
IBM i
Version 7.2

Systems management
Work management

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
195.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 2004, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Work management.. 1
PDF file for Work management..1
What's new for IBM i 7.2..2
Introduction to work management... 2

Your system as a business... 2
A job's life..3

Submitting a job.. 4
The job enters the job queue.. 4
The job enters the subsystem.. 4
The subsystem uses memory from the memory pool to run the job.. 4
The job finishes and moves to the output queue...5

How work gets done... 5
What work is..5
What happens before work enters the system.. 6
How work enters the system.. 6
How work gets processed...6
How work leaves the system.. 7

Concepts...7
The structure of your system... 7

Subsystems shipped with the system..7
Start-up programs...8

What happens during the IPL..8
Types of start-ups... 9
Powering down your system...9
IBM Navigator for i.. 9

Subsystems ... 10
The controlling subsystem... 10
Why consider multiple subsystems... 11
Subsystem description... 11

Subsystem description attributes...12
Work entries.. 12
Routing entries.. 15

How a subsystem starts... 18
How workstation devices are allocated..19
Scenario: Workstation allocation..20

Memory pools... 21
Types of memory pools.. 21
Pool numbering schemes... 23
Memory pool allocation.. 24
Memory pool activity level..25

Jobs.. 26
Proper authority.. 27
Job characteristics..27

Job name syntax... 27
Job Attributes..28
Job description..28
Job descriptions and security... 28
Call stacks..29
Class object... 30
Job user identity..31
Job user identity examples...32

 iii

Threads..32
Locked objects...35

Job types...35
Autostart jobs.. 35
Batch jobs.. 36
Communication jobs... 37
Interactive jobs... 38
Prestart jobs.. 44
Reader and writer jobs.. 48
Server jobs...48
System jobs... 49

Job scheduling options.. 53
Management Central scheduler... 53
Job schedule entries...53

Examples: job schedule entry...54
The submit job command... 55
Job scheduler considerations.. 55
Job scheduling and system availability..57

Job queues... 57
Ordered list... 58
How a job queue works.. 58
How jobs are taken from a job queue.. 59
Job queue entry.. 59
How job queues are allocated to a subsystem.. 60
Multiple job queues.. 60
How jobs are taken from multiple job queues... 61
Job queue security..62

Output queues..62
Attributes of an output queue.. 63
Order of files... 64
Spooled files..64

Output spooling... 64
Output queues and spooled files..65
Default system output queues..66
Spooling writers...66
Spooling writer commands... 66
Input spooling... 67
Job input commands...68
Inline data files..69
Considerations for opening inline data files... 70

Job logs...70
How job logs are created.. 71
Job log pending...72
Job log server..73
Job log display characteristics... 73

Job log headings..74
Messages... 74

Interactive job logs... 75
QHST History Log.. 76

Format of the History Log..76
Performance information and QHST...77

Spooled files..78
Job accounting... 78

How job accounting works..79
Job Accounting operating characteristics.. 81
Accounting Journal Processing...81

When to use job accounting... 82
Security and job accounting... 82

iv

About the accounting code...83
Resource accounting.. 83
Resource accounting data.. 84
Prestart communications jobs and job accounting..85
System job processing for job accounting... 86
Batch processing and job accounting.. 86
Interactive processing and job accounting..86
Printer file accounting...87
Journal entries for job accounting..87

Job accounting journal entry field information.. 87
Printer file accounting data for direct print and spooled print...91

Managing work...94
Calling a special IPL recovery program... 94
Monitoring system activity... 94

Checking memory pool usage.. 95
Controlling levels of system activity...96

Examples: activity control relationships...98
Determining the status of a job.. 99
Monitoring a subsystem... 99

IBM Navigator for i.. 99
Determining the number of subsystems using a memory pool...99

IBM Navigator for i.. 99
Character-based interface.. 99

Viewing job performance statistics ... 100
Viewing overall system status..100

Checking disk status... 101
Managing jobs.. 101

Common job tasks.. 101
Starting a job... 101
Ending a job... 102
Finding jobs .. 104
Viewing jobs on the job queue..104
Viewing jobs in the subsystem... 105
Viewing job attributes... 105
Viewing call stacks.. 106
Placing a job on the job queue..106
Moving a job to a different job queue... 107
Moving a job up in priority...108
Tips for setting job priorities...108
Submitting a job once... 109
Viewing job affinity information..109

Managing job descriptions..109
Creating a job description... 110
Changing a job description..110
Using a job description..110
Controlling the job attribute source..111
Deleting a job description... 111

Manage batch jobs..112
Submitting a batch job.. 112
Starting a batch job that is waiting in the job queue..114

Managing interactive jobs...114
Controlling inactive jobs and workstations.. 114
Ending interactive jobs..115
Disconnecting all jobs from a device.. 116
Job disconnection considerations..116
Avoiding a long-running function from a workstation..117

Managing prestart jobs...117
Starting a prestart job .. 117

 v

Queueing or rejecting program start requests... 118
Tuning prestart job entries... 118
Changing job attributes for prestart jobs..121
Ending a prestart job...122

Managing job class objects...123
Creating a class object.. 123
Changing a class object...123

Managing threads... 124
Viewing threads running under a specific job.. 124
What you can do with threads.. 124
Viewing thread properties...125
Ending or deleting threads..126

Managing job scheduling... 126
Scheduling a batch job using IBM Navigator for i..126
Scheduling a job using Management Central Scheduler... 127
Working with job schedule entries...127

Adding a job schedule entry... 127
Changing a job schedule entry..128
Holding a job schedule entry.. 128
Printing a list of job scheduled entries... 128
Releasing a job schedule entry...129
Removing a job schedule entry...129

Managing subsystems..129
Common subsystem tasks... 129

Viewing subsystem attributes.. 130
Stopping a subsystem...130
Starting a subsystem.. 131

Creating a subsystem description..132
Adding autostart job entries... 133
Adding communications entries...133
Adding job queue entries.. 134
Adding prestart job entries... 134
Adding routing entries...134
Adding workstation entries...135
Creating a sign-on display file...135
Specifying the new sign-on display ... 136

Changing a subsystem description.. 136
Changing autostart job entries..137
Changing communication entries... 137
Changing job queue entries.. 138
Changing prestart entries... 138
Changing routing entries...139
Changing workstation entries... 139
Changing the sign-on display..139

Deleting a subsystem description..140
Removing autostart job entries.. 140
Removing communication entries..140
Removing job queue entries... 141
Removing prestart job entries.. 141
Removing routing entries..142
Removing workstation entries..142

Configuring an interactive subsystem..142
Creating a library... 142
Creating a class... 142
Creating the subsystem description...143
Creating a job queue... 143
Adding a routing entry...143
Adding workstation entries...143

vi

Customizing QINTER...143
Configuring the console.. 144
Assigning users to a specific subsystem.. 144

Configuring a server subsystem... 146
Creating a user-defined server subsystem.. 146
Routing server jobs based on client IP address...147
Routing server jobs by user.. 149

Creating a controlling subsystem...150
Placing the system in restricted state..151

Managing memory pools..151
Viewing memory pool information... 151

IBM Navigator for i.. 152
Character-based interface..152

Determining the number of subsystems using a memory pool.. 152
IBM Navigator for i.. 152
Character-based interface..152

Determining the number of jobs in a memory pool... 153
Determining in which pool a single job is running... 153

IBM Navigator for i.. 154
Managing tuning parameters for shared pools..154

IBM Navigator for i.. 154
Character-based interface..154

Managing a pool's configuration.. 155
IBM Navigator for i.. 155
Character-based interface..155

Changing memory pool size... 155
IBM Navigator for i.. 156
Character-based interface..156
Change the size of a shared pool..156

Creating a private memory pool... 156
Managing job queues... 157

Assigning the job queue to the subsystem.. 157
How a subsystem handles several job queues.. 158

Changing the number of jobs running simultaneously in a job queue.. 158
Clearing a job queue... 159

IBM Navigator for i.. 159
Character-based interface..159

Creating job queues..159
Deleting a job queue...159
Determining which subsystem has a job queue allocated.. 160

IBM Navigator for i.. 160
Character-based interface..160

Holding a job queue..161
IBM Navigator for i.. 161

Releasing a job queue.. 161
IBM Navigator for i.. 161
Character-based interface..161

Moving a job to a different job queue...161
IBM Navigator for i.. 162

Placing a job on the job queue... 162
IBM Navigator for i.. 162
Character-based interface..162

Searching all job queues for a specific job...163
IBM Navigator for i.. 163
Character-based interface..163
Find a job when you do not know the name of the job queue... 163

Specifying the priority for the job queue..163
Managing output queues... 164

 vii

Creating an output queue...164
Assigning the output queue to a job or job queue... 164

IBM Navigator for i.. 164
Character-based interface..164

Accessing printer output.. 165
IBM Navigator for i.. 165

Clearing output queues.. 165
IBM Navigator for i.. 165
Character-based interface..165

Deleting an output queue...165
Viewing output queues on the system...166

Managing job logs...166
Managing the job log server... 166

Reconfiguring the job log server... 166
Ending the job log server.. 167

Starting the job log server.. 167
IBM Navigator for i.. 168
Character-based interface..168

How to display job logs...168
IBM Navigator for i.. 168

What to do when the job log does not display...169
Specifying the output queue for a job log.. 170
Stopping production of a specific job log...170
Preventing the production of a job log... 171
Controlling information in a job log.. 171

Changing the log level of a job.. 172
Controlling batch job log information... 173

Deleting job log output files... 173
Producing printer output from job log pending... 174
Cleaning up job log pending... 175

IBM Navigator for i.. 175
Character-based interface..175

Managing job accounting... 175
Setting up job accounting...176
Controlling the assignment of accounting codes.. 176
Displaying the data collected... 177
Converting job accounting journal entries... 177
Recovering and job accounting.. 179

Damaged job accounting journal or journal receiver... 179
Accessing the CPF1303 Message...180

Managing workload groups..180
Setting up workload groups... 181
Displaying workload groups... 182
Auditing workload groups.. 182

Reference...183
Group jobs.. 183

Attention key handling program...186
Group job performance tips... 188

Troubleshooting for work management... 188
My job is hung...188
My job is experiencing poor performance... 190
Prestart job investigation... 191

Related information for Work management... 192

Notices..195
Programming interface information..196
Trademarks..196

viii

Terms and conditions.. 197

 ix

x

Work management
Work management is an important building block within the IBM® i operating system.

Its functions are the foundation through which all work enters the system, is processed, run, and
completed. Whether you run a simple batch job once a week or you call an application daily (like Lotus
Notes®), work management helps manage the jobs and objects that run on your system. It also supports
the commands and internal functions necessary to control system operations and allocate resources to
applications when needed.

The IBM i product is set up and ready to use. Most users do not need to change the default settings.
However, if you need to tailor the work management piece to fit your company, you need to understand
the terms and concepts associated with it and how they integrate with each other to provide you with the
best performance from your system.

Whether you are an experienced IBM i user or just learning, this topic collection gives you an easy-to-
understand view of work management. This topic contains different entry points, so that you choose
where you want to start learning about work management.

Note: In addition, you can work with work management using IBM Navigator for i. This allows you to work
with work management functions using a Web browser. For more information, see IBM Navigator for i
tasks on the Web.

PDF file for Work management
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select Work management.

You can view or download these related topics:

• Performance contains the following topics:

– Planning for performance
– Managing system performance
– Applications for performance management

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) .

© Copyright IBM Corp. 2004, 2013 1

http://www.adobe.com/products/acrobat/readstep.html

What's new for IBM i 7.2

What's new as of April 2016

How to see what's new or changed

The Configuring a server subsystem section was added to the Managing subsystems topic. This new
section has information on setting up a user-defined server subsystem and configuring servers to route
their work to different subsystems.

To help you see where technical changes have been made, this information uses:

• The image to mark where new or changed information begins.
• The image to mark where new or changed information ends.

In PDF files, you might see revision bars (|) in the left margin of new and changed information.

To find other information about what's new or changed this release, see the Memo to users.

Introduction to work management
Work management supports the commands and internal functions necessary to control system operation
and the daily workload on the system. In addition, work management contains the functions that you
need to distribute resources for your applications so that your system can handle your applications.

The purpose of your system is to perform work. Work enters, work is processed, and work leaves the
system. If you think of work management in these three terms, work management will be easier to
understand. Work management describes where work enters the system, where and with what resources
work is processed, and where output from work goes.

Are you new to work management? The topic collection under the subject Introduction to work
management is designed to provide you with several different overall perspectives of work management.
In this way, you should be able to get a solid foundation in the underlying principles of work management,
regardless of your systems background.

Your system as a business
To make grasping the overall concept of work management easier, try comparing your system with a
business.

A simple system can be compared to a small business, and a complex system can be compared to a
shopping mall. Assume there is a small store in the business of building hand-crafted wood furniture.
Work enters, such as orders for small tables, chairs, and bookshelves. Work is processed, the carpenter
calls the customers to confirm the order, and they are consulted on design points including style, size,
and color. The carpenter designs each piece of furniture, gathers the necessary materials, and then builds
the furniture. After the furniture is completed, it is delivered: work leaves.

Since a complex system is a combination of many simple systems, a comparable example of a complex
system is a shopping mall, many small and large businesses in one area. Maybe the carpenter has a
business in the Northwest corner of the mall and a baker has a business along the East strip. The baker
and the carpenter have different input and different output, that is, their orders and their products are
very different. In addition, the time it takes each business to process their work is quite different, and
their users know and understand that.

Work management terms

A complex system (shopping mall) is a compilation of many simple systems (stores). These simple
systems are called subsystems.

2 IBM i: Work management

Any piece of work within the business is considered a job. An example of a piece of work might be a
customer letter, a telephone call, an order, or nightly cleanup. The same can be said about the IBM i
product. On the system, each job has a unique name.

A job description describes how to handle the work coming into the subsystem. Job descriptions contain
pieces of information such as user IDs, job queues, and routing data. Information in the job description
might compare to descriptions of jobs in a small business.

What does the business look like? Every store has blueprints or store plans. These plans are really just
descriptions, in varying detail, of the physical makeup of the business. Maybe the business has a store
with: 2 floors, 5 doors, 3 mailboxes, and 2 telephones. On your system, a subsystem description contains
all the information about the subsystem.

Where does the work come from? For the carpenter, the work comes from customer calls, from
references, and from people that stop in. On your system, the work can come from many places.
Examples include job queues, workstations, communications, autostart jobs, and prestart jobs.

Where do they find the space? Within the mall, each business (subsystem) has a certain amount of floor
space. On the system, memory pools allow you to control the main storage (or floor space) each
subsystem (business) gets to do its work. The more floor space a store (subsystem) has, the more
customers, or jobs, can fit in the store.

How does the work come in? Customers that cannot find the store they need may find an information
booth to help send them in the right direction. The same is true on your system. Routing entries are similar
to store directories or an information booth. After the routing entry is found, it guides the job to its correct
place. The routing entry needs to be found first, however. That is done through routing data. Routing data
is what the job uses to find the right routing entry.

How is the work treated? A carpenter needs to place a priority on each job. The chair due at the end of
the week should be done before the bookshelf due at the end of the month. On your system, classes
provide information about how the job is handled while in the subsystem. This information includes
priority while running, maximum storage, maximum CPU time, and time slice. Each of these attributes
contribute to how and when a job is processed.

Just as there are rules that affect all the stores in the mall, there are rules that affect all the subsystems
on your system. An example of these rules is a system value. System values are pieces of information that
apply to the whole system. System values include information such as, date and time, configuration
information, sign-on information, system security and, storage handling.

Customers in a mall each have information specific to them. On your system, the user profile holds
information specific to a particular user. Similar to a customer’s credit card, a user profile gives that user
specific authorities and assigns the user attributes for that user's jobs. These job attributes provide
information that includes, but is not limited to, the job description, the output queue or printer device, the
message queue, the accounting code, and the scheduling priority.

A job's life
To understand the basics of IBM i work management, follow a simple batch job as it moves through the
system.

The life of a simple batch job begins when you submit it to the system. The job is then sent to a job queue
where it waits to enter a subsystem where it can run. After the job moves to the subsystem it is allocated
memory in which to run. The printer output file (also called spooled files) is then sent to the output queue
to await further instruction on what to do (for example, printing). While not every job follows this exact
path, you can better understand how other work is completed on the system by learning more about this
typical job life cycle.

Submit the job > Job enters the job queue > Job enters the subsystem > The memory pool allocates
memory to the subsystem > The job finishes and moves to the output queue

Work management 3

Submitting a job
When a job is submitted, it is created and enters the system. At this time, the attributes are given to the
job.

The job description holds attributes that the job will use to go through the work management life cycle.
These attributes include the user profile the job will start to run under, the request data (which tells the
job what it will do), and the initial user portion of the library list, and so on. The job description also holds
information that tells the job which job queue to enter and the routing data. The routing data is later used
by the subsystem to find the routing entry that contains information needed for the job to start running.
The output queue is also defined within the job description. It tells where printer output (also called
spooled files) from a job will go.

After the job receives its values (initialization, customization) for its job attributes, it moves to the job
queue where it waits to enter the subsystem.

The job enters the job queue
Job queues are work entry points for batch jobs to enter the system. They can be thought of as "waiting
rooms" for a subsystem.

A number of factors affect when the job is pulled off the job queue into the subsystem, such as the job
priority on the job queue, the sequence number of the job queue, and the maximum active jobs. When all
of these factors work together, the job will be pulled off the job queue to start running in the subsystem.

When the job enters the job queue, it is available to a subsystem that has the job queue allocated to it.
Because subsystems can have more than one job queue feeding into them (however, job queues cannot
feed into more than one subsystem), a sequence number in the subsystem determines when the
subsystem processes a job queue. The subsystem looks at the sequence number of the job queue before
the job priority of the jobs in the job queue. The subsystem uses the priority on the job queue to
determine when a job can enter relative to other jobs on the job queue. The job priority and the maximum
active jobs determine when a job enters the subsystem.

The job enters the subsystem
Subsystems are operating environments where the system manages the resources that jobs use and
controls the jobs that run within them. After jobs are running in the subsystem, the subsystem job carries
out user requests on a job such as holding, releasing, and ending a job. When the job enters the
subsystem it becomes active.

Like jobs, subsystems have descriptions that carry important information needed to complete the work.
In the subsystem description is the routing entry. The routing entry references the class object, which
contains the attributes that control the run-time environment. However, before the job can get its routing
entry, the routing data must make a match with a compare value in the routing entry. If this association is
not made, the job is not run.

After the association between the routing data and the routing entry is made, the class object the job uses
is determined. Some of the attributes that control the run-time environment include the run priority, the
time slice, the maximum wait time, the maximum processing time, the maximum temporary storage, and
the maximum number of threads.

The subsystem description defines the memory pools that are allocated to the subsystem. The subsystem
description also contains the maximum active jobs, which is the maximum number of active jobs at one
time in the subsystem.

Until a job gets its activity level and is assigned a memory pool, it cannot run. The subsystem description,
like the job description, carries information, such as the memory pool to use, the routing entry, the
maximum active jobs, and the number of active jobs currently in the subsystem.

The subsystem uses memory from the memory pool to run the job
Memory is a resource from the memory pool that the subsystem uses to run the job. The amount of
memory in a memory pool, as well as how many other jobs are competing for memory, affect how
efficiently a job runs.

Memory pools provide jobs with memory in which to run. Many factors affect how the job runs in the
memory pool, such as the size of the memory pool, the activity level in the memory pool, and paging and

4 IBM i: Work management

faulting. The activity level in memory pools directly relates to the number of threads that are allowed to
run in the memory pool at one time. Remember, every job has at least one active thread, but some can
have multiple threads. Threads give a job the ability to do more than one thing at a time. For example, one
thread can go out and do calculations while another thread waits for more data to process.

Paging is the movement of data in and out of memory, both synchronously and asynchronously. Pages can
be written out to storage or removed from memory without being written if they have not been changed.
Faulting causes paging to occur on the server. Faulting occurs when a referenced page, or piece of data, is
not in memory. This causes programs to stop because they must wait for the data to be paged in.

Subsystems use different memory pools to support different types of jobs that run within them.

The job finishes and moves to the output queue
A job's printer output (also called spooled files) is sent to an output queue where it waits to be sent to a
printer or file. The output queue is similar to the job queue in that it controls how the output is made
available to the printer. The output queue allows the user to control what files are printed first.

Output queues are areas where printer output files wait to be processed and sent to the printer. Printer
output is created either by the system or by the user using a print file. A print file is similar to a template
or a guideline where the default values for the attributes of printer output are set. It is the beginning of
the printer output life cycle.

The print file contains the output queue (OUTQ) and print device (DEV) attributes, which dictate how the
printer output is to be directed. The default settings are typically *JOB, meaning that the job attributes of
the output queue and printer device determine how the printer output is directed. The job attributes of
the output queue and printer device settings are based on information obtained when the job is created.
This is based on information from the user profile that the job is running under, the job description, the
workstation device description, and the Default printer (QPRTDEV) system value.

When the printer output is ready to be created, the system checks the print file and the job attributes (in
this order) to see what output queue will process the printer output and which printer device the system
will use. If a specified output queue cannot be found, the printer output will be directed to QGPL/QPRINT.

After the printer output file is ready to be printed, a writer job, a job that processes the printer output from
the output queue to the printer device, takes data from the printer output file and sends it to the
designated printer.

How work gets done
This topic explains what work is, what needs to be set up before work begins, how work travels through
the system, and what happens to work after it is done running.

What work is
On your IBM i product, work is always being done, whether you initiate it or the system initiates it. Any
action done on the system has some type of work being performed to complete it.

Work is done when you turn on your system, when you open a file, or when you query a database. Each
piece of work on the system is performed by a job. A job can be as simple as an application that waits for
a user to call it or it can be as complex as a constantly running system query that monitors the number of
users on the system every hour. Some jobs, specifically batch and interactive jobs, have job descriptions
associated with them that tell when and where the job will run.

Jobs are made up of programs that perform certain functions. There is no limit to the amount of functions
a job performs. A job contains the step-by-step instructions that must be completed for work to be done.
The programs that make up the job run in a specific order. (For example, program A needs to run before
program B can begin.) Threads help a job complete its work. An active job contains at least one thread.
When a job contains multiple threads, it has the ability to do more than one thing at once. For example,
one thread can go out and do calculations while another thread waits for more data to process.

Work management 5

What happens before work enters the system
All jobs, with the exception of system jobs, run within subsystems. For work to start in an active
subsystem, memory pools and at least one source of work entry point need to be established. Job queues
are an example of a source of work.

The IBM i product includes a default set of job queues, subsystems, and memory pools, which can allow
work to begin as soon as the system is powered on.

You can tailor the subsystem and memory pool configurations to optimize the capabilities and
performance of your IBM i product. For example, if batch jobs are critical to the success of your business,
you may want to allocate more memory for them to run. Or, you may determine that the number of jobs
running at one time in your Qbatch subsystem should be lower so that those jobs can use the maximum
amount of resources to run. Also, you can create job queues, subsystems, and memory pools specifically
designed to complete specific types of work. For example, you can create a job queue called Nightreps,
where nightly batch reports are sent to a subsystem called Nightrep that allocates memory exclusively for
running these batch jobs.

How work enters the system
Work entries identify the sources where jobs enter a subsystem to become available to run. Each type of
job has different types of work entries that it uses.

For example, most batch jobs use job queues to enter the subsystem. Job queue entries are the
mechanism through which a job queue is defined as a source of work to a subsystem.

Work entries are kept in the subsystem description. If a subsystem description does not have a work
entry for the type of work being done, the job cannot run in that subsystem. The IBM-shipped subsystems
have default work entries in the subsystem descriptions. Keep in mind, some of the default work entries
that ship with the subsystems are already allocated to run specific jobs.

How work gets processed
When the system is started, a subsystem monitor job begins running. The subsystem monitor job controls
the jobs within subsystems. It also starts and ends work, as well as manages the resources for work in
the subsystem.

Work (or jobs) enters a subsystem through work entries where it becomes active and eligible to run. Work
can only be completed when the subsystem has allocated memory to run. Memory is allocated to the
subsystem by a memory pool.

How the subsystem description helps process work

Like a job, a subsystem has a description, called a subsystem description. The subsystem description
contains important information that tells how, where, how much work can be active in a subsystem at one
time, and which resources it can use to perform the work.

Routing entry
A routing entry exists within the subsystem description and tells the subsystem what program to run
for the job, what memory pool to run the job in, and which class object to use to run the job.

Class Object
The Class object defines the run priority, default wait time, time slice, and other attributes. The run
priority is important because it determines when a job gets processor time in order to run. The run
priority scale goes from 0 to 99, with 0 being the highest priority. (Only system jobs are given priority
of 0 because they are the jobs that run the system.)

When a job enters the subsystem, the subsystem tries to match the routing data with the compare value
in the routing entry. If the routing data and the compare value in a routing entry match, the routing entry
is assigned to the job. If a match is not made in any routing entry, the job ends.

Another factor that affects when a job runs in the subsystem is the number of jobs that are allowed to be
active in the subsystem at one time (also known as maximum active jobs in the subsystem). When the
maximum number of active jobs in a subsystem has been met, no more jobs can enter the subsystem
until existing active jobs complete running. Memory has to be allocated to the subsystem for a job to run.
Memory pool activity levels tell the system how many threads can be active within a memory pool.

6 IBM i: Work management

Remember, an active job contains at least one thread. When the memory pool activity level has been
reached, the job has to wait for another thread to give up its use of the activity level. Thus, a job can be
active in a subsystem and not be running.

Note: Do not confuse the subsystem maximum active jobs with the memory pool activity level.

How work leaves the system
The output queue works similarly to a job queue in that it schedules output to be printed. Both the printer
output and the output queue carry attributes that are used to print the information.

Printer output holds output data that is waiting to be processed, such as information waiting to be
printed. Printer output also holds important information that is used to schedule when it is printed. Printer
output attributes include the output queue in which the printer output resides, the priority, the status and
the schedule of the printer output.

The output queue contains attributes of its own that determine the order in which the printer output files
are processed. It also contains the authority that is needed to make changes to the printer output and the
output queue.

When the printer output is ready to be sent to the printer it is picked up by a writer job. The writer job
takes the data from the printer output and prepares it to be printed.

Concepts
Whether you are new to work management or have been using work management tools for years, these
work management concepts might be useful for you.

The structure of your system
After receiving your IBM i product, you might want to know what subsystems are included with the
system, whether you need to change any start-up programs, and what kind of user interface you will work
with.

Subsystems shipped with the system
Two complete subsystem configurations are supplied by IBM and can be used without being changed.

The configuration the system uses when the system is started is controlled by the Controlling subsystem/
library (QCTLSBSD) system value. The default configuration consists of the following subsystem
descriptions:

Subsystem Description

Qbase (controlling
subsystem)

Qbase supports interactive, batch, and communications jobs. It has an
autostart job, which automatically starts the Qusrwrk, Qserver, and Qspl
subsystems.

Qserver This is the file server subsystem.

Qspl This is the spool subsystem that supports reader and writer jobs.

Qsyswrk This is the system work subsystem. It contains jobs that support system
functions that are started automatically at system startup and when the
system comes out of restricted state.

Qusrwrk This is the user work subsystem. It contains jobs that are started by
servers to do work on behalf of a user.

The other configuration, which is supplied by IBM, consists of the following subsystem descriptions:

Subsystem Description

Qctl (controlling
subsystem)

Qctl has an autostart job, which automatically starts the Qinter, Qbatch,
Qcmn, Qusrwrk, Qserver and Qspl subsystems.

Work management 7

Qinter This is the subsystem that supports interactive jobs, except those at the
console.

Qbatch This is the subsystem that supports batch jobs.

Qcmn This is the subsystem that supports communications jobs, excluding TCP/IP
communications jobs. These communications jobs are necessary for various
communications protocols that the IBM i system supports.

Qserver This is the file server subsystem.

Qspl This is the spool subsystem that supports reader and writer jobs.

Qsyswrk This is the system work subsystem. It contains jobs that support system
functions that are started automatically at system startup and when the
system comes out of restricted state.

Qusrwrk This is the user work subsystem. It contains jobs that are started by servers
to do work on behalf of a user.

The Qbase configuration gives the ability to run all of the same functions that you can run with the Qctl
configuration and is easier to manage because it consists of fewer subsystems.

The Qctl default configuration allows for more individualized control over your system operations by
dividing the system activity into different subsystems based on the type of activity. For example, if you
want to run batch jobs over the weekend, but do not want anyone to be able to sign on (except at the
console), you can easily do that with the Qctl configuration by ending the Qinter subsystem.

If you are considering creating your own subsystem configuration, you might also find that it is easier to
use the Qctl configuration as a starting point than the Qbase configuration.

Start-up programs
QSTRUPPGM is the start-up program. This is a system value which specifies the name of the program
called from an autostart job when the controlling subsystem is started. This program performs setup
functions, such as starting subsystems and printers. This system value can only be changed by the
security officer or by someone with security officer authority. A change to this system value takes effect
the next time an IPL is performed.

QSTRUPPGM can have these values:

• QSTRUP QSYS: The program specified is run as a result of a transfer of control to it from the autostart
job in the controlling subsystem.

• *NONE: The autostart job ends normally without calling a program.

Related information
System values that control IPL

What happens during the IPL

The default startup program QSYS/QSTRUP does the following:

• Starts the QSPL subsystem for spooled work.
• Releases the QS36MRT and QS36EVOKE job queues if they were held (these are used by the System/36

environment).
• Starts Operational Assistant cleanup, if allowed.
• Starts all print writers unless user specified not to on the IPL Options display.
• Starts the QSERVER and QUSRWRK subsystems.
• If the controlling subsystem is QCTL, it starts the QINTER, QBATCH, and QCMN subsystems.

8 IBM i: Work management

Types of start-ups
During an initial program load (IPL), system programs load from the designated load source device in the
system auxiliary storage. The system hardware is also checked. The IBM i control panel displays a series
of system reference codes that indicate its current status and warn you of any problems. When the IPL is
finished, the character-based interface presents the sign-on display, and users are able to sign on with
IBM Navigator for i.

There are several options for starting your system. You can:

• Start the system without making configuration changes. This is referred to as an unattended IPL.
• Change your system configuration during an IPL. This is referred to as an attended IPL.

Attended IPL's display various additional screens depending upon the options that you select on the IPL
options display. These can include displays that allow you to change system values and other system
attributes during the IPL, reconstruct access paths, verify the status of physical file restrictions,
configure and name new devices, and specify options for the operating environment.

• Change the type of IPL from your system control panel.
• Schedule a system shut down and restart.

General problems during an IPL is referred to as an abnormal IPL.

For more information about IPL and system shut down, see information about starting and stopping the
system.

Related information
Starting and stopping the system

Powering down your system
You must be cautious when turning off your system. If you turn off the system without completing certain
tasks, you can cause damage to data or cause the system to behave in unpredictable ways.

The following information center topics contain more information about safely powering down your
system.

• How to safely shut down your system when integrated Windows servers are present
• Power down a system with logical partitions
• Power down System Exit Program
• Exit Program for Tailoring Power Off

Related information
Shutting down your IBM i system when integrated Windows servers are present
Power down a system with logical partitions
Power Down System Exit Program API
Exit Program for Tailoring Power Off API

IBM Navigator for i
IBM Navigator for i is a web based graphical interface. With IBM Navigator for i, you can manage and
administer your systems from your browser. You can use IBM Navigator for i to accomplish most of the
tasks associated with work management.

This interface has been designed to make you more productive. Therefore, it is recommended that you
use IBM Navigator for i, which has online help to guide you. While this interface is being developed, you
might still need to use a traditional emulator such as PC5250 to do some of your tasks. If a topic
discusses such a task, you will be directed to use the character-based interface within the instructional
steps of the topic.

Related information
Working with IBM Navigator for i
IBM Navigator for i

Work management 9

Subsystems
The subsystem is where work is processed on the system. A subsystem is a single, predefined operating
environment through which the system coordinates the work flow and resource use. The system can
contain several subsystems, all operating independently of each other. Subsystems manage resources.

All jobs, with the exception of system jobs, run within subsystems. Each subsystem can run unique
operations. For instance, one subsystem may be set up to handle only interactive jobs, while another
subsystem handles only batch jobs. Subsystems can also be designed to handle many types of work. The
system allows you to decide the number of subsystems and what types of work each subsystem handles.

The run-time characteristics of a subsystem are defined in an object called a subsystem description. For
example, if you want to permanently change the amount of work (number of jobs) coming from a job
queue into a subsystem you only need to change the job queue entry in the subsystem description.

Related tasks
Common subsystem tasks
This information discuss the most common tasks that you can perform on a subsystem.
Creating a subsystem description
You can create a subsystem description in two ways. You can copy an existing subsystem description and
change it, or you can create an entirely new description.
Related information
Experience Report: Subsystem Configuration

The controlling subsystem
The controlling subsystem is the interactive subsystem that starts automatically when the system starts,
and it is the subsystem through which the system operator controls the system via the system console. It
is identified in the Controlling subsystem/library (QCTLSBSD) system value.

IBM supplies two complete controlling subsystem descriptions: QBASE (the default controlling
subsystem) and QCTL. Only one controlling subsystem can be active on the system at any time.

When the system is in the restricted condition, most of the activity on the system has ended, and only one
workstation is active. The system must be in this condition for commands such as Save System (SAVSYS)
or Reclaim Storage (RCLSTG) to run. Some programs for diagnosing equipment problems also require the
system to be in a restricted condition. To end this condition, you must start the controlling subsystem
again.

Note: There is also a batch restricted state in which one batch job can be active.

When all of the subsystems, including the controlling subsystem are ended, a restricted condition is
created. You can end each subsystem individually or you can use the ENDSBS SBS(*ALL)
OPTION(*IMMED).

Important: The system cannot reach the restricted state until there is only one job remaining in the
controlling subsystem. Sometimes it may appear as though there is a single job remaining, but the system
does not go into the restricted state. In this case you need to verify that there are no suspended system
request jobs, suspended group jobs, or disconnected jobs on the remaining active display. Use the Work
with Active Jobs (WRKACTJOB) command and press F14=Include to display any suspended or
disconnected jobs. If these jobs exist, you need to end them in order for the system to reach the
restricted state. The ENDSYS and ENDSBS functions send a CPI091C information message to the
command issuer when this condition is detected.

Related tasks
Creating a controlling subsystem
IBM supplies two complete controlling subsystem configurations: QBASE (the default controlling
subsystem), and QCTL. Only one controlling subsystem can be active on the system at one time. Typically,
the IBM supplied subsystem configurations should be sufficient for most business needs. However, you
can create your own version of a controlling subsystem and configure it to more closely meet your
company's unique needs.
Placing the system in restricted state

10 IBM i: Work management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work1abstract.htm

If all of the subsystems, including the controlling subsystem are ended, the system goes into a restricted
condition. You can place the system in a restricted condition by using one of two commands from an
interactive workstation.
Related information
Experience Report: Restricted State

Why consider multiple subsystems
As the number of users on the system increases, a single subsystem for a set of work is often insufficient.
By dividing your users into multiple subsystems you gain several advantages.
Improved manageability of work

You get better control over what work is running in each subsystem. For example, for server jobs, you
might want to isolate all of the database server jobs to one subsystem, the remote command server
jobs to a different subsystem, the DDM server jobs to yet a different subsystem and so on.
Additionally, by using multiple subsystems you can isolate groups of jobs with their own memory
pools. In this way, one group does not adversely impact other jobs.

Reduced downtime impact for users
For example, if every Friday afternoon you must bring the system to the restricted state for backup
purposes, you can gradually take users offline by ending one subsystem at a time.

Improved scalability and availability
By having a single subsystem do work for fewer users, the subsystem is less busy and can be more
responsive to the work requests it handles.

Improved error tolerance in interactive subsystems
By spreading the work across multiple subsystems, should a network failure occur, multiple
subsystems can manage the device recovery processing.

Improved interactive subsystem startup time
You can keep the subsystem startup times shorter by subdividing the work across multiple
subsystems.

Additional options for performance tuning
By using multiple subsystems you can set up the subsystems with a small number of routing entries.

Related information
Experience Report: Subsystem Configuration

Subsystem description
A subsystem description is a system object that contains information defining the characteristics of an
operating environment controlled by the system. The system-recognized identifier for the object type is
*SBSD. A subsystem description defines how, where, and how much work enters a subsystem, and which
resources the subsystem uses to perform the work. An active subsystem takes on the simple name of the
subsystem description.

Like a set of detailed blueprints, each subsystem description is unique, containing the specific
characteristics that describe the subsystem. The description includes where work can enter the
subsystem, how much work the subsystem can handle, how much main storage (memory) is used, and
how quickly jobs in the subsystem can run.

You can use a subsystem description supplied with your system (with or without making changes to it), or
you can create your own.

Related tasks
Changing a subsystem description
The Change Subsystem Description (CHGSBSD) command changes the operational attributes of the
specified subsystem description. You can change the subsystem description while the subsystem is
active. To change a subsystem description, use the character based interface.
Creating a subsystem description

Work management 11

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work1abstract.htm

You can create a subsystem description in two ways. You can copy an existing subsystem description and
change it, or you can create an entirely new description.

Subsystem description attributes
Subsystem description attributes are common overall system attributes. When you create a subsystem,
the first step is to define the subsystem attributes.

Subsystem attributes include:

• The name of the subsystem description and the library where it is stored
• All of the memory pool definitions that this subsystem uses

A subsystem definition can have a maximum of 10 memory pool definitions specified. Included in the
subsystem definition are:

– Pool definition identifier: This is the identifier inside the subsystem description, of the storage pool
definition.

– Size: This is the size of the storage pool expressed in KB (1K=1024 bytes) multiples and is the
amount of main storage that the pool can use.

– Activity level: This is the maximum number of threads that can run at the same time in the pool.
• The maximum number of jobs that can be active in the subsystem at the same time
• A text description of the subsystem description
• The name and library of the sign-on display file that is used to show sign-on displays at work stations

that are allocated to the subsystem
• A subsystem library name that you can use if you want to specify a library that should be entered ahead

of other libraries in the system portion of the library list (This parameter allows you to use a secondary
language library.)

Also included in the subsystem description is information about authority levels to the subsystem. This
information is kept by Security and is not stored with the other attributes of the subsystem description.
You can view the subsystem description authority by using the Display Object Authority (DSPOBJAUT)
command.

Work entries
Work entries identify the sources where jobs can enter a subsystem. Specific types of work entries are
used for different types of jobs. Work entries are part of the subsystem description.

The following information describes the different types of work entries and how to manage them. There
are five types of work entries; autostart job entries, communication entries, job queue entries, prestart job
entries, and workstation entries.

Autostart job entries
Autostart job entries identify the autostart jobs to start as soon as the subsystem starts. When a
subsystem starts, the system allocates several items and starts autostart and prestart jobs before it is
ready for work.

The autostart jobs associated with a subsystem are automatically started each time the subsystem is
started. An autostart job in the controlling subsystem can be used to start other subsystems (as does the
IBM-supplied controlling subsystem). An autostart job is a batch job doing repetitive work.

For example: To call a special recovery program if the IPL senses that the previous system ending was
abnormal, you can add an autostart job entry to the subsystem description for the controlling subsystem.
This program checks the Previous system ending status (QABNORMSW) system value. For a normal
system ending, the value of QABNORMSW is '0', and for an abnormal system ending, the value of
QABNORMSW is '1'.

Related tasks
Adding autostart job entries
You use the character-based interface to add an autostart job entry. An autostart job starts automatically
when the associated subsystem starts. These jobs generally perform initialization work that is associated

12 IBM i: Work management

with a particular subsystem. Autostart jobs can also perform repetitive work or provide centralized
service functions for other jobs in the same subsystem.
Changing autostart job entries
You can specify a different job description for a previously defined autostart job entry. To change an
autostart job entry, use the character-based interface
Removing autostart job entries
You can remove an autostart job entry from a subsystem description by using the character-based
interface.

Communications entries
The communications work entry identifies to the subsystem the sources for the communications job it
processes. The job processing begins when the subsystem receives a communications program start
request from a remote system and an appropriate routing entry is found for the request.

For performance reasons, instead of starting a communications job each time a program start request is
received, you can configure a prestart job to handle a program start request from a remote system. For a
communications batch job to run on system, a subsystem description containing a work entry for
communications work must exist on the system.

Related tasks
Adding communications entries
Each communication entry describes one or more communication device, device types, or remote
location for which the subsystem starts jobs when program start requests are received. The subsystem
can allocate a communication device if the device is not currently allocated to another subsystem or job.
A communications device that is currently allocated may eventually be de-allocated, making it available
to other subsystems. To add a communications entry to the subsystem description, use the character-
based interface.
Changing communication entries
You can change the attributes of an existing communications entry in an existing subsystem description
by using the character-based interface.
Removing communication entries
You can remove communication entries from the subsystem description by using the character-based
interface. All jobs that are active through the communications entry being removed must be ended before
this command can be run.

Job queue entries
Job queue entries in a subsystem description specify from which job queues a subsystem is to receive
jobs. When the subsystem is started, the subsystem tries to allocate each job queue defined in the
subsystem job queue entries.

For example, a job queue entry in the subsystem description QSYS/QBASE specifies that jobs can be
started using the job queue QGPL/QBATCH. Jobs can be placed on a job queue even if the subsystem has
not been started. When the subsystem QBASE is started, it processes the jobs on the queue. A subsystem
description can specify the maximum number of jobs (batch or interactive) that can be processed at the
same time. The number of jobs that can be active from any job queue is specified in the job queue entry.

Related tasks
Adding job queue entries
A job queue entry identifies a job queue from which jobs are selected for running in the subsystem. Jobs
started from a job queue are batch jobs. You add a job queue entry using the character-based interface.
Changing job queue entries
You can change an existing job queue entry in the specified subsystem description. This command can be
issued while a subsystem is active or inactive. To change the job queue entry in a subsystem, use the
character-based interface.
Removing job queue entries
You can remove job queue entries from a subsystem description by using the character-based interface.
Jobs on the job queue remain on the queue when the job queue entry is removed from the subsystem

Work management 13

description. A job queue entry cannot be removed if any currently active jobs were started from the job
queue.

Prestart job entries
You define the prestart job by using a prestart job entry. A prestart job entry does not affect the device
allocation or program start request assignment.

The job attributes of a prestart job are not changed by the subsystem when a program start request
attaches to the prestart job. However, server jobs generally change job attributes to those of the swapped
user profile.

The Change Prestart Job (CHGPJ) command allows the prestart job to change some of the job attributes
to those of the job description (specified in the job description associated with the user profile of the
program start request or in the job description specified in the prestart job entry).

Prestart jobs for servers
In the prestart job model there is one primary listening job, generally called the daemon job or listener
job, and multiple server jobs that process the client requests. The daemon job listens on the port for
connection requests. When a new connection is received, the daemon does some general work, then
gives the socket descriptor to a waiting prestart server job.

Prestart jobs can be reused. When the job has completed the work for one client, the environment is reset
and the job is made available to handle a request from a different client.

For server jobs that run user code (for example, the remote command server), the job typically is not
reused. This is because the user code might have changed something in the job and there is no sure way
to reset the environment for a new client. If your server does reuse the job, the Change Job (QWTCHGJB)
API can be used to change the job's attribute back to a known state after the client's request has
completed.

Servers that use the prestart job model include the host servers, SMTP server, PPP servers, DDM/DRDA
Server, the SQL Server, and others.

Related concepts
Prestart job investigation
This topic provides steps to help you answer the question, "How do I find the real user of a prestart job
and determine the resources used by that prestart job?"
Related information
Experience Report: Tuning prestart job entries

Workstation entries
An interactive job is a job that starts when a user signs on to a display station and ends when the user
signs off. For the job to run, the subsystem searches for the job description, which may be specified in the
workstation entry or the user profile.

The workstation entry guides the subsystem to prospective workstations. If a workstation is available, the
subsystem sends a sign-on screen to the display.

Note: The subsystem description for the controlling subsystem must contain a workstation entry for the
console, and that entry must be of type *SIGNON. (*SIGNON is a value for the AT parameter, specified on
the Add Work Station Entry (ADDWSE) command.) The *SIGNON value indicates that the sign-on display
is shown at the workstation when the subsystem is started. This requirement ensures that the subsystem
has an interactive device for the entry of the system and subsystem level commands. The End System
(ENDSYS) command ends the IBM i licensed program to a single session (or sign-on display) at the
console in the controlling subsystem. A subsystem description that does not contain a workstation entry
for the console cannot be started as a controlling subsystem.

Related tasks
Adding workstation entries

14 IBM i: Work management

A workstation entry is used when a job is started when a user signs on or transfers an interactive job from
another subsystem. You can specify the following items in a workstation entry. Parameter names are
given in parentheses. Use the character-based interface to add workstation entries.
Changing workstation entries
You can specify a different job description for a previously defined workstation entry by using the
character-based interface.
Removing workstation entries
You can remove a workstation entry from a subsystem description by using the character-based
interface. The subsystem can be active at the time the command is run. However, all jobs that are active
through the workstation entry must be ended before it can be removed.

Routing entries
The routing entry identifies the main storage subsystem pool to use, the controlling program to run
(typically the system-supplied program QCMD), and additional run-time information (stored in the class
object). Routing entries are stored in the subsystem description.

A routing entry can be likened to a single entry in a shopping mall directory. Customers that cannot find
the store they need may use a directory to help send them in the right direction. The same is true on your
system. Routing entries guide the job to the correct place. Routing entries in a subsystem description
specify the program to be called to control a routing step for a job running in the subsystem, which
memory pool the job uses, and from which class to get the run-time attributes. Routing data identifies a
routing entry for the job to use. Together, routing entries and routing data provide information about
starting a job in a subsystem.

Routing entries consist of these parts; the subsystem description, class, comparison data, maximum
active routing steps, memory pool ID, program to call, thread resources affinity, resources affinity group,
and the sequence number.

Related tasks
Adding routing entries
Each routing entry specifies the parameters used to start a routing step for a job. Routing entries identify
the main storage subsystem pool to use, the controlling program to run (typically the system-supplied
program QCMD), and additional run-time information (stored in the class object). To add a routing entry to
a subsystem description, use the character-based interface.
Changing routing entries
You can change a routing entry in the specified subsystem description by using the character-based
interface. The routing entry specifies the parameters used to start a routing step for a job. The associated
subsystem can be active when the changes are made.
Removing routing entries
You can remove a routing entry from the specified subsystem description by using the character-based
interface. The subsystem can be active at the time the command is run. However, the routing entry
cannot be removed if there are any currently active jobs that were started using the entry.

Class
Job run-time attributes are contained in the class object that is specified in the (CLS) parameter in the
routing entry. If a job consists of multiple routing steps, the class used by each subsequent routing step is
specified in the routing entry used to start the routing step. If the class does not exist when the routing
entry is added, a library qualifier must be specified because the qualified class name is kept in the
subsystem description.

Run-time attributes that are included in a routing entry class are:

Run priority (RUNPTY)
The run priority is a value ranging from 1 (highest priority) through 99 (lowest priority) that represents
the priority at which the job competes for the processing unit relative to other jobs that are active at
the same time. For multi-threaded jobs, the run priority is also the highest run priority allowed for any
thread within the job. Individual threads within the job may have a lower priority.

Work management 15

Time slice (TIMESLICE)
This is the time slice establishes the amount of time needed by a thread in a job to accomplish a
meaningful amount of processing. At the end of the time slice, the thread might be put in an inactive
state so that other threads can become active in the storage pool.

Default wait time (DFTWAIT)
This specifies the default maximum time (in seconds) that a thread in the job waits for a system
instruction, such as the LOCK machine interface (MI) instruction, to acquire a resource. This default
wait time is used when a wait time is not otherwise specified for a given situation. Normally, this is the
amount of time the system user might be willing to wait for the system before the request is ended. If
the wait time for any one instruction is exceeded, an error message can be displayed or it can be
automatically handled by a Monitor Message (MONMSG) command.

Maximum CPU time (CPUTIME)
This specifies the maximum processing unit time (in milliseconds) that the job can use. If the job
consists of multiple routing steps, each routing step is allowed to use this amount of processing unit
time. If the maximum time is exceeded, the job is held.

Maximum temporary storage (MAXTMPSTG)
This specifies the maximum amount of temporary (auxiliary) storage that the job can use. If the job
consists of multiple routing steps, this is the maximum temporary storage that the routing step can
use. This temporary storage is used for storage required by the program itself and by implicitly
created internal system objects used to support the job. It does not include storage in the QTEMP
library. If the maximum temporary storage is exceeded, the job is held. This parameter does not apply
to the use of permanent storage, which is controlled through the user profile.

Maximum threads (MAXTHD)
This specifies the maximum number of threads that a job using this class can run with at any time. If
multiple threads are initiated simultaneously, this value may be exceeded. If this maximum value is
exceeded, the excess threads will be allowed to run to their normal completion. Initiation of
additional threads will be inhibited until the maximum number of threads in the job drops below this
maximum value.

Text description (TEXT)
This specifies the text that briefly describes the object. This is an attribute of the class object when it
is created, but it is not a run-time attribute for a job.

Authority (AUT)
This specifies the authority you are giving to users who do not have specific authority for the object,
who are not on an authorization list, and whose group profile or supplemental group profiles do not
have specific authority for the object. This is an attribute of the class object when it is created, but it is
not a run-time attribute for a job.

Comparison data
The comparison value (CMPVAL) parameter of the routing entry specifies data that is compared with
routing data to determine which routing entry to use. (The routing entry also specifies the starting position
for the comparison.) The routing data is compared with the comparison value of each routing entry in
sequence number order until a match is found. The sequence number contained in a routing entry defines
the order in which the routing entries are scanned and can be used as the identifier of the routing entry.

When a routing entry is found with a comparison value that matches the routing data, a routing step is
started and the program specified in the routing entry is called. The run-time attributes in the class
associated with the routing entry are used for the routing step, and the routing step runs in the storage
pool specified in the routing entry.

You can specify a comparison value of *ANY on the highest numbered routing entry. *ANY means that a
match is forced regardless of the routing data. Only one routing entry can contain the comparison value of
*ANY, and it must be the last (highest sequence number) entry in the subsystem description.

16 IBM i: Work management

Maximum active routing steps
The maximum active routing steps (MAXACT) parameter of the routing entry specifies the maximum
number of routing steps (jobs) that can be active at the same time through this routing entry.

In a job, only one routing step is active at a time. When a subsystem is active and the maximum number of
routing steps is reached, any subsequent attempt to start a routing step through this routing entry fails.
The job that attempted to start the routing step is ended, and a message is sent by the subsystem to the
job's log.

Typically there is no reason to control the number of routing steps, thus the recommended value is
*NOMAX.

Memory pool ID
The memory pool ID (POOLID) parameter of the routing entry specifies the pool identifier of the storage
pool in which the program runs. The pool identifier specified here relates to the storage pools in the
subsystem description.

Program to call

The program to call (PGM) parameter of the routing entry specifies the name and library of the program
called as the first program run in the routing step. No parameters can be passed to the specified program.
The program name can be either explicitly specified in the routing entry, or extracted from the routing
data.

If a program name is specified in a routing entry, selection of that routing entry results in the routing entry
program being called (regardless of the program name passed in an EVOKE function). If the program
specified in the EVOKE function is supposed to be called, *RTGDTA must be specified in this parameter. If
the program does not exist when the routing entry is added or changed, a library qualifier must be
specified because the qualified program name is kept in the subsystem description.

Sequence number

The sequence number (SEQNBR) parameter of the routing entry tells the subsystem the order in which
routing entries are to be searched for a routing data match. The routing entries are searched in sequence
number order. When you add routing entries to a subsystem description, you should order them so that
the entries likely to be compared most often are first. This reduces the search time.

Sequence Number Comparison Value

10 'ABC'

20 'AB'

30 'A'

40 'E'

50 'D'

In the above example, the routing entries are searched in sequence number order. If the routing data
is ’A’, the search ends with routing entry 30. If the routing data is ’AB’, the search ends with routing entry
20. If the routing data is ’ABC’, the search ends with routing entry 10. Because routing data can be longer
than the comparison value of the routing entry, the comparison (which is done in left-to-right order) stops
when it reaches the end of the comparison value. Therefore, if the routing data is ’ABCD’, the search ends
with routing entry 10.

When you define routing entries, they must be ordered from the most specific to the most general. The
following example shows a correct and incorrect way to define routing entries:

Correct Incorrect

Sequence Number Comparison Value Sequence Number Comparison Value

10 'ABC' 10 'ABC'

Work management 17

Correct Incorrect

Sequence Number Comparison Value Sequence Number Comparison Value

20 'AB' 20 'ABCD'

30 'A'

40 'E'

9999 *ANY

In the incorrect example, it is no longer possible to match routing entry 20 because any routing data that
matches the comparison value for routing entry 20 matches the routing entry 10 first. When a routing
entry is changed or added to a subsystem description with a comparison value that causes this situation,
the system sends a diagnostic message identifying the situation.

The program named in the routing entry is given control when the routing step for the job is started.
Parameters to control the run-time environment (priority, time slice, and so on) of the routing step for the
job are taken from the class specified in the routing entry.

How a subsystem starts
When a subsystem starts, the system allocates several items and starts autostart and prestart jobs before
the subsystem is ready for work.

The subsystem description is used to determine how items are allocated. The following list represents the
sequence of events that occur when the subsystem starts:

1. Request to start subsystem is issued. The Start Subsystem (STRSBS) command is issued. Key
startup information is located in the subsystem description.

2. Memory pools are allocated. Memory is allocated to the pools defined in the subsystem description.
The memory that is allocated to each defined pool is taken from the Base memory pool. The system
does not allocate memory to a pool if the amount of memory available to the Base storage pool is less
than the minimum size specified by the Base memory pool minimum size system value QBASPOOL. If
the system cannot allocate all of the requested memory, it allocates as much memory as is available
and allocates all the other as memory becomes available.

3. Prestart jobs are started. This information comes from the prestart job entries.
4. Autostart jobs are started. This information comes from the autostart jobs entries.
5. Display stations are allocated (sign-on displays are up). If there are workstation entries and the

device is varied on and has not been allocated by any other subsystem, the subsystem can allocate it
and display the sign-on display. If the device is varied on and has been allocated by another
subsystem and is at the sign-on display (the sign-on display was displayed before the second
subsystem was started), a second subsystem can allocate the device from the first subsystem and
display the sign-on display. If the device is not varied on, the subsystem cannot allocate it. The system
arbiter (QSYSARB) and the QCMNARB jobs hold locks on all varied-off devices. Workstation entries
provide the information about what devices to check for allocation.

Note: For virtual display devices, the sign-on display is shown when the device becomes fully varied
on. This happens when a user connects to the IBM i using that device description (assuming the
connection request does not carry the data that is used to bypass the sign-on display processing). A
device can be taken from a pool of previously created device descriptions and varied on as part of that
connection processing, or a device can be created and varied on. At a subsystem start, the subsystem
pends a lock for any of the previously created device descriptions that the subsystem wants.

6. Job queues are allocated. The subsystem will not be able to allocate a job queue if it is already
allocated to another active subsystem. This information comes from the job queue entries.

7. Communications devices are allocated. Requests are sent to the QLUS (LU services) system job,
which handles device allocation for all communications devices. This information comes from the
communication entries.

8. The Environment is ready for work.

18 IBM i: Work management

Related tasks
Starting a subsystem
The Start Subsystem (STRSBS) command starts a subsystem using the subsystem description specified in
the command. When the subsystem is started, the system allocates the necessary and available
resources (storage, workstations, and job queues) that are specified in the subsystem description. You
can start a subsystem by using IBM Navigator for i interface or the character-based interface.

How workstation devices are allocated
Subsystems attempt to allocate all workstation devices in its subsystem description for AT(*SIGNON)
workstation entries.

The following situations might occur during the time the subsystem starts:

• If the device is not varied on, the subsystem cannot allocate it. The system arbiter (QSYSARB) and the
QCMNARBxx jobs hold locks on all varied-off devices.

• If the device is varied on and has not been allocated by any other subsystem, the subsystem can
allocate it and display the sign-on display.

• If the device is varied on and has been allocated by another subsystem and is at the sign-on display (the
sign-on display was displayed before the second subsystem was started), a second subsystem can
allocate the device from the first subsystem and display the sign-on display.

If more than one subsystem tries to allocate the same workstation (as specified in the workstation
entries) and the workstation is varied off, the subsystem that gets the workstation when it is varied on
cannot be predicted. Similarly, if a workstation entry specifies a workstation type instead of a workstation
name, a subsystem might get all, some, or none of the workstations of that type. (This also applies to
workstation entries with generic names.) To avoid such a situation, you can set up the workstation entries
for the subsystems so multiple subsystems are not using the same workstations.

After a user has signed on

When a user signs on to a workstation, the job runs in the subsystem that was shown on the sign-on
display on the workstation (the subsystem is identified in the IBM-supplied sign-on display). The
following situations might occur after the user has signed on:

• If a second subsystem is started and it tries to allocate the workstation on which the user signed on, the
second subsystem cannot allocate it. The user's job continues to run in the first subsystem.

• If the user selects option 1 (Display sign-on for alternative job) on the System Request menu or issues
the Transfer to Secondary Job (TFRSECJOB) command, the new job runs in the same subsystem as the
original job.

• When the user signs off, the workstation remains allocated to the subsystem used when the user signed
on, unless the user transferred into the subsystem using the Transfer Job (TFRJOB) command, and
specified AT (*ENTER) for the workstation entry for this workstation. A sign-on display is shown, and
any subsequent jobs from that workstation continue to run in that subsystem, (unless another
subsystem is started up that allocates the workstation while it is at the sign-on display).

• If the user signs off and the subsystem in which his job was running is ended, the device is deallocated.
A second subsystem can then allocate the device and display the sign-on display.

Related tasks
Assigning users to a specific subsystem
You can use several techniques to assign device names and then associate those device names with
users. After this is accomplished, you can use the workstation entries to get the user to the correct
subsystem.
Related information
Experience Report: Subsystem Configuration
Using Telnet exit point programs

Work management 19

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work1abstract.htm

Scenario: Workstation allocation
This example illustrates how two workstations are allocated to two different subsystems.

In this scenario, subsystem A and subsystem B have workstations DSP01 and DSP02 in their subsystem
descriptions (the workstation entries specify AT(*SIGNON)).

Device Name Allocated to

DSP01 Subsystem A

DSP02 Subsystem A

Assume that both workstations are varied on when subsystem A is started.

Subsystem A allocates both workstations and shows the sign-on display on both. Even though subsystem
A has the sign-on display shown on the workstations, they can be allocated by another subsystem or job;
the workstation is then no longer available to subsystem A.

Device Name Allocated to

DSP01 USER1

DSP02 Subsystem A

When a user (USER1) signs on to workstation DSP01, the device is allocated to USER1's job, which is
running in subsystem A. Workstation DSP02 is still at the sign-on display. Thus it can be allocated by
another subsystem or job. It is then no longer available to subsystem A.

Device Name Allocated to

DSP01 USER1

DSP02 Subsystem B

Subsystem B is started. Because USER1 has signed on to workstation DSP01, subsystem B cannot
allocate the device. Subsystem B requests allocation of the device when it becomes available. DSP02 is
allocated to subsystem B because no one has signed on to it in subsystem A. Any jobs started on DSP02
run in subsystem B.

Device Name Allocated to

DSP01 Subsystem A

DSP02 Subsystem B

USER1 signs off. Because the user job was running in subsystem A, that subsystem displays the sign-on
display so that another user can sign on the workstation and run in subsystem A. If subsystem A is ended,
workstation DSP01 is allocated by subsystem B (because it has an outstanding request to allocate the
device.)

The name of the subsystem that currently has a workstation allocated appears in the upper right corner of
the IBM-supplied sign-on display.

Related tasks
Assigning users to a specific subsystem
You can use several techniques to assign device names and then associate those device names with
users. After this is accomplished, you can use the workstation entries to get the user to the correct
subsystem.
Related information
Using Telnet exit point programs

20 IBM i: Work management

Memory pools
A memory pool is a logical division of main memory or storage that is reserved for processing a job or
group of jobs. On your system, all main storage can be divided into logical allocations called memory
pools. By default, the system manages the transfer of data and programs into memory pools.

