(int argc, charxargv[])

/* Path name of PASE program x/
char *PasePath = "/home/samplePASE";
/* Return code from QP2RunPase() */
int rc;
/* The parameter to be passed to the
i5/0S PASE program x/
char *PASE_parm = "My Parm";
/* Argument list for i5/0S PASE program,
which is a pointer to a list of pointers x/
char *xarg_list;
/* allocate the argument list x/
arg_list =(char**x)malloc(3 * sizeof(xarg_list));
/* set program name as first element. This is a UNIX convention x/
arg_list[0] = PasePath;
/* set parameter as first element x/
arg_list[1] = PASE_parm;
/* last element of argument list must always be null %/
arg_list[2] = O;
/* Call i5/0S PASE program. x/
rc = Qp2RunPase(PasePath, /% Path name %/

NULL, /* Symbol for calling to ILE, not used in this sample x/
NULL, /* Symbol data for ILE call, not used here x/

0, /* Symbol data length for ILE call, not used here *x/
819, /* ASCII CCSID for i5/0S PASE x/

arg_list, /> Arguments for i5/0S PASE program */

IBM PASE fori 19

NULL) ; /* Environment variable list, not used in this sample x/

Example 2: The PASE for i program that is called in the ILE program
The following PASE for i program is called by the above ILE program.

f##include <stdio.h>

Sample:

A simple PASE for i Program called from
ILE using QP2RunPase() and accepting
one string parameter.

The ILE sample program expects this to be
located at /home/samplePASE. Compile on
AIX, then ftp to IBM i.

To ftp use the commands:

> binary

> site namefmt 1

> put samplePASE /home/samplePASE

int main(int argc, char *argv([])

/* Print out a greeting and the parameter passed in. Note argv[0] is the program
name, so, argv[l] is the parameter x/
printf("Hello from PASE for i program %s. Parameter value is \"%s\".\n", argv[0], argv[1]);

return 0O;

Calling an IBM PASE for i procedure from within IBM i programs
You can call the Qp2CallPase () and Qp2CallPase2() ILE procedures from within other ILE
procedures to run an PASE for i program in a job where the PASE for i environment is already running.

The Qp2RunPase () API initially starts and runs an PASE for i program in a job. It returns an error if PASE
foriis already active in that job.

To call PASE for i procedures in a job that is already running an PASE for i program, you use the
Qp2CallPase() and Qp2CallPase2() APIs.

Related information
Qp2CallPase()--Call an IBM PASE for i Procedure

Example 1: Calling an IBM PASE for i procedure from within IBM i programs
This example shows an ILE program calling an PASE for i procedure.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 64.

#include <stdio.h>
#include <gp2shell2.h>
#include <qgp2user.h>
#define JOB_CCSID 0

int main(int argc, char *argv([])

QP2_ptr64d_t id;

void *getpid_pase;

const QP2_arg_type_t signature[] = { QP2_ARG_END %;
QP2_word_t result;

/*

* Call QP2SHELL2 to run the PASE for i program
* Jusr/lib/start32, which starts PASE for i in
* 32-bit mode (and leaves it active on return)

*/
QP2SHELL2("/usxr/lib/start32");
/*

* Qp2dlopen opens the global name space (rather than
* loading a new shared executable) when the first

20 IBMi: IBM PASE for i

* argument is a null pointer. Qp2dlsym locates the
* function descriptor for the PASE for i getpid

* subroutine (exported by shared library libc.a)

*/

id = Qp2dlopen(NULL, QP2_RTLD_NOW, JOB_CCSID);
getpid_pase = Qp2dlsym(id, "getpid", JOB_CCSID, NULL);

/*

* Call Qp2CallPase to run the PASE for i getpid

* function, and print the result. Use Qp2errnop
* to find and print the PASE for i errno if the

* function result was -1

*/
int rc = Qp2CallPase(getpid_pase,
NULL, // no argument list
signature,
QP2_RESULT_WORD,
&result)

printf("PASE for i getpid() = %i\n", result);
if (result == -1)
printf("IBM i errno = %i\n", *Qp2errnop());

/*

* Close the Qp2dlopen instance, and then call
* Qp2EndPase to end PASE for i in this job

*/

Qp2dlclose(id);

Qp2EndPase() ;

return 0O;

Example 2: An IBM i ILE program that uses pointer arguments in a call to an IBM PASE for i procedure
In this example, an IBMi ILE program uses two different techniques to allocate and share memory
storage with the PASE for i procedure that it calls.

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer
information” on page 64.

/

% % ok ok k ok % ok * Ok oF

*

*/

This example
functions to

Name: ileMain.c

Call an PASE for i procedure from ILE

Compile like so:

CRTBNDC PGM(mylib/ilemain)

SRCFILE(mylib/mysrcpf)
TERASPACE (*YES *TSIFC)

f##include <stdio.h>
f##include <stddef.h>
#include <errno.h>
#include <gp2user.h>

/* Use EBCDIC default job CCSID in Qp2dlopen and Qp2dlsym calls x/

#define JOB_CCSID ©

/* start PASE for i in this process */
void startPASE(void) $

%

/* starté4 starts the 64 bit version of PASE for i %/
char xstarté64Path="/usr/lib/start64";
char *arg_list[2];

arg_list[0] = start64Path;
arg_list[1] = NULL;
Qp2RunPase(start64Path,

NULL,

NULL,

01

819,

(char*x)&arg_list,

NULL) ;

/% open a shared library =/

uses the Qp2dlopen, Qp2dlsym, and Qp2CallPase2 ILE
call an PASE for i function passing in parameters

IBM PASE fori 21

QP2_ptr64_t openlib(char * libname) $
QP2_ptr64d_t id;
int * paseErrno;

/* Qp2dlopen dynamically loads the specified library returning an
* id value that can be used in calls to Qp2dlsym and Qp2dlcose */
id = Qp2dlopen(libname,
(QP2_RTLD_NOW |
QP2_RTLD_MEMBER),
JOB_CCSID);
if (id == 0) {
printf("Qp2dlopen failed. ILE errno=%i\n", errno);
if ((paseErrno=Qp2errnop()) != NULL)
printf("Qp2dlopen failed. PASE for i errno=%i\n", *paseErrno);
printf("Qp2dlopen failed. Qp2dlerror = %s\n", Qp2dlerror());

return(id);

b
/* find an exported symbol %/

void * findsym(const QP2_ptr64_t id, const char * functionname) $
void * symbol;
int % paseErrno;

/* Qp2dlsym locates the function descriptor for the
* specified function %/
symbol = Qp2dlsym(id, functionname, JOB_CCSID, NULL);
if (symbol == NULL) £
printf("Qp2dlsym failed. ILE errno = %i\n", errno);
if ((paseErrno=Qp2errnop()) != NULL)
printf("Qp2dlsym failed. PASE for i errno=%i\n", *paseErrno);
printf("Qp2dlsym failed. Qp2dlerror = %s\n", Qp2dlerror());

return(symbol);

¥

/* call PASE for i procedure */
int callPASE(const void % functionsymbol,
const void % arglist,
const QP2_arg_type_t * signature,
const QP2_result_type_t result_type,
void * buf,
const short buflen) {
int % paseErrno;
int rc;

/* Call Qp2CallPase2 to run the unction function x/
rc = Qp2CallPase2(functionsymbol,
arglist,
signature,
result_type,
buf,
buflen);
if (xc != 0) {
printf("Qp2CallPase failed. zxrc=%i, ILE errno=%i\n", rc, errno);
if ((paseErrno=Qp2errnop()) != NULL)
printf("Qp2CallPase failed. PASE for i errno=%i\n", *paseErrno);
printf("Qp2CallPase failed. Qp2dlerror=%s\n", Qp2dlerror());

int main(int argc, char xargv[])

/* we will call a function in PASE for i named "paseFunction"
* the prototype for the function looks like this:
* 1int paseFunction(void * input, void * output) %/

/* "signature" is the argument signature for the PASE routine "paseFunction" x/
const QP2_arg_type_t signature[] = {QP2_ARG_PTR64, QP2_ARG_PTR64, QP2_ARG_END};

/* "paseFunctionArglist" are the arguments for the PASE routine "paseFunction" x/
struct {

QP2_ptr64_t inputPasePtr;

QP2_ptré4_t outputPasePtr;
%t paseFunctionArglist;

/* "inputString" will be one of the arguments to the PASE routine
* "paseFunction" we will call

22 IBMi: IBM PASE for i

* This is the string "input" in ASCII =%/
const char inputString[] = {0x69, Ox6e, 0x70, 0x75, 0x74, 0x00%;

/* "outputILEPtr" will be a pointer to storage malloc'd from PASE heap */
char * outputILEPtzr;

/* "id" is the identifier for the library opened by Qp2dlopen */
QP2_ptr64_t id;

/* "paseFunction_ptr" is the pointer to the routine "paseFunction" in PASE x/
void * paseFunction_ptr;

/* "inputAndResultBuffer" is the buffer of storage shared between ILE and PASE
* by Qp2CallPase2. This buffer contains space for the PASE function result */
struct {

QP2_dword_t result;

char inputValue[6];
t inputAndResultBuffer;

int rc;
int * paseErrno;

/* start PASE for i in this process */
startPASE();

id = openlib("/home/joeuser/libpasefn.a(shx64.0)");

if (id !=0) {
/* Locate the symbol for "paseFunction" x/
paseFunction_ptr = findsym(id, "paseFunction");

if (paseFunction_ptr != NULL) {
/* set input arguments for the call to paseFunction() x/

/* copy the inputString into the inputAndResultBuffer x/

strcpy (inputAndResultBuffer.inputValue, inputString);

/* by setting inputPasePtr argument to the offset of the

inputValue by-address argument data in the

inputAndResultbuffer structure and OR'ing that with

QP2_ARG_PTR_TOSTACK QP2CallPase2 will "fixup" the

actual argument pointer passed to the PASE function

to point to the address (plus the offset) of the

copy of the inputAndResultbuffer that Qp2CallPase2

* copies to PASE for i storage */

paseFunctionArglist.inputPasePtr =

(QP2_ptx64_t) ((offsetof (inputAndResultBuffer, inputValue))
| QP2_ARG_PTR_TOSTACK) ;

* Ok Ok ok X ok X

/* allocate memory from the PASE for i heap for an output

* argument. Qp2malloc will also set the PASE for i address

* of the allocated storage in the outputPasePtr

* argument *x/

outputILEPtr = Qp2malloc(10, &(paseFunctionArglist.outputPasePtr));

/* Call the function in PASE for i =/
rc = callPASE (paseFunction_ptr,
&paseFunctionArglist,
signature,
QP2_RESULT_DWORD,
&inputAndResultBuffer,
sizeof (inputAndResultBuffer));
if (xc !=0) §

printf("output from paseFunction = >%s<\n",
(charx)outputILEPtr);
printf("return code from paseFunction = %d\n",
(int) inputAndResultBuffer.result);
t /x 1Cc !'= 0 %/
t /% paseFunction_ptr != NULL =/
t /% did !'= 0 %/

/* Close the Qp2dlopen instance, and then call Qp2EndPase
* to end PASE for i in this job %/

Qp2dlclose(id);

Qp2EndPase() ;

return O;

¥

Source code for the IBM i Procedure paseFunction that is called by the ileMain.c program:

IBM PASE fori 23

PASE for i function to be called from ILE

Compile with something like:

x1lc -g64 -c -o paseFunction.o paseFunction.c

1d -b64 -0 shrb4.o -bnoentry -bexpall -bM:SRE -1lc paseFunction.o
ar -X64 -r /home/joeuser/libpasefn.a shré4.o

The ILE side of this example expects to find libpasefn.a in
/home/joeuser/libpasefn.a

The compiler options -galign=natural and -qldbl128 are
necessary only when interacting with IBM i ILE programs
to force relative 16-byte alignment of type long double
(used inside type ILEpointer)
/

f##include <stdlib.h>
#include <stdio.h>
int paseFunction(void % inputPtr, void * outputPtr)

F Ok Ok ok % ok Ok ok X ok %k Ok o X

{
/* An output string to return from PASE for i to ILE =
* this is the string "output" in EBCDIC */
const char outputValue[] = {0x96, 0xa4, 0xa3, 0x97, 0xas4, 0xa3, 0x00%;
printf("Entered paseFunction The input is >%s<\n",
(chaxx)inputPtx);
/* copy the output results to the outputPtr argument =/
memcpy (outputPtr, outputValue, sizeof(outputValue));
return(52); /* return something more interesting than 0 x/
b

Various functions used in the ILE portion of example 2
 The startPASE() function

Before PASE for i can be used in a process, it must be started. This is done automatically by calling the
main entry point of an PASE for i application using the APIs; for example, QP2SHELL, QP2TERM, or
Qp2RunPase.

However, because this example is calling an PASE for i function exported from a shared library (not a
main entry point), you must manually start PASE for i. Two PASE for i starter utilities are available for
this purpose: /usxr/1lib/start32 (to start the 32-bit version of PASE fori) and /usx/lib/start64
(to start the 64-bit version of PASE for i).

Be aware that each IBM i process can only have a single instance of PASE for i running. The
Qp2ptrsize() API can be used to determine whether PASE for i is already running.

— Qp2ptrsize() will return 0 if PASE for i is not currently active in the process.
— Qp2ptrsize() will return 4 if PASE for i is active in 32-bit mode.
— Qp2ptrsize() will return 8 if PASE for i is active in 64-bit mode.

