IBM i
Version 7.2

Programing
IBM i globalization

—

—

- - .

- Y E————
[—— -
- - . .
I S S W E—
I 7 E—

Note

Before using this information and the product it supports, read the information in “Notices” on page
589.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM® License Agreement for Machine Code.

© Copyright International Business Machines Corporation 1998, 2013.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

IBM i globalization......ccciiuiieiieiiiiieiiiiiiiiiiieiieiieiieiieceecsectestestestessasssscssssssssssassassas 1
PDF file for IBM i lobaliZation........ccueiieiieeciieeceeeete ettt ee e e stre e e aa e e s bae e e bae e e saaeeesaeeenaeeennes 1
GLODALIZATION OVEIVIEW....iiiiiiiiieiecieesie ettt sttt ettt e st st e saee s be e st e s beesaaessbeesbeesaseenbeesssesnseesssesnseansasnns 2

MULLIPLE LANGUAZE SUPPOI. .. eiieiiiieccieeeciee et e ecte e eeteeeetteeesteeeettee s sseeesasee e ssaeassaeessaessseeasseesnsseesnnsnenn 2
NatioNal LANGUAZE VEISION....uiiiciiieetie et eecite et e eectre e etee e et e e et e e ebeeeetaeessaeeesaeeansaeesnsasesssaeeenseseansreean 2
IBM i £rANSIAtIONS. .eitiiiieiitiieieeieerte st este st e st e ste e s te e sb e e beesaeeesbeesasessbeessaesaseesseesaseensaessseensaessseesaesssenns 3
National language deSign iN IBM i......ccuiiiciiiiciiecciee ettt ctte e setee e seare e sbt e e sbae e sbaeesbaeessaeesseeenans 3
LiNUIStIC and CULLUIAL VALUES......eee ettt et e et e et e e e te e s sbae s atee e ssaeennsaeennsaean 7
Setting up IBM i with a national langUAZE VEISION........eecciieeiiee ettt et e e re e e ste e e sabe e e v aeenaree s 27
How a language is displayed for IBM i fUNCHIONS.......ccicviiiiiiiiciee ettt e 27
Installation preparation and national lANGUAZES.c.viieciiieeiieecee ettt e ree e e ree e 29
Checklist: Globalization PlanNiNG.......cicuie ettt e e e e e e e e e te e e etee e ebeeesnsaeeensneennns 29
Hardware installation and national langUaZes.cueeccieeeiiieciiee ettt 31
Software installation and National lANGUAZES........cccueieciieiciee ettt sevtee e eraee e 33
Configuring a national langUAZE VEISION......cccuiiiccieeecciee et citeeetee e etee e etre e e e e e etae e ebeeesbaeesnsaeessnaans 33
Scenarios: Setting up IBM i with a national language Version.........ccceceeeeceeeccieeccee e e 42
(BICIVICTMo] oY = ={lo] o =X NPZ=Te IE=YoT o1 o= L4 o] o [T 46
GOALS AN PrOCESSES. .. uvvieeiieeeiiieeiteeecteeeetee e s tee e reeesataeesbeeassbaeasssaeaasseeasssaesansaeassseesanseesansesssnseesansees 47
Designing globalized appliCatioNS......cccuiieciieiiiie ettt e e ee e ree e e bae e s e e e s bee e e beeesaneas 52
Programming considerations in globalized application deSign........ccccveeeiieeecieeccieeccee e 90
Delivering globalized appliCatioNS......ccueiicieeieiie e e e ee e e ree e s srae e e rae e e nes 104
Handling data in globalized appliCatioNS.......ccciiieciiiieieecee ettt et e ere e e e ree e e tee e e e e e e baeeenes 105
WOIKING With UNICOUE....ci ittt ettt te e e tte e e tee e e bee e s bee e s bee e enbeeesnseaesnreaeennes 105
GB18030: The Chinese STaNdard......ccceecuiriiiriiriierie sttt st ese e sr et e seaessbeesaaesreesasessesssaenas 119
WOTKING Wt CCSIDS....uiiitiiieitietiieestestesieseessesaesseessesseessesssessesssessesssessesssesssessesssessesssesseessesssessesnns 119
Working with bidireCtional data........cccueeeciieeiiiececceeee e ae e e 166
WOrKing With DBCS data.....cciccieiciieeeiie e cetee e ertte et eetee e stee e s tee s e teeseteesentaesensaeannsaesnnsasennsaeennsnns 168
WOIKING WIth LOCALES...cccueiiietiieciee ettt ettt e e et e e et b e e s ste e s sbeeesaeessbeesssaeesseeassneans 191
Globalization reference iINfOrmMatioN..........ic e e ree e e ree e e 235
National language version feature COUES.......uuiiiiiiiiiiie ettt e e e e va e e earee s 235
Country and region IdENTITIEIS......cicciiieieccee e e erre e e e rte e e e be e e s tae e ebee e ebaeesasaeenns 237
Default system values for national language VersioNS........ccueeecieeeiieeeiiee et e 244
System values for other languages with no national language version........cccoeeeceeeecieeccieeeccieeenns 260
Keyboard reference information...........oiie ittt aae e e e e s 262
(070 To [l o X V= LTSRS 277
(01 T =Tt (=T Y=Y =T OO TP ORRRU PRSP 279
CCSID reference INfOrMatioN......ciiiiiiciirie ettt ettt st e st e st esbeesateebeesaaesnbeesanesnsean 308
Locale reference iNfOrmMation.......coiiiiiiiieiiirieeriece ettt sbe e st e e beesasesbeesasesneeas 343
UCS-2 level-1 Mapping tables.ttt sttt e e e e eeate e s rtee s rteesestaesesteesenteesnnes 360
Unicode Private Use Area mapping 0N IBM i....cccciiiiiiiiiiie ettt et ste e s e e aaee s 403
REXX €XTENSION CRATACTEIS. c..uiiiuiiiiiiiieiitente st este st esiee st e sbeesae s beesase s beesbsesbeessaessseensaesaseensesssneens 406
Default character data conversion that can use substitution.......cccceccveeeeceeiccee e 432
GLODALIZATION CHECKLISTS...uiiiiiiiiiiierieeitee ettt ettt s e e sae e s be e sae e sbeesbaesabeebaesaseesaesaneen 435
Related information for IBM i globalization.........cccuieeeciiiiciieecieccee et ve e e e bae e eaee e 436

V0] 1 o =N 589
Programming interface iNformMation.........c.uicii e ee e et e e e e e e e aes 590
THAAEMAIKS. .eeeteeteeite ettt ettt ettt e st e st e st e st e e s tee s be e beesabe e baesaseesbaesaseesbaesasesaseensaessseenseesaseenseesaseenses 591
TErmMS aNd CONAITIONS.c..viiiiiiiiirieeteert ettt e st e st e st e s beesbe e s beesbaesabeesbaesaseenbeesaseesaesasesseessseensaees 591

Terms and conditions

IBM i globalization

The IBM i operating system is designed to support the culture and languages of many countries around
the world. As companies integrate e-commerce on a global scale into their fundamental business
processes, their prospective customers, established customers, and active partners can take advantage
of increased revenue and decreased expenses through software globalization.

Globalizing your e-business is no longer a luxury; it is a necessity. As the Internet transcends national and
geographical boundaries, the concept of doing business within a single country is quickly giving way to the
need to compete in an international marketplace.

Globalized software gives you the following advantages:

- Increased customer satisfaction that can increase sales

« Enhanced customer support communications

« Enhanced global information dissemination

« A better return on Information Technology (IT) investments

This information shows you how to:

« Create an application efficiently and at minimal expense.

- Retrofit existing applications for globalization and create new applications designed for globalization.
Designing an application for globalization, however, is usually less expensive than retrofitting an existing
application.

 Ensure that the application design does not interfere with the current or planned design of other
internationalized applications.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 588.

Related information
Globalize your On Demand Business Web site
IBM i Globalization Web site

PDF file for IBM i globalization

You can view and print a PDF file of this information.

To view or download the PDF version of this document, select IBM i globalization .

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)-'-if}.

© Copyright IBM Corp. 1998, 2013 1

http://www.ibm.com/software/globalization/index.jsp
http://www.ibm.com/systems/power/software/i/globalization/
http://www.adobe.com/products/acrobat/readstep.html

Globalization overview

The IBM i operating system supports many languages, thus working as you expect it to work from both a
linguistic and a cultural point of view. You can work in the language of your choice. The IBM i operating
system also ensures that the data you send to and receive from the system appears in the form and order
you expect.

The IBM i operating system uses a common set of program code, regardless of which language you use on
the system. For example, the program code on a U.S. English system and the program code on a Spanish
system are identical. Different sets of textual data are used, however, for different languages.

Textual data is a collective term for menus, displays, lists, prompts, options, online help information, and
messages. This means that you see Help for the description of a function key for online help information
about a U.S. English system, while you see Ayuda on a Spanish system. Using the same program code with
different sets of textual data allows the IBM i operating system to support more than one language on a
single system.

Multiple language support

The IBM i operating system provides the tools and functions you need to make your applications deliver
your business information, such as dates and numbers, in formats that conform to the expectations of
users in multiple cultures using multiple languages.

You can enable your system to translate, present, and process data in a global environment.

When you install secondary languages on your system, you can set up your system with user interfaces
(that is, textual data) for any of the national language versions (NLVs) provided for the system. To support
multiple languages concurrently, you must have adequate storage to install all the necessary secondary
languages. You must also install the necessary hardware to support each language.

National language version

A national language version (NLV) is a version of the IBM i operating system that contains a predefined set
of language-dependent values, such as date format, time format, and sort sequence, for a particular
language.

When you order an IBM i licensed program, you identify the national language version you want by
specifying a language feature code. If you want to use more than one national language version of a
licensed program, you can order additional languages. For example, if you are a German customer, you
might need support for both German and French on one system. You can order a national language
version for German and a national language version for French.

When you order more than one national language version for a system, you designate one of the versions
as the primary language. The primary language you designate is the feature code identified when you
ordered the operating system. You designate all other national language versions as secondary languages.

You must order some of the licensed programs for your system with the same language feature code as
the primary language of the system. If the language feature code of a licensed program differs from the
language feature code of the primary language of the system, the licensed program might not install
correctly. Licensed programs with different feature codes as the primary language can be installed as a
secondary language.

Related concepts

National language version feature codes

This table lists the available national language version feature codes on the IBM i operating system. When
you order an IBM i licensed program, you identify the national language version you want by specifying a
language feature code.

Setting up IBM i with a national language version

2 IBMi: Programing IBM i globalization

The steps to install and configure a national language version on the IBM i operating system include
selecting and installing hardware, installing software, and configuring your environment to run in a
globalized setting.

IBM i translations

IBM i licensed programs, or portions of IBM i licensed programs, are translated into languages listed in
this topic. Not all portions of IBM i licensed programs are translated into every language.

- Arabic

« Brazilian Portuguese

e Czech

- Danish

« Dutch (this includes Belgian Dutch)

« Finnish

« French (this includes Belgian French, Canadian French and French Multinational Character Set)
« German (this includes German Multinational Character Set)
« Hebrew

« Hungarian

« Icelandic

- Italian (this includes Italian Multinational Character Set)

« Japanese (this includes Japanese Universal)

« Korean

« Norwegian

- Polish

 Portuguese (this includes Portuguese Multinational Character Set)
 Russian

 Simplified Chinese

« Spanish

- Swedish

- Traditional Chinese

« Turkish

National language design in IBM i

The national language design in IBM i defines the functions your application software can use to support
national languages.

Character representation
Character representation in the system is controlled by the Character Data Representation Architecture
(CDRA).

CDRA identifies characters by encoding scheme identifier (ESid), character set, pairs of character sets and
code pages (as needed), and additional coding-related information (as necessary). This identification is
established by a system of tags. The tags are handled by the IBM i operating system in a way that ensures
character set integrity.

The overall objective of CDRA is to define a method of assigning and preserving the meaning of coded
graphic characters through various stages of processing and interchanging.

IBM i globalization 3

Encoding scheme
The Character Data Representation Architecture (CDRA) system of tags uses an encoding scheme to
specify many rules.

The rules include:

« The coding space (humber and allowable value of code points in a code page)
« Rules for sharing the coding space between control and graphic characters

Rules related to specific options, such as the number bytes required for each character (single-byte,
double-byte, or mixed-byte) permitted in that scheme

Rules related to code extension techniques (if used)

The rules for encoding schemes are followed when code points are assigned to graphic characters in a
particular code page. Some common encoding schemes are Extended Binary Coded Decimal Interchange
Code (EBCDIC) and American Standard Code for Information Interchange (ASCII).

Conversion of character data
The Character Data Representation Architecture (CDRA) system of tags ensures that you can convert
character data in a predictable, repeatable way.

Conversion pertains to converting the code points assigned to one or more characters in one code page to
their corresponding code points in another code page. The conversion might cause a single character to
map to a sequence of characters, or a sequence of characters to map to a single character. Conversion
should not be equated to translating from one language to another.

Conversion methods
The following methods are used for conversion:

« Round-trip conversion. The integrity of all character data is maintained from the source coded character
set identifier (CCSID) to the target CCSID and back to the source.

When performing a round-trip conversion, you might see incorrect representation of the characters
displayed in the target CCSID. The integrity is preserved, however. When the characters are converted
back to the source CCSID, they regain their original hexadecimal values and representation.

« Enforced subset match conversion (substitution). Characters that exist in both the source and target
CCSID have their integrity maintained. Characters in the source CCSID but not in the target CCSID are
replaced. Replaced values are also referred to as substitution characters. For EBCDIC encoding, these
appear on most display stations as a solid block. For ASCII encoding, these substitution characters
appear differently.

This substitution is permanent when converting back to the source CCSID because it is not possible to
retrieve the original hexadecimal values.

For a list of CCSID conversions that result in substitution characters, see the Default conversion that
might use substitution table.

« Linguistic conversion. Also known as best-fit conversion, a partial mapping is done from the source code
page to the target code page. The integrity of characters that are in both the target CCSID and the
source CCSID are preserved. Characters that are not in the target CCSID are mapped to the most
culturally acceptable alternative for that character.

For example, the source CCSID might support an A grave character (-'J"L). The target CCSID might not
support this character. During the conversion, the most linguistically acceptable character (a Latin
capital A) is substituted for the A grave. After the conversion, characters that are not included in the
target CCSID are presented to the user as the most linguistically acceptable substitution characters.
This substitution is permanent. Any loss of character integrity is permanent.

Through an application programming interface (API), linguistic conversion is available from any
supported single-byte CCSID to any other supported single-byte CCSID.

4 IBMi: Programing IBM i globalization

Related concepts

Recommendations and guidelines for using CCSIDs
These recommendations are useful when you write globalized applications.

Related reference

Default character data conversion that can use substitution

The default CCSID conversions use substitution because the character sets within the CCSIDs are
different. The table shows which CCSIDs (From CCSID column) can be substituted by other CCSIDs (To
CCSID column).

Related information
Character Conversion APIs

Coded character set identifier values
CDRA defines the range of values for CCSIDs (coded character set identifiers).

The values include:

CCSID value

Purpose or meaning

00000

Use next higher hierarchical CCSID

00001 through 65533

IBM-registered CCSIDs

65534

Refer to lower hierarchical CCSID

65535

No automatic conversion of data between this

CCSID and any other CCSID. (This is the default
setting of the QCCSID system value.)

CDRA uses a tag field to hold a CCSID value to identify the meaning of coded graphic characters. The tag
field might be in a data structure that is logically associated with the data object (explicit tagging), or it
might be inherited from the tag field associated with the other objects within the operating system
(implicit tagging).

Related concepts

Set job attributes (QSETJOBATR) system value
The set job attributes (QSETJOBATR) system value sets job attributes at job startup time.

Related information
CCSID values defined on IBM i

Character data integrity

The Character Data Representation Architecture (CDRA) system of tags uses coded character set
identifiers (CCSIDs) to maintain data integrity when character data is passed from system to system or
from user to user. CCSIDs assign a value that uniquely identifies the coded graphic character
representation used for character data.

Data integrity is not maintained using CCSID 65535 across countries

The following table shows the meaning of maintaining data integrity. A database file created by a U.S. user
contains a dollar sign and is read by a user in the United Kingdom and in Denmark. If the application does
not assign CCSID tags that are associated with the data to the file, users see different characters.

Country Keyboard type | Code page CCSID Code point Character
u.s. usB 037 65535 X'5B' $

U.K. UKB 285 65535 X'5B' £
Denmark DMB 277 65535 X'5B' A

IBM i globalization 5

Data integrity is maintained by using CCSID tags

If the application assigns a CCSID associated with the data to a file, the application can use IBM i CCSID
support to maintain the integrity of the data. When the file is created with CCSID 037, the user in the
United Kingdom (job CCSID 285) and the user in Denmark (job CCSID 277) see the same character.

Database management takes care of the mapping.

Country Keyboard type |Code page CCsID Code point Character
u.s. UsB 037 00037 X'5B' $
U.K. UKB 285 00285 X'4A' $
Denmark DMB 277 00277 X'67' $

CCSID support is particularly important when:

 Multiple national language versions, keyboards, and display stations are installed on the IBM i operating
system.

 Multiple systems are sharing data between systems with different national language versions.

 The correct keyboard support for a language is not available when you want to encode data in another
language.