The memory pool from which user jobs get their memory is always the same pool that limits their activity
level. (The activity level of a memory pool is the number of threads that can be active at same time in a
memory pool.) Exceptions to this are system jobs (such as Scpf, Qsysarb, and Qlus) that get their memory
from the Base pool but use the machine pool activity level. Additionally, subsystem monitors get their
memory from the first subsystem description pool, but it uses the machine pool activity level. This allows
a subsystem monitor to always be able to run regardless of the activity level setting.

Why use memory pools

You can control how much work can be done in a subsystem by controlling the number and size of the
pools. The greater the size of the pools in a subsystem, the more work can be done in that subsystem.

Using shared memory pools allows the system to distribute jobs for interactive users across multiple
subsystems while still allowing their jobs to run in the same memory pool.

Multiple pools in a subsystem help you to control the jobs' competition for system resources. The
advantages of having multiple pools in a subsystem are that you can separate the amount of work done
and the response time for these jobs. For example, during the day you may want interactive jobs to run
with good response time. For better efficiency you can make the interactive pool larger. At night you might
be running many batch jobs, so you make the batch pool larger.

Note: Although tuning and managing your system can help the efficiency of the flow of work through your
system, it cannot account for inadequate hardware resources. Consider a hardware upgrade if the
demands of your workload are significant.

How data is handled in memory pools

If data is already in main storage, it can be referred to independently of the memory pool it is in. However,
if the needed data does not exist in any memory pool, it is brought into the same memory pool for the job
that referred to it (this is known as a page fault). As data is transferred into a memory pool, other data is
displaced and, if changed, is automatically recorded in auxiliary storage (this is called paging). The
memory pool size should be large enough to keep data transfers (paging) at a reasonable level as the rate
affects performance.

Related concepts
Managing memory pools
Making sure that jobs get enough memory to complete efficiently is important. If too much memory is
given to subsystem A and not enough to subsystem B, jobs in subsystem B might begin to run poorly. The
following information describes the various tasks that are involved in managing memory pools.
Related information
Retrieve System Status (QWCRSSTS) API
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)

Types of memory pools
On the your system, all main storage can be divided into logical allocations called memory pools. All
memory pools in a system are either private or shared. There are private memory pools, shared memory

Work management 21

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm

pools, and special shared memory pools. As many as 64 memory pools, in any combination of private and
shared pools, can be active at the same time.

Private memory pools

Private memory pools (also known as user-defined memory pools) contain a specific amount of main
storage that can be used by a single subsystem to run jobs. These pools cannot be shared by multiple
subsystems. They are identified in IBM Navigator for i by the subsystem name. You can have as many as
62 private memory pools allocated for use in active subsystems.

Shared memory pools

Shared pools are either special or general; the Machine pool and Base pool are considered special shared
pools, and all other shared pools are considered general shared pools. You can specify 63 of the 64
shared memory pools that are defined on the system for use when creating subsystem descriptions (the
machine pool is reserved for system use).

Special Shared Pools (*MACHINE and *BASE)

*MACHINE
The Machine memory pool is used for highly-shared Machine and operating system programs. It is
identified as Machine in IBM Navigator for i. The Machine memory pool provides storage for tasks the
system must run that do not require your attention. The size for this memory pool is specified in the
Machine memory pool size system value (QMCHPOOL). No user jobs run in this memory pool. (On the
Work with System Status display (WRKSYSSTS), the Machine memory pool appears as system pool
identifier 1.)

*BASE
The Base memory pool, identified as Base in IBM Navigator for i, contains all unassigned main storage
on the system, (all main storage that is not required by another memory pool). The Base pool contains
storage that can be shared by many subsystems. The Base memory pool is used for batch work and
miscellaneous system functions. The Base memory pool minimum size (QBASPOOL) system value
specifies the minimum size of the Base memory pool. The activity level for this memory pool is
specified in the Base memory pool maximum eligible threads (QBASACTLVL) system value. (On the
Work with System Status display (WRKSYSSTS), the Base memory pool appears as system pool
identifier 2.)

General Shared Pools

General shared pools are pools of main storage that multiple subsystems can use at the same time. On
the character-based interface, they are identified as follows:

• *INTERACT is the interactive storage pool used for interactive jobs.
• *SPOOL is the storage pool used for spool writers.
• *SHRPOOL1 through *SHRPOOL60 are storage pools that you can use for your own use.

In IBM Navigator for i, the general shared pools are identified as Interactive, Spool, and Shared 1 - Shared
60.

Related tasks
Creating a private memory pool
Private memory pools (also known as user-defined memory pools) can be used by IBM-supplied
subsystems or by user-defined subsystems. You can define up to a maximum of 10 memory pool
definitions for a subsystem. You create a private memory pool in the subsystem description.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)
Performance system values: Machine memory pool size

22 IBM i: Work management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm

Performance system values: Base memory pool minimum size
Performance system values: Base memory pool maximum eligible threads

Pool numbering schemes
Pools have two sets of numbering schemes: one is used within a subsystem and one is system-wide. The
subsystem uses a set of numbers that refer to the pools it uses. Thus, when you create or change a
subsystem description you can define one or more pools and label them 1, 2, 3, and so on. These are the
designations of the subsystem pools, and they do not correspond to the pool numbers shown on the Work
with System Status (WRKSYSSTS) display.

A different set of numbers is used to keep track of all pools on the system. The Work with Subsystems
(WRKSBS) display relates the subsystem pool identifiers and the column headings to the system pool
identifiers.

 Work with Subsystems
 System: XXXXXXXX
Type options, press Enter.
 4=End subsystem 5=Display subsystem description
 8=Work with subsystem jobs

 Total -----------Subsystem Pools------------
Opt Subsystem Storage (M) 1 2 3 4 5 6 7 8 9 10
 _ NYSBS .48 2 4 5
 _ PASBS .97 2 6 5
 _ QINTER 11.71 2 3

 Bottom
Parameters or command
===>
F3=Exit F5=Refresh F11=Display system data F12=Cancel
F14=Work with system status

Example: How pools are numbered

The following example illustrates how pools are numbered.

Subsystems

CRTSBSD QINTER CRTSBSD NYSBS CRTSBSD PASBS

Pools (1 *BASE) Pools (1 *BASE) Pools (1 *BASE)

(2 1200 25) (2 500 3) (2 1000 3)

(3 *SHRPOOL2) (3 *SHRPOOL2)

(System pools 2, 3) (System pools 2, 4, 5) (System pools 2, 5, 6)

After QINTER starts, the following pools are allocated:

System Pool Number Description QINTER

1 *Machine pool

2 *BASE pool 1

3 QINTER private pool 2

After NYSBS starts the following pools are allocated:

System Pool Number Description QINTER NYSBS

1 *MACHINE pool

2 *BASE pool 1 1

Work management 23

System Pool Number Description QINTER NYSBS

3 QINTER private pool 2

4 NYSBS private pool 2

5 *SHRPOOL2 shared pool 3

After PASBS starts the following pools are allocated:

System Pool
Number Description QINTER NYSBS PASBS

1 *MACHINE pool

2 *BASE pool 1 1 1

3 QINTER private
pool 2

4 NYSBS private pool 2

5 SHRPOOL2 shared
pool 3 3

6 PASBS private pool 2

Related tasks
Managing tuning parameters for shared pools
To manage tuning parameters for shared pools, use IBM Navigator for i or character-based interface
commands.
Managing a pool's configuration
To change a pool's size, activity level or paging option, use IBM Navigator for i or character-based
interface commands.
Changing memory pool size
The size of a memory pool directly affects the amount of work that a subsystem can process. The more
memory a subsystem has, the more work it can potentially complete. It is important that you monitor
your system carefully before you start changing the parameters of your memory pools. You also want to
periodically recheck these levels, as some readjustment might need to be done.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)

Memory pool allocation
When you start a subsystem, the system attempts to allocate the user-defined storage pools that are
defined in the subsystem description of the started subsystem.

If the system cannot allocate all of the requested storage, it will allocate as much storage as is available
and then allocate the remainder of the storage as it becomes available. For example, consider the
following table. If 700KB is available, and if *SHRPOOL2 is defined to 500KB, then 300KB is allocated to
the first storage pool and 400KB is allocated to the second storage pool.

Pool ID Specified in SBSD 1 2

Storage Requested 300K *SHRPOOL2

System Pool ID 3 4

Storage Allocated 300K 400K

24 IBM i: Work management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm

Pool ID Specified in SBSD 1 2

Activity Level 1

Pool Type Private Shared

The storage pools that you define decrease the size of the Base memory pool when they are allocated.
The system only allocates as much storage to a private pool as it has available in the Base memory pool.
The Base memory pool minimum size (QBASPOOL) system value determines the minimum Base pool
size.

Related tasks
Viewing memory pool information
You can view information about the memory pools that are on your system by using IBM Navigator for i or
the character-based interface.
Determining the number of subsystems using a memory pool
Subsystems are allocated a certain percentage of memory to run jobs. It is important to know how many
different subsystems are pulling from the same memory pool. After you know how many subsystems are
submitting jobs to a pool and how many jobs are running in a pool, you might want to reduce resource
contention by adjusting the size and activity level of the pool.
Determining the number of jobs in a memory pool
IBM Navigator for i provides you with a way to quickly display a list of jobs that are currently running in a
memory pool.
Determining in which pool a single job is running
If you have a job that is not performing as you expect you might want to check the memory pool in which
the job is running. To determine in which pool a single job is running, use IBM Navigator for i or the
character based interface.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)

Memory pool activity level
The activity level of a memory pool is the number of threads that can actively use the CPU at the same
time in a memory pool. This allows for efficient use of system resources. The system manages the control
of the activity level.

Often during processing in a thread, a program waits for a system resource or a response from a
workstation user. During such waits, a thread gives up its use of the memory pool activity level so that
another thread that is ready to be processed can take its place.

When more threads are started than can run at the same time the excess threads must wait to use the
processing unit (normally this wait is short). The memory pool activity level lets you limit the amount of
main memory contention in the various memory pools in your subsystems.

The number of threads running (or active threads) refers to the number of threads that are eligible to
compete for the processor and that count against the activity level for a memory pool. In this sense,
active threads do not include threads that are waiting for input, for a message, for a device to be
allocated, or for a file to be opened. Active threads do not include threads that are ineligible (threads that
are ready to run but the memory pool activity level is at its maximum).

How activity levels work

More than one thread can be active at the same time in a memory pool because the processing for a
thread can be briefly interrupted while needed data is retrieved from auxiliary storage. During this delay,
which is typically short, another thread can run. Using the activity level, the machine can process a large

Work management 25

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm

number of threads in a memory pool and at the same time hold the level of contention to the limit that
you specify.

Maximum activity level
After the maximum activity level for a memory pool has been reached, additional threads needing the
memory pool are placed in the ineligible state to wait for the number of active threads in the memory
pool to fall below the maximum activity level or for a thread to reach the end of its time slice. As soon
as a thread gives up its use of the memory pool, the other threads that are not active become eligible
to run by their priority. For example, if a running thread is waiting for a response from a workstation, it
gives up its activity level and the activity level is no longer at its maximum.

Defining memory pool activity levels
Defining memory pools and activity levels correctly is generally dependent on size of the memory
pool, the number of CPUs, the number of disk unit arms, and the characteristics of the application.

Data memory pools
A shared memory pool defined with an activity level of zero is a data memory pool. No threads can run
in the pool, it can only be used for data.

Related tasks
Viewing memory pool information
You can view information about the memory pools that are on your system by using IBM Navigator for i or
the character-based interface.
Determining the number of subsystems using a memory pool
Subsystems are allocated a certain percentage of memory to run jobs. It is important to know how many
different subsystems are pulling from the same memory pool. After you know how many subsystems are
submitting jobs to a pool and how many jobs are running in a pool, you might want to reduce resource
contention by adjusting the size and activity level of the pool.
Determining the number of jobs in a memory pool
IBM Navigator for i provides you with a way to quickly display a list of jobs that are currently running in a
memory pool.
Determining in which pool a single job is running
If you have a job that is not performing as you expect you might want to check the memory pool in which
the job is running. To determine in which pool a single job is running, use IBM Navigator for i or the
character based interface.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)

Jobs
All work done on a system is performed through jobs. Each job has a unique name within the system. All
jobs, with the exception of system jobs, run within subsystems. A job can enter the subsystem from any of
the work entries, such as a job queue entry, workstation entry, communications entry, autostart job entry,
or prestart job entry.

Each active job contains at least one thread (the initial thread) and may contain additional secondary
threads. Threads are independent units of work. Job attributes are shared among the threads of the job,
however threads also have some of their own attributes, such as a call stack. The job's attributes contain
information about how the work is processed. The job serves as the owner for attributes that are shared
among threads within the same job. Work management provides a way for you to control the work done
on your system through a job's attributes.

26 IBM i: Work management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm

Proper authority
To make most changes to a job's attributes, you need to have job control special authority (*JOBCTL) or
your user profile matches the job user identity of the job being changed.

There are a few attributes where having *JOBCTL special authority is necessary to make any changes.
These attributes are:

• Default wait time
• Run priority
• Time slice

Note: If you plan to make changes to the job's accounting code, you need *USE authority to the Change
Accounting Code (CHGACGCDE) command in addition to *JOBCTL special authority or a user profile
matching the job's job user identity.

For any job attributes that refer to an IBM i object, such as job queues, output queues, and sort sequence
tables, you need to have the proper authority to the object. For more details about IBM i authorities, see
Authority required for objects used by commands in the Security reference topic collection.

Related concepts
Job user identity
The job user identity (JUID) is the name of the user profile by which this job is known to other jobs. This
name is used for authorization checks when other jobs attempt to operate against this job.

Job characteristics
Work management provides a way for you to control the work done on your system through a job's
attributes. However, before you can control the various aspects of a job, you need to understand the
different characteristics of a job.

The following information describes the characteristics of jobs:

Job name syntax
To make it easier to control and identify jobs on the system, each job has a unique qualified job name. The
qualified job name consists of three parts: the job name (or simple job name), the user name, and the job
number.

• For interactive jobs, the job name is the same as the name of the workstation or emulator session that
you signed on to. For batch jobs you can specify your own job name. The job name can be up to 10
characters long.

• The user name is the name of the user profile under which the job is started. For interactive jobs, the
user name is the user profile used to sign on to the system. This is the user name that you entered in the
user field on the sign-on display. If you are using Telnet and by-passing the sign-on, this is the user
name that you use to automatically sign on to the system. For batch jobs you can specify the user profile
under which the batch job is to run. The user name can be up to 10 characters long.

• The job number is a unique number assigned by the system so that you can identify jobs, even if more
than one has the same job name and user name. The job number is always 6 numeric digits.

Syntax

The syntax for qualified job names is similar to qualified names for objects. For example, if the job name is
DSP01, the user is QPGMR, and the job number is 000578, the qualified job name is entered on the Work
with Job (WRKJOB) command as follows:

WRKJOB JOB(000578/QPGMR/DSP01)

Another similarity to object names is that you do not need to specify all of the qualifiers. For example
consider the following:

WRKJOB JOB(QPGMR/DSP01)

or

Work management 27

WRKJOB JOB(DSP01)

This works the same as entering the entire qualified job name. If several jobs on the system match the
portion of the job name that you entered, the Select Job display appears. This display allows you to select
which job you want from a list of duplicate job names.

Job Attributes
Job attributes determine how the system runs each job. Some job attributes are set from the user profile.
Other job attributes come from system values, from locales, from a Submit Job (SBMJOB) command,
from a job description, and from the Change Job (CHGJOB) command (from which you can change values
for attributes while the job is running).

Controlling job attributes gives you the flexibility to control jobs at the job level, user level, or system
level. For example, you can have your system set up to go all the way to the system value to get job
attributes (which is the system default). Then if you want to change a value for all new jobs on the system,
you can change the system value.

By specifying a value in a job description, you can affect all of the types of jobs that use that job
description. For example, if all of your batch jobs use the same job description, then changing the job
description for the batch jobs can affect all of your batch jobs and leave all other jobs unaffected.

Related information
Experience report: Work management job attributes

Job description
The job description allows you to create a set of job attributes that are saved and available for multiple
uses. The job description can be used as the source for some of the job attributes that tell the system how
to run a job. The attributes tell the system when to start the job, where to get the job from, and how the
job will run. You can think of a job description as a template that many jobs can use, thereby reducing the
number of specific parameters that you need to set for each individual job.

Job descriptions are used by autostart, batch, interactive, and prestart job types. You can use the same
job description for multiple jobs. When you define a job, you can use the job description in one of two
ways:

• Use a specified job description without overriding any of its attributes. For example:

SBMJOB JOB(OEDAILY) JOBD(QBATCH)

• Use a specified job description but override some of the attributes (using BCHJOB or SBMJOB
command). For example, to override the message logging in the job description QBATCH, specify:

SBMJOB JOB(OEDAILY) JOBD(QBATCH)
 LOG(2 20 *SECLVL)

Note: You cannot override any job description attributes for autostart jobs, workstation jobs, or
communication jobs.

Related tasks
Creating a job description
You can use the character-based interface, the Work With Job Description (WRKJOBD) command or the
Create Job Description (CRTJOBD) command to create job descriptions.
Using a job description
The most common way to use a job description is by specifying it in the Submit Job (SBMJOB) command.
The job description (JOBD) parameter is where you specify the job description that you want this job to
use. When you define a batch job, you can use the job description in one of two ways:

Job descriptions and security
Every job in the system uses a job description during job initiation. This controls the various attributes of a
job. The USER parameter controls the name of the user profile assigned to the job. A job description that

28 IBM i: Work management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/jobattabstract53.htm

has a user profile name (USER) specified should be authorized only to specific individuals. If not, at
security level 30 and below, other users will be able to submit jobs to run under that user profile.

For example, consider

CRTJOBD JOBD(XX) USER(JONES) . . . AUT(*USE)

This example has security risks because any user can submit a job using the XX job description, and be
authorized to whatever JONES is authorized to. If this type of job description is used on a workstation
entry, it allows anyone to sign on as that user just by pressing the Enter key. To avoid any security
exposure, do not authorize this type of job description to *PUBLIC.

Note: At security level 40 and 50, the Submit Job (SBMJOB) command requires the submitter to be
authorized (*USE) to the user profile named in the job description. This assumes that the SBMJOB
specifies user (*JOBD). Nevertheless, avoid specifying a user in a job description unless it is needed for
some specific reason (such as an autostart job) and you tightly control access to it.

USER Parameter and Interactive Jobs

The job description to be used is defined on the Add Work Station Entry (ADDWSE) command. The default
is to use the job description in the user profile. If USER(*RQD) is specified in the job description, the user
must enter a user name. If USER(xxxx) is specified (where xxxx is a specific user profile name), the user is
allowed to press the Enter key on the sign-on display and operate under the xxxx user profile name,
unless the security level is 40 or higher.

USER Parameter and Batch Jobs

The job description used for batch jobs is specified on the Submit Job (SBMJOB) or Batch Job (BCHJOB)
command.

If an input stream is entered that contains the BCHJOB command, the user entering one of the Start
Reader commands (STRDBRDR, STRDKTRDR) or one of the Submit Job commands (SBMDBJOB,
SBMDKTJOB, and so on.) must have object operational authority (*OBJOPR) to the job description that is
specified. When an input stream is used, jobs always operate under the user profile of the job description
and not of the user who is placing the jobs on the job queue. If USR(*RQD) is specified in the job
description, it is invalid to use the job description on a BCHJOB command.

If a SBMJOB command is used, the command defaults so that the batch job operates under the user
profile name of the submitter. However, if USER(*JOBD) is specified on the SBMJOB command, the job
operates under the name specified in the USER parameter of the job description.

Frequently a specific name in the job description is required to let users submit work for a specific user
profile. For example, the QBATCH job description is shipped with USER(QPGMR) to allow this. To avoid
any security exposure, do not authorize this type of job description to *PUBLIC.

Call stacks
The call stack is the ordered list of all programs or procedures currently running for a job. The programs
and procedures can be started explicitly with the CALL instruction, or implicitly from some other event.

The call stack is available at both the job level and the thread level. On the character-based interface, the
call stack is a last-in-first-out (LIFO) list of call stack entries, one entry for each called procedure or
program. In IBM Navigator for i, by default, the last entry in the stack appears at the top of the list.
However, the ordering can be changed by using the Sort ascending or Sort descending buttons.

The information that is included in the Call Stack display includes the invocation information for the
original program model (OPM), integrated language environment (ILE), IBM i Portable Application
Solutions Environment (PASE), and Java™ applications. Also, if you are running under a user profile with
*SERVICE special authority, you can see additional entries for licensed internal code (LIC) and IBM i PASE
Kernel.

Related tasks
Viewing call stacks

Work management 29

You can view information about a job or thread's call stack by using either IBM Navigator for i or the
character-based interface.

Class object
A class object contains the run attributes that control the run-time environment of a job. IBM-supplied
class objects, or classes, meet the needs of both typical interactive and batch applications. The following
classes (by name) are supplied with the system:

• QGPL/QBATCH: For use by batch jobs
• QSYS/QCTL: For use by the controlling subsystem
• QGPL/QINTER: For use by interactive jobs
• QGPL/QPGMR: For use by the programming subsystem
• QGPL/QSPL: For use by the spooling subsystem printer writer
• QGPL/QSPL2: For general spooling use in the Base system pool

Run-time attributes

The following is a list of some of the run-time attributes, or parameters, that are found in a class object
that are important to work management.

Run priority (RUNPTY)
A number that specifies the priority level assigned to all jobs running that use the class. The priority
level is used to determine which job, of all the jobs competing for system resources, is run next. The
value can be 1 through 99, where 1 is the highest priority (all jobs having a 1 priority are run first). This
value is the highest run priority allowed for any thread within the job. Individual threads within the job
may have a lower priority. Changing the run priority of the job affects the run priorities of all threads
within the job. For example, if the job is running at priority 10, thread A within the job is running at
priority 10 and thread B within the job is running at priority 15. If the priority of the job is changed to
20, then the priority of thread A is adjusted to 20 and the priority of thread B is adjusted to 25.

Time slice (TIMESLICE)
The maximum amount of processor time (in milliseconds) given to each thread in a job using this class
before other threads in a job or other jobs are given the opportunity to run. The time slice establishes
the amount of time needed by a thread in a job to accomplish a meaningful amount of processing. At
the end of the time slice, the thread might be put in an inactive state so that other threads can
become active in the storage pool.

Default wait time (DFTWAIT)
The default amount of time that the system waits for the completion of an instruction that performs a
wait. This wait time applies to times when an instruction is waiting for a system action, not to the time
an instruction is waiting for a response from a user. Normally, this is the amount of time you are
willing to wait for the system before ending the request. If the wait time is exceeded, an error
message is passed to the job. This default wait time is used when a wait time is not otherwise
specified for a given situation.

The wait time used for allocating file resources is specified in the file description and can be
overridden by an override command. It specifies that the wait time specified in the class object is
used. If file resources are not available when the file is opened, the system waits for them until the
wait time ends.

Note: The class attributes apply to each routing step of a job. Most jobs have only one routing step,
but if the job is rerouted (because of something like the Reroute Job (RRTJOB) or Transfer Job
(TFRJOB) command) the class attributes are reset.

Maximum CPU time (CPUTIME)
The maximum amount of processor time allowed for a job's routing step to complete processing. If
the job's routing step is not completed in this amount of time, it is held, and a message is written to
the job log.

30 IBM i: Work management

Maximum temporary storage (MAXTMPSTG)
The maximum amount of temporary storage that can be used by a job's routing step. This temporary
storage is used for the programs that run in the job, for the system objects used to support the job,
and for temporary objects created by the job.

Maximum threads (MAXTHD)
The maximum number of threads in which a job in this class can run at any time. If multiple threads
are initiated simultaneously, this value may be exceeded. The excess threads are allowed to run their
normal completion. Initiation of additional threads are inhibited until the maximum number of threads
in the job drops below this maximum value.

Note: The resources used by the threads and the resources available on the system can vary.
Therefore, the initiation of additional threads may be inhibited before this maximum value is reached.

Related tasks
Creating a class object
You can create a class object by using the character-based interface. The class defines the processing
attributes for jobs that use the class. The class used by a job is specified in the subsystem description
routing entry used to start the job. If a job consists of multiple routing steps, the class used by each
subsequent routing step is specified in the routing entry used to start the routing step.
Changing a class object
You can change the attributes of a class object by using the character-based interface. Any attribute can
be changed, except for the public authority attribute. Refer to the Revoke Object Authority (RVKOBJAUT)
command and the Grant Object Authority (GRTOBJAUT) command for more information about changing
object authorizations.

Job user identity
The job user identity (JUID) is the name of the user profile by which this job is known to other jobs. This
name is used for authorization checks when other jobs attempt to operate against this job.

Some examples of functions that operate against another job include the Start Service Job (STRSRVJOB)
command, the Retrieve Job Information (QUSRJOBI) API, the Change Job (QWTCHGJB) API, all job
control commands, and functions that send signals from one job to another.

In situations where jobs swap user profiles, the current user profile identifies the profile under which the
initial thread is running instead of the JUID.

The JUID is not used to make authorization checks from within a job. Authorization to perform a function
is always based on the current user profile of the thread in which the function is called.

When a job is on a job queue or output queue, the JUID is always the same as the user name of the job
and cannot be changed.

When a job starts, and at the start of any subsequent routing steps, the JUID is the same as the name of
the current user profile of the job. While a job is active, the JUID can be changed in the following ways.

• The JUID can be explicitly set by an application using the Set Job User Identify (QWTSJUID) application
program interface (API) or the QwtSetJuid() function. The JUID is set with the name of the user profile
that the thread that called the API or function is running under.

• The JUID can be explicitly cleared by an application using the QWTSJUID API or the QwtClearJuid()
function. The job must be running as a single threaded job at the time. When cleared, the JUID is
implicitly set by the system to the name of the user profile that the single thread of the job is running
under at that point.

• If the job is running as a single threaded job, and the JUID has not been explicitly set by an application,
then each time the job uses the Set Profile (QWTSETP) API to run under a different user profile the JUID
is implicitly set by the system to the name of the user profile that was set by QWTSETP.

• When a single threaded job initiates a secondary thread and the JUID has not been explicitly set by an
application, then the system will implicitly set the JUID with the name of the user profile that the single
thread of the job was running under at the point that it initiated the secondary thread.

Work management 31

When the job returns to a single thread, the system implicitly sets the JUID to the name of the user
profile that the single thread of the job is running under at that point.

Related concepts
Proper authority
To make most changes to a job's attributes, you need to have job control special authority (*JOBCTL) or
your user profile matches the job user identity of the job being changed.

Job user identity examples
These examples illustrate how the job user identity (JUID) is assigned in different situations.

• A job runs under a user profile called USERA. The JUID is USERA. If the job uses the QWTSETP API to
switch to USERB, the JUID changes to USERB.

In this situation, the Set By value for the JUID is *DEFAULT. Because the job that is running
single-threaded, the job user identity is the current user profile under which the initial thread
of the job is running (unless, the job user identity was explicitly set by an application). For job
queue jobs and completed jobs, the job user identity is the user name from the qualified job
name.

• A single-threaded job runs under user profile USERX. The JUID is USERX. If the job initiates secondary
threads, the JUID remains as USERX. If all the threads then swap to USERY, the JUID is still USERX.

In this situation, the Set By value for the JUID is *SYSTEM. Because this is an active job which
is currently running as a multi-threaded job, the job user identity is implicitly set by the
system. The job user identity is set to the name of the user profile under which the job was
running when the job became multi-threaded. When the job returns to running single-
threaded, the job user identity will be reset to the *DEFAULT value.

• If a server running under a user profile called SERVER calls the QWTSJUID API, the JUID will be set to
SERVER. If the server then calls the Set Profile (QWTSETP) API to set its current user profile to CLIENT
while processing work on behalf of that client, the JUID remains as SERVER. Likewise, if the server
initiates secondary threads that each call QWTSETP to run under various user profiles, the JUID remains
as SERVER.

In this situation, the Set By value for the JUID is *APPLICATION. The job user identity is set
explicitly by an application using an API. This value applies to both single-threaded and multi-
threaded jobs.

Threads
The term thread is shorthand for "thread of control". A thread is the path taken by a program while
running, the steps performed, and the order in which the steps are performed. A thread runs code from its
starting location in an ordered, predefined sequence for a given set of inputs.

The use of threads within a job allows many things to be done at once. For example, while a job is
processing, a thread may retrieve and calculate data needed by the job to finish processing

Every active job has at least one thread, which is called an initial thread. The initial thread is created as
part of starting the job. In the threads on IBM Navigator for i, by default, you will see Initial as the type of
the first thread in the list. The initial thread is the first thread created within the job when it starts.

Thread types

The thread type determines how the thread was created on the system.
User

The thread can be created by the customer application. The initial thread in a job is always a user
thread. The Allow multiple threads field must be set to yes for multiple user threads to be used.

System
The thread is created by the system on behalf of the user. Some system functions use system threads
to complete processing. If a customer's application uses a system function that uses threads, system
threads are used.

32 IBM i: Work management

Related tasks
Viewing thread properties
Threads allow jobs to do more than one thing at a time. If a thread stops processing, it can stop the job
from running.
Viewing threads running under a specific job
Every active job running on your system has at least one thread running under it. A thread is an
independent unit of work running within a job that uses the same resources as the job. Because a job
depends on the work done by a thread, it is important to know how to find the threads running within a
specific job.
Ending or deleting threads
An initial thread, which is created when the job starts, can never be deleted or ended. However,
sometimes it is necessary to end a secondary thread so that a job can continue to run. Be aware of the
thread you intend to end because the job it runs within might not be able to complete without that
thread's work.
Related information
Example: End a thread using Java
Thread management APIs

Proper thread authority
Certain authority levels are required before you can work with threads.

To view and change most attributes of a thread you need to have *JOBCTL special authority, or your user
profile needs to match the job user identity of the job containing the thread. To change the run priority of
a thread, you must have *JOBCTL special authority. Thread Control authority allows you to view some of
the attributes of a thread.

To hold or release a thread, you need to have *JOBCTL special authority or Thread Control authority, or
your user profile needs to match the job user identity of the job containing the thread. To end a thread,
you need to have *SERVICE special authority or Thread Control authority.

For any thread attributes that refer to a IBM i object, such as a library in the library list, the user needs to
have the proper authority to the object.

For more details about IBM i authorities, see Authority required for objects used by commands in the
Security reference topic collection.

Note: With thread Control authority, you can retrieve information about threads of another job. Thread
Control can be granted and revoked for individual users by using IBM Navigator for i Application
Administration support, or by using the Change Function Usage Information (QSYCHFUI) API, with a
function ID of QIBM_SERVICE_THREAD. For more detailed information about application administration,
see the Information Center topic Application Administration.

Thread status
The current status of a thread is viewed from the General page in the Thread Properties window, under
Detailed status.

Table 1. Thread status values

Value number Status
Character-based interface
value

1 Running RUN

2 Job held HLD

3 Held HLDT

4 Stopped by a signal SIGS

5 Waiting for save while active
checkpoint

CMTW

Work management 33

Table 1. Thread status values (continued)

Value number Status
Character-based interface
value

6 Waiting for condition CNDW

7 Waiting for dequeue DEQA/DEQW

8 Waiting for event EVTW

9 Waiting for activity level INEL

10 Waiting for Java program JVAA/JVAW

11 Waiting for lock LCKW

12 Waiting for lock space LSPW

13 Waiting for mutex MTXW

14 Waiting for select SELW

15 Waiting for semaphore SEMW

16 Waiting for signal SIGW

17 Waiting for thread THDW

18 Waiting for time interval TIMA/TIMW

19 Unknown Blank

Note: In properties, threads that have been held more than once will have Held (n) status, where n is the
number of times the thread has been held. For performance reasons, the held count will not be displayed
in the Detailed Status column. For threads that are waiting for a lock, a dequeue, or a lock space,
additional information is provided that identifies the item being waited on.

An example of a detailed status is:

Waiting for dequeue
The thread of the job is waiting for completion of a dequeue operation. A dequeue is an operation for
removing messages from queues. Messages are communications sent from one person or program to
another. In particular, a message is enqueued (placed) on a queue system object by one thread and
dequeued (removed) by another thread.

Note: When Waiting for dequeue is shown on a properties page, additional information that identifies
the queue being waited on is displayed. When the job or thread is waiting on the dequeue operation to
complete for an IBM i object, you will see a 10-character object name, its library, and the object type.
If the job or thread is waiting on the dequeue operation to complete for an internal object, you will see
a 30-character object name. For internal objects you need job control special authority (*JOBCTL) to
see the 30-character name.

The detailed status can display an associated status value, which provides additional details about the
current status of the thread. An example of a detailed status plus the associated status value is:

Held (n)
An individual thread is held. Unlike a job, a thread can have multiple holds on it at the same time. A
number (for example, Held (3)) following the thread status tells the user how many times that thread
has been held without being released. For example, if a thread has had three holds put on it and then
has been released once, it still has two holds against it. A number is only shown when the status
appears on the properties page and will not appear when displayed in a list. To resume thread
processing, select the Release action for the thread.

For more information about the different thread statuses, see the IBM Navigator for i online help.

34 IBM i: Work management

Locked objects
Jobs and threads use objects to process work.

Because more than one piece of work is processing at a time, a lock is put on an object so that data
integrity is retained. Locked objects are system objects used by jobs and threads to process work. After
the job or thread is finished running, the object is unlocked and ready to be used to process more work.
Depending on the lock request type used, locking an object permits only one user to use an object at a
time. For example, if two or more users tried to change an object at the same time, the changes to the
object by the second user is locked out until the first user finished updating the object. With the use of
lock holders, a user can see what currently has a lock or is currently waiting on a lock for an object.

Scope specifies whether the lock is associated with a job, a thread, or a lock space. Scope also defines
how long the lock will be available and what lock request type and conflict rules the object has on it.

Lock request types are different levels of access that a job, thread or lock space can use to an object that
is locked. For example, a lock exclusive, no read lock type is used if an object is being changed or deleted
on the system. This lock request type does not allow anyone to use the object, nor does it allow anyone to
read the object.

The different lock request types are:

Exclusive - No read
The object is reserved for exclusive use. However, if the object is locked by any lock request type, you
cannot obtain exclusive use of the object. This lock state is appropriate when a user does not want
any other user to have access to the object until the function being performed is complete.

Exclusive-Read
The object can only be shared with the shared-read lock request type. This lock is appropriate when a
user wants to prevent other users from performing any operation other than a read.

Shared-Update
The object can be shared with either the shared-read or shared-update lock request type. That is,
another user can request either a shared-read lock state or a shared-update lock state for the same
object. This lock state is appropriate when a user intends to change an object but wants to allow other
users to read or change the same object.

Shared-No update
The object can be shared with only share - no update, and shared-read lock request types. This lock
state is appropriate when a user does not intend to change an object but wants to ensure that no
other user changes the object.

Shared-Read
The object can be shared with all lock requests other than exclusive - no read. That is, another user
can request an exclusive-read, shared-update, shared-read, or shared-no update lock state.

The lock status tells the state of the lock request. The different lock statuses are:

Held: The lock request has been fulfilled and the job, thread or lock space is holding the lock.
Waiting: The job or thread is waiting to obtain the lock.
Requested: The job or thread has requested the lock.

Lock holders are the jobs, threads and lock spaces that are currently holding a lock or are waiting for a
lock on a specific locked object.

Job types
Your system processes several different types of jobs. This information describes those jobs and how
they are used.

Autostart jobs
An autostart job is a batch job doing repetitive work, one-time initialization work that is associated with a
particular subsystem, initializes functions for an application, or provides centralized service functions for
other jobs in the same subsystem. An autostart job in the controlling subsystem can be used to start other
subsystems (as does the IBM-supplied controlling subsystem). The autostart jobs associated with a
subsystem are automatically started each time the subsystem is started.

Work management 35

To add an autostart job entry to the subsystem description, use the Add Autostart Job Entry (ADDAJE)
command. When the subsystem starts the autostart job, it uses the job description specified in the
autostart job entry to determine the routing data (RTGDTA) and tries to match that to the compare value
in the routing entries defined in the subsystem description. When a match is found, other information in
the routing entry is used to establish the work environment for the job such as the class that will be used
and the program that will be run. When the program name in the routing entry is QCMD, the command
processing program will look for the request data or command (RQSDTA) on the job message queue. The
request data is found in the job description for the autostart job entry.

If more than one autostart job is specified for a subsystem, all autostart jobs are started immediately
rather than one followed by another. If the value specified for the maximum jobs in subsystem
(MAXJOBS) is exceeded, no other jobs can be started in the subsystem until enough autostart jobs have
completed so that the number of jobs running is below the maximum jobs.

The job description that is used for an autostart job is specified using the Add Autostart Job Entry
(ADDAJE) command. When the subsystem is started, the job operates under the user profile name in the
specified job description. You may not specify the job description which contains USER(*RQD). Because
the autostart job operates under the user profile that is specified by the job description, you need to
control who is allowed to change the job description.

Batch jobs
A batch job is a predefined group of processing actions submitted to the system to be performed with
little or no interaction between the user and the system. Jobs that do not require user interaction to run
can be processed as batch jobs. A batch job typically is a low priority job and can require a special system
environment in which to run.

Batch jobs run in the system background, freeing the user who submitted the job to do other work.
Several batch jobs can be active at the same time.

The following list describes the different kinds of batch jobs:

Simple batch job
The simple batch job is a job that is submitted to a job queue. It waits in line with other batch jobs and
is processed according to its priority and sequence number.

Batch immediate job
A batch immediate job is a batch job that was started with many of the attributes of its parent job. The
job runs in the same subsystem as the parent job. (This is accomplished by using the spawn() API.)
Because the job copies attributes from the parent job and does not go through a job queue, it can start
faster than jobs submitted to a job queue.

Batch MRT job
A batch MRT job is a multiple requester terminal (MRT) job. MRT jobs are S/36 Environment jobs that
act like servers, allowing other S/36 Environment jobs to attach to them in order to run an MRT
procedure.

Batch print job
Batch print jobs track the printer output files (also called spooled files) that were created by a job
whose current user profile is different from the user profile that it was started under.

Batch jobs can be started when a user:

• Causes a job to be placed in a job queue
• Issues a communication program start request
• Starts a subsystem with a prestart job
• Uses the spawn() API

How a batch job starts
When a user submits a batch job, the job gathers information from several system objects before it is
placed on a job queue.

1. A user submits a job.

36 IBM i: Work management

2. The job searches for job attributes. If the job attributes are not found on the Submit Job (SBMJOB)
command, the job looks in the job description (specified on the SBMJOB command), the current user's
user profile, and the currently active job (the job issuing the SBMJOB command).

Note: Similar to interactive job initiation, you can specify in the job description to use the user profile.
The user profile can specify to use a system value to find certain job attributes.

3. Once the job has all of its attributes, it resides on the job queue.
4. When the subsystem is ready to handle a job, it looks for jobs in the job queues (those that the

subsystem has allocated).
5. Then, like interactive job processing, the subsystem checks the job description for the routing data.
6. The subsystem uses the routing data to find a routing entry. The routing entry provides information

about which pool the job uses, which routing program is used, and from which class the job gets its
run-time attributes.

7. After this information is obtained, the routing program is run. If you use QCMD, QCMD carries out the
SBMJOB command. It runs the command specified on the CMD or RQSDTA parameter.

Related tasks
Submitting a batch job
Since batch jobs are typically low priority jobs that require a special system environment in which to run
(such as running at night) they are placed in batch job queues. In the job queue the batch job receives a
run time schedule and a priority. To submit a job to a batch job queue, you use the character-based
interface and one of two commands.
Starting a batch job that is waiting in the job queue
Occasionally you might need to force a job to start immediately. While moving the job to a job queue that
is not busy is the most efficient method to accomplish this, there are some other methods that you can
use.
Related information
QPRTJOB job

Spawn batch jobs
Spawn is a function that creates a new job process (child process) that inherits many attributes of the
calling process (parent process). A new program is specified and starts running in the child process. When
you spawn a batch job you are using a parent job to pass along arguments and environment variables to
the child job. The spawn() API uses batch immediate jobs, prestart jobs, or prestart batch jobs.
Related information
spawn()--Spawn Process
SPAWN CL command, QUSRTOOL example

Communication jobs
A communications job is a batch job that is started by a program start request from a remote system. Job
processing involves a communication request and appropriate specifications.

For a communications batch job to run on an IBM i system, a subsystem description containing a work
entry for communications jobs must exist on the system. The communications work entry identifies to the
subsystem the sources for the communications job it processes. The job processing begins when the
subsystem receives a communications program start request from a remote system and an appropriate
routing entry is found for the request.

Routing data for communication jobs

Job routing of communications jobs is determined by the program start request that is received from the
remote system. When a program start request is processed on the target system, a fixed-length data
stream that is used as routing data is created. Position 25 of the routing data always contains PGMEVOKE
for communications requests. Subsystem routing entries that specify a compare value of PGMEVOKE in
position 29 typically have *RTGDTA as the program name. This means that the program name specified in
the routing data (from the remote system's program start request) is the program to run.

Work management 37

If a special processing environment is required for certain communications jobs, you can add an
additional routing entry to the subsystem description, specifying a compare value whose starting position
is 37. This compare value should contain the program name for the program start request. The routing
entry must have a sequence number lower than the routing entry that uses PGMEVOKE as the compare
value. This method allows certain communications jobs to run with a different class or pool specification.

Security

The security on the system controls who can use communications devices as well as who can access the
commands uses with the associated device descriptions. You should consider additional security
measures when writing and running application programs on both remote and target systems.

Job description for communication jobs

The job description used for communications jobs is specified on the Add Communications Entry
(ADDCMNE) command. The user specified on this job description is ignored. The system gets the user
name for communications jobs from the program start request. If the program start request does not
specify a user name, the system uses the default user value from the communications entry. To ensure a
greater degree of system security, include user information about the program start request rather than
specifying a default user in the communications work entry.

Types of communications jobs
This topic describes the most common types of communication jobs.
Qlus (logical unit services)

Qlus handles the event handling for logical unit devices, known as communications devices. Qlus is
also responsible for allocating devices to the correct communications subsystem.

Qcmnarbxx (communications arbiters)
The communications arbiters along with Qsysarb (system arbiter) and Qtaparb (tape arbiter) process
work for all types of devices, not just communications devices. This work includes communications
connection, disconnection, device locking, and error recovery processing.

The system value communication arbiter jobs, at restart (QCMNARB) determines the number of
communications arbiter jobs that are started. A minimum of three communications arbiters are
started on single-processor systems.

Qsyscomm1 (system communications)
This job handles some communications and input/output (I/O) activity.

Q400filsvr (remote file system communication)
This job performs the common programming interface communications (APPN or APPC) for the
remote file system.

Interactive jobs
An interactive job is a job that starts when a user signs on to a display station and ends when the user
signs off. For the job to run, the subsystem searches for the job description, which can be specified in the
workstation entry or the user profile.

Interactive jobs require continual two-way communications between the user and the system to perform
a task. An interactive job begins when a user signs on to a system. The system requests sign-on
information. If the sign-on request is accepted by the system, then the system creates the interactive job.
The system then asks the user to supply a request. The user enters a request, and the system responds
by processing the request. This pattern is repeated until the user ends the interactive job by signing off
the system, or the job ends due to an application exception or device error recovery.

If an interactive job is part of a group of jobs or a pair of jobs, then it will have one of the following job
types:

Interactive - Group
An Interactive - Group job is part of a group of jobs that is associated with a single display device.

38 IBM i: Work management

Interactive - System request
An Interactive - System request job is one of a pair of jobs that is associated with each other by the
system request function.

Did you know? You can sign on to the system in two ways. You can manually enter the system by using a
user id and password. You can also create a program to automatically send the user id and password to
the server, thereby bypassing the sign-on screen.

How an interactive job starts
When a user signs on to the system, the subsystem gathers information from several system objects
before the interactive job is ready.

1. The subsystem looks in the workstation entry for the job description in order to get the attributes for
the interactive job. If the workstation entry specifies *USRPRF for the job description, the job uses the
information from the user profile.

Note: This flexibility allows you to specify whether the job's attributes are tied to the workstation or to
the individual user.

2. After the subsystem knows which job description to use, it might not find all of the job attributes in the
job description. Some attributes might be in the user profile. If the user profile does not have the
information, the subsystem looks at the system value.

Note: The user profile contains job attributes that allow you to tailor certain things specifically for that
user.

3. After the subsystem gathers all of the job's attributes, it determines whether a new interactive job can
start or if an error message should be posted on the sign-on screen. The subsystem checks whether
the maximum number of jobs allowed by the subsystem or by the workstation entry has been reached.
Then it verifies that a valid user profile name has been supplied, that the user profile name is an
enabled user profile, and that the supplied password (if required) is valid. Next, it verifies that the user
has the proper authorities to the job description, the subsystem description, the workstation device
description, and the output queue and library. Finally, the subsystem checks whether the user has
reached the limits for allowed sign-ons for that user profile. If any validation errors are encountered,
the sign-on screen displays with an appropriate message. Otherwise, the process of starting the
interactive job continues.

4. After the subsystem validates that the interactive job can start, it checks the job description for the
routing data. The subsystem uses the routing data to find a routing entry in the subsystem description.
The routing entry provides information about which pool the job uses, which routing program is used,
and from which class the job gets its run time attributes.

5. When all of these pieces are obtained, the routing program runs. IBM supplies a routing program
called QCMD, which you can use for all types of work. QCMD knows if the job is an interactive job and
checks the user profile for an initial program to run. If the initial program finishes running, QCMD
displays the initial menu.

Related tasks
Avoiding a long-running function from a workstation
To avoid a long-running function (such as save/restore) from a workstation without tying it up, the system
operator can submit the job to a job queue.

Disconnecting interactive jobs
When the Disconnect Job (DSCJOB) command is called, the job is disconnected and the sign-on display is
shown again. To connect with the job again, sign on to the same device from which you disconnected.
Another interactive job may be started on the device under a different user name.

• An option on the System Request menu allows you to disconnect an interactive job, causing the sign-on
display to appear. The option calls the DSCJOB command.

• When connecting with a job again, the values specified on the sign-on display for program, menu, and
current library are ignored.

• A job which has PC organizer or PC text assist function active cannot be disconnected.

Work management 39

• All jobs are disconnected for group jobs. When they are connected again, you return to the place where
the disconnect was issued. If the last active group job ends before you connect again, you return to the
next group job.

• If the job cannot be disconnected for any reason, the job is ended instead.
• All disconnected jobs in the subsystem end when the subsystem ends. If a subsystem is ending, the

DSCJOB command cannot be issued in any of the jobs in the subsystem.
• The Disconnect Job Interval (QDSCJOBITV) system value can be used to indicate a time interval for

which a job can be disconnected. If the time interval is reached, the disconnected job ends.
• Disconnected jobs that have not exceeded the QDSCJOBITV value end when the subsystem is ended or

when an IPL occurs.

Related concepts
Job disconnection considerations
There are several factors that you must consider whenever you disconnect a job.
Related tasks
Ending interactive jobs
You can use several different methods to end an interactive job.
Disconnecting all jobs from a device
The Disconnect Job (DSCJOB) command allows the interactive user to disconnect all interactive jobs at
the workstation and return to the sign-on display. The switched line is dropped only if that is specified in
the workstation device description of this workstation and if no other workstation on this line is active. If
the job is disconnected when the disconnect interval in the Time-out interval for disconnected jobs
(QDSCJOBITV) system value is reached, the job is ended and the job log is not included with the job's
spooled output.

I/O error for job requester device
A requester device is a workstation from which a user can log on to a domain and use network resources.
The Device Recovery Action (DEVRCYACN) job attribute specifies what action to take when an I/O error
occurs for a job’s requester device.

The DEVRCYACN attribute has the following options:
*SYSVAL

This is the default. It points to the Action to take when a device error occurs on the workstation
(QDEVRCYACN) system value . The system value supports all of the values that the job attribute
supports (except *SYSVAL).

*MSG
Signals the I/O error message and lets the application program perform error recovery. This is NOT
the recommended setting.

*DSCMSG
Disconnect the job. This is the shipped default. Upon connecting again, a new error message signals
the user’s application program indicating the device was lost and recovered since the I/O, and the
contents of the display need to be shown again.

*DSCENDRQS
Disconnect the job. Upon connecting again, an end request function is performed to return control of
the job to the last request level.

*ENDJOB
End the job. A job log might be produced for the job. A message is sent to the job log and to the QHST
log indicating the job ended because of the device error.

*ENDJOBNOLIST
End the job. No job log is produced. A message is sent to the QHST log indicating the job ended
because of the device error.

40 IBM i: Work management

Note: If *DSCENDRQS, *ENDJOB, or *ENDJOBNOLIST is specified for DEVRCYACN, the recovery action
takes effect when the error occurs on the device. If one of the other values is specified, the recovery
action takes place at the next I/O to the device with the error.

Interactive jobs and routing steps
Before the initial menu is called the routing data is compared with the routing entries in the subsystem
description. When a match is made, the program specified in the routing entry is called and the routing
step is started.

The following illustrates the subsequent activity leading up to starting a routing step and displaying the
initial menu for a user profile specifying an initial program.

Work management 41

Figure 1. Subsystem Activity

Interactive Job Approaches

You can handle interactive jobs in various ways. These approaches are dependent upon how you control
the routing step. First you should determine the following:

• Which program will control the routing step: QSYS/QCMD or a user program?
• Will the routing be user-based or workstation-based?

42 IBM i: Work management

Programs that control the routing step
To determine the best approach for a particular job, you must first determine which program should
control the routing step.

Using QSYS/CMD for interactive jobs - benefits

The IBM-supplied command processor QSYS/QCMD gives the greatest flexibility in terms of making
functions available to workstation users. Using QCMD to control the routing step gives you the following
benefits:

• The attention program is activated if it is specified in the user profile.
• The initial program that is specified in the user profile is called.
• The initial menu that is specified in the user profile is called.
• The user is placed in System/36 environment as it is specified in the user profile.

In addition, the default using QCMD brings you to the Main Menu where you can enter commands directly,
including the CALL command, which is used to call user-written functions. Menu options with online help
are provided to give easy access to system functions. Also provided are command selection menus, quick
access to index search, and the command entry function (called by CALL QCMD). The command entry
functions are intended primarily for programmers and operators who require the full range of functions
available through the direct use of commands.

Calling a user program directly for interactive jobs - benefits

Your programs can be directly called to control the routing steps for interactive jobs. These programs can
be designed to give a more specialized access to functions needed by your workstation users than the
IBM-supplied programs give. In addition, because your programs are tailored for specific functions, they
should typically require even less system resource to support their running than the IBM-supplied
programs. You may also want to provide functions such as an initial program and initial menu.

Workstation versus user based routing
After you have determined which program controls the routing step, you must determine if routing is to be
based on the workstation from which the job was started, or on the user (user profile) who signed on.

Routing based on the workstation is accomplished using the routing data specified in the job description
associated with the workstation entry or profile for the device. Routing based on a user can be done using
the initial program specified in the user profile or the job description in the user profile mapping to a
routing entry other than QCMD.

Initial program uses

Initial programs may interact with workstations to get input values from a workstation user. When an
initial program is called, it cannot receive parameter values. An initial program can be used in one of two
ways:

• To establish an initial environment for the user entering commands. For example, the library list can be
changed or print files and message files can be overridden. When an initial program completes its
function and returns to QSYS/QCMD, the initial menu is displayed.

• As the controlling program for the job. If the initial program does not return to QSYS/QCMD, it becomes
the controlling program for the routing step. The initial menu is not displayed. The user can only request
those functions available through the initial program.

For example, a menu can be displayed with specific application options. The user can only perform the
functions on the menu. One example of such an option is sign off. If the SIGNOFF command is run, the
job ends and the system Main Menu is never displayed. If you use this approach, consider using the user
profile option INLMNU to ensure that no menu is displayed.

An initial program can be written so that when a return is issued, it either does or does not return to
QSYS/QCMD. If the initial program returns to QSYS/QCMD, the initial menu is displayed.

Work management 43

When jobs end at the same time
Sometimes, jobs end at the same time. For example, a network error occurs and the job attributes are set
to *ENDJOB or *ENDJOBNOLIST. In addition to the job ending, the following device recovery actions
occur.

• The job's priority is lowered. This occurs so the job is no longer at the same priority as the other active
interactive jobs.

• The job's time slice is set to 100 milliseconds. This occurs to give higher priority jobs a better chance of
getting processing resources.

Job logs for jobs with job attributes set to *ENDJOB or *ENDJOBNOLIST are in job log pending. To
produce printer output from a job log that is in job log pending, use the Display Job Log (DSPJOBLOG)
command.

When a job ends you can control how the job log is written to a spooled file. This can be done by the job
itself while it is ending, by a background server job, or not at all. The value that you specify can have a
significant impact on overall recovery time when many jobs end at the same time. For more information,
see the related concept Job log pending.

Related concepts
Job log pending
The job log pending state has been available for many years. When the job log attribute of a job is *PND,
no job log is produced. You can control how and under what circumstances the job log for a specific job is
produced.

Prestart jobs
A prestart job is a batch job that starts running before a work request is received. The prestart jobs are
started before any other types of jobs in a subsystem. Prestart jobs are different from other jobs because
they use prestart job entries (part of the subsystem description) to determine which program, class, and
storage pool to use when they are started.

Within a prestart job entry, you must specify attributes that the subsystem uses to create and manage a
pool of prestart jobs. Use prestart jobs to reduce the amount of time required to handle a work request.
Two types of prestart jobs exist. Each type handles different types of requests. Before a job waits for its
first request, it will be shown as Prestart only because the system does not know yet what type of
requests the job will handle.
Prestart communications

The job is a communications batch job that starts running before a remote system sends a program
start request.

Prestart batch
The job is a batch job that starts before a work request is received.

A prestart job starts before a work request is received, either when the subsystem starts or as a result of
the Start Prestart Jobs (STRPJ) command. Prestart jobs start from a prestart job entry (PJE) in the
subsystem description. The prestart job entry specifies attributes such as what program to run in the
prestart job, the user profile under which the prestart job starts running, the job description, the class
used to specify the run-time attributes of the job, and the memory pool in which the prestart job runs.

Prestart jobs can start and initialize themselves before a work request is received. This reduces the
amount of time required to handle the requests. Prestart jobs provide the ability to initialize once and
handle many requests so that a new job is not needed for every request. Many client server applications
use prestart jobs to handle the requests for the client user. Having a job ready to go makes the
performance better in this situation because the prestart job can start processing the request for the user
immediately.

Note: The value specified for the maximum number of jobs in the subsystem can prevent prestart jobs
from starting. If the maximum number of jobs in the subsystem is exceeded, no prestart jobs can be
started. When enough jobs have completed so that the number of jobs running is below the maximum
number of jobs in the subsystem, prestart jobs in the subsystem can start.

44 IBM i: Work management

Program Start Requests

A Program Start Request (PSR) is an architected way for SNA clients to connect to an SNA server. When a
prestart job is set up to handle PSRs, the external state of the job is in PSRW (Program Start Request
Wait).

Prestart jobs are also used for IBM-supplied TCP/IP servers, most notably the host servers. These
prestart jobs accept work via internal interfaces and PSRs are not used. However, prestart jobs that are
waiting for work, even if they are not using PSRs, still show a PSRW state.

Related concepts
Prestart communications jobs and job accounting
If your system uses job accounting, the prestart job program should run the Change Prestart Job (CHGPJ)
command with the program start request value for the accounting code parameter (CHGPJ
ACGCDE(*PGMSTRRQS)) immediately after the program start request attaches to the prestart job.
Related tasks
Starting a prestart job
Prestart jobs typically start at the same time the subsystem is started. You manually start a prestart job
when all prestart jobs have been ended by the system due to an error or were never started during
subsystem start up due to STRJOBS (*NO) on the prestart job entry. To start a prestart job, use the
character-based interface.
Ending a prestart job
You can use the character-based interface to end a prestart job in an active subsystem.
Related information
Experience Report: Tuning prestart job entries

Prestart job name
The fully qualified three-part name of the prestart job never changes once a prestart job is started. The
user name of the fully qualified three-part job name always contains the user profile under which the
prestart job is started.

If a spooled file is opened before a prestart job handles any work request, the spooled file is associated
with the prestart job entry user profile. Otherwise, it is associated with the current user profile of the job.

If the prestart job entry profile and the current user profile are different, spooled files are spooled under a
job with the job name being QPRTJOB and the user name of the current user profile. (This is also true for
prestart job entries for server jobs.)

The class (CLS) parameter on the prestart job entry provides a way to control the performance
characteristics of two classes of prestart jobs per prestart job entry.

How prestart jobs work
A prestart job is a job that is started before the work arrives. This allows the system to handle a request
for work without the delay caused by starting a new job.

A prestart job is a unique type of batch job. This means that the job has a job type of 'B' and a job subtype
of 'J'. The enhanced job type further defines the job as a prestart job (1610), prestart batch job (1620), or
prestart communications job (1630). The enhanced job type describes how the prestart job accepts work
requests. If the program running in the prestart job uses the communications interface for accepting
work, the job is a prestart communications job. If the program running in the prestart job accepts work
through a batch work interface, the job is a prestart batch job. If the program has not yet reached the
point of accepting work, the job is just a prestart job. Prestart batch jobs are often referred to as server
jobs because they provide service for the work requests.

A communications work request is handled by the subsystem that has the required communications
device allocated. A batch work request is typically handled by one of the basic subsystems that are
shipped with the system: QSYSWRK, QUSRWRK, or QSERVER.

Prestart jobs are started based on the information contained in the prestart job entries. The Start jobs
(STRJOBS) parameter of the Add Prestart Job Entry (ADDPJE) and the Change Prestart Job Entry
(CHGPJE) commands can specify that the prestart jobs are started when the subsystem is started or

Work management 45

when the Start Prestart Jobs (STRPJ) command is entered. The Initial number of jobs (INLJOBS)
parameter determines the number of prestart jobs that initially start for a program.

As work requests arrive, more prestart jobs may be needed. The Threshold (THRESHOLD) parameter of
the Add Prestart Job Entry (ADDPJE) and the Change Prestart Job Entry (CHGPJE) commands tells when
to start more jobs. When the number of prestart jobs available to handle a request drops below the value
specified by the THRESHOLD parameter, the additional jobs are started. The Additional number of jobs
(ADLJOBS) parameter tells how many more jobs to start.

Some prestart jobs handle a work request and then become available to handle another work request.
The Maximum number of uses (MAXUSE) parameter allows you to specify how many work requests these
prestart jobs handle. Some prestart jobs handle a single work request and then end, ignoring the MAXUSE
value. Whether the prestart job handles multiple work requests or handles only a single work request is
determined by the program running in the prestart job.

When the prestart job ends after handling at least one work request, the subsystem compares the
number of jobs that are still running to the number specified in the INLJOBS parameter. If the number of
jobs remaining is less than INLJOBS, the subsystem starts another job.

If a prestart job ends without handling at least one work request and the job was not ended by the End
Job (ENDJOB) command, the prestart job program is considered to be in error. The subsystem ends the
prestart job entry in a controlled manner. This allows jobs that are servicing a work request to complete
that request, but prevents the subsystem from starting additional jobs.

The subsystem periodically checks the number of prestart jobs to determine if there are excessive
available prestart jobs. A prestart job is available when it is waiting for a work request.

Related information
Experience Report: Tuning prestart job entries
Experience Report: Subsystem Configuration

Prestart job entries
You define the prestart job by using a prestart job entry. A prestart job entry does not affect the device
allocation or program start request assignment.

The job attributes of a prestart job are not changed by the subsystem when a program start request
attaches to the prestart job. However, server jobs generally change job attributes to those of the swapped
user profile.

The Change Prestart Job (CHGPJ) command allows the prestart job to change some of the job attributes
to those of the job description (specified in the job description associated with the user profile of the
program start request or in the job description specified in the prestart job entry).