« The openlib() and findsym() functions

These functions open the IBM i shared library and obtain a pointer to the function you want to call using
the Qp2dlopen() and Qp2dlsym(). These functions are similar to the dlopen () and dlsym()
routines on many platforms.

« Set up arguments for the Qp2CallPase2 call

Before calling Qp2CallPase2 () through the cal1PASE () function, the main () routine sets up the
following variables that define the interface between ILE and the PASE for i function:

— The signature-array variable defines the arguments for the PASE for i function. The elements in the
array are typically set using the #define found in the gsysinc/h.qp2user include file.

— The paseFunctionArglist structure contains the ILE variables that the PASE for i run time will map into
the arguments that will be passed to the PASE for i function when the function is called. The

24 IBMi: IBM PASE for i

members in paseFunctionArglist correspond to the signature of the PASE for i function declared in
the signature array.

— The inputAndResultBuffer structure contains the ILE variables that the PASE for i run time will use as
a sort of shared buffer between ILE and the PASE for i function when the function is called.

The first member of the structure (result in this example) will contain the return value from the PASE
fori function. This variable must match the result-type argument provided as the fourth argument in
the call to the Qp2CallPase2 () API. Anything after this first element represents storage that will be
copied into the PASE for i environment when the function is called.

In this example, the inputValue element of the inputAndResultBuffer structure will contain the by-
address argument data that will be pointed at by the first argument for the PASE for i function.

— This example uses two different ways of setting pointer arguments for the PASE for i function that is
being called.

- The second argument to the function, paseFunctionArglist.outputPasePtr, is set by calling the
Op2malloc () function. Qp2malloc () allocates memory from the PASE for i runtime heap and
returns both an ILE pointer and an PASE for i pointer to the allocated storage.

- The first argument, paseFunctionArglist.inputPasePtr, is set to the offset of the inputValue element
of the inputAndResultBuffer structure that is connected with the gp2user.h #define
QP2_ARG_PTR_TOSTACK by OR.

This tells the PASE for i run time to modify the actual pointer value provided on the call to the PASE
for i function with the address where the inputAndResultBuffer.inputValue was copied into PASE for
i memory.

« The callPASE() function

This function calls the PASE for i function using the Qp2CallPase2 () API and the arguments set in the
main() routine.
« End PASE for i in the process

After the call to the PASE for i function, the Qp2dlclose () APIis called to unload the PASE for i shared
library and Qp2EndPase () is called to end the start64 program called at the beginning of the example.

Using IBM PASE for i native methods from Java
You can use PASE for i native methods running in the PASE for i environment from your Java programs.

Support for PASE for i native methods includes full use of the native IBM i Java Native Interface (JNI)
from PASE for i native methods and the ability to call PASE for i native methods from the native IBM i Java
virtual machine (JVM).

Related information
IBM IBM PASE for i native methods for Java

Working with environment variables
PASE for i environment variables are independent of ILE environment variables. Setting a variable in one
environment has no effect on the other environment.

However, you can copy variables from ILE into PASE for i, depending on the method you use to run your
PASE for i program.

Environment variables in an interactive PASE for i session

ILE environment variables are passed to PASE for i only when it is started with QP2SHELL() and
QP2TERMY(). Use the Work with Environment Variables (WRKENVVAR) command to change, add, or delete
environment variables as needed before starting PASE for i.

IBM PASE fori 25

Environment variables in a called PASE for i session

When PASE for i is started from a program call (with the Qp2RunPase () API), you have complete control
over the environment variables. You can pass environment variables that bear no relationship to the ILE
environment from which you called the PASE for i program.

Copying environment variables to ILE before running a CL command

You can copy PASE for i environment variables to the ILE environment before you run a CL command
using an option on the systemCL () runtime function. This is also the default behavior of the PASE for i
system utility.

Related information

QP2SHELL() and QP2SHELL2()--Run an IBM PASE for i Shell Program

QP2TERM()--Run an IBM PASE for i Terminal Session

systemCL()--Run a CL Command for IBM PASE for i

IBM PASE for i environment variables

Calling IBM i programs and procedures from your IBM PASE for i programs

PASE for i provides methods for calling ILE procedures, Java programs, OPM programs, IBM i APIs, and
CL commands that give you integrated access to IBM i functions.

General configuration requirements for IBM i programs and procedures

When you make calls from the PASE for i program environment to the IBM i environment, you should
generally ensure that the program that is being called is compiled with *CALLER for the activation group,
for the following reasons:

« Only code that runs in the activation group that started PASE for i (called by the Qp2RunPase API) can
use ILE APIs, such as Qp2CallPase, to interact with the PASE for i program.

« The ILE run time might end the entire job (also ending PASE for i) if it needs to destroy an activation
group in a multithreaded job (and all jobs created by PASE for i fork are multithread-capable). By using
ACTGRP(*CALLER), you can prevent your job from ending before you want it to end.

You can avoid problems with running in a multithread-capable job by using the systemCL () runtime
function to run a CL command (including the CALL command) in a separate job that is not multithread-
capable.

Related tasks

Customizing IBM PASE for i programs to use IBM i functions

If you want your AIX application to take advantage of IBM i functions that are not directly supported by
system-supplied PASE for i shared libraries, you need to perform some additional steps to prepare your
application.

Calling ILE procedures
You can follow these steps to prepare and call ILE procedures from your PASE for i programs.

When you call ILE procedures from your PASE for i programs, you should first prepare the procedure by
enabling it for teraspace, converting text to the appropriate CCSID, and setting up variables and
structures.

1. Enable ILE procedures for teraspace

All ILE modules that you call from PASE for i must be compiled with the teraspace option set to *YES.
If your ILE modules are not compiled in this way, you will receive the MCH4433 error message
(Invalid storage model for target program &2)inthe job log for your PASE for i
application.

2. Convert text to appropriate CCSID

26 IBMi: IBM PASE for i

Text being passed between ILE and PASE for i might need to be converted to the appropriate CCSIDs
before being passed. Not doing such conversions causes your character variables to contain
undecipherable values.

3. Set up variables and structures

To make calls to ILE from your PASE for i programs, you need to set up variables and structures. You
must ensure that the required header files are copied to your AIX system, and you must set up a
signature, a result type, and an argument list variable:

« Header files: Your PASE for i program should include the header files as400_types.h and
as400_protos.h to make calls to ILE. The as400_type.h header file contains the definition of the
types used for i5/0S system-unique interfaces.

- Signature: The signature structure contains a description of the sequence and types of arguments
passed between PASE for i and ILE. The encoding for the types mandated by the ILE procedure that
you are calling can be found in the as400_types.h header file. If a signature contains fixed-point
arguments shorter than 4 bytes or floating point arguments shorter than 8 bytes, your ILE C code
needs to be compiled with the following pragma:

{#fpragma argument(ileProcedureName, nowiden)

Without this pragma, standard C linking for ILE requires 1- and 2-byte integer arguments to be
widened to 4 bytes and requires 4-byte floating-point arguments to be widened to 8 bytes.

« Result type: The result type is straightforward and works much like a return type in C.

« Argument list: The argument list must be a structure with the correct sequence of fields with types
specified by entries in the signature array. You can use the size_ILEarglist () and
build_TLEarglist () APIsto dynamically build the argument list based on the signature.

To call ILE procedures from your PASE for i programs, make the following API calls in your code:

1. Load the bound program into the ILE activation group that is associated with the procedure that
started PASE fori. You use the _TLELOADX () API to do this.

This step can be unnecessary if the bound program is already active in the activation group that
started PASE for i. In this case, you can proceed to the _ILESYMX () step, using a value of zero for the
activation mark parameter to search all symbols in all active bound programs in the current activation
group.

2. Find the exported symbol in the activation of the ILE bound program and return a 16-byte tagged
pointer to the data or procedure for the symbol. You use the _TLESYMX () API to do this.

3. Call the ILE procedure to transfer control from your PASE for i program to the ILE procedure. You use
the _TILECALL () or _TLECALLX() APItodo this.
Related reference

Copying header files
Use this information to copy header files from the system running IBM i to the system running AIX.

Related information

size_ILEarglist()--Compute ILE Argument List Size for IBM PASE for i()
build_ILEarglist()--Build an ILE Argument List for IBM PASE for i
_ILELOADX()--Load an ILE Bound Program for IBM PASE for i
_ILESYMX()--Find an Exported ILE Symbol for IBM PASE for i
_ILECALLX()--Call an ILE Procedure for IBM PASE for i

ILE Concepts PDF

Examples: Calling ILE procedures
These code examples show the PASE for i code making a call to an ILE procedure that is part of a service
program, and show the compiler commands that create the programs.

There are two procedures within the following code examples. Each procedure demonstrates different
ways of working with an ILE procedure, but both procedures call the same ILE procedure. The first

IBM PASE fori 27

procedure demonstrates building your data structures for the _TLECALL () API using PASE for i system-
provided methods. The second procedure then builds the argument list manually.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 64.

Example 1: PASE for i C code

Interspersed in the following example code are comments that explain the code. Make sure to read these
comments as you enter or review the example.

/* Name: PASEtoILE.c
*
* You must use compiler options -galign=natural and -qldbl128
* to force relative 16-byte alignment of type long double
* (used inside type ILEpointer)
*
*/

#include <stdlib.h>

#include <malloc.h>

#include <sys/types.h>

#include <stdio.h>

#include "as400_types.h"

#include "as400_protos.h"

/
init_pid saves the process id (PID) of the process that
extracted the ILEpointer addressed by ILEtarget.
init_pid is initialized to a value that is not a

valid PID to force initialization on the first
reference after the exec() of this program

If your code uses pthread interfaces, you can
alternatively provide a handler registered using
pthread_atfork() to re-initialize ILE procedure
pointers in the child process and use a pointer or
flag in static storage to force reinitialization
after exec()

/

pid_t init_pid = -1;
ILEpointer*ILEtarget; /* pointer to ILE procedure x*/

X % % % o o O X X X % > % Xt

/*
* ROUND_QUAD finds a 16-byte aligned memory
* location at or beyond a specified address

*/
#define ROUND_QUAD(x) (((size_t)(x) + 0xf) & ~0xf)
/*

* do_init loads an ILE service program and extracts an
* ILEpointer to a procedure that is exported by that

* service program.

*/

void do_init()
static char ILEtarget_buf[sizeof(ILEpointer) + 15];
unsigned long long actmark;

int rc;

/* _ILELOADX() loads the service program x/
actmark = _ILELOADX("SHUPE/ILEPASE", ILELOAD_LIBOBIJ);

if (actmark == -1)
abort();
/*
* x1lc does not guarantee 16-byte alignment for
* static variables of any type, so we find an
* aligned area in an oversized buffer. _TILESYMX()
* extracts an ILE procedure pointer from the
* service program activation
*/

ILEtarget = (ILEpointer*)ROUND_QUAD (ILEtarget_buf);

28 IBMi: IBM PASE for i

rc = _TLESYMX(ILEtarget, actmark, "ileProcedure");
if (xc == -1)
abort();

/*
* Save the current PID in static storage so we
* can determine when to re-initialize (after fork)
*/
init_pid = getpid();
b

/*
* "aggregate" is an example of a structure or union
* data type that is passed as a by-value argument.

*/
typedef struct {
char filler[5];
t aggregate;
/*
* "result_type" and "signature" define the function
* result type and the sequence and type of all
* arguments needed for the ILE procedure identified
* by ILEtarget
*
* NOTE: The fact that this argument list contains
* fixed-point arguments shorter than 4 bytes or
* floating-point arguments shorter than 8 bytes
* implies that the target ILE C procedure is compiled
* with #pragma argument(ileProcedureName, nowiden)
*
* Without this pragma, standard C linkage for ILE
* requires 1-byte and 2-byte integer arguments to be
* widened to 4-bytes and requires 4-byte floating-point
* arguments to be widened to 8-bytes

*/

static result_type_t result_type = RESULT_INT32;
static arg_type_t signature[] =

1

ARG_INT32,
ARG_MEMPTR,
ARG_FLOAT64,
ARG_UINTS, /* requires #pragma nowiden in ILE code x/
sizeof(aggregate),
ARG_INT16,
ARG_END
i
/*
* simple_wrapper accepts the same arguments and returns
* the same result as the ILE procedure it calls. This
* example does not require a customized or declared structure
* for the ILE argument list. This wrapper uses malloc
* to obtain storage. If an exception or signal occurs,
* the storage may not be freed. If your program needs
* to prevent such a storage leak, a signal handler
* must be built to handle it, or you can use the methods
* in best_wrapper.
*/

int simple_wrapper(int argl, void xarg2, double arg3,
char argd, aggregate argh, short argh)
{

int result;

/*

xlc does not guarantee 16-byte alignment for

automatic (stack) variables of any type, but

malloc() always returns 16-byte aligned storage.
size_IlLEarglist() determines how much storage is

* needed, based on entries in the signature array

*/

ILEarglist_base *xILEarglist;

ILEarglist = (ILEarglist_basex)malloc(size_ILEarglist(signature));

*
*
*
*

/*

* build_TILEarglist() copies argument values into the ILE
* argument list buffer, based on entries in the signature
* array.