Related concepts

CCSID reference information

Coded character set identifier (CCSID) is a 16-bit number that includes a specific set of encoding scheme
identifiers, character set identifiers, code page identifiers, and other information that uniquely identifies
the coded graphic-character representation.

Character processing
Character processing on the IBM i operating system is controlled by specific coding rules and guidelines
that ensure consistent processing of character data.

The rules and guidelines cover tasks such as:

« Converting character data to all uppercase or to all lowercase data

Folding data (substituting printable or displayable characters for those that cannot be printed or
displayed on a particular device)

 Processing character data strings

Classifying characters
- Naming objects
« Determining data, file, and field lengths

Related concepts

Developing globalized applications

Globalized applications are applications that have national language support. National language support
allows users to enter, store, process, retrieve, print, and display data in their chosen language. It also
allows users to see and enter commands, prompts, messages, and documentation in their chosen
language, in formats matching their cultural expectations.

Character presentation
Character presentation on the IBM i operating system is controlled by coding rules and algorithms that
ensure consistent presentation of character data.

These rules and algorithms cover tasks such as:

 Shaping characters
« Truncating characters

Handling substrings of character data

6 IBMi: Programing IBM i globalization

These rules and algorithms are described in detail in “Developing globalized applications” on page 46.

Globalization hardware support

Hardware, in this context, means the physical keyboards, displays, printers, and controllers that make up
a IBM i product. The extent to which this hardware supports national languages might impose limitations
on the degree of support that you can provide with an application.

You must refer to the reference manuals for non-IBM hardware to determine what limitations, if any, are
imposed by that hardware.

Character data translation
Translating is changing the meaning of character data from a set of concepts, ideas, and statements in
one human language to a culturally similar meaning in another human language.

You can follow the user interface subset of these rules as guidelines to ensure translation goes smoothly.
A subset of these rules is provided in “User interfaces” on page 60.

Locales
A locale is an object that can determine how data is processed, printed, and displayed.

Locales are made up of categories that define language, cultural data, and character sets. The locale
support is provided to supplement the job value options that the IBM i operating system previously has
provided.

Many locales are included with the IBM i operating system. In addition, locale definition source files are
provided for locale customization. A locale definition source file contains one or more categories that
describe (or make up) a locale.

Related concepts

Installing and enabling locales

If you are installing a new release, you can request that library QSYSLOCALE be installed on the system at
that time.

Working with locales

Locales are used primarily in ILE-based application programs. Additionally, the Retrieve Locale
Information (OPM, QLGRTVLC; ILE, QlgRetrieveLocaleInformation) API retrieves one or all categories of a
locale.

Linguistic and cultural values

Linguistic and cultural conventions include any system values, attributes, or settings that can be altered to
suit a country or language.

Examples of linguistic and cultural conventions on the system include date formats and currency symbols.

Some linguistic and cultural conventions might vary by language within a country. For example, language
conventions vary in Canada. One set of linguistic conventions apply for French and another set of linguistic
conventions apply for English.

Where you can change linguistic and cultural values on IBM i

Settings of cultural and linguistic conventions are supported at different levels in the IBM i operating
system.

The system is structured in the following way:

Table 1. System with subsystem A and subsystem B

System

Subsystem A Subsystem B
Job Al Job B1

Job A2 Job B2

IBM i globalization 7

Some linguistic and cultural conventions can be set or changed at the system level, some at the
subsystem level, some at the user profile level, and some at job run time. In addition, some cultural and
linguistic settings can be set or changed in device descriptions. For example, keyboard types can be
changed when creating or changing a display device description.

Related tasks

Enabling the secondary language
You must ensure that secondary languages can be used after they have been installed on the system.

User profiles
Individual users can store customized cultural and linguistic values in their user profiles.

These customized values can differ from the system default values and can be used by the IBM i
operating system when you set job attributes and object attributes for an individual user. Job attributes
can also be used as defaults for setting object attributes that are created or changed under the control of
that job.

If you have a single system supporting multiple languages, you should change the user profile to use
language and cultural-appropriate values. When you change the character set identifier (CCSID)
parameter in the user profile, ensure that the CCSID is set as follows:

« Is set to an SBCS CCSID or to CCSID 65535 for SBCS users
« Is set to a mixed CCSID or to CCSID 65535 for DBCS users
« Is settoa SBCS CCSID for SBCS users on a DBCS system

You can use the Create User Profile (CRTUSRPRF) and the Change User Profile (CHGUSRPRF) commands
to customize a user profile.

Related reference

Create User Profile (CRTUSRPRF) command

Change User Profile (CHGUSRPRF) command

Subsystems
A subsystem is a single, predefined operating environment through which the system coordinates the
work flow and resource use.

The system can contain several subsystems, all operating independently of each other. Subsystems
manage resources. The runtime characteristics of a subsystem are defined in an object called a subsystem
description.

You can use subsystems to support users in a multilingual environment. You should create a separate
subsystem for each set of users with differing needs.

Subsystem descriptions for secondary language users

You can create and use a subsystem description in a multilingual environment. For example, you can
create a subsystem for secondary language users (such as QGPL/GERMAN for German language users).

A subsystem description defines how, where, and how much work enters a subsystem, and which
resources the subsystem uses to perform the work. An active subsystem takes on the simple name of the
subsystem description.

A subsystem description consists of three parts:

« Subsystem attributes
« Workstation entry
« Routing entries

Notes:

1. You can work with existing work entries while the subsystem is active.

8 IBMi: Programing IBM i globalization

2. An IBM-supplied subsystem on a DBCS system is included with a workstation entry to support DBCS
display devices.

Related concepts
Work management

Packaging and installation process

You need to consider the running code, translated textual data, and installation documents when
packaging applications. Here are some suggestions for simplifying the packaging and installation of your
application.

Creating a subsystem description

IBM-supplied subsystem descriptions have been provided as examples and as backup for user-created
subsystem descriptions. Therefore, you should not change the subsystem descriptions in libraries QSYS
and QGPL. You should make copies of the subsystem descriptions from these libraries and make changes
to the copies.

You can create a subsystem description in two ways. You can either copy and then change an existing
subsystem description, or create an entirely new description.

To copy an existing subsystem description, follow these steps:

1. On a command line, type CRTDUPOBJ to create a duplicate object of an existing subsystem
description.

2. Change the sign-on display file and the system part of the library list for the secondary language.

To create an entirely new subsystem description, follow these steps:

1. Create a subsystem description (CRTSBSD). Specify a sign-on file from the national language version
library and specify the national language version library (QSYSnnnn) as the system-library list entry.

2. Create a job description (CRTJOBD).
3. Add work entries to the subsystem description.

a. ADDWSE (Add work station entry)
b. ADDJOBQE (Add job queue entry)
c. ADDCMNE (Add communications entry)
d. ADDAJE (Add autostart job entry)
e. ADDPJE (Add prestart job entry)
4. CRTCLS (Create a class).
5. ADDRTGE (Add routing entries to the subsystem description).

Related reference

Create Duplicate Object (CRTDUPOBJ) command
Create Subsystem Description (CRTSBSD) command
Add Work Station Entry (ADDWSE) command

Add Job Queue Entry (ADDJOBQE) command

Add Communications Entry (ADDCMNE) command
Add Autostart Job Entry (ADDAJE) command

Add Prestart Job Entry (ADDPJE) command

Create Class (CRTCLS) command

Add Routing Entry (ADDRTGE) command

IBM i globalization 9

Subsystem attributes
Subsystem attributes provide the overall characteristics of the subsystem. Attributes include the system-
library list entry and a text description of the subsystem description.

For example, you can specify subsystem attributes to support secondary language users:
1. Specify the national language version for the subsystem library entry parameter.

By creating a subsystem for each secondary language on your system, you can ensure that secondary
language users have access to textual data in their own language. Within each subsystem, you can
arrange the order of libraries in the library list so the textual data for the appropriate secondary
language is at the top of the system library list. For example, if you have a primary language of Danish,
and a secondary language of German, you can add a library at the top of the system library list in the
German subsystem. Jobs running in the German subsystem then use the library at the top of the
system part of the library list and a search for German textual data is successful.

If you add a subsystem-library list entry for a national language version library:

« Do not add the library to the QSYSLIBL system value.

« Be sure that there are no more than 14 libraries in the QSYSLIBL list before adding your additional
library entry. (The maximum number of list entries for the system part of the library is 15.)

2. Specify the signon display using the national language version library.

3. Create or duplicate objects that all users of the secondary national language version need in the
national language version library.

4. Add workstation entries for these workstations that are specifically configured for this national
language version.

Workstation entry
A workstation entry, which is an entry in the subsystem description, specifies the workstations from which
users can sign on to the subsystem or from which interactive jobs can transfer to the subsystem.

Here are the items that you can specify in a workstation entry. Parameter names are given in parentheses.

« Workstation name or type (WRKSTN or WRKSTNTYPE)
- Job description to be used for jobs started through this workstation entry
« Maximum number of interactive jobs that can be active at the same time through the entry (MAXACT)

« When the work stations are to be allocated, either when the subsystem is started or when an interactive
job enters the subsystem through the Transfer Job (TFRJOB) command.

Adding, changing, or removing workstation entries

The following commands allow you to add, change, or remove workstation entries from a subsystem
description.

To add a workstation entry to a subsystem description, use the Add Work Station Entry (ADDWSE)
command. Here is an example of adding a workstation entry:

ADDWSE SBSD(USERLIB/ABC) WRKSTN(DSP12)
JOBD (USERLIB/WSE)

To specify a different job description for a previously defined workstation entry, use the Change Work
Station Entry (CHGWSE) command. Here is an example of changing a workstation entry:

CHGWSE SBSD(USERLIB/ABC) WRKSTN(DSP12)
JOBD (USERLIB/NEWJD)

To remove a workstation entry from a subsystem description, use the Remove Work Station Entry
(RMVWSE) command. Here is an example of removing a workstation entry:

RMVWSE SBSD(USERLIB/ABC) WRKSTN(DSP12)

10 IBMi: Programing IBM i globalization

Related reference

Transfer Job (TFRJOB) command

Add Work Station Entry (ADDWSE) command
Change Work Station Entry (CHGWSE) command
Remove Work Station Entry (RMVWSE) command

Starting a subsystem
After you have created a subsystem that meets your needs, you need to start the subsystem.

To start a subsystem, use the Start Subsystem (STRSBS) command:
STRSBS SBSD('library name/subsystem name')

For example:
STRSBS USERLIB/ABC

Related reference
Start Subsystem (STRSBS) command

Job attributes
Job attributes are set at the time a job starts.

Some job attributes are set from the user profile. Other job attributes come from system values, from
locales, from a Submit Job (SBMJOB) command, a job description, and the Change Job (CHGJOB)
command (from which you can change values for attributes while the job is running).

Related concepts

Database management

Database management support provides default coded character set identifier (CCSID) values for
database files on the system. All database files are assigned a CCSID. At file creation time, the CCSID is
either explicitly assigned through DDS, SQL, or IDDU, or implicitly assigned the job default CCSID
(DFTCCSID).

Related reference
Submit Job (SBMJOB) command
Change Job (CHGJOB) command

Coded character set identifier job attribute

When an interactive job is started on the IBM i operating system, the job CCSID value is taken from the
user profile. When a batch job is started, the current job CCSID is used unless a CCSID is specifically
entered on the SBMJOB command.

For every mixed-byte coded character set CCSID, there is a corresponding SBCS CCSID that is valid. If you
specify a mixed-byte coded character set CCSID for an SBCS system, the job CCSID is changed to the
corresponding SBCS CCSID.

If a job CCSID is specified as an SBCS CCSID, the job cannot handle DBCS data. If a job CCSID is specified
as a mixed CCSID, the job can handle DBCS data. You must use a DBCS-capable display device, though,
for the DBCS data in a job to display correctly. You can specify a mixed-byte CCSID for a job only if the
DBCS system value (QIGC) value is set to 1 (on). A QIGC value of 1 indicates that a DBCS national
language version is installed on the system.

Job default coded character set identifier
A job attribute, job default CCSID (DFTCCSID), is created for jobs with a CCSID of 65535. The DFTCCSID
value is used by a system code when a CCSID other than 65535 is needed.

The DFTCCSID attribute can only be retrieved or displayed. The value of this attribute is determined as
follows:

« If the job CCSID is not 65535, the DFTCCSID equals the job CCSID.

IBM i globalization 11

« If the job CCSID is 65535, the DFTCCSID value is based on an appropriate value derived from the job
language identifier (LANGID).

When the job is running, the system determines the default CCSID for a job using the following logic (you
can find the corresponding CCSID for LANGID in default CCSID table):

1. If the job CCSID is set to a value, it uses that value.

. If the job CCSID is set to *USRPRF, then the system checks the user profile for the value.
. If the user profile is set to a value, it uses that value.

. If the user profile is set to *SYSVAL, the system checks the system value.

. If the system value for QCCSID is set to a value, it uses that value.

. If the system value is set to 65535, the system checks the job's language ID.

. If the job's LANGID is set to a value, the QTQ_DEFAULT_CCSID environment variable is checked for
that LANGID value. If the QTQ_DEFAULT_CCSID environment variable contains a value for that
LANGID, the CCSID specified in the QTQ_DEFAULT_CCSID environment variable is used. If the
QTQ_DEFAULT_CCSID environment variable does not contain a value for the LANGID, the system
converts that LANGID to a CCSID.

8. If the job's LANGID is set to *USRPRF, the system checks the user profile's language ID.

9. If the user profile's LANGID is set to a value, the QTQ_DEFAULT_CCSID environment variable is
checked for that LANGID value. If the QTQ_DEFAULT_CCSID environment variable contains a value for
that LANGID, the CCSID specified in the QTQ_DEFAULT_CCSID environment variable is used. If the
QTQ_DEFAULT_CCSID environment variable does not contain a value for the LANGID, the system
converts that LANGID to a CCSID.

10. If the user profile's LANGID is set to *SYSVAL, the QTQ_DEFAULT_CCSID environment variable is
checked for that LANGID value. If the QTQ_DEFAULT_CCSID environment variable contains a value for
that LANGID, the CCSID specified in the QTQ_DEFAULT_CCSID environment variable is used. If the
QTQ_DEFAULT_CCSID environment variable does not contain a value for the LANGID, the system
converts that LANGID to a CCSID.

N oo WN

Related concepts

Database management

Database management support provides default coded character set identifier (CCSID) values for
database files on the system. All database files are assigned a CCSID. At file creation time, the CCSID is
either explicitly assigned through DDS, SQL, or IDDU, or implicitly assigned the job default CCSID
(DFTCCSID).

Graphic character conversion tables
Table (*TBL) objects support non-CCSID conversions from one code page to another. The system-
supplied table objects are located in the QUSRSYS library.

Language identifiers and associated default CCSIDs
This table shows the language identifiers and the job default CCSID (DFTCCSID) values associated with
those identifiers.

Job library list
The language used for textual data (displays, messages, printed output, and online help information) is
controlled by the library list for the job.

Users can place their national language library, before QSYS (the primary language library) and any other
national language libraries in their library lists. In this way, users can customize which national language
versions of information are presented to them.

Related concepts

System library list (QSYSLIBL) system value

The system library list (QSYSLIBL) system value is used as the first part of the library list associated with a
job.

Packaging and installation process

12 IBMi: Programing IBM i globalization

You need to consider the running code, translated textual data, and installation documents when
packaging applications. Here are some suggestions for simplifying the packaging and installation of your
application.

System values

The system values of the primary language on the system are used as system-wide cultural and linguistic
defaults. Therefore, if you change the primary language on the system, each varying system value resets
to the default system value of the new primary language.

The following list shows the cultural and linguistic system values. To display or change these values, use
the Work with System Value (WRKSYSVAL) command. A subset of language-dependent default system
values (QCCSID, QCHRID, QCNTRYID, QCURSYM, QDATFMT, QDATSEP, QDECFMT, QKBDTYPE, QLANGID,
and QTIMSEP) are shown in Default system values in the Reference section.

Related concepts

Default system values for national language versions
Jobs and functions on the IBM i operating system use system values as default values.

System values

Configuring the primary language

A primary language consists of program code, textual data for each licensed program ordered, and default
national language cultural values.

Related reference
Work with System Value (WRKSYSVAL) command

Century (QCENTURY) system value
The century (QCENTURY) system value specifies the century. It is used with the system values QDATE and
QYEAR to determine the specific date currently used by the system.

The possible values are:

0 (the years from 1928 t0 1999)
« 1 (the years from 2000 to 2053)

Note: 1900 to 1927 and 2054 to 2099 are not supported years for system time. Applications can,
however, support year date ranges from 0001 to 9999.

You can set the value of QCENTURY with the century indicator, or the system sets the value of QCENTURY
based on the following two situations:

« At the time of the first IPL, the system sets the initial value of QCENTURY based on the following rules:

— If QYEAR is equal to or greater than 40, the system assigns a value of 0 to QCENTURY.
— If QYEAR is less than 40, the system assigns a value of 1 to QCENTURY.
« When QYEAR or the year in QDATE is changed:

— QCENTURY is set to 0 if QYEAR is 54 t0 99
— QCENTURY issetto1if QYEAR is 00 to 27

For example, if you change QYEAR from 95 to 13, the system changes QCENTURY from 0 to 1, indicating a
year of 2013. However, if you change QYEAR from 95 to 45, the system will not change QCENTURY,
because both 1945 and 2045 are valid dates.

If you change this value, the change takes effect immediately. Changing this value also affects the system
value QDATE.