Related concepts
Prestart job investigation
This topic provides steps to help you answer the question, "How do I find the real user of a prestart job
and determine the resources used by that prestart job?"
Related tasks
Adding prestart job entries
Prestart job entries identify prestart jobs that may be started when the subsystem is started or when the
Start Prestart Jobs (STRPJ) command is entered. You can add prestart job entries to the subsystem
description by using the character-based interface.
Changing prestart entries
You can change a prestart job entry in the specified subsystem description. The subsystem may be active
when the prestart job entry is changed. Changes made to the entry when the subsystem is active are
reflected over time. Any new prestart jobs started after the command is issued use the new job-related
values. This command identifies prestart jobs that are started when the subsystem is started or when the
Start Prestart Jobs (STRPJ) command is issued.
Removing prestart job entries

46 IBM i: Work management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work1abstract.htm

You can remove prestart job entries from the subsystem description by using the character-based
interface. A prestart job entry cannot be removed if any currently active jobs were started using the entry.
Related information
Experience Report: Tuning prestart job entries

Prestart job handling program start requests
When a prestart job starts, it runs under the prestart job user profile. When a program start request
attaches to a prestart job, the prestart job user profile is replaced by the program start request user
profile. When the prestart job is finished handling a program start request, the program start request user
profile is replaced by the prestart job user profile. If there is a group profile associated with the user
profile, the group profile is also swapped.

The swapped user profile is for authority checking only. None of the other attributes associated with the
user profile are swapped. Libraries on the library list to which the prestart job entry user profile is
authorized continue to be authorized to the prestart job when the program start request user profile
replaces the prestart job entry user profile. However, the library list can be changed by the Change Library
List (CHGLIBL) command.

Prestart job object authorization for program start requests

When a prestart job starts, authority checking against the prestart job entry user profile is performed on
every object that is needed for starting a job. Before a program start request is allowed to attach a
prestart job, only the program start request user profile/password and its authority to the
communications devices and library/program is checked.

To avoid occurrences where the program start request user profile is not authorized to objects that the
prestart job entry user profile is authorized to, you must ensure that the program start request user profile
is authorized to at least as many objects as the prestart job entry user profile. To accomplish this, the
prestart job program can be created by the prestart job entry user with USRPRF(*OWNER) specified on
the CRTxxxPGM (where xxx is the program language) command. The program owner authority will
automatically be transferred to any programs called by the prestart job program. Otherwise, you may
choose to explicitly check object authorization (CHKOBJ) before referring to any objects.

Files and objects that the prestart job user profile is not authorized to should be closed and deallocated
before the end of the transaction is performed on the requestor device. If database files are left open in
the prestart job, in order to guarantee database security, the prestart job program must check the
program start request user profile authority to the open files.

Prestart jobs for batch applications
Prestart jobs and server jobs that use prestart jobs present a unique situation for job accounting. If a
single prestart job services different users you might want to charge each of these users for their
resources used. In such a situation the accounting code needs to be updated before and after each
service request.

For more information about how job accounting and prestart jobs relate, see “Prestart communications
jobs and job accounting” on page 85.

Performance tips for prestart jobs
The prestart job should do as much work as possible before it attempts to acquire an ICF program device
or accept a CPI Communications conversation. The more work it does initially (allocating objects, opening
database files, and so on), the less it needs to do when a program start request is received, therefore
giving the transaction faster response time. The following are some additional performance
considerations when using prestart jobs:

Remember: If an active prestart job entry is in the subsystem, the subsystem periodically checks the
number of prestart jobs in a pool that are ready to service program start requests to determine if there are
excessive available prestart jobs. Excessive available prestart jobs are ended by the subsystem gradually.
However, the subsystem always leaves at least the number of prestart jobs specified in the INLJOBS
attribute in a pool.

Work management 47

• You should only deallocate resources specific to the transaction that you want performed. Any resource
that is commonly used for other transactions performed by the prestart job program should remain
allocated while the job is waiting for its next request. You should leave files open and objects allocated
to save time when the next request is received.

Note: Database files that are left open in the prestart job generally require the same considerations as
database files that are shared in the same job.

• Since the same QTEMP library is used for the entire life of a prestart job, objects that are no longer
needed should be deleted.

• Since the same Local Data Area (LDA) is used for the entire life of a prestart job, information can be kept
and passed to the next transaction.

• Since each prestart job can handle many program start requests, and has only one job log, you may
want your application to send messages to the job log identifying the activity of the prestart job. This is
also useful because the job logs of batch prestart jobs are cleared between uses.

• The job attributes of a prestart job are not changed by the subsystem when a program start request
attaches to a prestart job. The change Prestart Job (CHGPJ) command allows the prestart job to change
some of the job attributes to those of the job description (specified in the job description associated
with the user profile of the program start request or in the job description specified in the prestart job
entry.)

• The class (CLS) parameter on the prestart job entry provides a way to control the performance
characteristics of two classes of prestart jobs per prestart job entry. For example, you can provide a
lower execution priority for work that arrives when the system is already busy.

Spooled file and the prestart job entry
If a spooled file is opened before a prestart job handles any program start request, the spooled file is
associated with the prestart job entry user profile; otherwise it is associated with the current program
start request user profile.

If the prestart job entry profile and the current program start request user profile are different, spooled
files are spooled under a job with the first part of the three-part job name being QPRTJOB and the second
part being the name of the user profile.

Reader and writer jobs
A reader job is a spooled input job, and a writer job is a spooled output job.
Reader

A reader job reads batch job streams from database files, and places the jobs on a job queue. The
reader job is part of input spooling and is an IBM-supplied program.

Writer
A writer job writes records from printer output files (also called spooled files) to a printer. The writer
job is an IBM-supplied program, started in the spooling subsystem where it selects files from the
output queue to be printed.

Server jobs
Server jobs are jobs that run continuously in the background on your system.

Work can come from network functions, operating system functions, on behalf of a user, another system
within the network, or from general system services, such as the clustering server jobs. Server jobs
typically run in one of three basic subsystems that are shipped with the system - QSYSWRK, QSERVER, or
QUSRWRK. Server jobs are most commonly associated with such functions as HTTP, Lotus Notes , and
TCP/IP. Your system has three basic models for server jobs:
Threaded Job Model

In the threaded job model the server job is a job with multiple threads. One thread acts as the
distributor of work to the other threads. For example, when the server receives a client request, the
initial thread reads the request and passes it to another thread to fulfill the request. With this model,
the amount of jobs on the system is greatly reduced because work is handled in different threads

48 IBM i: Work management

rather than requiring multiple jobs. A few examples of server jobs that use the threaded job model are
Domino®, HTTP server, and WebSphere®.

Prestart Job Model
In the prestart job model there is typically a primary job that acts as a listener for requests that come
into the system. This job is typically called the daemon job. The daemon job handles the initial request
and then passes the request to the appropriate prestart server job. With this job model, using prestart
jobs can reduce the number of jobs that are required because after a request has been fulfilled the
prestart server job waits for the next request. The server job is reused. Also, from a performance
perspective, the prestart job is already running and waiting to process the request. Some examples of
server jobs that use the prestart job model are SQL server, host servers, and Simple Mail Transfer
Protocol (SMTP).

Note: For jobs that run user code, typically the job is not reused (like most server jobs). This is
because the user code may have changed anything in the job (such as the remote command server).

Multiple Listening Job Model
In the multiple listening job model, several server jobs are started. When a request comes in, the job
that receives the request handles the job request, while the next available server job waits for the
next request to come in. Once the server job completes the request, it closes the connection and
ends. A new server job starts and the cycle continues.

With this model, you do not need to be concerned with prestart job entries. However, sometimes
configuring subsystems unique to your environment is not possible because this model runs in the
default subsystem. One exception is File Transfer Protocol (FTP). With file transfer protocol you can
configure the subsystem in which the file transfer protocol server runs. There is no ability to have
some FTP work to run in one subsystem and the rest of the work to run in a different subsystem. Also,
from a performance perspective, the cost of job initiation and job termination cannot be avoided
because once a job is run it is ended and another job starts. However, because jobs end when the
connection is complete and the next job is started, the new job will generally be up and running when
the next request is received, so the job initiation and termination cost should not affect the time it
takes to connect to the server.

Some examples of server jobs that use the multiple listening job model are FTP and line printer
daemon (LPD).

For more detailed information about the job names of the server jobs that run on the system, see the
server job table. This table shows you the subsystem and the job name so that you can find the active
job and its job logs. The table also shows the job description each server job uses. By default most
server jobs do not generate a job log when the job ends (the LOG parameter is set to 4 0 *NOLIST),
which means that the job log is not created. If you want a job log to be generated with all the
messages sent to the job log, the LOG parameter needs to specify 4 0 *SECLVL.

Related information
Server job table

System jobs
System jobs are created by the operating system to control system resources and perform system
functions. System jobs run when the server starts or when an independent disk pool is varied on. These
jobs perform a variety of tasks from starting the operating system, to starting and ending subsystems, to
scheduling jobs.
Related information
Cluster jobs

System startup jobs
Startup jobs are system jobs that run at IPL. They handle the tasks that get the operating system
environment up and ready for work. The following is a list of the various system startup jobs.
Scpf (start control program function)

This is the central job when you start the system. Scpf starts the Qsysarb series, but Qsysarb3 starts
most of the other system jobs (not Qlus) and brings the system to a usable state. This job remains
active after the system starts, providing an environment for the running of low-priority and possibly

Work management 49

long-running system functions. Scpf also runs during the power down (Pwrdwnsys) processing, and is
the job that ends the machine processing.

Qwcbtclnup (job table cleanup)
This job is used during the start of the system to ensure that the job structures are available for use. It
typically completes processing before the end of the system startup, but it can continue running after
the system starts, if there are a lot of job structures to clean up. This system job ends when it
completes processing.

Qlpsvr (software agreements acceptance)
This job is automatically started during an IPL if online software agreements need to be accepted. The
job ends when all agreements are either accepted or declined.

System arbiters
The system arbiters (QSYSARB and QSYSARB2 through QSYSARB5), started by an SCPF system job,
provide the environment for the running of high-priority functions. They allow subsystems to start and
end and keep track of the state of the system (for example, a restricted state).

The system arbiters, identified by the job name QSYSARB and QSYSARB2 through QSYSARB5, are the
central and highest priority jobs within the operating system. Each system arbiter responds to system-
wide events that must be handled immediately and those that can be handled more efficiently by a single
job than multiple jobs.

The system arbiter (QSYSARB) is also responsible for starting the Logical Unit Services (QLUS) job during
an IPL. The system arbiter remains active until the system is ended.

The following is a list of system arbiters.

Qsysarb (system arbiter)
The system arbiter provides the environment for the running of high-priority functions. It handles
system resources and keeps track of the state of the system. The system arbiter responds to system-
wide events that must be handled immediately and those that can be handled more efficiently by a
single job. Qsysarb, Qtaparb (tape arbiter), and Qcmnarbxx (communications arbiters) are responsible
for processing communication requests, device locking, line, controller, and device configuration, and
handling of other system-wide resources.

Qsysarb2 (system arbiter 2)
This job is responsible for managing tape resources, handling command analyzer spaces for
command processing and other system-wide processing for the operating system.

Qsysarb3 (system arbiter 3)
This job is responsible for creating and maintaining the job structures on the system. Whenever
temporary or permanent job structures are required for job initiation, the request is processed by
Qsysarb3. Qsysarb3 also starts and ends many of the system jobs.

Qsysarb4 (system arbiter 4)
This job is responsible for starting and ending subsystems. This includes the initial power down
(Pwrdwnsys) processing.

Qsysarb5 (system arbiter 5)
This job is responsible for processing machine events. This includes handling events to support
auxiliary power, system auxiliary storage pools (ASPs) and storage threshold, and lock table limits.
Usually, the machine events are handled and corresponding CPF messages are sent to Qsysopr and
Qhst.

System communication jobs
This topic contains a list of system communication jobs.

Qlus (logical unit services)
Qlus handles the event handling for logical unit devices, known as communication devices. Qlus is
also responsible for allocating devices to the correct communications subsystem.

Qcmnarbxx (communication arbiters)
The communications arbiters with Qsysarb (system arbiter) and Qtaparb (tape arbiter) process work
for all types of devices, not just communication devices. This work includes communications

50 IBM i: Work management

connection, disconnection, device locking, and error recovery processing. At restart, the system value
communication arbiter jobs (QCMNARB) determines the number of communications arbiter jobs that
are started. A minimum of three communications arbiters are started on single-processor systems.

Qsyscomm1 (system communications)
This job handles some communications and input/output (I/O) activity.

Q400filsvr (remote file system communication)
This job performs the common programming interface communications (APPN or APPC) for these
remote file systems.

Database jobs
This information contains a list of database jobs.
Qdbfstccol (database file statistic collection)

This job collects database file statistics. These statistics are crucial to correct database query
optimization.

Qdbsrvxr (database cross-reference) and Qdbx###xr for independent disk pool group ###
This job maintains each of the file level system cross-reference files in Qsys. These files contain
cross-reference information about database files and SQL information across the system. The files all
begin with the prefix of Qadb in library Qsys. The primary file that must be maintained is Qadbxref, the
cross-reference file. This file contains a record of each physical database, logical database, DDM, and
Alias file on the system. Qdbsrvxr activates when a file is created, changed, deleted, restored,
renamed, or its ownership is changed.

Qdbsrvxr2 (database cross-reference 2) and Qdbx###xr2 for independent disk pool group ###
This job maintains the two field level cross-reference files. Qadbifld in library Qsys is the field cross-
reference file. Qadbkfld in library Qsys is the key field cross-reference file. Qdbsrvxr2 is activated
when a file is created, changed or deleted.

Qdbsrv01 (database server) and Qdbs###v01 for independent disk pool group ###
This job can be viewed as the database maintenance task dispatcher. The number of database server
jobs on the system is one plus twice the number of processors, or one plus twice the number of ASPs,
whichever is greater. The minimum started is five. Qsbsrv01 is the main system job assigning work to
the others. Typically, Qdbsrv01 is most active immediately after restoring a library that contains
database files. Its function includes:

• Signaling to the system-managed access path protection (SMAPP) Licensed Internal Code (LIC)
tasks that new access paths have been restored. SMAPP then determines whether these access
paths need to be protected.

• Preparing the list of access paths that are required to be rebuilt because the access paths were not
restored.

Of the remaining database server jobs, the first half process high-priority requests, and the second
half process low-priority requests. (Example: Qdbsrv02 through Qdbsrv05 are high priority, Qdbsrv06
through Qdbsrv09 are low priority.)

Qdbsrvxx (database server, high priority) and Qdbs###vxx for independent disk pool group ###
These jobs perform journal and commitment control maintenance for the system and are considered
quick or short-running work.

Qdbsrvxx (database server, low priority) and Qdbs###vxx for independent disk pool group ###
These jobs perform access path maintenance on user data files. Typically, these jobs are inactive, but
in certain cases, they might activate to perform access path rebuilds. Some reasons why these jobs
might be active are:

• Restoring database files that were not saved with access paths
• Restoring logical files without the physical file they are based on
• Canceling of an Rgzpfm command while in process
• Invalidation of an index due to damage found in the index
• Post-iServer installation activity to complete cross-reference or other DB upgrade activity

Work management 51

• Constraint verification

Qqqtemp1 and Qqqtemp2 (database parallelism)
The database parallelism system jobs perform asynchronous database processing for the DB2®

Multisystem. If users query distributed files, the jobs are used to speed up the queries by doing
certain tasks in parallel.

Other system jobs
This information contains is a list of other kinds of system jobs.

Qalert (alert manager)
This job performs the tasks necessary to process alerts. This includes such activities as processing
alerts received from other systems, processing locally created alerts, and maintaining the sphere of
control.

Qdcpobjx (decompress system object)
This job decompresses newly installed operating system objects as needed. There is a storage
requirement in order for these jobs to run. If the available storage on your system drops below a
certain limit, these jobs will end. The number of decompress system object jobs is the number of
processors plus one.

Qfilesys1 (files system)
This job supports the background processing of the integrated file system. It ensures that changes to
the files are written to storage and also performs several general file system cleanup activities.

Qjobscd (job schedule)
This job controls the system's job scheduling functions. Qjobscd monitors the timers for job schedule
entries and scheduled jobs.

Qli###cl for independent disk pool group ### (library cleanup)
This job cleans up libraries on independent disk pools.

Qli###rp for independent disk pool group ### (object cleanup)
This job cleans up replaced objects on independent disk pool libraries.

Qlur (LU 6.2 resynchronization)
Qlur handles the two-phase commit resynchronization processing.

Qpfradj (performance adjustment)
This job manages changes to the storage pool sizes and activity levels. All requests to change storage
pools are processed by this job. In addition, if Automatically adjust memory pools and activity levels
(Qpfradj) system value is set to a value of 2 or 3, this job dynamically changes the sizes and activity
levels of storage pools to improve the system performance.

Qsplmaint (system spool maintenance) and Qspmn##### for independent disk pool group #####
This job performs system spooling functions that include:

• Clears the spooled database member which contained a deleted spooled file's data and attributes
• Deletes the spooled database members that have not been reused within the time specified in

Automatically clean up unused printer output storage (QRCLSPLSTG) system value

Qsprc00001 (system spool recovery) and Qsprc##### for independent disk pool group #####
This job performs system spooling functions that include:

• Spooled file cleanup after an IPL or an independent disk pool group is varied on
• Moves stranded spooled files of damaged user output queues into the output queue QSPRCLOUTQ

in library QRCL or QRCL#####.

Qsppf00001 and Qspp200001 (system spool PRTQ updaters); Qsppf##### and Qspp2##### for
independent disk pool group #####

These jobs perform spooled file operations for either the system disk pool or a specific independent
disk pool group.

Qtaparb (tape device)
This job processes work related to tape devices including device locking and error recovery
processing.

52 IBM i: Work management

Qnwharbxx
These system jobs handle events related to the Network Server Host Adapter (NWSH) devices. There
will always be at least one of these jobs started during the current IPL.

Qwcpjobs
This job handles the background cleanup of permanent job structures.

Qwctjobs
This job handles the background cleanup of temporary job structures.

Job scheduling options
The job schedule function allows for time-dependent scheduling of IBM i batch jobs. You can schedule
jobs to be released from the job queue at a particular time, or you can use a job schedule entry to submit
your job to the job queue automatically at the time you specify. Job scheduling allows you to control the
date and time a batch job is submitted to or becomes eligible to start from a job queue. This flexibility can
help you as you balance the work load on your system.

For example, you can use job scheduling to delegate the repetitive task of repeatedly submitting meeting
notices, payroll, or weekly and monthly reports from your schedule to the system's schedule. There are
four methods for scheduling a batch job.

Management Central scheduler
System i® Navigator provides an integrated scheduler, the Management Central scheduler, to organize
when you want your jobs to process. You have the option of choosing to perform a task immediately or
choosing a later time. You can use the Management Central scheduler to schedule almost any task in
Management Central.

The Management Central Scheduler window is available anytime you see a Schedule button on a System i
Navigator window.

Note: If you installed the Advanced Job Scheduler on the Management Central server, the Schedule
button will start the Advanced Job Scheduler instead of the Management Central scheduler.

Related tasks
Scheduling a job using Management Central Scheduler
If you do not have the plug-in Advanced Job Scheduler installed, you can use the Management Central
Scheduler to schedule jobs.

Job schedule entries
If your system does not have the Management Central Scheduler or the Advanced Job Scheduler, you can
still schedule jobs using a job schedule entry, which is accessed from the character-based interface.
Using this method you can schedule jobs to recur or to run only once.

Since job schedule entries are entries in a permanent object, they do not stay on the job queue like the
scheduled jobs, and therefore they are not lost when the job queue is cleared. You can also save and
restore the job schedule object. This provides a method of backing up your job scheduling information.

When you want a job to process at regular intervals, you create a job schedule entry for the job. The job
schedule entry contains all of the information that is necessary to submit a job and its scheduling
information. Each entry in the object is uniquely identified by the job name that you supply and a 6-digit
entry number that is assigned by the system. No two entries have the same job name and entry number
combinations.

The job schedule entry also contains information used by the system to manage the entry in certain
situations. The information that defines the job is similar to the parameters specified on a Submit Job
(SBMJOB) command, including job name, job description, job queue, user profile, and message queue.
The local data area (LDA) of the job submitted from the job schedule entry is blank when the job starts.

All job schedule entries are contained in the job schedule object. The job schedule object, QDFTJOBSCD
is in the QUSRSYS library and has an object type of *JOBSCD. You cannot create, delete, rename, or
duplicate the job schedule object. You cannot move it to any other library. The job schedule object is
shipped with public authority of *CHANGE. This is the minimum authority necessary to add, change, hold,
release, and remove job schedule entries.

Work management 53

Note: You can also schedule recurring jobs by using the Management Central Scheduler or the Advanced
Job Scheduler.

Related concepts
Working with job schedule entries
In addition to the IBM Navigator for i Job Properties - Job Queue window, you can also change the job
schedule entry directly by using the character-based interface. The following is a list of common
character-based interface tasks that you can use when working with job schedule entries.

Examples: job schedule entry
This topic provides examples for using the Add Job Schedule Entry (ADDJOBSCDE) command.

Schedule a job monthly: This example shows how to submit a job to run program INVENTORY at 11:30
p.m. on the last day of every month except on New Year's Eve.

ADDJOBSCDE JOB(MONTHEND)
CMD(CALL INVENTORY)
SCDDATE(*MONTHEND)
SCDTIME('23:30:00')
FRQ(*MONTHLY)
OMITDATE('12/31/05')

Schedule a job daily: This example shows how to submit a job to run program DAILYCLEAN every day at
6:00 p.m. The job runs under the user profile SOMEPGMR. This job is not submitted if the system is down
or is in restricted state at that time.

ADDJOBSCDE JOB(*JOBD)
CMD(CALL DAILYCLEAN)
SCDDAY(*ALL)
SCDTIME('18:00:00')
SCDDATE(*NONE)
USER(SOMEPGMR)
FRQ(*WEEKLY)
RCYACN(*NOSBM)

Schedule a job weekly: This example shows how to submit a job to run program PGM1 every week
starting on 12/17/05 at the current time. Because 12/17/05 is a Saturday, the job is submitted every
Saturday, and it runs under the user profile

PGMR1. ADDJOBSCDE JOB(*JOBD)
CMD(CALL PGM1)
SCDDATE('12/17/05')
FRQ(*WEEKLY)
USER(PGMR1)

Schedule a job every third Monday and Wednesday: This example shows how to submit a job to run
program PGM2 on the third Monday and the third Wednesday at 11:30 p.m. This job will be submitted on
the next third Monday or third Wednesday at 11:30 p.m., depending on whether those days have passed
already this month. If yesterday was the third Monday, today is the third Tuesday, and tomorrow is the
third Wednesday, it will be submitted tomorrow, and then not again until next month.

ADDJOBSCDE JOB(*JOBD)
CMD(CALL PGM2)
SCDDAY(*MON *WED) FRQ(*MONTHLY)
SCDDATE(*NONE)
RELDAYMON(3) SCDTIME('23:30:00')

Schedule a job every first and third Monday: This example shows how to submit a job to run program
PAYROLL on the first and third Monday of every month at 9:00 a.m. The job runs under user profile
PAYROLLMGR.

ADDJOBSCDE JOB(PAYROLL)
CMD(CALL PAYROLL)
SCDDAY(*MON) FRQ(*MONTHLY)
SCDDATE(*NONE)
RELDAYMON(1 3) SCDTIME('09:00:00')
USER(PAYROLLMGR)

54 IBM i: Work management

Schedule a job every weekday: This example shows how to submit a job to run PGM4 every weekday at
7:00 p.m.

ADDJOBSCDE JOB(*JOBD)
CMD(CALL PGM4)
SCDDAY(*MON *TUE *WED *THU *FRI)
SCDDATE(*NONE)
SCDTIME('19:00:00') FRQ(*WEEKLY)

Save a job schedule entry: This example shows how to submit a job once and save the entry.

ADDJOBSCDE JOB(*JOBD)
CMD(CALL SAVED)
FRQ(*ONCE)
SAVE(*YES)

The submit job command
This character-based interface command controls the time a job is released in the job queue. It is an easy
way to schedule a job that only needs to run once. It allows you to use many of the job attributes defined
for your current job.

When you schedule a job to run only once (character-based command SBMJOB), the job is released from
the job queue at the scheduled time. The following is a summary of the system tasks that occur when you
use SBMJOB to schedule a batch job.

1. You schedule a job using either the IBM Navigator for i interface (Basic Operations > User Jobs >
Right-click the job > Properties > Job Queue tab) or the character-based interface (SBMJOB
command with SCDATE and SCDTIME parameters specified).

2. The job remains on the job queue in a scheduled state (SCD status) until the date and time indicated
by the parameters.

3. At the scheduled time, the job is released from the job queue. The job's status changes from
scheduled (SCD) to released (RLS), unless the job is held (SCDHLD), in which case it changes from
scheduled to held (HLD).

4. The job is processed like any other job on the job queue.
5. The job starts if normal conditions (such as a job queue allocated to an active subsystem and

maximum jobs not already active) exist.

Note: This method places the job on the job queue immediately, thus if the job queue is cleared before
the scheduled date and time, you loose your job.

Related tasks
Submitting a job once
When you need to run a job once, whether immediately or at a scheduled date and time, use the Submit
Job (SBMJOB) command. This method places the job on the job queue immediately.
Submitting a batch job
Since batch jobs are typically low priority jobs that require a special system environment in which to run
(such as running at night) they are placed in batch job queues. In the job queue the batch job receives a
run time schedule and a priority. To submit a job to a batch job queue, you use the character-based
interface and one of two commands.

Job scheduler considerations
When choosing a job scheduler product, you need to consider a variety of different features. The following
is a list of features to consider when determining which job scheduler to use:

• Automated job scheduling

– Flexibility in scheduling jobs
– Unattended (or attended) job processing 24 hours a day, 7 days a week, with total compliance to the

schedules you set
– Natural extension of the IBM i operating system

Work management 55

– Complete control of how, when, and where a job is submitted
– Extensive job dependencies such as objects (existence of a file or records within a physical file), the

activity or inactivity of other jobs, or the status of a line, controller, or subsystem
– Complete calendaring functions, including fiscal and holiday calendars
– Multiple runs per day

• System and user-defined parameters

– Current® date, submission date, previous date, and current time can be passed into application
programs

– User-defined parameter values can be created, changed, and passed into application programs

• Workload/history forecasting

– Forecasts all scheduled jobs to be run next week, next month, or next day
– Optimize production requirements
– Historical tracking and logging of all Advanced Job Scheduler activity

• Network management

– Jobs can be set up on any IBM i product in the network to run on any other IBM i product on the
network

– Provides complete job history of the job on the submitting system
– Group and dependent jobs can be submitted through the network

• Report distribution and management

– Routing, monitoring, and controlling of all output reports generated by Advanced Job Scheduler or
IBM ioperating system

– Spooled file distribution to multiple output queues or to remote systems with optional banner pages
– Spooled output can be duplicated or sent to any user on the IBM i network

• Security

– Existing IBM i security can be utilized within Advanced Job Scheduler
– Specify who in your organization has authority to set up or change information about scheduled jobs
– Authority can be specified for either the individual functions of Advanced Job Scheduler or for

specific jobs

• Graphical user interface

– Point and click capabilities when scheduling a job
– Manage jobs
– Maintain dependencies
– Track scheduler activity and log information

• Other key features

– Multiple commands per job
– Definition for job LDA (Local Data Area)
– Console monitor to run jobs in restricted state
– Check maximum run time for each job
– Interface directly to a message-based third-party paging system
– Provisions for full online documentation of each job
– Extensive cursor-sensitive help text on all displays

56 IBM i: Work management

Job scheduling and system availability
If the system is powered down or in restricted state when scheduled times are reached, jobs cannot be
submitted from job schedule entries and the status of scheduled jobs cannot be changed. However, you
can control how the system handles this situation after the system IPL or after it comes out of restricted
state.

The job schedule entries and the scheduled jobs are processed in the order that the missed occurrences
would have been handled normally. Work from other sources may enter the system while missed job
schedule entries and scheduled jobs are being processed.

• Job Schedule Entries: You can control how each entry is handled by the value you specify for the
recovery action of the entry. You can specify that a job still be submitted using the entry, that a job be
submitted and held on the job queue, or that a job should not be submitted. If you request that a job be
submitted, only one job is submitted from each entry, no matter how many submissions were missed
while the system was not available.

• Scheduled Job: The system checks to determine if any scheduled times have passed while the system
was not available. If a scheduled job with a passed time is found, the job’s status is updated.

Job queues
A job queue contains an ordered list of jobs waiting to be processed by a subsystem. The job queue is the
first place that a submitted batch job goes before becoming active in a subsystem. The job is held here
until a number of factors are met.

In order for jobs on a job queue to be processed, there must be an active subsystem that is accepting
work from that job queue. When a subsystem starts, it attempts to allocate the job queues that it is
configured to accept work from, and it must successfully allocate a job queue in order to process jobs
from that job queue. Therefore, while one subsystem can process jobs from multiple job queues, only one
subsystem can process jobs from a particular job queue at a time.

Subsystems select jobs from job queues in priority order, within limits that can be configured for each
priority. Each job has a job queue priority that can be managed when the job is on the job queue through
job properties. A base set of job queues is provided with your system. In addition, you can create
additional job queues that you need.

Job queues can be created in the system disk pool or in an independent disk pool. Jobs placed on a job
queue in an independent disk pool are ended when the independent disk pool is varied off or when an IPL
of the system occurs. Jobs on a job queue do not switch to a new system with an independent disk pool.

Note: APIs, such as Open List of Job Queues (QSPOLJBQ) and Retrieve Job Queue Information
(QSPRJOBQ), can be called to get information about job queues.

Related concepts
Managing job queues
As you manage the work on your system, you might find it necessary to manipulate jobs that are waiting in
a job queue. Perhaps someone needs a job run immediately and the job is sitting in a queue at a low
priority. Or maybe you need to perform some maintenance on a subsystem and want to move all of the
jobs to a queue that is not associated with that particular subsystem.
Related tasks
Clearing a job queue
When you clear a job queue, every job on the queue is deleted. This includes any jobs that are in the hold
state. You can use IBM Navigator for i or the character-based interface to clear a job queue. Jobs that are
running are not affected because they are considered active jobs and are no longer on the queue.
Creating job queues
To create a job queue, use the character-based interface.
Deleting a job queue
To delete a job queue, use the character-based interface.
Holding a job queue

Work management 57

When you place a job queue on hold you prevent the processing of all of the jobs that are currently waiting
on the job queue. Placing a job queue on hold has no effect on jobs that are running. Additional jobs can
be placed on the job queue while it is held, but they are not processed.
Releasing a job queue
When you release a job queue, all of the jobs that were placed on hold as a result of placing the job queue
on hold are also released. If an individual job was placed on hold before the job queue was held, then the
job is not released.
Related information
Work management APIs

Ordered list
The ordered list refers to the order in which jobs appear on the job queue. The availability, priority, and
the date and time values help determine the order of jobs on the job queue.

The job number is not used to determine where the job appears in the job queue, nor does it affect when
the job is run.

Availability
Refers to the status of the job on the job queue. The possible values in order are waiting, scheduled,
and held.

Priority
Refers to the priority the job has on the job queue. The possible priority values are 0-9, with 0 being
the highest priority. In cases where the jobs are scheduled jobs, the priority does not play a part in the
order of the jobs on the job queue. For instance, if two jobs are scheduled to run at 12:00:00, the jobs
are ordered by their position in the job table.

Date and time
Refers to the date and time of the job:

• If the job is scheduled, the date and time refers to when the job is scheduled to run.
• If the job is not scheduled, the date and time refers to when the job entered the system.

Note: There are cases where the date and time end up being a date and time manually set to properly
position a moved job to a particular job queue.

How a job queue works
Job queues are allocated by a subsystem via the job queue entry. Jobs can be placed on a job queue even
if the subsystem has not been started. When the subsystem is started, it processes the jobs on the queue.

The subsystem description specifies the maximum number of jobs (batch or interactive) that can be
active at the same time. The number of jobs that can be active from any job queue is specified in the job
queue entry.

Not all jobs on a job queue are necessarily available for processing when the subsystem is started.
Scheduled jobs can be placed on the job queue. Jobs can be held on a queue until the system operator
releases them. If the subsystem is ended before all of the jobs are processed, the jobs remain on the
queue until the subsystem is started again, until moved by the system operator to another job queue,
until deleted by the system operator, or until another subsystem allocates the same job queue.

More than one subsystem description can refer to the same job queue, but only one active subsystem at a
time can use the job queue as a source of batch jobs. Therefore, if a subsystem ends and jobs are still on
the job queue, another subsystem referring to that job queue can be started to process the jobs. If
another subsystem is already started and is waiting for the same job queue, the subsystem automatically
allocates the job queue when it becomes available.

Related concepts
How a subsystem handles several job queues
To illustrate how a subsystem handles several job queues, consider this scenario.
Related tasks
Determining which subsystem has a job queue allocated

58 IBM i: Work management

You can determine which subsystem has allocated the job queue using the IBM Navigator for i interface
or the character-based interface. This is useful when you find it necessary to delete the job queue since
you cannot delete a job queue to which a subsystem is active.
Creating job queues
To create a job queue, use the character-based interface.
Assigning the job queue to the subsystem
To assign a job queue entry to a subsystem description, use the character-based interface.

How jobs are taken from a job queue
Different factors determine how the jobs are selected from a job queue and started.

Maximum active jobs for subsystems
This represents the maximum number of jobs that can be running in a subsystem. After this limit is
reached, no more jobs can start in the subsystem.

Maximum active jobs for job queues
This represents the maximum number of jobs from the job queue that can be running in a subsystem
at the same time. After this limit is reached, no more jobs can start from that job queue.

Priority on job queue
Jobs that are waiting to run are selected based on the job queue priority. The subsystem attempts to
run higher priority jobs first (job queue priority ranges from 0 through 9 where 0 is the higher priority),
but if the number of jobs running from a priority level reaches the Maximum Active Jobs value per
priority level, the next priority level is processed. (If jobs with the same priority enter the job queue,
the first job submitted will run first, then the second, and so on.)

Sequence
You specify the sequence in the job queue entry of the subsystem description. The sequence number
defines the order in which the subsystem will process the job queues. The subsystem takes jobs from
the job queue with the lowest sequence number first. If there are no more jobs on the job queue, or if
one of the maximum values associated with the job queue is reached, the subsystem will process the
job queue with the next highest sequence number.

Related tasks
Placing a job on the job queue
Jobs are placed on the job queue by either moving an existing job from one queue to another, or by
submitting a new job. Use IBM Navigator for i to move jobs between queues. Use the character-based
interface to submit a new job.
Moving a job to a different job queue
There are many reasons why you might want to move a job to another queue. For example, sometimes
jobs become backlogged in the queue because of a long running job. Perhaps the job's scheduled run time
conflicts with a new job that has a higher priority. One way to manage this situation is to move the waiting
jobs to another queue that is not as busy.
Changing the number of jobs running simultaneously in a job queue
The QBASE subsystem is shipped with a job queue entry for the QBATCH job queue. This entry only
allows one batch job to run at a time. If you want more than one batch job from that job queue to run
simultaneously then you need to change the job queue entry.

Job queue entry
A job queue entry identifies a job queue from which jobs are selected for running in the subsystem. There
are five parameters in the job queue entry that control how the job queue should be handled.

Subsystem Description (SBSD)
This is the name and the library of the subsystem description to which the job queue entry is added.

Job queue (JOBQ)
Specifies the name and library of the job queue that is a source of batch jobs that are started by the
subsystem.

Work management 59

Maximum active jobs (MAXACT)
Specifies the maximum number of jobs that can be active at the same time from this job queue.

Sequence number (SEQNBR)
Specifies a sequence number for this job queue, which is used by the subsystem to determine the
order in which the job queues are processed.

Max active priority 1 (through 9) (MAXPTYx)
Specifies the number of jobs that can be started for a specified job priority level.

Related tasks
Adding job queue entries
A job queue entry identifies a job queue from which jobs are selected for running in the subsystem. Jobs
started from a job queue are batch jobs. You add a job queue entry using the character-based interface.
Changing job queue entries
You can change an existing job queue entry in the specified subsystem description. This command can be
issued while a subsystem is active or inactive. To change the job queue entry in a subsystem, use the
character-based interface.
Removing job queue entries
You can remove job queue entries from a subsystem description by using the character-based interface.
Jobs on the job queue remain on the queue when the job queue entry is removed from the subsystem
description. A job queue entry cannot be removed if any currently active jobs were started from the job
queue.
Changing the number of jobs running simultaneously in a job queue
The QBASE subsystem is shipped with a job queue entry for the QBATCH job queue. This entry only
allows one batch job to run at a time. If you want more than one batch job from that job queue to run
simultaneously then you need to change the job queue entry.

How job queues are allocated to a subsystem
A job queue can be associated with several subsystems but it can only be allocated to one subsystem at a
time. When the subsystem is started, the subsystem monitor tries to allocate each job queue defined in
the subsystem job queue entries.

If a job queue was already allocated by another subsystem, the first subsystem must end and deallocate
the job queue before the second subsystem can allocate it. After it is started, this second subsystem
allocates job queues assigned to it as they become available.

If a job queue does not exist when the subsystem is started, the job queue is allocated to the subsystem
when one of the following occurs:

• The job queue is created.
• A job queue is renamed with the name defined to the subsystem.
• A job queue is moved to another library and the resulting qualified name matches the name in the

subsystem description.
• The library containing the job queue is renamed and the resulting qualified name matches the name in

the subsystem description.

Multiple job queues
In many cases, using QBATCH as the only job queue with the default of one active job will be adequate for
your needs. If this is not adequate, you might want to have multiple job queues so that some job queues
are active during normal working hours, some are for special purposes, and some are active after normal
working hours.

For example, you can designate different job queues for:
Long-running jobs so you can control how many jobs are active at the same time

You might also want these jobs to use a lower priority than the other batch jobs.

60 IBM i: Work management

Overnight jobs that are inconvenient to run during normal working hours
For example, to run a Reorganize Physical File Member (RGZPFM) command on a large database file
requires an exclusive lock on the file. This means that other users cannot access the file while this
operation is taking place. Additionally, this operation can take a long time. It can be more efficient to
place this job on a job queue for jobs which run during off-shift hours.

High-priority jobs
You might want to have a job queue to which all high-priority work is sent. You can then ensure that
this work is completed rapidly and is not delayed by lower-priority jobs.

Jobs that are directed to particular resource requirement such as diskette or tape
Such a job queue needs a MAXACT parameter of 1 in the job queue entry of the subsystem description
so that only one job at a time uses the resource.

For example, if a tape is used for several jobs, all jobs using tape are be placed on a single job queue.
One job at a time are then selected from the job queue. This ensures that no two jobs compete for the
same device at the same time. If this happens, one of the jobs ends with an allocation error.

Note: Tape output cannot be spooled.

Programmer work
You might want to have a job queue to handle programmer work or types of work that can be held
while production work is being run.

Sequential running of a series of jobs
You can have an application in which one job is dependent on the completion of another job. If you
place these jobs on a job queue that selects and runs one job at a time, this ensures the running
sequence of these jobs.

If a job requires exclusive control of a file, you might want to place it on a job queue when the queue is
the only one active on the server, such as during the night or on a weekend.

If you use multiple job queues, you will find that control of the various job queues is a main consideration.
You will typically want to control:

• How many job queues exist
• How many job queues are active in a particular subsystem at the same time
• How many active jobs can be selected from a particular job queue at a particular time
• How many jobs can be active in a subsystem at a particular time

How jobs are taken from multiple job queues
A subsystem processes jobs from a job queue based on sequence number. A subsystem can have more
than one job queue entry and can therefore allocate more than one job queue.

The maximum number of jobs from a queue is specified by the Maximum active jobs MAXACT parameter
on the Add Job Queue Entry (ADDJOBQE) or the Change Job Queue Entry (CHGJOBQE) commands. You
can also control how many jobs of each priority can be active by using the Maximum active priority
MAXACTx parameters. For example, if MAXACT=10, MAXACT5=2, and there are three jobs on the job
queue at priority level 5, then only two of them can become active at any given time.

The subsystem processes jobs from the job queue with the lowest sequence number first. When all of the
jobs that are on the job queue have been processed, or when the maximum number of jobs from the
queue is reached, the subsystem processes jobs from the queue with the next higher sequence number.

The sequence continues until the subsystem has processed all of the available job queue entries or until
the subsystem has reached its limit of jobs that can be running or waiting in the subsystem. The number
of jobs that can be running or waiting is determined by the Maximum active jobs (MAXACT) parameter in
the subsystem description. In some cases the sequence is interrupted as jobs end or are transferred.
Creating, holding, and releasing job queues can also change the sequence of job queues processed.

Related tasks
Placing a job on the job queue

Work management 61

Jobs are placed on the job queue by either moving an existing job from one queue to another, or by
submitting a new job. Use IBM Navigator for i to move jobs between queues. Use the character-based
interface to submit a new job.
Moving a job to a different job queue
There are many reasons why you might want to move a job to another queue. For example, sometimes
jobs become backlogged in the queue because of a long running job. Perhaps the job's scheduled run time
conflicts with a new job that has a higher priority. One way to manage this situation is to move the waiting
jobs to another queue that is not as busy.
Changing the number of jobs running simultaneously in a job queue
The QBASE subsystem is shipped with a job queue entry for the QBATCH job queue. This entry only
allows one batch job to run at a time. If you want more than one batch job from that job queue to run
simultaneously then you need to change the job queue entry.

Job queue security
You can maintain a level of security with your job queue by authorizing only certain persons (user profiles)
to that job queue. In general, there are three ways that a user can become authorized to control a job
queue (for example, hold or release the job queue).

• User is assigned spool control authority (SPCAUT(*SPLCTL)) in the user profile.
• User is assigned job control authority (SPCAUT(*JOBCTL)) in the user profile and the job queue can be

controlled by the operator (OPRCTL(*YES)).
• User has the required object authority to the job queue. The required object authority is specified by the

AUTCHK parameter on the CRTJOBQ command. A value of *OWNER indicates that only the owner of the
job queue is authorized via the object authority for the job queue. A value of *DTAAUT indicates that
users with *CHANGE authority for the job queue are authorized to control the job queue.

Note: The specific authority required for *DTAAUT are *READ, *ADD, and *DLT data authority.

These three methods of authorization apply only to the job queue, not to the jobs on the job queue. The
normal authority rules for controlling jobs apply whether the job is on a job queue or whether it is
currently running.

Output queues
Output queues are areas where printer output files (also called spooled files) wait to be processed and
sent to the printer. Printer output is created either by the system or by the user using a print file.

A print file is similar to a template or a guideline where the default values for the attributes of printer
output are set. It is the beginning of the printer output life cycle.

The print file contains the output queue (OUTQ) and print device (DEV) attributes, which dictate how the
printer output is to be directed. The default settings are typically *JOB, meaning that the job attributes of
the output queue and printer device determine how the printer output is directed. The job attributes of
the output queue and printer device settings are based on information obtained when the job is created.
This is based on information from the user profile the job is running under, the job description, the
workstation device description, and the Printer device description (QPRTDEV) system value.

When the printer output is ready to be created, the system checks the print file and the job attributes (in
this order) to see what output queue will process the printer output and which printer device the system
will use. You can change the parameters of the output queue (OUTQ) and printer device (DEV) at the time
the job is submitted or at job run-time to bypass extended processing. For example, the user can set the
print file output queue to a specific queue and set the printer device to their specific printer in the print
file at job initiation for the changes to take effect immediately. In doing this, the printer output does not
need to go through the job attributes to find the output queue and printer device it will use. If a specified
output queue cannot be found, the printer output will be directed to QGPL/QPRINT. For more information
about how printer output is created, see Chapter 1 of the Printer Device Programming manual.

Printer output files are files that hold information waiting to be printed or processed. The printer output
file holds important attributes that define the position of the printer output on the queue with relation to
other printer output. The position is defined by the priority, status, and schedule attributes.

62 IBM i: Work management

Output queue
An output queue is an object that contains a list of printer output files to be written to an output
device. The output queue carries important attributes that determine the order in which printer output
is processed and the authority needed to make changes to the printer output file.

Priority
Printer output that is waiting to process is moved to the output queue based on its priority (ranges
from 1-9 where 1 is the highest priority).

Status
The current status of printer output. You can view this status from the General page of the Output
properties window.

Schedule
The schedule attribute tells when the file should start physical printing of the output data.
Immediate

Print immediately, even if the printer output file is not closed.
File end (default)

Printing begins as soon as the printer output file is closed.
Job end

Printing begins when the job ends.

After the printer output file is ready to be printed, a writer job, a job that processes the printer output from
the output queue to the printer device, takes data from the printer output file and sends it to the
designated printer.

Related concepts
Managing output queues
Output queues help you manage printer output created when a job ends. It is important to understand
how to effectively maintain your output queues so that your printed output processes smoothly.
Related information
Experience Report: Spool Performance Considerations
Basic Printing

Attributes of an output queue
The output queue controls how printer output files (also called spooled files) are processed and who has
the authority to perform actions on the output queue and associated printer output.

Because most of the information that you print on your system is created as printer output, security is
necessary to prevent unauthorized users access to confidential or sensitive material. Authority to check,
data authorization, operator control, spool control, or being the owner allows you to access and makes
changes to an output queue or printer output file. You need one of the following authorities to perform
any action on an output queue or printer output:

Authority to check
You must be the owner of the queue or have data authorization.

Display data
When this authority is set to *YES, it allows you to perform such actions as viewing, moving, sending
output to another system, and copying printer output.

Operator control
If this attribute is set to *YES, users with *JOBCTL special authority are authorized to perform actions
like hold, release, and delete printer output from the output queue. Other actions on printer output,
output queues, and writers are allowed as well.

Spool control
Allows the user to perform all operations on printer output. The user must have *EXECUTE authority
to the library the output queue is located in to perform any actions on the output queue.

Owner
This allows the user who owns the output queue to change or delete printer output.

Work management 63

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/spool_expreport.htm

Note: The default authority to the output queue is *USE public authority. Display Data authority is set to
*NO (meaning not just anyone can view printer output). Authority to check is *OWNER (so that the output
queue owner can manipulate the printer output). Operator Control is set to *YES (meaning a user with
*JOBCTL can hold, release, and delete printer output).

For more information about IBM i authorities, see Authority required for objects used by commands in the
Security reference topic collection.

Order of files
The Order of files on the queue (SEQ) attribute determines how the printer output will leave the output
queue to be processed.

This attribute has two values:

• *FIFO: The queue is first-in first-out within priority for each file. That is, new spooled files are placed
after all other entries on the queue of the same priority.

• *JOBNBR : The queue entries for spooled files are sorted in priority sequence using the job number
(actually, the date and time that the job entered the system is used) of the job that created the spooled
file.

Note: You can only change the output queue order of files attribute when no printer output files are on the
queue.

Spooled files
Spooling is a system function that saves data for later processing or printing. This data is stored in a
spooled file. Spooled files work in a similar manner to tape files or other device files. Spooled files allow
you to manage your data targeted for externally attached devices such as a printer.

Spooling functions help server users to manage input and output operations more efficiently. The server
supports two types of spooling, output spooling and input spooling. Output spooling can be used for
printer devices. Input spooling applies to database file input.

Related information
Spooled files and output queues

Output spooling
Output spooling can be used for both printer and diskette devices. Output spooling sends job output to
disk storage instead of sending it directly to a printer or diskette output device. Output spooling allows
the job that produces the output to continue processing without consideration for the speed or availability
of output devices.

Additionally, output spooling allows the server to produce output on multiple output devices, such as
printer and diskette devices, in an efficient manner. It does this by sending the output of a job destined
for a printer to disk storage. This process breaks a potential job limitation imposed by the availability or
speed of the output devices.

The main elements of output spooling are:

• Device description: A description of the printer device.
• Spooled file: A file containing spooled output records that are to be processed on an output device.
• Output queue: An ordered list of spooled files.
• Writer: A program that sends files from an output queue to a device.
• Application program: A high-level language program that creates a spooled file using a device file with

the spooling attribute specified as SPOOL(*YES).
• Device file: A description of the format of the output and a list of attributes that describe how the server

should process the spooled file.

Output spooling functions are performed by the server without requiring any special operations by the
program that produces the output. When a device file is opened by a program, the operating system
determines whether the output is to be spooled. When a printer file that specifies spooling is opened, the

64 IBM i: Work management

spooled file that contains the output of the program is placed on the appropriate output queue in the
server.

A spooled file can be made available for printing when the printer file is opened, when the printer file is
closed, or at the end of the job. A printer writer is started in the spooling subsystem to send the records to
the printer. The spooled file is selected from an output queue.

Spooling device descriptions

Device descriptions must be created for each printer and diskette device in order to define that device to
the server. Printer device descriptions are created using the Create Device Description for Printer
(CRTDEVPRT) command; diskette device descriptions are created using the Create Device Description for
Diskette (CRTDEVDKT) command.

File redirection of spooled files

File redirection occurs when a spooled file is sent to an output device other than the one for which it was
originally intended. File redirection can involve devices that process different media (such as printer
output sent to a diskette device) or devices that process the same type of media but are of different
device types (such as 5219 Printer output sent to a 4224 Printer).

Depending on the new output device for the spooled file, the file can be processed just as it would have
been on the originally specified device. However, differences in devices often cause the output to be
formatted differently. In these cases, the server sends an inquiry message to the writer's message queue
to inform you of the situation and allow you to specify whether you want printing to continue.

Output queues and spooled files
Batch and interactive job processing can result in spooled output records that are to be processed on an
output device, such as a printer or diskette drive. These output records are stored in spooled files until
they can be processed. A single job can have many spooled files.

When a spooled file is created, the file is placed on an output queue. Each output queue contains an
ordered list of spooled files. A job can have spooled files on one or more output queues. All spooled files
on a particular output queue should have a common set of output attributes, such as device, form type,
and lines per inch. Using common attributes on an output queue reduces the amount of intervention
required and increases the device throughput.

The following lists some of the parameters on the Create Output Queue (CRTOUTQ) command and what
they specify:

• MAXPAGES: Specifies the maximum spooled file size in pages that is allowed to be printed between a
starting and ending time of day.

• AUTOSTRWTR: Specifies the number of writers that are started automatically to this output queue.
• DSPDTA: Whether users without any special authority but who do have *USE authority to the output

queue can display, copy, or send the contents of spooled files other than their own. By specifying
*OWNER for DSPDTA, only the owner of the file or a user with *SPLCTL special authority can display,
copy, or send a file.

• JOBSEP: The number of job separator pages, if any, that are to be printed between the output of each
job when the output is printed.

• DTAQ: The data queue associated with this output queue. If specified, an entry is sent to the data queue
whenever a spooled file goes to ready status on the queue.

• OPRCTL: Whether a user who has job control authority can control the output queue (for example, if the
user can hold the output queue).

• SEQ: Controls the order in which spooled files are sorted on the output queue.
• AUTCHK: Specifies what type of authority to the output queue that enables a user to control the spooled
files on the output queue (for example, enables a user to hold the spooled files on the output queue).

• AUT: Public authority. Specifies what control users have over the output queue itself.
• TEXT: Text description. Up to 50 characters of text that describes the output queue.

Work management 65

Default system output queues
Defaults on CL commands use the default output queue for the system printer as the default output
queue for all spooled output. The system printer is defined by the QPRTDEV server value.

When a spooled file is created by opening a device file and the output queue specified for the file cannot
be found, the system attempts to place the spooled file on output queue QPRINT in library QGPL. If for
any reason the spooled file cannot be placed on output queue QPRINT, an error message is sent and the
output is not spooled.

The following output queues are provided:

• QDKT: Default diskette output queue
• QPRINT: Default printer output queue
• QPRINTS: Printer output queue for special forms
• QPRINT2: Printer output queue for 2-part paper

Spooling writers
A writer is an IBM i program that takes spooled files from an output queue and produces them on an
output device. The spooled files that have been placed on a particular output queue remain stored in the
system until a writer is started to the output queue.

The writer takes spooled files one at a time from the output queue, based on their priority. The writer
processes a spooled file only if its entry on the output queue indicates that it has a ready (RDY) status.
You can display the status of a particular spooled file using the Work with Output Queue (WRKOUTQ)
command.

If the spooled file has a ready status, the writer takes the entry from the output queue and prints the
specified job or file separators or both, followed by the output data in the file. If the spooled file does not
have a ready status, the writer leaves the entry on the output queue and goes on to the next entry. In
most cases the writer continues to process spooled files (preceded by job and file separators) until all
files with a ready status have been taken from the output queue.

The AUTOEND parameter on the start writer commands determines whether the writer continues to wait
for new spooled files to become available to be written, end after processing one file, or end after all
spooled files that have a ready status have been taken from the output queue.

Spooling writer commands
Here are the commands that you can use to control spooling writers.

• Start Diskette Writer (STRDKTWTR): Starts a spooling writer to a specified diskette device to process
spooled files on that device.

• Start Printer Writer (STRPRTWTR): Starts a spooling writer to a specified printer device to process
spooled files on that device.

• Start Remote Writer (STRRMTWTR): Starts a spooling writer that sends spooled files from an output
queue to a remote system.

• Change Writer (CHGWTR): Changes some writer attributes, such as form type, number of file separator
pages, or output queue attributes.

• Hold Writer (HLDWTR): Stops a writer at the end of a record, at the end of a spooled file, or at the end of
a page.

• Release Writer (RLSWTR): Releases a previously held writer for additional processing.
• End Writer (ENDWTR): Ends a spooling writer and makes the associated output device available to the

server.

Note: You can define some functions to provide additional spooling support. Example source and
documentation for the commands, files, and programs for these functions are part of library QUSRTOOL,
which is an optionally installed part of IBM i.

Related information
Start Printer Writer (STRPRTWTR) command

66 IBM i: Work management

Start Remote Writer (STRRMTWTR) command
Change Writer (CHGWTR) command
Hold Writer (HLDWTR) command
Release Writer (RLSWTR) command
End Writer (ENDWTR) command

Input spooling
Input spooling takes the information from the input device, prepares the job for scheduling, and places an
entry in a job queue. Using input spooling, you can typically shorten job run time, increase the number of
jobs that can be run sequentially, and improve device throughput.

The main elements of input spooling follow:

• Job queue: An ordered list of batch jobs submitted to the system for running and from which batch jobs
are selected to run.

• Reader: A function that takes jobs from an input device or database file and places them on a job
queue.

When a batch job is read from an input source by a reader, the commands in the input stream are stored
in the system as requests for the job, the inline data is spooled as inline data files, and an entry for the job
is placed on a job queue. The job information remains stored in the system where it was placed by the
reader until the job entry is selected from the job queue for processing by a subsystem.

Figure 2. Relationship of input spooling elements

You can use the reader functions to read an input stream from diskette or database files.

Work management 67

Figure 3. Typical organization of an input stream

The job queue on which the job is placed is specified on the JOBQ parameter of the Batch Job BCHJOB or
the Start Database Reader STRDBRDR command, or in the job description. The values of the JOBQ
parameter for the BCHJOB command follow:

• *RDR: The job queue is selected from the JOBQ parameter on the STRDBRDR command.
• *JOBD: The job queue is selected from the JOBQ parameter in the job description.
• A specific job queue: The specified queue is used.

For jobs with small input streams, you might improve system performance by not using input spooling.
The Submit Job (SBMJOB) command reads the input stream and places the job on the job queue in the
appropriate subsystem, bypassing the spooling subsystem and reader operations.

If your job requires a large input stream to be read, you should use input spooling (Start Diskette Reader
STRDKTRDR or STRDBRDR command) so that the job can be imported independent of when the job is
actually processed.

Job input commands
You can use these commands to submit jobs to the system. The start reader commands can be used for
spooling job input; the submit job commands do not use spooling.

• Batch Job (BCHJOB): Marks the start of a job in a batch input stream and defines the operating
characteristics of the job.

• Data (DATA): Marks the start of an inline data file.
• End Batch Job (ENDBCHJOB): Marks the end of a job in a batch input stream.
• End Input (ENDINP): Marks the end of the batch input stream.
• Submit Database Jobs (SBMDBJOB): Reads an input stream from a database file and places the jobs in

the input stream on the appropriate job queues.

68 IBM i: Work management

• Submit Diskette Jobs (SBMDKTJOB): Reads an input stream from diskette and places the jobs in the
input stream on the appropriate job queues.

• Start Database Reader (STRDBRDR): Starts a reader to read an input stream from a database file and
places the job in the input stream on the appropriate job queue.

• Start Diskette Reader (STRDKTRDR): Starts a reader to read an input stream from diskette and places
the job in the input stream on the appropriate job queue.

Related information
CL command finder
Batch Job (BCHJOB) command
Data (DATA) command
End Batch Job (ENDBCHJOB) command
End Input (ENDINP) command
Submit Data Base Jobs (SBMDBJOB) command
Start Data Base Reader (STRDBRDR) command

Inline data files
An inline data file is a data file that is included as part of a batch job when the job is read by a reader or a
submit jobs command. You use SBMDBJOB or STRDBRDR to queue a CL batch stream (stream of CL
commands to be run). That CL batch stream can include data to be placed into inline data files (temporary
files). When the job ends, the inline data files are deleted.

An inline data file is delimited in the job by a //DATA command at the start of the file and by an end-of-
data delimiter at the end of the file.

The end-of-data delimiter can be a user-defined character string or the default of //. The // must appear in
positions 1 and 2. If your data contains // in positions 1 and 2, you should use a unique set of characters,
such as // *** END OF DATA. To specify this as a unique end-of-data delimiter, the ENDCHAR parameter
on the //DATA command should be coded as:

ENDCHAR('// *** END OF DATA')

Note: Inline data files can be accessed only during the first routing step of a batch job. If a batch job
contains a Transfer Job (TFRJOB), a Reroute Job (RRTJOB), or a Transfer Batch Job (TFRBCHJOB)
command, the inline data files cannot be accessed in the new routing step.

An inline data file can be either named or unnamed. For an unnamed inline data file, either QINLINE is
specified as the file name in the //DATA command or no name is specified. For a named inline data file, a
file name is specified.

A named inline data file has the following characteristics:

• It has a unique name in a job. No other inline data file can have the same name.
• It can be used more than once in a job.
• Each time it is opened, it is positioned to the first record.

To use a named inline data file, you must either specify the file name in the program or use an override
command to change the file name specified in the program to the name of the inline data file. The file
must be opened for input only.

An unnamed inline data file has the following characteristics:

• Its name is QINLINE. (In a batch job, all unnamed inline data files are given the same name.)
• It can only be used once in a job.
• When more than one unnamed inline data file is included in a job, the files must be in the input stream

in the same order as when the files are opened.

To use an unnamed inline data file, do one of the following:

• Specify QINLINE in the program.

Work management 69

• Use an override file command to change the file name that is specified in the program to QINLINE.

If your high-level language requires unique file names within one program, you can use QINLINE as a file
name only once. If you need to use more than one unnamed inline data file, you can use an override file
command in the program to specify QINLINE for additional unnamed inline data files.

Note: If you run commands conditionally and process more than one unnamed inline data file, the results
cannot be predicted if the wrong unnamed inline data file is used.

Related concepts
Considerations for opening inline data files
You need to consider these elements when you open inline date files.

Considerations for opening inline data files
You need to consider these elements when you open inline date files.

• The record length specifies the length of the input records. (The record length is optional.) When the
record length exceeds the length of the data, a message is sent to your program. The data is padded
with blanks. When the record length is less than the data length, the records are truncated.

• When a file is specified in a program, the system searches for the file as a named inline data file before
it searches for the file in a library. Therefore, if a named inline data file has the same name as a file that
is not an inline data file, the inline data file is always used, even if the file name is qualified by a library
name.

• Named inline data files can be shared between programs in the same job by specifying SHARE(*YES) on
a create file or override file command. For example, if an override file command specifying a file named
INPUT and SHARE(*YES) is in a batch job with an inline data file named INPUT, any programs running in
the job that specify the file name INPUT shares the same named inline data file. Unnamed inline data
files cannot be shared between programs in the same job.

• When you use inline data files, make sure the correct file type is specified on the //DATA command. For
example, if the file is to be used as a source file, the file type on the //DATA command must be source.

• Inline data files must be opened for input only.

Related concepts
Inline data files
An inline data file is a data file that is included as part of a batch job when the job is read by a reader or a
submit jobs command. You use SBMDBJOB or STRDBRDR to queue a CL batch stream (stream of CL
commands to be run). That CL batch stream can include data to be placed into inline data files (temporary
files). When the job ends, the inline data files are deleted.