*/

build_TLEarglist(ILEarglist, &argl, signature);

/*

* Use a saved PID value to check if the ILEpointer

IBM PASE fori 29

* is set. ILE procedure pointers inherited by the
* child process of a fork() are not usable because
* they point to an ILE activation group in the parent
* process
*/
if (getpid() != init_pid)
do_init();
/*

% _TLECALL calls the ILE procedure. If an exception or signal
*/occurs, the heap allocation is orphaned (storage leak)
*
_TLECALL(ILEtarget, ILEarglist, signature, result_type);
result = ILEarglist->result.s_int32.r_int32;
if (result == 1) {
printf("The results of the simple wrapper is: %s\n", (char x)arg2);

else if (result == 0)
printf("ILE received other than 1 or 2 for version.\n");

else
printf("The db file never opened.\n");

free(ILEarglist);

return result;
b
/*
* ILEarglistSt defines the structure of the ILE argument list.
* x1lc provides 16-byte (relative) alignment of ILEpointer
* member fields because ILEpointer contains a 128-bit long
* double member. Explicit pad fields are only needed in
* front of structure and union types that do not naturally
* fall on ILE-mandated boundaries
*/

typedef struct {
ILEarglist_base base;
int32 argl;
/* implicit 12-byte pad provided by compiler x/
ILEpointer arg2;
float64 arg3;
uint8 arg4;
char filler[7]; /* pad to 8-byte alignment x/
aggregate argh; /* 5-byte aggregate (8-byte align) x/
/* implicit 1-byte pad provided by compiler x/
intl6 argé6;

%t ILEarglistSt;

/*

* best_wrapper accepts the same arguments and returns

* the same result as the ILE procedure it calls. This

* method uses a customized or declared structure for the

* ILE argument list to improve execution efficiency and

* avoid heap storage leaks if an exception or signal occurs
*

int best_wrapper(int argl, void =*arg2, double arg3,
char argd, aggregate argh, short argb)
{

/*

* x1c does not guarantee 16-byte alignment for

* automatic (stack) variables of any type, so we
* find an aligned area in an oversized buffer

*/

char ILEarglist_buf[sizeof(ILEarglistSt) + 15];
ILEarglistSt *xILEarglist = (ILEarglistSt*)ROUND_QUAD(ILEarglist_buf);
/*

* Assignment statements are faster than calling
* build_ILEarglist()

x/

ILEarglist->argl = argl;
ILEarglist->arg2.s.addr = (addressé4_t)arg?2;
ILEarglist->arg3 = arg3;
ILEarglist->argd = arg4;
ILEarglist->argh = argh;
ILEarglist->argh = argh;

/*

* Use a saved PID value to check if the ILEpointer

* is set. ILE procedure pointers inherited by the

* child process of a fork() are not usable because

* they point to an ILE activation group in the parent
* process

*/
if (getpid() != init_pid)
do_init();

30 IBMi: IBM PASE for i

/*

* _TLECALL calls the ILE procedure. The stack may
* be unwound, but no heap storage is orphaned if
* an exception or signal occurs

*/
_ILECALL(ILEtarget, &ILEarglist->base, signature, result_type);
if (ILEarglist->base.result.s_int32.r_int32 == 1)
printf("The results of best_wrapper function is: %s\n", arg2);
else if (ILEarglist->base.result.s_int32.r_int32 == 0)
printf("ILE received other than 1 or 2 for version.\n");
else
printf("The db file never opened.\n");
return ILEarglist->base.result.s_int32.r_int32;

void main () {
int version, result2;
char dbText[25];
double dblNumber = 5.999;
char justChar = 'a';
short shrtNumber = 3;
aggregate agg,;
strcpy(dbText, "none");

for (version =1; version <= 2; version++)

if (version == 1) {
result2= simple_wrapper(version, dbText, dblNumber, justChar, agg, shrtNumber);
t else {

result2= best_wrapper(version, dbText, dblNumber, justChar, agg, shrtNumber);

Example 2: ILE C code

You now write the ILE C code for this example on your IBM i system. You need a source physical file in
your library in which to write the code. Again, in the ILE example, comments are interspersed. These
comments are critical to understanding the code. You should review them as you enter or review the
source.

#include <stdio.h>
#include <math.h>

f##include <recio.h>
#include <iconv.h>
#include <string.h>
f##include <stdlib.h>
#include <errno.h>

typedef struct {
char fillex[5];
1 aggregate;

#pragma mapinc("datafile", "SHUPE/PASEDATA(*all)", "both",,,"")
#include "datafile"
#pragma argument(ileProcedure, nowiden) /% not necessary x/

/*

* The arguments and function result for this ILE procedure
* must be equivalent to the values presented to _ILECALL

* function in the i5/0S program

*/
int ileProcedure(int argl,
char *arg2,
double args3,
char argd[2],
aggregate args,
short arge)
i
char fromcode[33];
char tocode[33];
iconv_t cd; /* conversion descriptor */
char *SIC;
char *tgt;
size_t srclen;
size_t tgtlLen;

IBM PASE fori 31

int result;

/*

* Open a conversion descriptor to convert CCSID 37
* (EBCDIC) to CCSID 819 (ASCII), that is used for
* any character data returned to the caller

*/

memset (fromcode, 0, sizeof(fromcode));
strcpy(fromcode, "IBMCCSIDOOO370000000");

memset (tocode, 0, sizeof(tocode));

strcpy(tocode, "IBMCCSIDO0819");

cd = iconv_open(tocode, fromcode);

if (cd.return_value == -1)
{
printf("iconv_open failed\n");
return -1;
b
/*
* If argl equals one, return constant text (converted
* to ASCII) in the buffer addressed by arg2. For any
* other argl value, open a file and read some text,
* then return that text (converted to ASCII) in the
*/buffer addressed by arg2
*

if (argl == 1)
i

src = "Sample 1 output text";

srcLen = strlen(sxc) + 1;

tgt = arg2; /* iconv output to arg2 buffer x/
tgtlen = srclen;

iconv(cd, &src, &srclLen, &tgt, &tgtlLen);

result = 1;
3
else
i
FILE *fp;
fp = fopen("SHUPE/PASEDATA", "r");
if (!fp) /* if file open error =/
1
printf ("fopen(\"SHUPE/PASEDATA\", \"r\") failed, "
"errno = %i\n", errno);
result = 2;
3
else
1
char buf[25];
char xstring;
errno = 0;
string = fgets(buf, sizeof(buf), fp);
if (!string)
1
printf("fgets() EOF or error, errno = %i\n", errno);
buf[0] = 0; /% null-terminate empty buffer %/
src = buf;
srcLen = strlen(buf) + 1;
tgt = arg2; /* iconv output to arg2 buffer x/
tgtlen = srclen;
iconv(cd, &src, &srclLen, &tgt, &tgtlLen);
fclose(fp);
result = 1;
3
/*

* Close the conversion descriptor, and return the
* result value determined above

*/

iconv_close(cd);

return result;

Example 3: Compiler commands to create the programs

When you compile your PASE for i program, you must use compiler options -qalign=natural and -
qldb1128 to force relative 16-byte alignment of type long double, which is used inside type ILEpointer.

32 IBMi: IBM PASE for i

This alignment is required by ILE in IBM i. For option -bI:, you should enter the path name in which you
saved as400_libc.exp:

x1lc -o PASEtoILE -gqldbl128 -galign=natural
-bI:/afs/rich.xyz.com/usrl/shupe/PASE/as400_libc.exp
PASEtoILE.c

When you compile your ILE C module and service program, compile them with the teraspace option.
Otherwise, PASE for i cannot interact with them:

CRTCMOD MODULE (MYLIB/MYMODULE)
SRCFILE(MYLIB/SRCPF)
TERASPACE (xYES *TSIFC)

CRTSRVPGM SRVPGM(MYLIB/MYSRVPGM)
MODULE (MYLIB/MOMODULE)

Finally, you must compile your DDS and propagate at least one record of data:

CRTPF FILE(MYLIB/MYDATAFILE)
SRCFILE (MYLIB/SRCDDSF)
SRCMBR (MYMEMBERNAME)

Calling IBM i programs from IBM PASE for i
You can take advantage of existing IBM i programs (*PGM objects) when you create your PASE for i
applications. In addition, you can use the systemCL () function to run the CL CALL command.

Use the _PGMCALL () runtime function to call an IBM i program from within your PASE for i program.

This method provides for faster processing than the systemCL () runtime function, but it does not
perform automatic conversion of character string arguments (unless you specify
PGMCALL_ASCII_STRINGS), and it does not give you the capability of calling the program in a different
job.

Related tasks

Running IBM i commands from IBM PASE for i
You can extend the capabilities of your PASE for i program by running control language (CL) commands
that use IBM i functions.

Related information
_PGMCALL()--Call an IBM i Program for IBM PASE for i

Example: Calling IBM i programs from IBM PASE for i
This example shows how you call programs in an PASE for i program using the _PGMCALL runtime
function.

Interspersed in the following example code are comments that explain the code. Make sure to read these
comments as you enter or review the example.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 64.

/* This example uses the IBM i PASE _PGMCALL function to call the IBM i
API QSZRTVPR. The QSZRTVPR API is used to retrieve information about
i5/0S software product loads. Refer to the QSZRTVPR API documentation

for specific information regarding the input and output parameters needed
to call the API %/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "as400_types.h"
#include "as400_protos.h"

int main(int argc, char * argv([])

/* IBM i API's (including QSZRTVPR) typically expect character
parameters to be in EBCDIC. However, character constants in

IBM PASE fori 33

PASE for i programs are typically in ASCII. So, declare some
CCSID 37 (EBCDIC) character parameter constants that will be
needed to call QSZRTVPR =x/

/* format[] is input parameter 3 to QSZRTVPR and is
initialized to the text 'PRDRO10O' in EBCDIC =/
const char format[] =
$0xd7, Oxd9, Oxc4, 0xd9, 0xf0O, Oxfl, 0xfO, OxfO%;

/* prodinfo[] is input parameter 4 to QSZRTVPR and is
initialized to the text '%x0PSYS *CUR ©0033xCODE ' in EBCDIC

This value indicates we want to check the code load for Option 33
of the currently installed i5/0S release */
const char prodinfo[] =
$0x5c, Oxd6, Oxd7, Oxe2, Oxe8, Oxe2, 0x40, 0x5c, 0Oxc3,
Oxed, Oxd9, 0x40, 0x40, 0xfO, Oxf0, Oxf3, 0xf3, Ox5c,
Oxc3, Oxd6é, Oxc4, Oxc5, Ox40, 0x40, 0x40, 0x40, 0x40%;

/* installed will be compared with the "Load State" field of the
information returned by QSZRTVPR and is initialized to the text
'90"' in EBCDIC =/

const char installed[] = {0xf9, 0Oxf0%;

/* rcvr is the output parameter 1 from QSZRTVPR x/
char rcvr[108];

/* rcvrlen is input parameter 2 to QSZRTVPR x/
int rcvrlen = sizeof(rcvr);

/* errcode is input parameter 5 to QSZRTVPR x/
struct §

int bytes_provided;

int bytes_available;

char msgid[7];
%t errcode;

/* qszrtvpr_pointer will contain the IBM i 16-byte tagged
system pointer to QSZRTVPR x/
ILEpointer gszrtvpr_pointer;

/* qszrtvpr_argv6 is the array of argument pointers to QSZRTVPR x/
void *xqszrtvpr_argv([6];

/* return code from _RSLOBJ2 and _PGMCALL functions =/
int rc;

/* Set the IBM i pointer to the QSYS/QSZRTVPR %PGM object x/
rc = _RSLOBJ2(&qszrtvpr_pointer,

RSLOBJ_TS_PGM,

"QSZRTVPR",

n QSYS n) ;

/* initialize the QSZRTVPR returned info structure x/
memset (rcvr, 0, sizeof(xrcvr));

/* initialize the QSZRTVPR error code structure */
memset (&errcode, O, sizeof(errcode));
errcode.bytes_provided = sizeof(errcode);

/* initialize the array of argument pointers for the QSZRTVPR API x*/

qszrtvpr_argv[0] = &rcvr;
gszrtvpr_argv[1l] = &rcvrlen;
qszrtvpr_argv([2] = &format;
qszrtvpr_argv[3] = &prodinfo;
gszrtvpr_argv([4] = &errcode;
gszrtvpr_argv[5] = NULL;

/* Call the IBM i QSZRTVPR API from PASE for i x/
rc = _PGMCALL (&qszrtvpr_pointer,
(void*)&qszrtvpr_argv,
0);

/* Check the contents of bytes 63-64 of the returned information.
If they are not '90' (in EBCDIC), the code load is NOT correctly
installed x/

if (memcmp (&rcvr[63], &installed, 2) != 0)
printf("IBM i Option 33 is NOT installed\n");

else
printf("IBM i Option 33 IS installed\n");

34 IBMi: IBM PASE for i

return(0);

Running IBM i commands from IBM PASE for i
You can extend the capabilities of your PASE for i program by running control language (CL) commands
that use IBM i functions.

Use the systemCL runtime function to run an IBM i command from within an PASE for i program.

When you run IBM i commands from PASE for i the systemCL runtime function handles ASCII-to-EBCDIC
conversion of character string arguments, and lets you call the program in a different job.

Related tasks

Calling IBM i programs from IBM PASE for i

You can take advantage of existing IBM i programs (*PGM objects) when you create your PASE for i
applications. In addition, you can use the systemCL () function to run the CL CALL command.