Note: The 21st century begins at 0000 hours, 1 January 2001. However, for purposes of common
understanding, the 20th/21st century boundary is defined to be between 2400 hours, 31 December 1999
and 0000 hours, 1 January 2000. This allows a discussion of the 21st century to include all dates with a
20xx format inclusive of the year 2000.

Related concepts
System date (QDATE) system value

IBM i globalization 13

The system date (QDATE) system value indicates the year, the month, and the day on the system.

Year (QYEAR) system value
The year (QYEAR) system value specifies the last 2 digits of the year on the system.

Character identifier (QCHRID) system value

The character identifier (QCHRID) system value specifies the character set and code page
CHRID(*SYSVAL) for the CL commands that create, change, or override display files, display device
descriptions, user interface (UIM) menus, panel groups, and printer files.

You can change this value if the system QCCSID system value is set to CCSID 65535. You can also change
the QCHRID value if the code page portion of the new QCHRID value is the same as the code page portion
of the QCCSID value.

Related concepts

Object-level coded character set identifier 65535
CCSID 65535 is the default object-level CCSID for message files and message queues.

Character identifier control (QCHRIDCTL) system value
The character identifier control (QCHRIDCTL) system value controls the type of CCSID conversion that
occurs for display files, printer files, and panel groups.

You must specify the *CHRIDCTL special value on the CHRID parameter of the create, change, or override
command for display files, printer files, and panel groups before this attribute can be used.

Possible values are:

*DEVD
The support provided by the *DEVD special value on the CHRID parameter for display files, printer
files, and panel groups.

*JOBCCSID
The support provided by the *JOBCCSID special value on the CHRID parameter for display file, printer
files, and panel groups.

Related concepts

Display files

When a display file object is created, it is tagged with the coded character set identifier (CCSID) of the
source file.

Coded character set identifier (QCCSID) system value
The coded character set identifier (QCCSID) system value specifies the CCSID for the IBM i operating
system.

As shipped, the CCSID is set to CCSID 65535. CCSID 65535 means that all character data tagging support
on the system is turned off, which is not generally recommended.

If you use Java™ or WebSphere®, or if you plan to transfer data between the IBM i operating system and
another client, then this value (or the corresponding value on the user profile) should be set to match the
CCSID of your data. If the value is 65 535, then the encoding of the data on the system is unknown.

If you leave this value at 65535, then you cannot get the results you expect when working from a client on
the IBM i operating system, or the connection might not work at all.

You can change the coded character set identifier (QCCSID) system value. When you change this value,
the default character set and code page system value (QCHRID) is changed to match the character set
and code page of the coded character set identifier.

If a job is started with a single byte CCSID, (from either this value or the user profile value) then that job
will not support double-byte language (DBCS) users.

Related concepts
Country or region identifier (QCNTRYID) system value

14 IBMi: Programing IBM i globalization

The country or region identifier (QCNTRYID) system value indicates the default country or region identifier
for the system.

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

Database file attributes
Database attributes, such as coded character set identifier (CCSID), sort sequence (SRTSEQ), and
language identifier (LANGID), are cultural dependent.

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Coordinated universal time offset (QUTCOFFSET) system value
The coordinated universal time offset (QUTCOFFSET) system value specifies the number of degrees, in
hours and minutes, by which your local system differs from the zero meridian.

This value is used by the system when processing alerts that are sent to other systems, as well as by other
parts of the system. If systems in a network cross time zones, the QUTCOFFSET value is sent in the alert.

This value is 5 characters long. The first character is a plus (+) sign or minus (-) sign. The next 2
characters specify hours ranging from 00 through 24. The last two characters specify minutes ranging
from 00 through 59.

For example, you have a network with one system in Brisbane, Queensland, Australia (Eastern Australia
standard time zone) and one system in Caracas, Venezuela. You can set QUTCOFFSET to +1000 for the
Brisbane system and to -0400 for the Caracas system.

The Brisbane system value should be changed each time the daylight saving time begins or ends. Caracas,
Venezuela does not observe a daylight saving time, and its system value remains constant.

If you change this value, the change takes effect immediately.

Country or region identifier (QCNTRYID) system value
The country or region identifier (QCNTRYID) system value indicates the default country or region identifier
for the system.

Setting this system value, along with the QLANGID system value, allows you to choose the correct
language dictionary, encoding of data, and advanced linguistics for successful document indexing. There
is no validity checking between the QCNTRYID system value and the QCCSID system value.

Related concepts

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

Coded character set identifier (QCCSID) system value
The coded character set identifier (QCCSID) system value specifies the CCSID for the IBM i operating
system.

Country and region identifiers
This table lists the country and region identifiers.

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

IBM i globalization 15

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Coding globalized applications with high-level languages
Your major goal must be to have only one general set of running code that is common for all language
versions and to make your programs table-driven as much as possible.

Currency symbol (QCURSYM) system value
The currency symbol (QCURSYM) system value verifies the currency symbols specified in the DDS
keywords Edit Word (EDTWRD) and Edit Code (EDTCDE).

You can change the currency symbol to correctly reflect the monetary symbol used in your country or
location. If you change this system value, the change takes effect immediately.

Related concepts

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Related reference
EDTWRD (Edit Word) keyword for display files
EDTCDE (Edit Code) keyword for display files

System date (QDATE) system value
The system date (QDATE) system value indicates the year, the month, and the day on the system.

This value is made up of the QYEAR, QMONTH, and QDAY system values. The format in which QDATE
appears is specified by the QDATFMT system value. You can change the system date. If you change
QDATE, the change might affect the system values for QCENTURY, QYEAR, QMONTH, QDAY, and
QDAYOFWEEK. Any change you make to QDATE takes effect immediately.

Related concepts

Century (QCENTURY) system value
The century (QCENTURY) system value specifies the century. It is used with the system values QDATE and
QYEAR to determine the specific date currently used by the system.

Year (QYEAR) system value
The year (QYEAR) system value specifies the last 2 digits of the year on the system.

Month of the year (QMONTH) system value
The month of the year (QMONTH) system value indicates the month of the year on the system.

Day of the month (QDAY) system value
The day of the month (QDAY) system value indicates the day of the month on the system. This value must
be a valid day of the month or of the year if you are using the Julian date format.

Day of week (QDAYOFWEEK) system value
The day of week (QDAYOFWEEK) system value specifies the day of the week on the system.

Date format (QDATFMT) system value

The date format (QDATFMT) system value is used for the default value for the DATFMT job attribute. This
system value also determines the format in which a date can be specified on the initial program load (IPL)
options prompt.

This system value can be:

« YMD (year, month, day)
« MDY (month, day, year)
- DMY (day, month, year)
« JUL (Julian format, which is year, day of year)

16 IBMi: Programing IBM i globalization

You can change the date format to reflect the format in which months, days, and years are represented in
your country or location. If you change this system value, the change takes effect for new jobs that enter
the system after you make the change.

Related concepts

Job attributes

Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Date separator (QDATSEP) system value

The date separator (QDATSEP) system value is used as the date separator for the default value of the
DATSEP job attribute. It is also used as the date separator you can specify on the initial program load (IPL)
options prompt.

You can change the date separator to reflect the character used to separate days, months, and years for
your country or location. You can change the date separator to any one of the following values:

« Aslash (/) as a date separator

« A hyphen (-) as a date separator
« A period (.) as a date separator
« Acomma (,) as a date separator
« Ablank () as a date separator

If you change this value, the change takes effect for new jobs that enter the system after you make the
change.

Related concepts

Job attributes

Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Day of the month (QDAY) system value
The day of the month (QDAY) system value indicates the day of the month on the system. This value must
be a valid day of the month or of the year if you are using the Julian date format.

You can change the day of the month to reflect the current day of the month in your country or location. If
you change QDAY, you also change the value for QDATE. A change to this value takes place immediately.
Related concepts

System date (QDATE) system value
The system date (QDATE) system value indicates the year, the month, and the day on the system.

Day of week (QDAYOFWEEK) system value
The day of week (QDAYOFWEEK) system value specifies the day of the week on the system.

This value can be:
*SUN (Sunday)
*MON (Monday)
*TUE (Tuesday)
*WED (Wednesday)

IBM i globalization 17

« *THU (Thursday)
« *FRI (Friday)
« *SAT (Saturday)

This value cannot be changed. It is set by the system. The value of QDATE determines the value of
QDAYOFWEEK.

This value cannot be set correctly if your system is not using the Gregorian calendar.

Related concepts

System date (QDATE) system value
The system date (QDATE) system value indicates the year, the month, and the day on the system.

Leap year adjustment (QLEAPADJ) system value
The Leap year adjustment (QLEAPADJ) system value adjusts the system algorithms for the leap year in
different calendar systems.

DBCS system indicator (QIGC) system value

The DBCS system indicator (QIGC) system value specifies whether a double-byte character set (DBCS)
national language version (NLV) is installed. This value is set when the primary national language version
is installed.

If QIGC is set to 0, no DBCS national language version is installed on the system. When QIGC is set to O,
the coded character set system identifier (QCCSID) must be set to an SBCS coded character set identifier.

If QIGC is set to 1, a DBCS national language version is installed as the primary language on the system.
When QIGC is set to 1, the coded character set system identifier (QCCSID) system value should be set to a
mixed CCSID (such as 05026) or to CCSID 65535.

Beginning with IBM i V5R3, any NLV can support DBCS. Therefore, QIGC is always set to 1 (or on). If you
have applications that check this value, update them to use the job level DBCS indicator. You can use the
Retrieve Job Information (QUSRJOBI) API to get the job's IGC value.

You cannot change this value.

Related concepts

Recommendations and guidelines for using CCSIDs
These recommendations are useful when you write globalized applications.

Related information
Retrieve Job Information (QUSRJOBI) API

DBCS font name (QIGCCDEFNT) system value

The DBCS font name (QIGCCDEFNT) system value is used when the system transforms SNA character
string (SCS) data with shift in/shift out (SI/SO) characters into a spooled file that is composed of
Advanced Function Presentation data stream (AFPDS).

QIGCCDEFNT is a 20-character list of up to 2 values. The first 10 characters contain the font name. The
last 10 characters contain the library name. The font name can be only 8 characters. The possible values
for the DBCS font name are:

*NONE
No font is identified to the system.

Coded font name
The name of the DBCS font.

The possible values for the library are:

*LIBL
The library list is used to locate the font.

*CURLIB
The current library is used to locate the font. If no library is specified, library QGPL is used.

18 IBMi: Programing IBM i globalization

Library name
The library containing the font.

Decimal format (QDECFMT) system value

The decimal format (QDECFMT) system value determines the type of zero suppression and decimal point
character used by DDS edit codes 1 through 4 and A through M. It also determines the decimal point
character for decimal input fields in the interface.

You can change the decimal format to reflect the way decimals are formatted for your country or location.
You can change the decimal format to any one of the following values:

(blank)
If you specify a blank, the system uses a period for a decimal point, a comma for a 3-digit grouping
character, and zero suppression to the left of the decimal point. For example,

One thousand is formatted as 1,000
and
Four one-hundredths is formatted as .04

J
If you specify a J, the system uses a comma for a decimal point, a period for a 3-digit grouping
character, and zero suppression at the second character to the left of the decimal point. For example,
One thousand is formatted as 1.000
and
Four one-hundredths is formatted as 0,04
I

If you specify an I, the system uses a comma for a decimal point, a period for a 3-digit grouping
character, and zero suppression to the left of the decimal point. For example,

One thousand is formatted as 1.000
and
Four one-hundredths is formatted as ,04

A change to this value takes effect immediately.

Related concepts

Set job attributes (QSETJOBATR) system value
The set job attributes (QSETIOBATR) system value sets job attributes at job startup time.

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Decimal formats
You can change the decimal format with the QDECFMT system value to reflect the way decimals are
presented for your country or location.

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

This value also determines the sort sequence table to be used for sorting character data when the
QSRTSEQ system value is set to *LANGIDSHR or *LANGIDUNQ.

Note: This value is not used to determine the sort sequence table when QSRTSEQ is set either to *HEX or
to a user-specified table.

You can change this system value to reflect the default language identifier for your country or location.

There is no validity checking between the QLANGID system value and the QCCSID system value.

IBM i globalization 19

Related concepts

Country or region identifier (QCNTRYID) system value

The country or region identifier (QCNTRYID) system value indicates the default country or region identifier
for the system.

Sort sequence (QSRTSEQ) system value
The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

Coded character set identifier (QCCSID) system value
The coded character set identifier (QCCSID) system value specifies the CCSID for the IBM i operating
system.

Database file attributes
Database attributes, such as coded character set identifier (CCSID), sort sequence (SRTSEQ), and
language identifier (LANGID), are cultural dependent.

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Coding globalized applications with high-level languages
Your major goal must be to have only one general set of running code that is common for all language
versions and to make your programs table-driven as much as possible.

Session manager
For all applications that use a session manager, you must ensure that the output data stream has no X'3F'
values in it. The IBM i operating system uses X'3F' values to make a screen blank.

ILE RPG sort sequence

The ILE RPG feature, an option of the IBM Rational Development Studio for i licensed program, provides
the possibility for a user to specify a sort sequence table and to use the table in comparison operations
that are performed with nonnumeric data.

DB2 and SQL sort sequence
For Interactive SQL, the SRTSEQ and LANGID parameters can be specified on the STRSQL command. You
can change these parameters by using the session services for interactive displays.

IBM i Access sort sequence
You can specify the sort sequence in IBM i Access functions. When performing queries on the system
databases and SQL tables, you can specify the system-supplied or user-supplied sort sequence tables.

Language indicator for keyboard type (QKBDTYPE) system value
The language indicator for the keyboard type (QKBDTYPE) system value specifies the language character
set for the keyboard.

This value is used as the default keyboard type when you create a display device description.
You can change this value to reflect the language of your keyboard.

Related concepts
National language keyboard types and SBCS code pages

20 IBMi: Programing IBM i globalization

This table lists the keyboard types and code pages for each national language supported by the IBM i
operating system. The Create Device Display (CRTDEVDSP) command uses the KBDTYPE parameter.

Leap year adjustment (QLEAPADJ) system value
The Leap year adjustment (QLEAPADJ) system value adjusts the system algorithms for the leap year in
different calendar systems.

This system value is set by the operating system. If your system observes the Gregorian calendar, this
system value should be zero. You cannot edit this system value.

For more information about the Leap year adjustment (QLEAPADJ) system value, see Date and time
system values: Leap year adjustment.

Related concepts

Day of week (QDAYOFWEEK) system value
The day of week (QDAYOFWEEK) system value specifies the day of the week on the system.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Locale (QLOCALE) system value

The locale (QLOCALE) system value specifies a locale object that can determine how data is processed,
printed, and displayed. Locales can define the language used by the system, cultural data of that
language, and the type of characters displayed or printed.

The locale path name must be a path name that specifies a locale. A locale is made up of the language,
territory, and code set combination used to identify a set of language conventions. The maximum path

length allowed for the locale path name on the Change System Value (CHGSYSVAL) command is 1024

bytes.

The allowed values are:

Value Indication

*NONE: There is no locale for the QLOCALE system value.
*C: The C locale is to be used.

*POSIX: The POSIX locale is to be used.

path-name The path name of the locale to be used.

Related concepts

Set job attributes (QSETJOBATR) system value
The set job attributes (QSETJOBATR) system value sets job attributes at job startup time.

Month of the year (QMONTH) system value
The month of the year (QMONTH) system value indicates the month of the year on the system.

This value must be a number from 1 (January) through 12 (December) if your system date format uses the
Gregorian calendar. This value cannot be displayed or changed if your system date format uses the Julian
format (year, day of year).

You can change the month to reflect the current month in your country or location. If you change
QMONTH, you also change the value for QDATE. A change to this value takes place immediately.

Related concepts
System date (QDATE) system value

IBM i globalization 21

The system date (QDATE) system value indicates the year, the month, and the day on the system.

Set job attributes (QSETIOBATR) system value
The set job attributes (QSETIOBATR) system value sets job attributes at job startup time.

This system value has the following attributes that can be assigned values:

« Coded character set identifier (CCSID)
« Date format (DATFMT)

« Date separator (DATSEP)

Decimal format (DECFMT)

« Sort sequence (SRTSEQ)

« Time separator (TIMSEP)

The system sets the initial values for these attributes from the locale (QLOCALE) system value.

Related concepts

Coded character set identifier values
CDRA defines the range of values for CCSIDs (coded character set identifiers).

Date formats
There is no worldwide standard for the presentation of dates. Therefore, the date format should always be
stored externally as part of the textual data.

Date separators
The date separator for presentation should always be stored externally as part of the textual data.

Decimal format (QDECFMT) system value

The decimal format (QDECFMT) system value determines the type of zero suppression and decimal point
character used by DDS edit codes 1 through 4 and A through M. It also determines the decimal point
character for decimal input fields in the interface.

Sort sequences
The IBM i operating system supports sort sequence. By using one of the listed options, you can order your
data according to cultural-dependent requirements for specific applications.

Time separators
The IBM i operating system allows several valid time separators.

Locale (QLOCALE) system value

The locale (QLOCALE) system value specifies a locale object that can determine how data is processed,
printed, and displayed. Locales can define the language used by the system, cultural data of that
language, and the type of characters displayed or printed.

Sort sequence (QSRTSEQ) system value
The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

You can change QSRTSEQ to any one of the following values:

Value Meaning

*HEX No sort sequence table is used. The hexadecimal values of the
graphic characters are used to determine the sort sequence (a
binary sort). This is the only sort sequence available for DBCS
data.