Job logs
A job log contains information related to requests entered for a job. A job log has two forms, a pending
form and a spooled form.

In its pending form, a job log for a completed job can change as other jobs (the subsystem, the system
operator, and so on) interact with the completed job. In its spooled form, a job log is a snapshot (a
moment in time) and does not change (such as spooled files that are created by the Display Job Log
(DSPJOBLOG) command, or created after the job completes its activity).

Each job has an associated job log that can contain the following information for the job:

• The commands in the job
• The commands in a CL program (if the CL program was created with the LOG(*YES) option or with the

LOG(*JOB) option and a Change Job (CHGJOB) command was run with the LOGCLPGM(*YES) option)
• All messages (the message and help text for the message) sent to the requester and not removed from

the program message queues

At the end of the job, the job log can be written to the spooled file QPJOBLOG so that it can be printed.
However, producing a job log doesn't necessarily mean printing it or creating a spooled file. (For example,

70 IBM i: Work management

the Control Job Log QMHCTLJL API can be used to specify that the job log is to be written to an outfile at
the end of job.)

You can reduce the number of job logs produced and reduce the contention for resources (such as output
queues). This reduces the resource consumption caused by producing job logs.

Related concepts
Managing job logs
Most jobs on your system have a job log associated with it. Job logs tell you many different things such as
when the job starts, when the job ends, what commands are running, failure notices and error messages.
This information gives you a good idea of how the job cycle is running.
Managing the job log server
The QSYSWRK subsystem controls the job log server. However, there are some tasks that you can
perform to customize or manage the job log server.
Related tasks
Deleting job log output files
Job logs are removed from the system when a job completes normally, or when the Remove Pending Job
Log (QWTRMVJL) API or the End Job (ENDJOB) command is issued. Additionally if "clear incomplete job
logs" is specified on the IPL, all of the jobs in job log pending are removed from the system during an IPL.
Any remaining job log output files can be found under Basic Operations > Printer Output.
Controlling batch job log information
For your batch applications, you may want to change the amount of information logged. The log level
(LOG(40 *NOLIST)) specified in the job description for the IBM-supplied subsystem QBATCH supplies a
complete log if the job abnormally ends. If the job completes normally, no job log is produced.
Changing the log level of a job
The log level of a job is a numeric level assigned to a specific combination of message types that are
logged. You can change the log level in the job description by using the character-based interface.
However, if you want to change the log level of a specific job, use the Job Properties - Job Log window in
IBM Navigator for i.
Related information
Experience Report: Spool Performance Considerations

How job logs are created
The job logs are available when needed, but no work is done to produce job logs for which there is no
need.

The LOG parameter has three elements: the message (or logging) level, the message severity, and the
level of message text. Each of these elements have specific values that when combined determine the
amount and type of information sent to the job log by the job.

For example, the *NOLIST value of the Text element causes no job log to be produced if the job ends
normally. (The job log does not go into pending.) If the job ends abnormally (if the job end code is 20 or
higher), a job log is produced. The messages that appear in the job log contain both the message text and
the message help.

You can control what produces the job log. This is done with the LOGOUTPUT parameter. When a job
completes, one of three actions occur that affects how the job log is created. The following are values of
the LOGOUTPUT parameter:

• The job log server produces the job log: (*JOBLOGSVR)
• The job itself produces the job log: If the job cannot produce its own job log, the job log is produced by

a job log server. (*JOBEND)
• The job log is not produced: The job log remains in pending until it is removed. (*PND)

Note: These values do not affect job logs that are produced when the message queue is full and the job
message queue full action specifies *PRTWRAP. Messages in the job message queue are written to a
spooled file, from which the job log can be printed, unless the Control Job Log Output (QMHCTLJL) API
was used in the job to specify that the messages in the job log are to be written to a database file.

Work management 71

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/spool_expreport.htm

What controls the job log parameters?

When a job starts, it gets its LOGOUTPUT value from the job description. If the job description specifies
*SYSVAL (the default for CRTJOBD), the job uses the job log output value that is specified in the Job log
output (QLOGOUTPUT) system value. (While the shipped value for the Job log output (QLOGOUTPUT)
system value is *JOBEND, the recommended value is *JOBLOGSVR.) After the job has established its
LOGOUTPUT job attribute, any changes to the job description or system value do not affect the active job.
Changes to the system value or to the job description take effect for jobs entering the system after the
change.

You can use the Change Job (CHGJOB) command or API (QWTCHGJB) to change the LOGOUTPUT job
attribute after it has already been set in the job. Changes to the job take effect immediately.

Regardless of the method that you choose, the options for handling job logs are the same. You can set the
job to not produce a job log (*PND), have the job produce the job log (*JOBEND), or have the job log server
produce the job log (*JOBLOGSVR).

Related tasks
Stopping production of a specific job log
If you only want to stop the production of a particular job log, do not use the End Job Log Server
(ENDLOGSVR) command. The ENDLOGSVR command ends all job log servers which results in stopping
the production of all job logs.
Preventing the production of a job log
Preventing the production of a job log is useful if you already know that you will not need the job log and
you want to conserve system resources. When you specify that you do not want to produce a job log, the
job log will not be produced and remains in pending until removed either by the Remove Pending Job Log
(QWTRMVJL) command or the End Job (ENDJOB) command.
Controlling information in a job log
When working with problems, you might want to record the maximum amount of information for jobs that
have frequent problems. Alternatively, you might not want to create a job log for jobs that completed
normally. Or you might want to exclude informational messages.

Job log pending
The job log pending state has been available for many years. When the job log attribute of a job is *PND,
no job log is produced. You can control how and under what circumstances the job log for a specific job is
produced.

This feature is useful when you place the system into a restricted state. When the system goes into a
restricted state, subsystems end and a potential of thousands of jobs can end at once. This in turn can
create a large burden on the output resources. By preventing the production of these job logs, you can
significantly reduce the impact on these resources.

Another example of when you can use this feature is during a communications failure. Perhaps there are
many similar jobs that produce the same job log error messages. You can set the job log to not produce a
spooled file for all of the jobs. Then if there happens to be a communications failure, you can use the
Work with Job Log (WRKJOBLOG) command to determine which logs to print. You can also use the Work
with Job Logs (WRKJOBLOG) screen to manage job logs.

Jobs might be in a job log pending state due to the workings of the Power Down System (PWRDWNSYS)
command. The IBM Navigator for i user interface shows the status "Completed - Job log pending" for
these jobs. This is a subset of character-based interface status of *OUTQ.

Taking advantage of these enhancements can help you to reduce the number of job logs produced and
thereby reduce the contention for resources. This can result in improved system performance.

Related concepts
When jobs end at the same time

72 IBM i: Work management

Sometimes, jobs end at the same time. For example, a network error occurs and the job attributes are set
to *ENDJOB or *ENDJOBNOLIST. In addition to the job ending, the following device recovery actions
occur.
Related tasks
Cleaning up job log pending
There are a few ways to clean up, or remove jobs from job log pending. You can end the job with a value of
0 for the Maximum log entries (LOGLMT) parameter. If the job is already ended, you can run the Remove
Pending Job Log (QWTRMVJL) API. You can also use the Work with Job Logs (WRKJOBLOG) command.
Producing printer output from job log pending
Jobs that do not have the IBM Navigator for i Job Properties - Job Log setting, Produce a job log field
selected do not produce job logs. Instead the job log is in job log pending. To produce printer output from
a job log that is in job log pending, use the character-based interface.

Job log server
Typically the job log server writes a job's job log to a spooled file. You can route the job log to a printer or
to an outfile, (if specified to do so by using the QMHCTLJL, Control job log API), however this is not the
recommended method for producing job logs.

You can view information about the job log server via IBM Navigator for i from the Work Management >
Server Jobs display, or the Work Management > Active Jobs display. (To make it easier to identify the
jobs running on the job log server, make sure that you include the Server column in your display.)

The maximum number of job log servers that can be active at one time is 30. You start additional job log
servers and manage them in the same way as other servers in your system. This is done by using the
character-based interface command STRLOGSVR.

How the job log server starts

By default, the job log server will start automatically when the QSYSWRK subsystem starts. The server
ends whenever the QSYSWRK subsystem is ended.

The Start Job Log Server (STRLOGSVR) command starts the job log server. The job log server writes job
logs for jobs that are in a job log pending state and that do not have the attribute of *PND. The job log
server writes a job's job log either to a spooled file, to a printer, or to an outfile, (if specified to do so by
using the QMHCTLJL, Control job log API).

Related tasks
Reconfiguring the job log server
As shipped, the job log server runs in QSYSWRK. QSYSWRK is continuously active. To enhance
performance, you might want to reconfigure your job log server to run in a different subsystem.
Starting the job log server
By default, the job log server automatically starts when the QSYSWRK subsystem starts. You can
manually start a job log server by using the Start Job Log Server (STRLOGSVR) command.
Ending the job log server
The End Job Log Server (ENDLOGSVR) command is used to end the job log server(s). The job log server
writes job logs for jobs that are in a job log pending state. If more than one job log server job is active at
the time this command is issued, all of the job log server jobs are ended.
Related information
Control Job Log Output (QMHCTLJL) API

Job log display characteristics
IBM Navigator for i provides you with a user friendly, easy to read interface from which you can view job
logs and the job log's messages. You can also view job logs by using the character based interface.

You can control which columns appear in the job log list by using the Job Log - Columns window. (Work
Management > Active Jobs > Right-click a job and select Job Log > Actions menu > Columns) The
columns that you can choose to display in the job log list are:

Work management 73

Message ID From Program

Message Request Level

Sent Severity

Thread To Program

Type

Character-based interface

When you use the Display Job Log (DSPJOBLOG) command, you see the Job Log display. This display
shows program names with special symbols, as follows:

>> The running command or the next command to be run. For example, if a CL or high-level
language program was called, the call to the program is shown.

> The command has completed processing.

. . The command has not yet been processed.

? Reply message. This symbol marks both those messages needing a reply and those that
have been answered.

Job log headings
Job log headings are located at the top of each page of the printed job log. These headings identify the job
to which the job log applies and the characteristics of each entry. The following is a list of possible entries
in the job log heading.

• The fully qualified name of the job (job name, user name, and the job number)
• The name of the job description used to start the job
• The date and time the job started
• The message identifier
• The message type
• The message severity
• The date and time each message was sent
• The message. If the logging level specifies that second-level text is to be included, the second-level text

appears on subsequent lines below the message
• The program from which the message or request was sent
• The machine interface instruction number or the offset to the program to which the message was sent

Note: The machine interface instruction numbers appear only for escape, notify, and diagnostic
messages. For all other message types, the machine interface instruction number is set to zero.

• If the job uses APPC, the heading contains a line showing the unit of work identifier for APPC.

Messages
Messages contain the job name, the message type, the date and time it was sent, the action that
occurred, and the necessary actions needed to fix a problem. This is useful when you are trying to
troubleshoot any problems that might occur on your servers. You can access job logs for server jobs
through IBM Navigator for i. Messages fall into two categories, alertable messages and messages logged
in a job log.

Alertable messages - These messages are sent to QSYSOPR because they need immediate action. The
message contains the problem, the cause, and the recovery action necessary. For example, the server
fails to start or the server ends unexpectedly. Some servers send alertable messages to QSYSOPR. These
messages have the Alert Option (ALROPT) defined in the message description. You can use alerts to
provide centralized handling of alertable messages.

74 IBM i: Work management

Messages logged in a job log - These messages are diagnostic in nature, meaning that they are not
critical but are alerting the user of some action that was taken. These messages can be system generated
as well as user created.

Message logging level

The message logging level determines which messages and what message types should be logged for the
job. The following table explains what each level represents.

Level Description

Level 1 All messages sent to the job's external message queue with a severity greater than or
equal to the message severity value. (In IBM Navigator for i, the Message severity (0-99)
value can be found on the Job Properties - Job Log window. This is a value that you can
control.)

Level 2 All messages that meet Level 1 qualifications and any request messages which result in a
high level message greater than or equal to the message severity value.

Note: A high-level message is one that is sent to the program message queue of the
program that receives the request message. (For example, QCMD is an IBM-supplied
request processing program that receives request messages.)

Level 3 All messages that meet Level 1 or Level 2 qualifications and all request messages.
Additionally, any commands from CL programs are included if the Log commands from CL
programs box is checked (Job Properties - Job Log window).

Note: The Log commands from CL programs box is equivalent to the log attribute of the
CL program.

Level 4 All request messages and all messages with a severity greater than or equal to the
message logging severity, including trace messages. Additionally, any commands from CL
programs are included if the Log commands from CL programs box is checked Job
Properties - Job log window).

Note: The Log commands from CL programs box is equivalent to the log attribute of the
CL program.

Related tasks
Changing the log level of a job
The log level of a job is a numeric level assigned to a specific combination of message types that are
logged. You can change the log level in the job description by using the character-based interface.
However, if you want to change the log level of a specific job, use the Job Properties - Job Log window in
IBM Navigator for i.

Interactive job logs
The IBM-supplied job descriptions QCTL, QINTER, and QPGMR all have a log level of LOG(4 0 *NOLIST);
therefore all messages help text are written to the job log. However, the job logs are not printed if the job
ends normally unless you specify *LIST on the SIGNOFF command.

If a display station user uses and IBM-supplied menu or the command entry display, all error messages
are displayed. If the display station user uses a user-written initial program, any unmonitored message
causes the initial program to end and a job log to be produced. However, if the initial program monitors for
messages, it receives control when a message is received. In this case, it is important to ensure that the
job log is produced so that you can determine the specific error that occurred.

For example, assume that the initial program displays a menu that includes a signoff option, which
defaults to *NOLIST. The initial program monitors for all exceptions and includes a Change Variable
(CHGVAR) command that changes the signoff option to *LIST if an exception occurs:

PGM
DCLF MENU

Work management 75

DCL &SIGNOFFDPT TYPE(*CHAR) LEN(7)
VALUE(*NOLIST)
.
.
.
MONMSG MSG(CPF0000) EXEC(GOTO ERROR)
PROMPT: SNDRCVF RCDFMT(PROMPT)
CHGVAR &IN41 '0'
.
.
.
IF (&OPTION *EQ '90') SIGNOFF
LOG(&SIGNOFFOPT);
.
.
.
GOTO PROMPT
ERROR: CHGVAR&SIGNOFFOPT '*LIST'
CHGVAR &IN41 '1'
GOTO PROMPT
ENDPGM

If an exception occurs, the CHGVAR command changes the option on the SIGNOFF command to *LIST
and sets on an indicator. This indicator can be used to condition a constant that displays a message
explaining that an unexpected error occurred and telling the display station user what to do.

QHST History Log
The history (QHST) log consists of a message queue and a physical file known as a log-version. Messages
sent to the log message queue are written by the system to the current log-version physical file.

The history log (QHST) contains a high-level trace of system activities such as system, subsystem, job
information, device status, and system operator messages. Its message queue is QHST.

Log-Version

Each log-version is a physical file that is named in the following way:

Qxxxyydddn

Where:

xxx is a 3 character description of the log type (HST)

yyddd is the Julian date on which the log-version was created

n is a sequence number within the Julian date (0 through 9 or A through Z)

When a log-version is full, a new version of the log is automatically created.

Note: The number of records in the log-version of the history log is specified in the Maximum records in
history log (QHSTLOGSIZ) system value. This system value also supports a *DAILY option which creates a
new version each day.

Format of the History Log
A database file is used to store the message sent to a system log. Because all records in a physical file
have the same length and messages sent to a log have different lengths, the messages can span more
than one record.

Each record for a message has three fields:

• System date and time (a character field of length 8). This is an internal field. The converted date and
time also are in the message.

• Record number (a 2-byte field). For example, the field contains hex 0001 for the first record, hex 002
for the second record, and so on.

• Data (a character field of length 132).

76 IBM i: Work management

Format for the third field (data):

Table 2. Format for Third Field of the First Record

Contents Type Length Positions in Record

Job name Character 26 11-36

Converted date and time Character 13 37-49

Message ID Character 7 50-56

Message file name Character 10 57-66

Library name Character 10 67-76

Message type Character 2 77-78

Severity code Character 2 79-80

Sending program name Character 12 81-92

Receiving program name Character 10 97-106

Receiving program
instruction number

Character 4 107-110

Message text length Binary 2 111-112

Message data length Binary 2 113-114

Reserved Character 28 115-142

Table 3. Format of the third field (data) of the remaining records

Contents Type Length

Message Character Variable (This length is specified
in the first record (positions 111
and 112) and cannot exceed
132.)

Message data Character Variable (This length is specified
in the first record (positions 113
and 114).)

A message is never split when a new version of a log is started. The first and last records of a message are
always in the same QHST version.

Performance information and QHST
Performance information is not displayed as text on message CPF1164. Because the message is in the
QHST log, users can write application programs to retrieve this data.

The performance information is passed as a variable length replacement text value. This means that the
data is in a structure within the first entry being the length of the data. The size of the length field is not
included in the length.

Time and Date: The first data fields in the structure are the times and dates that the job entered the
system and when the first routing step for the job was started. The times are in the format 'hh:mm:ss'.
The time separators in this example are colons. This separator is determined by the value specified in the
Date and time (QTIMSEP) system value. The dates are in the format defined in the Date and time
(QDATFMT) system value and the separators are in the Date and time (QDATSEP) system value. The time
and date the job entered the system precede the job start time and date in the structure. The time and
date the job entered the system are when the system becomes aware of a job to be initiated (a job
structure is set aside for the job). For an interactive job, the job entry time is the time the password is

Work management 77

recognized by the system. For a batch job, it is the time the Batch Job (BCHJOB) or Submit Job (SBMJOB)
command is processed. For a monitor job, reader or writer, it is the time the corresponding start
command is processed, and for autostart jobs it is during the start of the subsystem.

Total Response Time and Number of Transactions: Following the times and dates are the total response
time and the number of transactions. The total response time is in seconds and contains the accumulated
value of all the intervals the job was processing between pressing the Enter key at the workstation and
when the next display is shown. This information is similar to that shown on the Work with Active Job
(WRKACTJOB) display. This field is only meaningful for interactive jobs.

It is also possible in the case of a system failure or abnormal job end that the last transaction will not be
included in the total. The job end code in this case would be a 40 or greater. The transaction count is also
only meaningful for interactive jobs other than the console job and is the number of response time
intervals counted by the system during the job.

Number of Synchronous Auxiliary I/O Operations: The number of synchronous auxiliary I/O operations
follows the number of transactions. For a job with multiple threads, this value includes only synchronous
auxiliary I/O operations from the initial thread. This is the same as the AUXIO field that appears on the
WRKACTJOB display except for the following difference:

• The WRKACTJOB display shows the value for the initial thread of the current routing step.
• The QHST message contains the cumulative total for the initial thread of each routing step in the job.

If the job ends with an end code of 70, this value may not contain the count for the final routing step.
Additionally, if a job exists across an IPL (using a Transfer Batch Job (TFRBCHJOB) command) it is ended
before becoming active following an IPL, the value is 0.

Spooled files
A spooled file holds output data until it can be printed. The spooled file collects data from a device until a
program or device is able to process the data. A program uses a spooled file as if it were reading from or
writing to an actual device. This is input and output spooling.

Input spooling is done by the system for database and diskette files. An IBM-supplied program, called a
reader, is started in the spooling subsystem, reads the batch job streams from the device, and places the
jobs on a job queue.

Output spooling is done for printers. An IBM-supplied program, called a printer writer, is started in the
spooling subsystem, selects spooled files from its output queue, and writes the records of the spooled
output file to the printer.

At the end of a the job, the job log can be written to the spooled file QPJOBLOG so that it can be printed.

Job accounting
The job accounting function gathers data so that you can determine who is using your system and what
system resources they are using. It also assists you in evaluating the overall use of your system. Job
accounting is optional. You must take specific steps to set up job accounting. You can request the system
to gather job resource accounting data, printer file accounting data, or both. You can also assign
accounting codes to user profiles or specific jobs.

Typical job accounting data details the jobs running in your system and the resources they are using such
as the use of the processing unit, printer, display stations, database and communications functions.

Job accounting statistics are kept by using the journal entries made in the system accounting journal
QSYS/QACGJRN. You should know how to perform journal management operations, such as saving a
journal receiver, changing journal receivers, and deleting old journal receivers.

When you want to analyze the job accounting data, it must be extracted from the QACGJRN journal by use
of the Display Journal (DSPJRN) command. With this command you can write the entries into a database
file. You must write application programs or use a utility such as the query utility to analyze the data.

Related concepts
Managing job accounting

78 IBM i: Work management

The job accounting function is not active by default. It requires a few initial steps to set it up. The
following information describes how to set up job accounting and perform some of the most common
tasks associated with job accounting.
Related information
Journal Management
Set up journaling

How job accounting works
For this overview of how job accounting works, assume three different jobs enter the system.

Work management 79

Figure 4. Job Accounting Overview

80 IBM i: Work management

1. When Job1 is completed, the system summarizes the resources used and writes the JB journal entry
to the QACGJRN journal. If the accounting code was changed during the job, a JB journal entry will
written for each time the accounting code was changed and at the end of the job. Job1 does not make
any printer output, and no job log is made. Therefore, no direct print (DP) or spooled print (SP) journal
entries are made for Job1.

2. Job2 is printing a file directly to a printer. When the file is completed a DP journal entry is written that
summarizes the printed data. When Job2 is completed, the system summarizes the resources used
and writes the JB journal entry. Job2 does not make any spooled printer output and no job log is
made. Therefore, no SP journal entry is made for Job2.

3. Job3 is printing to a file that is spooled. The SP journal entry is not written unless a print writer prints
the file. When Job3 is completed, the system summarizes the resources used and writes the JB
journal entry. If a job log is made at the completion of the job, it is considered a normal spooled file
and an SP journal entry is created if the file is printed.

4. A print writer is started and it prints the files made by one or more jobs. When the writer finishes a file,
it makes an SP journal entry. The SP journal entry is not made if the file is canceled before printing
starts.

5. At the close of an accounting period, the Display Journal (DSPJRN) command can be used to write the
accumulated journal entries into the database file.

6. User-written programs or the query utility can be used to analyze the accounting data. Reports such as
resources used will compile data by a specific accounting code, user, or job type.

Job Accounting operating characteristics
Your system attempts to allocate main storage as efficiently as possible. A job might not use the same
amount of resources each time it is run.

For example, if there are several active jobs on your system, a job spends more time reestablishing the
resources needed for running than if a dedicated system environment is used. The system uses the job
and run priorities assigned to different jobs to assist in managing main storage. Therefore, high priority
jobs can use less system resource than low priority jobs.

Because of these system operating characteristics, you might want to apply your own interpretation or
algorithm to the job accounting data collected. If you are charging for the use of your system you might
want to charge more for high priority jobs, work done during peak system time, or the use of critical
resources.

Accounting Journal Processing
The accounting journal QSYS/QACGJRN is processed as any other journal. Files can also be recorded in
this journal although for simplicity it is recommended that you keep it solely for accounting information.

You can use the Send Journal Entry (SNDJRNE) command to send other entries to this journal. While
there are additional operational considerations involved in using several journals, there are advantages to
NOT allowing any file entries in the QACGJRN journal. It is typically easier to control the QACGJRN journal
separately so that all job accounting entries for a particular accounting period are in a minimal number of
journal receivers and that a new journal receiver is started at the beginning of an accounting period.
System entries also appear in the journal QACGJRN. These are the entries with a journal code of J, which
relate to IPL and general operations performed on journal receivers (for example, a save of the receiver).

Job accounting entries

Job accounting entries are placed in the journal receiver starting with the next job that enters the system
after the Change System Value (CHGSYSVAL) command takes effect. The accounting level of a job is
determined when it enters the system. If the Journal accounting information (QACGLVL) system value is
changed after the job is started, it has no effect on the type of accounting being performed for that job.
The direct print (DP) and spooled print (SP) entries occur if the job that created the file is operating under
accounting and the system value is set for *PRINT. If spooled files are printed after the accounting level
has been set to *PRINT or if the job that created the file was started before the accounting level was
changed, no journaling is done for those spooled files.

Work management 81

When to use job accounting
These methods help you determine whether you should use job accounting and when to use job
accounting.

Additional information supplied by job accounting

Job accounting has all the information supplied by CPF1164 plus:

• Accounting code
• Number of print files, lines, and pages created by programs
• Number of database read, write, and update operations
• Number of communications read and write operations
• Actual lines and pages printed
• Time the job was active and suspended
• Actual number of bytes of control information and print data sent to the printer

The job accounting function is more effective for gathering job accounting statistics if:

• The resource information regarding database, printer, and communications use is important.
• Accounting codes are assigned to users or jobs.
• The information for printed output is important.
• Job accounting must be done on an accounting segment basis in a job rather than on a complete job

basis.
• The active and suspended time information is needed.

Note: Some statistics recorded in the CPF1164 message and the JB journal entries will not match exactly.
This is due mainly to two factors: (1) CPF1164 statistics are recorded slightly before the JB journal
statistics and (2) each time an accounting code is changed, rounding occurs for some fields, while
rounding occurs only once for CPF1164 messages.

Security and job accounting
Only the security officer (or a program adopting his authority) or a user with *ALLOBJ and *SECADM
authority can change the Journal accounting information (QACGLVL) system value.

The change takes effect when a new job enters the system. This restriction ensures that if job accounting
is in effect and the security officer performs a system IPL, an accounting entry is written for the security
officer's job.

Authority to assign job accounting codes

You can assign job accounting codes only if you have the authority to use the Create User Profile
(CRTUSRPRF), Change User Profile (CHGUSRPRF) or Change Accounting Code (CHGACGCDE) command.
This restricts the use of accounting codes and provides a basis for validity checking any changes.

Only a user with the *SECADM special authority is allowed to use the CRTUSRPRF and CHGUSRPRF
commands. However, the security officer can delegate this authority by creating a CL program, which
allows another user to adopt the security officer's profile and change the ACGCDE parameter in the user
profile. The individual could then have authority to one or more CL programs.

The ACGCDE parameter also exists in job description objects, but you must have the authority to use the
CHGACGCDE command to enter a value other than the default of *USRPRF. CHGACGCDE is shipped with
PUBLIC authority of *USE.

Authority to CHGACGCDE Command

If you allow a user to use the Change Accounting Code (CHGACGCDE) command, that user can:

• Create or change the ACGCDE parameter in job descriptions. (Authority to create or change job
descriptions is also required.)

82 IBM i: Work management

• Change the accounting code in his current job.
• Change the accounting code of a job other than his own if he also has the *JOBCTL special authority.

You can provide additional security by using the CHGACGCDE command in a CL program, which adopts
the program owner's authority. This allows the user who is running an external function to perform a
security-sensitive function without having direct authorization to the CHGACGCDE command.

The accounting journal and its receivers are treated as any other journal objects from a security
viewpoint. You must decide what authorization should exist for the accounting journal and journal
receiver.

Related tasks
Controlling the assignment of accounting codes
An important aspect of any data processing application is ensuring that the correct control fields are
specified. For job accounting codes, this can require a complex validity-checking function that not only
checks for the existence of authentic codes, but also checks which users are allowed to use specific
codes.

About the accounting code
The initial accounting code (up to 15 characters in length) for a job is determined by the value of the
ACGCDE (accounting code) parameter in the job description and user profile for the job.

When a job is started, a job description is assigned to the job. The job description object contains a value
for the ACGCDE parameter. If the default of *USRPRF is used, the accounting code in the job's user profile
is used.

Note: When a job is started using the Submit Job (SBMJOB) command, its accounting code is the same as
that of the submitter's job.

You can change the accounting code after the job has entered the system by using the Change Accounting
Code (CHGACGCDE) command.

The CRTUSRPRF and CHGUSRPRF commands support the ACGCDE parameter. The default is *BLANK. If
all work for a particular user is to be recorded under one accounting code, only user profiles need to be
changed. You can change the accounting codes for specific job descriptions by specifying the accounting
code for the ACGCDE parameter on the CRTJOBD and CHGJOBD commands. The CHGACGCDE command
also allows different accounting codes in a single job.

The Retrieve Job Attributes (RTVJOBA) command and the API's that retrieve job attributes allow you to
access the current accounting code in a CL program.

Related tasks
Setting up job accounting
To set up job accounting, use the character based interface.
Controlling the assignment of accounting codes
An important aspect of any data processing application is ensuring that the correct control fields are
specified. For job accounting codes, this can require a complex validity-checking function that not only
checks for the existence of authentic codes, but also checks which users are allowed to use specific
codes.

Resource accounting
Job resource accounting data is summarized in the job (JB) journal entry at the completion of a job. In
addition, the system creates a JB journal entry summarizing the resources used each time a Change
Accounting Code (CHGACGCDE) command occurs. The JB journal entry includes:

• Fully qualified job name
• Accounting code for the accounting segment just ended
• Processing unit time
• Number of routing steps
• Date and time the job entered the system

Work management 83

• Date and time the job started
• Total transaction time (includes service time, ineligible time, and active time)
• Number of transactions for all interactive jobs
• Auxiliary I/O operations
• Job type
• Job completion code
• Number of printer lines, pages, and files created if spooled or printed directly
• Number of database file reads, writes, updates, and deletes
• Number of ICF file read and write operations

Note: Some of the job accounting information can also be accessed using the CPF1124 and CPF1164
messages located in the QHST log.

Resource accounting data
When analyzing the journal entries, it is important to understand how and when journal entries are
written. A JB journal entry is written to the job accounting journal for a job any time the job accounting
code is changed and when the job ends. Therefore, one job may have multiple journal entries.

Each resource accounting journal entry contains information about the resources used while the previous
accounting code was in effect. Consider the following example:

Figure 5. Resource accounting data example

At point A, the CHGACGCDE command was issued. The accounting code is changed and the JB journal
entry is sent to the journal. The JB journal entry contains data for the first accounting segment. When the
job ends, a second JB entry is made for the job containing data for the second accounting segment.

If the job accounting code was not changed during the existence of the job, the single JB entry
summarizes the total resources used by the job. If the job accounting code was changed during the
existence of the job, then you must add up the fields in the multiple JB entries in order to determine the
total resources used by the job. The creation of a job log does not count toward the processing unit use
for a job or its printed output in the JB accounting entries. However, if you are using print file accounting,
the job log printed is included in the printer file journal entries.

84 IBM i: Work management

Prestart communications jobs and job accounting
If your system uses job accounting, the prestart job program should run the Change Prestart Job (CHGPJ)
command with the program start request value for the accounting code parameter (CHGPJ
ACGCDE(*PGMSTRRQS)) immediately after the program start request attaches to the prestart job.

This action changes the accounting code to the value specified in the user profile associated with the
program start request. Immediately before the program finishes handling the program start request, the
program should run the Change Prestart Job command (CHGPJ) with the Prestart Job Entry value for the
accounting code parameter (CHGPJ ACGCDE(*PJE)). This changes the accounting code back to the value
specified in the job description of the prestart job entry.

Prestart jobs for batch applications

Prestart jobs and server jobs that use prestart jobs are usually configured to start with a generic user
profile such as QUSER, and then they wait for a request to be handled. When a prestart job is given a
request to handle, the job swaps user profiles using the Set Profile Handle (QWTSETP) API to that of the
requester, services the request, and then swaps back to the initial user profile. If the prestart job is
configured to be reused (MAXUSE parameter on the Add Prestart Job Entry (ADDPJE) or the Change
Prestart Job Entry (CHGPJE) command is greater than 1) the job will wait for another request and repeat
the above scenario. In this case, a single prestart job could potentially service many different users. If you
want to be able to charge each of these users for their resources used, the accounting code needs to be
updated before and after each service request. System-defined server jobs already do this for you.

The following is what the three journal entries, in the above picture would look like if a SQL or query was
used to format:

Table 4. Prestart job with three accounting segments

Journal
Entry # Job Name Job User

Job
Number

User
Profile

Accountin
g Code CPU

Transactio
ns

1 QSVREX1 QUSER 123456 ABC123 QUSER 50 1

2 QSVREX1 QUSER 123456 QUSER ABC123 3729 120

3 QSVREX1 QUSER 123456 QUSER QUSER 73 2

The resources used, such as CPU and transactions, can be charged back to the accounting code, but not
necessarily to the user listed under the User Profile field (JAUSPF). The user profile is the current user at
the time the journal entry is written, but it is not necessarily the user profile that was active during the
entire accounting segment. In this example, the user profile has been swapped once in each of the first
two segments. Since the journal entry is written after the swap, the current user profile logged in the entry
is not the user who used the resources during the prior accounting segment.

Work management 85

Likewise, the Job User cannot reliably be used to charge for resources used, because this is the user that
the job started with, and as part of the qualified job name, it does not change, even when servicing a
different user. The accounting code is the only reliable field that can be used for charging resource usage.
The accounting code differs from the other user fields because the accounting code is saved with the job
until it is changed. At the time of the change, the job's current accounting code is written to the journal
entry first, and then the new accounting code is stored in the job.

Related concepts
Prestart jobs
A prestart job is a batch job that starts running before a work request is received. The prestart jobs are
started before any other types of jobs in a subsystem. Prestart jobs are different from other jobs because
they use prestart job entries (part of the subsystem description) to determine which program, class, and
storage pool to use when they are started.
Managing prestart jobs
You can use prestart jobs to reduce the amount of time required to handle a program start request. These
are the most common tasks associated with prestart jobs that you can perform.
Related information
Experience Report: Tuning prestart job entries
Experience Report: Job Accounting

System job processing for job accounting
System jobs that you control (for example, readers and writers) are assigned an accounting code of *SYS.
Other system jobs that you do not control (for example, QSYSARB, QLUS,SCPF) do not receive a journal
entry.

Note: You cannot use the Change Accounting Code (CHGACGCDE) command to change the accounting
code of the subsystem monitor or a reader or writer. You can, however, change the accounting code of a
reader or writer by changing the appropriate IBM-supplied job descriptions and user profiles and then
starting them again.

Batch processing and job accounting
Any batch job that is submitted using the Submit Job (SBMJOB) command automatically uses the same
accounting code as the job that submitted the batch job. When the SBMJOB command is used, the
accounting codes cannot be overridden regardless of how the job description entry is coded.

If you want the batch job to operate under an accounting code other than that of the submitting job, a
Change Accounting Code (CHGACGCDE) command should be issued either:

• Before and after the SBMJOB command is issued
• Immediately by the batch job.

Batch jobs submitted using a reader or a Submit Database Job (SBMDBJOB) command use the
accounting code specified in the job description for the batch job. If the job description specifies
ACGCDE(*USRPRF), the accounting code is taken from the user profile used for the job.

Interactive processing and job accounting
If an interactive job has a fixed set of options for a user and each option has an assigned accounting code,
it might be desirable to automatically assign a new code when the user requests to work on a new
function.

A typical approach is for a menu option to request a new functional area. The Change Accounting Code
(CHGACGCDE) command is then issued within a CL program and the job values used for the previous
accounting code are summarized in the JB accounting journal entry.

If a user has several assignments for which only the user knows the accounting codes to be used you can:

• Give authority to the user to enter the CHGACGCDE command.
• Write a program to prompt the user for the accounting code.

86 IBM i: Work management

Note: For source pass-through jobs, the job accounting information does not include the target pass-
through job. For target pass-through jobs, the job accounting information does not include the associated
communications batch job.

Printer file accounting
There are two types of journal entries for printer file accounting; DP for nonspooled printer files and SP for
spooled printer files. These two types of journal entries share a common journal entry format although
some of the information is only available in the SP entry. The DP and SP journal entries include
information such as:

• Fully qualified job name
• Accounting code
• Device file name and library
• Device name
• Device type and model
• Total number of pages and lines printed. If multiple copies occurred, this is the sum of all copies
• Spooled file name (only in the SP entry)
• Spooled file number (only in the SP entry)
• Output priority (only in the SP entry)
• From type (only in the SP entry)
• Form type (only in the SP entry)
• Total number of bytes of control information and print data sent to the printer device. If multiple copies

occurred, this is the sum of all copies. (This only applies to the SP entry.)

The DP and SP journal entries occur when the file is printed. If a spooled file is never printed, no SP
journal entry will appear.

Journal entries for job accounting
The system provides different journal entries for the different types of data that can be gathered:

• Job resource accounting: The job (JB) journal entry contains data summarizing the resources used for a
job or for different accounting codes used in a job.

• Printer file accounting:

– Direct print (DP) journal entry: Contains data about printer files produced on print devices
(nonspooled).

– Spooled print (SP) journal entry: Contains data about printer files made by a print writer (spooled).

Job accounting journal entry field information
These tables list the fields information that are in the job journal entry. Additional information about the
various fields is found in the field reference files QSYS/QAJBACG and QSYS/QAJBACG4.

Table 5. Job journal entry fileds

Field Name
(Character
14) Description Field Attributes Comments

JAJOB Job name Character (10)

JAUSER Job user Character (10)

JANBR Job number Zoned (6,0)

JACDE Accounting code Character (15)

Work management 87

Table 5. Job journal entry fileds (continued)

Field Name
(Character
14) Description Field Attributes Comments

JACPU Processing unit
time used (in
milliseconds)

Packed decimal
(11,0)

The processing unit time does not include
processing unit use and printer statistics for the
creation of job logs.

JARTGS Number of routing
steps

Packed decimal
(5,0)

JAEDTE Job entered the
system - Job entry
date (mmddyy
format)

Character (6)

JAETIM Job entered the
system - Job entry
time (hhmmss
format)

Character (6)

JASDTE Job start date and
time - Job start
date (mmddyy
format)

Character (6) For job completion date and time from journal
entries, use the JODATE and JOTIME fields that
are part of the standard journal entry prefix
information. (See the Backup and Recovery
book for more information about these fields.)
After an abnormal system ending, these fields
contain the current date and time and not (as
with CPF1164 messages) the actual time of the
system ending.

JASTIM Job start date and
time - Job start
time (hhmmss
format)

Character (6) For job completion date and time from journal
entries, use the JODATE and JOTIME fields that
are part of the standard journal entry prefix
information. (See the Backup and Recovery
book for more information about these fields.)
After an abnormal system ending, these fields
contain the current date and time and not (as
with CPF1164 messages) the actual time of the
system ending.

JATRNT Total transaction
time (in seconds)

Packed decimal
(11,0)

The total transaction time is set to -1 when:

• Time is set backward.
• An overflow occurred in a file on a

computation.
• The system went down while the job was

active.

JATRNS Number of
transactions

Packed decimal
(11,0)

The last transaction (SIGNOFF) is not counted.

88 IBM i: Work management

Table 5. Job journal entry fileds (continued)

Field Name
(Character
14) Description Field Attributes Comments

JAAUX Synchronous
auxiliary I/O
operations and
database
operations
(including page
faults for any
reason)

Packed decimal
(11,0)

JATYPE Job type Character (1) The job types recorded are the following:

A Autostart job
B Batch job (includes communications and
MRT)
I Interactive job
M Subsystem monitor
R Spooling reader
W Spooling writer

Note: These are the same as those used in
message CPF1164, except that message
CPF1164 includes some system job
information not included in the journal entries.

JACCDE Completion code Packed decimal
(3,0)

The completion codes, which are similar to
those used for message CPF1164, are:

000 Normal completion
010 Normal completion during controlled end
or controlled subsystem end
020 Job exceeded end severity
030 Job ended abnormally
040 Job ended before becoming active
050 Job ended while active
060 Subsystem ended abnormally while job
was active
070 System ended abnormally while job
was active
080 Job completed in the time limit
090 Job forced to complete after the time limit
has ended
099 Accounting entry caused by
CHGACGCDE command

JALINE Number of print
lines

Packed decimal
(11,0)

The number of print lines does not reflect what
is actually printed. Spooled files can be
canceled or printed with multiple copies. The
information in the JB journal entry reflects only
what was written by the program. This
excludes any lines written for the job log. See
the discussion on DP and SP printer file
accounting data later in this chapter.

Work management 89

Table 5. Job journal entry fileds (continued)

Field Name
(Character
14) Description Field Attributes Comments

JAPAGE Number of printed
pages

Packed decimal
(11,0)

JAPRTF Number of print
files

Packed decimal
(11,0)

JADBPT Number of
database write
operations

Packed decimal
(11,0)

The numbers recorded for database I/O
operations do not include I/O operations to
readers and writers, or I/O operations caused
by the CL commands CPYSPLF, DSPSPLF, or
WRKSPLF. If SEQONLY(*YES) is in effect, these
numbers show each block of records read, not
the number of individual records read.

JADBGT Number of
database read
operations

Packed decimal
(11,0)

The numbers recorded for database I/O
operations do not include I/O operations to
readers and writers, or I/O operations caused
by the CL commands CPYSPLF, DSPSPLF, or
WRKSPLF. If SEQONLY(*YES) is in effect, these
numbers show each block of records read, not
the number of individual records read.

JADBUP Number of
database update,
delete FEOD,
release, commit,
and rollback
operations

Packed decimal
(11,0)

The numbers recorded for database I/O
operations do not include I/O operations to
readers and writers, or I/O operations caused
by the CL commands CPYSPLF, DSPSPLF, or
WRKSPLF. If SEQONLY(*YES) is in effect, these
numbers show each block of records read, not
the number of individual records read.

JACMPT Number of
communications
write operations

Packed decimal
(11,0)

The numbers recorded for communications I/O
operations do not include remote workstation
activity. When the I/O is for a communications
device, the numbers include only activity
related to ICF files.

JACMGT Number of
communications
read operations

Packed decimal
(11,0)

The numbers recorded for communications I/O
operations do not include remote workstation
activity. When the I/O is for a communications
device, the numbers include only activity
related to ICF files.

JAACT Time job was
active (in
milliseconds)

Packed decimal
(11,0)

JASPN Time job was
suspended (in
milliseconds)

Packed decimal
(11,0)

JAEDTL Timestamp job
entered system
(mmddyyyyhhmm
ss)

Character (14)

90 IBM i: Work management

Table 5. Job journal entry fileds (continued)

Field Name
(Character
14) Description Field Attributes Comments

JAESTL Timestamp job
started
(mmddyyyyhhmm
ss)

Character (14)

JAAIO Asynchronous I/O
for database and
non-database
operations

Packed decimal
(11,0)

JAXCPU Expanded CPU
time used

Packed decimal
(29,0)

JAXSIO Expanded
synchronous
auxiliary I/O
operations

Packed decimal
(29,0)

JAXAIO Expanded
asynchronous
auxiliary I/O
operations

Packed decimal
(29,0)

JAXDBP Expanded number
of database puts

Packed decimal
(29,0)

JAXDBG Expanded number
of database gets

Packed decimal
(29,0)

JAXDBU Expanded number
of database
updates and
deletes

Packed decimal
(29,0)

JAXLIN Expanded number
of lines printed

Packed decimal
(29,0)

JAXPAG Expanded number
of pages printed

Packed decimal
(29,0)

JAXPRT Number of print
files

Packed decimal
(29,0)

Printer file accounting data for direct print and spooled print
The accounting code used for the direct print (DP) or spooled print (SP) journal entries is the accounting
code of the job at the time the file is closed. Sometimes a DP or SP entry is created before the file is
closed (such as when a writer which is creating a SCHEDULE(*IMMED) file is ended). When this happens
the current accounting code of the job is used.

A DP or an SP journal entry is created for each file printed. If the job log is spooled and then printed, an SP
entry is created for it. Also, an SP entry is written for diskette spooled files redirected to a printer by the
print writer.

Work management 91

DP accounting journal information
The file QSYS/QAPTACG5 contains fields that are used in the direct print (DP) journal entry. This table
lists these fields and their attributes.

Table 6. Direct print journal entry fields

Field Name Description Field Attributes

JAJOB Job name Character (10)

JAUSER Job user Character (10)

JANBR Job number Zoned (6,0)

JACDE Accounting code Character (15)

JADFN Device file name Character (10)

JADFNL Library in which device file is
stored

Character (10)

JADEVN Device name Character (10

JADEVT Device type Character (4)

JADEVM Device model Character (4)

JATPAG Total number of print pages
produced

Packed decimal (11,0)

JATLIN Total number of print lines
produced

Packed decimal (11,0)

JASPFN Always blank Character (10)

JASPNB Always blank Character (4)

JAOPTY Always blank Character (1)

JAFMTP Always blank Character (10)

JABYTE Always zero Packed decimal (15,0)

JAUSRD User data Character (10)

JALSPN Always blank Character (6)

JASPSY Always blank Character (8)

JASPDT Always blank Character (7)

JASPTM Always blank Character (6)

JADFASP Always blank Character (10)

SP accounting journal information
This table lists the fields (found in file QSYS/QAPTACG5) that are used in the spooled print (SP) journal
entry.

Note: SP accounting journal information is similar to that provided in the direct print (DP) accounting
journal data except that the spooled file name, spooled file number, output priority, form type, and total
number of bytes of control information and print data sent to the printer are included. An SP journal entry
is not written if a spooled file is deleted before a writer starts writing the file to the device.

92 IBM i: Work management

Table 7. Spooled print journal entry fields

Field name Description Field attributes

JAJOB Job name Character (10)

JAUSER Job user Character (10)

JANBR Job number Zoned (6,0)

JACDE Accounting code Character (15)

JADFN Device file name Character (10)

JADFNL Library in which device file is
stored

Character (10)

JADEVN Device name Character (10)

JADEVT Device type Character (4)

JADEVM Device model Character (4)

JATPAG Total number of print pages
produced

Packed decimal (11,0)

JATLIN Total number of print lines
produced

Packed decimal (11,0)

JASPFN Spooled file name Character (10)

JASPNB Spooled file number Character (4)

JAOPTY Output Priority Character (1)

JAFMTP Form type Character (10)

JABYTE Total number of bytes sent to the
printer

Packed decimal (15,0)

JAUSRD User Data Character (10)

JALSPN Spooled file number Character (6)

JASPSY Spooled file job system name Character (8)

JASPDT Spooled file create date
(cyymmdd format)

Character (7)

JASPTM Spooled file create time (hhmmss
format)

Character (6)

JADFASP ASP name for device file library Character (10)

Note:

• The system attempts to record the actual number of pages, lines, and bytes printed, but when a writer
is canceled *IMMED or recovers from a device error (such as end of forms), it is not possible to
determine the exact number of pages, lines, and bytes printed.

• Extra pages and lines produced with the alignment line are not included in the page, line, and byte
counts.

• If a spooled file goes into WTR status (but is set to MSGW) or if the file is deleted while in MSGW status,
an SP journal entry will appear in the DP accounting journal indicating that there are 0 pages and 0 lines
printed.

Work management 93

• While using a printer configured AFP(*YES), if you delete or hold a file immediately after it has printed
pages, the SP entry for that file may indicate 0 pages and 0 lines printed although some pages were
printed.

• The page, line, and byte counts for the job and file separators are included with the counts for the file
they are associated with.

• When an IPDS file contains graphics or bar codes and is sent to an IPDS printer that does not support
graphics or bar codes, the page, line, and byte counts include the graphics and bar codes that are not
printed.

• If printer configuration is AFP(*YES), the field for total number of print lines produced is zero. The total
number of pages produced field is correct.

Managing work
As a system operator or administrator, one of your tasks is to keep your server running smoothly. This
means you monitor, manage, and ensure that your jobs, job queues, subsystems, memory pools, job logs,
and output queues function properly.

The topics in this section give you information about the different types of daily work management tasks
as well as other tasks you might need to perform on your system. Each subtopic explains why it is
important to do these tasks, as well as how to complete them.

Calling a special IPL recovery program
To call a special recovery program for situations when the IPL senses that the previous system ending
was abnormal, you can add an autostart job entry to the subsystem description for the controlling
subsystem.

This program checks the Previous system ending status (QABNORMSW) system value . For a normal
system ending, the value of QABNORMSW is '0', and for an abnormal system ending the value of
QABNORMSW is '1'. An alternative is to drop the messages and start up other subsystems when your
recovery function is complete.

1.00 /* SPCRECOV - Autostart program to call special recovery program */
2.00 PGM
3.00 DCL &QABNORMSW *CHAR LEN(1)
4.00 RTVSYSVAL SYSVAL(QABNORMSW) RTNVAR(&QABNORMSW)
5.00 IF (&QABNORMSW *EQ '1') DO /* Recover */
6.00 SNDPGMMSG MSG('Recovery program in operation-do not +
7.00 start subsystems until notified') +
8.00 TOMSGQ(QSYSOPR)
9.00 CALL RECOVERY
10.00 SNDPGMMSG MSG('Recovery complete-jobs may be started') +
11.00 TOMSGQ(QSYSOPR)
12.00 ENDDO /* Recover */
13.00 ENDPGM

Related information
Changing the IPL start-up program

Monitoring system activity
Monitoring system activity is one of the many important tasks in the day of an administrator. Monitoring
the flow of work through the system is only a piece of the information that should be monitored on a daily
basis. You can accomplish this in a variety of ways, such as using IBM Navigator for i.

Modeled after the top half of the Work with System Status (WRKSYSSTS) display in the character-based
interface, the System Status window offers a quick and easy way to check the status of a system.
Management Central allows you to monitor more in depth functions through the use of system monitors.

You can access the System Status window from the System folder.

To get to System Status from the System folder:

94 IBM i: Work management

1. Expand System.
2. Click System Status.

For more information about the different tasks that you can complete using system status, see the IBM
Navigator for i help.

Checking memory pool usage
Periodically checking the amount of memory your memory pools use is important. By monitoring these
levels, you can tune your pools to run at maximum efficiency, which in turn, keeps the work cycle running
smoothly. In IBM Navigator for i, you can easily monitor the amount of memory your pools are using.

To check the memory use, follow the following steps:

1. From IBM Navigator for i, expand > Work Management > Memory Pools > Active Memory Pools or
Shared Memory Pools.

2. Right-click the memory pool you want to work with (for example, Interactive) and click Properties.
3. Click the Configuration tab. The Current field, that is located within the Size group, shows the amount

of memory that the pool currently has.

Note: You can also view the current size of a memory pool when you click Active Pools or Shared
Pools. Current Size (in megabytes) is a default column that you see when a list of memory pools
displays in the right pane.

Work management 95

Controlling levels of system activity
You can control how much activity is on the system by controlling how many jobs can be active at the
same time in a subsystem or by controlling the use of the processing unit by jobs that have already been
started.

96 IBM i: Work management

Table 8. Ways to control system activity levels

What
can I
control?

What can I
use to
control?

Character-based interface
method IBM Navigator for i interface method

Number
of active
jobs

Subsystem
Description

Command: CHGSBSD MAXJOBS

Use this parameter to specify how
many jobs can be active at the
same time in a subsystem.

For an active subsystem, the sum
of all of the jobs that are active at
the same time that are started
through work entries in the
subsystem cannot exceed the
MAXJOBS parameter value.

This excludes autostart jobs, which
might temporarily cause the limit to
be exceeded when the subsystem
is started.

Use the Run Command window.

Expand system > Run Command

Type the command CHGSBSD and then
click Prompt.

Job Queue
Entry

Command: CHGJOBQE MAXACT

Use this parameter to specify how
many batch jobs from a job queue
can be active at the same time in
the subsystem.

A MAXACT of 1 for a job queue
forces jobs to be selected serially
by job priority from a job queue.

The MAXPTYn parameter is used to
specify how many jobs can be
active for a specified job priority.

Use the Run Command window.

Expand system > Run Command

Type the command CHGJOBQE and
then click Prompt.

Workstation
Entry

Command: CHGWSE MAXACT

Use this parameter if the
WRKSTNTYPE parameter is
specified. This parameter specifies
how many interactive jobs can be
active at the same time in the
subsystem for that entry.

Use the Run Command window.

Expand system > Run Command

Type the command CHGWSE and then
click Prompt.

Communicati
ons Entry

Command: CHGCMNE MAXACT

Use this parameter to specify how
many communications batch jobs
can be active at the same time for
that entry.

Use the Run Command window.

Expand system > Run Command

Type the command CHGCMNE and then
click Prompt.

Routing Entry Command: CHGRTGE MAXACT

Use this command to specify how
many jobs can be active at the
same time using a given routing
entry.

Use the Run Command window.

Expand system > Run Command

Type the command CHGRTGE and then
click Prompt.

Prestart job
entry

Command: CHGPJE MAXJOBS

Use this command to specify how
many prestart jobs can be active at
the same time for that entry.

Use the Run Command window.

Expand system > Run Command

Type the command CHGPJE and then
click Prompt. Work management 97

Table 8. Ways to control system activity levels (continued)

What
can I
control?

What can I
use to
control?

Character-based interface
method IBM Navigator for i interface method

Number
of active
jobs
(continue
d)

System The Maximum eligible threads
(QMAXACTLVL) system value is
used to specify how many threads
can share main storage and
processor resources at the same
time. All active jobs (including
system jobs) in all storage pools
are controlled by QMAXACTLVL.

Configuration and Service > System
Values > Performance category >
Memory Pools tab > Maximum eligible
threads

Use of
processi
ng unit
and main
storage

Base storage
pools

The Base memory pool maximum
eligible threads (QBASACTLVL)
system value is used to specify how
many threads can share the Base
storage pool at the same time and
to limit main storage contention.

Configuration and Service > System
Values > Performance category >
Memory Pools tab > Base Memory
pool: Maximum eligible threads

Shared pools Command: WRKSHRPOOL

Use this command to specify the
activity level for shared pools

Work Management > All Tasks >
Memory Pools > Shared Memory Pools
> right-click a shared pool >
Properties > Configuration tab and
change the Maximum eligible threads
field

Private
storage pools

Command: CHGSBSD POOLS

Use this command to specify the
activity level for user-defined main
storage pools.

Use the Run Command window.

Expand system > Run Command

Type the command CHGSBSD and then
click Prompt.

Examples: activity control relationships
These examples show the relationship of some of the activity controls. Assume the system activity level is
100 and the jobs are single-threaded.

Base memory pool example

Two subsystems, SBSA and SBSB, use the Base memory pool to run jobs. SBSA currently has two jobs
running in this memory pool and SBSB has one. A job queue entry in the subsystem description for SBSB
specifies that any number of jobs can be started. The activity level of the Base memory pool is 3.
Therefore, only three jobs in the Base memory pool can compete for the processing unit at a time.
However, all of the jobs are started.

Four jobs in a subsystem example

One autostart job, two workstation jobs, and one batch job (four jobs in all) are in subsystem SBSC. The
MAXACT for SBSC is specified as 4. No matter what is specified for the MAXACT of the work entries, no
other jobs can be started until at least one job completes running.

Batch subsystem MAXACT(1) example

Subsystem SBSE is a batch subsystem for which 1 is specified for MAXACT. Although the job queue entry
does not specify MAXACT, the limit is one job because 1 is specified for MAXACT for the subsystem.
Therefore, jobs are processed in job priority one at a time off the job queue.

98 IBM i: Work management

Determining the status of a job
Monitoring your jobs can help you understand what your jobs are doing. The job status is an important
piece of information that you can use to find out what a job is doing.

To check the status of an active job or server job, follow the following instructions:

1. From IBM Navigator for i, expand Work Management > Active Jobs or Server Jobs.

Note: You can see a job status from anyplace within the Work Management folder that you access
jobs.

2. Look at the Detailed Status column to determine the status of a job (for example, Waiting for event,
Waiting for time interval, or Waiting for dequeue).

Tip: If you do not see the Detailed Status column, you can add it to the display by opening Active Jobs (or
Server Jobs) and selecting Actions > Columns.

Monitoring a subsystem
Because subsystems are important to the daily activity done on your system, it is important that you
monitor the activity in your subsystems.

Within a subsystem description you can specify the number of jobs that can run at one time in the
subsystem by setting the maximum active jobs value. As the amount of work on your system increases
you might want to change the maximum active jobs value in your subsystem. The number that you supply
here should be set so that the available resources are properly utilized. Increasing the number of active
jobs without increasing the resources available can hurt performance on your system.

To check the maximum active jobs value of your subsystem, you can use either IBM Navigator for i or the
character-based interface.

IBM Navigator for i

1. Expand Work Management > Active Subsystems.
2. Right-click the subsystem which you want to monitor.
3. Select Properties.

Note: Make sure you set this option very carefully. If you set maximum active jobs value too high, you
might make your system perform slowly. However, if you set your maximum active jobs too low, your
work might start to bottleneck and slow performance.

Character-based interface

Command: Display Subsystem Description (DSPSBSD)

Select Option 1: Operational attributes, to see the value for maximum jobs in the subsystem.

Determining the number of subsystems using a memory pool
Subsystems are allocated a certain percentage of memory to run jobs. It is important to know how many
different subsystems are pulling from the same memory pool. After you know how many subsystems are
submitting jobs to a pool and how many jobs are running in a pool, you might want to reduce resource
contention by adjusting the size and activity level of the pool.

IBM Navigator for i

To monitor the number of subsystems that are using a memory pool, follow the following instructions:

1. Expand Work Management > Memory Pools > Active Memory Pools or Shared Memory Pools.
2. Right-click the memory pool that you want to work with and click Subsystems.

From this window you can determine the number of subsystems that are using an individual memory
to run their jobs.

Character-based interface

Command: Work with Subsystems (WRKSBS)

Work management 99

This command displays a list of all of the subsystems and their corresponding pools.

Viewing job performance statistics
A job's performance is important to anyone that uses a IBM Navigator for i product because one job
running poorly can affect other jobs on the system. To view potentially problematic jobs gives you the
ability to prevent performance problems before they occur.

The Elapsed Performance Statistics window allows you to monitor a job's CPU use, disk I/O (hard disk
input/output), page fault rates, average response times, and the number of interactive transactions. You
can select an option in this window to refresh these statistics manually or on a schedule.

To display the elapsed performance statistics, use the following instructions:

1. From IBM Navigator for i, expand Work Management > Active Jobs.

Note: You can view the performance of a job from any location within work management where you
can see jobs. The Elapsed Performance Statistics window can be displayed from the Performance tab
of a Job property window.

2. Right-click the job for which you want to display the performance statistics, and click Details >
Elapsed Performance Statistics.

You can refresh, reset, and schedule the performance statistics to automatically refresh.

Note: You can look at the elapsed performance statistics for more than one job at a time by opening
multiple windows. This allows you to view multiple problematic jobs at one time. Each window holds
the information for only one job.

The elapsed performance statistics is one way to view the performance of a job as it moves through the
system. Another way to view jobs on the system is through the Management Central folder. You can
monitor jobs in Management Central as well as monitor system performance and messages.

Viewing overall system status
IBM Navigator for i puts all information relating to system status in one place. This makes it easier for you
to monitor how your system is performing, identify potential trouble areas, and quickly determine what
action you need to take to improve performance.

The System Status window divides the overall system status into six specific areas:
General

This is the CPU elapsed usage percentage, number of active jobs, address used percentage, system
disk pool usage percentage, total jobs on system, percentages of permanent and temporary
addresses used, total disk space, and system disk pool capacity.

Jobs
This is the total number of jobs, number of active jobs, maximum number of jobs, and the number of
active threads.

Processors
This is the CPU elapsed usage percentage. (Depending upon your hardware configuration, you may
also see additional information regarding the type of processor(s), number of processors, processing
power, virtual processors, interactive performance, elapsed shared processor pool usage, and
elapsed uncapped CPU capacity usage.)

Memory
This is the total memory (main storage) on your system and a button that gives you access to the list
of active memory pools on the system.

Disk Space
This is the total disk space, the system disk pool capacity and usage, information about the temporary
storage used, and buttons that give you access to more disk status, the list of disk pools on the
system, and storage system values information.

Addresses
This is the information about permanent and temporary addresses used, large (256 MB) permanent
and temporary addresses used, and very large (4 GB) permanent and temporary addresses used.

100 IBM i: Work management

To view general system status, use the following instructions:

From IBM Navigator for i, expand System and click System Status.

The System Status window appears. For more information about this window, see the IBM Navigator for i
online help.

Checking disk status
At times you may want to check on the performance of the disk units on your system, or view status
information regarding them.

To view the Disk Status window, follow the following steps:

From IBM Navigator for i, expand Systemand click Disk Status.
The Disk Status window is displayed.