Related information
systemCL()--Run a CL Command for IBM PASE for i

Example: Running IBM i commands from IBM PASE for i
This example shows how to run CL commands in an PASE for i program.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 64.

The following example shows how you call commands in an PASE for i program:

/* sampleCL.c
example to demonstrate use of sampleCL to run a CL command
Compile with a command similar to the following.
xlc -o sampleCL -I /whatever/pase -bI:/whatever/pase/as400_libc.exp sampleCL.c
Example program using QP2SHELL() follows.
call gp2shell ('sampleCL' 'wrkactjob') =/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <as400_types.h> /*x PASE header =/
#include <as400_protos.h> /x PASE header x/

void main(int argc, charx argv[])
{

int zxc;
if (argc!=2)
1

printf("usage: %s \"CL command\"\n", argv[0]);
exit(1);

printf("running CL command: \"%s\"\n", argv[1]);

/* process the CL command x/

rc = systemCL(argv[1], /* use first parameter for CL command x*/
SYSTEMCL_MSG_STDOUT
SYSTEMCL_MSG_STDERR); /* collect messages x/

printf("systemCL returned %d. \n", zxc);
if (zc != 0)
{

perror("systemCL");
exit(xc);

How IBM PASE for i programs interact with IBM i

As you customize your PASE for i programs to use IBM i functions, you need to consider the ways in which
your program will interact with them.
Related tasks

Customizing IBM PASE for i programs to use IBM i functions

IBM PASE fori 35

If you want your AIX application to take advantage of IBM i functions that are not directly supported by
system-supplied PASE for i shared libraries, you need to perform some additional steps to prepare your
application.

Communications
PASE for i is generally compatible with AIX and Linux in sockets communications.

PASE for i supports the same syntax as AIX for sockets communications. This cannot match other
operating systems, such as Linux, in every detail.

PASE for i sockets support is comparable to the AIX implementation of sockets, but PASE for i uses the
IBMiimplementation of sockets (instead of the AIX kernel implementation of sockets), and this forces
some minor differences from AIX behavior.

The IBM i implementation of sockets supports both UNIX 98 and Berkeley Software Distributions (BSD)
sockets. In most cases, PASE for i resolves differences in these styles by adopting the behavior of the AIX
implementation.

In addition, the user profile for a running application must have the *IOSYSCFG special authority to
specify the level parameter as IPPROTO_IP and the option_value parameter as IP_ OPTIONS on socket
APIs.

Related information
Socket programming

Berkeley Software Distributions compatibility
UNIX 98 compatibility

Database

PASE for i supports the Db2 for i call level interfaces (CLIs). DB2 CLIs on AIX and IBM i are not exact
subsets of each other, so there are minor differences in a few interfaces. Some APIs in one
implementation might not exist in another.

Because of this, you should consider the following points:

« Code can be generated, but not tested, on AIX itself. Instead, you must test your code across platforms
within PASE for i.

« You must compile with the IBM i version of header file sqlcli.h. A program compiled using the AIX
version of this header file will not run in PASE for i.

IBMiis an EBCDIC-encoded system by default, while AIX is based on ASCII. This difference often
requires data conversions between the IBM i database (Db2 for i) and the PASE for i application.

In the PASE for i implementation of DB2 CLIs, PASE for i system-provided library routines automatically
perform data conversions from ASCII to Extended Binary Coded Decimal Interchange Code (EBCDIC) and
back for character data. The conversions are made based on the tagged CCSID of the data being accessed
and the ASCII CCSID under which the PASE for i program is running. If the database is tagged, or if it is
tagged with a CCSID of 65535, no automatic conversion takes place. It is left to the application to
understand the encoding format of the data and to do any necessary conversion.

Working with CCSIDs
When you use the Qp2RunPase () API, you must explicitly specify the PASE for i CCSID.

You can control the PASE for i CCSID by setting both of these variables in the ILE before you call API
program QP2TERM, QP2SHELL, or QP2SHELL2:

. PASE_LANG
. QIBM_PASE_CCSID

If the ILE omits either or both of these variables, QP2TERM, QP2SHELL, and QP2SHELL2 by default set
the PASE for i CCSID and PASE for i environment variable LANG with the best PASE for i equivalents of the
language and CCSID attributes of your job.

36 IBMi: IBM PASE for i

Extensions to libc.a give the PASE for i application the ability to change the running CCSID of the
application, using the _SETCCSID() function.

Another extension gives the PASE for i application the ability to override the DB2 CLI internal conversion
without changing the CCSID of the application. The SQLOverrideCCSID400 () function accepts an
integer of the override CCSID as a single parameter.

Note: The CCSID override function SQLOverrideCCSID400 () must be called before any other SQLx()
API for the override to take effect; otherwise, the request is ignored.

Using Db2 for i CLIs in PASE for i programs

To use DB2 CLIs in your PASE for i programs, you need to copy the sqlcli.h header file and the
libdb400.exp export file to your AIX system before you compile your source. The DB2 CLI library routines
are in 1ibdb400. a for the PASE for i environment, and are implemented using pthread interfaces,
providing thread safety. Most PASE for i CLI functions call corresponding ILE CLI functions to perform the
required operation.

Note: When you use DB2 CLIs in your PASE for i programs, consider the following points:

« SQLGetSubString always returns an EBCDIC string when sub-stringing the CLOB/DBCLOB field. The
SQLGetSubString is used only for LOB data types.

« SQLTables, column 4 of the result set (table type), is always returned as EBCDIC.

« Torender graphic-typed data in an PASE for i program, the data must be typed in the program as
wchar; this causes the database to convert from a graphic and pure double-byte character to Unicode/
UCS-2. Otherwise, the database converts between the CCSID of the data and the CCSID of the IBM i
job. The database does not support conversion between EBCDIC graphic and the CCSID (either from the
Qp2RunPase() API or the SQLOverrideCCSID400() API).

Related reference

Copying header files
Use this information to copy header files from the system running IBM i to the system running AIX.

Copying export files
Use this information to copy the export files from the system running IBM i to an AIX directory.

Related information

QP2TERM()--Run an IBM PASE for i Terminal Session

QP2SHELL() and QP2SHELL2()--Run an IBM PASE for i Shell Program
_SETCCSID()--Set IBM PASE for i CCSID
SQLOverrideCCSID400()--Override SQL CLI CCSID for IBM PASE for i
SQL call level interface

Example: Calling Db2 for i CLI functions in an PASE for i program
This example shows an PASE for i program that accesses Db2 for i using the Db2 for i SQL call level
interfaces.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 64.

/* 15/0S PASE DB2 for i5/0S example program

*

* To show an example of an PASE for i program that accesses

* DB2 for i via SQL CLI

*

* Program accesses System i Access database, QIWS/QCUSTCDT, that
* should exist on all systems

*

* Change system name, userid, and password in fun_Connect()

* procedure to valid parms

*

* Compilation invocation:

*

* x1c -I./include -bI:./include/libdb400.exp -o paseclidb4 paseclidb4.c
*

IBM PASE fori 37

* FTP in binary, run from QP2TERM() terminal shell

*

* Output should show all rows with a STATE column match of MN %/
/* Change Activity: =/

/> End Change Activity */

#tdefine SQL_MAX_UID_LENGTH 10
fidefine SOL_MAX_PWD_LENGTH 10
#tdefine SOL_MAX_STM_LENGTH 255

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sqlcli.h"

SQLRETURN fun_Connect(void);
SQLRETURN fun_DisConnect(void);
SQLRETURN fun_ReleaseEnvHandle(void);
SQLRETURN fun_ReleaseDbcHandle(void);
SQLRETURN fun_ReleaseStmHandle(void);
SQLRETURN fun_Process(void);
SQLRETURN fun_Process2(void);

void fun_PrintError(SQLHSTMT);

SQLRETURN nml_ReturnCode;

SQLHENV nml_HandleToEnvironment;

SQLHDBC nml_HandleToDatabaseConnection;

SQLHSTMT nml_HandleToSqlStatement;

SQLINTEGER Nmi_vParam;

SQLINTEGER Nmi_RecordNumbexrToFetch = 0;

SQLCHAR chs_SqglStatement@1[SQL_MAX_STM_LENGTH + 1];
SQLINTEGER nmi_PcbvValue;

SQLINTEGER nmi_vParam;

char *pStateName = "MN";

void main() $
static
charxpszId = "main()";
SQLRETURN nml_ConnectionStatus;
SQLRETURN nml_ProcessStatus;

nml_ConnectionStatus = fun_Connect();
if (nml_ConnectionStatus == SQL_SUCCESS) {
printf("%s: fun_Connect() succeeded\n", pszId);

t else §
printf("%s: fun_Connect() failed\n", pszId);
exit(-1);

t /% endif %/

printf("%s: Perform query\n", pszId);
nml_ProcessStatus = fun_Process();
printf("%s: Query complete\n", pszId);
nml_ConnectionStatus = fun_DisConnect();
if (nml_ConnectionStatus == SQL_SUCCESS) {

printf("%s: fun_DisConnect() succeeded\n", pszId);

t else {
printf("%s: fun_DisConnect() failed\n", pszId);
exit(-1);

t /* endif =/

printf("%s: normal exit\n", pszId);
t /* end main %/

SQLRETURN fun_Connect()
1
static char *pszId = "fun_Connect()";
SQLCHAR chs_As400System[SQL_MAX_DSN_LENGTH 1;
SQLCHAR chs_UserName[SQL_MAX_UID_LENGTH J;
SQLCHAR chs_UserPassword[SQL_MAX_PWD_LENGTH 1];
nml_ReturnCode = SQLAllocEnv(&nml_HandleToEnvironment);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLAllocEnv() succeeded\n", pszId);
fun_PrintError(SQL_NULL_HSTMT);
printf("%s: Terminating\n", pszId);
return SQL_ERROR;
1t else §
printf("%s: SQLAllocEnv() succeeded\n", pszId);
t /% endif %/

strcpy(chs_As400System, "AS4PASE");

strcpy(chs_UserName, "QUSER");
strcpy(chs_UserPassword, "QUSER");

38 IBMi: IBM PASE for i

printf("%s: Connecting to %s userid %s\n", pszId, chs_As400System, chs_UserName);

nml_ReturnCode = SQLAllocConnect(nml_HandleToEnvironment,
&nml_HandleToDatabaseConnection);

if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLAllocConnect\n", pszId);
fun_PrintError(SQL_NULL_HSTMT);
nml_ReturnCode = fun_ReleaseEnvHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;
t else §
printf("%s: SQLAllocConnect() succeeded\n", pszId);
t /x endif */

nml_ReturnCode = SQLConnect(nml_HandleToDatabaseConnection,
chs_As400System,
SQL_NTS,
chs_UserName,
SQL_NTS,
chs_UserPassword,
SQL_NTS);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLConnect(%s) failed\n", pszId, chs_As400System);
fun_PrintError(SQL_NULL_HSTMT);
nml_ReturnCode = fun_ReleaseDbcHandle();
nml_ReturnCode = fun_ReleaseEnvHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;
t else §
printf("%s: SQLConnect(%s) succeeded\n", pszId, chs_As400System);
return SQL_SUCCESS;
t /% endif %/
t /* end fun_Connect %/

SQLRETURN fun_Process()
1

static
char*pszId = "fun_Process()";
charcLastName[80];

nml_ReturnCode = SQLAllocStmt(nml_HandleToDatabaseConnection,
&nml_HandleToSqlStatement);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLAllocStmt() failed\n", pszId);
fun_PrintError(SQL_NULL_HSTMT);
printf("%s: Terminating\n", pszId);
return SQL_ERROR;
1 else §
printf("%s: SQLAllocStmt() succeeded\n", pszId);
t /% endif %/

strcpy(chs_SqglStatement@1, "select LSTNAM, STATE ");
strcat(chs_SqlStatement@1, "from QIWS.QCUSTCDT ");
strcat(chs_SqlStatement0l, "where ");

strcat(chs_SqlStatement@1, "STATE = 2?2 ");

nml_ReturnCode = SQLPrepare(nml_HandleToSqlStatement,
chs_SqlStatement0l,
SQL_NTS);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLPrepare() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;
1t else §
printf("%s: SQLPrepare() succeeded\n", pszId);
t /* endif */

Nmi_vParam = SQL_TRUE;
nml_ReturnCode = SQLSetStmtOption(nml_HandleToSqlStatement,
SQL_ATTR_CURSOR_SCROLLABLE,
(SQLINTEGER *) &Nmi_vParam);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLSetStmtOption() failed\n", pszId);
fun_PrintError(nml_HandleToSqglStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;
t else §
printf("%s: SQLSetStmtOption() succeeded\n", pszId);