Note: When you specify values other than *HEX for mixed-byte
character data, SBCS character data is sorted according to the
sort sequence specified. DBCS character data is sorted by
hexadecimal values (binary sort).

22 IBMi: Programing IBM i globalization

Value Meaning

*LANGIDSHR The sort sequence table can use the same weight for multiple
graphic characters. The shared-weight sort table associated with
the language specified in the LANGID parameter is used. This sort
applies only to SBCS data.

*LANGIDUNQ The sort sequence table contains uniquely weighted graphic
characters. The unique-weight sort table associated with the
language specified in the LANGID parameter is used. This sort
applies only to SBCS data.

Qualified sort sequence table name | The name and library of the sort sequence table to be used. This
value allows you to specify a sort sequence table other than those
associated with the language specified in the LANGID parameter.
This sort sequence table can be used to sort Unicode and SBCS
data.

Related concepts

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

Sort sequence tables

A sort sequence table is an object that contains the weight of each single-byte graphic character within a
specified coded character set identifier (CCSID). The system-recognized identifier for the sort sequence
table object type is *TBL.

Database file attributes
Database attributes, such as coded character set identifier (CCSID), sort sequence (SRTSEQ), and
language identifier (LANGID), are cultural dependent.

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

ILE RPG sort sequence

The ILE RPG feature, an option of the IBM Rational Development Studio for i licensed program, provides
the possibility for a user to specify a sort sequence table and to use the table in comparison operations
that are performed with nonnumeric data.

DB2 and SQL sort sequence
For Interactive SQL, the SRTSEQ and LANGID parameters can be specified on the STRSQL command. You
can change these parameters by using the session services for interactive displays.

IBM i Access sort sequence
You can specify the sort sequence in IBM i Access functions. When performing queries on the system
databases and SQL tables, you can specify the system-supplied or user-supplied sort sequence tables.

Sort sequence support in work management
Work management involves the assigning of the SRTSEQ value at the job level, the user profile level, and
the system value level.

System library list (QSYSLIBL) system value

The system library list (QSYSLIBL) system value is used as the first part of the library list associated with a
job.

The libraries in the system part of the library list of a job are searched before any other libraries in the
library list of a job. The list can contain as many as 15 names. You cannot delete or rename a library
specified as part of the system library list, because libraries in this library list are locked.

You can change the system library list (QSYSLIBL). If you change QSYSLIBL, the change takes place
immediately for new jobs entering the system. The change does not affect running jobs, unless the
application in the job accesses the system library list directly.

IBM i globalization 23

Related concepts

Job library list
The language used for textual data (displays, messages, printed output, and online help information) is
controlled by the library list for the job.

Time separator (QTIMSEP) system value
The time separator (QTIMSEP) system value specifies the character separator for time.

This value is used as the time separator for the default value of the TIMSEP job attribute. This value is also
used as the time separator that you can specify on the IPL options prompt.

You can change the time separator to reflect the character used to separate hours and minutes for your
country or location. You can change the time separator to any one of the following values:

« Acolon (:) as a time separator

« A period (.) as a time separator

« Acomma (,) as a time separator

« Ablank () as a time separator

If you change this value, the change takes effect for new jobs that enter the system after you make the
change.

Related concepts

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Year (QYEAR) system value
The year (QYEAR) system value specifies the last 2 digits of the year on the system.

This value ranges from 0 through 99. The system assigns the first two digits for the year based on the
current setting for the QCENTURY system value. If the calculated year falls outside the range of dates
supported by the system (1928 to 2053), the QCENTURY system value is changed so that the calculated
year is within the supported range.

If you change this system value:

« QCENTURY is set to O if QYEAR is 54 to 99
« QCENTURY is set to 1 if QYEAR is 00 to 27

For example, if you change QYEAR from 95 to 13, the system changes QCENTURY from 0 to 1, indicating a
year of 2013. However, if you change QYEAR from 95 to 45, the system will not change QCENTURY,
because both 1945 and 2045 are valid dates.

If you change this value, the change takes effect immediately. Changing this value also affects the system
value QDATE.

Related concepts

Century (QCENTURY) system value

The century (QCENTURY) system value specifies the century. It is used with the system values QDATE and
QYEAR to determine the specific date currently used by the system.

System date (QDATE) system value

24 IBMi: Programing IBM i globalization

The system date (QDATE) system value indicates the year, the month, and the day on the system.

Device descriptions
These control language (CL) command parameters can be used to change cultural and linguistic
conventions for some display and printer devices.

Note: Some printer device descriptions do not allow you to specify a CHRID.

« Character identifier (CHRID) parameter. You can change the character identifier when you create or
change device descriptions for printers and displays. Change the character identifier for a printer or
display device using one of the following commands:

The Create Device Description (Display) (CRTDEVDSP)
The Change Device Description (Display) (CHGDEVDSP)
The Create Device Description (Printer) (CRTDEVPRT)
The Change Device Description (Printer) (CHGDEVPRT)

« Keyboard type (KBDTYPE) parameter. You can set the keyboard language type for a keyboard when you
create a device description. Set the keyboard language type using the CHGDEVDSP command.

« Workstation customization (WSCST) parameter. You can set the workstation customization parameter
when creating a device to specify the use of a customized keyboard layout. To set this parameter, the
display device must be varied off. You can specify the WSCST parameter when using the CRTDEVDSP
command.

« Language type (LNGTYPE) parameter. When you create an ASCII printer using the CRTDEVPRT
command, the LNGTYPE parameter describes the default country or region keyboard language identifier
for the printer. When you specify the *SYSVAL value, the QKBDTYPE system value is used.

Related concepts

Packaging and installation process

You need to consider the running code, translated textual data, and installation documents when
packaging applications. Here are some suggestions for simplifying the packaging and installation of your
application.

Related reference

Create Device Description (Display) (CRTDEVDSP) command
Change Device Description (Display) (CHGDEVDSP) command
Create Device Description (Printer) (CRTDEVPRT) command
Change Device Description (Printer) (CHGDEVPRT) command

Display and printer files
These keywords and command parameters can be used to change cultural and linguistic values for
display files and printer files.

« The Create Display File (CRTDSPF), Change Display File (CHGDSPF), Create Printer File (CRTPRTF),
Change Printer File (CHGPRTF), and Override Printer File (OVRPRTF) commands. You can specify a
character identifier explicitly:

As the QCHRID system value (*SYSVAL)

As a device description or a device default of the output device (*DEVD)

With the *JOBCCSID value

As using the *CHRIDCTL system value (*SYSVAL)

« Character identifier (CHRID) keyword in DDS. Use this field-level keyword to identify fields that should
be converted to the character identifier (CHRID) of the device. Use this keyword in conjunction with the
CHRID parameter on the CRTDSPF, CHGDSPF, CRTPRTF, CHGPRTF, and OVRPRTF commands. This
keyword is ignored, however, when the CHRID parameter of these commands is set to *JOBCCSID.

« The SRTSEQ parameter and LANGID parameter on the CRTDSPF command. These parameters can be
used to specify a sort sequence and a language identifier for a display file.

IBM i globalization 25

Note: If *JOBCCSID is not specified for the CHRID parameter of a display file (either directly or indirectly
with CHRIDCTL), the CHRID parameter of the display file must be compatible with the job CCSID.
Otherwise, unpredictable results might occur when data is displayed or when data is stored in a database
file.

Related reference

Create Display File (CRTDSPF) command

Change Display File (CHGDSPF) command

Create Printer File (CRTPRTF) command

Change Printer File (CHGPRTF) command

Override with Printer File (OVRPRTF) command

Database files
These command parameters and the DDS keywords can be used to change language-dependent values
for database files.

You can use the following command parameters:

« The SRTSEQ, LANGID, and CCSID parameters on the Create Physical File (CRTPF) command
« The SRTSEQ, LANGID, and CCSID parameters on the Change Physical File (CHGPF) command
« The parameters on the Copy File (CPYF) command

« The SRTSEQ parameter and LANGID parameter on the Create Logical File (CRTLF) command

These parameters can be used to specify a sort sequence and language for a database file.

DDS keywords for database files

You can use the following DDS keywords for database files:

« The CCSID keyword. This keyword can be used to tag character data stored in a database. By default,
the CCSID value is taken from the job creating the database file.

« DATFMT, DATSEP, TIMFMT, and TIMSEP keywords in DDS.
The format of the data type Time (T) field is described by DDS with the TIMFMT keyword that can have

*JOB specified for a value. Similarly, the format of the data type Date (L) is described by DDS with the
DATFMT keyword that can have *JOB specified for a value.

Use the TIMSEP and DATSEP keywords to specify date and time separators.

Related reference

Create Physical File (CRTPF) command
Change Physical File (CHGPF) command
Copy File (CPYF) command

Create Logical File (CRTLF) command
DDS keywords and parameters

UIM menus and panel groups
You can use the CHRID parameter on the Create Menu (CRTMNU) or Create Panel Group (CRTPNLGRP)
command to specify a *JOBCCSID for a menu or a panel group.

The CHRID parameter on the Create Menu (CRTMNU) command for creating menus can be used to specify
a *JOBCCSID value for a menu. Conversion is automatically done between the CHRID parameter of the
device and the CCSID value of the menu.

The CHRID parameter on the Create Panel Group (CRTPNLGRP) command for creating panel groups can
be used to specify a *JOBCCSID value for panel groups. Conversion is automatically done between the
CHRID of the device and the CCSID of the panel group and the CCSID of the job.

26 IBMi: Programing IBM i globalization

Related reference
Create Menu (CRTMNU) command
Create Panel Group (CRTPNLGRP) command

Setting up IBM i with a national language version

The steps to install and configure a national language version on the IBM i operating system include
selecting and installing hardware, installing software, and configuring your environment to run in a
globalized setting.

You can use this information as you install your own systems, and you can apply the principles when you
develop applications for customers who are installing their own national language version on IBMi.

The feature code identified when you order an IBM i operating system is the language of your textual data
and is called the primary language of the system. Any other language versions that you have ordered are
called secondary languages. For secondary languages, the national language version consists of only the
textual data for all licensed programs ordered. The program code is not contained in the secondary
language version.

The primary language is the language in which the system is serviced and from which all language-
dependent or cultural-dependent system values are initialized. In addition, other system objects and
functions assume attributes based on the primary language. For example, messages appearing in the
history log always appear in the primary language.

Related concepts

National language version

A national language version (NLV) is a version of the IBM i operating system that contains a predefined set
of language-dependent values, such as date format, time format, and sort sequence, for a particular
language.

National language version feature codes

This table lists the available national language version feature codes on the IBM i operating system. When
you order an IBM i licensed program, you identify the national language version you want by specifying a
language feature code.

Configuring the primary language
A primary language consists of program code, textual data for each licensed program ordered, and default
national language cultural values.

Configuring secondary languages
A secondary language consists of textual data for all licensed programs supported for a national language
version.

Related information
Installing, upgrading, or deleting IBM i and related software

How a language is displayed for IBM i functions

If you want information presented in a language other than the primary language of the system, you must
first have a secondary language loaded. When a secondary language is loaded, you have three ways to
display information in that language.

Method 1: Placing the language you want at the top of your library list

One way to display information in a secondary language is to change the system part of your library list so
the library of the national language you want is positioned before all other libraries in the system library
list that contain national language information.

IBM i globalization 27

For example, to present the French version of textual data, you can enter the following command to place
French information at the top of the library list:

CHGSYSLIBL LIB(QSYS2928) OPTION(*ADD)
To remove a library from the library list enter:
CHGSYSLIBL LIB(QSYS2928) OPTION(*REMOVE)

Note: The authority included with the CHGSYSLIBL command does not allow all users to run the
command. As included, you must have *ALLOBJ and *SECADM special authority to use the Change
System Library List (CHGSYSLIBL) command.

Method 2: Creating a subsystem for the language you want
A second way to present information in a different language is to follow these steps:

1. Create a subsystem for the secondary language.

2. Define the subsystem system part of the library list entry with the national language version library for
the secondary language.

All jobs running in the subsystem use textual data from the secondary language. All jobs that you submit
as batch jobs have the national language version library as the first library on the system part of the library
list.

Method 3: Changing the library list for your job so that the national language version library for the
secondary language is the first library on the system part of the library list

A third way to present information in a different language is to change the library list for your job so that
the national language version library for the secondary language is the first library on the system part of
the library list. All jobs running in the subsystem use textual data from the secondary language. All jobs
that you submit as batch jobs have the national language version library as the first library on the system
part of the library list.

How a language of your choice is displayed for licensed programs

Libraries for licensed programs are either added automatically, or must be added by the user, when
needed. For example, when a licensed program does not provide a translation for the primary language of
the system, you need to choose a secondary language that is supported to interface with that program.
After you install the secondary language, the text is found in the appropriate QSYS29xx library. After the
secondary language is installed, you can use the one of the three methods that are described to change
all system interfaces to the secondary language to use this licensed program. If you want to leave the rest
of the interfaces in the default language and enable the secondary language for only this licensed
program, you can add the QSYS29xx library to the users part of the library list. These steps enable the
licensed program's translation to be found.

An example of French as a secondary language would have the text in library QSYS2928. For more
information about the numbers that are used, see National language version feature codes. If you want to
add libraries for other licensed programs to your library list, use the CHGLIBL command.

Related concepts
Configuring secondary languages

28 IBMi: Programing IBM i globalization

A secondary language consists of textual data for all licensed programs supported for a national language
version.

Related reference

Change System Library List (CHGSYSLIBL) command

Change Library List (CHGLIBL) command

Installation preparation and national languages

IBM periodically creates program temporary fixes (PTF) to correct existing problems or potential
problems within a particular IBM licensed program.

PTFs are designed to fully replace one or more objects in the licensed program. Primary and secondary
languages can have language-sensitive online information PTFs.

If the primary language of your system is changed at any time for reasons other than a new release
update, the cumulative PTF package of the new primary language should be at the same level as the
previous primary national language. PTFs that were associated with the primary language and any
secondary language must be applied again. In addition, primary language and secondary language PTFs
for the online information need to be ordered by the customer.

For systems running IBM i V6R1, or later, you can set the system service language (the dedicated service
tools (DST) language) to a language different from the operating system language. For more information,
see Installing, upgrading, or deleting IBM i and related software.

Related concepts

Configuring the primary language

A primary language consists of program code, textual data for each licensed program ordered, and default
national language cultural values.

Configuring secondary languages
A secondary language consists of textual data for all licensed programs supported for a national language
version.

Checklist: Globalization planning

When planning to install a multilingual IBM i operating system, start by completing the Globalization
planning checklist for globalization and multilingual support. The checklist consists of two parts, which
should be completed sequentially.

Globalization checklist: Part 1

Before you work with a national language, answer the questions in the following table. After you have
answered the questions in this table, you can then use “Globalization checklist: Part 2” on page 30 for
planning for multilingual support.

Check off | Question Response

What national language version for the
primary language are you going to install?
(Refer to “Setting up IBM i with a national
language version” on page 27.)

What program library can it be ordered from?
(Refer to “National language version feature
codes” on page 235.)

Are you going to use a DBCS national
language version as a secondary language?
(Refer to “Notes on secondary languages
when you require English as the primary
language” on page 38.)

IBM i globalization 29

Check off | Question Response

Are you aware that the latest 5250 PC
emulation is necessary to support graphics
data format (GDF) type?

What national language version for the
secondary language are you going to install, if
any? (Refer to “Notes on secondary
languages when you require English as the
primary language” on page 38.)

Do you want to change your subsystem to
change the language of your initial sign-on
display? (Refer to “Notes on secondary
languages when you require English as the
primary language” on page 38.)

What release level of the national language
version for the primary language are you
ordering? (Refer to “Configuring the primary
language” on page 35.)

Are the release levels of the national
language version for the secondary language
the same as the primary language you
ordering? (Refer to “Notes on secondary
languages when you require English as the
primary language” on page 38.)

Globalization checklist: Part 2

When you have completed “Globalization checklist: Part 1” on page 29 of the checklist, answer the
additional questions in part 2.

Check off | Question Response

What printers support your language from a
remote location?

What applications support your languages on
the local system? (Contact your marketing
support representative in your country.)

What applications support your languages on
the remote system? (Contact your marketing
support representative in your country.)

Do you want all your database files with the
CCSID of the primary language? (Refer to
“Database management” on page 124.)

Do you want to work with sort sequence
tables in your applications? (Refer to “Sort
sequence support in programs” on page
161)

30 IBMi: Programing IBM i globalization

Check off | Question Response

When creating user profiles (user IDs) only
certain characters are allowed.

You can use any of the following characters
in the user profile name:

« Any letter (A through 2)
« Any number (0 through 9)

« These special characters: pound (#), dollar
($), underscore (), at (@). However, these
characters should be avoided for globalized
application systems. See “User profile
name considerations” on page 33 for
more information.

See User profiles for more detailed
information about user profile
considerations.

Hardware installation and national languages

When installing or changing a device on your system, you must make sure that the device is configured
correctly to reflect the keyboard ID that matches the character set and code page of the job CCSID.

Changing the keyboard configuration of a device results in different behavior, similar to adding a new
display or printer to the system.

Panels, menus, and messages used by the installation process do not support right-to-left presentation of
data. Therefore, online information for the installation appears left to right, in English, for bidirectional
languages (such as Arabic and Hebrew).