You can use the Customize this View > Columns option of the Disk Status window to view the following
information:

• Amount Read (KB)
• Amount Written (KB)
• Percentage Busy
• Compression
• Disk Pool
• I/O Requests
• Percentage Used
• Protection Status
• Protection Type
• Read Requests
• Request Size (KB)
• Size (MB)
• Type
• Write Requests

Managing jobs
As any work management administrator knows, managing jobs is more than placing jobs on hold and
moving jobs from job queue to job queue. This topic discusses the most common job management tasks
as well as some of the more involved tasks that can help improve your system's performance.

Common job tasks
These are the most common tasks that you can perform with jobs. The instructions apply to both IBM
Navigator for i (where available) and the character-based interface.

Starting a job
Interactive jobs are started when the user signs on to a workstation. You start prestart jobs and batch
jobs by using IBM Navigator for i or the character based interface, depending upon the circumstances.

Starting a batch job that is waiting in the job queue
Occasionally you might need to force a job to start immediately. While moving the job to a job queue that
is not busy is the most efficient method to accomplish this, there are some other methods that you can
use.

To start a batch job, first check the status of the job queue in which the job resides and determine if
moving the job to another queue makes the most sense for your situation. (Work Management > All
Tasks > Job Queues > Active Job Queues or All Job Queues)

Work management 101

If moving the job to another queue isn't feasible, you can place the running jobs on hold and then move
the job that you need to start up in priority. However, use caution when using this method because the
held jobs are still included in the maximum active job count.

To change the priority of the job and indicate when it should run, use the following instructions:

1. Right-click the job and click Properties.
2. On the Job Properties window, click the Job Queue tab.
3. Change the Priority on job queue to a higher priority (0 is the highest).
4. Set the When to make job available to run to either Now or specify the date and time.
5. Click OK.

Starting a prestart job
Prestart jobs typically start at the same time the subsystem is started. You manually start a prestart job
when all prestart jobs have been ended by the system due to an error or were never started during
subsystem start up due to STRJOBS (*NO) on the prestart job entry. To start a prestart job, use the
character-based interface.

Command: Start Prestart Jobs (STRPJ)

The STRPJ command should not be used until the startup of the related subsystem is complete. To make
sure that the necessary prestart job successfully starts, code a delay loop with a retry if the STRPJ
command fails.

The number of prestart jobs that can be active at the same time is limited by the MAXJOBS attribute on
the prestart job entry and by the MAXJOBS attribute for the subsystem. The MAXACT attribute on the
communications entry controls the number of program start requests that can be serviced through the
communications entry at the same time.

Note: If you specified *NO on the STRJOBS attribute, no prestart jobs start for the prestart job entry when
the subsystem starts. Running the STRPJ command does not cause the value of the STRJOBS parameter
to change.

Example: This example starts prestart jobs for prestart job entry PJPGM in subsystem SBS1. Subsystem
SBS1 must be active when this command is issued. The number of jobs started is the number specified in
the INLJOBS value of prestart job entry PJPGM. The subsystem starts program PJPGM in library PJLIB.

STRPJ SBS(SBS1) PGM(PJLIB/PJPGM)

Ending a job
You can use IBM Navigator for i or the character-based interface to end a job. The job can be active or on
a job queue. You can end a job immediately or by specifying a time interval so that end of job processing
can occur.

IBM Navigator for i

1. Expand Work Management > Active Jobs.
2. Locate the job that you want to end.
3. Right-click the job and click Delete/End.
4. Complete the Confirm Delete/End window and click Delete.

Character-based interface

Command: End Job (ENDJOB)

If you do not know the name of the job that you want to end, you can use one of the following commands
to find the job name:

• Work with Active Jobs (WRKACTJOB)
• Work with User Jobs (WRKUSRJOB)
• Work with Submitted Jobs (WRKSBMJOB)

102 IBM i: Work management

• Work with Subsystem Jobs (WRKSBSJOB)
• End Subsystem (ENDSBS) This command ends all of the jobs in the subsystem.
• End System (ENDSYS) This command ends most activity on the system and leaves the system in a

condition in which only the console is active in the controlling subsystem.
• Power Down System (PWRDWNSYS) This command prepares the system for ending and then starts the

power-down sequence.

A job may be ended either immediately or in a controlled manner. It is strongly recommended that you
always attempt to end a job in a controlled manner.

Ending a job: controlled
Ending a job in a controlled manner allows programs that are running in the job to perform their end-of-
job cleanup. A delay time can be specified to allow the job to end in a controlled manner. If the delay time
ends before the job ends, the job is ended immediately.

Any application that needs to perform end-of-job cleanup should detect when the job is ending in a
controlled manner. There are three ways an application can detect this:
Synchronously retrieve End Status

At certain points, an application can synchronously check the End Status of the job in which it is
running. You can retrieve the job's end status by issuing the Retrieve Job Attributes (RTVJOBA) CL
command. Additionally, you can use one of several APIs that retrieve the job's end status. You can
find more information about these APIs in the experience report, Work management job attributes

Synchronously check major and minor return codes after an I/O operation
For both display I/O and ICF communications I/O, a major return code of 02, or a major return code of
03 with a minor return code of 09 indicates the job is ending in a controlled manner.

Handle the asynchronous signal SIGTERM
Some applications use a signal handling program to improve the cleanup of the application when the
job is ended. The system generates the asynchronous signal SIGTERM for the job being ended, when
the job is ending controlled and all of the following conditions are met:

• The job is enabled for signals
• The job is a signal handling program that is established for the SIGTERM signal
• The job is currently running in the problem phase

If any of the above conditions are not met, the SIGTERM signal is not generated for the job being
ended.

When a job being ended in a controlled manner has a signal handling procedure for the asynchronous
signal SIGTERM, the SIGTERM signal is generated for that job. When the signal handling procedure for
the SIGTERM signal is given control, the procedure can take the appropriate actions to allow the
application to be ended in a controlled manner.

Related tasks
Stopping a subsystem
You can use IBM Navigator for i or the character-based interface to stop one or more active subsystems
and specify what happens to active work being processed. No new jobs or routing steps are started in the
subsystem after the subsystem is stopped.
Related information
Jobs system values: Maximum time for immediate end

Ending a job: immediate
When a job ends immediately, you can get undesirable results such as application data that has been
partially updated. Use the immediate end option only if a controlled end has been unsuccessful.

Before ending the job, you should verify that no logical unit of work is in an in doubt state due to a two-
phase commit operation that is in progress. If it is, then the value of the Action ifENDJOB commitment
option can greatly impact the ENDJOB processing. This option is part of the Change Commitment Options
(QTNCHGCO) API. For example, if the Action ifENDJOB commitment option is the default value of WAIT,

Work management 103

this job is held up and does not complete its end of job processing until the commitment control operation
is completed. This ensures database integrity on all related systems.

When you use the immediate end option, the system performs minimal end-of-job processing, which can
include:

• Closing the database files
• Spooling the job log to an output queue
• Cleaning up internal objects in the operating system
• Showing the end-of-job display (for interactive jobs)
• Completing commitment control processing

Related information
Change Commitment Options (QTNCHGCO) API

Finding jobs
It is important to understand how to find jobs on your system. Whatever the reason, at some point in time
you might need certain information from a particular job.

In IBM Navigator for i, you can do a Find on all your jobs or you can narrow your search using the Include
function followed by Find. The Include function allows you to put limitations on what is displayed. For
example, instead of doing a Find on hundreds of jobs, you can run an Include to display only certain job
types. Or, you can display only those jobs with specific job user IDs.

From a performance standpoint, if you have a large number of jobs on the system, it is recommended that
you use the Include function to narrow the number of jobs searched. If you have a lot of jobs on the
system, searching through all of them can hinder system performance.

Note: You can use the Filter and Include functions throughout work management wherever you find jobs.
You can also use these tools to find job queues, subsystems, and memory pools in the same manner.
Remember that you need to open the list that you want to search before you can use these tools.

IBM Navigator for i

To find a job using the Filter option, use the following instructions:

1. Expand Work Management > Active Jobs.
2. In the Filter field, type the job ID you want to find (for example, Qqqtemp1). All the job columns are

searched for your job.
3. Your job will be listed once it is found.

Note: Job names are not case sensitive.

Limit information that is displayed

To limit the information that is displayed, use the Include function.

1. Expand Work Management > Active Jobs or Server Jobs.
2. Click Actions > Include. The Include window is shown.
3. In the Include window, select the options with which you want to search for your job.
4. Click OK.

Character-based interface

To find a job on the system, use either the Work with Active Job (WRKACTJOB), Work with User Job
(WRKUSRJOB), or Work with Submitted Job (WRKSBMJOB) command.

Viewing jobs on the job queue
Job queues filter some of the work that is processed in work management (for example, some batch
jobs). Being able to view jobs in the job queue allows you to see what jobs are waiting to be sent to a
subsystem.

104 IBM i: Work management

IBM Navigator for i

To view jobs on the job queue, use the following instructions:

1. Expand Work Management > All Tasks > Job Queues > Active Job Queues or All Job Queues.
2. Click the job queue with which you want to display the jobs (for example, Jobqueue1). The jobs within

the job queue appear.

Character-based interface

Command: Work with Job Queue (WRKJOBQ)

This command displays a list of all of the job queues available on the system. After you have located the
job queue that contains your job you can select option 5=Work with and display all of the jobs in the job
queue.

You can also use the Work with Subsystems Job command to display a list job queues and their
respective jobs.

Command: Work with Subsystem Job (WRKSBSJOB) SBS(*JOBQ)

Viewing jobs in the subsystem
Subsystems coordinate work flow and the resources that a job uses to run. IBM Navigator for i allows you
to see what jobs are currently active (but not necessarily running) in the subsystem.

IBM Navigator for i

To view jobs in the subsystem, follow these steps:

1. Expand Work Management > Active Subsystems.
2. Click the subsystem that has the jobs that you want to display.

Character-based interface

Command: Work with Active Jobs (WRKACTJOB SBS (subsystem name)

Command: Work with Subsystem Descriptions (WRKSBSD)

Use the Work with Subsystem Descriptions command to display a list of subsystems. After you find the
subsystem that contains your job, use option 8=Work with subsystem jobs to display the job
information.

Note: The subsystem must be active to display the job information.

Viewing job attributes
Job attributes contain information about how jobs are processed. They are originally specified when the
job is created. Some of the attributes come from the job description. After the job is created, the job
attributes can be viewed and managed through work management in IBM Navigator for i. The job
properties pages make a system operator's job easier by providing efficient and easy-to-use functions for
managing jobs.
Related information
Experience report: Work management job attributes

IBM Navigator for i

To view job attributes, use the following instructions:

1. Expand Work Management > Active Jobs or Server Jobs, depending on the type of job that you want
to work with.

2. Find the job whose properties you want to view or change.
3. Right-click the Job Name and click Properties.

Job attributes can be viewed by any user, but can only be changed by a user with the proper authority.
Similarly, an authorized user can manage jobs through job actions. Attributes for system jobs cannot be

Work management 105

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/jobattabstract53.htm

changed in IBM Navigator for i. However, the run priority of some system jobs can be changed in the
character based interface using the Change System Job (CHGSYSJOB) command.

Character-based interface

Command: Work with Job (WRKJOB)When the job is active you can view the following information: job
run attributes, call stack information, job lock information, library list information, job log information,
open file information, file override information, commitment control status, communications status,
activation group information, mutex information, and thread information

Command: Display Job (DSPJOB)

This command displays the following information about the job: job status attributes, job definition
attributes, job run attributes, spooled file information, job log information, call stack information, job lock
information, library list information, open file information, file override information, commitment control
status, communications status, activation group information, mutex information, thread information,
media library, and attribute information.

Viewing call stacks
You can view information about a job or thread's call stack by using either IBM Navigator for i or the
character-based interface.
Related concepts
Call stacks
The call stack is the ordered list of all programs or procedures currently running for a job. The programs
and procedures can be started explicitly with the CALL instruction, or implicitly from some other event.

IBM Navigator for i

1. Expand Work Management > Active Jobs or Server Jobs, depending on the type of job that you want
to work with.

2. Right-click the job name and then click Details > Call Stack.

If you want to view a call stack for a thread, follow these steps:

1. Expand Work Management > Active Jobs or Server Jobs, depending on the type of job that you want
to work with.

2. Right-click the job name, and then click Details > Threads.
3. From the list of threads, right-click a specific thread, and then click Details > Call Stack.

If you are running under a user profile with *SERVICE special authority and want to see additional entries
for LIC and IBM i PASE Kernel, from the Call Stack window, use the Include option from the Customize
this view window. (Include)

Character-based interface

Command: Work with Jobs (WRKJOB) or Display Jobs (DSPJOB)

Select option 11: Display call stack, if active.

If you wish to see a call stack for a thread, after issuing the WRKJOB or the DSPJOB command, select
option 20: Work with threads, if active. Then, select option 10: Display call stack option for the selected
thread.

Placing a job on the job queue
Jobs are placed on the job queue by either moving an existing job from one queue to another, or by
submitting a new job. Use IBM Navigator for i to move jobs between queues. Use the character-based
interface to submit a new job.

IBM Navigator for i

To use the IBM Navigator for i interface, the job must already exist in another job queue. Then you can
move the job from one queue to another queue. (To place a new job on a job queue, use the command
line interface.)

106 IBM i: Work management

1. Expand Work Management > All Tasks > Job Queues > All Job Queues.
2. Right-click the job queue that contains the job and select Jobs.
3. Right-click the job that you want to move.

The Move window opens where you can specify the destination queue.

Character-based interface

The following is a list of character-based interface methods for placing a new job on the new job queue.

• Submit Job (SBMJOB): Allows a job that is running to submit another job to a job queue to be run later
as a batch job. Only one element of request data can be placed on the new job's message queue. The
request data can be a CL command if the routing entry used for the job specifies a CL command
processing program (such as the IBM-supplied QCMD program).

• Add Job Schedule Entry (ADDJOBSCDE): Automatically the system submits a job to the job queue at
the time and date specified in the job schedule entry.

• Submit Database Jobs (SBMDBJOB): Submits jobs to job queues so they can be run as batch jobs. The
input stream is read either from a physical database file or from a logical database file that has a
single-record format. This command allows you to specify the name of this database file and its
member, the name of the job queue to be used, and to decide whether jobs being submitted can be
displayed by the Work with Submitted Jobs (WRKSBMJOB) command.

• Start Database Reader (STRDBRDR): Read a batch input stream from a database and place one or
more jobs on job queues.

• Transfer Job (TFRJOB): Move the current job to another job queue in an active subsystem.
• Transfer Batch Job (TFRBCHJOB): Move the current job to another job queue.

Moving a job to a different job queue
There are many reasons why you might want to move a job to another queue. For example, sometimes
jobs become backlogged in the queue because of a long running job. Perhaps the job's scheduled run time
conflicts with a new job that has a higher priority. One way to manage this situation is to move the waiting
jobs to another queue that is not as busy.

You can use either the IBM Navigator for i interface or the character-based interface to move a job from
one queue to another.

IBM Navigator for i

1. Expand Work Management > All Tasks > Job Queues > All Job Queues.
2. Right-click the job queue that contains the job and selectJobs.
3. Right-click the job that you want to move.

The Move window opens where you can specify the target queue.

• Jobs that are waiting to run are moved to the same relative position on the target queue (for example,
jobs with a job queue priority 3 are moved after any other priority 3 jobs that are waiting to run on the
target queue).

• Jobs that are held remain held and are placed in the same relative position on the target queue (for
example, held jobs with job queue priority 3 are moved after any other priority 3 held jobs on the target
queue).

• Jobs that are scheduled to run are moved to the target queue and their scheduled times remain
unchanged.

Character-based interface

Command: Change Job (CHGJOB)

Example: The following example moves job JOBA to job queue JOBQB.

CHGJOB JOB(JOBA) JOBQ(LIBA/JOBQB)

Work management 107

Moving a job up in priority within a job queue
All jobs in a job queue wait in line for processing. As each job in the queue completes, the next job in line
begins. The processing order of the jobs in the queue depends upon the job's priority, and the maximum
number of jobs that can run at the same time on the subsystem.

Sometimes the importance of a job changes as it goes through its life cycle. It can increase or decrease in
priority in relation to other jobs. Because these changes occur, you need to know how to change the
priority of a job within the job queue.

The priority of a job on a job queue helps determine when the job goes to the subsystem to run. A range
from zero to nine (zero being the most important) determines the priority of a job on a job queue.

IBM Navigator for i

To change a job's priority in the job queue, follow these instructions:

1. Expand Work Management > All Tasks > Job Queues > Active Job Queues or All Job Queues > The
job queue in which your job is located.

2. Right-click the job and click Properties.
3. On the Job - Properties window, click the Job Queue tab.
4. From the Priority on job queue list, select a higher (or lower) priority number. The job queue priority

ranges from 0-9, with 0 being the highest priority.
5. Click OK. The job queue priority has been changed for your job. For example, changing a priority 4 job

to a priority 3 moves the job to the bottom of the list of jobs that have a priority 3.

Character-based interface

Command: Change Job (CHGJOB)

Parameter: JOBPTY

Example: This command changes the scheduling priority for the job PAYROLL to 4. Because only the
simple name of the job is specified, there can be only one job named PAYROLL in the system. If there is
more than one, the default of DUPJOBOPT(*SELECT) causes a selection panel to be displayed in an
interactive job.

 CHGJOB JOB(PAYROLL) JOBPTY(4)

Tips for setting job priorities
The priorities for jobs that run in batch environments should normally be lower than priorities for jobs in
interactive environments. Also, the time slice should be small enough so that a looping program does not
dominate processor time and an activity level.

You may want the priority for the system operator's jobs to be higher than priorities of other jobs so that
the system operator can effectively respond to system needs.

If you use QCTL as the controlling subsystem, the operator is automatically running at a higher priority
after signing on at the console. This is because QCTL routes the console job using the QCTL class, which
specifies a higher priority.

Another way that you can set up your system so that the operator can run at a higher priority would be to
use the following instructions:

1. Add a routing entry to the subsystem with unique routing data and specify the QSYS/QCTL class.
2. Create a new job description for the operator, specifying the same unique routing data that you used in

the routing entry.
3. Change the operator's user profile to specify the new job description.
4. Now when the operator signs on to that subsystem, the job will route using the QCTL class, which

specifies a higher priority than the class used by normal interactive jobs.

The job run priority is the highest priority at which any thread in the job may run. Each thread may have
it's own thread priority that is lower than the job priority. The Change Job (CHGJOB) command will

108 IBM i: Work management

change only the job priority. The Change Job (QWTCHGJB) API can be used to change either the job
priority or a thread priority.

Submitting a job once
When you need to run a job once, whether immediately or at a scheduled date and time, use the Submit
Job (SBMJOB) command. This method places the job on the job queue immediately.

To submit a batch job once, use the character-based interface.

Command: Submit Job (SBMJOB)

The SBMJOB command submits a job to a batch job queue by specifying a job description and by
specifying a CL command or request data, or specifying routing data to run a program. If you want to run a
single CL command in a the batch job, use the CMD parameter on SBMJOB, which does syntax checking
and allows prompting.

Example: In the following example, the SBMJOB command submits a job named WSYS, using the job
description QBATCH, to the job queue QBATCH. The CMD parameter gives the CL command that will run
in the job.

SBMJOB JOBD(QBATCH) JOB(WSYS) JOBQ(QBATCH) CMD(WRKSYSSTS)

Related concepts
The submit job command
This character-based interface command controls the time a job is released in the job queue. It is an easy
way to schedule a job that only needs to run once. It allows you to use many of the job attributes defined
for your current job.

Viewing job affinity information
Each job on the system contains memory and processor affinity information.

The affinity information describes whether threads have affinity to the same group of processors and
memory as the initial thread when they are started. It also specifies the degree to which the system tries
to maintain the affinity between threads and the subset of system resources they are assigned to. In
addition, the affinity information specifies whether a job is grouped with other jobs so they have affinity to
the same subset of system resources.

By grouping threads together that share a common set of data in main storage, your system's caching and
memory access rates can improve.

IBM Navigator for i

1. Expand Work Management > Active Jobs.

Note: You can view the affinity information of a job from any location within work management where
you can view jobs.

2. Right-click the job that you want to view, and click Properties.
3. On the Resources page, you can view the Memory and processor affinity information.

Character-based interface

Command: Work with Job (WRKJOB)

Select ption 3: Display job run attributes, if active

Managing job descriptions
Since a job description collects a specific set of job-related attributes, the same job description can be
used by multiple jobs. Thus, if you use a job description, you do not need to specify the same parameters
repeatedly for each job. You can create job descriptions to describe batch jobs or interactive jobs. You can
also create unique descriptions for each user of the system. Job descriptions are created and managed by
using the character-based interface.

Work management 109

Creating a job description
You can use the character-based interface, the Work With Job Description (WRKJOBD) command or the
Create Job Description (CRTJOBD) command to create job descriptions.

Command: Create Job Description (CRTJOBD)

Example: In this example, a job description is created named INT4 in the user's current library. This job
description is for interactive jobs and is used by Department 127. When you sign on, you must type your
password. The characters QCMDI are used as routing data that is compared with the routing table of the
subsystem where the job is run. All inquiry messages are compared to the entries in the system reply list
to determine whether a reply is issued automatically.

CRTJOBD JOBD(INT4) USER(*RQD) RTGDTA(QCMDI)
 INQMSGRPY(*SYSRPYL)
 TEXT('Interactive #4 JOBD for Department 127')

This command creates a job description named BATCH3 in the user's current library. The jobs using this
description are placed on the job queue NIGHTQ. The priority for jobs using this description and their
spooled output is 4. QCMDB is the routing data that is compared with entries in the routing table of the
subsystem where the job runs. The accounting code of NIGHTQ012345 is used when recording
accounting statistics for jobs that use this job description.

CRTJOBD JOBD(BATCH3) USER(*RQD) JOBQ(NIGHTQ) JOBPTY(4)
 OUTPTY(4) ACGCDE(NIGHTQ012345) RTGDTA(QCMDB)
 TEXT('Batch #3 JOBD for high priority night work')

Note: The values in the job description are typically used as the default values of the corresponding
parameters in the Batch Job (BCHJOB) and Submit Job (SBMJOB) commands when their parameters are
not specified. The values in the job description can be overridden by the values specified on the BCHJOB
and SBMJOB commands

Related concepts
Job description
The job description allows you to create a set of job attributes that are saved and available for multiple
uses. The job description can be used as the source for some of the job attributes that tell the system how
to run a job. The attributes tell the system when to start the job, where to get the job from, and how the
job will run. You can think of a job description as a template that many jobs can use, thereby reducing the
number of specific parameters that you need to set for each individual job.

Changing a job description
You can use the character-based interface, the Work With Job Description (WRKJOBD) command, or the
Change Job Description (CHGJOBD) command to change job descriptions.

Command: Change Job Description (CHGJOBD)

All jobs that are started after the job description is changed that use that job description are affected. If
you have changed a job parameter to something different than the what is specified in the job description,
that parameter is not affected.

Using a job description
The most common way to use a job description is by specifying it in the Submit Job (SBMJOB) command.
The job description (JOBD) parameter is where you specify the job description that you want this job to
use. When you define a batch job, you can use the job description in one of two ways:

• Use a specified job description without overriding any of its attributes. For example:

SBMJOB JOB(OEDAILY) JOBD(QBATCH)

• Use a specified job description but override some of the attributes (using the BCHJOB or SBMJOB
command). For example, to override the message logging in the job description QBATCH, you specify:

SBMJOB JOB(OEDAILY) JOBD(QBATCH) LOG(2 20 *SECLVL)

110 IBM i: Work management

The following are additional commands that support the job description parameter:

• Batch Job (BCHJOB): This command indicates the beginning of a batch job in a batch input stream. It
can also specify different values for the attributes for the job instead of the ones specified in the job
description or user profile for this job. The values contained in the job description or in the user profile
named in that job description are used for most parameters not coded in the BCHJOB command.

• Add Prestart Job Entry (ADDPJE): The Add Prestart Job Entry (ADDPJE) command adds a prestart job
entry to the specified subsystem description. The entry identifies prestart jobs that may be started
when the subsystem is started or when the Start Prestart Jobs (STRPJ) command is entered.

• Add Autostart Job Entry (ADDAJE): The Add Autostart Job Entry (ADDAJE) command adds an autostart
job entry to the specified subsystem description. The entry identifies the job name and the job
description to be used to automatically start a job.

• Add Work Station Entry (ADDWSE): The Add Work Station Entry (ADDWSE) command adds a
workstation entry to the specified subsystem description. Each entry describes one or more
workstations that are controlled by the subsystem. The workstations identified in the workstation
entries are allowed to sign on or enter the subsystem and run jobs.

Note: You cannot override any job description attributes for autostart jobs, workstation jobs, or
communications jobs.

Related concepts
Job description
The job description allows you to create a set of job attributes that are saved and available for multiple
uses. The job description can be used as the source for some of the job attributes that tell the system how
to run a job. The attributes tell the system when to start the job, where to get the job from, and how the
job will run. You can think of a job description as a template that many jobs can use, thereby reducing the
number of specific parameters that you need to set for each individual job.

Controlling the job attribute source
The attributes that the subsystem assigns to jobs come from five sources; the job description, the user's
user profile, a system value, the job issuing the Submit Job (SBMJOB) command, and the workstation
(interactive jobs only). You control from where the subsystem retrieves the specific job attribute by
specifying the source in the job description. To modify a job description, use the character-based
interface.

Command: Change Job Description (CHGJOBD)

To control job attributes and tell the subsystem where and when to get job attributes from different
system objects, use one of the following:

• *JOBD: Tells the job to get its attributes from the job description.
• *USRPRF: Tells the job to get its attributes from the user's user profile.
• *SYSVAL: Tells the job to get its attributes from a system value.
• *CURRENT: Tells the job to get its attributes from the job issuing the Submit Job (SBMJOB) command.
• *WRKSTN: Tells the job to get its attributes from the workstation with the job (interactive jobs only).

Deleting a job description
You can use the character-based interface, the Work With Job Description (WRKJOBD) command, or the
Delete Job Description (DLTJOBD) command to delete job descriptions.

Command: Delete Job Description (DLTJOBD)

Note: Jobs that are already in progress are not affected by this command.

Work management 111

Managing batch jobs
Jobs that do not require user interaction to run can be processed as batch jobs. A batch job typically is a
low priority job and can require a special system environment in which to run.

Submitting a batch job
Since batch jobs are typically low priority jobs that require a special system environment in which to run
(such as running at night) they are placed in batch job queues. In the job queue the batch job receives a
run time schedule and a priority. To submit a job to a batch job queue, you use the character-based
interface and one of two commands.

Command: Submit Job (SBMJOB)

Command: Submit Database Job (SBMDBJOB)

The difference in these commands is the source of the job:

• The SBMJOB command submits a job to a batch job queue by specifying a job description and by
specifying a CL command or request data, or specifying routing data to run a program. If you want to run
a single CL command in a the batch job, use the CMD parameter on SBMJOB, which does syntax
checking and allows prompting.

• The SBMDBJOB command can be used to submit a job to a batch job queue from a database file. For
these jobs, the job description comes from the BCHJOB statement in the input stream.

Example: In the following example, the SBMJOB command submits a job named WSYS, using the job
description QBATCH, to the job queue QBATCH. The CMD parameter gives the CL command that will run
in the job.

SBMJOB JOBD(QBATCH) JOB(WSYS) JOBQ(QBATCH) CMD(WRKSYSSTS)

Note: If you get a message that the job was not submitted, you can display the job log spooled file to find
errors. Use the WRKJOB command. Specify the job that was not scheduled, select option 4 for spooled
files. Display the job log spooled file to find the errors.

Related concepts
How a batch job starts
When a user submits a batch job, the job gathers information from several system objects before it is
placed on a job queue.
The submit job command
This character-based interface command controls the time a job is released in the job queue. It is an easy
way to schedule a job that only needs to run once. It allows you to use many of the job attributes defined
for your current job.
Related information
QPRTJOB job

Inline data files
An inline data file is a data file that is included as part of a batch job when the job is read by a reader or a
submit jobs command. You use SBMDBJOB or STRDBRDR to queue a CL batch stream (stream of CL
commands to be run). That CL batch stream can include data to be placed into inline data files (temporary
files). When the job ends, the inline data files are deleted.

An inline data file is delimited in the job by a //DATA command at the start of the file and by an end-of-
data delimiter at the end of the file.

The end-of-data delimiter can be a user-defined character string or the default of //. The // must appear in
positions 1 and 2. If your data contains // in positions 1 and 2, you should use a unique set of characters,
such as // *** END OF DATA. To specify this as a unique end-of-data delimiter, the ENDCHAR parameter
on the //DATA command should be coded as:

ENDCHAR('// *** END OF DATA')

112 IBM i: Work management

Note: Inline data files can be accessed only during the first routing step of a batch job. If a batch job
contains a Transfer Job (TFRJOB), a Reroute Job (RRTJOB), or a Transfer Batch Job (TFRBCHJOB)
command, the inline data files cannot be accessed in the new routing step.

An inline data file can be either named or unnamed. For an unnamed inline data file, either QINLINE is
specified as the file name in the //DATA command or no name is specified. For a named inline data file, a
file name is specified.

A named inline data file has the following characteristics:

• It has a unique name in a job. No other inline data file can have the same name.
• It can be used more than once in a job.
• Each time it is opened, it is positioned to the first record.

To use a named inline data file, you must either specify the file name in the program or use an override
command to change the file name specified in the program to the name of the inline data file. The file
must be opened for input only.

An unnamed inline data file has the following characteristics:

• Its name is QINLINE. (In a batch job, all unnamed inline data files are given the same name.)
• It can only be used once in a job.
• When more than one unnamed inline data file is included in a job, the files must be in the input stream

in the same order as when the files are opened.

To use an unnamed inline data file, do one of the following:

• Specify QINLINE in the program.
• Use an override file command to change the file name that is specified in the program to QINLINE.

If your high-level language requires unique file names within one program, you can use QINLINE as a file
name only once. If you need to use more than one unnamed inline data file, you can use an override file
command in the program to specify QINLINE for additional unnamed inline data files.

Note: If you run commands conditionally and process more than one unnamed inline data file, the results
cannot be predicted if the wrong unnamed inline data file is used.

Considerations for opening inline data files
You need to consider these elements when you open inline date files.

• The record length specifies the length of the input records. (The record length is optional.) When the
record length exceeds the length of the data, a message is sent to your program. The data is padded
with blanks. When the record length is less than the data length, the records are truncated.

• When a file is specified in a program, the system searches for the file as a named inline data file before
it searches for the file in a library. Therefore, if a named inline data file has the same name as a file that
is not an inline data file, the inline data file is always used, even if the file name is qualified by a library
name.

• Named inline data files can be shared between programs in the same job by specifying SHARE(*YES) on
a create file or override file command. For example, if an override file command specifying a file named
INPUT and SHARE(*YES) is in a batch job with an inline data file named INPUT, any programs running in
the job that specify the file name INPUT shares the same named inline data file. Unnamed inline data
files cannot be shared between programs in the same job.

• When you use inline data files, make sure the correct file type is specified on the //DATA command. For
example, if the file is to be used as a source file, the file type on the //DATA command must be source.

• Inline data files must be opened for input only.

Work management 113

Starting a batch job that is waiting in the job queue
Occasionally you might need to force a job to start immediately. While moving the job to a job queue that
is not busy is the most efficient method to accomplish this, there are some other methods that you can
use.

To start a batch job, first check the status of the job queue in which the job resides and determine if
moving the job to another queue makes the most sense for your situation. (Work Management > All
Tasks > Job Queues > Active Job Queues or All Job Queues)

If moving the job to another queue isn't feasible, you can place the running jobs on hold and then move
the job that you need to start up in priority. However, use caution when using this method because the
held jobs are still included in the maximum active job count.

To change the priority of the job and indicate when it should run, use the following instructions:

1. Right-click the job and click Properties.
2. On the Job Properties window, click the Job Queue tab.
3. Change the Priority on job queue to a higher priority (0 is the highest).
4. Set the When to make job available to run to either Now or specify the date and time.
5. Click OK.

Related concepts
How a batch job starts
When a user submits a batch job, the job gathers information from several system objects before it is
placed on a job queue.
Related information
QPRTJOB job

Managing interactive jobs
An interactive job starts when you sign on to the system or, transfer to a secondary or group job. The
interactive job ends when you sign off. Working from a display station, you interact with the system by
issuing commands, using function keys, and running programs and applications. The following
information discusses the various methods for managing and controlling interactive jobs.

Controlling inactive jobs and workstations
You can control the amount of time the workstation can remain inactive before the subsystem sends a
message (called time-out) by specifying a time interval in the Time-out interval for inactive jobs
(QINACTITV) system value. Controlling inactive jobs provides security so that users do not leave signed
on displays inactive.

How the system determines a workstation is inactive

The subsystem determines that a workstation is inactive if all of the following are true:

• The job has not processed any additional transactions during the timer interval.

Note: A transaction is defined as any operator interaction, like scrolling, pressing enter, pressing
function keys, and so on. Typing at the workstation without pressing enter is not considered a
transaction. If a job at the workstation does not meet the inactive criteria, the job is considered active.

• The job status is display wait.
• The job is not disconnected.
• The job status has not changed.
• The subsystem in which the job is running is not in the restricted state.

Handling inactive jobs

To handle an inactive job found on the system, use the When a job reaches time-out (QINACTMSGQ)
system value. To determine the processing options choose from the following:

114 IBM i: Work management

• Set the QINACTMSGQ system value to a message queue name.

If you specify a message queue name for the QINACTMSGQ system value, a user or program can
monitor the message queue and take whatever action is needed, such as ending a job.

If a workstation with a secondary job pair is inactive, the system sends two messages (one of each of
the secondary job pairs) to the message queue. The user or program can then use either the ENDJOB
command against one or both secondary jobs, or the DSCJOB command against the active job at the
display.

• Set the QINACTMSGQ system value to *DSCJOB.

If you specify *DSCJOB for the QINACTMSGQ system value, the system disconnects all jobs at the
workstation. The system sends a message that indicates that all jobs at the workstation have
disconnected from QSYSOPR or the configured message queue. (A configured message queue is the
message queue specified in the MSGQ parameter of the display device description. By default it is QSYS
or QSYSOPR.) If the interactive job does not support disconnecting the job (for example, TELNET
sessions that use QPADEVxxxx device descriptions), the job ends instead.

A message continues to be sent for each interval that the job is inactive.
• Set the system value QINACTMSGQ to *ENDJOB.

If you specify *ENDJOB for the QINACTMSGQ system value, the system ends all of the jobs at the
workstation. The system sends a message that indicates that all jobs at the workstation have ended to
QSYSOPR or the configured message queue.

Note: Source pass-through jobs, client VTM (virtual terminal manager) jobs, and 3270 device emulation
jobs are excluded from the time-out because they always appear inactive. System/36 environment MRT
jobs are also excluded since they appear as batch jobs.

Ending interactive jobs
You can use several different methods to end an interactive job.

You can use IBM Navigator for i to end the job.

1. From the Confirm Delete/End window, you can specify whether you want this interactive job to end in a
controlled manner or immediately.

2. You can use the End Job (ENDJOB) character-based interface command.
3. To end an interactive job immediately using the character-based interface, use the Sign Off (SIGNOFF)

command at the workstation. To end the connection through the network, use the end connection
parameter (ENDCNN) on the SIGNOFF command.

4. To disconnect all jobs from a device, use the Disconnect Job (DSCJOB) command.

To use IBM Navigator for i and the Confirm Delete/End window, use the following instructions:

1. Expand Work Management > Active Jobs.
2. Right-click the job that you want to end and click Delete/End.

The Confirm Delete/End window appears where you can specify how and when you want the
interactive job to end.

Note: To end all of the interactive jobs associated with the workstation, or all jobs associated with the
group (if the job is a group job), set the value of the Action for related interactive jobs field to either End
for group jobs or End all (this is equivalent to the ADLINTJOBS parameter on the ENDJOB command).

You can also request the subsystem to send a message to a message queue when an interactive job has
been inactive for a specified period of time. You, or a program monitoring that message queue, can then
end or disconnect the job.

Related concepts
Disconnecting interactive jobs

Work management 115

When the Disconnect Job (DSCJOB) command is called, the job is disconnected and the sign-on display is
shown again. To connect with the job again, sign on to the same device from which you disconnected.
Another interactive job may be started on the device under a different user name.

Disconnecting all jobs from a device
The Disconnect Job (DSCJOB) command allows the interactive user to disconnect all interactive jobs at
the workstation and return to the sign-on display. The switched line is dropped only if that is specified in
the workstation device description of this workstation and if no other workstation on this line is active. If
the job is disconnected when the disconnect interval in the Time-out interval for disconnected jobs
(QDSCJOBITV) system value is reached, the job is ended and the job log is not included with the job's
spooled output.

Restrictions:

1. A job being disconnected must be an interactive job.
2. A job which is being held cannot be disconnected.
3. A pass-through job cannot be disconnected unless the user has used the system request function to

return to the source system from the pass-through target system.
4. The command must be issued from within the job being disconnected, or the issuer of the command

must be running under a user profile which is the same as the job user identity of the job being
disconnected, or the issuer of the command must be running under a user profile which has job control
(*JOBCTL) special authority.

5. The job user identity is the name of the user profile by which a job is known to other jobs.
6. A job cannot be disconnected if PC organizer is active.

Command: Disconnect Job (DSCJOB)
Related concepts
Disconnecting interactive jobs
When the Disconnect Job (DSCJOB) command is called, the job is disconnected and the sign-on display is
shown again. To connect with the job again, sign on to the same device from which you disconnected.
Another interactive job may be started on the device under a different user name.

Job disconnection considerations
There are several factors that you must consider whenever you disconnect a job.

• An option on the System Request menu allows you to disconnect an interactive job, causing the sign-on
display to appear. The option calls the Disconnect Job DSCJOB command.

• When connecting with a job again, the values specified on the sign-on display for program, menu, and
current library are ignored.

• A job which has PC organizer or PC text assist function active cannot be disconnected.
• If the job cannot be disconnected for any reason, the job will be ended instead.
• All disconnected jobs in the subsystem end when the subsystem ends. If a subsystem is ending, the

DSCJOB command cannot be issued in any of the jobs in the subsystem.
• The system value Disconnect Job Interval (QDSCJOBITV) can be used to indicate a time interval for

which a job can be disconnected. If the time interval is reached, the disconnected job ends
• Disconnected jobs that have not exceeded the QDSCJOBITV system value will end when the subsystem

is ended or when an IPL occurs.

Related concepts
Disconnecting interactive jobs

116 IBM i: Work management

When the Disconnect Job (DSCJOB) command is called, the job is disconnected and the sign-on display is
shown again. To connect with the job again, sign on to the same device from which you disconnected.
Another interactive job may be started on the device under a different user name.

Avoiding a long-running function from a workstation
To avoid a long-running function (such as save/restore) from a workstation without tying it up, the system
operator can submit the job to a job queue.

The subsystem description QSYS/QBATCH or QSYS/QBASE, which is supplied by IBM, has a job queue
QSYS/QBATCH that can be used for this purpose. If you created your own subsystem, you should refer to
the job queue for that subsystem. The system operator can submit the commands from the system
operator menu.

The following is an example of submitting a long-running command:

SBMJOB JOB(SAVELIBX) JOBD(QBATCH) JOBQ(QSYS/QBATCH)
 CMD(SAVLIB LIBX DEV(DKT01))

Related concepts
How an interactive job starts
When a user signs on to the system, the subsystem gathers information from several system objects
before the interactive job is ready.

Managing prestart jobs
You can use prestart jobs to reduce the amount of time required to handle a program start request. These
are the most common tasks associated with prestart jobs that you can perform.
Related concepts
Prestart communications jobs and job accounting
If your system uses job accounting, the prestart job program should run the Change Prestart Job (CHGPJ)
command with the program start request value for the accounting code parameter (CHGPJ
ACGCDE(*PGMSTRRQS)) immediately after the program start request attaches to the prestart job.

Starting a prestart job
Prestart jobs typically start at the same time the subsystem is started. You manually start a prestart job
when all prestart jobs have been ended by the system due to an error or were never started during
subsystem start up due to STRJOBS (*NO) on the prestart job entry. To start a prestart job, use the
character-based interface.

Command: Start Prestart Jobs (STRPJ)

The STRPJ command should not be used until the startup of the related subsystem is complete. To make
sure that the necessary prestart job successfully starts, code a delay loop with a retry if the STRPJ
command fails.

The number of prestart jobs that can be active at the same time is limited by the MAXJOBS attribute on
the prestart job entry and by the MAXJOBS attribute for the subsystem. The MAXACT attribute on the
communications entry controls the number of program start requests that can be serviced through the
communications entry at the same time.

Note: If you specified *NO on the STRJOBS attribute, no prestart jobs start for the prestart job entry when
the subsystem starts. Running the STRPJ command does not cause the value of the STRJOBS parameter
to change.

Example: This example starts prestart jobs for prestart job entry PJPGM in subsystem SBS1. Subsystem
SBS1 must be active when this command is issued. The number of jobs started is the number specified in
the INLJOBS value of prestart job entry PJPGM. The subsystem starts program PJPGM in library PJLIB.

STRPJ SBS(SBS1) PGM(PJLIB/PJPGM)

Related concepts
Prestart jobs

Work management 117

A prestart job is a batch job that starts running before a work request is received. The prestart jobs are
started before any other types of jobs in a subsystem. Prestart jobs are different from other jobs because
they use prestart job entries (part of the subsystem description) to determine which program, class, and
storage pool to use when they are started.
Related information
Experience Report: Tuning prestart job entries

Queueing or rejecting program start requests
If a program start request arrives when the current number of prestart jobs is less than the number
specified in the MAXJOBS attribute on the prestart job entry, and none of the prestart jobs are available to
handle the program start request, you have the option to have this new request rejected or queued.

To reject or queue the program start request, use the WAIT attribute on the prestart job entry.

WAIT(*NO) means that if no prestart job is available immediately, the program start request is rejected.

WAIT (*YES) means that if no prestart job is available immediately and no prestart job can be started due
to MAXJOBS to service the program start request, the program start request is rejected. If no prestart job
is available immediately, but additional prestart jobs can be or have been started, the program start
request is queued.

This command adds a prestart job entry for the PGM1 program in the QGPL library to the PJSBS
subsystem description contained in the QGPL library. The entry specifies that 15 prestart jobs (program
PGM1 in the QGPL library) are started when subsystem PJSBS in the QGPL library is started. When the
pool of available prestart jobs is reduced to four (because the prestart jobs are servicing requests
specified for program PGM1 in the QGPL library), ten additional jobs are started. If no prestart jobs are
available for this entry when a request is received, the request is rejected.

ADDPJE SBSD(QGPL/PJSBS) PGM(QGPL/PGM1) INLJOBS(15)
 THRESHOLD(5) ADLJOBS(10) WAIT(*NO)

Tuning prestart job entries
You should have enough prestart jobs started by the subsystem so that work is handled as it arrives
rather than waiting for new jobs to be started. These tips show how to tune your prestart jobs for
optimum performance.

Setting the number of prestart jobs

While the system is handling its normal workload and information about the workload is available, follow
the following steps:

1. Use the Work with Subsystems (WRKSBS) command to get a list of all active subsystems. For each
subsystem in the list of active subsystems, use option 5 to display the subsystem description.

On the Display Subsystem Description panel, use option 10 to display prestart job entries. If there are
no prestart job entries for that subsystem description, continue with the next subsystem in the
WRKSBS list.

2. On the Display Prestart Job Entries panel, use option 5 to display details for the prestart job entry.
Make a note of the current settings for Initial number of jobs, Threshold, and Additional number of
jobs.

3. For each prestart job entry in the subsystem description, enter a Display Active Prestart Jobs
(DSPACTPJ) command.
For example:

DSPACTPJ SBS(SUBSYSTEM) PGM(PJPGMLIB/PJPROGRAM)

If the DSPACTPJ command is not currently allowed, the prestart job entry is not active and does not
need to be changed. Continue with the next prestart job entry or the next subsystem description.

4. Use the DSPACTPJ information to get an estimate of your workload. The DSPACTPJ command
produces a display that looks like this:

118 IBM i: Work management

--
 Display Active Prestart Jobs SYSTEM
 08/06/03 07:35:00
Subsystem : SUBSYSTEM Reset date : 08/06/03
Program : PJPROGRAM Reset time : 07:23:03
 Library : PJPGMLIB Elapsed time : 0000:11:57

Prestart jobs:
 Current number : 122
 Average number : 21.4
 Peak number : 122

Prestart jobs in use:
 Current number : 120
 Average number : 17.7
 Peak number : 120

 More...
Press Enter to continue.

F3=Exit F5=Refresh F12=Cancel F13=Reset statistics
--

--
 Display Active Prestart Jobs SYSTEM
 08/06/03 07:35:00
Subsystem : SUBSYSTEM Reset date : 08/06/03
Program : PJPROGRAM Reset time : 07:23:03
 Library : PJPGMLIB Elapsed time : 0000:11:57
Program start requests:
 Current number waiting : 0
 Average number waiting : .0
 Peak number waiting : 1
 Average wait time : 00:00:00.0
 Number accepted : 120
 Number rejected : 0
 Bottom
Press Enter to continue.

F3=Exit F5=Refresh F12=Cancel F13=Reset statistics
--

Find the prestart jobs in use section and the value for the peak number. In this example, the value is
120. This number is an estimate of your peak workload. Make a note of this value, it is used in the
following steps.

Find the program start requests section and the value for the peak number waiting. You may need to
page down to see this field. In this example, the value is 1. This number tells you how well the
system is handling the arrival of new work. Make a note of this value, it is used in the following steps.

5. If DSPACTPJ shows a zero (0) for the peak number of prestart jobs in use, the prestart job entry is not
being used by your workload and therefore does not need to be changed. Continue with the next
prestart job entry or the next subsystem description.

6. Choose a value for the THRESHOLD parameter. When the pool of available jobs is reduced below this
number, more jobs are started. Starting jobs takes time. Meanwhile, more requests for work may
arrive. Set THRESHOLD to a value of at least one plus the number of requests that can arrive while
new jobs are being started

In this example, the value chosen is 10. This is an estimate of arrival of work requests, a guess based
on the peak number of jobs in use. This is not an accurate analysis of hard-to-get measurements.

Refer to the notes you took in an earlier step. If the current setting for THRESHOLD is high enough,
the peak number waiting is zero. If the peak number waiting is not zero, add this number to your
current THRESHOLD value and compare the result to the estimated value based on arrivals. Use the
larger value. The sample DSPACTPJ information shows a value of 1 which means the current value for
THRESHOLD is too low. The current setting plus one is less than the estimate of 10. For this example,
we use the value 10.

Work management 119

7. Choose a value for the initial number of jobs (INLJOBS) parameter. INLJOBS specifies the number of
jobs that are started when the subsystem is started. Also, INLJOBS is part of what the subsystem
uses to decide if there are too many prestart jobs waiting for work.

Refer to the notes you took in an earlier step. Use the peak number of prestart jobs in use as the
estimate for peak workload, add the value for THRESHOLD, and use the result as the new value for
INLJOBS. The DSPACTPJ information shows a peak of 120 prestart jobs in use and we have already
chosen a THRESHOLD of 10, so the new value chosen for INLJOBS is 130.

8. Choose a value for the additional number of jobs (ADLJOBS) parameter. ADLJOBS specifies the
additional number of prestart jobs that are started when the number of available prestart jobs drops
below the value specified on the Threshold (THRESHOLD) parameter.

When INLJOBS and THRESHOLD are high enough to avoid causing requests to wait, ADLJOBS can be
fairly low. If INLJOBS is far below peak workload, ADLJOBS may need to be as high as THRESHOLD.
In this example, the chosen value is 5.

Try to avoid large numbers. If you specify a large value for ADLJOBS, the subsystem starts a large
number of jobs all at once. This can adversely affect system performance and it delays the
subsystem's handling of other work.

9. Compare the newly chosen values with the values configured in the prestart job entry. To be sure to
have enough prestart jobs, use the larger value for each parameter. Change the configured values by
using the Change Prestart Job Entry (CHGPJE) command.

CHGPJE SBSD(SBSLIB/SUBSYSTEM) PGM(PJPGMLIB/PJPROGRAM)
 INLJOBS(130) THRESHOLD(10) ADLJOBS(5)

10. Continue with the next prestart job entry or the next subsystem description.

Details

Some additional details may help you make good decisions when following this procedure.

• If the THRESHOLD value is too small, work waits for new jobs to be started. In some cases, errors occur
because requests time out.

Consider an example where THRESHOLD is 2 and there are only two jobs waiting for work. When the
next work request arrives, that request is given to one of the waiting jobs and additional jobs are
started. In this example, two more requests arrive before the new jobs are ready. The first request is
handled by a waiting job. The second request waits for one of the new jobs to become ready. For the
example workload, THRESHOLD should be set to at least 3: one to trigger the creation of more jobs plus
two for the number of requests that arrive while new jobs are being started.

• Because the subsystem starts jobs when they are needed, the subsystem also ends jobs when they are
not needed. This happens for prestart job entries that specify a maximum number of uses (MAXUSE)
greater than one. The value for the INLJOBS parameter tells the subsystem how many jobs are needed.
You need to get INLJOBS set correctly to prevent the subsystem from ending too many jobs.

If the INLJOBS value is too small, the subsystem periodically starts jobs because there are too few and
end jobs because there are too many. Moreover, the system incurs the cost of starting new jobs at the
time when the system is most busy.

• In the sample output from the DSPACTPJ command, the peak number of prestart jobs in use is 120
while the average number of prestart jobs in use is 17.7. This is not a high peak. This is a low average.
By default, DSPACTPJ shows what has happened since the subsystem started. The average includes
periods when the workload is zero.

Even when you use F13 to reset the statistics and even when you carefully control the sample interval,
the average number of prestart jobs in use is likely to be lower than the number you should tune to. A
workload may have an average somewhere between 40 and 60 jobs and yet have lots of peaks between
100 and 120 jobs.

When INLJOBS is set to the estimated peak workload plus THRESHOLD, the subsystem does not need
to start additional jobs unless the actual workload exceeds the estimated peak workload. If your

120 IBM i: Work management

workload has peaks that are relatively high and relatively infrequent, you may wish to set INLJOBS to a
lower number.

• The procedure given in this topic assumes that the peak load on a typical day is a typical peak load. If
you gather more data, you might be able to produce a better estimate of your workload.

You can use the List Job (QUSLJOB) API or the Open List of Jobs (QGYOLJOB) API to periodically
sample your workload. For some workloads, it helps to graph the results. You do not need a perfect
prediction for the number of prestart jobs. You only need to be close enough to avoid delays and time
outs.

• If THRESHOLD and INLJOBS are too large, there are active jobs in the subsystem that are not needed.
Starting and ending extra jobs takes more time when starting or ending the subsystem or when starting
or ending the prestart job entry.

It is better to use values that are slightly higher than what is needed than to use values that are lower
than what is needed. Having a few extra jobs is not a problem because these jobs are waiting for work
and do not compete for memory or processors.

• Because prestart jobs were first used with communications devices, a request for work is called a
program start request and the prestart job shows a status of PSRW (waiting for program start request)
when it is waiting for work.

Changing job attributes for prestart jobs
Large job message queues can consume storage, can lead to large job logs which also consume storage,
and can cause IPL performance problems when job message queues need recovery or cleanup during an
IPL. This example shows how to change the job message queue full action (JOBMSGQFL) and job
message queue maximum size (JOBMSGQMX) values for prestart jobs.

Note: The QDFTSVR job description was introduced in release V5R3M0 to do some of this for you.

To limit the size of job message queues for prestart jobs without affecting other jobs, follow these steps:

1. Find the prestart jobs that you want to affect and determine which job description is used by the
prestart job entry. (To do this, use the Display Subsystem Description (DSPSBSD) command.)

2. Determine whether the job description is used by just the one prestart job entry (in which case you can
just modify that job description) or used by multiple references such as user profiles, prestart job
entries, other SBSD entries, and so on. (You can always create another job description for the "don't
know" but if you know that a change to the existing job description affects only the jobs you want
affected then you should just modify that particular job description.)

3. Create a new job description to be used by the prestart job entries that you want to affect. You can use
the Create Job Description (CRTJOBD) command, but in this example we make a copy of the job
description that is currently being used.

Note: If you have the job description JOBD(*USRPRF) you can use the Display User Profile
(DSPUSRPRF) command to determine which job description is currently being used. The
default configurations use job description QDFTJOBD or QDFTSVR.

DSPUSRPRF USRPRF(QUSER)

To avoid confusion with IBM-supplied objects, avoid names starting with the letter 'Q'. This example
uses the name PJJOBD as the name of the job description for the prestart job entries. Use the Create
Duplicate Object (CRTDUPOBJ) command to make a copy of the job description currently used by the
QUSER user profile.

CRTDUPOBJ OBJ(QDFTSVR) FROMLIB(QGPL) OBJTYPE(*JOBD)
 TOLIB(QGPL) NEWOBJ(PJJOBD)

4. Match the object ownership and authorities of the job description that you copied. Since QDFTSVR and
QDFTJOBD are owned by QPGMR, the example (below) shows how to change the newly created job
description to be owned by QPGMR. Use the Change Object Owner (CHGOBJOWN) command and the
Grant Object Authority (GRTOBJAUT) command to get the object ownership and public authority set

Work management 121

correctly. You can find the owner and authorities by using the Display Object Authority (DSPOBJAUT)
command.

CHGOBJOWN OBJ(QGPL/PJJOBD) OBJTYPE(*JOBD) NEWOWN(QPGMR)

GRTOBJAUT OBJ(QGPL/PJJOBD) OBJTYPE(*JOBD) USER(*PUBLIC) AUT(*USE)

5. Use the Change Job Description (CHGJOBD) command to customize the job attributes. In this
example, we use a value of 8 megabytes for the job message queue maximum size. Other values
would also work as long as the limit is far less than 64 megabytes.

CHGJOBD JOBD(QGPL/PJJOBD) JOBMSGQMX(8) JOBMSGQFL(*WRAP)
 TEXT('Job attributes for prestart job entries')

6. Look through all of the prestart job entries that are active on your system. Use the Work with
Subsystems (WRKSBS) command to get a list of all active subsystems. Use option 5 to display the
subsystem description. Use option 10 to display prestart job entries and use option 5 to display details
for the prestart job entry.

If the prestart job entry specifies USER(QUSER) and JOBD(*USRPRF), use the Change Prestart Job
Entry (CHGPJE) command to specify the new job description.

CHGPJE SBSD(SBSLIB/SUBSYSTEM) PGM(PJPGMLIB/PJPROGRAM)
 JOBD(QGPL/PJJOBD)

If the prestart job entry specifies a job description, use the Change Job Description (CHGJOBD)
command to change the JOBMSGQMX and JOBMSGQFL values in that job description.

CHGJOBD JOBD(JOBDLIB/JOBDNAME) JOBMSGQMX(8) JOBMSGQFL(*WRAP)

Details

The QDFTJOBD job description is used by many prestart job entries and is used many other places in the
system. This example creates a single new job description named PJJOBD. The new job description is
used by many prestart job entries but it is not used elsewhere. To use different values for different
prestart job entries, use a different job description for each entry. Some prestart job entries already have
unique job descriptions.

Some job attributes for prestart jobs cannot be changed using this procedure because they do not come
from the job description that is used when starting the job. Many servers that use prestart jobs swap user
profiles and then use the Change Job (QWTCHGJB) API to change a subset of the job attributes. The
changed job attributes come from the job description used by the user profile to which the prestart job
has swapped. Refer to the JOBC0300 format of the Change Job API for more information.

For some job attributes, the job description may indicate that the value is to be taken from a system
value. When you change the system value, the change affects all jobs that get their job attribute from the
system value. Changing the value in the job description affects only those jobs that get their job attributes
from that job description.

Ending a prestart job
You can use the character-based interface to end a prestart job in an active subsystem.

Jobs can be waiting for a request or can already be associated with a request. Spooled output files
associated with the jobs being ended can also be ended or allowed to remain on the output queue. The
limit on the number of messages being written to each of the job logs can also be changed.

Note: To end all of the jobs for a prestart job entry, in an active subsystem, use the End Prestart Job
(ENDPJ) command. If however, you intend to only end a specific prestart job that is in trouble, use the
End Job (ENDJOB) command against the specific prestart job.

Command : End Prestart Job (ENDPJ)

Example: This command ends all jobs associated with prestart job entry PJPGM in subsystem SBS1
immediately. Spooled output produced by these prestart jobs is deleted and the job log is saved.

122 IBM i: Work management

ENDPJ SBS(SBS1) PGM(PJLIB/PJPGM) OPTION(*IMMED)
 SPLFILE(*YES)

Example: This command ends all the jobs associated with prestart job entry PJPGM2 in subsystem SBS2.
Spooled output for these prestart jobs is saved for normal processing by the spooling writer. The jobs
have 50 seconds to perform any cleanup routines, after which they are immediately ended.

ENDPJ SBS(SBS2) PGM(PJPGM2) OPTION(*CNTRLD)
 DELAY(50) SPLFILE(NO)

Related concepts
Prestart jobs
A prestart job is a batch job that starts running before a work request is received. The prestart jobs are
started before any other types of jobs in a subsystem. Prestart jobs are different from other jobs because
they use prestart job entries (part of the subsystem description) to determine which program, class, and
storage pool to use when they are started.
Related information
Experience Report: Tuning prestart job entries

Managing job class objects
A class object contains the run attributes that control the run-time environment of a job. IBM-supplied
class objects, or classes, meet the needs of both typical interactive and batch applications. The class
used by a job is specified in the subsystem description routing entry used to start the job. If a job consists
of multiple routing steps, the class used by each subsequent routing step is specified in the routing entry
used to start the routing step.

Creating a class object
You can create a class object by using the character-based interface. The class defines the processing
attributes for jobs that use the class. The class used by a job is specified in the subsystem description
routing entry used to start the job. If a job consists of multiple routing steps, the class used by each
subsequent routing step is specified in the routing entry used to start the routing step.

Command: Create Class (CRTCLS)

Example: This example creates a class called CLASS1. The class is stored in the current library specified
for the job. The user text 'This class for all batch jobs from Dept 4836' describes the class. The attributes
of this class provide a run priority of 60 and a time slice of 900 milliseconds. If the job has not finished
running at the end of a time slice, it is eligible to be moved out of main storage until it is allocated another
time slice. The defaults for the other parameters are assumed.

CRTCLS CLS(CLASS1) RUNPTY(60) TIMESLICE(900)
 TEXT('This class for all batch jobs from Dept 4836')

Related concepts
Class object
A class object contains the run attributes that control the run-time environment of a job. IBM-supplied
class objects, or classes, meet the needs of both typical interactive and batch applications. The following
classes (by name) are supplied with the system:

Changing a class object
You can change the attributes of a class object by using the character-based interface. Any attribute can
be changed, except for the public authority attribute. Refer to the Revoke Object Authority (RVKOBJAUT)
command and the Grant Object Authority (GRTOBJAUT) command for more information about changing
object authorizations.

Command: Change Class (CHGCLS)

Example: This command changes a class called CLASS1 in the library on the job's library list. The run
priority for the class is changed to 60 and a time slice of 900 milliseconds.

Work management 123

CHGCLS CLS(CLASS1) RUNPTY(60) TIMESLICE(900)

Related concepts
Class object
A class object contains the run attributes that control the run-time environment of a job. IBM-supplied
class objects, or classes, meet the needs of both typical interactive and batch applications. The following
classes (by name) are supplied with the system:

Managing threads
You can perform many tasks when managing threads.

Viewing threads running under a specific job
Every active job running on your system has at least one thread running under it. A thread is an
independent unit of work running within a job that uses the same resources as the job. Because a job
depends on the work done by a thread, it is important to know how to find the threads running within a
specific job.
Related concepts
Threads
The term thread is shorthand for "thread of control". A thread is the path taken by a program while
running, the steps performed, and the order in which the steps are performed. A thread runs code from its
starting location in an ordered, predefined sequence for a given set of inputs.
Related information
Example: End a thread using Java
Thread management APIs

IBM Navigator for i

To view threads running under a specific job, follow the following instructions:

1. Expand Work Management > Active Jobs.
2. Right-click the job with which you want to work, and click Details > Threads.

Character-based interface

Command: Work With Job (WRKJOB)

Example: The following example displays the Work With Threads screen for the job Crtpfrdta.