IBM PASE fori 39

t /* endif x/

Nmi_vParam = SQL_TRUE;
nml_ReturnCode = SQLSetStmtOption(nml_HandleToSqlStatement,
SQL_ATTR_FOR_FETCH_ONLY,
(SQLINTEGER *) &Nmi_vParam);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLSetStmtOption() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;
1 else §
printf("%s: SQLSetStmtOption() succeeded\n", pszId);
t /% endif %/

nmi_PcbValue = 0;
nml_ReturnCode = SQLBindParam(nml_HandleToSqlStatement,
11
SQL_CHAR,
SQL_CHAR,
21
0,
(SQLPOINTER) pStateName,
(SQLINTEGER %) &nmi_PcbValue);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLBindParam() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;
t else {
printf("%s: SQLBindParam() succeeded\n", pszId);
t /% endif %/

nml_ReturnCode = SQLExecute(nml_HandleToSqlStatement);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLExecute() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;
1t else §
printf("%s: SQLExecute() succeeded\n", pszId);
t /% endif %/

nml_ReturnCode = SQLBindCol(nml_HandleToSqlStatement,
SOL_CHAR,
(SQLPOINTER) &clLastName,
(SQLINTEGER) (8),
(SQLINTEGER =) &nmi_PcbValue);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLBindCol() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("¥%s: Terminating\n", pszId);
return SQL_ERROR;
t else §
printf("%s: SQLBindCol() succeeded\n", pszId);
t /*x endif */

do §
memset(cLastName, '\0', sizeof(cLastName));
nml_ReturnCode = SQLFetchScroll(nml_HandleToSqlStatement,
SQL_FETCH_NEXT,
Nmi_RecordNumberToFetch);
if (nml_ReturnCode == SQL_SUCCESS) {
printf("%s: SQLFetchScroll() succeeded, LastName(%s)\n", pszId, clLastName);
1t else §
t/*endif */
t while (nml_ReturnCode == SQL_SUCCESS);
if (nml_ReturnCode != SQL_NO_DATA_FOUND) %
printf("%s: SQLFetchScroll() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;
1 else §
printf("%s: SQLFetchScroll() completed all rows\n", pszId);
t /* endif */

40 IBMi: IBM PASE for i

nml_ReturnCode = SQLCloseCursor(nml_HandleToSqlStatement);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLCloseCursor() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;
t else {
printf("%s: SQLCloseCursor() succeeded\n", pszId);
t /x endif %/

return SQL_SUCCESS;
1t /x end fun_Process %/

SQLRETURN fun_DisConnect()
1
static
charxpszId = "fun_DisConnect()";

nml_ReturnCode = SQLDisconnect(nml_HandleToDatabaseConnection);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLDisconnect() failed\n", pszId);
fun_PrintError(SQL_NULL_HSTMT);
printf("%s: Terminating\n", pszId);
return 1;
t else {
printf("%s: SQLDisconnect() succeeded\n", pszId);
t /x endif */

fun_ReleaseDbcHandle();

nml_ReturnCode
fun_ReleaseEnvHandle();

nml_ReturnCode

return nml_ReturnCode;
t /x end fun_DisConnect */

SQLRETURN fun_ReleaseEnvHandle()
1

static
char*pszId = "fun_ReleaseEnvHandle()";

nml_ReturnCode = SQLFreeEnv(nml_HandleToEnvironment);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLFreeEnv() failed\n", pszId);
fun_PrintError(SQL_NULL_HSTMT);
return SQL_ERROR;
1t else §
printf("%s: SQLFreeEnv() succeeded\n", pszId);
return SQL_SUCCESS;
t /% endif %/
t /* end fun_ReleaseEnvHandle */

SQLRETURN fun_ReleaseDbcHandle()
1

static
charxpszId = "fun_ReleaseDbcHandle()";

nml_ReturnCode = SQLFreeConnect(nml_HandleToDatabaseConnection);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLFreeConnect() failed\n", pszId);
fun_PrintError(SQL_NULL_HSTMT);
return SQL_ERROR;
t else {
printf("%s: SQLFreeConnect() succeeded\n", pszId);
return SQL_SUCCESS;
t /* endif =/
t /* end fun_ReleaseDbcHandle x/

SQLRETURN fun_ReleaseStmHandle()
i
static
charxpszId = "fun_ReleaseStmHandle()";

nml_ReturnCode = SQLFreeStmt(nml_HandleToSqlStatement, SQL_CLOSE);
if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLFreeStmt() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
return SQL_ERROR;
t else §
printf("%s: SQLFreeStmt() succeeded\n", pszId);
return SQL_SUCCESS;
t /* endif */
t /* end fun_ReleaseStmHandle */

IBM PASE fori 41

void fun_PrintError(SQLHSTMT nml_HandleToSqlStatement)
1

static
charxpszId = "fun_PrintError()";

SQLCHAR chs_SqlState[SQL_SQLSTATE_SIZE];

SQLINTEGER nmi_NativeErrorCode;

SQLCHAR chs_ErrorMessageText[SQL_MAX_MESSAGE_LENGTH + 1];
SQLSMALLINT nmi_NumberOfBytes;

nml_ReturnCode = SQLError(nml_HandleToEnvironment,
nml_HandleToDatabaseConnection,
nml_HandleToSqlStatement,
chs_SqlState,
&nmi_NativeErrorCode,
chs_ErrorMessageText,
sizeof(chs_ErrorMessageText),
&nmi_NumberOfBytes);

if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLError() failed\n", pszId);
return;
t /% endif %/

printf("%s: SqlState - %s\n", pszId, chs_SqlState);
printf("%s: SqlCode - %d\n", pszId, nmi_NativeErrorCode);
printf("%s: Error Message:\n", pszId);
printf("%s: %s\n", pszId, chs_ErrorMessageText);

t /* end fun_PrintError x/

Data encoding
Most operating systems, such as AIX and Linux, use ASCII character encoding. Most IBM i functions use
EBCDIC character encoding.

You can specify a coded character set identifier (CCSID) value for some IBM i object types to identify a
specific encoding for character data in the object.

PASE for i byte stream files have a CCSID attribute that is used by most system interfaces outside PASE
for i to convert text data read from or written to the file as needed. IBM i does not do CCSID conversion
for data read from or written to stream files (consistent with AIX), but it does set the CCSID attribute of
any byte stream file created by an PASE for i program to the current PASE for i CCSID value so other
system functions can correctly handle ASCII text in the file.

If you use AIX APIs that are shipped in the PASE for i shared libraries, PASE for i handles most of the data
conversion for you. PASE for i programs can use iconv functions provided in shared library 1ibiconv.a
for any character data conversions that are not handled automatically by PASE for i run time. For example,
an PASE for i application generally needs to convert character strings to EBCDIC before calling an IBM i
API function (using either _ILECALLX or _PGMCALL).

Related concepts

File systems

PASE for i programs can access any file or resource that is accessible through the integrated file system,
including objects in the QSYS.LIB and QOPT file systems.

File systems
PASE for i programs can access any file or resource that is accessible through the integrated file system,
including objects in the QSYS.LIB and QOPT file systems.

Buffered input and output

Input and output to and from external devices is buffered on the IBM i operating system. It is handled by
input and output processors that deal with blocks of data. Conversely, operating systems, such as AIX
and Linux, typically operate with character-by-character (unbuffered) input and output. On the IBM i
operating system, only certain input and output signals (for example, the Enter key, function keys, and
system request) send an interrupt to the system.

42 IBMi: IBM PASE for i

Data conversion support

PASE for i programs pass ASCII (or UTF-8) path names to the open () function to open byte stream files.
The names are automatically converted to the encoding scheme used by the IBM i operating system, but
any data read or written from the open file is not converted.

Use of file descriptors

The PASE for i run time normally uses ILE C run time support for files stdin, stdout, and stderr, which
provide consistent behavior for PASE for i and ILE programs.

PASE for i and ILE C use the same streams for standard input and output (stdin, stdout, and stderr). PASE
for i programs always access standard input and output using file descriptors 0, 1, and 2. ILE C, however,
does not always use integrated file descriptors for stdin, stdout, and stderr, so PASE for i provides a
mapping between PASE for i file descriptors and descriptors in the integrated file system. Because of this
mapping, PASE for i programs and ILE C programs can use different descriptor numbers to access the
same open file.

You can use the PASE for i extension on the £cnt1 () function, F_MAP_XPFFD, to assign an PASE for i
descriptor to an ILE number. This is useful if your PASE for i application needs to do file operations for an
ILE descriptor that was not created by PASE for i.

An IBM i system-unique extension to the £statx () function, STX_XPFFD_PASE, allows an PASE for i
program to determine the integrated file system descriptor number for an PASE for i file descriptor.
Special values (negative numbers) are returned for any PASE for i descriptor attached to ILE C runtime
support for files stdin, stdout, and stderr.

If the ILE environment variable QIBM_USE_DESCRIPTOR_STDIO is set to Y or I when the Qp2RunPase ()
APL is called, PASE for i synchronizes file descriptors 0, 1, and 2 with the integrated file system so that
both PASE for i and ILE C programs use the same descriptor numbers for files stdin, stdout, and stderr.
When operating in this mode, if either PASE for i code or ILE C code closes or reopens file descriptor 0, 1,
or 2, the change affects stdin, stdout, and stderr processing for both environments.

PASE for i run time generally does no character encoding conversion for data read or written through
PASE for i file descriptors (including sockets), except that ASCII-to-EBCDIC conversion is done (between
the PASE for i CCSID and job default CCSID) for data read from ILE C stdin or written to ILE C stdout and
stderr.

Two environment variables control the automatic translation of stdin, stdout, and stderr:

« The variable that generally applies is QIBM_USE_DESCRIPTOR_STDIO. When set to Y, the ILE runtime
uses file descriptor 0, 1, or 2 for these files.

« The PASE for i system-specific environment variable is QIBM_PASE_DESCRIPTOR_STDIO. It has values
of B for binary and T for text.

ASCII-to-EBCDIC conversion for PASE for i stdin, stdout, and stderr is disabled if the ILE environment
variable QIBM_USE_DESCRIPTOR_STDIO is set to Y and QIBM_PASE_DESCRIPTOR_STDIO is set to B
(allowing binary data to be read from stdin and written to stdout or stderr). The default for
QIBM_PASE_DESCRIPTOR_STDIO is T for text. This value causes translation of EBCDIC to ASCII.

Related concepts

Data encoding

Most operating systems, such as AIX and Linux, use ASCII character encoding. Most IBM i functions use
EBCDIC character encoding.

Related information

Integrated file system

IBM PASE fori 43

Globalization

Because the PASE for i run time is based on the AIX run time, PASE for i programs can use the same rich
set of programming interfaces for locales, character string manipulation, date and time services, message
catalogs, and character encoding conversions supported on AIX.

PASE for i supports the interfaces in AIX run time for managing the locale that an application uses and for
performing locale-sensitive functions (such as ctype () and stxcoll()), including support for both
single-byte and multibyte character encoding.

PASE for i includes a subset of AIX locales, which provide support for a large number of countries and
languages using industry-standard encoding (code sets ISO8859-x), code set IBM-1250, and code set
UTF-8. PASE for i provides support for the Euro in three different ways: IBM-1252 locales and ISO
8859-15 locales (both of which use single-byte encodings), and UTF-8 locales.

Note: Locale support for PASE for i is independent of either form of locale support used by ILE C programs
(object types *CLD and *LOCALE). In addition to internal structural differences, none of the existing
shipped locales for ILE C programs supports ASCII.

Creating new locales

PASE for i does not ship a utility to create new locales. However, you can create locales for use in PASE for
i on an AIX system with the localedef utility.

Changing locales

When an PASE for i application changes locales, generally it also should change the PASE for i CCSID
(using the _SETCCSID () runtime function) to match the encoding for the new locale. This ensures that
any character data interface arguments are correctly interpreted by PASE for i run time (and possibly
converted when calling an EBCDIC system service). You can use the cstoccsid () runtime function to
determine what CCSID corresponds to a code set name.

The PASE for i run time sets the CCSID tag on any file created by an PASE for i program to the current
PASE for i CCSID value (supplied either when the program is started or using the most recent
_SETCCSID() value).

You should use UTF-8 locales for PASE for i applications that support Japanese, Korean, Traditional
Chinese, and Simplified Chinese. The IBM i operating system includes other locales for these languages,
but the system does not support setting the PASE for i CCSID to match the encoding for IBM-eucXX code
sets. Using UTF-8 support might require converting file data that might be stored in other encoding
schemes (such as Shift-JIS) when the application runs on other platforms.

Where PASE for i conversion objects and locales are stored

Conversion objects and locales for PASE for i are packaged with IBM i language feature codes. When you
install PASE for i, only those locales that are associated with installed IBM i language features are
created.

All PASE for i locales use ASCII or UTF-8 character encoding; therefore, all PASE for i run time works in
ASCII (or UTF-8).

Related tasks

Installing IBM PASE for i
PASE for i is an optionally installable component of the operating system. You need to install PASE for i to
use it or to run some software that requires PASE for i support.

Related information

IBM i globalization

IBM PASE for i locales
_SETCCSID()--Set IBM PASE for i CCSID

44 1BMi: IBM PASE for i

Message services
PASE for i signals and ILE signals are independent, so it is not possible to directly call a handler for one
signal type by raising the other type of signal.

You can use the PASE for i Qp2SignalPase () API to post corresponding PASE for i signals for any ILE
signal that you receive. The QP2SHELL () program and the PASE for i fork () function always set up
handlers to map every ILE signal to a corresponding PASE for i signal.

The system automatically converts any IBM i exception message sent to the program message queue of a
call running the Qp2RunPase (), Qp2CallPase(), or Qp2CallPase2() API to a corresponding PASE for
i signal. An PASE for i application can therefore handle any IBM i exception by handling the PASE for i
signal that the system converts it to.