Related concepts

Configuring secondary languages
A secondary language consists of textual data for all licensed programs supported for a national language
version.

Console device
You should make sure that your console device is configured to support the default code page of the
primary language you are going to install on the IBM i operating system.

If the console device supports the code page of the new primary language, panels, messages, and online
help will display properly after you change the primary language.

You must change the console device to one that supports the code page of the new primary language
before doing the IPL that activates the new primary language. Make sure that autoconfig is on before
doing this IPL.

Scenario: Console configured as a single-byte device

Your system has a primary language of English Uppercase DBCS (feature 2938). You decide to change the
primary language to Japanese DBCS (feature 2962).

The existing console device on your system is configured as a single-byte-only English device using a code
page of 00037. While a single-byte English device supports the installation of all other single-byte
national language versions, it does not support the installation of double-byte national language versions
like Japanese or Chinese. You must change the console device to one that supports the Japanese DBCS
code page before doing the activation IPL.

If you do not change the console device to one that supports the Japanese DBCS code page, the IPL
cannot complete.

IBM i globalization 31

Workstation considerations
In a multilingual environment, different workstations support different languages on the same system.

Any data that is not tagged with CCSIDs should be stored in separate objects, unless the CCSID for each
language is the same. Data that is tagged with CCSIDs (such as message files and database files) do not
have to be stored in separate objects.

To correctly retrieve, process, and display data that is not tagged with CCSIDs, the application being used

needs to be aware of the language differences, and how they relate to the following items:

« Programmable workstations through IBM i Access programs

« Nonprogrammable workstations
Note: The 3486, 3487, 3488 model V, and 3489 displays support all languages (except Thai) listed in
3486, 3487, 3488 Model V, and 3489 Keyboard and Display Part Numbers by Language.

« Keyboards

« Telnet or pass-through implications
The characters shown on your workstation depend on the keyboard type defined on your source system.
If you pass through to the target system and use a virtual device with a different keyboard type, you
might not see the same characters as if you were directly attached to the target system, because the
target system uses another language.

Related concepts

Keyboard layouts
These keyboard layout samples are provided for your information. The special-character keyboard set is
available only with the enhanced keyboard.

Considerations for changing printers
When changing printers, consider the areas of data interchange, data stream, fonts, and host printer
emulation.

« Interchange (z/0S°® operating systems sending Advanced Function Presentation (AFP) data for DBCS to
IBMi.)

AFP data containing DBCS data can be generated on the IBM i operating system. In addition, the system
can receive AFP-generated data from the z/OS system containing DBCS data and print the data on
Intelligent Printer Data Stream (IPDS) printers attached to the IBM i platform. The IPDS printers must
be configured with *YES specified for the AFP parameter.

« Data stream
Printers consist of SNA character string (SCS) and IPDS printers.

SNA character string (SCS) is a data stream composed of EBCDIC controls, optionally intermixed with
end-user data, which is carried within a request/response unit. Host-attached SCS printers can be
configured by the systems engineer or by the customer, using a diskette or selection of keys on the
printer. The appropriate printer operator's guide should be used to determine how to configure the SCS
printer for the language you are using.

One of the strengths of IPDS is that independent applications can create source data. The source data
from independent applications is merged at the printer to create an integrated mixed data page. For
example, text data can be produced on an editor, image data can be the output of a scanner stored in a
folder, and graphics data be produced by the Business Graphics Utility program. IPDS makes it possible
to integrate application output rather than requiring the use of integrated applications.

« Fonts

Font types for IPDS printers can be configured through the use of the Create Device Description (Printer)
or Change Device Description (Printer) (CRTDEVPRT or CHGDEVPRT) commands. Fonts can be
downloaded from the host or can be saved in printer storage.

For a list of the character identifier (CHRID values) supported by the various printers and languages, see
the Printer Device Programming PDF.

32 IBMi: Programing IBM i globalization

« IBMi Access printer to emulate host printer

The IBM i Access programs support multiple languages on a single system. A IBM i Access user (except
for host emulation) can use any single language of choice that is installed on the attached IBM i
platform. If a IBM i Access user has a host emulation session with five different systems, the user can
view a different language on each session. However, the same personal computer ASCII code page
must be on all the systems.

See IBM i Access of your environment for information about installing and configuring attached PC
printers.

Related concepts

Advanced Function Presentation

Related reference

Create Device Desc (printer) (CRTDEVPRT) command
Change Device Desc (printer) (CHGDEVPRT) command

Software installation and national languages

If your system communicates with systems using different languages, you need to be careful when
specifying configuration names that are exchanged with the remote system.

Do not use characters that might not be available on the keyboard used by the remote system; for
example, characters such as a dollar sign ($), pound sign (#), and an at sign (@). For an illustration of the
characters that you can use in configuration names, see “Invariant character set (and its exceptions)” on
page 298.

You should limit support of configuration names that use characters outside of the invariant character set
to those already in use on existing systems.

Configuration names that might be exchanged with remote systems include:

« Network identifiers
« Location names

Control point names
« Mode description names
« Class-of-service description names

User IDs (from the directory entry)
For more information about software installation, see the appropriate software product books.

Related information
Installing, upgrading, or deleting IBM i and related software

Configuring a national language version

You must configure the national language version on your system before the system can meet your
business needs in the multilanguage environment.

User profile name considerations
The user profile name identifies the user to the system. This user profile name is also known as the user
ID. It is the name that the user types in the User prompt on the Signon display.

The user profile name can be a maximum of 10 characters. The characters can be:
« Any letter (A through Z)
« Any number (0 through 9)

« In addition to these characters, three special codepoints are allowed (x'5B', x'7B', x'7C"). For many
CCSIDs, including 37, these code points are interpreted as $, #, and @. For other CCSIDs, however,
these code points represent other characters. Although these code points are allowed, you should avoid
using them because of the potential misinterpretation when multiple CCSIDs are used on a single

IBM i globalization 33

system. For example, a Spanish-speaking person using CCSID 284 might create a user profile with the
name ESPA ™ OL, but an English-speaking person using CCSID 37 might see this name as ESPA#OL.
The user profile name cannot begin with a number.

Note: You can create a user profile such that when a user signs on, the user ID is only numerals. To create
a profile like this, specify a Q as the first character, such as Q12345. A user can then sign on by entering
12345 or Q12345 for the User prompt on the Signon display.

Related concepts

Packaging and installation process

You need to consider the running code, translated textual data, and installation documents when
packaging applications. Here are some suggestions for simplifying the packaging and installation of your
application.

Related information
User profiles

Service tools

Panels, messages, and online help information for service tools are typically shown in the primary
language of the system. Therefore, the workstation from which the system is being serviced must be
configured to support the primary language, and the keyboard for the primary language must be attached
to that workstation.

Panels, menus, and messages used by the service tools do not support right-to-left presentation of data.
Therefore, online information for the service tools appears left to right, in English, for bidirectional
languages (such as Arabic and Hebrew).

System and user interfaces
The system interfaces and user interfaces are presented through a workstation or printer.

The workstation controller interprets keystrokes on keyboards according to the mapping determined by
the KBDTYPE parameter in the device description. The display presents the data to the user, depending
on the code page mapping located in the workstation controller. This code page mapping in the
workstation controller is determined by the CHRID parameter in the device description. Each supported
keyboard type has a character identifier assigned to it, and the default setting of CHRID in the device
description (*KBDTYPE) refers to that character identifier. Ensure the code page of the emulator is set to
match the language of the system. For more information, see the help provided by the emulator.

Automatic device configuration
Automatic configuration defines the local devices and some remote devices to the system.

This means that the devices attached to your system are available for use when the system is running and
has a powered-on display. You do not have to use manual configuration to create configuration
descriptions for the devices before you can use them. For devices that are able to send configuration
information to the workstation controller, the KBDTYPE parameter is set according to the keyboard
attached. If the device cannot send KBDTYPE information to the system, the QKBDTYPE keyboard system
value is used.

Note: If you use manual configuration to set up a device with a different keyboard type than the hardware
reports, automatic configuration changes the device description to match the keyboard attached. To avoid
this, each time the device is powered on; you can switch automatic configuration off by setting QAUTOCFG
system value to 0 (Off).

Related information
Local Device Configuration PDF

34 IBMi: Programing IBM i globalization

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/rzal2/sc415121.pdf

Automatic character set and code page conversion
The IBM i operating system provides automatic conversion between character set and code pages for all
applications that are enabled for national language support.

This automatic conversion can be controlled in the display, menu, or panel source, or through the CHRID
parameter on the control language (CL) commands that create these displays. The character set and code
page of the device used by the user is determined by the CHRID parameter in the device description. The
CHRID value is normally set to *KBDTYPE.

When the data to be presented is in a character set and code page different from the language of the user,
automatic data conversion might occur.

Related concepts

Working with CCSIDs

Using the system implementation of Character Data Representation Architecture (CDRA), you can achieve
consistent representation, processing, and interchange of coded characters (data) on the IBM i operating
system and across IBM Systems. The primary implementation of CDRA on the IBM i operating system is
through coded character set identifier (CCSID) support.

CCSID reference information

Coded character set identifier (CCSID) is a 16-bit number that includes a specific set of encoding scheme
identifiers, character set identifiers, code page identifiers, and other information that uniquely identifies
the coded graphic-character representation.

Printer file conversion

The printer provides printed output to the user. IBM i printer support does not do any conversion between
the different character sets. For the data to be printed, the user must make sure that the proper character
set and code page are specified in the printer and the fonts are in the printer.

If the CHRID value of the printer file is set to *JOBCCSID, the printer joins the CHRID value of the job
CCSID to the data to be printed. For externally described printer files, constants within your DDS (data
description specification) are converted from the DDS source file CCSID to the character identifier of the
job CCSID value.

Configuring the primary language
A primary language consists of program code, textual data for each licensed program ordered, and default
national language cultural values.

The primary language is the language in which the system is serviced and from which all language-
dependent or cultural-dependent system values are initialized. In addition, other system objects and
functions assume attributes based on the primary language. For example, messages appearing in the
history log always appear in the primary language.

For each licensed program installed on the system, the national language version for the primary language
is in the product library. For example, the IBM i operating system ordered in Spanish is installed in library
QSYS as the primary language.

The system provides default system values for each of the primary languages. If some of the defaults do
not meet the needs of your users, you can change some language-dependent system values.

Selecting and changing the primary language

Choosing your primary language is important. The IBM i operating system allows you to change your
primary language to accommodate your business needs based on the country in which you are operating.
Keep in mind, however, that changing the primary language can take several hours or longer to
accomplish.

To change a primary language on your system, you can order a different primary language from IBM. If
you have a secondary language tape for the language you want as your new primary language, you can
change the primary language from that tape. For example, if you have a primary language of U.S. English,

IBM i globalization 35

and a secondary language of Canadian French, you can use the Canadian French secondary language tape
to change your primary language to Canadian French.

When you change a primary or secondary language, and want to continue receiving software and
documentation updates for future releases of licensed programs that you are currently using, contact your
IBM representative.

Selecting and changing a primary language affects the following operational characteristics of your
system:

« Cultural values of the user.

« Language used to communicate with the system through user interfaces presented through a
workstation or printer. See the figure in “Example: How locales work” on page 212.

« Implied character identifier (CHRID) of the character data stored in objects other than database files,
message files, and message queues on the system.

All user-created database files have an implicit CCSID and are tagged with the job default CCSID
(DFTCCSID) unless you provide a CCSID at creation time.

- If you change the primary language and the CCSID for the data remains the same, there is no effect on
your system. An example is to change the primary language from the German MNCS to the Italian
MNCS, of which both use CCSID 00500. The multinational character set refers to character set 00697
and code page 00500.

- If changing the primary language includes changing the CCSID value, the character data in objects other
than database files might not be presented properly through the system and user interfaces. The
database manager automatically converts character data unless conversion is suppressed by the
application that processes the file. Data in objects other than database files are displayed correctly if
the CHRID value of the display file, panel group, or menu is *JOBCCSID.

Because some of the system values are set based on the installed primary language, you should record
your current system value settings before you change the primary language of your system. Then, after
you change the primary language, you can compare the current system values with the previous system
value settings.

When you change the primary language of your system, the CCSID of the text fields in the system-
supplied output files might also change. This is because the CCSID is dependent on the installed primary
language.

Related concepts

Setting up IBM i with a national language version

The steps to install and configure a national language version on the IBM i operating system include
selecting and installing hardware, installing software, and configuring your environment to run in a
globalized setting.

Installation preparation and national languages
IBM periodically creates program temporary fixes (PTF) to correct existing problems or potential
problems within a particular IBM licensed program.

Default system values for national language versions
Jobs and functions on the IBM i operating system use system values as default values.

System values

The system values of the primary language on the system are used as system-wide cultural and linguistic
defaults. Therefore, if you change the primary language on the system, each varying system value resets
to the default system value of the new primary language.

Related information
Changing the primary language of your system or logical partition

36 IBMi: Programing IBM i globalization

Configuring secondary languages
A secondary language consists of textual data for all licensed programs supported for a national language
version.

When you install a secondary language, the textual data for licensed programs installed on your system is
copied into the secondary language library. See the chapter called "Installing a Secondary Language" in
the Software Installation PDF for instructions on installing secondary languages.

The program code is not included in the secondary language version.

Secondary language environments

Some multilingual environments have more than one national language version installed. To have a single
system support multiple languages, you must have the associated hardware installed. You must also have
sufficient disk storage space available to contain all of the system and application textual data for the
secondary languages. The amount of disk storage space that is required varies by language and
application, but it is typically somewhere in the range of 50 to 300 MB.

The languages currently supported on IBM i as either primary or secondary languages can be found in
National Language Version (NLV) feature codes. Listed are the national language versions, their feature
codes, and the program libraries from which they are available.

Each of the national language versions available from the program library (primary or secondary) include
cultural- and language-dependent system values for that particular language. Date format, date and time
separators, code page and character set, and keyboard types are examples. The system values are
initially set to the cultural values of the primary language. By setting up a subsystem, however, you can
ensure that the cultural values for the secondary languages are set properly for users of the secondary
languages.

Applications can use language values that are available in message CPX8416, in file QCPFMSG, accessed
using the library list. Message CPX8416 gives the correct values for the primary or secondary language,
depending on the library list.

Except for logical partitioning (LPAR), when you use a multilingual environment, the primary language
version and any secondary languages must be at the same release level. You must also order and install
the correct devices (workstation controllers, display stations, and printers) to support your languages.

Related concepts

Setting up IBM i with a national language version

The steps to install and configure a national language version on the IBM i operating system include
selecting and installing hardware, installing software, and configuring your environment to runin a
globalized setting.

How a language is displayed for IBM i functions

If you want information presented in a language other than the primary language of the system, you must
first have a secondary language loaded. When a secondary language is loaded, you have three ways to
display information in that language.

Installation preparation and national languages
IBM periodically creates program temporary fixes (PTF) to correct existing problems or potential
problems within a particular IBM licensed program.

Hardware installation and national languages
When installing or changing a device on your system, you must make sure that the device is configured
correctly to reflect the keyboard ID that matches the character set and code page of the job CCSID.

National language version feature codes

This table lists the available national language version feature codes on the IBM i operating system. When
you order an IBM i licensed program, you identify the national language version you want by specifying a
language feature code.

Information in message CPX8416

IBM i globalization 37

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Notes on secondary languages when you require English as the primary language
These considerations are important when you require English as the primary language and want to install
DBCS secondary languages.

If Japanese, Simplified Chinese, Traditional Chinese, or Korean is used as a secondary language and
English is required as the primary language

If Japanese, Simplified Chinese, Traditional Chinese, or Korean is used as a secondary language and
English is required as the primary language, use English Uppercase and Lowercase (2984) as a primary
language.

In other cases

In cases other than those described in this topic, use English (2924) as a primary language.

Enabling the secondary language
You must ensure that secondary languages can be used after they have been installed on the system.

To enable the secondary language, follow these steps:

1. Add the secondary language library to the beginning of the user's system part of the library list.
To do this, use one of the following ways:

« Use the Change System Library List (CHGSYSLIBL) command to add the national language library you
want to the top of the library list.

The command can be in an initial program specified in the user profile so that the user does not have
to enter the command at every sign-on.

The authority included with the CHGSYSLIBL command does not allow all users to run the command.
To enable a user to run the CHGSYSLIBL command without granting the user rights to the command,
you can write a CL program containing the command. The program is owned by the security officer
and adopts the security officer's authority when the program is created. Any user with authority to
run the program can use it to change the system part of the library list in the user's job.

« Use a separate subsystem for a secondary language. To do this, follow these steps:

a. Create a subsystem description for secondary language users (for example, QGPL/DANISH).

b. Specify the secondary language library for the Subsystem library (SYSLIBLE) attribute (for
example, QSYS2926).

c. Specify the sign-on display file from the secondary language library for the Sign-on display file
(SGNDSPF) attribute (for example, QSYS2926/QDSIGNON).

d. Use the Remove Work Station Entry (RMVWSE) command to remove the appropriate display
devices from the interactive subsystem, and then use the Add Work Station Entry (ADDWSE)
command to add these devices to the secondary language subsystem.

When you use these commands, no one can be signed on to the devices that you are removing.

e. If you want to use separate job queues (JOBQ) and output queues (OUTQ) for a secondary
language, you can create these queues in the secondary language library (for example,
QSYS2926). Attach the job queue to the secondary language subsystem (for example, QGPL/
DANISH).