WRKJOB JOB(Crtpfrdta) OPTION(*THREAD)

What you can do with threads
Since threads help jobs process more than one operation at a time while running, monitoring the threads
that are running within a job may be necessary. This helps you to keep the job running efficiently. You can
use IBM Navigator for i to find the thread you want to manage.

After you have located the thread, you can right-click the thread and select one of the following actions:

Reset Statistics
Allows you to reset the list information you are viewing, and it sets the elapsed time to 00:00:00.

Details
Because the functions of a thread are similar to that of a job, they share some of the same actions.
Details contains detailed information about the following thread actions:

• Call stack
• Library list
• Locked Objects
• Transactions
• Elapsed Performance Statistics

124 IBM i: Work management

Hold
Allows you to hold the thread. Threads can be held multiple times. The operating system keeps track
of the number of times a thread is held.

Release
Releases the thread that was held. The thread must be released each time that it is held in order for it
to run.

Delete/End
Allows you to end the selected thread or threads.

Thread Properties
Displays the different attributes of a thread.

For more detailed information about the actions you can perform on threads, see the IBM Navigator for i
online help.

Related information
Performance system values: Thread affinity
Performance system values: Automatically adjust thread resources

Viewing thread properties
Threads allow jobs to do more than one thing at a time. If a thread stops processing, it can stop the job
from running.
Related concepts
Threads
The term thread is shorthand for "thread of control". A thread is the path taken by a program while
running, the steps performed, and the order in which the steps are performed. A thread runs code from its
starting location in an ordered, predefined sequence for a given set of inputs.
Related information
Example: End a thread using Java
Thread management APIs

IBM Navigator for i

To view the attributes of a thread, use the following instructions:

1. Expand Work Management > Active Jobs or Server Jobs.
2. Right-click the job with which you want to work, and click Details > Threads.
3. Right-click the thread with which you want to work, and click Properties.

The information under the General tab allows you to view the attributes of a thread. These attributes
include the thread identifier, the detailed status of the thread, the current user, the type of thread
running, the job the thread is running under, and the disk pool group the thread is running in.

The information under the Performance tab allows you to view basic performance elements and let you
change the run priority of the thread. Run priority indicates the importance of the thread in relation to
other threads running in the system. The possible values range from job priority to 99 (meaning the
highest possible priority will vary). The thread run priority may never be higher than the run priority for the
job in which the thread is running.

You can view the performance values calculated since the thread started, which include CPU and total
disk I/O. You can also view, refresh, set up an automatic refresh, or reset the Elapsed performance
statistics that have been calculated for a thread.

Character-based interface

Command: Work With Job (WRKJOB)

Example: The following example displays the Work With Threads screen for the job Crtpfrdta.

WRKJOB JOB(Crtpfrdta) OPTION(*THREAD)

Work management 125

Ending or deleting threads
An initial thread, which is created when the job starts, can never be deleted or ended. However,
sometimes it is necessary to end a secondary thread so that a job can continue to run. Be aware of the
thread you intend to end because the job it runs within might not be able to complete without that
thread's work.

Important: Ending threads should not be a part of your daily work management routine. Ending a thread
is more serious than ending a job because the work in other threads might or might not stop. When you
end a job, all the work stops. However, when you end a thread, only a portion of the work stops. Other
threads might or might not continue to run. If they continue running without the thread that you end, they
might produce undesirable results.

To delete or end a secondary thread, you must have service (*SERVICE) special authority or Thread
Control authority.

Related concepts
Threads
The term thread is shorthand for "thread of control". A thread is the path taken by a program while
running, the steps performed, and the order in which the steps are performed. A thread runs code from its
starting location in an ordered, predefined sequence for a given set of inputs.
Related information
Example: End a thread using Java
Thread management APIs

IBM Navigator for i

To delete or end a thread, use the following instructions:

1. Expand Work Management > Active Jobs or Server Jobs.
2. Right-click the job with which you want to work, and click Details, and then Threads.
3. Right-click the thread with which you want to end, and click Delete/End.

Character-based interface

Command: Work With Job (WRKJOB) Option 20: Work with threads, if active

Example: The following example displays the Work With Threads screen for the job Crtpfrdta.

WRKJOB JOB(Crtpfrdta) OPTION(*THREAD)

At the Work With Threads screen, select Option: 4=End.

Managing job scheduling
You can schedule a job to run using the Advanced Job Scheduler, by using the IBM Navigator for i Job
Properties window, or by changing the job schedule entry via the character-based interface.

Scheduling a batch job using IBM Navigator for i
The Job Properties - Job Queue window provides a way for you to schedule a batch job to run now or run
once at a specific date and time.

To schedule a job using IBM Navigator for i, use the following instructions:

1. Expand Work Management > Job Queues > Active Job Queues or All Job Queues > The job queue
that contains your job.

2. Right-click the job and click Properties.
3. On the Job Properties window, click the Job Queues tab.
4. To schedule the job, use the options that are located under When to make job available to run.

For information about how to use this window, see the IBM Navigator for i help.

126 IBM i: Work management

Scheduling a job using Management Central Scheduler
If you do not have the plug-in Advanced Job Scheduler installed, you can use the Management Central
Scheduler to schedule jobs.

You can start the Management Central scheduler by clicking on the Schedule button that appears on
many of the IBM Navigator for i windows. For example suppose you want to use IBM Navigator for i Run
Command window to submit a clean up job but you do not want that job to run until after peak hours.

1. From IBM Navigator for i, right-click the server that you want to run the clean up job and click Run
Command.

2. From the Run Command window, type in the character-based syntax for running your job. If you need
assistance type in the first command and click Prompt.

3. When you have completed the command, click Schedule. The Management Central Scheduler window
displays where you can schedule this job to run once, or run as a recurring job.

You can schedule a task to run once, in which case the task runs a single time beginning at the
specified date and time. Tasks that run only once are removed from the Scheduled Tasks container
when they run. They then appear in a Task Activity container.

Important: Do not use the Work with Job Schedule Entries (WRKJOBSCDE) to alter or delete a
scheduled job if that job was scheduled using the Management Central Scheduler or the Advanced Job
Scheduler. If the job is altered or deleted by using WRKJOBSCDE, Management Central is not notified
of the changes. The task might not run as expected, and error messages can appear in the
Management Central server job logs.

If it is necessary to make a change to a job that was schedule using the Management Central
Scheduler or the Advanced Job Scheduler, use the IBM Navigator for i interface.

Related concepts
Management Central scheduler
System i® Navigator provides an integrated scheduler, the Management Central scheduler, to organize
when you want your jobs to process. You have the option of choosing to perform a task immediately or
choosing a later time. You can use the Management Central scheduler to schedule almost any task in
Management Central.

Working with job schedule entries
In addition to the IBM Navigator for i Job Properties - Job Queue window, you can also change the job
schedule entry directly by using the character-based interface. The following is a list of common
character-based interface tasks that you can use when working with job schedule entries.

Important: Do not use the Work with Job Schedule Entries (WRKJOBSCDE) to alter or delete a scheduled
job that was scheduled using the Management Central Scheduler or the Advanced Job Scheduler. If the
job is altered or deleted by using WRKJOBSCDE, Management Central is not notified of the changes. The
task may not run as expected, and error messages can appear in the Management Central server job logs.

Related concepts
Job schedule entries
If your system does not have the Management Central Scheduler or the Advanced Job Scheduler, you can
still schedule jobs using a job schedule entry, which is accessed from the character-based interface.
Using this method you can schedule jobs to recur or to run only once.

Adding a job schedule entry
The Add Job Schedule Entry (ADDJOBSCDE) command allows you to schedule batch jobs by adding an
entry to the job schedule. You can use this command to schedule a batch job to be submitted once, or to
schedule a batch job to be submitted at regular intervals.

Command: Add Job Schedule Entry (ADDJOBSCDE)

Example: This command submits a job named CLEANUP every Friday at 11 p.m. The job uses job
description CLNUPJOBD in library CLNUPLIB. If the system is powered down or is in the restricted state at
11 p.m. on Friday, the job is not submitted at IPL or when the system comes out of restricted state.

Work management 127

ADDJOBSCDE JOB(CLEANUP) SCDDATE(*NONE)
 CMD(CALL PGM(CLNUPLIB/CLNUPPGM))
 SCDDAY(*FRI) SCDTIME('23:00:00')
 FRQ(*WEEKLY) RCYACN(*NOSBM)
 JOBD(CLNUPLIB/CLNUPJOBD)

Changing a job schedule entry
This command changes the entry in the job schedule, but it does not affect any jobs already submitted
using this entry. To change a job entry, use the character-based interface.

To change a job schedule entry, you must have the same authorities that are required to add an entry.
However, the authorities to the individual objects are checked only if you are changing that parameter for
the entry. In addition, if you do not have *JOBCTL special authority, you can change only the entries that
your user profile added to the job schedule object.

Command: Change Job Schedule Entry (CHGJOBSCDE)

Example: This command changes job schedule entry BACKUP number 001584 so that its jobs are
submitted to job queue QBATCH in library QGPL.

CHGJOBSCDE JOB(BACKUP) ENTRYNBR(001584) JOBQ(QGPL/QBATCH)

Example: This command changes the schedule of a batch job to run program A at 11 a.m. on 12/15/03
and every week on that same day.

CHGJOBSCDE JOB(EXAMPLE) ENTRYNBR(*ONLY) CMD(CALL PGM(A))
 FRQ(*WEEKLY) SCDDATE(121503) SCDTIME(110000)

Holding a job schedule entry
The Hold Job Schedule Entry (HLDJOBSCDE) command allows you to hold an entry, all entries, or a set of
entries in the job schedule. If an entry is held, no job is submitted at the scheduled time. To hold a job
schedule entry, use the character-based interface.

To hold entries, you must have job control (*JOBCTL) special authority; otherwise you can hold only those
entries that you added. If you hold a job schedule entry:

• The entry is held until it is released using the Release Job Schedule Entry (RLSJOBSCDE) or Work with
Job Schedule Entries (WRKJOBSCDE) command.

• The job is not submitted when it is released, even if a date and time at which it was scheduled to be
submitted passed while the entry was held. Rather the job is submitted on any future dates for which it
is scheduled to be submitted.

Command: Hold Job Schedule Entry (HDLJOBSCDE)

Example: The following example places the job schedule entry CLEANUP on hold.

HLDJOBSCDE JOB(CLEANUP)

Printing a list of job scheduled entries
To print a list of job schedule entries, use the character-based interface.

Command: Work with Job Schedule Entries (WRKJOBSCDE)

Example: The following example prints a list of job schedule entries.

WRKJOBSCDE OUTPUT(*PRINT)

Example: The following prints detailed information about each job schedule entry.

WRKJOBSCDE OUTPUT(*PRINT) PRTFMT(*FULL)

128 IBM i: Work management

Releasing a job schedule entry
The Release Job Schedule Entry (RLSJOBSCDE) command allows you to release an entry, all entries, or a
set of entries in the job schedule. If you release a job schedule entry, the job is not submitted
immediately, even if the date and time at which it was scheduled to be submitted passed while the entry
was held. If the scheduled time passed while the entry was held a warning message is sent to indicate
that a job or jobs were missed. Then the job is submitted on any future dates for which it is scheduled to
be submitted. To release job schedule entries, use the character-based interface.

To release entries, you must have job control (*JOBCTL) special authority; otherwise you can release only
those entries that you added.

Command: Release Job Schedule Entry (RLSJOBSCDE)

Example: This example release all job schedule entries that have a hold status.

RLSJOBSCDE JOB(*ALL) ENTRYNBR(*ALL)

Removing a job schedule entry
The Remove Job Schedule Entry (RMVJOBSCDE) command allows you to remove an entry, entries, or
generic entries in the job schedule. Each job schedule entry corresponds to one batch job, and contains
the information needed to automatically run the job once or at regularly scheduled intervals. A message is
sent to you and the message queue specified in the job schedule entry when an entry is successfully
removed. To remove a job schedule entry, use the character-based interface.

To remove entries, you must be running under a user profile which has job control (*JOBCTL) special
authority; otherwise you can remove only those entries that you added.

Command: Remove Job Schedule Entry (RMVJOBSCDE)

Example: The following example removes the job PAYROLL from the job schedule.

RMVJOBSCDE JOB(PAYROLL) ENTRYNBR(*ONLY)

When the system job removes a single-submission entry or when an entry is removed by the Remove Job
Schedule Entry (RMVJOBSCDE) command, system message CPC1239 is sent to the message queue
specified in the entry. If a single-submission entry was held when its schedule time was reached and the
entry specified *NO for its save attribute, the entry is removed when it is released with the Release Job
Schedule Entry command. In this case, message CPC1245 is sent to the message queue specified in the
entry.

Managing subsystems
Because jobs run in subsystems, you might need to monitor subsystem activity for potential problems
that can affect a job's ability to run.

The subsystem is the work place for jobs on your system. All user work is done by jobs running in the
subsystem and it is important to monitor this area for slow work performance. In From IBM Navigator for
i, you can view jobs and job queues associated with the subsystems. Also, you have the same
functionality with jobs and job queues from any other area that displays jobs and job queues.

Common subsystem tasks
This information discuss the most common tasks that you can perform on a subsystem.

Related concepts
Subsystems
The subsystem is where work is processed on the system. A subsystem is a single, predefined operating
environment through which the system coordinates the work flow and resource use. The system can
contain several subsystems, all operating independently of each other. Subsystems manage resources.
Related information
Experience Report: Subsystem Configuration

Work management 129

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work1abstract.htm

Viewing subsystem attributes
Subsystems have attributes. These attributes give information about the current status of the subsystem,
or about values identified in the subsystem description.

When you use IBM Navigator for i, the following attributes can be viewed for an active subsystem:

• Subsystem: The name of the subsystem, as well as the library that contains the subsystem description.
• Description: The description of the subsystem.
• Status: The current status of the subsystem. The help contains details on the possible statuses.
• Active jobs: The number of jobs currently active, either running or waiting to run, in the subsystem. This

number does not include the subsystem job.
• Maximum active jobs: The maximum number of jobs that can be active, either running or waiting to

run, in the subsystem.
• Subsystem job: The name of the subsystem job, including user and number

IBM Navigator for i

To view the attributes of a subsystem, follow these steps:

1. Expand Work Management > Active Subsystems.
2. Right-click the subsystem you want to view, then click Properties.

Character-based interface

To use the character-based interface, type in the following command:

Command: Display Subsystem Description (DSPSBSD)

Example: This command displays the subsystem description menu for the subsystem QBATCH.

DSPSBSD QBATCH

Stopping a subsystem
You can use IBM Navigator for i or the character-based interface to stop one or more active subsystems
and specify what happens to active work being processed. No new jobs or routing steps are started in the
subsystem after the subsystem is stopped.

When a subsystem is stopped, you can specify what happens to active work that is being processed by
the system. For example, you can specify for all jobs in the subsystem to be ended immediately
(Immediate), or you can specify that jobs are allowed to finish processing before the subsystem ends
(Controlled).

Important: It is recommended that subsystems be stopped using the Controlled option whenever
possible. This allows active jobs to end themselves. Use this option to ensure that jobs finish before the
subsystems end. This allows the programs that are running to perform cleanup (end-of-job processing).
Specifying the Immediate value can cause undesirable results, such as data that has been partially
updated.

There are two types of stops.
Controlled (Recommended)

Ends the subsystem in a controlled manner. The jobs are also ended in a controlled manner. This
allows the programs that are running to perform cleanup (end of job processing). When a job being
ended has a signal handling procedure for the asynchronous signal SIGTERM, the SIGTERM signal is
generated for that job. The application has the amount of time specified for the DELAY parameter to
complete cleanup before the job is ended.

Immediate
Ends the subsystem immediately. The jobs are also ended immediately. When a job being ended has a
signal handling procedure for the asynchronous signal SIGTERM, the SIGTERM signal is generated for
that job and the QENDJOBLMT system value specifies a time limit. Other than handling the SIGTERM
signal, the programs that are running are not allowed to perform any cleanup.

130 IBM i: Work management

Related concepts
Ending a job: controlled
Ending a job in a controlled manner allows programs that are running in the job to perform their end-of-
job cleanup. A delay time can be specified to allow the job to end in a controlled manner. If the delay time
ends before the job ends, the job is ended immediately.
Related tasks
How to display job logs
You can see a job log from any place within work management that you access jobs, such as through the
Subsystem area or the Memory Pool area. You can use IBM Navigator for i or the character-based
interface to display job logs.
Related information
Jobs system values: Maximum time for immediate end

IBM Navigator for i

To use IBM Navigator for i, use the following instructions:

1. Expand Work Management > Active Subsystems.
2. Right-click the subsystem or subsystems you want to stop, and then click Stop.
3. Specify the options to be used when the subsystem is stopped.
4. Click Stop.

Character-based interface

To use the character-based interface, type in the following command:

Command: End Subsystem (ENDSBS)

Example: This command ends all active jobs in the QBATCH subsystem and ends the subsystem. The
active jobs are allowed 60 seconds to perform application-provided end-of-job processing.

ENDSBS SBS(QBATCH) OPTION(*CNTRLD) DELAY(60)

Use the End Subsystem Option (ENDSBSOPT) parameter to improve the performance for ending a
subsystem. If you specify ENDSBSOPT(*NOJOBLOG), the subsystem ends, but a job log is not produced
for every job that was in the subsystem.

If a problem occurs in a job, but you specified *NOJOBLOG, problem diagnosis may be difficult or
impossible because the problem is not recorded in the job log. If you used the LOGOUTPUT(*PND) job
attribute then the job log is placed in a pending state, but is not written. However, the job log is still
available if it is needed. See the related topics on job logs for more information about job log pending.

If you specify ENDSBSOPT(*CHGPTY *CHGTSL), the run priority and time slice change for all jobs that end
in this subsystem. The jobs are competed less aggressively for processor cycles and are ended with less
of an impact on jobs that are still running in other subsystems.

You can specify all three options (*NOJOBLOG, *CHGPTY, and *CHGTSL) on the ENDSBSOPT parameter,
for example:

ENDSBSOPT(*NOJOBLOG *CHGPTY *CHGTSL)

Note: If you specify *ALL for the subsystem name and have any jobs running under QSYSWRK, you should
use *CNTRLD to prevent a subsystem from ending abnormally.

Starting a subsystem
The Start Subsystem (STRSBS) command starts a subsystem using the subsystem description specified in
the command. When the subsystem is started, the system allocates the necessary and available
resources (storage, workstations, and job queues) that are specified in the subsystem description. You
can start a subsystem by using IBM Navigator for i interface or the character-based interface.

Work management 131

Related concepts
How a subsystem starts
When a subsystem starts, the system allocates several items and starts autostart and prestart jobs before
the subsystem is ready for work.

IBM Navigator for i

To start a subsystem using IBM Navigator for i, use the following instructions:

1. Expand Work Management > Active Subsystems.
2. Click Actions > Start Subsystem.
3. Indicate the Name and Library of the subsystem to start and click OK.

Character-based interface

Command: Start Subsystem (STRSBS)

Example: This command starts the user subsystem that is associated with the TELLER subsystem
description in the QGPL library. The subsystem name is TELLER.

STRSBS SBSD(QGPL/TELLER)

Creating a subsystem description
You can create a subsystem description in two ways. You can copy an existing subsystem description and
change it, or you can create an entirely new description.

The following are two approaches that you can use:

1. To copy an existing subsystem description, using the character-based interface, use the following
instructions:
a) Create a Duplicate Object (CRTDUPOBJ) of an existing subsystem description. (You can also use

the Work with Objects (WRKOBJ) or Work with Objects using Programming Development Manager
(WRKOBJPDM) commands.)

b) Change the copy of the subsystem description so that it functions in the manner that you require.
For example, you need to remove the job queue entry because it identifies the job queue that the
original subsystem uses. Then you need to create a new job queue entry that specifies the
parameters that the new subsystem uses.

Remember to review the autostart job entries, the workstation entries, the prestart job entries, and
the communication entries, and verify that there are no conflicts between the two subsystems. For
example, verify that the workstation entries do not cause both subsystems to allocate the same
display devices.

2. To create an entirely new subsystem description, use the character-based interface and use the
following instructions:
a) Create a Subsystem Description (CRTSBSD).
b) Create a Job Description (CRTJOBD).
c) Create a Class (CRTCLS) for Add Prestart Job Entry (ADDPJE) and Add Routing Entry (ADDRTGE).
d) Add Work Entries to the subsystem description.

• Add Workstation Entry (ADDWSE)
• Add Job Queue Entry (ADDJOBQE)
• Add Communications Entry (ADDCMNE)
• Add Autostart Job Entry (ADDAJE)
• Add Prestart Job Entry (ADDPJE)

e) Add Routing Entries (ADDRTGE) to the subsystem description.

132 IBM i: Work management

Related concepts
Subsystems
The subsystem is where work is processed on the system. A subsystem is a single, predefined operating
environment through which the system coordinates the work flow and resource use. The system can
contain several subsystems, all operating independently of each other. Subsystems manage resources.
Subsystem description
A subsystem description is a system object that contains information defining the characteristics of an
operating environment controlled by the system. The system-recognized identifier for the object type is
*SBSD. A subsystem description defines how, where, and how much work enters a subsystem, and which
resources the subsystem uses to perform the work. An active subsystem takes on the simple name of the
subsystem description.
Related information
Experience Report: Subsystem Configuration

Adding autostart job entries
You use the character-based interface to add an autostart job entry. An autostart job starts automatically
when the associated subsystem starts. These jobs generally perform initialization work that is associated
with a particular subsystem. Autostart jobs can also perform repetitive work or provide centralized
service functions for other jobs in the same subsystem.

Command: Add Autostart Job Entry (ADDAJE)

Example: This example adds an autostart job entry to subsystem ABC's description.

ADDAJE SBSD(USERLIB/ABC) JOB(START)
 JOBD(USERLIB/STARTJD)

Note: For the changes to take effect, the active subsystem must be ended and then restarted.

Related concepts
Autostart job entries
Autostart job entries identify the autostart jobs to start as soon as the subsystem starts. When a
subsystem starts, the system allocates several items and starts autostart and prestart jobs before it is
ready for work.

Adding communications entries
Each communication entry describes one or more communication device, device types, or remote
location for which the subsystem starts jobs when program start requests are received. The subsystem
can allocate a communication device if the device is not currently allocated to another subsystem or job.
A communications device that is currently allocated may eventually be de-allocated, making it available
to other subsystems. To add a communications entry to the subsystem description, use the character-
based interface.

Command: Add Communications Entry (ADDCMNE)

Example: This example adds a communications entry for the APPC device named COMDEV and mode
*ANY to the subsystem description SBS1, which resides in library ALIB. The DFTUSR parameter defaults
to *NONE, which means that no jobs may enter the system through this entry unless valid security
information is supplied on the program start request.

ADDCMNE SBSD(ALIB/SBS1) DEV(COMDEV)

Note: You must specify either the DEV parameter or the RMTLOCNAME parameter, but not both.

Related concepts
Communications entries

Work management 133

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work1abstract.htm

The communications work entry identifies to the subsystem the sources for the communications job it
processes. The job processing begins when the subsystem receives a communications program start
request from a remote system and an appropriate routing entry is found for the request.

Adding job queue entries
A job queue entry identifies a job queue from which jobs are selected for running in the subsystem. Jobs
started from a job queue are batch jobs. You add a job queue entry using the character-based interface.

You can specify the following items in a job queue entry.

• Job queue name (JOBQ)
• Maximum number of jobs that can be active at the same time from the job queue (MAXACT)
• Order in which the subsystem selects job queues from which jobs can be started (SEQNBR)
• Maximum number of jobs that can be active at the same time for a specified job queue priority

(MAXPTYn)

Command: Add Job Queue Entry (ADDJOBQE)

Example: This command adds a job queue entry for the NIGHT job queue (in the QGPL library) to the
NIGHTSBS subsystem description contained in the QGPL library. The entry specifies that up to three
batch jobs from the NIGHT job queue can be active at the same time in the subsystem. The default
sequence number of 10 is assumed.

ADDJOBQE SBSD(QGPL/NIGHTSBS) JOBQ(QGPL/NIGHT) MAXACT(3)

Related concepts
Job queue entry
A job queue entry identifies a job queue from which jobs are selected for running in the subsystem. There
are five parameters in the job queue entry that control how the job queue should be handled.
Job queue entries
Job queue entries in a subsystem description specify from which job queues a subsystem is to receive
jobs. When the subsystem is started, the subsystem tries to allocate each job queue defined in the
subsystem job queue entries.

Adding prestart job entries
Prestart job entries identify prestart jobs that may be started when the subsystem is started or when the
Start Prestart Jobs (STRPJ) command is entered. You can add prestart job entries to the subsystem
description by using the character-based interface.

Command: Add Prestart Job Entry (ADDPJE)

Example: The following example adds a prestart job entry to the subsystem description ABC.

ADDPJE SBSD(USERLIB/ABC) PGM(START)
 JOBD(USERLIB/STARTPJ)

Related concepts
Prestart job entries
You define the prestart job by using a prestart job entry. A prestart job entry does not affect the device
allocation or program start request assignment.
Prestart job investigation
This topic provides steps to help you answer the question, "How do I find the real user of a prestart job
and determine the resources used by that prestart job?"
Related information
Experience Report: Tuning prestart job entries

Adding routing entries
Each routing entry specifies the parameters used to start a routing step for a job. Routing entries identify
the main storage subsystem pool to use, the controlling program to run (typically the system-supplied

134 IBM i: Work management

program QCMD), and additional run-time information (stored in the class object). To add a routing entry to
a subsystem description, use the character-based interface.

Command: Add Routing Entry (ADDRTGE)

Example: This command adds routing entry 46 to the subsystem description PERT in the ORDLIB library.
To use routing entry 46, the routing data must start with the character string WRKSTN2 starting in
position 1. Any number of routing steps can be active through this entry at any one time. The program
GRAPHIT in the library ORDLIB is to run in storage pool 2 by using class AZERO in library MYLIB.

ADDRTGE SBSD(ORDLIB/PERT) SEQNBR(46) CMPVAL(WRKSTN2)
 PGM(ORDLIB/GRAPHIT) CLS(MYLIB/AZERO) MAXACT(*NOMAX)
 POOLID(2)

Related concepts
Routing entries
The routing entry identifies the main storage subsystem pool to use, the controlling program to run
(typically the system-supplied program QCMD), and additional run-time information (stored in the class
object). Routing entries are stored in the subsystem description.

Adding workstation entries
A workstation entry is used when a job is started when a user signs on or transfers an interactive job from
another subsystem. You can specify the following items in a workstation entry. Parameter names are
given in parentheses. Use the character-based interface to add workstation entries.

• Workstation name or type (WRKSTN or WRKSTNTYPE)
• Job description name (JOBD) or job description name in the user profile
• Maximum number of jobs that can be active at the same time through the entry (MAXACT)
• When the workstations are to be allocated, either when the subsystem is started or when an interactive

job enters the subsystem through the Transfer Job (TFRJOB) command and the AT parameter.

To add a workstation entry to a subsystem description, use the character-based interface.

Command: Add Workstation Entry (ADDWSE)

Example: The following example adds the workstation entry DSP12 to the subsystem ABC.

ADDWSE SBSD(USERLIB/ABC) WRKSTN(DSP12)
 JOBD(USERLIB/WSE)

Related concepts
Workstation entries
An interactive job is a job that starts when a user signs on to a display station and ends when the user
signs off. For the job to run, the subsystem searches for the job description, which may be specified in the
workstation entry or the user profile.

Creating a sign-on display file
The sign-on display file is used to show sign-on displays at workstations that are allocated to the
subsystem. The sign-on display file can be changed when the subsystem is active. However, the new
sign-on display file is not used until the next time the subsystem is started. To create a sign-on display
file, use the character-based interface.

A new sign-on display file can be created using the IBM-supplied sign-on display file as a starting point.
The source for this display file is located in library QGPL in source physical file QDDSSRC. It is strongly
recommended that you create a new source physical file and copy the IBM-supplied display file to the
new source physical file before making any changes. In this way, the original IBM-supplied source is still
available.

Considerations:

• The order in which the fields in the sign-on display file are declared must not be changed. The position
in which they are displayed on the display can be changed.

Work management 135

• Do not change the total size of the input or output buffers. Serious problems can occur if the order or
size of the buffers are changed.

• Do not use the data descriptions specifications (DDS) help function in the sign-on display file.
• Always specify 256 on the MAXDEV parameter.
• The MENUBAR and PULLDOWN keywords cannot be specified in a sign-on display file description.
• The buffer length for the display file must be 318. If it is less than 318, the subsystem uses the default

sign-on display, QDSIGNON in library QSYS.
• The copyright line cannot be deleted.
• Member QDSIGNON is the IBM-supplied sign-on display file that utilizes a 10 character password.
• Member QDSIGNON2 is the IBM-supplied sign-on display file that utilizes a 128 character password.

Command: Create Display File (CRTDSPF)

A hidden field in the display file named UBUFFER can be changed to manage smaller fields. UBUFFER is
128 bytes long and is stated as the last field in the display file. This field can be changed to function as an
input/output buffer so that the data specified in this field is available to application programs when the
interactive job is started. You can change the UBUFFER field to contain as many smaller fields as you
need if the following requirements are met:

• The new fields must follow all other fields in the display file. The location of the fields on the display
does not matter as long as the order in which they are put in the data description specifications (DDS)
meets this requirement.

• The length must total 128. If the length of the fields is more than 128, some of the data is not passed.
• All fields must be input/output fields (type B in DDS source) or hidden fields (type H in DDS source).

Related information
Locales as part of a multi-lingual environment
DDS for display files

Specifying the new sign-on display
A subsystem uses the sign-on display file that is specified in the SGNDSPF parameter of the subsystem
description to create the sign-on display at a user workstation. To change the sign-on display file from the
default (QDSIGNON) to one that you have created, use the character based interface.

Note: Use a test version of a subsystem to verify that the display is valid before attempting to change the
controlling subsystem.

Command: Change Subsystem Description (CHGSBSD)

Specify the new display file on the SGNDSPF parameter.

Example: The following changes the sign-on display file for subsystem QBATCH from the default to a new
file called MYSIGNON.

CHGSBSD SBSD(QSYS/QBATCH) SGNDSPF(MYSIGNON)

Related information
Locales as part of a multi-lingual environment
DDS for display files

Changing a subsystem description
The Change Subsystem Description (CHGSBSD) command changes the operational attributes of the
specified subsystem description. You can change the subsystem description while the subsystem is
active. To change a subsystem description, use the character based interface.

Note: You cannot specify the *RMV value on the POOLS parameter while the subsystem is active, because
a job might become suspended.

Command: Change Subsystem Description (CHGSBSD)

136 IBM i: Work management

Example: This command changes the definition of storage pool 2 that is used by subsystem PAYCTL to a
storage size of 1500K and an activity level of 3. The sign-on display file is changed to display file
COMPANYA and is located in the QGPL library. If the subsystem is active when this command is issued,
COMPANYA is not used until the next time the subsystem is started.

CHGSBSD SBSD(QGPL/PAYCTL) POOLS((2 1500 3))
 SGNDSPF(QGPL/COMPANYA)

Related concepts
Subsystem description
A subsystem description is a system object that contains information defining the characteristics of an
operating environment controlled by the system. The system-recognized identifier for the object type is
*SBSD. A subsystem description defines how, where, and how much work enters a subsystem, and which
resources the subsystem uses to perform the work. An active subsystem takes on the simple name of the
subsystem description.

Changing autostart job entries
You can specify a different job description for a previously defined autostart job entry. To change an
autostart job entry, use the character-based interface

Command: Change Autostart Job Entry (CHGAJE)

Example: The following example changes the job description used by the autostart job entry named
START, in subsystem ABC, in library USERLIB.

CHGAJE SBSD(USERLIB/ABC) JOB(START)
 JOBD(USERLIB/NEWJD)

Note: For the changes to take effect, the active subsystem must be ended and then restarted.

Related concepts
Autostart job entries
Autostart job entries identify the autostart jobs to start as soon as the subsystem starts. When a
subsystem starts, the system allocates several items and starts autostart and prestart jobs before it is
ready for work.

Changing communication entries
You can change the attributes of an existing communications entry in an existing subsystem description
by using the character-based interface.

• When the Job description (JOBD) or Default user profile (DFTUSR) parameters are changed, the
communications entry also changes; however, the values of these parameters are not changed for any
jobs that are active at the time.

• If the value of the Maximum active jobs (MAXACT) parameter is reduced to a number less than the total
number of jobs that are active through the communications entry, no new program start requests are
processed. Active jobs continue to run; but no additional program start requests are processed until the
number of active jobs is less than the value specified for the MAXACT parameter.

Command: Change Communications Entry (CHGCMNE)

Example: This example changes the communications entry (in the subsystem description QGPL/BAKER)
for the device A12 and mode *ANY. The maximum activity level is changed to *NOMAX which means that
the communications entry puts no restrictions on the number of program start requests that might be
active at the same time. However, the MAXJOBS value in the subsystem description BAKER limits the
total number of jobs that can be active in the subsystem. This includes those created by program start
requests. There is also a limit that the user can specify on the number of active jobs that can be routed
through any particular routing entry (MAXACT). The limit specified in the routing entry can control the
number of jobs using a particular pool or the recursion level of a particular program. In all cases, none of
these limits can be exceeded as a result of processing a program start request.

CHGCMNE SBSD(QGPL/BAKER) DEV(A12) MAXACT(*NOMAX)

Work management 137

Related concepts
Communications entries
The communications work entry identifies to the subsystem the sources for the communications job it
processes. The job processing begins when the subsystem receives a communications program start
request from a remote system and an appropriate routing entry is found for the request.

Changing job queue entries
You can change an existing job queue entry in the specified subsystem description. This command can be
issued while a subsystem is active or inactive. To change the job queue entry in a subsystem, use the
character-based interface.

Command: Change Job Queue Entry (CHGJOBQE)

Example: This command changes the maximum number of jobs that can be active at the same time from
the job queue QBATCH in library QGPL. The sequence number of the job queue entry does not change. Up
to four jobs from the QBATCH job queue can be active at the same time. Up to one job can be active from
priority level 1. There is no maximum for the number of jobs that can be active at the same time from
priority level 2. Priority levels 3 through 9 do not change.

CHGJOBQE SBSD(QGPL/QBATCH) JOBQ(QGPL/QBATCH) MAXACT(4)
 MAXPTY1(1) MAXPTY2(*NOMAX)

Related concepts
Job queue entry
A job queue entry identifies a job queue from which jobs are selected for running in the subsystem. There
are five parameters in the job queue entry that control how the job queue should be handled.
Job queue entries
Job queue entries in a subsystem description specify from which job queues a subsystem is to receive
jobs. When the subsystem is started, the subsystem tries to allocate each job queue defined in the
subsystem job queue entries.

Changing prestart entries
You can change a prestart job entry in the specified subsystem description. The subsystem may be active
when the prestart job entry is changed. Changes made to the entry when the subsystem is active are
reflected over time. Any new prestart jobs started after the command is issued use the new job-related
values. This command identifies prestart jobs that are started when the subsystem is started or when the
Start Prestart Jobs (STRPJ) command is issued.

To change the prestart job entry of a subsystem description, use the character-based interface.

Command: Change Prestart Job Entry (CHGPJE)

Example: This example changes the prestart job entry for the PGM1 program in the QGPL library in the
PJSBS subsystem description contained in the QGPL library. The prestart jobs associated with this entry
are not started the next time the PJSBS subsystem description in the QGPL library is started. The STRPJ
command is needed to start the prestart jobs. When more jobs need to be started, one additional job is
started.

CHGPJE SBSD(QGPL/PJSBS) PGM(QGPL/PGM1) STRJOBS(*NO)
 THRESHOLD(1) ADLJOBS(1)

Related concepts
Prestart job entries
You define the prestart job by using a prestart job entry. A prestart job entry does not affect the device
allocation or program start request assignment.
Prestart job investigation
This topic provides steps to help you answer the question, "How do I find the real user of a prestart job
and determine the resources used by that prestart job?"
Related information
Experience Report: Tuning prestart job entries

138 IBM i: Work management

Changing routing entries
You can change a routing entry in the specified subsystem description by using the character-based
interface. The routing entry specifies the parameters used to start a routing step for a job. The associated
subsystem can be active when the changes are made.

Command: Change Routing Entry (CHGRTGE)

Example: This command changes routing entry 1478 in the subsystem description ORDER found in
library LIB5. The same program is used, but now it runs in storage pool 3 using class SOFAST in library
LIB6.

CHGRTGE SBSD(LIB5/ORDER) SEQNBR(1478) CLS(LIB6/SOFAST) POOLID(3)

Related concepts
Routing entries
The routing entry identifies the main storage subsystem pool to use, the controlling program to run
(typically the system-supplied program QCMD), and additional run-time information (stored in the class
object). Routing entries are stored in the subsystem description.

Changing workstation entries
You can specify a different job description for a previously defined workstation entry by using the
character-based interface.

• When the Job description (JOBD) parameter is specified, the workstation entry is changed; however,
the value of this parameter is not changed for any jobs started through this entry that are active at the
time.

• If the value of the Maximum active jobs (MAXACT) parameter is reduced to a number less than the total
number of workstations that are active through the workstation entry, no additional workstations are
allowed to sign on. Active workstations are signed off. Additional jobs can be created for an active
workstation by the Transfer Secondary Job (TFRSECJOB) command or the Transfer to Group Job
(TFRGRPJOB) command. Other workstations are not allowed to sign on until the number of active
workstations is less than the value specified for the MAXACT parameter.

Command: Change Workstation Entry (CHGWSE)

Example: This command changes the workstation entry for workstation A12 in subsystem BAKER found
in the general purpose library. A job is created for workstation A12 when the user's password is entered
on the sign-on display and the Enter key is pressed.

CHGWSE SBSD(QGPL/BAKER) WRKSTN(A12) AT(*SIGNON)

Related concepts
Workstation entries
An interactive job is a job that starts when a user signs on to a display station and ends when the user
signs off. For the job to run, the subsystem searches for the job description, which may be specified in the
workstation entry or the user profile.

Changing the sign-on display
Your system is shipped with the default sign-on display file of QDSIGNON, which is located in the QSYS
library. In situations where you have a multilingual environment, you might want to change what is
displayed on the sign-on screen. Or, perhaps you want to add your company information to the sign-on
screen. In such situations you must first create a new display file. To do so, use the character-based
interface.

The SGNDSPF attribute in the subsystem description points to the sign-on display file that the user sees
when signing on to the subsystem.

The steps used to change the sign-on display are summarized as follows:

1. Create a new sign-on display file.
2. Change the subsystem description to use the changed display file instead of the system default.

Work management 139

3. Test the change.

Related tasks
Creating a sign-on display file
The sign-on display file is used to show sign-on displays at workstations that are allocated to the
subsystem. The sign-on display file can be changed when the subsystem is active. However, the new
sign-on display file is not used until the next time the subsystem is started. To create a sign-on display
file, use the character-based interface.
Specifying the new sign-on display
A subsystem uses the sign-on display file that is specified in the SGNDSPF parameter of the subsystem
description to create the sign-on display at a user workstation. To change the sign-on display file from the
default (QDSIGNON) to one that you have created, use the character based interface.
Related information
Locales as part of a multi-lingual environment
DDS for display files

Deleting a subsystem description
The Delete Subsystem Description (DLTSBSD) command deletes the specified subsystem descriptions
(including any work entries or routing entries added to them) from the system. Job queues assigned to
this subsystem by the Add Job Queue Entry (ADDJOBQE) command are not deleted. In fact, when you
delete a subsystem description (SBSD), none of the objects that are referenced by the SBSD are deleted.

The associated subsystem must be inactive before it can be deleted. Use the character-based interface to
delete a subsystem.

Command: Delete Subsystem Description (DLTSBSD)

This command deletes the inactive subsystem description called BAKER from library LIB1.

DLTSBSD SBSD(LIB1/BAKER)

Removing autostart job entries
You can remove an autostart job entry from a subsystem description by using the character-based
interface.

Command: Remove Autostart Job Entry (RMVAJE)

Example: The following example removes the autostart entry for the job START from the subsystem
description ABC.

RMVAJE SBSD(USERLIB/ABC) JOB(START)

Note: For the changes to take effect the active subsystem must be ended and then restarted.

Related concepts
Autostart job entries
Autostart job entries identify the autostart jobs to start as soon as the subsystem starts. When a
subsystem starts, the system allocates several items and starts autostart and prestart jobs before it is
ready for work.

Removing communication entries
You can remove communication entries from the subsystem description by using the character-based
interface. All jobs that are active through the communications entry being removed must be ended before
this command can be run.

Command: Remove Communications Entry (RMVCMNE)

Example: This command removes the communications device entry for the device COMDEV from the
subsystem description SBS1 in library LIB2.

RMVCMNE SBSD(LIB2/SBS1) DEV(COMDEV)

140 IBM i: Work management

Related concepts
Communications entries
The communications work entry identifies to the subsystem the sources for the communications job it
processes. The job processing begins when the subsystem receives a communications program start
request from a remote system and an appropriate routing entry is found for the request.

Removing job queue entries
You can remove job queue entries from a subsystem description by using the character-based interface.
Jobs on the job queue remain on the queue when the job queue entry is removed from the subsystem
description. A job queue entry cannot be removed if any currently active jobs were started from the job
queue.

Command: Remove Job Queue Entry (RMVJOBQE)

Example: This command removes the job queue entry that refers to the BATCH2 job queue in MYLIB from
the NIGHTRUN subsystem description stored in library MYLIB.

RMVJOBQE SBSD(MYLIB/NIGHTRUN) JOBQ(MYLIB/BATCH2)

Related concepts
Job queue entry
A job queue entry identifies a job queue from which jobs are selected for running in the subsystem. There
are five parameters in the job queue entry that control how the job queue should be handled.
Job queue entries
Job queue entries in a subsystem description specify from which job queues a subsystem is to receive
jobs. When the subsystem is started, the subsystem tries to allocate each job queue defined in the
subsystem job queue entries.
Related tasks
Assigning the job queue to the subsystem
To assign a job queue entry to a subsystem description, use the character-based interface.

Removing prestart job entries
You can remove prestart job entries from the subsystem description by using the character-based
interface. A prestart job entry cannot be removed if any currently active jobs were started using the entry.

When removing an entry where *LIBL is specified for the library name, the library list is searched for a
program with the specified name. If a program is found in the library list but an entry exists with a
different library name (which is found later in the library list), no entry is removed. If a program is not
found in the library list but an entry exists, no entry is removed.

Command: Remove Prestart Job Entry (RMVPJE)

Example: This command removes the prestart job entry for the PGM1 program (in the QGPL library) from
the PJE subsystem description contained in the QGPL library.

RMVPJE SBSD(QGPL/PJE) PGM(QGPL/PGM1)

Related concepts
Prestart job entries
You define the prestart job by using a prestart job entry. A prestart job entry does not affect the device
allocation or program start request assignment.
Prestart job investigation
This topic provides steps to help you answer the question, "How do I find the real user of a prestart job
and determine the resources used by that prestart job?"
Related information
Experience Report: Tuning prestart job entries

Work management 141

Removing routing entries
You can remove a routing entry from the specified subsystem description by using the character-based
interface. The subsystem can be active at the time the command is run. However, the routing entry
cannot be removed if there are any currently active jobs that were started using the entry.

Command: Remove Routing Entry (RMVRTGE)

Example: This command removes the routing entry 9912 from subsystem description PERT in library OR.

RMVRTGE SBSD(OR/PERT) SEQNBR(9912)

Related concepts
Routing entries
The routing entry identifies the main storage subsystem pool to use, the controlling program to run
(typically the system-supplied program QCMD), and additional run-time information (stored in the class
object). Routing entries are stored in the subsystem description.

Removing workstation entries
You can remove a workstation entry from a subsystem description by using the character-based
interface. The subsystem can be active at the time the command is run. However, all jobs that are active
through the workstation entry must be ended before it can be removed.

Command: Remove Work Station Entry (RMVWSE)

Example: This example removes the workstation entry for workstation B53 from the subsystem
description named CHARLES in library LIB2.

RMVWSE SBSD(LIB2/CHARLES) WRKSTN(B53)

Related concepts
Workstation entries
An interactive job is a job that starts when a user signs on to a display station and ends when the user
signs off. For the job to run, the subsystem searches for the job description, which may be specified in the
workstation entry or the user profile.

Configuring an interactive subsystem
The information in this section explains how to set up a new interactive subsystem.

These steps are described as if the commands are entered manually. However, you can easily re-create
your configurations for recovery purposes by using a CL program to create your subsystems.

When you set up a new interactive subsystem you should consider how many devices will be allocated to
that subsystem. Since the subsystem performs device management functions, such as presenting the
sign-on display and handling device error recovery, you might want to limit the number of devices
allocated to a single subsystem. See the Communications limits topic for more information.

Note: This topic provides a synopsis of what is involved in configuring interactive subsystems. The
experience reports about subsystems contain detailed explanations of each step and additional options
available for each step.

Creating a library
This example shows how to create a library to store your subsystem configuration objects.

The example uses SBSLIB as the library.

CRTLIB SBSLIB TEXT('LIBRARY TO HOLD SUBSYSTEM CONFIGURATION OBJECTS')

Creating a class
A class defines certain performance characteristics for your interactive subsystem. Follow this instruction
to create a class.

To create a class that is identical to the QINTER class, enter the following command:

142 IBM i: Work management

CRTCLS SBSLIB/INTER1 RUNPTY(20) TIMESLICE(2000) PURGE(*YES) DFTWAIT(30)
 TEXT('Custom Interactive Subsystem Class')

You can use the QINTER class in QGPL for your custom interactive subsystems, or you can create a single
class to use for all of your interactive subsystems, or you can create one for each interactive subsystem.

Your choice should depend upon whether you want to customize some of the performance settings for a
particular subsystem. IBM-supplied subsystems are shipped with a class created for each subsystem,
with the name of the class being the same as the name of the subsystem.

If you do NOT create a class for each subsystem with the same name as the subsystem, you need to
specify the class name on the Add Routing Entry (ADDRTGE) command. This is because the default for the
CLS parameter is *SBSD, meaning the class name has the same name as the subsystem description.

Creating the subsystem description
For each subsystem that you need to define, repeat this step to create the subsystem description.

The following creates a subsystem description with attributes identical to those of QINTER.

CRTSBSD SBSD(SBSLIB/INTER1) POOLS((1 *BASE) (2 *INTERACT)) SGNDSPF(*QDSIGNON)

Creating a job queue
You can create a job queue for the subsystem using the same name as the subsystem name and add a job
queue entry to the subsystem description.

This step is required if you need to use the Transfer Job (TFRJOB) command to transfer jobs into your
custom subsystems.

CRTJOBQ JOBQ(SBSLIB/INTER1)
ADDJOBQE SBSD(SBSLIB/INTER1) JOBQ(SBSLIB/INTER1) MAXACT(*NOMAX)

Adding a routing entry
The routing entries that are supplied with the system for QINTER have some additional functions. If you
need those functions, add those routing entries to your customized subsystem descriptions.

Follow this step to add a routing entry:

ADDRTGE SBSD(SBSLIB/INTER1) SEQNBR(9999) CMPVAL(*ANY) PGM(QSYS/QCMD) POOLID(2)

Adding workstation entries
Adding workstation entries to the subsystem description is a key step for assigning which devices are
allocated to which subsystem.

You need to determine which subsystems should allocate which devices (AT(*SIGNON)). In addition,
determine if you need to allow the use of TFRJOB from one subsystem to another (AT(*ENTER)).

ADDWSE SBSD(SBSLIB/PGRM) WRKSTN(PGMR*) AT(*SIGNON)
ADDWSE SBSD(SBSLIB/ORDERENT) WRKSTN(ORDERENT*) AT(*SIGNON)
ADDWSE SBSD(QGPL/QINTER) WRKSTN(QPADEV*) AT(*SIGNON)

In this example, the subsystem and device naming convention is based upon the type of work the user
does. Programmers all have devices that are named with PGMR and run in the PGRM subsystem. Order
entry personnel all have devices that are named with ORDERENT and run in the ORDERENT subsystem.
All other users use the system default naming convention of QPADEVxxxx and run in the IBM-supplied
syubsystem QINTER.

Customizing QINTER
When you begin using your own set of subsystems, you might not need to use QINTER. However, if you
have a reason to continue to use QINTER, you need to ensure that QINTER is set up NOT to allocate the
workstations that you want to run under your other subsystems. There are two possible ways to do this.

Remove the *ALL workstation entry from QINTER:

Work management 143

1. Remove the *ALL workstation entry from QINTER, and then add specific workstation entries that
indicate which devices you want QINTER to allocate.
Removing the workstation type entry of *ALL is to prevent QINTER from attempting to allocate all
workstations.

2. Add a workstation entry for devices named DSP* to allow all twinax-attached display devices to
continue to be allocated to QINTER.

In this example, the twinax-attached display devices will continue to run in QINTER; QINTER will not
attempt to allocate any other devices.

RMVWSE SBSD(QGPL/QINTER) WRKSTNTYPE(*ALL)
ADDWSE SBSD(QGPL/QINTER) WRKSTN(DSP*)

Second method

Add a workstation entry to tell QINTER not to allocate the devices that are assigned to other subsystems.
However, allow QINTER to continue to allocate any other device that is not allocated to a subsystem. This
keeps the workstation type entry of *ALL in the QINTER subsystem and adds workstation name entries
with the AT parameter for those devices that are allocated to different subsystems.

ADDWSE SBSD(QGPL/QINTER) WRKSTN(PGMR*) AT(*ENTER)
ADDWSE SBSD(QGPL/QINTER) WRKSTN(ORDERENT*) AT(*ENTER)

Note: You cannot use this method if the number of device descriptions on your system exceeds the
maximum number that a single subsystem can handle.

Configuring the console
A final, but VERY important consideration regarding QINTER is the workstation type entry of *CONS for
the console. Make sure that you do not accidentally prevent someone from signing on at the console. You
prevent this from happening by not adding any workstation entries for the console to your custom
interactive subsystems.

The system is shipped with the controlling subsystem having a workstation entry of AT(*SIGNON) for the
console (*CONS workstation type entry). QINTER has the AT(*ENTER) workstation type entry for the
console.

It is good practice to always run the console in the controlling subsystem and to not transfer the console
job into some other interactive subsystem. This prevents the user at the console from ending their own
job unintentionally.

For example, if the user at the console transfers their job to INTER1 and forgets about it, and sometime
later proceeds to prepare for backup processing by doing an End System (ENDSYS) command, the
console job is also ended. This is most likely not what the operator intended.

Assigning users to a specific subsystem
You can use several techniques to assign device names and then associate those device names with
users. After this is accomplished, you can use the workstation entries to get the user to the correct
subsystem.

The system has a default naming convention that is used for display sessions. At times this proves
insufficient for routing workstation entries across multiple subsystems by user profile.

You can make changes on your system to enhance the system's default behavior by assigning and
managing your own device naming conventions. There are several ways of doing this. Each approach has
its own set of advantages and disadvantages.
Related concepts
How workstation devices are allocated
Subsystems attempt to allocate all workstation devices in its subsystem description for AT(*SIGNON)
workstation entries.
Related information
Experience Report: Subsystem Configuration

144 IBM i: Work management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work1abstract.htm

Using Telnet exit point programs

Telnet device initialization and terminal exit points
Telnet Device Initialization and Terminal Exit Points. These exit points provide the ability to assign device
names based upon the client signing on to the system.

The exit point provides you with the client IP address and the user profile name (along with additional
information). You can then perform your own mapping of the client to the device description that should
be used for the client.

The device initialization exit point also provides a way to bypass the sign-on panel.

The advantage to using these exit points to manage your device naming convention is that you have
central control on your system for all of your clients.

The disadvantage is that it requires programming skills.

Device selection exit point
This exit point allows you to specify the naming convention used for automatically created virtual devices
and virtual controllers and to specify the automatic creating limit used for the special requests.

With this exit point you can specify different naming conventions for automatically created devices used
by Telnet, 5250 Display Station Pass-through, and the virtual terminal APIs.

In addition, you can manage the Pass-through devices and Telnet (QAUTOVRT) system value in a more
precise manner. For example, you can allow one value for automatically created devices for Telnet and
allow a different value for 5250 Display Station Pass-through devices.

This exit point gives you the ability to control the default naming conventions used for devices (such as
QPADEV*) but it alone does not allow you to specify a particular device for a particular user. This exit
point is most useful if you are using a mix of ways to connect to the system (Telnet, 5250 Display Station
Pass-through, WebFacing, and so on) because it allows you to use different device naming conventions
and precise QAUTOVRT management for different access methods.

PC5250 (System i Access) workstation ID support
You can configure IBM i Access to connect with a specific workstation name. If you click the help button
from this window, the various options for specifying the workstation ID, like generating a new name if the
one specified is already in use, are displayed.

A disadvantage to this approach is that it requires you to manage the PC5250 configuration settings on
each and every client that connects to your server.

OS/400 Telnet Client
Using the OS/400® Telnet Client command (STRTCPTELN or TELNET), you can specify the device name
that is used to sign on to the server system.

A disadvantage to the default approach is that it requires you to ensure that all usage of the STRTCPTELN
(TELNET) commands specify the remote virtual display value appropriately. To alleviate this concern, you
can create a custom version of the STRTCPTELN command to ensure the remote virtual terminal display
value and start the IBM supplied command.

Manually creating virtual controllers and devices
You can manually create your virtual controllers and devices.

For more information about virtual device creation for Telnet, see the Configure the Telnet Server topic in
the IBM i Information Center.

This gives you control over what the names of your controllers and devices are, but it does not provide
you with the ability to map a specific device to a specific user.

Work management 145

Configuring a server subsystem
The information in this section explains how to set up a subsystem for server jobs.

The default subsystem configuration shipped with IBM i is a basic subsystem configuration that works
well for small systems. However, as the number of users and amount of work increases on the system,
you may want to split the work into multiple subsystems to better manage the work on the system.

Server jobs are jobs that run continuously in the background waiting for work. Work can come from
network functions, operating system functions, on behalf of a user, another system within the network, or
from general system services, such as the clustering server jobs. Server jobs typically run in one of the
basic subsystems that are shipped with the system - QSYSWRK, QSERVER, or QUSRWRK. The daemon
jobs (the server jobs that route work requests to waiting prestart jobs) typically run in QSYSWRK and
QSERVER, while the prestart server jobs that perform work on behalf of users typically run in QUSRWRK,
although some of the prestart jobs also run in QSERVER.

The following sections show how to create a user-defined server subsystem and customize the
subsystems in which the server jobs run. Server jobs can be routed to a subsystem by IP address, or in
some cases, by user name.

Related tasks
Tuning prestart job entries
You should have enough prestart jobs started by the subsystem so that work is handled as it arrives
rather than waiting for new jobs to be started. These tips show how to tune your prestart jobs for
optimum performance.

Creating a user-defined server subsystem
A server can use the default subsystem, one of the subsystems that are shipped with the system, a user-
defined server subsystem or a combination of one or more of these different types of subsystems. This
section explains how to create your own server subsystem.

To create a user-defined server subsystem, follow these steps:

1. Create a library to store your subsystem configuration objects in.

CRTLIB SBSLIB TEXT('Library to hold subsystem configuration objects')

2. Create a class. The class defines certain performance characteristics for your subsystem including run
priority, time slice, and default wait times.

CRTCLS SBSLIB/MYSBS RUNPTY(20) TIMESLICE(2000) DFTWAIT(30)
 TEXT('Custom Subsystem Class')

3. Create the subsystem description. You can either use the Create Subsystem Description (CRTSBSD)
command to create a new subsystem description or the Create Duplicate Object (CRTDUPOBJ)
command to make a copy of an existing subsystem description. For example, to create a new
subsystem description:

CRTSBSD SBSD(SBSLIB/MYSBS) POOLS((1 *BASE))
 TEXT('Custom Server Subsystem')

To create a duplicate of the QUSRWRK subsystem description:

CRTDUPOBJ OBJ(QUSRWRK) FROMLIB(QSYS) OBJTYPE(*SBSD) TOLIB(SBSLIB)

Note: Create duplicate object will also copy job queue entries, routing entries, and prestart job entries
from the subsystem description being copied from. Depending on the requirements for your
subsystem, these values may have to be changed.

4. Create a job queue for the subsystem, using the same name as the subsystem name and add a job
queue entry to the subsystem description. In general, a job queue for the subsystem will be required.
Having a job queue allows server jobs to be submitted to the subsystem when needed. Server jobs on
the job queue will then be processed. Also, if you will be using the Transfer Job (TFRJOB) command to
transfer jobs into your custom subsystem, you will want a job queue.

146 IBM i: Work management

CRTJOBQ JOBQ(SBSLIB/MYSBS)
ADDJOBQE SBSD(SBSLIB/MYSBS) JOBQ(SBSLIB/MYSBS) MAXACT(*NOMAX)

Note: A job queue can only be allocated by one active subsystem. If you used CRTDUPOBJ to create
your subsystem description in step 3, remove the JOBQ entries that were copied, using the Remove
Job Queue Entry (RMVJOBQE) command, to prevent your subsystem from trying to allocate a JOBQ
that is needed by the subsystem the entry was copied from.

5. Add a routing entry to the subsystem. The following is an example of adding a routing entry that is
designed to be a generic entry to catch all requests that do not match a specific routing entry. The
routing entries added to any user-defined subsystem can vary from this example and will depend on
the specific requirements for the subsystem. A good basis for setting up routing entries for a user-
defined subsystem is to make them identical to the routing entries used by QUSRWRK.

ADDRTGE SBSD(SBSLIB/MYSBS) SEQNBR(9999) CMPVAL(*ANY)
 PGM(QSYS/QCMD) CLS(SBSLIB/MYSBS)

If you look at the routing entries shipped on the system for QUSRWRK, you will see there are several
additional routing entries. If you need those functions, add those routing entries to your customized
subsystem descriptions as well. It is recommended to copy the routing entries from QUSRWRK into
the new user-defined subsystem.

Note: The maximum activity level (MAXACT) refers to the maximum number of routing steps that can
be active through this routing entry. It is highly recommend to use the default value of *NOMAX. The
ADDRTGE command specifies which pool identifier to use and the default on the command is 1. If you
had set up your subsystem description with dedicated pools, be sure to specify the appropriate pool
identifier on the routing entry. If the name of your class is different from the name of your subsystem
description, you will need to specify the class on the ADDDRTGE command.

6. Add prestart job entries to the subsystem. A prestart job is a job that is started and waits for work to
be dispatched to it. It is particularly useful for subsystems to have a number of prestart jobs available
to handle requests that are submitted to the subsystem. The following is an example of adding a
prestart job entry. The prestart job entries added to any user-defined subsystem can vary from this
example and will depend on the specific requirements for the subsystem. It is recommended that the
prestart job entries for a user-defined subsystem be identical to the prestart job entries used by
QUSRWRK.

ADDPJE SBSD(SBSLIB/MYSBS) PGM(QSYS/QZSOSIGN) INLJOBS(50) THRESHOLD(4)
 JOB(QZSOSIGN) JOBD(QSYS/QZBSJOBD) CLS(QGPL/QCASERVR) STRJOBS(*YES)

Note: By initializing the job before work arrives, the overhead and time of doing initialization is
avoided, allowing for a much higher throughput of work. It is very important that the prestart job
entries be configured correctly to be able to handle the expected amount of work and the expected
amount of requests sent to them. If not done correctly, jobs may end up taking an alternative action or
a degradation in performance will be seen as additional prestart jobs are created if the current pool of
prestart jobs is exhausted.

Routing server jobs based on client IP address
Some of the servers provided by IBM i can be configured to run in a subsystem other than the default
subsystem. A server can use subsystems that are shipped with the system or user-defined server
subsystems. A server can also use multiple subsystems. The following steps show how to configure
server subsystems using IBM Navigator for i.

To specify which subsystem server jobs will use:

1. Select Network > Servers.
2. Select the type of server that you want to configure. DDM and IBM i NetServer are TCP/IP servers.

Central, Database, Data Queue, Files, Net Print, Remote Command, and Sign On are IBM i Access
servers. The remaining steps use a subsystem from IBM i Access. The subsystem configuration steps
are identical for each server.

Work management 147

3. In the right pane, right-click on the server that you want to configure and select Properties, then
switch to the Subsystems tab.