PASE for i provides the following runtime functions that give you direct control over IBM i message
handling:

« QMHSNDM

- QMHSNDM1
« QMHSNDPM
« QMHSNDPM1
« QMHSNDPM2
« QMHRCVM

« QMHRCVM1
« QMHRCVPM
« QMHRCVPM1
« QMHRCVPM2

IBM i message support
IBM i provides message support in a variety of contexts:

Job logs
Your job log contains any messages issued by the IBM i operating system or your application while the
jobis running or being compiled. To look at a job log, type DSPJOBLOG on a command line. When the
Display Job Log display screen appears, press F10 (Include detailed messages from the Command
Entry display), followed by Shift + F6. The Display All Messages display appears and shows the most
recent messages. To view the details of any particular message, move the cursor to the message and
press F1 (Help).

Work with active jobs (WRKACTJOB) command
The Work with Active Jobs (WRKACTJOB) command is useful for examining jobs and job stacks on the
IBM i operating system.

Related information

Qp2SignalPase()--Post an IBM PASE for i Signal

Runtime functions for use by IBM PASE for i programs

Work with active jobs (WRKACTJOB) command

Work management

IBM PASE for i signal handling

IBM PASE fori 45

Printing output from IBM PASE for i applications
You can use the QShell Rfile utility to read and write output from PASE for i shells.

The following example writes the contents of stream file mydoc . ps to spooled printer device file QPRINT
as unconverted ASCII data, and then uses the CL LPR command to send the spooled file to another
system:

before='ovrprtf gprint devtype(xuserascii) spool(xyes) '\
after="1pr file(qgprint) system(usrchprt@l) prtq('rchdps') transform(xno)"
cat -c mydoc.ps | Rfile -wbQ -c "$before" -C "$after" gprint

Related information

Rfile - Read or write record files

Pseudo-terminal (PTY)
PASE for i supports both AT&T and Berkeley Software Distributions (BSD) style devices. From a
programming perspective, these devices work in PASE for i in the same way that they work on AIX.

PASE for i allows a maximum of 1024 instances for AT&T style devices, and a maximum of 592 BSD style
devices. When the system is started, the first 32 instances of each device type are created automatically.

Configuring PTY devices in PASE for i

On AIX, an administrator uses smit to configure the number of available devices of each type. In PASE for
i, these devices are configured in the following way:

« For AT&T-style devices, PASE for i supports autoconfiguration. If the first 32 instances are in use and an
application tries to open another instance, the CHRSF device is created in the integrated file system
automatically, up to the limit of 1024 devices.

- For BSD-style devices, you must create the CHRSF devices manually, using the PASE for i mknod utility.
To do this, you need to know the major numbers for the BSD subordinate and BSD primary devices as
well as the naming convention. The following example shell script shows how to create additional BSD
pseudo-terminal (PTY) devices. It creates them in groups of 16.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 64.

#!/Q0penSys/usr/bin/ksh

prefix="pqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
bsd_tty_major=32949
bsd_pty_major=32948

if [$# -1t 1]

then
echo "usage: $(basename $0) ptyN "
exit 10

fi

function mkdev {
if [! -e $1]
then
mknod $1 c $2 $3
chown QSYS $1
chmod 0666 $1
fi
¥

while ["$1"]
do
N=$$1##pty?
if [II$NII = II$1II _0 II$NII = nn _0 $N _1t O _0 $N _gt 36]
then
echo "skipping: \"$1\": not valid, must be in the form ptyN where: O <= N <= 36"
shift
continue
fi

minor=$((N * 16))
pre=$(expr "$prefix" : " \ESN\R\(C.\)™M)

46 IBMi: IBM PASE for i

echo "creating /dev/[pt]lty$ipret0 - /dev/[ptlty$ipredf"
for i in ©123456789abcdefdtf
do
echo ".\c"
mkdev /dev/pty$ipret$iit $bsd_pty_major $minox
echo ".\c"
mkdev /dev/tty$ipre?$$it $bsd_tty_major $minor
minor=$((minoxr + 1))
done
echo

shift
done

For more information about PTY devices, see the AIX Resources Web page.

Security
From a security point of view, PASE for i programs are subject to the same security restrictions as any
other program on the IBM i operating system.

To run an PASE for i program on the IBM i operating system, you must have authority to the AIX binary
files in the integrated file system. You must also have the proper level of authority to each of the
resources that your program accesses, or the program will receive an error when you attempt to access
those resources.

The following information is particularly important when you run PASE for i programs.

User profiles and authority management

System authorization management is based on user profiles that are also objects. All objects created on
the system are owned by a specific user. Each operation or access to an object is verified by the system to
ensure the user's authority. The owner or appropriately authorized user profiles can delegate various
types of authorities to operate on an object to other user profiles. Authority checking is provided
uniformly to all types of objects.

The object authorization mechanism provides various levels of control. A user's authority can be limited to
exactly what is needed. Files stored in the QOpenSys file system are authorized in the same manner as
UNIX files. The following table shows the relationship between UNIX permissions and the security values
used on IBM i database files. On the IBM i operating system, *OBJOPR is use object authority; *EXCLUDE
is no authority. *READ, *ADD, *UPD, *DLT, and *EXECUTE are data authorities. You need *EXECUTE
authority (and sometimes *READ authority) to a file to run it as an PASE for i program.

UNIX permission *0OBJOPR *READ *ADD |*UPD (*DLT *EXECUTE
r(read) X X

w(write) X X X X

x(execute) X X

No authority

User profiles in PASE for i

On the IBM i operating system, authentication information is stored in individual profiles rather than in
files such as /etc/passwd. Users and groups have profiles. All of these profiles share one name space,
and each profile must have a unique monocase name. If you pass a lowercase name to the getpwnam()
or getgrnam() API, the system converts the name strings to the expected case.

If you call getpwuid () or getgrgid() to get the profile name returned, it will be in lowercase, unless
you set the PASE for i environment variable PASE_USRGRP_LOWERCASE=N, which returns the result in
uppercase.

Every user has a user identification (UID). Every group has a group identification (GID). These are defined
according to the Portable Operation System Interface X (POSIX) 1003.1 standard. The two numeric

IBM PASE fori 47

http://www.ibm.com/systems/power/software/aix/resources.html

spaces are separate, so you can have a user with a UID of 104 and a group with a GID of 104 that are
distinct from each other.

The IBM i operating system has a user profile for the security officer, QSECOFR, that has a UID of 0. No
other profile can have the UID of 0. QSECOFR is the most privileged profile on the system and, in that
sense, acts as the root user. However, the IBM i operating system also provides a set of specific privileges
that can be assigned to individual users by system administrators. For example, one of these privileges,
*ALLOBJ, overrides the discretionary access control for file access, which is a typical use of root privileges
on operating systems, such as AIX and Linux.

In a ported application that uses root access, it is probably a better security practice to create a specific
user profile for the application user that can be given *ALLOBJ authority. Therefore, you can avoid the use
of QSECOFR, which has much more privilege than is needed by the single application. Unlike operating
systems, such as AIX or Linux, the IBM i operating system does not require group membership for users.
The GID of O for a user profile on the IBM i operating system means no group assigned rather than
referring to a group with more privileges.

IBM i security relies on integrated security built into the system. All accesses to objects must pass a
security check. The security check is done with respect to the user profile for which the process runs at
the time of the access.

PASE for i relies on giving each process a separate address space to maintain integrity and security. If a
resource is not available in your PASE for i address space, you cannot access it. File system security
prevents someone from loading a resource into their address space without proper authorization. After it
is in the address space, the resource is available to the process regardless of the identity under which the
process is running.

An PASE for i program uses system calls to request system functions. System calls for an PASE for i
program are handled by the IBM i operating system. This interface gives PASE for i programs only indirect
(and safe) access to system internals.

Related information
Security

Work management

The IBM i operating system handles PASE for i programs in the same way it handles any other job on the
system.

Related information

Work management

Debugging your IBM PASE for i programs

The PASE for i runtime environment provides library support for the syslog() runtime function, and a
syslogd binary file for more sophisticated message routing. In addition, you can use existing facilities in
the IBM i operating system, such as job logs for diagnostic messages and severe messages that are sent
to the system operator message queue QSYSOPR.

Depending on the application, your strategy for debugging an PASE for i application can take different
paths:

1. If the application does not require any IBM i integration (for instance, with Db2 for i or with ILE
functions), first debug the application on AIX.

2. Use a combination of PASE for i dbx and IBM i debug capabilities (for example, job logs) to debug the
application on the IBM i operating system.

Applications that you have coded to use database or ILE functions cannot be fully tested on AIX, but you
can debug the remaining parts of the application on AIX to assure their proper structure and design.

48 IBMi: IBM PASE for i

Using dbx in PASE for i

PASE for i supports the AIX dbx debugger utility. The utility lets you debug related processes, such as
parent and child, at the source code level, if they were compiled as such. You can use the Network File
System (NFS) to make the AIX source visible to the debugger that runs in PASE for i.

PASE for i support for xterm and aixterm lets you use dbx to debug both the parent and child processes.
dbx launches another xterm window with dbx attached to the second process.

For details on dbx, see the IBM AIX operating system: Library Web site. You can also type help on the
dbx command line.

Using IBM i debugging tools

You can use the following tools on IBM i to debug your PASE for i applications:

« The IBM i Debugger provides specific support for PASE for i application debugging.

« The ILE C source debugger is an effective tool for determining problems with your code.

Related information

System i Debugger

WebSphere Development Studio ILE C/C++ Programmer's Guide PDF
IBM AIX operating system: Resources

Optimizing performance

To achieve the best performance, store the binary files of your application in the local stream file system.

It is much slower to start PASE for i programs if your binary files (such as base program and libraries) are
outside of the local stream file system because file mapping cannot be done.

If you run an application in PASE for i that performs a large number of fork () operations, it will not run
as fast as it runs on AIX. This is because each PASE fori fork () operation starts a new IBM i job, which
can have a significant impact on performance.

Related information
Performance

IBM PASE for i shells and utilities

PASE for i includes three shells (Korn, Bourne, and C shell) and provides many utilities that run as PASE
for i programs. PASE for i shells and utilities provide an extensible scripting environment that includes a
large number of industry-standard and defacto-standard commands.

The PASE for i default shell (/QOpenSys/usxr/bin/sh) is the Korn shell.

To access PASE for i shells and utilities, you can call the Run an i5/0S Terminal Session (QP2TERM)
program. The program presents an interactive display with a command line where you can enter PASE for
i commands. To run any PASE for i program, including a shell or utility, you can call the Run any PASE for i
program (QP2SHELL) API.

Many PASE for i utilities have the same name (with similar options and behavior) as QShell utilities in
directory /usxr/bin, so PASE for i utilities are provided in directory /Q0penSys/usr/binor /
Q0penSys/usx/shin. When you run an PASE for i shell, the PASE for i PATH environment variable
should generally include directories /Q0penSys/usr/bin, /Q0penSys/usx/bin/X11, and /
Q0penSys/usx/shin. See Run any PASE for i program (QP2SHELL) API for information about setting
initial values for PASE for i environment variables.

Related concepts
What's new for IBMi 7.2

IBM PASE fori 49

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/rzaha/sc092712.pdf
http://www.ibm.com/systems/power/software/aix/resources.html

Read about new or significantly changed information for the PASE for i topic collection.

IBM PASE for i concepts

PASE for i is an integrated runtime environment for AIX applications running on the IBM i operating
system.

Related tasks

Running an IBM PASE for i program with QP2TERM()
You use this IBM i program to run an PASE for i program in an interactive shell environment.

Related reference

Compiling your AIX source

You can install one of the AIX compiler products that support installation on IBM i to compile your
programs in the PASE for i environment.

Related information
Run an IBM PASE for i Terminal Session

IBM PASE for i commands

Most PASE for i commands support the same options and provide the same behavior as AIX commands.
But PASE for i commands differ from AIX commands in some ways.

The following list describes the difference between PASE for i commands and AIX commands:

« Many PASE for i commands for display operations and for UNIX jobs control work only in a
teletypewriter (TTY) session, such as a session started by the aixtexrm or xtexm command. These
functions do not work on 5250 workstation devices (including the display presented by the QP2TERM
program).

« PASE for i generally does not support interfaces that are provided on AIX for system management. For
example, PASE for i does not support the AIX System Management Interface Tool (SMIT) or functions
that require an SMIT database.

- The IBM i operating system is fundamentally an EBCDIC system. PASE for i shells and utilities run in
ASCII and generally do not perform automatic conversion of stream data. You might need to use tools
(for example, the iconv () function) to convert between ASCII and EBCDIC.

Unlike the QShell interpreter and utilities, most PASE for i shells and utilities do not perform automatic
Coded Character Set Identifier (CCSID) conversion of stream file data. However, the PASE for i utilities
system and any PASE for i utility that runs a QShell command are exceptions. This is because they
provide CCSID conversion support for data that the CL command or the QShell command reads from
standard input or writes to standard output or standard error.

PASE for i utilities that run QShell Java utilities (for example, the Java command) set the Java
file.encoding property to match the PASE for i CCSID so that stream data read and written by the Java
program is converted from and to the PASE for i CCSID. To force a specific file.encoding value, set the
PASE for i environment variable PASE_JAVA_ENCODING before running the utility.

« For many system resources, the IBM i operating system uses names that are not case sensitive.
However, these system resources have names that are case sensitive in AILX; for example, user and
group names and object names in the root file system. Some PASE for i shell and utility functions
require matching case for resources that have names that are not case sensitive in IBM i, and others
might return names in uppercase that are normally lowercase on AIX. For example, file name expansion
in PASE for i shells is case sensitive, so you must specify uppercase to match generic names in the /
QSYS.LIB file system.