You might have licensed programs that have secondary language libraries and that are not on the
IBM i secondary language tape. You should add those secondary language libraries to the library list
before the primary language product libraries. Use the Change System Library List (CHGSYSLIBL)
command to add the secondary language libraries to the library list if the product libraries are in the
system part of the library list.

38 IBMi: Programing IBM i globalization

. Specify the keyboard ID for the secondary language in the device description for the display station.
a) Turn off your device.

b) Use the Change Device Description Display (CHGDEVDSP) command to specify the keyboard ID for
the secondary language in the device description.

¢) Use the Vary Configuration (VRYCFG) command to turn on the device.
. Change the date format to reflect the date format of your language.

The date format, date separator, and time separator can only be changed using the CHGJOB command
for secondary language users. If you use the CHGSYSVAL command to change these values, all primary
language users and all secondary language users have this information changed. The following table
illustrates this and shows the ways the date and other NLS-related job attributes should be specified
for secondary language users.

CHGJOB CRTJOBD CHGJOBD CRTUSRPRF CHGUSRPRF
Date X X X
Date format X
Date separator | X
Time separator | X
Character set [X X X
identifier
Language X X X
identifier
Sort sequence | X X X
Country or X X X
region
identifier

Note: The following commands are used in this table:

« Change Job (CHGJOB) command
« Create Job Description (CRTJOBD) command
« Change Job Description (CHGJOBD) command
« Create User Profile (CRTUSRPRF) command
« Change User Profile (CHGUSRPRF) command
. Change the CCSID value to reflect the CCSID of the secondary language that you want to use.

You can set the CCSID value for all jobs to run under your user profile by using the Change User Profile
(CHGUSRPRF) command. This change takes effect for any jobs that enter the system using your profile
after you have made the change.

You can set the CCSID value for a batch job to be run using the CCSID parameter on the Submit Job
(SBMJOB) command. You can change the CCSID of a job that is running by using the Change Job
(CHGJOB) command.

. Ensure that your data in objects other than database files and message files prints correctly.

To do this, you might want to direct all of your printed output to a print queue that contains printer
output only for the character identifier of your language.

a) Use the Create Output Queue (CRTOUTQ) command to create a printer queue.
b) Use the OUTQ parameter of the Change Job (CHGJOB) command to change your job output queue.

CHGJOB 0UTQ(output_queue)

IBM i globalization 39

Note: You can use the Change User Profile (CHGUSRPRF) command instead to make a more
permanent change to the OUTQ parameter. Then, each time you sign on to the system, the correct
output queue is used.

If the printer supports changing the code page, you can use the *JOBCCSID value in the printer file.

6. Change other cultural- and language-dependent values to the secondary language you want to use if
you do not want to use the system values.

Use the Change Job (CHGJOB) command to change the cultural- and language-dependent values.

Related concepts

Working with CCSIDs

Using the system implementation of Character Data Representation Architecture (CDRA), you can achieve
consistent representation, processing, and interchange of coded characters (data) on the IBM i operating
system and across IBM Systems. The primary implementation of CDRA on the IBM i operating system is
through coded character set identifier (CCSID) support.

Linguistic and cultural values
Linguistic and cultural conventions include any system values, attributes, or settings that can be altered to
suit a country or language.

Related reference

Change System Library List (CHGSYSLIBL) command
Create Output Queue (CRTOUTQ) command

Change Job (CHGJOB) command

Multilingual support
Multilingual support on the IBM i operating system is the support that includes more than one language
on one system.

A system that works in multiple languages must be able to handle a variety of cultural and linguistic
characteristics such as the following:

« Graphic characters, such as an e accent grave (é)

« Currency symbols, such as the Pound Sterling symbol
« Date formats, such as 24.06.93

« Time formats, such as 23:59

« Sort sequences, suchas a, b, c....

The system must also handle differences, such as the direction in which text prints and displays. For
example, all text of Latin-based languages, such as French and Spanish, displays from left to right across
a display. However, the general direction of Arabic and Hebrew text is from right to left across a display.
The system displays text, prints text, and allows data entry left to right for some languages and right to
left for other languages.

Printing and displaying text left to right for some languages and right to left for others is not enough,
though. Numbers and Latin character phrases that are included in Arabic and Hebrew text display and
print from left to right. For example, Hebrew text generally flows from right to left across a display. When
Hebrew text includes a street address, the street name flows right to left, but the address number flows
left to right. Similarly, if Hebrew text includes a Latin name, such as John Smith, the Latin name flows
from left to right. Because this text flows both right to left and left to right (bidirectionally), the system
displays and prints text bidirectionally.

Multilingual network

Two or more systems, each using a different primary language, can interchange data. Because data is
flowing between systems with different primary languages, the data must have a CCSID assigned. When
data has a CCSID assigned, data integrity is maintained. Thus, character data is correctly displayed for the
receiving user.

40 IBMi: Programing IBM i globalization

Installing and enabling locales
If you are installing a new release, you can request that library QSYSLOCALE be installed on the system at
that time.

To install library QSYSLOCALE at a later time, type GO LICPGM and press the Enter key. Scroll until you
find Extended NLS Support. Select option 1 to install Extended NLS Support.

Locales can be enabled on the system by using system values or user profiles.

Enabling locales with system values
Two system values are related to locales:

QLOCALE
The system value specifying the locale object. The default is *SYSVAL. Other possible values are:

« *C
The C locale is assigned for this user (same result as using *POSIX)
« *POSIX

The POSIX (Portable Operating System Interface for Computer Environments) locale path name is
assigned for this user.

« locale path name
The path name of the locale to be assigned for this user.

QSETJOBATR
A system value that sets job attributes at job start time. The default is *SYSVAL. The following values
indicate the job attributes that are to be set from the locale object specified by QLOCALE:

« *CCSID (Coded character set identifier)

The CCSID associated with a locale when the locale object is created.
« *DATFMT (Date format)

The date format is determined from the locale object.
« *DATSEP (Date separator)

The date separator is determined from the locale object.
« *SRTSEQ (Sort sequence)

The sort sequence is determined from the locale object
« *TIMSEP (Time separator)

The time separator is determined from the locale object.
« *DECFMT (Decimal format)

The decimal format is determined from the locale object.

Enabling locales with user profiles
Two parameters on the user profile are related to locales:

LOCALE
The parameter value specifying the locale object to use for the LANG environment variable. The
default is *NONE. Other possible values are:

« *SYSVAL

The system value QLOCALE is used to determine the locale path name to be assigned for this user.
. *C

The C locale is assigned for this user (same result as using *POSIX).
« *POSIX

IBM i globalization 41

The POSIX locale path name is assigned for this user.
- locale path name

The path name of the locale to be assigned for this user.

SETJOBATR
The parameter value that sets job attributes at job start time. The default is *NONE. If *SYSVAL is
specified, then the attributes are set from the QSETJOBATR value. The same attributes (*CCSID,
*TIMSEP, *DATFMT, *DATSEP, *DECFMT, *SRTSEQ) that can be specified on the system value
QSETJOBATR can be specified on the SETJOBATR parameter of the user profile.

If you want all users on the system to use locales, setting system values accomplishes this. Alternatively,
the user profile is an ideal mechanism if you want to provide locale function to a limited or specific group
of users.

Related concepts

Locales
A locale is an object that can determine how data is processed, printed, and displayed.

System-supplied locales and recommended CCSIDs

The system-supplied locale source definition file members are in the optionally installable library
QSYSLOCALE in the QLOCALESRC source file. The source file members are encoded in CCSID 37 and are
read only.

Working with locales

Locales are used primarily in ILE-based application programs. Additionally, the Retrieve Locale
Information (OPM, QLGRTVLC; ILE, QlgRetrieveLocaleInformation) API retrieves one or all categories of a
locale.

Scenarios: Setting up IBM i with a national language version
These scenarios demonstrate how you can enable multilingual support on the IBM i operating system.

Note: For more information about the details described in the scenarios, see the following topics:

 For Unicode database information relating to DDS, see DDS for physical and logical files.

« For Unicode display information with DDS, see DDS for display files.

 For Unicode printing information with DDS, see DDS for printer files.

 Forinformation about using the subsystem description, see Enabling the secondary language.

Related concepts

Working with Unicode

Unicode is a standard that precisely defines a character set as well as a small number of encodings for it.
It enables you to handle text in any language efficiently. It allows a single application to work for a global
audience.

Scenario: A single system supporting Spanish
In this scenario, a single system supports Spanish users and applications.

The primary language of the system is Spanish (NLV 2931). Because 2931 is the primary language, the
default system settings and IBM i localization preference are set to Spanish.

The user has also created a database file where the fields of interest are defined to contain Unicode,
because they plan to use this same database file for both 5250 applications and Java applications.

The following example shows the SQL statement used to create a database containing a Unicode field
named PART_NAME and a non-Unicode field named STOCK_NUMBER:

CREATE TABLE SAMPLE (PART_NAME GRAPHIC (10) CCSID 1200
NOT NULL WITH DEFAULT, STOCK_NUMBER INT NOT NULL WITH DEFAULT 0)

42 IBMi: Programing IBM i globalization

If the user wants to display this data with a web service or Unicode enabled application, then Unicode is
the natural encoding for web use, and no conversion is needed. To get the correct localization preference
for the Java application, the user sets the Java locale to sp_SP for Spanish in Spain.

If the user wants to display this data with a 5250 session, then the Unicode field must be converted to the
CCSID of the display device. The user only has to set the user profiles's CCSID value to 284 to tell the
system that this user is on a Spanish display. This service is provided automatically by the system if
requested with the CCSID keyword and the *CONVERT parameter in DDS.

To print the Unicode data, the user specifies the *NOCONVERT parameter of the CCSID keyword, and uses
the FONTNAME keyword to specify a TrueType font. The unconverted Unicode data can be printed with
PSF or with Host Print Transform.

The following figure illustrates this scenario.

' e —
5250 Applications Interface Wb or Java application W

MLV text support Interface Data
SP..ar:Lsr:lf::%ﬁﬂ J Jsﬁg?;uigra WJ —. (Spanish martille
| N
Localization Localization
j Nen-Unicode preference

preference
| data L. y, _ py
[}
¥/ DDS automatic Unicode Unicode
CONVersion data data
el Unicode databasa

Part_Name Stock_Number

martillo 1001
Part Name
Unicode ;
martillo
data
Host print N
transferm or PSF / Brinter

Scenario: A single system supporting Spanish and an existing EBCDIC database
In this scenario, a single system supports Spanish users and applications and an existing EBCDIC
database.

The primary language of the system is Spanish (NLV 2931). Because 2931 is the primary language, the
default system settings and IBM i localization preference is set to Spanish.

The user has also created a database file where the fields of interest are defined to contain Unicode,
because they plan to use this same database file for both 5250 applications and Java applications. They
also have an existing database in which the fields are defined in EBCDIC.

The following example shows the SQL statement used to create the EBCDIC database:

CREATE TABLE SAMPLE (PART_NAME CHAR (10) CCSID 284 NOT NULL WITH DEFAULT,
STOCK_NUMBER INT NOT NULL WITH DEFAULT 0)

IBM i globalization 43

The following example shows the SQL statement used to create a database containing a Unicode field
named PART_NAME and a non-Unicode field named STOCK_NUMBER:

CREATE TABLE SAMPLE (PART_NAME GRAPHIC (10) CCSID 1200 NOT NULL WITH DEFAULT,
STOCK_NUMBER INT NOT NULL WITH DEFAULT 0)

When using the Unicode file

If the user wants to display this data with a web service or Unicode enabled application, then Unicode is
the natural encoding for web use, and no conversion is needed. To get the correct localization preference
for the Java application, the user sets the Java locale to sp_SP for Spanish in Spain.

If the user wants to display this data with a 5250 session, then the Unicode field must be converted to the
CCSID of the display device. The user only has to set the user profiles's CCSID value to 284 to tell the
system that this user is on a Spanish display. This service is provided automatically by the system if
requested with the CCSID keyword and the *CONVERT parameter in DDS.

To print the Unicode data, the user specifies the *NOCONVERT parameter of the CCSID keyword and uses
the FONTNAME keyword to specify a TrueType font. The unconverted Unicode data can be printed with
PSF or with Host Print Transform.

When using the EBCDIC file

If the user wants to display this data with a web service, then the file first must be converted to Unicode.
This can be done with the JDBC connector. To get the correct localization preference for the Java
application, the user sets the Java locale to sp_SP for Spanish in Spain.

If the user wants to display this data with a 5250 session, EBCDIC is the natural encoding for the 5250
device and no conversion is needed. To print the EBCDIC data, the user sends the data to the printer.
Because EBCDIC is the default encoding for the printer, no conversion is needed.

Logical file support

One of the unique features of IBM i is the ability to use the system's logical file support to have either the
EBCDIC file appear to the application as a Unicode file, or to have a Unicode file appear to the application
as an EBCDIC file. This might be of use if you want to move your database to Unicode, but do not want to
update your existing applications.

If the majority of your application's use of the database involves Unicode, you can have the data stored as
Unicode, and create a logical view of the file in EBCDIC. You can then have your EBCDIC programs access
this logical file and they do not need to be updated to handle Unicode.

If the majority of your application's use of database involves EBCDIC, you can have the data stored as
EBCDIC, and create a logical view of the file in Unicode. You can then have your Unicode programs access
this logical file and they do not need to be updated to handle EBCDIC. However, because EBCDIC encodes
a smaller set of characters than Unicode does, some character loss might occur.

The following figure illustrates this scenario.

44 IBMi: Programing IBM i globalization

P oy P —
Fe Interface Web or Java application
5250 licati
ol NLV text support Interface Data
Spanish 5250 Jspﬁgi:;u’;';:““' o | Spanish martillo
| L Unicode
f Ly Localization | data Localization
I % preference preference
;o . ' J ~ A ~
IIIE‘:{I;—U nic&:d& Unicode Unicode database - ¥
= dat
J i a1 Part Name Stock_Number JDBC
DDS automatic = = | converter
CONVersion martillo 1001 |
]
"\‘ '
|
Legical file support :
* " | Part Name
EECHN martilla
\‘* Part_Name Stock_MNumber A
!
martilla 1001 \
Host print } Printer

transform or PSF /

Scenario: A single system supporting English, Japanese, and German
In this scenario, a single system supports English, Japanese, and German users and applications.

The primary language of the system is English (NLV 2924). The system has also been loaded with
secondary languages of Japanese (NLV 2962) and German (2929). Because 2924 is the primary language,
the default system settings and IBM i localization preference is set to English. Because these three NLVs
are installed, each user can work with the system in English, German, or Japanese.

The users see their language of choice and IBM i localization preference from the initial sign-on screen by
the use of a subsystem description for each secondary language.

The user has also created a database file in which the fields of interest are defined to contain Unicode.
Because Unicode provides a unique number for every character on any platform, in any program,and in
any language, one field can contain English, German, and Japanese.

The following example shows the SQL statement used to create a database containing a Unicode field
named "PART_NAME" and a non-Unicode field named "STOCK_NUMBER":

CREATE TABLE SAMPLE (PART_NAME GRAPHIC (10) CCSID 1200
NOT NULL WITH DEFAULT, STOCK_NUMBER INT NOT NULL WITH DEFAULT 0)

If the user wants to display this data with a web service or Unicode enabled application, then Unicode is
the natural encoding for web use and no conversion is needed. To get the correct localization and
interface preference for the Java application, the user needs to set the Java locale to the correct value:
en_US for English, Jp_JA for Japanese, and de_DE for German.

If the user wants to display this data with a 5250 session, then the Unicode field must be converted to the
CCSID of the display device. The user only has to set the user profile's CCSID value to the correct value
(37 for English, 1399 for Japanese, and 278 for German) to tell the system what the user's preference is
for the display. This service is provided automatically by the system if requested with the CCSID keyword
and the *CONVERT parameter in DDS.

IBM i globalization 45

To print the Unicode data, the user specifies the *NOCONVERT parameter of the CCSID keyword and uses
the FONTNAME keyword to specify a TrueType font. The unconverted Unicode data can be printed with
PSF or with Host Print Transform.

The following figure illustrates this scenario.

¢ # "
5250 Applications | (Intertace h " Web or Java application |
NLV text support Interface Data
English 5250 English . H“"Eé”
"Hammer" subsystem g &
Hammern
T Localization™
! Locatzator preference
I
German 5250 German Unicode
"Himmarn® subsystem data 1%
Localization™
.'If‘ Localization preference
f preferance
.Japanes‘e 5250 Japanasa Japanese H%TE'E”
'ﬁ‘:l:-hE subsystem —— Hammern
- — Localization™
! Localization preference
| preferenca
1l SN J . J
[
I|," T Unicode database -
il Part Name | Stock_Number
* | INen-Unicode Unicode
41 d data Hammer 1001
4 A data 2 HE 002 Part MName
DDS automatic . Hammer
conversion Hammern 1003 .
£hE
Hammern
Unicode i
data| o Host print
o \\trunsfnrm or PSF Printer

Developing globalized applications

Globalized applications are applications that have national language support. National language support
allows users to enter, store, process, retrieve, print, and display data in their chosen language. It also
allows users to see and enter commands, prompts, messages, and documentation in their chosen
language, in formats matching their cultural expectations.