4. From the Subsystems tab you can specify which subsystem you want this server's jobs to run in. There
are different ways to configure the subsystems. Select the appropriate configuration method and
complete the following instructions for your selection:

• User server defaults

Select this option if you want the server to use the default subsystem for all jobs using this subsystem.
• All clients

Select this option if all clients that use this server are to use the same subsystem and alternate action.
All clients provides an easy way to subdivide the work done by the various servers into a subsystem by
type of server. For example, you can have all clients for the database server use the DATABASE
subsystem, all clients for the remote command server use the RMTCMD subsystem, etc.

– The Subsystem list specifies the subsystem you want this server's jobs to run in. You can type in the
ten character name of the subsystem you want to use, if it is not listed. If None is selected, the server
jobs will perform the Alternate action.

– The Alternate action list specifies what to do if the server jobs cannot run in the specified
subsystem; for example if the subsystem is not active or if you want to prohibit certain users from
using specific servers. Another example where the alternate action would be taken is when the
necessary prestart jobs for the subsystem are not active. Possible values are Reject, and Start in
current subsystem. When Reject is selected, the request will be rejected if it cannot run in the
specified subsystem. When Start in current subsystem is selected, if the job cannot run in the
specified subsystem, the job will attempt to run in the same subsystem that the server daemon is
running in. For the database and file servers this will typically result in the request being run in the
QSERVER subsystem. For other servers, this will result in requests being sent to QSYSWRK. See the
Server table for more information on server jobs and the subsystems in which they run, including
server and daemon jobs.

• Specific clients

Select this option if you want to set a unique subsystem configuration for specific clients. When you add
specific client configuration, a <Public> entry will be added to the end of the list. The <Public> entry
applies to all clients not included by the specific client entries you have added.

There are different actions you can take to configure specific server subsystem clients.

– Add - Select Add to add a client to the list. From Add Client you can specify the subsystem
configuration for a specific client or a group of clients.

IPv4 or IPv6 - Select the type of IP version you want to add.

Description - Enter a text description of the client(s) that you are configuring.

Client IP address or IP address range - Specify whether you want to use an individual IP address
for a single client or a range of IP addresses for a group of clients. IP address ranges cannot overlap
for the selected server.

Subnet mask - The subnet mask specifies the subnet mask for this IP address. The subnet mask is a
unique 32-bit integer that defines the part of the network where an interface attaches. The mask is
expressed in the form xxx.xxx.xxx.xxx, where each field is the decimal representation of one byte (8
bits) of the mask. For example, the subnet mask with a hexadecimal representation is X'FFFFFF00' is
expressed as 255.255.255.0.

Note: If the entry is intended to only impact one IP address, the proper subnet mask would be
255.255.255.255.

Subsystem - Specify the subsystem you want these client(s) to run in. You can type in the ten
character name of the subsystem you want to use, if it is not listed. If None is selected, the client(s)
will perform the Alternate action.

148 IBM i: Work management

Alternate action - The Alternate action list specifies what to do if the server jobs cannot run in the
specified subsystem; for example if the subsystem is not active or if you want to prohibit certain
users from using specific servers. Another example where the alternate action would be taken is
when the necessary prestart jobs for the subsystem are not active. Possible values are Reject and
Start in current subsystem. When Reject is selected, the request will be rejected if it cannot run in
the specified subsystem. When Start in current subsystem is selected, if the job cannot run in the
specified subsystem, the job will attempt to run in the same subsystem that the server daemon is
running in. For the database and file servers this will typically result in the request being run in the
QSERVER subsystem. For other servers, this will result in requests being sent to QSYSWRK. See the
Server table for more information on server jobs and the subsystems in which they run, including
server and daemon jobs.

– Edit - Select the client record that you want to edit, and then select Edit to make changes to the
selected client record.

– Remove - Select the client record that you want to remove, and then select Remove to delete the
selected client record from the list. You cannot remove the <Public> entry at the end of the list.

After all selections have been made, click OK to accept and apply the specified changes.

Routing server jobs by user profile
Some of the servers provided by IBM i can be configured to route jobs doing work on behalf of a specific
user profile to a defined subsystem.

The list of servers that allow subsystem routing by user can be found in the SQL
SET_SERVER_SBS_ROUTING procedure. You can configure only these servers to route a user to a specific
subsystem. You must use the SQL SET_SERVER_SBS_ROUTING procedure to associate a user or group
profile with both the server name and a subsystem name. When configured, new incoming TCP/IP server
connections will be routed to the subsystem specified. If the server is also configured with IBM Navigator
for i server subsystem configuration, the job will first be routed based on the IBM Navigator for i server
subsystem configuration and then the SQL SET_SERVER_SBS_ROUTING configuration will be checked
and the job will be rerouted if the subsystem and the necessary prestarted jobs are active and available.
See the Routing server jobs to a subsystem for more information on IBM Navigator for i server subsystem
configuration. To configure DRDA connections for user XYZUSER to run in the subsystem 'MYSBS' just
created in Creating a server subsystem follow these steps:

1. If you used CRTDUPOBJ to create a copy of QUSRWRK, you should already have a prestart job entry in
the new subsystem (MYSBS) for DRDA. If not, add the QRWTSRVR prestart job entry as follows:

ADDPJE SBSD(SBSLIB/MYSBS) PGM(QSYS/QRWTSRVR)INLJOBS(1) THRESHOLD(1)
 ADLJOBS(2) MAXJOBS(200) JOBD(QGPL/QDFTSVR) CLS(QSYS/QSYSCLS20)

Note: See Tuning prestart job entries for more information on setting the Initial number of jobs,
threshold and additional number of jobs parameters.

2. From RunSQL Scripts in IBM Navigator for i, or STRSQL from an IBM i command line, run the following
SQL statement:

CALL QSYS2.SET_SERVER_SBS_ROUTING('XYZUSER', 'QRWTSRVR', 'MYSBS')

3. Start the subsystem:

STRSBS SBSLIB/MYSBS

Check to make sure the subsystem is active and the QRWTSRVR prestart jobs were started. New DRDA
connections should now be routed to MYSBS for user XYZUSER.

4. To remove the route by user customization for user XYZUSER, call the same SQL procedure with null
for the subsystem name. For example:

CALL QSYS2.SET_SERVER_SBS_ROUTING('XYZUSER', 'QRWTSRVR', null)

5. To view all route by user customizations for the server, call the following SQL procedure:

Work management 149

SELECT * FROM QSYS2.SERVER_SBS_ROUTING

Creating a controlling subsystem
IBM supplies two complete controlling subsystem configurations: QBASE (the default controlling
subsystem), and QCTL. Only one controlling subsystem can be active on the system at one time. Typically,
the IBM supplied subsystem configurations should be sufficient for most business needs. However, you
can create your own version of a controlling subsystem and configure it to more closely meet your
company's unique needs.

Use the IBM-supplied controlling subsystem QBASE or QCTL as a model for creating your own controlling
subsystem.

Note: If you create your own controlling subsystem, you should use a name other than QBASE or QCTL.

The subsystem description for the controlling subsystem should contain the following:

• A routing entry containing:

– Either *ANY or QCMDI as routing data
– QSYS/QCMD as the program to be called
– Class QSYS/QCTL or a user-defined class. (This is because a user, typically the system

operator, must be able to enter commands to do such things as free up storage if the
auxiliary storage threshold has been reached.)

• A workstation entry for the console with a type of *SIGNON (*SIGNON is a value for the AT parameter,
specified on the Add Work Station Entry (ADDWSE) command.)

The *SIGNON value indicates that the sign-on display is shown at the workstation when the
subsystem is started. This requirement ensures that the subsystem has an interactive device
for the entry of the system and subsystem level commands. The End System (ENDSYS)
command ends the IBM i licensed program to a single session (or sign-on display) at the
console in the controlling subsystem. A subsystem description that does not contain a
workstation entry for the console cannot be started as a controlling subsystem.

• An entry for another workstation:

This provides an alternative source of controlling input. If a console problem is detected
during an attended IPL and the If console problem occurs (QSCPFCONS) system value is set
to 1, the IPL continues in unattended mode. Then, if the subsystem description for the
controlling subsystem contains a workstation entry for another workstation, that alternate
workstation can be used.

• A routing entry containing:

– QSYS/QARDRIVE as the program to be called,
– and QSYS/QCTL as the class

After you have created the controlling subsystem, change the Controlling subsystem/library (QCTLSBSD)
system value as follows (assuming the description is named QGPL/QCTLA):

CHGSYSVAL SYSVAL(QCTLSBSD) VALUE('QCTLA QGPL')

The change becomes effective at the next IPL.
Related concepts
The controlling subsystem
The controlling subsystem is the interactive subsystem that starts automatically when the system starts,
and it is the subsystem through which the system operator controls the system via the system console. It
is identified in the Controlling subsystem/library (QCTLSBSD) system value.
Related information
Experience Report: Restricted State

150 IBM i: Work management

Placing the system in restricted state
If all of the subsystems, including the controlling subsystem are ended, the system goes into a restricted
condition. You can place the system in a restricted condition by using one of two commands from an
interactive workstation.

Command: End Subsystem with the *ALL parameter (ENDSBS SBS(*ALL))

Command: End System (ENDSYS)

Important: The ENDSBS or ENDSYS command should be issued from an interactive job in the controlling
subsystem, and only from a workstation whose entry in the controlling subsystem description specifies
AT(*SIGNON). The interactive job from which the command was issued remains active when the
controlling subsystem goes into a restricted condition. If the job issuing the command is one of two jobs
that are active at the workstation (using the System Request key or the TFRSECJOB command), neither of
the jobs is forced to end. However, the controlling subsystem does not end for the restricted condition
until you end one of the jobs. Suspending group jobs also prevents the controlling subsystem from ending
(until the group jobs are ended).

When the system is in the restricted condition, most of the activity on the system has ended, and only one
workstation is active. The system must be in this condition for commands such as Save System (SAVSYS)
or Reclaim Storage (RCLSTG) to run.

Some programs for diagnosing equipment problems also require the system to be in a restricted
condition. To end the restricted condition you must start the controlling subsystem again.

Related concepts
The controlling subsystem
The controlling subsystem is the interactive subsystem that starts automatically when the system starts,
and it is the subsystem through which the system operator controls the system via the system console. It
is identified in the Controlling subsystem/library (QCTLSBSD) system value.
Related information
Experience Report: Restricted State

Managing memory pools
Making sure that jobs get enough memory to complete efficiently is important. If too much memory is
given to subsystem A and not enough to subsystem B, jobs in subsystem B might begin to run poorly. The
following information describes the various tasks that are involved in managing memory pools.
Related concepts
Memory pools
A memory pool is a logical division of main memory or storage that is reserved for processing a job or
group of jobs. On your system, all main storage can be divided into logical allocations called memory
pools. By default, the system manages the transfer of data and programs into memory pools.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)

Viewing memory pool information
You can view information about the memory pools that are on your system by using IBM Navigator for i or
the character-based interface.
Related concepts
Memory pool allocation
When you start a subsystem, the system attempts to allocate the user-defined storage pools that are
defined in the subsystem description of the started subsystem.
Memory pool activity level

Work management 151

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm

The activity level of a memory pool is the number of threads that can actively use the CPU at the same
time in a memory pool. This allows for efficient use of system resources. The system manages the control
of the activity level.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)

IBM Navigator for i

Expand Work Management > All Tasks > Memory Pools > Active Memory Pools or Shared Memory
Pools.

The Active Memory Pools container displays both shared and private pools as long as they are active. The
Shared Memory Pools container displays all of the shared pools regardless of their current status.
Inactive private pools do not exist beyond the pool definition until they are activated by the subsystem.
Thus they cannot be viewed using IBM Navigator for i.

Character-based interface

Command: Display Subsystem Description (DSPSBSD)

Use option 2 - Pool Definitions to view all of the private and shared pool definitions that exist in this
subsystem definition.

Command: Work with Shared Pools (WRKSHRPOOL)

Determining the number of subsystems using a memory pool
Subsystems are allocated a certain percentage of memory to run jobs. It is important to know how many
different subsystems are pulling from the same memory pool. After you know how many subsystems are
submitting jobs to a pool and how many jobs are running in a pool, you might want to reduce resource
contention by adjusting the size and activity level of the pool.
Related concepts
Memory pool allocation
When you start a subsystem, the system attempts to allocate the user-defined storage pools that are
defined in the subsystem description of the started subsystem.
Memory pool activity level
The activity level of a memory pool is the number of threads that can actively use the CPU at the same
time in a memory pool. This allows for efficient use of system resources. The system manages the control
of the activity level.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)

IBM Navigator for i

To monitor the number of subsystems that are using a memory pool, follow the following instructions:

1. Expand Work Management > Memory Pools > Active Memory Pools or Shared Memory Pools.
2. Right-click the memory pool that you want to work with and click Subsystems.

From this window you can determine the number of subsystems that are using an individual memory
to run their jobs.

Character-based interface

Command: Work with Subsystems (WRKSBS)

152 IBM i: Work management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm

This command displays a list of all of the subsystems and their corresponding pools.

Determining the number of jobs in a memory pool
IBM Navigator for i provides you with a way to quickly display a list of jobs that are currently running in a
memory pool.

To determine the number of jobs in a memory pool, follow the following instructions:

1. Expand Work Management > All Tasks > Memory Pools > Active Memory Pools or Shared Memory
Pools.

2. Right-click the memory pool you want to use and click Jobs. A window appears showing a list of jobs
within the memory pool.

You can also view the number of threads in a memory pool by viewing the Thread Count column. The
thread count provides additional information about the amount of activity in a memory pool.

From this point, you can perform the same functions on jobs as if you were in the Active jobs or Server
jobs area.

Related concepts
Memory pool allocation
When you start a subsystem, the system attempts to allocate the user-defined storage pools that are
defined in the subsystem description of the started subsystem.
Memory pool activity level
The activity level of a memory pool is the number of threads that can actively use the CPU at the same
time in a memory pool. This allows for efficient use of system resources. The system manages the control
of the activity level.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)

Determining in which pool a single job is running
If you have a job that is not performing as you expect you might want to check the memory pool in which
the job is running. To determine in which pool a single job is running, use IBM Navigator for i or the
character based interface.

After you have identified the pool in which the job is running, you can view memory pool information and
determine if changes need to be made. For example, if too much paging occurs, possibly the memory pool
needs to be larger. Another possibility for poor performance is that maybe too many other jobs are in the
pool and you need to route this job to another pool.
Related concepts
Memory pool allocation
When you start a subsystem, the system attempts to allocate the user-defined storage pools that are
defined in the subsystem description of the started subsystem.
Memory pool activity level
The activity level of a memory pool is the number of threads that can actively use the CPU at the same
time in a memory pool. This allows for efficient use of system resources. The system manages the control
of the activity level.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)

Work management 153

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm

IBM Navigator for i

1. Expand Work Management > Active Jobs or Server Jobs, depending on the type of job you want to
work with.

2. Find the job whose memory pool you want to view.
3. Right-click the Job Name and click Properties.
4. Click the Resources tab. The Job Properties - Resources window displays specific information about

the job's memory pool.

Character-based interface

Command: Work with job (WRKJOB)

Option 1: Display Job Status Attributes

The Subsystem pool ID field contains the name of the pool defined for the subsystem in which
the job is running. This field is blank for jobs that are not active at the time the display is
requested. It is also blank for system jobs (type SYS), subsystem monitor jobs (type SBS) that
do not run within a subsystem and batch immediate jobs (BCI) that are running in the Base
memory pool.

Command: Work with active job (WRKACTJOB)

You can use the WRKACTJOB command to see the system pool ID for an active job.

Managing tuning parameters for shared pools
To manage tuning parameters for shared pools, use IBM Navigator for i or character-based interface
commands.
Related concepts
Pool numbering schemes
Pools have two sets of numbering schemes: one is used within a subsystem and one is system-wide. The
subsystem uses a set of numbers that refer to the pools it uses. Thus, when you create or change a
subsystem description you can define one or more pools and label them 1, 2, 3, and so on. These are the
designations of the subsystem pools, and they do not correspond to the pool numbers shown on the Work
with System Status (WRKSYSSTS) display.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)

IBM Navigator for i

To access tuning parameters, use the following instructions:

1. Expand Work Management > All Tasks > Memory Pools > Active Memory Pools or Shared Memory
Pools.

2. Right-click the pool that you want to tune and click Properties.
3. Click the Tuning tab.

From the Shared Properties - Tuning window you can manually adjust specific values such as pool
allocation percentage, page faults per second, and priority.

Character-based interface

Command: Work with Shared Pool (WRKSHRPOOL)

Select Option 11 - Display tuning data .

154 IBM i: Work management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm

Managing a pool's configuration
To change a pool's size, activity level or paging option, use IBM Navigator for i or character-based
interface commands.
Related concepts
Pool numbering schemes
Pools have two sets of numbering schemes: one is used within a subsystem and one is system-wide. The
subsystem uses a set of numbers that refer to the pools it uses. Thus, when you create or change a
subsystem description you can define one or more pools and label them 1, 2, 3, and so on. These are the
designations of the subsystem pools, and they do not correspond to the pool numbers shown on the Work
with System Status (WRKSYSSTS) display.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)

IBM Navigator for i

To access a shared pool's configuration values, use the following instructions:

1. Expand Work Management > All Tasks > Memory Pools > Active Memory Pools or Shared Memory
Pools.

2. Right-click the pool that you want to tune and click Properties.
3. Click the Configuration tab.

From the Shared Properties - Configuration window you can manually adjust specific values such as a
pool's size, activity level or paging option.

Character-based interface

Command: Work with Shared Pool (WRKSHRPOOL)

Changing memory pool size
The size of a memory pool directly affects the amount of work that a subsystem can process. The more
memory a subsystem has, the more work it can potentially complete. It is important that you monitor
your system carefully before you start changing the parameters of your memory pools. You also want to
periodically recheck these levels, as some readjustment might need to be done.

Make sure you turn off the system tuner before you start manually changing memory pool sizes. The
system tuner automatically adjusts the sizes of your shared memory pools to the amount of work the
system is doing. If the system tuner is not turned off, the changes you make manually might be changed
automatically by the tuner.

Turn the system tuner off by changing the Automatically adjust memory pools and activity levels
(QPFRADJ) system value to 0. (0 = No adjustment)

Related concepts
Pool numbering schemes
Pools have two sets of numbering schemes: one is used within a subsystem and one is system-wide. The
subsystem uses a set of numbers that refer to the pools it uses. Thus, when you create or change a
subsystem description you can define one or more pools and label them 1, 2, 3, and so on. These are the
designations of the subsystem pools, and they do not correspond to the pool numbers shown on the Work
with System Status (WRKSYSSTS) display.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)

Work management 155

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm

IBM Navigator for i

1. Expand Work Management > All Tasks > Memory Pools > Active Memory Pools or Shared Memory
Pools.

2. Right-click the memory pool that you want to work in (for example, Interactive) and click Properties.
The Memory Pool Properties window appears.

3. From the Configuration tab of the Properties window, you can change the defined amount of memory.
Defined memory is the maximum amount of memory that the pool can use. The number you put here
should reflect the amount of memory that you think the pool needs to support the subsystems it
services.

Note: The Base pool is the only memory pool that does not have a defined amount of memory. Instead it
has a minimum amount of memory that it needs to run. The Base pool contains everything that is not
allocated elsewhere. For example, you might have 1000 MB of memory on your system of which 250 MB
is allocated to the Machine pool and 250 MB is allocated to the Interactive pool. 500 MB is not allocated
to anything. This non-allocated memory is stored in the Base pool until it is needed.

Use caution when moving memory. Moving memory from one pool to another can fix one subsystem, but
can cause problems for other subsystems, which in turn, can worsen system performance.

Character-based interface

Command: Change System Value (CHGSYSVAL)

Example: The following changes the size of the Machine pool.

CHGSYSVAL QMCHPOOL 'new-size-in-KB'

This corresponds to pool 1 on the WRKSYSTS display.

Example: The following changes the minimum size of the base pool.

CHGSYSVAL QBASPOOL 'new-minimum-size-in-KB'

This corresponds to pool 2 on the WRKSYSSTS display.

Note: The QBASPOOL system value only controls the minimum size of the base pool. The Base pool
contains all of the storage that is not allocated to other pools.

Change the size of a shared pool

Command: Change Shared Storage Pool (CHGSHRPOOL)

The changes to shared pools take effect immediately if the shared pool is active and sufficient storage is
available.

Command: Work with Shared Storage Pools (WRKSHRPOOL)

This command gives you access to the names and status information of shared pools. By using the menu
options you can change values for pool size and maximum activity levels.

Creating a private memory pool
Private memory pools (also known as user-defined memory pools) can be used by IBM-supplied
subsystems or by user-defined subsystems. You can define up to a maximum of 10 memory pool
definitions for a subsystem. You create a private memory pool in the subsystem description.

To create a private memory pool, use the character-based interface.

Command: Create Subsystem Description (CRTSBSD) POOLS parameter.

Command: Change Subsystem Description (CHGSBSD) POOLS parameter.

Note: Although each subsystem description can have as many as 10 user-defined memory pools, there is
an operation limitation of no more than 64 memory pools that can be active at any time. (This includes the
Base memory pool and the Machine memory pool.) If the maximum allocation limit is reached before all

156 IBM i: Work management

of the memory pools for a subsystem are allocated, the Base pool is used for any routing steps that still
require a memory pool.

Related concepts
Types of memory pools
On the your system, all main storage can be divided into logical allocations called memory pools. All
memory pools in a system are either private or shared. There are private memory pools, shared memory
pools, and special shared memory pools. As many as 64 memory pools, in any combination of private and
shared pools, can be active at the same time.
Related information
Managing system performance
Basic performance tuning
Applications for performance management
Experience report: The Performance Adjuster (QPFRADJ)
Performance system values: Machine memory pool size
Performance system values: Base memory pool minimum size
Performance system values: Base memory pool maximum eligible threads

Managing job queues
As you manage the work on your system, you might find it necessary to manipulate jobs that are waiting in
a job queue. Perhaps someone needs a job run immediately and the job is sitting in a queue at a low
priority. Or maybe you need to perform some maintenance on a subsystem and want to move all of the
jobs to a queue that is not associated with that particular subsystem.

The following information describes how to accomplish these types of management tasks.

Related concepts
Job queues
A job queue contains an ordered list of jobs waiting to be processed by a subsystem. The job queue is the
first place that a submitted batch job goes before becoming active in a subsystem. The job is held here
until a number of factors are met.

Assigning the job queue to the subsystem
To assign a job queue entry to a subsystem description, use the character-based interface.

Command: Add Job Queue Entry (ADDJOBQE)

The parameters on this command specify:

• The number of jobs that can be active at the same time on this job queue (MAXACT)
• In what order the subsystem handles work from this job queue (SEQNBR)
• How many jobs can be active at one time for each of the nine levels of priority (MAXPTYn) (n=1 through

9)

Example: The following example adds a job queue entry for the JOBQA job queue in the TEST subsystem
description. There is no maximum number of jobs that can be active on this job queue and the work is
processed with a sequence number of five.

ADDJOBQE SBSD(TEST) JOBQ(LIBA/JOBQA) MAXACT(*NOMAX) SEQNBR(5)

Related concepts
How a job queue works
Job queues are allocated by a subsystem via the job queue entry. Jobs can be placed on a job queue even
if the subsystem has not been started. When the subsystem is started, it processes the jobs on the queue.
Related tasks
Removing job queue entries
You can remove job queue entries from a subsystem description by using the character-based interface.
Jobs on the job queue remain on the queue when the job queue entry is removed from the subsystem

Work management 157

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/experience/work3abstract.htm

description. A job queue entry cannot be removed if any currently active jobs were started from the job
queue.

How a subsystem handles several job queues
To illustrate how a subsystem handles several job queues, consider this scenario.

Job Queue A (SEQNBR=10)
Job 1
Job 2
Job 3
Job Queue B (SEQNBR=20)
Job 4
Job 5
Job 6
Job Queue C (SEQNBR=30)
Job 7
Job 8
Job 9

Each job queue entry in this scenario is specified as MAXACT(*NOMAX). The subsystem first selects jobs
from job queue A because the job queue entry has the lowest sequence number. If the maximum number
of jobs in the subsystem is 3 (MAXJOBS(3) parameter on the Create Subsystem Description (CRTSBSD)
command), it can select all the jobs from job queue A to be active at the same time.

When any of the three jobs is completed, the activity level is no longer at the maximum; therefore a new
job is selected from job queue B because it has the next lowest sequence number (assuming no new jobs
have been added to job queue A). Because each job queue entry specifies MAXACT(*NOMAX), the
MAXACT value does not prevent jobs from being started. Had each job queue entry specified MAXACT(1),
then jobs 1, 4, and 7 would have been started. Had job queue entry A been specified as MAXACT(2), then
jobs 1, 2, and 4 would have been started.

Related concepts
How a job queue works
Job queues are allocated by a subsystem via the job queue entry. Jobs can be placed on a job queue even
if the subsystem has not been started. When the subsystem is started, it processes the jobs on the queue.

Changing the number of jobs running simultaneously in a job queue
The QBASE subsystem is shipped with a job queue entry for the QBATCH job queue. This entry only
allows one batch job to run at a time. If you want more than one batch job from that job queue to run
simultaneously then you need to change the job queue entry.

To change the number of jobs running simultaneously from a job queue, use the character-based
interface.

Command: Change Job Queue Entry (CHGJOBQE)

Example: The following command allows two batch jobs from the QBATCH job queue to run at the same
time in the QBASE subsystem. (This command can be issued at any time and takes effect immediately.)

CHGJOBQE SBSD(QBASE) JOBQ(QBATCH) MAXACT(2)

Related concepts
How jobs are taken from multiple job queues
A subsystem processes jobs from a job queue based on sequence number. A subsystem can have more
than one job queue entry and can therefore allocate more than one job queue.
How jobs are taken from a job queue
Different factors determine how the jobs are selected from a job queue and started.
Job queue entry

158 IBM i: Work management

A job queue entry identifies a job queue from which jobs are selected for running in the subsystem. There
are five parameters in the job queue entry that control how the job queue should be handled.

Clearing a job queue
When you clear a job queue, every job on the queue is deleted. This includes any jobs that are in the hold
state. You can use IBM Navigator for i or the character-based interface to clear a job queue. Jobs that are
running are not affected because they are considered active jobs and are no longer on the queue.
Related concepts
Job queues
A job queue contains an ordered list of jobs waiting to be processed by a subsystem. The job queue is the
first place that a submitted batch job goes before becoming active in a subsystem. The job is held here
until a number of factors are met.

IBM Navigator for i

To clear a job queue, follow these steps:

1. Expand Work Management > All Tasks > Job Queues > Active Job Queues or All Job Queues.
2. Right-click the job queue and click Clear.

The Confirm Clear window appears where you can specify if you want a job log produced when the
queue clears.

Character-based interface

Command: Clear Job Queue (CLRJOBQ)

Example: This command removes all jobs currently in the IBM-supplied job queue, QBATCH. Any job
currently being read in is not affected.

CLRJOBQ JOBQ(QGPL/QBATCH)

Creating job queues
To create a job queue, use the character-based interface.

Command: Create Job Queue (CRTJOBQ)

Example: The following example creates a job queue called JOBQA in the LIBA library:

CRTJOBQ JOBQ(LIBA/JOBQA) TEXT(‘test job queue')

After you create a job queue, it must be assigned to a subsystem before any jobs can be run. To assign a
job queue to a subsystem, add a job queue entry to the subsystem description.

Related concepts
Job queues
A job queue contains an ordered list of jobs waiting to be processed by a subsystem. The job queue is the
first place that a submitted batch job goes before becoming active in a subsystem. The job is held here
until a number of factors are met.
How a job queue works
Job queues are allocated by a subsystem via the job queue entry. Jobs can be placed on a job queue even
if the subsystem has not been started. When the subsystem is started, it processes the jobs on the queue.

Deleting a job queue
To delete a job queue, use the character-based interface.

Restrictions:

• The job queue being deleted cannot contain any entries. All jobs on the queue must be completed,
deleted, or moved to a different job queue.

• A subsystem cannot be active to the job queue.

Work management 159

There is more than one way to delete a job queue. Although two methods are listed here, the WRKJOBQ
command is the recommended method because it shows the job count and status.

Command: Work with Job Queue (WRKJOBQ)

If the number of jobs is 0, then you can use option 4=Delete to delete the job queue from the
library.

Use the DLTJOBQ with automated scripts and clean up environments. Be careful when using this method
because the default behavior of this command is to search the library list and delete the first job queue
that matches the specified name. If you have two job queues of the same name in different libraries, you
might end up deleting the wrong one. You can override this behavior by specifying a specific library.

Command: Delete Job Queue (DLTJOBQ)

Example: This command deletes the job queue SPECIALJQ in library SPECIALLIB.

DLTJOBQ JOBQ(SPECIALLIB/SPECIALJQ)

Related concepts
Job queues
A job queue contains an ordered list of jobs waiting to be processed by a subsystem. The job queue is the
first place that a submitted batch job goes before becoming active in a subsystem. The job is held here
until a number of factors are met.

Determining which subsystem has a job queue allocated
You can determine which subsystem has allocated the job queue using the IBM Navigator for i interface
or the character-based interface. This is useful when you find it necessary to delete the job queue since
you cannot delete a job queue to which a subsystem is active.
Related concepts
How a job queue works
Job queues are allocated by a subsystem via the job queue entry. Jobs can be placed on a job queue even
if the subsystem has not been started. When the subsystem is started, it processes the jobs on the queue.

IBM Navigator for i

To see which subsystem has allocated the job queue, follow the following instructions:

1. From IBM Navigator for i, expand Work Management > All Tasks > Job Queues > All Job Queues.
2. Locate the job queue in the right pane of the IBM Navigator for i interface.

The subsystem which has allocated the job queue is displayed in the Subsystem column.

(If you do not see the Subsystem column, add it to the display. Click Actions > Columns.)
3. Or you can right-click the job queue and click Properties. The subsystem is listed on the General page

of the Job Queue Properties window.

Character-based interface

Command: WRKJOBQ JOBQ(LIBA/JOBQA) where JOBQA is the name of the job queue

1. Type in the command WRKJOBQ JOBQ(LIBA/JOBQA).
The Work with Job Queue display appears. The subsystem description function key appears in the
function key area of the display when the job queue is allocated to a system.

2. Press the subsystem description function key.
The Work with Subsystem Descriptions display appears showing the subsystem to which the job
queue is allocated.

160 IBM i: Work management

Holding a job queue
When you place a job queue on hold you prevent the processing of all of the jobs that are currently waiting
on the job queue. Placing a job queue on hold has no effect on jobs that are running. Additional jobs can
be placed on the job queue while it is held, but they are not processed.

To place a job queue on hold, you can use IBM Navigator for i or the character-based interface.
Related concepts
Job queues
A job queue contains an ordered list of jobs waiting to be processed by a subsystem. The job queue is the
first place that a submitted batch job goes before becoming active in a subsystem. The job is held here
until a number of factors are met.

IBM Navigator for i

Expand My Connections > connection > Work Management > Job Queues > Active Job Queues >
Right-click the queue > Hold.

Character-based interface

Command: Hold Job Queue (HLDJOBQ)

In this example, the job queue QBATCH is placed on hold. All jobs that are not running at the time that the
command is issued are held until the queue is released or cleared.

HLDJOBQ JOBQ(QBATCH)

Releasing a job queue
When you release a job queue, all of the jobs that were placed on hold as a result of placing the job queue
on hold are also released. If an individual job was placed on hold before the job queue was held, then the
job is not released.

To release a job queue, use IBM Navigator for i or the character-based interface.
Related concepts
Job queues
A job queue contains an ordered list of jobs waiting to be processed by a subsystem. The job queue is the
first place that a submitted batch job goes before becoming active in a subsystem. The job is held here
until a number of factors are met.

IBM Navigator for i

Expand Work Management > All Tasks > Job Queues > All Job Queues > Right-click the queue >
Release.

Character-based interface

Command: Release Job Queue (RLSJOBQ)

This example releases the job queue QBATCH.

RLSJOBQ JOBQ(QBATCH)

Moving a job to a different job queue
There are many reasons why you might want to move a job to another queue. For example, sometimes
jobs become backlogged in the queue because of a long running job. Perhaps the job's scheduled run time
conflicts with a new job that has a higher priority. One way to manage this situation is to move the waiting
jobs to another queue that is not as busy.

You can use either the IBM Navigator for i interface or the character-based interface to move a job from
one queue to another.
Related concepts
How jobs are taken from multiple job queues

Work management 161

A subsystem processes jobs from a job queue based on sequence number. A subsystem can have more
than one job queue entry and can therefore allocate more than one job queue.
How jobs are taken from a job queue
Different factors determine how the jobs are selected from a job queue and started.

IBM Navigator for i

1. Expand Work Management > All Tasks > Job Queues > All Job Queues.
2. Right-click the job queue that contains the job and selectJobs.
3. Right-click the job that you want to move.

The Move window opens where you can specify the target queue.

• Jobs that are waiting to run are moved to the same relative position on the target queue (for example,
jobs with a job queue priority 3 are moved after any other priority 3 jobs that are waiting to run on the
target queue).

• Jobs that are held remain held and are placed in the same relative position on the target queue (for
example, held jobs with job queue priority 3 are moved after any other priority 3 held jobs on the target
queue).

• Jobs that are scheduled to run are moved to the target queue and their scheduled times remain
unchanged.

Character-based interface

Command: Change Job (CHGJOB)

Example: The following example moves job JOBA to job queue JOBQB.

CHGJOB JOB(JOBA) JOBQ(LIBA/JOBQB)

Placing a job on the job queue
Jobs are placed on the job queue by either moving an existing job from one queue to another, or by
submitting a new job. Use IBM Navigator for i to move jobs between queues. Use the character-based
interface to submit a new job.
Related concepts
How jobs are taken from multiple job queues
A subsystem processes jobs from a job queue based on sequence number. A subsystem can have more
than one job queue entry and can therefore allocate more than one job queue.
How jobs are taken from a job queue
Different factors determine how the jobs are selected from a job queue and started.

IBM Navigator for i

To use the IBM Navigator for i interface, the job must already exist in another job queue. Then you can
move the job from one queue to another queue. (To place a new job on a job queue, use the command
line interface.)

1. Expand Work Management > All Tasks > Job Queues > All Job Queues.
2. Right-click the job queue that contains the job and select Jobs.
3. Right-click the job that you want to move.

The Move window opens where you can specify the destination queue.

Character-based interface

The following is a list of character-based interface methods for placing a new job on the new job queue.

• Submit Job (SBMJOB): Allows a job that is running to submit another job to a job queue to be run later
as a batch job. Only one element of request data can be placed on the new job's message queue. The
request data can be a CL command if the routing entry used for the job specifies a CL command
processing program (such as the IBM-supplied QCMD program).

162 IBM i: Work management

• Add Job Schedule Entry (ADDJOBSCDE): Automatically the system submits a job to the job queue at
the time and date specified in the job schedule entry.

• Submit Database Jobs (SBMDBJOB): Submits jobs to job queues so they can be run as batch jobs. The
input stream is read either from a physical database file or from a logical database file that has a
single-record format. This command allows you to specify the name of this database file and its
member, the name of the job queue to be used, and to decide whether jobs being submitted can be
displayed by the Work with Submitted Jobs (WRKSBMJOB) command.

• Start Database Reader (STRDBRDR): Read a batch input stream from a database and place one or
more jobs on job queues.

• Transfer Job (TFRJOB): Move the current job to another job queue in an active subsystem.
• Transfer Batch Job (TFRBCHJOB): Move the current job to another job queue.

Searching all job queues for a specific job
You can use either the IBM Navigator for i or the character-based interface to search job queues for a
specific job.

IBM Navigator for i

1. Expand Basic Operations > User Jobs > Actions > Include.
2. Use the Jobs-Include window to narrow down the number of jobs that are displayed. Make sure that

the Job queue field is set to All.
3. When you click OK all of the jobs that meet your criteria are displayed.

Character-based interface

Command: Work with Job Queues (WRKJOBQ)

Example: The following example creates a list of all jobs on the JOBQA job queue.

WRKJOBQ JOBQ(LIBA/JOBQA)

Find a job when you do not know the name of the job queue

If you do not know the name of the job queue, follow the following instructions:

1. Enter the command without the JOBQ parameter.
The Work with All Job Queues window appears with a list of all job queues to which you are
authorized.

2. Scan this list until you see the name of a job queue that may contain the job that you are trying to find.

After you have found a job in a job queue, you can look at that job by entering the work with option for the
job that you want to see. The Work with Job display appears. This display provides several options for
viewing all of the information available for the job that you selected.

If you know what job you are looking for, the following command can take you directly to the job display.

WRKJOB JOB(number/user/name) OPTION(*DFNA)

If you're not sure what job you're looking for, Work with Submitted Jobs (WRKSBMJOB) or Work with User
Jobs (WRKUSRJOB) can help.

Specifying the priority for the job queue
To specify the order in which the job queues are processed by the subsystem, use the character-based
interface.

Command: Add Job Queue Entry (ADDJOBQE)

The parameters on this command specify:

• Number of jobs that can be active at the same time on this job queue (MAXACT)

Work management 163

• In what order the subsystem handles work from this job queue (SEQNBR)
• How many jobs can be active at one time for each of nine levels of priority (MAXPTYn) (n=1 through 9)

Managing output queues
Output queues help you manage printer output created when a job ends. It is important to understand
how to effectively maintain your output queues so that your printed output processes smoothly.

Printer output resides on the output queue. The output queue determines the order in which printer
output will be processed by the print device. By managing your output queues, you can ensure smooth
processing of your printer output.

Related concepts
Output queues
Output queues are areas where printer output files (also called spooled files) wait to be processed and
sent to the printer. Printer output is created either by the system or by the user using a print file.

Creating an output queue
The Create Output Queue (CRTOUTQ) command creates a new output queue for spooled files. An entry is
placed on the output queue for each spooled file. The order in which the files are written to the output
device is determined by the output priority of the spooled file and the value specified on the Order of files
on queue prompt (SEQ parameter). Use the character-based interface to create an output queue.

Command: CRTOUTQ (Create Output Queue)

Example: This command creates an output queue named DEPTAPRT and puts it in the current library.
Because AUT(*EXCLUDE) is specified and OPRCTL(*YES) is assumed, the output queue can be used and
controlled only by the user who created the queue and users who have job control authority or spooled
control authority. Because SEQ(*FIFO) is specified, spooled files are placed in first-in first-out order on
the queue. If users in Department A are authorized to use this output queue, the Grant Object Authority
(GRTOBJAUT) command must be used to grant them necessary authority. Data contained in files on this
queue can be displayed only by users who own the files, by the owner of the queue, by users with job
control authority, or by users with spool control authority. By default, no job separator is printed at the
beginning of the output for each job.

CRTOUTQ OUTQ(DEPTAPRT) AUT(*EXCLUDE) SEQ(*FIFO)
 TEXT('SPECIAL PRINTER FILES FOR DEPTA')

Example: The following is another example of how you can create an output queue.

CRTOUTQ OUTQ(QGPL/JONES) +
 TEXT('Output queue for Mike Jones')

Assigning the output queue to a job or job description
Before you can use a newly created output queue, you need to assign it to a job or to a job description.
You can assign the output queue by using IBM Navigator for i or the character-based interface.

IBM Navigator for i

To use IBM Navigator for i to assign the output queue to a job, follow these steps:

1. Expand Work Management > Active Jobs.
2. Right-click a job and click Printer Output.

Character-based interface

You can also change the job description to use the new output queue. Thus, all of the jobs that use the job
description use the new output queue. Use the character-based interface to assign an output queue to a
job description.

Command: Change Job Description (CHGJOBD)

The following example changes the job description AMJOBS so that the output queue QPRINT is used.

164 IBM i: Work management

CHGJOBD JOBD(AMJOBS/AMJOBS) OUTQ(*LIBL/QPRINT)

Accessing printer output
Because you have the choice to detach printer output from a job once it finishes running (separating the
printer output from the job completely), you can access your printer output in IBM Navigator for i through
Basic Operations or through Work Management.

IBM Navigator for i

To access a job's printer output through Basic Operations, do the following:

1. Expand Basic Operations.
2. Right-click the job for which you want to display printer output and click Printer Output. The Printer

Output window appears.

To access printer output through the Output Queues folder, do the following:

1. Expand Work Management > Output Queues.
2. Select the output queue with which you want to display printer output (for example, Qprint2). The

printer output within the output queue appears.

Character-based interface

Command: Work with Output Queue (WRKOUTQ <output queue name>)

Command: Work with Spooled Files (WRKSPLF JOB(qualified job name)

Clearing output queues
When a job creates printer output it is sent to an output queue to be printed. Most likely you do not print
all the printer output created. IBM Navigator for i gives you the ability to clean out your output queues
using the Clear option. Clearing an output queue can delete all output from the queue.

IBM Navigator for i

To clear an output queue, follow these steps:

1. Expand Work Management > Output Queues.
2. Right-click the output queue that you want to clear, and click Clear.

Character-based interface

Command: Clear Output Queue (CLROUTQ)

This command removes the entries for all spooled files from the output queue, QPRINT, that are waiting
to be printed or are being held. The entries for the file currently being printed and files still receiving data
from programs that are currently running are not affected.

CLROUTQ OUTQ(QPRINT)

Deleting an output queue
You can use the character-based interface to delete an output queue.

Before an output queue can be deleted, it must meet the following requirements.

The output queue being deleted cannot contain any entries. The output for each file must be printed,
deleted, or moved to a different output queue. A subsystem cannot be active. The queue cannot be in use
by a spooling writer. The queue cannot be deleted if it has been created by the system for a specific
printer.

Command: Delete Output Queue (DLTOUTQ)

This command deletes the output queue PUNCH2 from the system.

DLTOUTQ OUTQ(PUNCH2)

Work management 165

Viewing output queues on the system
Output queues determine the order in which printer output is sent to the printer device. You can view
output queues by using IBM Navigator for i.

To view output queues on the system, use the following instructions:

1. From IBM Navigator for i, expand Work Management.
2. Click Output Queues.

From IBM Navigator for i, you can customize the list of output queues you are viewing by using the
Include window. The Include window allows you to put limitations on what is displayed. For example, you
can run Include to display only certain output queues.

To use the include function, click Actions > Include.

Managing job logs
Most jobs on your system have a job log associated with it. Job logs tell you many different things such as
when the job starts, when the job ends, what commands are running, failure notices and error messages.
This information gives you a good idea of how the job cycle is running.

The following information discusses the various tasks that you can perform when working with job logs.

Related concepts
Job logs
A job log contains information related to requests entered for a job. A job log has two forms, a pending
form and a spooled form.

Managing the job log server
The QSYSWRK subsystem controls the job log server. However, there are some tasks that you can
perform to customize or manage the job log server.
Related concepts
Job logs
A job log contains information related to requests entered for a job. A job log has two forms, a pending
form and a spooled form.

Reconfiguring the job log server
As shipped, the job log server runs in QSYSWRK. QSYSWRK is continuously active. To enhance
performance, you might want to reconfigure your job log server to run in a different subsystem.

To reconfigure the job log server to run in a different subsystem, use the character-based interface and
follow these steps.

1. Add a routing entry identical to the one from QSYSWRK to your subsystem description.
This is the routing entry Seq Nbr 500, Program QWCJLSVR, Library QSYS, Compare Value
'QJOBLOGSVR', Start Pos 1.

2. Change the job queue specified in the QJOBLOGSVR job description to a job queue that is present on
your subsystem.

3. Add the QJOBLOGAJ autostart job entry (along with a routing entry, if needed) to your subsystem. This
causes the job log server to automatically start when your subsystem starts.

• Or if you prefer, you can replace the autostart job entry with a call to the STRLOGSVR command in
the startup program.

4. Remove the QJOBLOGAJ autostart job entry from QSYSWRK.

As another example of reconfiguring the job log server, you can use the Change Class (CHGCLS) command
to change the Run priority (RUNPTY) specified in the QJOBLOGSVR class (in library QSYS).

CHGCLS CLS(QSYS/QJOBLOGSVR) RUNPTY(50)

Related concepts
Job log server

166 IBM i: Work management

Typically the job log server writes a job's job log to a spooled file. You can route the job log to a printer or
to an outfile, (if specified to do so by using the QMHCTLJL, Control job log API), however this is not the
recommended method for producing job logs.

Ending the job log server
The End Job Log Server (ENDLOGSVR) command is used to end the job log server(s). The job log server
writes job logs for jobs that are in a job log pending state. If more than one job log server job is active at
the time this command is issued, all of the job log server jobs are ended.

You must have job control (*JOBCTL) special authority to use this command.

Important: If you only want to stop the production of a particular job log because, for example, it is very
long or consumes too many resources, see the related topic Stop production of a particular job log.

When using the ENDLOGSVR command, you can specify whether you want the server to end immediately
(not recommended) or in a controlled manner.
Related concepts
Job log server
Typically the job log server writes a job's job log to a spooled file. You can route the job log to a printer or
to an outfile, (if specified to do so by using the QMHCTLJL, Control job log API), however this is not the
recommended method for producing job logs.
Related tasks
Stopping production of a specific job log
If you only want to stop the production of a particular job log, do not use the End Job Log Server
(ENDLOGSVR) command. The ENDLOGSVR command ends all job log servers which results in stopping
the production of all job logs.
Deleting job log output files
Job logs are removed from the system when a job completes normally, or when the Remove Pending Job
Log (QWTRMVJL) API or the End Job (ENDJOB) command is issued. Additionally if "clear incomplete job
logs" is specified on the IPL, all of the jobs in job log pending are removed from the system during an IPL.
Any remaining job log output files can be found under Basic Operations > Printer Output.

IBM Navigator for i

1. Expand System > Run Command.
2. In Command to run: type ENDLOGSVR.
3. Click Prompt
4. The End Job Log Server window displays to help you specify the parameters of this command.

Complete the window and click OK.
The window closes and you are returned to the Run Command window.

5. You can now click Run Command to run the command immediately.

Character-based interface

Command: End Job Log Server (ENDLOGSVR)

Starting the job log server
By default, the job log server automatically starts when the QSYSWRK subsystem starts. You can
manually start a job log server by using the Start Job Log Server (STRLOGSVR) command.

When you use the STRLOGSVR command, you can specify the number of additional job log servers that
you want to start, or you can let the system calculate the needed number for you. If the number of servers
requested exceeds the maximum active allowed, only the difference between the maximum and current
number of active servers will be started. The maximum number of job log servers that can be active or on
a job queue at one time is 30.
Related concepts
Job log server

Work management 167

Typically the job log server writes a job's job log to a spooled file. You can route the job log to a printer or
to an outfile, (if specified to do so by using the QMHCTLJL, Control job log API), however this is not the
recommended method for producing job logs.

IBM Navigator for i

1. Expand System > Run Command.
2. In Command to run: field type STRLOGSVR.
3. Click Prompt.
4. The Start Job Log Server window displays to help you specify the parameters of this command.

Complete the window and click OK.
The window closes and you are returned to the Run Command window.

5. You can now click Run Command to run the command immediately.

Character-based interface

Command: Start Log Server (STRLOGSVR)

How to display job logs
You can see a job log from any place within work management that you access jobs, such as through the
Subsystem area or the Memory Pool area. You can use IBM Navigator for i or the character-based
interface to display job logs.
Related tasks
Producing printer output from job log pending
Jobs that do not have the IBM Navigator for i Job Properties - Job Log setting, Produce a job log field
selected do not produce job logs. Instead the job log is in job log pending. To produce printer output from
a job log that is in job log pending, use the character-based interface.
Deleting job log output files
Job logs are removed from the system when a job completes normally, or when the Remove Pending Job
Log (QWTRMVJL) API or the End Job (ENDJOB) command is issued. Additionally if "clear incomplete job
logs" is specified on the IPL, all of the jobs in job log pending are removed from the system during an IPL.
Any remaining job log output files can be found under Basic Operations > Printer Output.
What to do when the job log does not display
In IBM Navigator for i, to find and display a job log, whether a batch job or an interactive job, right-click
the job and then click Job log from the menu. However, depending upon the status of your job or how the
job log values were set in the job description, your job log may be in the output queue, or it may be in a job
log pending status or it may not be available.
Stopping a subsystem
You can use IBM Navigator for i or the character-based interface to stop one or more active subsystems
and specify what happens to active work being processed. No new jobs or routing steps are started in the
subsystem after the subsystem is stopped.
Related information
Manage printing
Jobs system values: Maximum time for immediate end

IBM Navigator for i

To access the job log for an active job or server job, do the following:

1. Expand Work Management > Active Jobs or Server Jobs.
2. Right-click a job (for example, Qbatch) and click Job Log. For more information, refer to the help in the

Job Log window.

To view more details of a message, right-click a message and click Properties. The Message
Properties window provides detailed message information. This window shows the details of the
message as well as the message help. The detailed message help gives you information to solve a
problem.

168 IBM i: Work management

The following list describes additional ways to access job logs:

• Basic Operations > Printers
• Basic Operations > User Jobs > Right-click a job > Printer Output
• Work Management > Active Jobs > Right-click a job > Printer Output
• Work Management > Output Queues
• Users and Groups > Users > Right-click a user > User Objects > Printer Output

Character-based interface

The way to display a job log depends on the status of the job.

• The Work with Job Logs (WRKJOBLOG) command can be used to display pending job logs for
completed jobs, all job log spooled files, or both. For example, to display the list of pending job logs for
all jobs that have ended use the following command:

WRKJOBLOG JOBLOGSTT(*PENDING)

• If the job is still active (batch or interactive jobs) or is on a job queue and has not yet started, use the
Display Job Log (DSPJOBLOG) command. For example, to display the job log of the interactive job for
user JSMITH at display station WS1, use the following command:

DSPJOBLOG JOB(nnnnnn/JSMITH/WS1)

where nnnnnn is the job number.
• If the job has ended and the job log is not yet printed, use the Display Spooled File (DSPSPLF)

command. For example, to display the job logs for job number 001293 associated with user FRED at
display station WS3, use the following command:

DSPSPLF FILE(QPJOBLOG) JOB(001293/FRED/WS3)

If you do not have enough information to use the above commands, the Work with User Jobs
(WRKUSRJOB) command or the Work with Submitted Jobs (WRKSBMJOB) command might be helpful.

What to do when the job log does not display
In IBM Navigator for i, to find and display a job log, whether a batch job or an interactive job, right-click
the job and then click Job log from the menu. However, depending upon the status of your job or how the
job log values were set in the job description, your job log may be in the output queue, or it may be in a job
log pending status or it may not be available.

The following are some steps to take if the Job log menu option is unavailable for your job.

Tip: Set the column display for Active jobs (or Server jobs) to include the Status. This makes it easier to
quickly determine where to look for your job log.

To access a job log: Work Management > Active Jobs or Server Jobs > Right-click the job and select
Job log.

If the Job log menu option is not available or if you get an error message stating that the system is unable
to retrieve the job log, consider the following:

1. Check the status of the job.
Option Description

Running Check the Job Properties - Job Log window and make sure the Produce a job log
box is checked. If it is not checked, then no job log was produced.

Ended This job did not end in a normal manner. It might be due to an error or user
intervention. Right click the job and then clickPrinter Output. If you do not see
your job log there, check the Job Properties - Job Log window and make sure the
check box, Produce printer output for job log is selected.

Work management 169

Option Description

Completed -
Printer output is
available

This job ended normally. Right click the job and then click Printer Output. If you
do not see your job log there, check the Job Properties - Job Log window and
make sure that the field Create printer output for job log if job ends normally
was checked.

Completed - Job
log pending

The job log is not produced. The job log remains in pending until removed. You
need to use the Display Job Log (DSPJOBLOG) command to view the pending job
log.

2. The job log may have been spooled to an output queue and has printed, in which case the log has been
removed from the system.

3. Another possibility is that the job log was deleted by another user.

Related tasks
How to display job logs
You can see a job log from any place within work management that you access jobs, such as through the
Subsystem area or the Memory Pool area. You can use IBM Navigator for i or the character-based
interface to display job logs.

Specifying the output queue for a job log
By default the printer file that is used to spool a job log is QPJOBLOG. You can have multiple QPJOBLOG
printer files on your system. In QSYS the output queue that the OUTQ attribute uses is QEZJOBLOG, in
library QUSRSYS. When the system creates a job log, it looks for the printer file QPJOBLOG in the job's
library list. The first one that is found is the one that it uses. You use the character-based interface to
adjust these settings.

1. Change the printer file QPJOBLOG OUTQ attribute to *JOB.
a) Command: Change Printer File CHGPRTF FILE(QPJOBLOG) OUTQ(*JOB)

2. Change the job's OUTQ attribute to the output queue that you want.
You can do this by using the character-based interface or IBM Navigator for i.
a) Command: Change Job CHGJOB OUTQ(MYLIB/MYOUTQ)
b) IBM Navigator for i: Work Management > Active Jobs > Right-click a job and select Properties >

Printer Output

Related information
Controlling printing to output queue or printer

Stopping production of a specific job log
If you only want to stop the production of a particular job log, do not use the End Job Log Server
(ENDLOGSVR) command. The ENDLOGSVR command ends all job log servers which results in stopping
the production of all job logs.

Instead, use the following procedure to stop production of a specific job log.

1. From IBM Navigator for i, right-click the job that you want to stop the job log production and click
Properties.
(Work Management > Active Jobs or Server Jobs)

2. Click the Job Log tab.
3. Uncheck the Produce a job log box and click OK.

Production of the job log will cease and the job log will be in a job log pending status.
Related concepts
How job logs are created

170 IBM i: Work management

The job logs are available when needed, but no work is done to produce job logs for which there is no
need.
Related tasks
Ending the job log server
The End Job Log Server (ENDLOGSVR) command is used to end the job log server(s). The job log server
writes job logs for jobs that are in a job log pending state. If more than one job log server job is active at
the time this command is issued, all of the job log server jobs are ended.
Deleting job log output files
Job logs are removed from the system when a job completes normally, or when the Remove Pending Job
Log (QWTRMVJL) API or the End Job (ENDJOB) command is issued. Additionally if "clear incomplete job
logs" is specified on the IPL, all of the jobs in job log pending are removed from the system during an IPL.
Any remaining job log output files can be found under Basic Operations > Printer Output.
Controlling batch job log information
For your batch applications, you may want to change the amount of information logged. The log level
(LOG(40 *NOLIST)) specified in the job description for the IBM-supplied subsystem QBATCH supplies a
complete log if the job abnormally ends. If the job completes normally, no job log is produced.

Preventing the production of a job log
Preventing the production of a job log is useful if you already know that you will not need the job log and
you want to conserve system resources. When you specify that you do not want to produce a job log, the
job log will not be produced and remains in pending until removed either by the Remove Pending Job Log
(QWTRMVJL) command or the End Job (ENDJOB) command.

To prevent the production of a job log, use the following instructions:

1. In IBM Navigator for i, open the Job Properties - Job Log window.
(Work Management > Active Jobs (or System Jobs) > Right-click the job > Properties > Job Log
tab)

2. Uncheck the Produce a job log box and click OK.

Related concepts
How job logs are created
The job logs are available when needed, but no work is done to produce job logs for which there is no
need.
Related tasks
Deleting job log output files
Job logs are removed from the system when a job completes normally, or when the Remove Pending Job
Log (QWTRMVJL) API or the End Job (ENDJOB) command is issued. Additionally if "clear incomplete job
logs" is specified on the IPL, all of the jobs in job log pending are removed from the system during an IPL.
Any remaining job log output files can be found under Basic Operations > Printer Output.
Controlling batch job log information
For your batch applications, you may want to change the amount of information logged. The log level
(LOG(40 *NOLIST)) specified in the job description for the IBM-supplied subsystem QBATCH supplies a
complete log if the job abnormally ends. If the job completes normally, no job log is produced.

Controlling information in a job log
When working with problems, you might want to record the maximum amount of information for jobs that
have frequent problems. Alternatively, you might not want to create a job log for jobs that completed
normally. Or you might want to exclude informational messages.

You can control what information is added to the job log by setting the message level, message severity or
the message text level values in the job description. However, if you want to control what information is
written to the job log of a specific job, use the Job Properties - Job Log window in IBM Navigator for i.

This window allows you to control the following:

• Whether the job log is produced and what method is used to produce it
• What to do when the maximum size is reached

Work management 171

• Whether to log commands from CL programs
• Whether to keep the messages in the job log and what specific messages should be kept (logging level

and message severity)
• Whether to create printer output for a job log if the job ends normally and what to print

To access the Job Properties - Job Log window, follow the following steps:

1. From IBM Navigator for i, open the Job Properties window of the job and click the Job Log tab.
Work Management > Active Job > Right-click the job > Properties.

2. For a detailed explanation of the different options that are available on this window, refer to the online
help.

Related concepts
How job logs are created
The job logs are available when needed, but no work is done to produce job logs for which there is no
need.
Related tasks
Cleaning up job log pending
There are a few ways to clean up, or remove jobs from job log pending. You can end the job with a value of
0 for the Maximum log entries (LOGLMT) parameter. If the job is already ended, you can run the Remove
Pending Job Log (QWTRMVJL) API. You can also use the Work with Job Logs (WRKJOBLOG) command.
Deleting job log output files
Job logs are removed from the system when a job completes normally, or when the Remove Pending Job
Log (QWTRMVJL) API or the End Job (ENDJOB) command is issued. Additionally if "clear incomplete job
logs" is specified on the IPL, all of the jobs in job log pending are removed from the system during an IPL.
Any remaining job log output files can be found under Basic Operations > Printer Output.

Changing the log level of a job
The log level of a job is a numeric level assigned to a specific combination of message types that are
logged. You can change the log level in the job description by using the character-based interface.
However, if you want to change the log level of a specific job, use the Job Properties - Job Log window in
IBM Navigator for i.

To access the Job Properties - Job Log window, follow the following steps:

1. From IBM Navigator for i, expand Work Management > Active Jobs.
2. Select a job and right-click Properties.
3. From the properties window of specific job, select the Job Log tab, and change the logging level.

Related concepts
Messages
Messages contain the job name, the message type, the date and time it was sent, the action that
occurred, and the necessary actions needed to fix a problem. This is useful when you are trying to
troubleshoot any problems that might occur on your servers. You can access job logs for server jobs
through IBM Navigator for i. Messages fall into two categories, alertable messages and messages logged
in a job log.
Job logs
A job log contains information related to requests entered for a job. A job log has two forms, a pending
form and a spooled form.
Related tasks
Cleaning up job log pending

172 IBM i: Work management

There are a few ways to clean up, or remove jobs from job log pending. You can end the job with a value of
0 for the Maximum log entries (LOGLMT) parameter. If the job is already ended, you can run the Remove
Pending Job Log (QWTRMVJL) API. You can also use the Work with Job Logs (WRKJOBLOG) command.

Controlling batch job log information
For your batch applications, you may want to change the amount of information logged. The log level
(LOG(40 *NOLIST)) specified in the job description for the IBM-supplied subsystem QBATCH supplies a
complete log if the job abnormally ends. If the job completes normally, no job log is produced.

Controlling job logs at the job queue level (QBATCH) is done by adjusting the job log settings for the
QBATCH subsystem job. You have the same options for controlling how job logs are produced at the
subsystem job level as you do at the individual job level.

To adjust the job log settings for the job queue subsystem, do the following:

From IBM Navigator for i, open the Subsystem Properties - Job Log window for the job queue
subsystem.
(Work Management > Active Subsystems > QBATCH > Right-click the QBATCH job > Properties > Job
Log tab)

Note: If you uncheck the Produce a job log field field (*PND) for the subsystem, the job log specific to the
subsystem is not listed with the other printer output. You then need to use the Display Job Log
(DSPJOBLOG) command to view the pending job log.

If the batch job is running a CL program, the CL program commands are logged only if the
LOGCLPGM(*YES) is specified on the Create Control Language Program (CRTCLPGM) command or the
Change Program (CHGPGM) command.