1s /gqsys.lib/qgpl.1lib/GENx*.PGM
rather than
1s /gsys.lib/qgpl.lib/genx*.pgm

« To provide case-sensitivity and avoid name collisions with directories and files used for ILE support,
most PASE for i directories and files (including shells and utilities) are stored in the /QOpenSys file

50 IBMi: IBM PASE for i

system. In particular, PASE for i shells and utilities are stored in /Q0penSys/usr/binand /
Q0penSys/usr/sbin (rather than /usr/bin and /usr/sbin on AIX).

In addition to the following PASE for i commands, each PASE for i shell supports a number of built-in
commands (such as cd, exec, and if). See the AIX Resources Web page for information about the built-
in commands supported by each PASE for i shell and for detailed information about most of the following

PASE for i commands.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A

admin Create and control Source Code Control System
(SCCS) files.

aixtexrm Initialize an Enhanced X Window System terminal
emulator.

alias Define or display aliases.

appletviewer Run the QShell appletviewexr command to run Java
applets without a Web browser.

apply Apply a command to a set of parameters.

apt Run the QShell apt command, the Java annotation
processing tool.

ar Maintain the indexed libraries used by the linkage
editor.

as Run the assembler.

attr Run the QShell attxr command to display or change
integrated file system object attributes.

awk Find lines in files matching patterns and then perform
specified actions on them.

B

banner Write ASCII character strings in large letters to
standard output.

basename Return the base filename of a string parameter.

bc Provide an interpreter for arbitrary-precision
arithmetic language.

bdiff Use the diff command to find differences in very
large files.

bfs Scan files.

bg Run a job in the background.

bsh Call the Bourne shell.

c

cat Concatenate or display files.

cd Change the current directory.

cdc Change the comments in a SCCS delta.

chgxp Change the group ownership of a file or directory.

IBM PASE fori 51

http://www.ibm.com/systems/power/software/aix/resources.html

chmod

Change permission modes.

chown Change the user associated with a file.

chroot Change the root directory of a command.

cksum Display the checksum and byte count of a file.

clear Clear the terminal screen.

clxtmp Run the QShell elxtmp command to clear directory /
tmp.

cmp Compare two files.

colxm Extract columns from a file.

comb Combine SCCS deltas.

comm Select or reject lines common to two sorted files.

command Run a simple command.

compress Compress data.

cp Copy files.

cpio Copy files into and out of archive storage and
directories.

csh Call the C shell.

csplit Split files by context.

cut Write out selected bytes, characters, or fields from
each line of afile.

D

date Display or set the date or time.

dbx Provide an environment to debug and run PASE for i
programs.

dc Provide an interactive desk calculator for arbitrary-
precision integer arithmetic.

dd Convert and copy a file.

df Reports information about space on file systems.

diff Compare text files.

diff3 Compare three files.

dircmp Compare two directories and the contents of their
common files.

dirname Write to standard output all but the last part of a
specified path.

dspcat Display all or part of a message catalog.

dspmsg Display a selected message from a message catalog.

du Summarize disk usage.

dump Dump selected parts of an object file.

E

52 IBMi: IBM PASE for i

echo

Write character strings to standard output.

ed Edit text by line.

edit Provide a simple line editor for the new user.

egrep Search a file for a pattern.

env Display the current environment or set the
environment for the execution of a command.

ex Edit lines interactively with a screen display.

execerror Write error messages to standard error.

expand Write to standard output with tabs changed to spaces.

expr Evaluate arguments as expressions.

extcheck Run the QShell extcheck command to detect Java
archive conflicts.

F

false Return a nonzero exit value (false).

fc Process the command history list.

fg Run jobs in the foreground.

fgrep Generate the figure list in a format supported by the
build process.

file Determine file type.

find Find files with a matching expression.

fold Fold long lines for finite-width output device.

G

gencat Create and modify a message catalog.

get Create a specified version of a SCCS file.

getconf Write system configuration variable values to standard
output.

getjobid Run the QShell getjobid command to determine the
IBM i job name for a process identifier.

getopt Parse command line flags and parameters.

getopts Process command-line arguments and check for valid
options.

grep Search a file for a pattern.

H

hash Remember or report command path names.

head Display the first few lines or bytes of a file or files.

hostname Set or display the name of the current host system.

I

iconv Convert the encoding of characters from one code

page encoding scheme to another.

IBM PASE fori 53

id Display the system identifications of a specified user.

idlj Run the QShell id1j command to run the IDL-to-Java
compiler.

indent Reformat a C language program.

install Install a command.

ipcxrm Run the QShell ipcxrm command to remove
interprocess communications objects.

ipcs Run the QShell ipcs command to display interprocess
communications objects.

J

jar Run the QShell jaxr command to archive Java files.

jarsigner

Run the QShell jarsignexr command to sign or verify
the signature of a Java archive.

java Run the QShell java command to run the Java
interpreter.

javac Run the QShell javac command to compile a Java
program.

javadoc Run the QShell javadoc command to generate Java
documentation.

javah Run the QShell javah command, to generate C
header or stub files for Java classes.

javakey Run the QShell javakey command to manage Java
security keys.

javap Run the QShell javap command to disassemble a
compiled Java program.

jobs Display status of jobs in the current session.

join Join the data fields of two files.

K

keytool Run the QShell keytool command to manage keys
and certificates for Java.

kill Send a signal to running processes.

ksh Call the Korn shell.

ksh93 Call the enhanced Korn shell.

L

1d Link object files.

ldedit Modify an XCOFF executable file header.

lex Generate a C or C++ language program that matches
patterns for simple lexical analysis of an input stream.

line Read one line from the standard input.

1n Link files.

54 IBMi: IBM PASE for i

locale Write information about current locale or all public
locales.

logger Make entries in the system log.

logname Display login name.

look Find lines in a sorted file.

lorder Find the best order for member files in an object
library.

1s Display the contents of a directory.

M

m4 Preprocess files and expand macro definitions.

make Maintain, update, and regenerate groups of programs.

makekey Generate an encryption key.

mkcatdefs Preprocess a message source file

mkdir Create one or more new directories.

mkfifo Make first-in-first-out (FIFO) special files.

mkfontdir Create a fonts.dix file from a directory of font files.

mknod Create a special file.

more Display the contents of files one screen at a time.

mv Move files.

mwm Run the AIXwindows Window Manager (MWM).

N

native2ascii Run the QShell native2ascii command to convert
characters encoded in the PASE for i CCSID to Unicode
encoding.

nawk Call the new version of awk.

newfoxrm Change the format of a text file.

nice Run a command at a lower or higher priority.

nl Number lines in a file.

nm Display the symbol table of an object file.

nohup Run a command without hangups.

o

od Display files in a specified format.

oxhd Run the QShell oxbd command to run the Java Object
Request Broker Daemon.

P

pack Compress files.

pack200 Run the QShell pack200 command, the Java archive

packing tool.

IBM PASE fori 55

pagesize Display the system page size.

paste Merge the lines of several files or subsequent lines in
one file.

patch Apply changes to files.

pax Extract, write, and list members of archive files; copy
files and directory hierarchies.

pcat Unpack files and write them to standard output.

pg Format files to the display.

policytool Run the QShell policytool command to create and
manage Java policy files.

px Write a file to standard output.

printenv Display the values of environment variables.

printf Write formatted output.

prs Display a Source Code Control System (SCCS) file.

ps Show current status of processes.

psh Call the POSIX (Korn) shell.

pwd Display the path name of the working directory.

Q

gsh Run a QShell command.

gsh_inout Run a QShell command.

qsh_out Run a QShell command.

R

ranlib Convert archive libraries to random libraries.

read Read one line from standard input.

red Edit text by line.

regcmp Compile patterns into C language char declarations.

reset Initialize a terminal.

resize Set the TERMCAP environment variable and terminal
settings to the current window size.

rev Reverse characters in each line of a file.

Rfile Run the QShell Rfile command to read or write IBM i
record files.

xrgh Create the database used by the X Window System
server for colors.

rm Remove (unlink) files or directories.

rmdel Remove a delta from a SCCS file.

rmdix Remove a directory.

rmic Run the QShell xrmic command to compile Java RMI

stubs.

56 IBMi: IBM PASE for i

rmid Run the QShell xmid command to run the Java RMI
activation system.

rmiregistry Run the QShell xrmiregistxry command to start a
Java remote object registry.

rtl_enable Relink shared objects to enable the runtime linker to
use them.

runcat Pipe output data from the mkcatdefs command to
the gencat command.

S

sact Display current SCCS file-editing status.

serialver Run the QShell sexialvexr command to return the
version number for Java classes.

sccs Administration program for SCCS commands.

sccsdiff Compare two versions of an SCCS file.

sdiff Compare two files and display the differences in a
side-by-side format.

sed Provide a stream editor.

servertool Run the QShell sexvertool command to run the
Java IDL Server Tool.

setccsid Run the QShell setccsid command to set the CCSID
for an integrated file system object.

setmaps Set terminal maps or code set maps.

sh Call the default (Korn) shell.

size Display the section sizes of the Extended Common
Object File Format (XCOFF) object files.

sleep Suspend execution for an interval.

slibclean Remove any currently unused modules in kernel and
library memory.

shapcore Gather information for a core file.

sort Sort files, merge files that are already sorted, and
check files to determine if they have been sorted.

split Split a file into pieces.

strings Find the printable strings in an object or binary file.

strip Reduce the size of an XCOFF object file by removing
information used by the binder and symbolic debug
program.

stty Set, reset, and report workstation operating
parameters.

sum Display the checksum and block count of a file.

syslogd Log system messages.

system Run a CL command.

IBM PASE fori 57

sysval

Run the QShell sysval command to display an IBM i
system value or network attribute.

T

tab Change spaces into tabs.

tabs Set tab stops on a terminal.

tail Write a file to standard output, beginning at a specified
point.

tar Manipulate archives.

tee Display the output of a program and copy it into a file.

test Evaluate conditional expressions.

tic Translate the terminfo description files from source to
compiled format.

time Print the time of the execution of a command.

tnamesexrv Run the QShell tnamesexv command to provide
access to the Java naming service.

touch Update the access and modification times of a file.

tput Query the terminfo database for terminal-dependent
information.

tr Translate characters.

trace Record selected system events.

txbsd Translate characters (BSD version).

trcoff Stop the collection of trace data.

txcon Start the collection of trace data.

txrcstop Stop the trace function.

true Return an exit value of zero (true).

tset Initialize a terminal.

tsort Sort an unordered list of ordered pairs (a topological
sort).

tty Write to standard output the full path name of your
terminal.

type Write a description of the command type.

u

ulimit Set or report user resource limits.

umask Display or set the file mode creation mask.

unalias Remove alias definitions.

uname Display the name of the current operating system.

uncompress Restore compressed files.

unexpand Write to standard output with tabs restored.

unget Cancel a previous SCCS get command.

58 IBMi: IBM PASE for i

unifdef

Remove ifdef lines from a file.

uniq Delete repeated lines in afile.

unpack Expand files.

unpack200 Run the QShell unpack200 command, the Java
archive unpacking tool.

untab Change tabs into spaces.

\'

val Validate SCCS files.

vc Substitute assigned values for identification keywords.

vedit Edit files with a full-screen display.

vi Edit files with a full-screen display.

view Start the vi editor in read-only mode.

w

wait Wait until the termination of a process ID.

we Count the number of lines, words, and bytes in a file.

what Display identifying information in files.

which Locate a program file, including aliases and paths (the
csh (C shell) command only).
Run the X server. PASE for i only supports virtual
frame buffer processing.

xargs Construct a parameter list and run a command.

xauth Edit and display the authorization information used in
connecting to the X server.

xhost Control who accesses Enhanced X Window System on
the current primary system.

xlsfonts Display the font list for X Window System.

xmodmap Modify keymaps in the X Server.

xset Set options for your X Window System environment.

xtexrm Provide a terminal emulator for the X Window System.

xwd Dump the image of an Enhanced X Window System
window.

xwud Retrieve and display the dumped image of an
Enhanced X Window System window.

Y

yacc Generate an LALR(1) parsing program from input
consisting of a context-free grammar specification.

yes Produce output of an affirmative response repetitively.

Y4

IBM PASE fori 59

zcat

Expand a compressed file to standard output.

Related information
Utilities for developing Java programs

IBM PASE for i system utility

The PASE for i system utility runs a CL command. By default, any spooled output produced by the
command is written to standard output; any messages sent by the command are written to standard
output or standard error (depending on whether the CL command sends an exception message).

To avoid unpredictable results, set the ILE environment variable QIBM_USE_DESCRIPTOR_STDIO to Y or I
so that PASE for i run time and ILE C run time use descriptor standard I/O. This variable is set to Y or I by
default in the IBM i jobs that the QP2TERM program uses to run PASE for i shells and utilities.

Syntax

system [-beEhiIkKnOpqsv] CL-command [CL-parameters ...]

Options

-b
Force binary mode for standard streams used by the CL command.

When this option is omitted, the system command converts any data that the CL command reads
from standard input from the PASE for i CCSID to the job default CCSID. The system command
converts data written to standard output or standard error from the job default CCSID to the PASE for i
CCSID. This option avoids CCSID conversion for all standard streams except those associated with
option -E, -1, or -0O.