Here are some guidelines for designing, developing, and delivering globalized applications:

- Designing functions that are sensitive to national languages

 Supporting various types of hardware

« Translating the textual data in your application

« Making your application available worldwide

Although your reasons might differ, most internationalized applications are created because:

46 IBMi: Programing IBM i globalization

- The market demands globalized software products that have a local feel
« The application is used in a community that represents multiple cultures
« Revenue opportunities are expanded

Related concepts

Character processing
Character processing on the IBM i operating system is controlled by specific coding rules and guidelines
that ensure consistent processing of character data.

Handling data in globalized applications

The IBM i operating system enables you to handle data in a globalized environment. This topic collection
describes Unicode and Unicode data, the Chinese standard GB18030, how to use CCSIDs to integrate
multiple language environments consistently, and how to use bidirectional data, DBCS data, and locales.

Goals and processes

Before you invest your time and money in the development of globalized applications, you should set up a
planning process to consider how to serve your users well.

Globalization development goals
This information assumes certain goals and provides you with recommendations for developing globalized
applications.

The recommendations in this topic assume that your basic goals are:

« To create an application efficiently.

- To create an application at minimal expense. You can retrofit existing applications for globalization and
create new applications designed for globalization. Designing an application for globalization, however,
is typically less expensive than retrofitting an existing application.

« To ensure that the application design does not interfere with the current or planned design of other
internationalized applications.

- When creating an application with national language support, you must plan for or put into effect the
following tasks:

— Designing functions that are sensitive to national languages
— Supporting various types of hardware support

— Translating the textual data in your application

— Making your application available worldwide.

Globalization development planning processes

A globalized application should be well planned at every stage in order to save time, effort, and money.
You should not have to recompile programs nor repackage data objects. Your product might, however, be
required to use a different data object based on the language version you are using. You should have one
set of program code and different sets of cultural- and text-dependent code, as needed.

Consider these processes when planning for a globalized application.

Market research process

In the market research process, you must determine for whom you are designing and developing
globalized applications. To find the answer, you can ask yourself and your potential customers these types
of questions.

What are my target markets for today and tomorrow?

The answer to this question makes a significant difference if you define your market place in different
countries or only in the area of your own language, or if you decide to include countries speaking other

IBM i globalization 47

languages. For example, if you are coding an application from a Latin-based language, application
complexity increases when you decide to include countries using non-Latin languages such as Hebrew,
Chinese, or Japanese. The application complexity increases because you need to deal with incompatible
characters sets and more complex input methods.

Along with the language problem, there are other areas to consider. You need to understand the culture,
habits, ways of doing business, and laws of the target markets. You need to understand the customers'
ways of life for you to be accepted as a business partner, to be able to get into the market, and to support
them in their countries.

These factors can affect:

The skills that you need (technical, cultural, language, laws)
- The environments to consider
« Your company structure and support organization

Your relationship to other companies

The resources that you need (people, time, and money)

Who are the users of my application?

You must understand the requirements that future users of your application will have. For example, do
they want to:

Work with separate databases for different languages?

Work with a shared database for all languages?
- Exchange or consolidate data?

Work with different languages dependent on the user, the company, or the company's customers?
« Use end-user database tools to do their own inquiries on the application database?

All these factors affect the design you choose, the way your application is able to switch from one
language environment to another, and how data presentation and conversion take place.

How much globalization support is needed?

After you understand the requirements for your customers and their end users, you can decide what kind
of cultural-sensitive information you need to store and maintain, the type of data presentation, which
parts you need to translate, and how your application must be able to be integrated in the different
environments.

What is the cost of the effort?

To estimate the expected revenue, analyze the places you have chosen as your target market. After you
know the requirements, you should be able to determine the effort and costs. This amount allows you to
compare the costs against the expected revenue.

Which costs more, enabling or retrofitting an application?

The initial cost of enabling an application for national language support might be higher. But consider that
the enabling steps are based more on normal modular and data-driven design techniques, which improve
the quality of your application even without NLS enabling. Because a good design helps people to
understand and describe the application system, you will receive a certain return on the investment. A
good design helps to improve productivity of development and maintenance. You have the additional

48 IBMi: Programing IBM i globalization

effort of designing and implementing the application only once, even for many different language
versions. Compared to retrofitting an existing application, it is much less expensive to plan and design it
from the very beginning.

Development process
Before you start to develop NLS-enabled applications, you need to consider initial education and the
implementation of internationalized applications.

Education for developing internationalized applications

When you intend to develop NLS-enabled applications, you need to consider additional initial education.
The following topics are important to learn about:

- General globalization concepts

« Available globalization support on the IBM i operating system

« Available globalization support on other systems and applications with which your application operates
« Isolation of different parts of an application

« Data presentation corresponding to cultural conventions

« Design and coding for textual data parts

« Translation process

« Product and system integration

« Packaging, installation, and setup

« Product support and maintenance

Based on the globalization enabling guidelines, first prepare a prototype application and test the chosen
way of implementing the application for your specific environment. Afterward include the globalization
enabling guidelines in your general application development processes, guidelines, and standards.

Implementing internationalized applications

When implementing an internationalized application, the most important objective is to produce only one
set of running code. You must differentiate consistently between running code and textual data. It is
essential that you standardize the chosen approach throughout the whole application. Work with unique
and clearly defined naming conventions. To understand and to maintain this information in the
application, handle parameters called from a program in a consistent way.

Documentation process

Documentation should provide information for the end users of the application system in their own
language. The documentation should also include installation, setup, and customization information for
the user, the system operator, and the application system manager.

The user documentation should be textual data that can be easily translated. Whenever possible,
combine the online help information and user documentation to reduce the volume of text to translate.
Any example displays or print layouts should be produced by the application and included in the
documentation.

Translation process

Translating the textual data is a time-consuming process. The textual data should be available to
translators early at the development stage, even before the code is stable. When planning for translation,
you need to consider translation tools, education, guidelines, instructions, and the glossary as well as
physical equipment.

IBM i globalization 49

Physical equipment

Each translator should have equipment compatible with the language being translated. The display
stations and keyboards should have all the characters needed to translate, and the printers should be
able to print the translated text.

Translation tools

Provide the translators with tools that increase productivity and that prevent translation of non-textual
application data. When purchasing or developing a translation tool, the following features should be
included:

An editor that provides the ability to show displays that can be seen by the user, and the ability to
translate the textual data on the system but still protect the parts of the application that are not textual
data. The editor should also include functions such as scan and replace, find, copy, move, and delete.

A dictionary function to provide consistency of words and phrases throughout the product.

A validation process to check translation errors that might cause the application to malfunction.

A merge function that provides the ability to merge the translated text into a new version of the original
text. This merge function allows for translating only new text, and saves time and effort.

A print function for validation purposes.

Translation education

It is important that translators are familiar with the product they are translating and also with the tools
they are using. The translation process is not the replacement of one word with another, but the formation
of concepts in another language. Knowledge of the product being translated provides more
understandable products to the user. Time and resources for educating translators should be planned
well in advance.

Translation guidelines and instructions

Translation guidelines and instructions should be provided to ensure correct translation. For example, to
translate an error message properly, it is important to know in what context this message is displayed. A
note to translators telling them what error caused the message to be displayed also helps.

Translation glossary

To ensure accurate translation, use terminology based on definitions in standard, widely available,
dictionaries. If your application uses terms not found in standard dictionaries or terms that are used
differently from standard definitions, provide a glossary of non-standard terms to the translators. Avoid
using abbreviations and acronyms in your application. If you must use abbreviations or acronyms in your
application, define them in the glossary. Remember, abbreviations and acronyms that are obvious in your
language might not be obvious in another language.

Testing process
The testing of a globalization-enabled product involves testing the running code, checking the textual
data, and integrating the running code and textual data.

1. Test the running code

The running code should be tested in a globalization support environment in order to check all the
possible language-dependent combinations. Translators should not test the product functionality.

2. Check the textual data

50 IBMi: Programing IBM i globalization

The textual data should be tested to check correct translation and consistency throughout the product.
3. Integrate the running code and textual data

After the textual data and the code have been tested separately, an integration test should be
performed to test if the application has taken into account all the globalization-related processing, and
that the translation of the textual data has not caused a malfunction in the product.

If your application will also run on a multinational or multilingual system, a separate test that includes
more than one set of textual data should be planned.

Packaging and installation process

You need to consider the running code, translated textual data, and installation documents when
packaging applications. Here are some suggestions for simplifying the packaging and installation of your
application.

- Store the running code and textual data separately.

« Package the textual data so that customers receive only the textual data in the languages that are
ordered. (If the textual data for all languages is sent to all customers, it will waste system resources and
lead to maintenance problems.)

« Provide comprehensive installation documents (translated to the language of the person installing the
product) to avoid unnecessary operator-related problems and also to avoid the wrong impression right
at the beginning that the application is not reliable.

Installation documentation should cover the following topics:

— What is needed to install and run the application, such as hardware and software requirements.
— How to install the application, and how to recover when things go wrong.
— What changes need to be made regarding;:

- Subsystem definitions
- Device descriptions
- User profiles
- System values
- Library lists
— What are the application limitations?

Related concepts

Subsystems
A subsystem is a single, predefined operating environment through which the system coordinates the
work flow and resource use.

Device descriptions
These control language (CL) command parameters can be used to change cultural and linguistic
conventions for some display and printer devices.

User profile name considerations
The user profile name identifies the user to the system. This user profile name is also known as the user
ID. It is the name that the user types in the User prompt on the Signon display.

Default system values for national language versions
Jobs and functions on the IBM i operating system use system values as default values.

Job library list
The language used for textual data (displays, messages, printed output, and online help information) is
controlled by the library list for the job.

Delivering globalized applications

IBM i globalization 51

As you prepare to deliver your globalized application, you should consider how globalization issues might
affect the ways that your customers install and use your application.

Application maintenance process
Consider these points when planning for the maintenance of a multilingual application.

« The running code must be maintained separately from the textual data. These separate components
must be fully synchronized. A redesign in one component might cause a redesign to be made in another.

« Whenever textual data is changed, be sure that it is incorporated in all the languages to which your
textual data was translated. In this way, you can ensure a single maintenance level for the complete
product.

- Be sure to test the running code for each textual data change that you distribute.

Designing globalized applications

Your goal in designing international application components is to create components that support
national languages independently.

The support of one language should not interfere with the support of another language. The support of
one language should not force any reduction in the function of the product for another language.

Your application should be able to support multiple languages simultaneously. For example, support for a
double-byte coded character set (DBCS) language should not exclude support for single-byte coded
character set (SBCS) languages. When you set up your libraries, consider using multiple textual data
libraries, which can be dynamically allocated for testing, packaging, and delivery.

As you develop a globalized application for the IBM i operating system, you must consider these and other
unique design considerations that will affect the way you build and code your application.

Related concepts

Developing applications that process DBCS data
You should design your application programs for processing double-byte data in the same way you design
application programs for processing alphanumeric data.

Checklist: Application design
The checklist provides some guidelines that you can follow when you create an application with national
language support.

Complies Not applicable |Rule

The existence of a specific character set within a system or its
components must not be assumed.

Converting character case must be definable for each language and
code page.

Folding must be definable for each language and code page.

Folding is the process in which characters that can be printed or
displayed are substituted for those that cannot be printed or
displayed on a particular device.

The use of a graphic character for software control purposes must
not preclude the use of the same character in the text of messages,
menus, prompts, input fields, or output fields.

The set of characters allowed for use in the entry of data must be
definable by the system operator, a user, or an application.

Graphic symbols and icons must be translatable.

All characters on the active code page must be accessible.

52 IBMi: Programing IBM i globalization

Complies Not applicable |Rule

Language-dependent parts of a product must be isolated from non-
language-dependent parts for easy modification.

The design of a product must allow for the national language support
of the various components of the product to be independent of each
other.

National language exits must be provided at strategic points.

Diagnostics must be enabled.

Logical layouts different from a given physical keyboard layout must
be available to the user.

All user interface text and presentation control information must be
isolated from the running code.

Functions dependent on display field length and display field
position, or display field position alone, must not be designed in such
a way that they are affected by user-interface text expansion.

A method must be provided to allow for the identification and
tracking of panels and messages during the translation process.

Variables must be permitted to assume any location and order within
adisplay field.

Messages and other displayed words or phrases must be complete
entities and must not be constructed from individual words or
phrases.

Entry of end-user commands, keywords, or responses must be
possible without regard to uppercase or lowercase characters.

A product with national language-dependent functions must be
designed to facilitate the addition of other countries or national
languages.

Lowercase alphabets should not be assumed to be invariant.

Character sets should be definable by the operator, a user, or an
application.

Special characters, including punctuation marks, should be definable
and not program dependent.

User-interface text modules should be packaged separately from the
running code.

Globalization and localization

National language support enables users to interact with the IBM i operating system in the language of
their choice, with results that are culturally acceptable. National language support consists of two parts:
globalization and localization.

The IBM i operating system controls the operation of programs and provides services such as controlling
resources, scheduling jobs, controlling input and output, and managing data. It is designed to
complement and extend the capabilities of the system to provide fully integrated support for interactive
and batch applications.

Many functions of the operating system apply directly to interactive data processing. Some of the
functions are listed as follows:

« Database support to make up-to-date business data available for rapid retrieval from any workstation

IBM i globalization 53

- Work management support to schedule the processing of requests from all work station users

« Application development support that allows online development and testing of new application
programs to run at the same time as normal production activities

« System operation support that allows the user responsible for system operations to perform work from
the display station using a single control language, complete with prompting and help for all commands

« Help and index search support that allows users to request online information about a wide variety of
topics

« Message handling support that allows communication among the system, the user responsible for
systems operations, workstation users, and programs running in the system

« Security support to protect data and other system resources from unauthorized access

In addition to these functions, the operating system provides national language support. National
language support allows users to interact with the system in the language of their choice, with results that
are culturally acceptable. National language support consists of two parts: globalization and localization.

Globalization allows an application to operate in all language environments without any change to the
application. This type of design is also known as enabling an application for national language support. A
globalized application, shown in the following figure, is culturally neutral.

Inte mationalized
Application

Culture-Inde pendent Code

1

Aninternationalized application
isdesigned so vou can add support for
any language, courtry, or culture.

By contrast, localization allows an application to operate in a specific language, country, or culture.
Localization of an application goes a step beyond globalization of the application, as shown in the
following figure.

Code witten to
support one

armaore
cuttural features
Culture & - J p | Culture B

When localized code is integrated with globalized code at run time, the resulting application appears to
the user with full national language support. The processing environment defines which localization code
is combined with the globalized code at run time, as shown in the following figure.

54 IBMi: Programing IBM i globalization

Internati onalized
application

Cutture-inclependent code

Localized
codle ‘ ‘

Localization ®| (processing environment is
determined at run time)

l I

Application Application
with full national with full national
lunguage support language support
for Language & for Language B
Code localized Code localized
for language A forlanguage B

Application arrangement and architecture

When you design an international application, consider organizing and structuring your application in ways
that enable it to be used in an international environment.

In particular, consider the following strategies:

« Separate program modules at appropriate places
- Name application parts appropriately for a multilingual environment
» Refer to specifications whenever possible

« Provide multiple sets of logical files in separate libraries when working with database definitions

The following figure shows you the recommended way to organize the parts of your application.

IBM i globalization 55

APPTHDzzz AFPPPGMzzZ APPCSlzzz
APPTXDyyy 1 | APPPGMyyy APPCSIyyy |
APPTADxxx *LIB APPPGMxxx *LIB APPCSlkxx *LIB
Message files Mational Culture-
Display files language sensitive
Panel groups version information
User commands
Data areas with B Dependent B Datahase files B
| program | M essage files ||
textual data modules
AFPPPGM *LIE
Frogram library
(Globalization Independent)

APPDTAzZzZZ
AP PDTAYYY |]
APPDTARXX B | |
Logical files with globalz ation -

dependeant text, formatting,
and sequencing

APPDTA *LIE

Database library
(Phy sical files)

REAGSS060

Program module separation

You can separate cultural-dependent parts from your running code and set up cultural-dependent

environments. You can do this using system values, user profile attributes, job attributes, and object
attributes.

When it is impossible to separate national language and cultural-dependent parts from the running code,
you must provide national language exits or calls at all points where functions dependent on national
language support are required. The following figure shows a national language exit.

56 IBM i: Programing IBM i globalization

Fragram

Execl Greek
Execl French
Call Exect Exec1 Spanish
Frogram
FREAGZES04-0

Application part names
When you want to enable your application for different languages and countries, consider the
environments of the target systems in your naming conventions.

Use characters that are available, can be displayed, and can be printed in all the target environments. Use
only characters of the invariant character set whenever you specify names for:

e Libraries

- Database files

« Device files (display or printer)
« Help panels

« Message files

« User commands

« Programs

 Record formats

- Fields

All other characters either vary their meaning or might not be available on the keyboard.

To create an internationalized application, you need to divide your application objects into related parts
that are textual data and nontextual data. Your naming conventions should be able to distinguish between
these parts. You should also be able to distinguish between the textual data of different languages. You
can do this by separating the objects into different libraries.

Scenario: Library naming convention

Your library naming convention can look like this:

AAATTTLL

where: AAA is the application identification; TTT is the type of objects; and LLL is the language code.

This naming convention allows you to have all libraries that belong to an application grouped together
because you have a unique identifier (AAA) at the beginning.