Related concepts
Job logs
A job log contains information related to requests entered for a job. A job log has two forms, a pending
form and a spooled form.
Related tasks
Deleting job log output files
Job logs are removed from the system when a job completes normally, or when the Remove Pending Job
Log (QWTRMVJL) API or the End Job (ENDJOB) command is issued. Additionally if "clear incomplete job
logs" is specified on the IPL, all of the jobs in job log pending are removed from the system during an IPL.
Any remaining job log output files can be found under Basic Operations > Printer Output.
Stopping production of a specific job log
If you only want to stop the production of a particular job log, do not use the End Job Log Server
(ENDLOGSVR) command. The ENDLOGSVR command ends all job log servers which results in stopping
the production of all job logs.
Preventing the production of a job log
Preventing the production of a job log is useful if you already know that you will not need the job log and
you want to conserve system resources. When you specify that you do not want to produce a job log, the
job log will not be produced and remains in pending until removed either by the Remove Pending Job Log
(QWTRMVJL) command or the End Job (ENDJOB) command.

Deleting job log output files
Job logs are removed from the system when a job completes normally, or when the Remove Pending Job
Log (QWTRMVJL) API or the End Job (ENDJOB) command is issued. Additionally if "clear incomplete job
logs" is specified on the IPL, all of the jobs in job log pending are removed from the system during an IPL.
Any remaining job log output files can be found under Basic Operations > Printer Output.

To delete job logs found in Printer Output, right-click the file name of the job log that you want to delete
and click Delete.

How to determine if it is safe to delete a job log

Balancing the decision of whether to keep job logs or delete them challenging. Job logs are things that
you need to keep so you can troubleshoot a problem. Job logs are things that you do not want to keep

Work management 173

because of they clutter up your system. When deciding which job logs to delete, or which job logs prevent
from producing, consider the following guidelines:

• Is this a job that you can easily fix without looking at the job log?
• Is this a job that is similar to other jobs in the system? If it fails, are similar jobs likely to also fail? If so,

then you might want to have only one of the jobs produce a job log.

Related concepts
Job logs
A job log contains information related to requests entered for a job. A job log has two forms, a pending
form and a spooled form.
Related tasks
How to display job logs
You can see a job log from any place within work management that you access jobs, such as through the
Subsystem area or the Memory Pool area. You can use IBM Navigator for i or the character-based
interface to display job logs.
Ending the job log server
The End Job Log Server (ENDLOGSVR) command is used to end the job log server(s). The job log server
writes job logs for jobs that are in a job log pending state. If more than one job log server job is active at
the time this command is issued, all of the job log server jobs are ended.
Stopping production of a specific job log
If you only want to stop the production of a particular job log, do not use the End Job Log Server
(ENDLOGSVR) command. The ENDLOGSVR command ends all job log servers which results in stopping
the production of all job logs.
Preventing the production of a job log
Preventing the production of a job log is useful if you already know that you will not need the job log and
you want to conserve system resources. When you specify that you do not want to produce a job log, the
job log will not be produced and remains in pending until removed either by the Remove Pending Job Log
(QWTRMVJL) command or the End Job (ENDJOB) command.
Controlling information in a job log
When working with problems, you might want to record the maximum amount of information for jobs that
have frequent problems. Alternatively, you might not want to create a job log for jobs that completed
normally. Or you might want to exclude informational messages.
Controlling batch job log information
For your batch applications, you may want to change the amount of information logged. The log level
(LOG(40 *NOLIST)) specified in the job description for the IBM-supplied subsystem QBATCH supplies a
complete log if the job abnormally ends. If the job completes normally, no job log is produced.

Producing printer output from job log pending
Jobs that do not have the IBM Navigator for i Job Properties - Job Log setting, Produce a job log field
selected do not produce job logs. Instead the job log is in job log pending. To produce printer output from
a job log that is in job log pending, use the character-based interface.

Command: Display Job Log (DSPJOBLOG)
Related concepts
Job log pending
The job log pending state has been available for many years. When the job log attribute of a job is *PND,
no job log is produced. You can control how and under what circumstances the job log for a specific job is
produced.
Related tasks
How to display job logs

174 IBM i: Work management

You can see a job log from any place within work management that you access jobs, such as through the
Subsystem area or the Memory Pool area. You can use IBM Navigator for i or the character-based
interface to display job logs.

Cleaning up job log pending
There are a few ways to clean up, or remove jobs from job log pending. You can end the job with a value of
0 for the Maximum log entries (LOGLMT) parameter. If the job is already ended, you can run the Remove
Pending Job Log (QWTRMVJL) API. You can also use the Work with Job Logs (WRKJOBLOG) command.

To end a job with LOGMLT set to 0, use IBM Navigator for i or the character-based interface.

Related concepts
Job log pending
The job log pending state has been available for many years. When the job log attribute of a job is *PND,
no job log is produced. You can control how and under what circumstances the job log for a specific job is
produced.
Related tasks
Controlling information in a job log
When working with problems, you might want to record the maximum amount of information for jobs that
have frequent problems. Alternatively, you might not want to create a job log for jobs that completed
normally. Or you might want to exclude informational messages.
Changing the log level of a job
The log level of a job is a numeric level assigned to a specific combination of message types that are
logged. You can change the log level in the job description by using the character-based interface.
However, if you want to change the log level of a specific job, use the Job Properties - Job Log window in
IBM Navigator for i.
Related information
Change Cleanup (CHGCLNUP) command
Exit Program for Tailoring Automatic Cleanup

IBM Navigator for i

1. Expand Work Management > Active Jobs.
2. Locate the job that you want to end.
3. Right-click the job and click Delete/End.
4. On the Confirm Delete/End window, set Delete printer output to No.
5. Complete the Confirm Delete/End window and click Delete.

Character-based interface

Command:End Job (ENDJOB LOGLMT(0))

Managing job accounting
The job accounting function is not active by default. It requires a few initial steps to set it up. The
following information describes how to set up job accounting and perform some of the most common
tasks associated with job accounting.
Related concepts
Job accounting
The job accounting function gathers data so that you can determine who is using your system and what
system resources they are using. It also assists you in evaluating the overall use of your system. Job
accounting is optional. You must take specific steps to set up job accounting. You can request the system
to gather job resource accounting data, printer file accounting data, or both. You can also assign
accounting codes to user profiles or specific jobs.
Related information
Journal Management
Set up journaling

Work management 175

Setting up job accounting
To set up job accounting, use the character based interface.

1. Create a journal receiver. The journal receiver can be created with any name and library you choose. It
is recommended to give it a name with a naming convention such as ACGJRN1 so that additional
receivers (such as ACGJRN2, ACGJRN3) can be created with the Change Journal CHGJRN
JRNRCV(*GEN) command.
a) Command: Create Journal Receiver (CRTJRNRCV)

CRTJRNRCV JRNRCV(USERLIB/ACGJRN1)

2. Create the job accounting journal. The journal name must be QSYS/QACGJRN, and you need authority
to add objects to the QSYS library.
a) Command: Create Journal (CRTJRN)

CRTJRN JRN(QSYS/QACGJRN) JRNRCV(USERLIB/ACGJRN1) AUT(*EXCLUDE)

The journal receiver should be the same as the receiver created in step 1. The authority can be set
to anything you choose, but *EXCLUDE is recommended since the data collected can be used to
charge users for resource usage.

3. Change the journal accounting information (QACGLVL) system value. The system value can be set to
journal job accounting information, or printer information, or both. *JOB produces job (JB) journal
entries, while *PRINT produces direct print (DP) or spooled print (SP) journal entries. A value of *NONE
means no journaling is done for journal QACGJRN. Job accounting data will only be journaled for jobs
that are started after the system value has been set to a value other than *NONE.
a) Command: Work with System Values (WRKSYSVAL) or Change System Value (CHGSYSVAL)

CHGSYSVAL SYSVAL(QACGLVL) VALUE('*JOB *PRINT')

4. Set the accounting code parameter ACGCDE for each user profile. The accounting code can be set to
any alphanumeric string up to 15 characters in length. If determining the current user is important to
your analysis of a job accounting journal entry, it is recommended that you set the ACGCDE parameter
to the user profile's name.
a) Command: Change User Profile (CHGUSRPRF) or Create User Profile (CRTUSRPRF)

CHGUSRPRF USRPRF(USERID1) ACGCDE(USERID1)

The accounting code can also be specified for a group of users by using the Change Job Description
(CHGJOBD) or Create Job Description (CRTJOBD) commands.

The default accounting code for job descriptions is *USRPRF, which means it uses the accounting
code from the job's user profile. If a value other than *USRPRF is specified in the job description, it
will take precedence over the accounting code specified in the user profile

Related concepts
About the accounting code
The initial accounting code (up to 15 characters in length) for a job is determined by the value of the
ACGCDE (accounting code) parameter in the job description and user profile for the job.

Controlling the assignment of accounting codes
An important aspect of any data processing application is ensuring that the correct control fields are
specified. For job accounting codes, this can require a complex validity-checking function that not only
checks for the existence of authentic codes, but also checks which users are allowed to use specific
codes.

Accounting codes can be assigned in the following areas:

• User profile
• Job description
• In a job (Change Accounting Code (CHGACGCDE) command)

176 IBM i: Work management

If it is important to control the assignment of accounting codes, consider the following:

1. Before an accounting code is placed in a user profile, ensure that the code is valid for a particular user.
2. Control the changing of accounting codes on the Change Job Description (CHGJOBD) command by

giving only the security officer authority to the CHGACGCDE command.

• Or, use the CHGACGCDE command to allow users to change the job accounting code of their own or
another job. To change another job, the user must also have the special authorization of *JOBCTL.

3. Use a CL program and command to prevent changing accounting codes for a job on the job queue or
for one job to change the accounting code of another job.
For example, the CHGACGCDE command would be privately authorized and included in a CL program
where it only changed the current job (such as when JOB(*) is specified). The command would be
authorized appropriately.

Related concepts
Security and job accounting
Only the security officer (or a program adopting his authority) or a user with *ALLOBJ and *SECADM
authority can change the Journal accounting information (QACGLVL) system value.
About the accounting code
The initial accounting code (up to 15 characters in length) for a job is determined by the value of the
ACGCDE (accounting code) parameter in the job description and user profile for the job.

Displaying the data collected
After collecting data in the job accounting journal, you can write the journal entries to a file and display
them.

To do this, follow these steps:

Note: In the following example, the job accounting journal name is QACGJRN.

1. Create a copy of the system supplied model outfile for the accounting journal. QAJBACG4 is the model
outfile for the *TYPE4 outfile format.
a) Command: Create Duplicate Object (CRTDUPOBJ)

CRTDUPOBJ OBJ(QAJBACG4) FROMLIB(QSYS) OBJTYPE(*FILE) TOLIB(QTEMP)
 NEWOBJ(MYJBACG4)

2. Dump the journal entries to the outfile that you just created. In the following example only the 'JB' or
job type journal entries are being dumped.
a) Command: Display Journal (DSPJRN)

DSPJRN JRN(QACGJRN) ENTTYP(JB) OUTPUT(*OUTFILE) OUTFILFMT(*TYPE4)
 OUTFILE(QTEMP/MYJBACG4)

3. Start an SQL session. Then use the SELECT command from within the SQL session to choose the fields
you want to display.
a) Command: Start Structured Query Language (STRSQL)

STRSQL
SELECT JAJOB, JAUSER, JAUSPF, JACDE, JACPU FROM QTEMP/MYJBACG4

You can display a list of field names interactively or to a file by creating and running a query using the
Work with Queries (WRKQRY) command.

Converting job accounting journal entries
You can use the OUTFILE parameter on the Display Journal (DSPJRN) command to write the job
accounting journal entries into a database file that you can process.

The OUTFILE parameter allows you to name a file or member. If the member exists, it is cleared before
the records are written. If the member does not exist, it is added. If the file does not exist, a file is created
using the record format QJORDJE. This format defines the standard heading fields for each journal entry,
but the job accounting data is defined as a single large field.

Work management 177

To avoid having to process the accounting data as a single large field, two field reference files are
supplied to help you in processing the job accounting journal entries. The file QSYS/QAJBACG4 contains
the record format QAWTJAJ4 and is used for JB entries. File QSYS/QAPTACG5 contains record format
QSPJAPT5 and is used for DP or SP entries. The same format is used for all printer file entries regardless if
the output is SP (spooled) or DP (nonspooled). The DP entry for directly printed files contains some fields
that are not used; these fields contain blanks.

The following are some approaches you might use:

• The basic JB entries and DP or SP entries can be processed by creating two output files using the
supplied field reference file formats and running the DSPJRN command once for JB and once for DP or
SP. This allows you to define a logical file over the two physical files and use an high-level language
program to process the externally described file.

• You can process only the JB entries by creating a file using one of the supplied field reference files
(QSYS/QAJBACG4) to create an externally described file. This file can then be processed by the query
utility or an high-level language program.

• You can convert both types of journal entries using the default DSPJRN format of QJORDJE. You can
then use a program-described file to process the journal entries in a high-level language program.

The following DDS defines a physical file for the JB journal entries using the QAJBACG4 field reference file
in QSYS. You can create the file (using the Create Physical File (CRTPF) command) with the same name
(QAJBACG4) as the model file.

 R QAWTJAJ4 FORMAT(QSYS/QAJBACG4)

The following DDS defines a physical file for the DP or SP journal entries using the QAPTACG5 field
reference file in QSYS. You can create the file (using the CRTPF command) with the same name
(QAPTACG5) as the model file.

 R QSPJAPT5 FORMAT(QSYS/QAPTACG5)

You can specify a key field in either physical file; however, in this example, a logical file is used for
sequencing. If you create two physical files (one for JB and one for DP or SP) with the members of the
same name, you can issue the following DSPJRN commands to convert the entries. Assume that you have
created the physical files with the same names as the model files in your library YYYY.

DSPJRN JRN(QACGJRN) JRNCDE(A) ENTTYP(JB)
OUTPUT(*OUTFILE) OUTFILE(YYYY/QAJBACG4)
DSPJRN JRN(QACGJRN) JRNCDE(A) ENTTYP(SP DP)
OUTPUT(*OUTFILE) OUTFILE(YYYY/QAPTACG5)

You can control the use and selection criteria of the DSPJRN command so that you do not convert the
same entries several times. For example, you can select all entries in a specific range of dates. You can
convert all of the entries at a cutoff point for your job accounting analysis, for example, monthly. One or
more journal receivers might have been used during the month. Note that each use of the DSPJRN
command to the same member causes the member to be cleared before any new entries are added. Do
not use the JOB parameter of the DSPJRN command as some entries are made for a job by a system job
and will therefore not appear as you expect them to.

Allowing the Processing of Both Physical Files:

Enter the following DDS to create a logical file to allow processing of both physical files. This allows you to
read a single file in accounting code order and print a report using a high-level language program:

R QAWTJAJ4 PFILE(YYYY/QAJBACG4)
K JACDE
R QSPJAPT5 PFILE(YYYY/QAPTACG5)
K JACDE

Processing Basic Job Accounting Record:

If you want to use a logical file to process only the basic job accounting record in accounting code order
by a user name, you can enter the following DDS for a logical file:

178 IBM i: Work management

R QAWTJAJ4 PFILE(YYYY/QAJBACG4)
K JACDE
K JAUSER

This logical file can be processed by the query utility or by a high-level language program. If an abnormal
system ending occurs, the qualified job name in the first 30 bytes of the JARES field in the journal entry
describe the system job that wrote the entry at the next IPL and not the job that used the resources. For
this reason, any analysis done on the JB entries should use the JAJOB, JAUSER, and JANBR fields.

Recovering and job accounting
If a job ends abnormally, the final accounting entry is written and all previously written accounting entries
appear in the journal. If an abnormal system ending occurs, the following accounting data is lost to the
last routing step or last end-of-accounting segment, whichever occurred most recently.

• Information on the number of lines and pages printed
• Number of files created
• Database put, get, and update operations
• Communications read and write operations
• Auxiliary I/O operations
• Transaction time
• Number of transaction fields
• Time active
• Time suspended

After an abnormal system ending, the job completion time in the journal is not the same as that in the
CPF1164 message. The message uses the time nearest to that of the system ending, but the job
accounting journal entries are sent to the journal during IPL, and the job completion time is the current
system time, which is later than the time when the abnormal system ending occurred.

If the system ends abnormally, some journal entries can be lost. These are the entries that are written to
the journal but not forced to disk (this is equal to FORCE(*NO) on the Send Journal Entry (SNDJRNE)
command). They include the following:

• JB entries caused by a Change Accounting Code (CHGACGCDE) command
• DP and SP entries

Whenever a job completes, the last accounting code entry is forced to disk (as if FORCE(*YES) were
specified on the SNDJRNE command). Whenever an accounting entry is forced to disk, all earlier entries in
the journal, regardless of which job produced them, are forced to disk.

Exception

If only *PRINT accounting is specified on the system, there is not any job ending FORCE(*YES) journal
entries done. therefore, if a critical accounting entry is written by a CHGACGCDE command you want to
ensure it is not lost in case of an abnormal system ending, you can issue a SNDJRNE command and
specify the FORCE(*YES) option. If files are also to be journaled to the accounting journal, any database
changes are always forced to the journal, and this causes all earlier accounting entries to also be forced.

If an abnormal system ending occurs or you change an accounting code of a job other than your own, the
qualified job name in the first 30 bytes of the JARES field in the journal entry describe the system job that
wrote the JB entry at the next IPL and not the job that used the resources. The JAJOB, JAUSER, and
JANBR fields should be used for analysis purposes.

Damaged job accounting journal or journal receiver
If damage occurs to the journal or to its current receiver so that the accounting entries cannot be
journaled, a CPF1302 message is sent to the QSYSOPR message queue, and the accounting data is
written to the QHST log in the CPF1303 message. The job trying to send the journal entry continues
normally. Recovery from a damaged journal or journal receiver is the same as for other journals.

Work management 179

The journal QACGJRN should not be allocated by another job. If the journal is allocated by another job,
the journal entry is changed to message text and sent to the QHST log as message CPF1303.

You can use the OUTFILE parameter on the Display Journal (DSPJRN) command to write the accounting
journal entries to a database file that you can process.

You can also use the Receive Journal Entry (RCVJRNE) command on the QACGJRN journal to receive the
entries as they are written to the QACGJRN journal. If the job accounting journal or journal receivers
become damaged, the system continues to operate and to record accounting data in the history log. To
recover from the journal or journal receiver damage, use the Work with Journal (WRKJRN) command.
After recovering the damaged journal or journal receiver, change the Journal accounting information
(QACGLVL) system value to a value appropriate for your installation. (Unless you change the QACGLVL
system value, the system does not record accounting information in the new journal receiver.)

Accessing the CPF1303 Message
To access information from the CPF1303 message, create a high-level language program.

To define records that match the CPF1303 message, include the following fields:

System Time Char (8)
Message Record Number Bin (4)
Qualified Job Name Char (26)
Entry Type (JB, DP, or SP) Char (2)
Length of Data Bin (2)

Followed by fields:

JAJOB through JASPN for JB entries
JAJOB through JABYTE for SP and DP entries

For an example program, refer to the section in the CL Programming book that discusses processing the
QHST file for the job completion message.

The CPF1164 message always consists of three records and the CPF1303 message always consists of
four records. The information contained in the standard journal prefix fields is not included in this
message. All that is needed is information pertaining to the job end, date, and time. This information can
be found in record 1 of the CPF1303 message.

Managing workload groups
Workload groups provide the capability to manage work on a system.

The workload groups function can be used to limit the processing capacity of a workload to a subset of
processor cores in a partition. A workload group can be created with a limit on the number of processor
cores. Jobs can then be assigned to the workload group. The system enforces this processing core
assignment by ensuring that any job and its associated threads cannot run on more processor cores then
have been designated by the workload group.

Workload groups can be used to get better control of a workload and to ensure products only use a
designated number of processor cores. Additionally, software vendors can employ workload groups to
support sub-LPAR licensing. To take advantage of the enhanced licensing controls for products, IBM i
License Management must be used to register and manage the enforcement of workload groups.

Collection Services, Performance Explorer, and Job Watcher have performance metrics that can help you
manage and understand the performance of jobs running in a workload group.

Example of workload groups use

A user has a multithreaded batch job that is CPU intensive. The user must run this job during the day but
cannot afford to affect the performance of the production system. Assigning this batch job to a workload
group puts the job into a ‘processing container'. A workload group ensures that this job is kept to a limited
amount of system processing capacity. If the workload group has a processor core limit of one, the batch
job and any threads running under that job can only run on a single processor core. If this job is running on

180 IBM i: Work management

a multiple threaded core, multiple threads can be running for that designated batch job, but only a single
core can be used at a time. This same concept applies to jobs running under a subsystem that has been
assigned to a workload group. In this case, all jobs and their associated threads are limited to the number
of processor cores specified in the group.

Related information
Collection Services
Planning for software licensing
JS (Job Change) journal entries
Retrieve Thread Attribute (QWTRTVTA) API
Change Job (QWTCHGJB) API

Setting up workload groups
A workload group defines the number of processor cores that can be used concurrently by jobs and
threads that are associated with the group. Product entries can be added to a workload group to define
the license term and feature of the product in the group. To set up workload groups, use the character-
based interface.

1. Add a workload group using the Add Workload Group (ADDWLCGRP) command. The workload group
can be added with any name you choose. The processor limit defines the number of cores that jobs
and threads associated with this workload group can run on concurrently.

ADDWLCGRP WLCGRP(MYGROUP) PRCLMT(2)

2. Add product information to the group using the Add WLC Product Entry (ADDWLCPRDE) command.
Product entries define the license term and feature of the product that is limited by the number of
processor cores defined for the workload group. See Setting up software licensing with workload
groups for more information on setting up software licensing with workload groups.

3. Create a special data area named QWTWLCGRP that defines which subsystems use which workload
group using the Create Data Area (CRTDTAARA) command. The data area must be TYPE(*CHAR) and
the library name must be QSYS. The data area length must be at least 20 characters long, and contain
pairs of subsystem and workload group names. Each name is 10 characters in length, left-justified,
and padded with blanks.

CRTDTAARA DTAARA(QSYS/QWTWLCGRP) TYPE(*CHAR) LEN(2000)
 VALUE(‘MYSBSNAME MYGROUP ‘)
 TEXT(‘Subsystems to use workload groups') AUT(*USE)

To configure additional subsystems to use workload groups, either enter the additional names when
creating the data area, or use the Change Data Area (CHGDTAARA) command to add them to the data
area after it has been created. For example, if you want subsystem QBATCH to use workload group
MYGROUP2, enter the following command:

CHGDTAARA DTAARA(QSYS/QWTWLCGRP)
 VALUE(‘MYSBSNAME MYGROUP QBATCH MYGROUP2 ‘)

4. Use the Display Data Area (DSPDTAARA) command to verify that the correct number of spaces have
been used. Ensure the names start at positions 1, 11, 21, and so on. If a subsystem name or workload
group name is 10 characters long, there can be no space between that name and the beginning of the
next name.

DSPDTAARA DTAARA(QSYS/QWTWLCGRP)

5. Start the subsystems that are defined in the data area created using the Start Subsystem (STRSBS)
command. The data area can be created or changed while the subsystem is active, but has no effect
on the jobs in that subsystem until it is ended and restarted.

STRSBS SBSD(QGPL/MYSBSNAME)

Work management 181

Note: Verify that a CPI146C message (Subsystem &1 is using workload group &2) is logged in the
subsystem job log when the subsystem was started. Jobs that start in subsystem MYSBSNAME are
now limited to two processor cores, as defined by the workload group named “MYGROUP”.

6. To change the workload group for a job after it has already started, use the Change Job (CHGJOB)
command. The job does not need to be running in a subsystem that has a workload group defined.

CHGJOB JOB(123456/QUSER/MYSERVER) WLCGRP(MYGROUP)

7. To change the processing capacity for a group, use the Change Workload Group (CHGWLCGRP)
command. The processor limit can be changed while jobs using the workload group are active.

CHGWLCGRP WLCGRP(MYGROUP) PRCLMT(4)

Notes:

• The workload group and QWTWLCGRP data area can be created while the subsystem is active. This has
no effect on the jobs in that subsystem until the subsystem is ended and restarted.

• The Remove Workload Group (RMVWLCGRP) command can be used to change all jobs actively running
in a workload group to no longer be assigned to that group.

• If you remove a workload group (RMVWLCGRP) while a subsystem that is using it is active, new jobs
that are started are not limited.

• System jobs and subsystem jobs do not run in a workload group. They continue to use all processor
cores available.

• The controlling subsystem (as defined by QCTLSBSD system value) cannot use a workload group.
• Batch immediate jobs are started using the workload group used by the job that starts them (parent

job).
• Up to 255 workload groups can be created for the current system or logical partition.
• Changes to the number of processor cores for a workload group take effect immediately.

Displaying workload groups
To display the workload groups defined on a partition, use the Display Workload Group (DSPWLCGRP)
command.

1. Display the workload groups defined on a partition using the Display Workload Group (DSPWLCGRP)
command.

DSPWLCGRP WLCGRP(*ALL) OUTPUT(*)

The current workload groups and any product entries associated with the groups are displayed. The
output can also be sent to a spooled file by specifying OUTPUT(*PRINT).

To display the workload group being used by a job, you can use the DSPJOB command (option 2, Display
job definition attributes). You can also use the Retrieve Thread Attributes (QWTRTVTA) API.

Auditing workload groups
A JS (Job Change) journal entry is written to the QAUDJRN journal when starting, ending, or changing a
job. The workload group name is added to the JS audit entry at offset 3666 when the entry type is C, E, or
S. The field is 10 characters in length. This field continues to contain the Exit Job Name when the entry
type is J, K, or L.

Messages:

• A CPI146C message is sent to the subsystem job log when the subsystem is started with a workload
group defined.

• A CPI146D message is sent to QHST if an error occurs while trying to start a job in a subsystem that has
a workload group defined.

182 IBM i: Work management

Reference
You might need to refer to these useful topics while using work management.

(IBM i Information Center, Version 7 Release 2 (7.2) > Systems management > Work management >
Reference)
Server job table

You can use this server table as a reference to find out how servers, server jobs, job descriptions, and
subsystems are mapped to one another.

System value finder
Use the system value finder to find information about system values. You can search for categories of
system values as they appear in IBM Navigator for i or for the system value names you used in the
character-based interface.

Work Management APIs
The work management APIs perform functions that are used in a wide variety of applications. The
Work Management APIs page displays a list of APIs that retrieve and manipulate jobs, subsystem
storage pools, subsystem job queues, data areas, network attributes, system status, system values,
and flight recorders. Also included are a list of Work Management exit programs.

IPL SRC finder
Use the IPL system reference code (SRC) finder to find information about SRC messages that are
displayed on your system when you perform an IPL. The SRCs indicate the status of the IPL and are
often useful in problem analysis. You can search for an SRC by name, or display a list of the most
common SRCs.

Group jobs
The following information about group jobs is included as reference material for maintenance of older
environments. In today's computing environment, it is typical for a single workstation to have separate
sessions for separate functions.

The group jobs are similar to secondary interactive jobs requested by pressing the System Request key;
however, up to 16 group jobs can be started for each sign on at a workstation (32 total when there is a
secondary interactive job) and the application program can handle interruptions more easily.

Group job benefits

The following lists some of the benefits of group jobs.

• The workstation user can press the Attention key to interrupt work in one interactive group job, change
to any of several other interactive group jobs, and return to the original group job quickly. The Attention
key is made valid by the Set Attention Program (SETATNPGM) command and can be used independently
of group jobs.

• Using group jobs with display station pass-through provides a convenient and fast way to change among
many interactive jobs on many different systems in a network.

Group job concepts

• Group jobs apply only to interactive jobs.
• Up to 16 group jobs can exist in one group (16 more are available if the user transfers to a secondary

interactive job).
• Group jobs are unique to a user (they are not shared by multiple users).
• Only one group job at a time is active (the others are suspended).
• Each group job is independent and has its own job log, spooled files, library QTEMP, and so forth.
• A group job is called by the Transfer to Group Job (TFRGRPJOB) command. This command is typically

run from a user-written menu program, which is called by pressing the Attention key (the SETATNPGM
command must have been previously run).

Work management 183

• A 512-byte group data area can be used to pass data between one group job and another. This group
data area is implicitly created by the Change Group Attributes (CHGGRPA) command. The CL
Programming book contains more information on group data areas.

Changing to and from a group job

To change a nongroup job to a group job and to change a group job back to a nongroup job (if it is the only
job in the group), use the Change Group Attributes (CHGGRPA) command.

Creating a new group job

To create a new group job, use the Transfer Group Job (TFRGRPJOB) command.

Note: After each use of the TFRGRPJOB command, the SETATNPGM command must be used to set the
Attention key on, if required.

Transferring from one group job to another

To transfer from one group job to another group job in the same group, use the Transfer Group Job
(TFRGRPJOB) command.

Note:

1. After each use of the TFRGRPJOB command, the SETATNPGM command must be used to set the
Attention key on, if required.

2. If you are in an update operation, use the Check Record Lock (CHKRCDLCK) command to check if the
job has any record locks before transferring to another group job.

Transferring control from one group job to another

You can transfer control from one group job to another if you have an Attention-key handling program.
When the Attention key is pressed, an Attention-key-handling program can either present a menu (from
which the user chooses a group job) or immediately transfer the user to another group job. Attention-key-
handling support makes it easy to transfer control from one group job to another quickly, without ending
one job to go to the other.

Transferring to another group job without seeing a menu

You can use the Attention key to transfer directly to another job without seeing a menu. For example, the
Attention-key-handling program for group job A could transfer to group job B. The Attention-key-handling
program for group job B could transfer back to group job A. This allows a single keystroke to be used to
switch between functions.

Ending a group job

• To end one group job in a group, use the End Group Job (ENDGRPJOB) command.
• To end all group jobs in the group, use the SIGNOFF command.

Note: The ENDJOB command supports the parameter ADLINTJOBS. If *GRPJOB is specified and the job
specified on the JOB parameter is a group job, all jobs associated with the group end.

Additionally, the End Group Job (ENDGRPJOB) command does not support the signal SIGTERM.
However, the End Job (ENDJOB) command does support the signal SIGTERM.

Ensuring a normal group job end

In some environments it may be desirable to force the end user to correctly end certain group jobs rather
than issuing the ENDGRPJOB command. For example, assume that the user may have a group job where
there is a complex update involved and you want to be sure the job is ended normally. Another example is
where the user may be in the middle of a SEU session and should complete the function normally.

184 IBM i: Work management

It is possible to achieve this with the support given by the system. For example, you could use the
following instructions:

1. Set a switch in the group data area that could be tested by each of the group jobs to function as the
shutdown switch. That is, when the switch is set on, the group jobs function should be ended.

2. Access the active group job names by using the RTVGRPA command and the GRPJOBL return variable.
3. Compare each name accessed (start with the second group job) against a predetermined list of the

group job names that should be correctly ended.
4. If the group job name is not in the list, it can be ended immediately by the ENDGRPJOB command.
5. If the job must be correctly ended, transfer to the group job using the TFRGRPJOB command.

The Attention-key-handling program for all group jobs must be sensitive to the shutdown switch and
would prevent transferring to another group job if the switch is set on.

If you have a controlling program for each of the group jobs that controls what happens when the user
ends the function of the group job (for example, the update program), it could also test the shutdown
switch and do a return. This ends the group job and returns control to the previous active group job.

The Attention-key-handling program can use the CHKRCDLCK command to determine if the workstation
user pressed the Attention key when the application had a record locked for update. In this case, the
attention program may send a message instructing the user to complete the operation before using the
Attention key.

Group job theory

The CHGGRPA command identifies the current job as a group job and gives it a group job name to
uniquely identify it in the group. (At this point the group has only one group job.) Each group job is unique
for a user. Two different users do not share the same group job. When a job is designated as a group job, it
then has the capability to call a new group job. There are also restrictions on group jobs (such as RRTJOB,
TFRJOB may not be used). When there is only one active job in the group, that job can become a
nongroup job.

Allowing group jobs to communicate

To allow group jobs to communicate with each other, a special 512-byte data area called a group data
area is automatically created when a job becomes a group job. The group data area can only be accessed
by jobs in the group by using the special value *GDA in the DTAARA parameter of the data area command.

Calling a group job

The use of group jobs does not require an Attention-key-menu approach as described in this section. A
group job can be called from any application program or by the GRPJOB(*SELECT) parameter on the
TFRGRPJOB command.

Group jobs and system request function

The Group Job function is similar to the System Request function in that there is only one job active at a
time while the others are suspended. Group jobs differ from system request in the following ways:

• Starting a group job does not require signing on. The same user profile and environment are used.
• Up to 16 group jobs can exist at any one time. The user must select which group job to transfer to,

whereas using system request permits the user to transfer between only two jobs. Normally in group
jobs, a menu reached by pressing the Attention key allows the user to select which group job to transfer
to. It is possible to use group jobs together with system request for a total of 32 group jobs available for
a single user. However, these 32 jobs are in two separate groups, each group having its own group data
area and other group attributes.

• The System Request function allows the workstation user to suspend a job while the keyboard is locked
and application functions are in progress. This can interrupt a logical sequence of events. For example,
records may be left locked. In contrast, the Attention key is active only when the keyboard is unlocked

Work management 185

for input. Also, the application can control when the Attention key is active, and prevent its use at
inappropriate times. The System Request function is always available if the workstation user has
authority to it.

Note: The Presystem Request Program exit program is called when the user presses the System
Request Key. The operating system calls the user-written exit program through the registration facility
when the user presses the System Request key. One parameter is used for input and output. After the
exit programs from the registration facility are called, the System Request menu is called based on the
value that is returned in the System Request menu display flag. For additional information, see the
System API Reference.

Attention key handling program
You can identify a program as the Attention-key-handling program at a particular call level. The Attention-
key-handling program runs in the same job and has the same job attributes, overrides, and group
authorities as the program that issued the SETATNPGM command. However, program-adopted authority
does not originate from the program that was interrupted. You may also specify an Attention-key-
handling program in the user profile.

Identifying a program as attention key handling

To identify a program as the Attention-key-handling program, use the Set Attention Program
(SETATNPGM) command with SET(*ON) specified. This command identifies this program at that call level
in the job running the command. When the Attention key is pressed, the running job is interrupted, the
display is saved, and the Attention-key-handling program is called. No parameters are passed to the
Attention-key-handling program when it is called.

Note: The Pre-attention Program exit program is called when the user presses the System Attention key.
The operating system calls the user-written exit program through the registration facility when the user
presses the System Attention key. There are no input or output parameters. After the exit programs from
the registration facility are called, the system attention program is called.

Effect of call level on attention key status

The SETATNPGM command is call-oriented. That is, a SETATNPGM command issued at one call level
causes the Attention-key-handling program to be in effect at the current call level as well as lower call
levels, until another SETATNPGM command is run to change the Attention-key-handling program or
Attention key status. Whenever a program that issued a SETATNPGM command returns, the display is
restored and the Attention-key-handling program and Attention key status are reset to what they were
before the current call. If a Transfer Control (TRFCTL) command is used instead of a RETURN command,
the status is not reset until the program that was transferred to returns.

When to use the attention key

Use the Attention key to call an Attention-key-handling program. In normal workstation use, the Attention
key can be pressed only when the keyboard is unlocked; that is, the program is ready for input. This
occurs when a read or write-read operation is issued or the UNLOCK DDS keyword is used in a write
operation.

The use of the Attention key differs from that of the System Request key in that the application program
has control over when it can be interrupted.

Exception

An exception to this occurs with application programs performing a get-no-wait operation on multiple
device files. Pressing the Attention key causes these programs to be interrupted at any point by the
Attention-key-handling program. (Even though the input inhibited light may be on, the keyboard is
unlocked during a get-no-wait operation.) Application programs performing sensitive functions (especially
during a get-no-wait operation) should therefore be protected by running SETATNPGM PGM(*CURRENT)
SET(*OFF) before and SETATNPGM PGM(*CURRENT) SET(*ON) after sensitive code.

Note: A high-level language program can use the SETATNPGM command by calling QCMDEXC.

186 IBM i: Work management

When not to use the attention key

The Attention key cannot be used to call an Attention-key-handling program when the following
conditions exist:

• The keyboard is locked. (Note the exception described earlier for get-no-wait operations.)
• The System Request menu or any of its options is being used.
• The display message display is shown.
• The IBM i licensed program is already calling the Attention-key-handling program that makes it already

active; however, if the program issues another SETATNPGM, the Attention key is enabled.
• A BASIC session is in progress, or a BASIC program is called.

Attention key and BASIC session

In a BASIC session, the Attention key is handled by BASIC, as appropriate. For example, if a BASIC
program is called after a SETATNPGM command has set the Attention key on, the Attention key is
handled by BASIC. After the BASIC program ends, your Attention-key-handling program takes effect
again.

Attention key handling program coding tips

Caution is necessary when defining an Attention-key-handling program because the Attention-key-
handling program runs in the same job as the program that is in progress when the Attention key is
pressed. Therefore, the interrupted program is not protected by any locks it holds. If the interrupted
program has an exclusive lock on an object, the Attention key program, because it runs in the same job, is
part of the job that has the exclusive lock.

The following guidelines are recommended for defining Attention-key-handling programs:

• Use simple functions such as menus that allow the workstation user to transfer to another group job or
to a secondary interactive job.

• Avoid referring to objects or functions that may be in use when the Attention key is pressed.
• Avoid calling non-recursive functions when the Attention key is pressed. Non-recursive functions are

functions that cannot be interrupted and then called again. Many functions, such as high-level language
programs and utilities like DFU, are non-recursive.

• Avoid giving an option that allows the workstation user to display the command entry display as part of
the current job. For users who are programmers, it is meaningful to display a menu that includes an
option for the command entry display. The command entry display should be specified as a separate
group job (for example, by specifying INLGRPPGM(QCMD) on the TFRGRPJOB command). This avoids
re-using objects already in use.

• Attention-key-handling programs do not have the authority adopted by the program that was in
progress before the Attention key was pressed.

• Attention-key-handling programs do not have their own data area (*LDA). Since there is only one local
data area per job, and the Attention-key-handling program runs in the same job as the interrupted
program, both programs share the same local data area.

• Be aware that a read-from-invited devices operation could time-out during the time that the Attention-
key-handling program is running. Therefore, if a time-out were to complete in the program in progress
while the Attention-key-handling program is running, whatever action taken as a result of that time-out
occurs on return to the program in progress. For example, if the following conditions are met, the
program exits on return from the Attention key handler:

– The WAITRCD value in the file is set to 60 seconds.
– The program is set to exit if a key is not pressed in one minute.
– The Attention key program is called and runs longer than that minute.

However, caution should be used, since a check for available data is made before checking that the
time-out has completed. If a key is pressed immediately after leaving the Attention key handler, data

Work management 187

could be available that could complete the read-from-invited devices and the time-out would not be
checked. This could cause unexpected results.

Group job performance tips
This topic provides you with some tips on maintaining good system performance when using group jobs.

• The effect on the system for a large number of suspended jobs is normally small if the dedicated main
storage requirement is not a factor.

• When a TFRGRPJOB command runs and a new job must be started, the overhead involved is roughly the
same as signing on to the system. When the command is run and the group job is already started, the
overhead required is roughly the same as using the transfer to a secondary job option on the System
Request menu when the secondary job is already active.

• If a group job is to be run with any frequency, it is desirable to prevent it from ending. That is, do not end
the program, but issue a TFRGRPJOB command to prevent job starting each time the group job function
is needed.

• The SETATNPGM command causes the current display to be saved when the Attention key is pressed,
and to be restored when the Attention key-handling-program ends. This is roughly the same as using of
the System Request menu and has a more noticeable effect on remote workstations.

• The controls on the number of jobs active in the system (the MAXJOBS parameter on the CRTSBSD
command) are not affected by the number of group jobs active at any time.

• All system values that control the creation of job structures (QACTJOB and QADLACTJ, and QTOTJOB
and QADLTOTJ) are affected; these values may need to be increased to allow for the addition of group
jobs.

Troubleshooting for work management
This topic helps you troubleshoot some of the most common problems that occur in work management.

My job is hung
These tables list the possible reasons why a job might be hung.

Job is waiting to get a lock on an object

 How to
diagnose:

View the status of the job in IBM Navigator for i; see Determining the status of
a job. A job that is waiting to get a lock will have a status of Waiting for lock.

Recovery: View the list of locked objects for the job to determine which object the job is
waiting to get a lock on. Then use the Lock Holders action against the object
to determine which job already holds the lock. You then need to determine
why this job is holding the lock, and what can be done to release the lock.

Job is held

 How to
diagnose:

View the status of the job in IBM Navigator for i; see Determining the status of
a job.

Recovery: Right-click the job and click Release.

The following are possible reasons why a job on a job queue might be hung:

188 IBM i: Work management

Job queue is held

 How to
diagnose:

View the status of the job queue in IBM Navigator for i;

Recovery: 1. Move the job to a job queue that is not held, see Moving a job to a different
job queue.

2. Release the job queue. To do so, right-click the job and click Release.

Job queue has not been allocated by an active subsystem

 How to
diagnose:

View the status of the job queue in IBM Navigator for i.

Recovery: 1. Move the job to a job queue that is allocated by an active subsystem, see
Moving a job to a different job queue.

2. Start a subsystem which contains a job queue entry for this job queue, see
Starting a subsystem.

3. Add a job queue entry for this job queue to an active subsystem using the
Add Job Queue Entry (ADDJOBQE) command.

Subsystem maximum has been reached

 How to
diagnose:

View the maximum active jobs value for the subsystem in IBM Navigator for i.
To do so, right-click the subsystem and click Properties.

Recovery: 1. Move the job to a different job queue, see Moving a job to a different job
queue.

2. Increase the maximum value. To do so, use the Change Subsystem
Description (CHGSBSD) command.

Job queue maximum has been reached

 How to
diagnose:

View the maximum active jobs value for the job queue in IBM Navigator for i.
To do so, right-click the job queue and click Properties. Then select the
Activity tab.

Recovery: 1. Move the job to a different job queue; see Moving a job to a different job
queue.

2. Increase the maximum value. To do so, use the Change Job Queue Entry
(CHGJOBQE) command.

Maximum value for the priority level has been reached

 How to
diagnose:

Determine the job queue priority of the job by viewing its properties. Then
view the maximum active jobs by job priority values for the job queue in IBM
Navigator for i. To do so, right-click the job queue and click Properties. Then
select the Activity tab and click the Advanced button.

Recovery: 1. Move the job to a different job queue; see Moving a job to a different job
queue.

2. Change the job queue priority of the job; see Specifying the priority for the
job queue.

3. Increase the maximum value. To do so, use the Change Job Queue Entry
(CHGJOBQE) command.

Work management 189

My job is experiencing poor performance
These are the possible reasons why a job might experience poor performance.

Insufficient memory

 How to
diagnose:

View the properties of the job to determine which memory pool the job is
running in. Then view the properties of the memory pool in IBM Navigator for
i, see Checking memory pool usage. A high rate of faulting in a pool indicates
that there is not enough memory in the pool, or that too many jobs are in the
pool competing for the memory.

Recovery: 1. Turn on the system tuner if you are not already using it. See Performance
system values: Automatically adjust memory pools and activity levels for
the information about automatically adjusting memory pools and activity
levels.

2. If possible, manually tune the pool you are working with by increasing the
amount of memory in the pool or reducing the activity level for the
memory pool. You might also want to check the machine pool to verify that
the amount of memory being used is not affecting all jobs on the system.

Activity level too low

 How to
diagnose:

View the properties of the job to determine its status and which memory pool
the job is running in. If the job shows a status of Waiting for activity level, then
view the properties of the memory pool in IBM Navigator for i, see Checking
memory pool usage. A high rate of transitions to the ineligible state in a pool
indicates that too many jobs in the pool are competing for the memory.

Recovery: 1. Turn on the system tuner if you are not already using it. See Performance
system values: Automatically adjust memory pools and activity levels for
the information about automatically adjusting memory pools and activity
levels.

2. Manually tune the pool by increasing the activity level for the memory
pool.

Insufficient CPU resource

 How to
diagnose:

View the CPU % column for the job and other jobs in the Active Jobs list of
IBM Navigator for i. If the system is very busy, your job might not be getting
enough CPU resource to complete its work.

Recovery: 1. If possible, end or hold unnecessary work on the system.
2. If a few jobs are CPU intensive, change the run priority of these jobs (a

higher run priority value equals a lower run priority for the job).

Memory pool paging option

 How to
diagnose:

If an application is disk intensive, if the CPU is under utilized and if there is
sufficient memory, the use of expert cache might be beneficial.

Recovery: The expert cache can be turned on in IBM Navigator for i by changing the
Paging option for a shared memory pool to Calculated. The Paging option is
located on the Configuration tab of the memory pool's Properties page and
is only available on shared pools(not private pools).

190 IBM i: Work management

Low job run priority

 How to
diagnose:

To determine the run priority of a job relative to other jobs on the system, see
Viewing job attributes.

Recovery: If the job has a low run priority (higher number) relative to other jobs and is
not using much CPU because the higher priority (lower number) jobs are using
most of the CPU resource, you might need to increase the job's run priority,
see Viewing job attributes. Also, on a system with high CPU utilization and a
job with a low run priority, see Performance system values: Dynamically
adjust job priorities within priority bands and Performance system values:
Dynamically adjust job priorities of interactive jobs. The system values might
be useful.

For more information about performance, see Performance. If you want more information about how to
tune performance on your system, see Tuning performance.

Prestart job investigation
This topic provides steps to help you answer the question, "How do I find the real user of a prestart job
and determine the resources used by that prestart job?"

IBM Navigator for i

You can use IBM Navigator for i work management views and monitors for a real time analysis of what is
happening on your system.

1. Use the Server Jobs view to see the active server jobs and the current user. (Work Management >
Server Jobs)

• Open the Server Jobs list and select Actions > Columns and make sure that the Current User, Total
CPU Time, and Total CPU DB Time are in the Columns to be displayed list.

• If your active server job list is large, you can limit what is displayed by a job name, job number,
current user, or status. Click Actions > Include .

• You can sort the display order of the active server job list by clicking on the column headings.

Once you have located a job of interest, you can right-click the job and access the job's call stack, job
log, elapsed performance statistics, last SQL statement, and the job's properties.

2. Set up a system monitor that monitors the overall CPU Utilization. (Expand Monitors, right-click
System, and select New Monitor.)

• While the monitor is running, you can click one of the points to view the next level of detail. For
example, when monitoring CPU Utilization you can display a list of jobs that have the highest CPU
utilization. You can then right-click a job that is using a lot of CPU and click Properties to display the
job's properties. (See the online help for more information about how to use the system monitor.)

Character-based interface

Command: Work with Active Job (WRKACTJOB)

This command displays the current user of the initial thread (which is the job when the job is single
threaded). This is the same data that is shown in the GUI.

Related concepts
Prestart job entries
You define the prestart job by using a prestart job entry. A prestart job entry does not affect the device
allocation or program start request assignment.
Prestart jobs for servers
In the prestart job model there is one primary listening job, generally called the daemon job or listener
job, and multiple server jobs that process the client requests. The daemon job listens on the port for

Work management 191

connection requests. When a new connection is received, the daemon does some general work, then
gives the socket descriptor to a waiting prestart server job.
Related tasks
Adding prestart job entries
Prestart job entries identify prestart jobs that may be started when the subsystem is started or when the
Start Prestart Jobs (STRPJ) command is entered. You can add prestart job entries to the subsystem
description by using the character-based interface.
Changing prestart entries
You can change a prestart job entry in the specified subsystem description. The subsystem may be active
when the prestart job entry is changed. Changes made to the entry when the subsystem is active are
reflected over time. Any new prestart jobs started after the command is issued use the new job-related
values. This command identifies prestart jobs that are started when the subsystem is started or when the
Start Prestart Jobs (STRPJ) command is issued.
Removing prestart job entries
You can remove prestart job entries from the subsystem description by using the character-based
interface. A prestart job entry cannot be removed if any currently active jobs were started using the entry.

Related information for Work management
Other information center topic collections contain information that relates to the Work Management topic
collection.
Experience reports

The work management experience reports give you practical, real world ways to use the work
management tools in your everyday tasks.

Networking
Your understanding of networking technologies is a vital part of your company's total e-business
solution. Learn how to connect your business to the Internet, configure e-mail, and serve multimedia
objects to Web browser clients. You can integrate file and print services, user profile management,
and network operations. Find information about the Windows server that can be integrated into the
server, and read about security offerings that can help protect your resources.

Retrieve Network Attributes (QWCRNETA) API
The Retrieve Network Attributes (QWCRNETA) API lets you retrieve network attributes.

Retrieve IPL Attributes (QWCRIPLA) API
The Retrieve IPL Attributes (QWCRIPLA) API returns the settings of attributes that are used during the
IPL. This API provides support similar to the Display IPL Attributes (DSPIPLA) command.

Performance
Understanding all the different processes that affect system performance can be challenging for the
inexperienced user. Resolving performance problems requires the effective use of a large suite of
tools, each with its own unique set of requirements and supported functions. Even after you have
gathered and analyzed performance data, knowing what to do with that information can be daunting.
This topic will guide you through the tasks and tools associated with performance management.

Performance explorer
Performance explorer collects more detailed information about a specific application, program or
system resource, and provides detailed insight into a specific performance problem. This includes the
capability both to perform several types and levels of traces and to run detailed reports.

Time management
Within the time management component of IBM Navigator for i, you can work with the time zone and
time adjustment functions. With these functions, you can choose a time zone for your system to use
and adjust the system time.

192 IBM i: Work management

System values
System values are pieces of information that affect the system operating environment. System values
are not objects on the system. Rather, system values contain control information for the operation of
certain parts of the system.

Work management 193

194 IBM i: Work management

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2004, 2013 195

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
This Work management publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of IBM i.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

196 Notices

http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Oracle, Inc. in the United States, other
countries, or both.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 197

198 IBM i: Work management

IBM®

	Contents
	Work management
	PDF file for Work management
	What's new for IBM i 7.2
	Introduction to work management
	Your system as a business
	A job's life
	Submitting a job
	The job enters the job queue
	The job enters the subsystem
	The subsystem uses memory from the memory pool to run the job
	The job finishes and moves to the output queue

	How work gets done
	What work is
	What happens before work enters the system
	How work enters the system
	How work gets processed
	How work leaves the system

	Concepts
	The structure of your system
	Subsystems shipped with the system
	Start-up programs
	What happens during the IPL

	Types of start-ups
	Powering down your system
	IBM Navigator for i

	Subsystems
	The controlling subsystem
	Why consider multiple subsystems
	Subsystem description
	Subsystem description attributes
	Work entries
	Autostart job entries
	Communications entries
	Job queue entries
	Prestart job entries
	Prestart jobs for servers
	Workstation entries

	Routing entries
	Class
	Comparison data
	Maximum active routing steps
	Memory pool ID

	How a subsystem starts
	How workstation devices are allocated
	Scenario: Workstation allocation

	Memory pools
	Types of memory pools
	Pool numbering schemes
	Memory pool allocation
	Memory pool activity level

	Jobs
	Proper authority
	Job characteristics
	Job name syntax
	Job Attributes
	Job description
	Job descriptions and security
	Call stacks
	Class object
	Job user identity
	Job user identity examples
	Threads
	Proper thread authority
	Thread status

	Locked objects

	Job types
	Autostart jobs
	Batch jobs
	How a batch job starts
	Spawn batch jobs

	Communication jobs
	Types of communications jobs

	Interactive jobs
	How an interactive job starts
	Disconnecting interactive jobs
	I/O error for job requester device
	Interactive jobs and routing steps
	Programs that control the routing step
	Workstation versus user based routing
	When jobs end at the same time

	Prestart jobs
	Prestart job name
	How prestart jobs work
	Prestart job entries
	Prestart job handling program start requests
	Prestart jobs for batch applications
	Performance tips for prestart jobs
	Spooled file and the prestart job entry

	Reader and writer jobs
	Server jobs
	System jobs
	System startup jobs
	System arbiters
	System communication jobs
	Database jobs
	Other system jobs

	Job scheduling options
	Management Central scheduler
	Job schedule entries
	Examples: job schedule entry

	The submit job command
	Job scheduler considerations
	Job scheduling and system availability

	Job queues
	Ordered list
	How a job queue works
	How jobs are taken from a job queue
	Job queue entry
	How job queues are allocated to a subsystem
	Multiple job queues
	How jobs are taken from multiple job queues
	Job queue security

	Output queues
	Attributes of an output queue
	Order of files
	Spooled files
	Output spooling
	Output queues and spooled files
	Default system output queues
	Spooling writers
	Spooling writer commands
	Input spooling
	Job input commands
	Inline data files
	Considerations for opening inline data files

	Job logs
	How job logs are created
	Job log pending
	Job log server
	Job log display characteristics
	Job log headings
	Messages

	Interactive job logs
	QHST History Log
	Format of the History Log
	Performance information and QHST

	Spooled files

	Job accounting
	How job accounting works
	Job Accounting operating characteristics
	Accounting Journal Processing

	When to use job accounting
	Security and job accounting
	About the accounting code
	Resource accounting
	Resource accounting data
	Prestart communications jobs and job accounting
	System job processing for job accounting
	Batch processing and job accounting
	Interactive processing and job accounting
	Printer file accounting
	Journal entries for job accounting
	Job accounting journal entry field information
	Printer file accounting data for direct print and spooled print
	DP accounting journal information
	SP accounting journal information

	Managing work
	Calling a special IPL recovery program
	Monitoring system activity
	Checking memory pool usage
	Controlling levels of system activity
	Examples: activity control relationships

	Determining the status of a job
	Monitoring a subsystem
	IBM Navigator for i
	Character-based interface

	Determining the number of subsystems using a memory pool
	IBM Navigator for i
	Character-based interface

	Viewing job performance statistics
	Viewing overall system status
	Checking disk status

	Managing jobs
	Common job tasks
	Starting a job
	Starting a batch job that is waiting in the job queue
	Starting a prestart job

	Ending a job
	IBM Navigator for i
	Character-based interface
	Ending a job: controlled
	Ending a job: immediate

	Finding jobs
	IBM Navigator for i
	Limit information that is displayed
	Character-based interface

	Viewing jobs on the job queue
	IBM Navigator for i
	Character-based interface

	Viewing jobs in the subsystem
	IBM Navigator for i
	Character-based interface

	Viewing job attributes
	IBM Navigator for i
	Character-based interface

	Viewing call stacks
	IBM Navigator for i
	Character-based interface

	Placing a job on the job queue
	IBM Navigator for i
	Character-based interface

	Moving a job to a different job queue
	IBM Navigator for i
	Character-based interface

	Moving a job up in priority
	IBM Navigator for i
	Character-based interface

	Tips for setting job priorities
	Submitting a job once
	Viewing job affinity information
	IBM Navigator for i
	Character-based interface

	Managing job descriptions
	Creating a job description
	Changing a job description
	Using a job description
	Controlling the job attribute source
	Deleting a job description

	Manage batch jobs
	Submitting a batch job
	Inline data files
	Considerations for opening inline data files

	Starting a batch job that is waiting in the job queue

	Managing interactive jobs
	Controlling inactive jobs and workstations
	Ending interactive jobs
	Disconnecting all jobs from a device
	Job disconnection considerations
	Avoiding a long-running function from a workstation

	Managing prestart jobs
	Starting a prestart job
	Queueing or rejecting program start requests
	Tuning prestart job entries
	Setting the number of prestart jobs

	Changing job attributes for prestart jobs
	Ending a prestart job

	Managing job class objects
	Creating a class object
	Changing a class object

	Managing threads
	Viewing threads running under a specific job
	IBM Navigator for i
	Character-based interface

	What you can do with threads
	Viewing thread properties
	IBM Navigator for i
	Character-based interface

	Ending or deleting threads
	IBM Navigator for i
	Character-based interface

	Managing job scheduling
	Scheduling a batch job using IBM Navigator for i
	Scheduling a job using Management Central Scheduler
	Working with job schedule entries
	Adding a job schedule entry
	Changing a job schedule entry
	Holding a job schedule entry
	Printing a list of job scheduled entries
	Releasing a job schedule entry
	Removing a job schedule entry

	Managing subsystems
	Common subsystem tasks
	Viewing subsystem attributes
	IBM Navigator for i
	Character-based interface

	Stopping a subsystem
	IBM Navigator for i
	Character-based interface

	Starting a subsystem
	IBM Navigator for i
	Character-based interface

	Creating a subsystem description
	Adding autostart job entries
	Adding communications entries
	Adding job queue entries
	Adding prestart job entries
	Adding routing entries
	Adding workstation entries
	Creating a sign-on display file
	Specifying the new sign-on display

	Changing a subsystem description
	Changing autostart job entries
	Changing communication entries
	Changing job queue entries
	Changing prestart entries
	Changing routing entries
	Changing workstation entries
	Changing the sign-on display

	Deleting a subsystem description
	Removing autostart job entries
	Removing communication entries
	Removing job queue entries
	Removing prestart job entries
	Removing routing entries
	Removing workstation entries

	Configuring an interactive subsystem
	Creating a library
	Creating a class
	Creating the subsystem description
	Creating a job queue
	Adding a routing entry
	Adding workstation entries
	Customizing QINTER
	Configuring the console
	Assigning users to a specific subsystem
	Telnet device initialization and terminal exit points
	Device selection exit point
	PC5250 (System i Access) workstation ID support
	OS/400 Telnet Client
	Manually creating virtual controllers and devices

	Configuring a server subsystem
	Creating a user-defined server subsystem
	Routing server jobs based on client IP address
	Routing server jobs by user

	Creating a controlling subsystem
	Placing the system in restricted state

	Managing memory pools
	Viewing memory pool information
	IBM Navigator for i
	Character-based interface

	Determining the number of subsystems using a memory pool
	IBM Navigator for i
	Character-based interface

	Determining the number of jobs in a memory pool
	Determining in which pool a single job is running
	IBM Navigator for i
	Character-based interface

	Managing tuning parameters for shared pools
	IBM Navigator for i
	Character-based interface

	Managing a pool's configuration
	IBM Navigator for i
	Character-based interface

	Changing memory pool size
	IBM Navigator for i
	Character-based interface
	Change the size of a shared pool

	Creating a private memory pool

	Managing job queues
	Assigning the job queue to the subsystem
	How a subsystem handles several job queues

	Changing the number of jobs running simultaneously in a job queue
	Clearing a job queue
	IBM Navigator for i
	Character-based interface

	Creating job queues
	Deleting a job queue
	Determining which subsystem has a job queue allocated
	IBM Navigator for i
	Character-based interface

	Holding a job queue
	IBM Navigator for i
	Character-based interface

	Releasing a job queue
	IBM Navigator for i
	Character-based interface

	Moving a job to a different job queue
	IBM Navigator for i
	Character-based interface

	Placing a job on the job queue
	IBM Navigator for i
	Character-based interface

	Searching all job queues for a specific job
	IBM Navigator for i
	Character-based interface
	Find a job when you do not know the name of the job queue

	Specifying the priority for the job queue

	Managing output queues
	Creating an output queue
	Assigning the output queue to a job or job queue
	IBM Navigator for i
	Character-based interface

	Accessing printer output
	IBM Navigator for i
	Character-based interface

	Clearing output queues
	IBM Navigator for i
	Character-based interface

	Deleting an output queue
	Viewing output queues on the system

	Managing job logs
	Managing the job log server
	Reconfiguring the job log server
	Ending the job log server
	IBM Navigator for i
	Character-based interface

	Starting the job log server
	IBM Navigator for i
	Character-based interface

	How to display job logs
	IBM Navigator for i
	Character-based interface

	What to do when the job log does not display
	Specifying the output queue for a job log
	Stopping production of a specific job log
	Preventing the production of a job log
	Controlling information in a job log
	Changing the log level of a job
	Controlling batch job log information

	Deleting job log output files
	Producing printer output from job log pending
	Cleaning up job log pending
	IBM Navigator for i
	Character-based interface

	Managing job accounting
	Setting up job accounting
	Controlling the assignment of accounting codes
	Displaying the data collected
	Converting job accounting journal entries
	Recovering and job accounting
	Damaged job accounting journal or journal receiver
	Accessing the CPF1303 Message

	Managing workload groups
	Setting up workload groups
	Displaying workload groups
	Auditing workload groups

	Reference
	Group jobs
	Attention key handling program
	Group job performance tips

	Troubleshooting for work management
	My job is hung
	My job is experiencing poor performance
	Prestart job investigation

	Related information for Work management

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