-e
Copy PASE for i environment variables to ILE environment variables before running the CL command.

When this option is omitted, no ILE environment variables are set, and the ILE environment might
have missing variables or might have different variable values from the PASE for i environment.

For most variables, the copy has the same name as the original, but the system adds the prefix PASE_
to the name of the ILE copy of some environment variables. By default, the system adds the prefix
when copying PASE for i environment variables SHELL, PATH, NLSPATH, and LANG. To control what
variables the name prefix is added to, store a colon-delimited list of variable names in the PASE for i
environment variable PASE_ENVIRON_CONFLICT.

Any PASE for i environment variable names with the prefix ILE_ are copied to the ILE environment
twice. The first copy uses the same variable name, and the second copy uses the name without the
prefix. For example, if the PASE for i environment contains a variable named ILE_PATH, the value of
this variable is used to set both the ILE_PATH and PATH variables in the ILE environment.

Force CCSID conversion for the standard error stream used by the CL command.

When this option is specified, the system command converts any data that the CL command writes to
standard error from the job default CCSID to the PASE for i CCSID. This option overrides option -b for
the standard error stream.

Write a brief description of allowable syntax for the system command to standard output.
-i
Run the CL command in the same process (IBM i job) where the system utility runs.
When option -i is omitted, the CL command is run in a separate process that is created using the ILE

spawn API. This separate process is not multithread-capable unless you set the ILE environment
variable QIBM_MULTI_THREADED to Y. Many CL commands are not supported in a multithreaded job.

60 IBMi: IBM PASE for i

=n

-q

=V

Force CCSID conversion for the standard input stream used by the CL command.

When this option is specified, the system command converts any data that the CL command reads
from standard input from the PASE for i CCSID to the job default CCSID. This option overrides option -
b for the standard input stream. CCSID conversion should only be used for standard input if the CL
command reads standard input. This is because the processing done by the system command
attempts to read and convert all standard input data regardless of whether the CL command uses the
data, so it might leave the standard input stream positioned beyond what the CL command read.

Keep all spooled files generated by the CL command.

When this option is omitted, spooled output files are deleted after their contents are written as text
lines to standard output. Option -i has no effect when option -s is used.

Force a job log for the IBM i job where the CL command runs.

If this option is omitted, a job log can only be produced if an unexpected error occurs.

Do not include IBM i message identifiers in any text line that is written to standard output or standard
error for a message sent by the CL command.

When this option is omitted, the format of any text lines written for IBM i predefined messages is
XXX1234: message text, where XXX1234 is the IBM i message identifier. -n suppresses the message
identifier, so only message text is written to the stream. Option -n has no effect when option -q is
used.

Force CCSID conversion for the standard output stream used by the CL command.

When this option is specified, the system command converts any data that the CL command writes to
standard output from the job default CCSID to the PASE for i CCSID. This option overrides option -b
for the standard output stream.

This option is ignored.

The PASE for i system utility always handles only messages sent to the program that runs the CL
command (the way the QShell system utility works with option -p).

Do not write any text lines to standard output or standard error for IBM i messages sent by the CL
command.

If this option is omitted, messages sent by the CL command are received, converted from the job
default CCSID to the PASE for i CCSID, and written as text lines to standard output or standard error,
depending on whether the CL command sends an exception message.

Do not process spooled output files produced by the CL command.

When this option is omitted, spooled output generated by the CL command is converted from the job
default CCSID to the PASE for i CCSID and written to standard output. Then, the spooled output files
are deleted.

Write the complete CL command string to standard output before running the CL command.

Operands

CL-command is concatenated with any CL-parameters operands with a single space between them to
form the CL command string. You need to enclose CL command and parameter values in quotation marks
to prevent the PASE for i shell from expanding special characters (such as parentheses and asterisks).

IBM PASE fori 61

If a CL command parameter value requires quotation marks (such as a text parameter with lowercase
characters or embedded blanks), you must specify those quotation marks inside a quoted string. This is
because PASE for i shells remove the outer quotation marks from any argument that is passed to the
PASE for i system utility.

Exit status

If any exception message is sent by the CL command analyzer or by the command processing program,
the system utility returns an exit status of 255. Error messages always appear in the job log of the IBM i
job that runs the command, and might also be sent to standard output or standard error unless option -q
is specified.

If CL command processing does not send an exception message, the system utility returns the exit status
set by whatever program the CL command calls, or returns zero if that program does not an set exit
status.

Examples

The following example shows several ways to run the CRTDTAARA CL command with the same parameter
values. Options -bOE force CCSID conversion for standard output and standard error (but not standard
input). The *char parameter value must be quoted to prevent the PASE for i shell from expanding it as a
set of file names. The TEXT parameter requires two sets of enclosing quotation marks because it contains
lowercase and embedded blanks.

system -bOE "crtdtaara mydata xchar text('Output queue text')"
or

system -bOE crtdtaara mydata "xchar text('Output queue text')"
or

system -BOE crtdtaara mydata 'xchar' "text('Output queue text')"

The following example shows how the system utility runs the CALL CL command to call a program that
accepts two parameters. Option -i avoids the overhead of creating an additional process to run the CL
command. Because no other options are specified, CCSID conversion is done for standard input, standard
output, and standard error. The called program sees the first parameter as converted to uppercase
(ARG1) and the second parameter as unchanged (arg2) because of the CL rules.

system -i "call mypgm (argl 'arg2')"

Related concepts

IBM PASE for i gsh, gsh_inout, and gsh_out commands

The PASE for i gsh, gsh_inout, and qsh_out commands run a QShell command. These commands use
the PASE for i system command to copy PASE for i environment variables to the ILE environment and
then call the QShell command program through a link in directory /usxr/bin.

IBM PASE for i gsh, gsh_inout, and gsh_out commands

The PASE for i qsh, gsh_inout, and gsh_out commands run a QShell command. These commands use
the PASE for i system command to copy PASE for i environment variables to the ILE environment and
then call the QShell command program through a link in directory /usr/bin.

The PASE for i gsh, gsh_inout, and qsh_out commands all provide the syntax and behavior of the
QShell gsh command, with additional support for encoding conversion of standard input and output
between ASCII and EBCDIC. The PASE for i system command provides the encoding conversion support.
Any other command name that links to PASE for i gqsh, qsh_inout, or gsh_out (in directory /
Q0penSys/usr/bin) provides the same syntax and behavior as the QShell command in

directory /usx/bin with the same base name as the link.

The gsh and gsh_inout commands perform encoding conversion between ASCII and EBCDIC for
standard input, standard output, and standard error. The qsh_out command performs the encoding
conversion only for standard output and standard error.

62 IBMi: IBM PASE for i

To avoid unpredictable results, set the ILE environment variable QIBM_USE_DESCRIPTOR_STDIO to Y or I
so that PASE for i run time and ILE C run time use descriptor standard input and output. This variable is
setto Y orI by default in the IBM i jobs that the QP2TERM program uses to run PASE for i shells and
utilities.

Syntax

qsh [command-options]
qgsh_inout [command-options]

qsh_out [command-options]

Examples

When the QShell command does not read from standard input, you need to use the gsh_out command
(instead of the gsh or gsh_inout command) to avoid unintended repositioning of the input stream. The
following example uses the gsh_out command to avoid repositioning the stream that is processed by the
read command, and simply echoes the contents of the file myinput to standard output.

while read ; do
gsh_out -c "echo $REPLY"
done < myinput

The following example uses the QShell cat command to convert text in an IBM i source database file to
the (ASCII) PASE for i CCSID and store the result in a stream file named ascii_sqlcli.h. This uses the
QShell utility support for inserting line-end characters, which are not added if the PASE for i cat
command is used, into the stream.

gsh_out -c 'cat /gsys.lib/gsysinc.lib/h.file/sqglcli.mbr' > ascii_sqglcli.h

The system provides an PASE for i getjobid command that uses the symbolic link /
Q0penSys/usxr/bin/getjobid -> gsh_out torunthe QShell getjobid command. The following
example shows two ways to run the QShell utility to determine the name of the IBM i job that is running
the PASE for i shell. The first method is more efficient because it avoids running the QShell interpreter.
The PASE for i shell expands the variable $$ to the process identifier of the shell. The QShell getjobid
command writes a line to standard output.

getjobid $$
gsh_out -c "/usr/bin/getjobid $$"

Related reference

IBM PASE for i system utility

The PASE for i system utility runs a CL command. By default, any spooled output produced by the
command is written to standard output; any messages sent by the command are written to standard
output or standard error (depending on whether the CL command sends an exception message).

Related information
gsh - QShell Command Language Interpreter

Examples: IBM PASE for i

These examples have been provided in the PASE for i information.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 64.

Running PASE for i programs and procedures from ILE programs

« Running an PASE for i program from an ILE program

IBM PASE fori 63

« Calling an PASE for i procedure from an ILE program

Calling PASE for i programs from PASE for i programs

- Calling ILE procedures from an PASE for i program
« Calling PASE for i programs from PASE for i
« Running CL commands from PASE for i

Using Db2 for i functions in PASE for i programs
« Calling Db2 for i CLI functions in an PASE for i program

Related information for IBM PASE for i

IBM Redbooks publications, Web sites, and other information center topic collections contain information
that relates to the PASE for i topic collection. You can view or print any of the PDF files.

IBM Redbooks

Bringing PHP to Your iSeries Server ® (512 KB): The step-by-step implementation discussed in this
publication involves the CGI version of the Hypertext Preprocessor (PHP) running in PASE for i.

Web sites

« IBM AIX operating system: Resources¥ (http://www.ibm.com/systems/power/software/aix/
resources.html)

This Web site provides information about AIX commands and utilities.

Other information
« PASE fori APIs
See this topic for details about the following general categories of PASE for i APIs:
— Callable program APIs
— ILE procedure APIs
— Runtime functions for use by PASE for i programs

You must call a system API to run an PASE for i program. The system provides both callable program
APIs and ILE procedure APIs to run PASE for i programs. The callable program APIs can be easier to
use, but do not offer all the controls available with the ILE procedure APIs.

« PASE for i runtime libraries

PASE for i run time supports a large subset of the interfaces provided by AIX run time. Most runtime
interfaces supported by PASE for i provide the same options and behavior as AIX. The PASE for i
runtime libraries are installed (as symbolic links) in fusr/lib.

Related reference

PDF file for IBM PASE for i
You can view and print a PDF file of the information for PASE for i.

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

64 IBMi: IBM PASE for i

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/redp3639.html
http://www.ibm.com/systems/power/software/aix/resources.html

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS PROGRAM
DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, REGARDING
THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF
THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA,;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL
DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT
APPLY TO YOU.

IBM PASE fori 65

66 IBM i: IBM PASE for i

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N

Rochester, MN 55901

U.S.A.

© Copyright IBM Corp. 2000, 2013 67

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_.

Programming interface information

This IBM PASE for i publication documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of IBM .

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

68 Notices

http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Oracle, Inc. in the United States, other
countries, or both.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 69

70 IBM i: IBM PASE for i

	Contents
	IBM PASE for i
	What's new for IBM i 7.2
	PDF file for IBM PASE for i
	IBM PASE for i overview
	IBM PASE for i concepts
	IBM PASE for i as a useful option for application development

	Installing IBM PASE for i
	Planning for IBM PASE for i
	Preparing programs to run in IBM PASE for i
	Analyzing program compatibility with IBM PASE for i
	Compiling your AIX source
	Installing AIX compilers on IBM i
	Installing the AIX compilers from the installation media
	PTF update instructions

	Copying the IBM PASE for i program to your system
	Case sensitivity
	Line-terminating characters in integrated file system files
	Transferring files

	Customizing IBM PASE for i programs to use IBM i functions
	Copying header files
	Copying export files
	IBM PASE for i APIs for accessing IBM i functions

	Using IBM PASE for i programs in the IBM i environment
	Running IBM PASE for i programs and procedures
	Running an IBM PASE for i program with QP2SHELL()
	Running an IBM PASE for i program with QP2TERM()
	Running an IBM PASE for i program from within IBM i programs
	Examples: Running an IBM PASE for i program from within IBM i programs

	Calling an IBM PASE for i procedure from within IBM i programs
	Example 1: Calling an IBM PASE for i procedure from within IBM i programs
	Example 2: An IBM i ILE program that uses pointer arguments in a call to an IBM PASE for i procedure

	Using IBM PASE for i native methods from Java
	Working with environment variables

	Calling IBM i programs and procedures from your IBM PASE for i programs
	Calling ILE procedures
	Examples: Calling ILE procedures

	Calling IBM i programs from IBM PASE for i
	Example: Calling IBM i programs from IBM PASE for i

	Running IBM i commands from IBM PASE for i
	Example: Running IBM i commands from IBM PASE for i

	How IBM PASE for i programs interact with IBM i
	Communications
	Database
	Example: Calling Db2 for i CLI functions in an PASE for i program

	Data encoding
	File systems
	Globalization
	Message services
	Printing output from IBM PASE for i applications
	Pseudo-terminal (PTY)
	Security
	Work management

	Debugging your IBM PASE for i programs
	Optimizing performance
	IBM PASE for i shells and utilities
	IBM PASE for i commands
	IBM PASE for i system utility
	IBM PASE for i qsh, qsh_inout, and qsh_out commands

	Examples: IBM PASE for i
	Related information

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