The second part (TTT) allows you to distinguish between different types of objects:
Textual data

- Display files

« Printer files

» Message files

IBM i globalization 57

« Help panels
« User command
e Cultural values
« Database files with NLS-sensitive information and specifications
« NLS-dependent program modules
Nontextual data
Programs
Data
Database files

The third part (LLL) allows you to specify the national language version for all the textual data parts. This
allows you to use the same names for objects of the different national language versions within the
different libraries. Your program is able to use different objects by just rearranging the library list
accordingly when the job is run.

The initial library list can be taken from the job description. You can build a new library list by specifying
the library list in the INLLIBL parameter of the Create Job Description (CRTJOBD) command for a new job
description, or of the Change Job Description (CHGJOBD) command for an existing job description. The
following figure shows an example of this.

English user French user
Textual data Textual data
in English in French
Frogram
Code
h 4 h 4
Exits for Exits for
English user French user
h 4 h J
Lngicqlfiles Logical files
for English user for French user
Database

F IIES REAGSS05-0

Related concepts
Invariant character set (and its exceptions)

58 IBMi: Programing IBM i globalization

An invariant character set is a character set, such as the syntactic character set, whose code point
assignments do not change from code page to code page. The table illustrates the invariant character set
(character set 00640) on the IBM i operating system.

Database definitions
You can define a file to specify certain facts. The specifications are then used in database files.

Specification references

You should define all your fields first in the field reference file of your application and refer to them
wherever you can, in the database specifications, in device file specifications, and in the high-level
language programs. This technique helps you to define the field specifications once and use them again.

If you need to distinguish between the same field of different sources, you can rename or qualify them.
Whenever you need to change the definition of a specific field, you just need to change the attributes of
that field in the field reference file and create the objects again. Then the changes take place
automatically in all the different places where the field is used.

For example:
R A S R Tt - AU R DA PR AN T
A REF (field-ref-file-name)
A R record

A field R line pos
or
A field R line pos REFFLD(ref-field-name)

Database definitions
You can define a file to specify certain facts. The specifications are then used in database files.

Here are some examples of such specifications:

« The object description text of the file

« The explanation text (TEXT keyword) on record formats and field descriptions
« The column headings (COLHDG keyword) on field descriptions

« Date and time formats and separators

- Sort sequence

Language identifier

The object description text is shown by many database tools, such as Db2° for i SQL, IBM i Access, and
data file utility (DFU), on the file selection display.

The column headings are shown by the database tools on the output field definition display. Column
headings are also used on screen design aid (SDA) and report layout utility (RLU) as the proposed field-
prompting text or heading.

Data management handles date- and time-type fields in the format specified at file-creation time, unless
your application or database tool does a conversion to present it according to your request or job demand.

When you want to present all this information according to the language and culture of the user, you need
to provide multiple sets of logical files in separate libraries. Along with the translated text, you can specify
different date and time formats or different sort sequence and let data management perform the
conversion. A similar technique can also be used for numeric-type date fields (unless they are packed),
using the substring (SST) function. The user can access the data only through the designated logical
views. When you are defining logical files with different sort sequences, avoid using a unique index with a
shared-weight table. Although this is possible, a unique index prevents using keys that differ only in
characters with the same weight.

The information about Application part names includes a scenario that uses different sets of logical files
for different users.

Related concepts
Application part names

IBM i globalization 59

When you want to enable your application for different languages and countries, consider the
environments of the target systems in your naming conventions.

User interfaces
A user interface is the part of a software product that your customer actually sees.

A user interface may include the layout of display screens or printed output, displayed or printed text,
commands, online help, and messages. A user interface is also the part of a software product that you
must either translate or make cultural changes to for users in other countries or cultures.

The operating system provides specific software functions to help you organize text from your user
interface and store that text in a library for easy translation. The operating system also provides you with a
user interface manager that provides a consistent user interface. The user interface manager provides
comprehensive support for defining and running panels such as displays and online help.

This section provides guidelines that you can follow when designing a user interface for an international
application. You should apply these guidelines early in the design process.
Related concepts

Command design
The IBM i operating system allows users to define and create their own commands.

Delivering globalized applications
As you prepare to deliver your globalized application, you should consider how globalization issues might
affect the ways that your customers install and use your application.

Checklist: User interface design
When creating a user interface with globalized support, you should follow some rules and guidelines.

The rules and guidelines are shown in the following table:

Complies Not applicable |Rule

The use of a graphic character for software control purposes must
not preclude the use of the same character in the text of messages,
menus, prompts, input fields, or output fields.

Graphic symbols and icons must be translatable.

Language-dependent parts of a product must be isolated from
nonlanguage-dependent parts for easy modification.

All user interface text and presentation control information must be
isolated from the running code.

Sufficient space must be available for user-interface text expansion
caused by translation.

Functions dependent on display field length and display field
position, or display field position alone, must not be designed in such
a way that they are affected by user-interface text expansion.

A method must be provided to allow for the identification and
tracking of panels and messages during the translation process.

Variables must be permitted to assume any location and order within
a display field.

Messages and other displayed words or phrases must be complete
entities and must not be constructed from individual words or
phrases.

Entry of end-user commands, keywords, or responses must be
possible without regard to uppercase or lowercase characters.

60 IBM i: Programing IBM i globalization

Complies Not applicable |Rule

Date and time formats must be selectable.

Numeric punctuation must be selectable.

Number rounding and mathematical formats must be selectable.

Monetary format must be definable.

The default currency symbol and its abbreviations must be
selectable.

The currency symbol position must be selectable.

Field sizes for monetary values must be selectable.

The measurement system must be selectable.

Lowercase alphabets should not be assumed to be invariant.

Special characters, including punctuation marks, should be definable
and not program dependent.

User-interface text modules should be packaged separately from the
running code.

User-interface text modules for single-byte coded character set
systems should be loaded separately from the running code.

A consistent convention should be used throughout the product for
denoting variables and input fields.

Words should not be used in place of numbers.

The terminology in user interface text should be consistent
throughout a product.

Abbreviations should be avoided.

Slang, jargon, and humor should not be used.

Trademarks should be identified and explained.

Ambiguous words should not be used.

Proper style and sentence structure should be used in user interface
text.

Negative questions should be avoided.

Text translation design
These general tips help simplify the translation of your textual material.

Isolating textual data from running code

To allow easier translation and to avoid translating the running code, you should separate all textual data
from the running code. Only one set of running code is needed, but many translations of the textual data
can be done.

Providing expansion space

The space needed to translate text from one language to another varies by language. To ensure that the
translated version preserves the concept and keeps usability, allow sufficient presentation space for the
textual data expansion. The following table shows recommended expansion space for user interfaces
designed using U.S. English.

IBM i globalization 61

Number of characters in text Additional space required
Up to 10 100 to 200%

11to 20 80 to 100%

21to 30 60 to 80%

31to 50 40 to 60%

51to 70 31to 40%

Over 70 30%

Variable placement of an object on the display

Because the position of one display element often is influenced by the position and size of others, some of
the elements on the translated version of a display might need to be relocated. The program must
continue to respond properly, despite this relocation.

Flexible order of variables

In order to contain dynamic information, messages typically employ substitution variables. However, each
spoken language has its own syntax (order of arrangement of parts of speech). When a message is
translated into another language, the position and order of substitution variables might need to change to
meet the syntax requirements in the translated language.

Complete textual data entities

If the final form of the constant text relies on the composition of various parts, it might be untranslatable.
This is because the translator might not know which form of the word to use or because there is no
combination of parts that work for a different language.

For example, you should define column headings for display screens as complete entities. You should not
combine words or parts of words to define column headings. Assume that you are writing an application
for scheduling jobs between Monday and Friday. You are creating your application in French. You decide to
create column headings for reports and screen displays by combining the first part of the name of the day
with the constant DI. Throughout the application, the column and report headings are assembled like this:

First Part of the

Name of the Day: Combine With: Result:
LUN DI LUNDI

MAR DI MARDI
MERCRE DI MERCREDI
JEU DI JEUDI
VENDRE DI VENDREDI

When you translate your application from French to German, you cannot combine two parts to create the
names of the days: MONTAG, DIENSTAG, MITTWOCH, DONNERSTAG, and FREITAG.

Treating commands, responses, and keywords like textual data

Commands, responses, and keywords should be translated into the language normally spoken by the
user. For example, an English application has been translated into German. If the response is still in
English as Yes and No, the German users might feel unfamiliar and uncomfortable in using the program
because the responses they are familiar with are Ja and Nein.

Expressing all text as simply and clearly as possible

« Use simple phrases and sentences and avoid compound phrases. Simple words allow easy translation.
- Make terminology consistent throughout the product.

62 IBMi: Programing IBM i globalization

If consistent terminology is not being adopted throughout the product, translators will waste time trying
to determine the appropriate word to be used in translation.

« Include notes to translators in your information for correct word use to prevent any misunderstandings.
- Avoid abbreviations.
Rules for abbreviations vary from language to language. Abbreviations of words can lead to
misunderstandings by the translator and by the user.
- Avoid slang, jargon, and humor.
Slang, jargon, and humor are specific for a particular language and cannot be easily translated into
another language.
- Avoid negative questions.

Negative questions are often misunderstood by the user. When asking questions, ask them in a positive
way.

Textual data code design
You can use different techniques to specify, store, and use constant text. You can use each technique for
specific types of textual data components. Each technique has its advantages and disadvantages.

Application displays, printer file specifications, and user-created commands typically contain a large
amount of constant text. Application displays, printer file specifications, and user-created commands also
contain input and output fields such as headings, field prompts, instruction lines, and function key
descriptions.

Related concepts

Constant text strings

When designing your panels, keep in mind that different languages have different space needs for the
same expression.

Printer file design and translation

Program-described printer files and externally described printer files are two types of printer files. When
you design printer files to be translated into a national language version, you should follow some specific
guidelines.

Early message binding
Text can be stored externally from the source code in a separate message file but is bound into the object
when it is created.

This technique can be used for:

Display files
Constants such as titles, instruction lines, option definitions, headings, field prompts, command key
descriptions

Printer files
Constants such as titles, headings, total line descriptions

User commands
Prompt descriptions on the command definition statements

For device files (display and printer), the message is referred to by the Message Constant (MSGCON)
keyword in the DDS source specifications.

For example:

A line pos MSGCON(length message-ID[x1libl/]message-file-name)
N

includes expansion space

For user commands, the message identifier xxxnnnn is specified on the PROMPT keyword instead of a
literal. The message file is referred to on the Create Command (CRTCMD) command.

IBM i globalization 63

For example:
CMD PROMPT (xxxnnnn)
The message file name message-file-name is in a source file referred to by the following command.

CRTCMD CMD(command-name) PGM(library-name/program-name) +
PMTFILE ([*1ibl/]Imessage-file-name)

Before the object can be created, you must enter the message description into the specified message file.
Enter the message description using the Add Message Description (ADDMSGD) command.

For example:

ADDMSGD MSGID(xxxnnnn) MSGF(library-name/message-file-name) +
MSG('Text ")

where xxxnnnn is the message identifier.

This technique allows you to create any number of objects in different languages and to put them into
different libraries using the same source code by just assigning another message file at object creation
time.

The message file is needed only during the creation of the object. Consider specifying the appropriate
length for different languages on the MSGCON keyword. Then make the length information available to
the translator.

The following figure shows how early message binding works:

Dhject

Display fila

Frinter file Message

Command file
Frogram #— Language A M4 Source 4— Language A
source and Display file
object are not Printer file
language Dhject Commanid Message
dependent [% + * file

Display file

Frinter file Language B

Command

Language B

REAGEZS0T-0

At file creation time, you can choose the appropriate textual data of the language version you want to
work with by setting up the library list with the specific library containing the textual data and the program
library.

Related concepts

MSGCON (Message Constant) keyword for display files

MSGCON (Message Constant) keyword in printer files

Related reference

Create Command (CRTCMD) command

64 IBMi: Programing IBM i globalization

Add Message Description (ADDMSGD) command

Late message binding
Text can be stored externally from the DDS source code in a message description and is bound only to the
display format at run time.

This technique can be used for:

Display files only
Constants such as titles, instruction lines, option definitions, headings, field prompts, command key
descriptions (MSGID keyword)

Default values on input fields (MSGID keyword)
Field validation specifications (CHKMSGID keyword)
Error messages (ERRMSGID and SFLMSGID keywords)
In the DDS for the display file, the message is specified through the MSGID (Message Identifier) keyword.

The message has to be entered into the specified message file using the ADDMSGD (Add Message
Description) command.

For example:

A FLD-name 1length 1line pos MSGID(message-ID [x1libl/Imessage-filename)
N

includes expansion space
ADDMSGD MSGID(xxxnnnn) MSGF(library-name/message-file-name) +
MSG('Text 1)

This technique allows you to create any number of message files in different languages and different
libraries, with one DDS source code and display file object. During run time, you assign another message
file by setting the library list accordingly. The following figure is an example.

Message file
Message file B
Language &
Frogram Objec —
Source
Source and Digplay l |
;L:nject are) file is not Display
not language language file
tlependeant dependert

Note: This technique requires the application to perform all editing based on the cultural convention.

Direct coding as an unnamed output field

The most common way to define constant text is to specify the text directly in the source code as a literal.
While this method is the most common way to define constant text, it is the most difficult to translate.
Avoid using this method whenever coding an application, even if the application is not planned for
translation.

If you are coding an application that will not be translated, you might want to use this technique for:

Display files
Constants such as titles, instruction lines, option definitions, headings, field prompts, command key
descriptions

IBM i globalization 65

Default values on input fields (DFT keyword)
Error messages (ERRMSG/SFLMSG keyword)

Printer files
Constants such as titles, headings, total line descriptions

User commands
Prompt descriptions on the command definition statements.

For device files, specify the text as an unnamed field, indicating the starting line and column and the
constant text itself.

For example:

A line pos 'Text

A similar rule applies to user-created commands. Define the text directly on the keywords of your
command source statements.

For example:
CMD PROMPT (' Command description ")

When defining the text directly on the keywords, standardize the sizes of the different elements in a large
literal, rather than specifying many small single ones as single words. This makes the source code more
readable and more flexible for translation.

Consider that the space needed for explanation text can vary from language to language. To have enough
room after translation, remember to reserve space initially. The source members need to be translated
and the objects need to be created for different languages as shown in the following figure:

Ohjed Ohjed
Digplay file Display file
Frirter file Frinter file
Command Command

Program 4— Language A M—— Language A

Source and object

are not language

dependent | Objed e | Object
Display file Display file
P rinter file Prirter file
Cammand Carmimand
Language B Language B

Each national language version has one set of programs, but can have multiple sets of source members
and data objects. When the application is run, you can choose the appropriate textual data of the
language version that you want to work with. This can be done if you set up the system part of the library
list with the specific library that contains both the textual data and the program library.

66 IBM i: Programing IBM i globalization

Text stored in database files
Text can be stored externally from the source code in a database file, retrieved by the application
program, and then moved to the display or print format at run time.

Instead of coding constants on the DDS, you can specify output fields that can be filled by the program.
Consider specifying the appropriate length for different languages on the output fields and making that
available to the translator.

This technique can be used for:
Display files

All constant text
Default values on input fields
Error messages

Printer files
All constant text

Programs
All constants like compare values, scan characters, and tables.

This technique allows you to create any number of database files in different languages and different
libraries, with only one DDS source code and display file object. During run time, you assign the
corresponding database file by setting the library list accordingly.

Note: This technique requires the application to perform all editing based on the cultural convention.

User interface manager
The IBM i user interface manager (UIM) is a part of the system that allows you to define panels and
dialogs for your application.

UIM provides the following support:

- Atag-based language for describing data and panels.
« A compiler to create panel group objects and menu objects by using the tag-based language.

« A set of application programming interfaces (APIs) to use as panel group objects to display and print
panels.

The UIM also provides the following functions:

- Dialog commands for screen management

« Contextual online help

» Pop-up windows

- Menu bars

« Command line for entering CL commands

« Tailoring of the contents of a panel for different users or environments
« Fast paths through menu networks

» Double-byte character set (DBCS) languages

- Bidirectional (BIDI) language support

UIM supports common panel types, such as menus, information displays, list displays, and entry displays.
When all display types and interfaces are consistent, users adapt more quickly to new applications.

UIM applications can coexist with and share the requester display device with other open display files
that are not under UIM control. However, a UIM panel and a DDS-defined record format cannot appear on
the display at the same time. When a UIM panel either replaces a DDS panel or vice versa, the system
suspends operations of one file or panel group and restores the display as needed.

IBM i globalization 67

Online help design

You can define online help by using panel groups or records. By using panel groups, you can define online
help as objects into which user interface manager (UIM) source is entered. By using records, you can
define online help as a set of DDS keywords contained in a source file member.

If the user interface manager is used for defining online help, the panel groups are defined either in place
of DDS or in the display file. In either case, the encoding of the data to be displayed must be indicated by
the CHRID value in the display file or the panel group. A panel group is an object that can be used to
contain help information. The operating system uses *PNLGRP as an identifier for the object type that
contains a collection of help information.

Guidelines: Online help

When defining online help information to be translated into national language versions, keep in mind the
following considerations about panel groups and records:

« Records do not have word processing available (functions such as spell check and word wrap though
system APIs exist to provide spell checking).

« Various IBM i messages and panel groups determine the national language conventions and
translations. Not all countries have a national language version available for the operating system. Not
all national language versions are completely translated, with many parts still in English. The messages
and panel groups that are not translated do not reflect the national language cultural conventions. The
command design information includes an example of a translated panel in which part of the panel has
remained in English because not all parts of the NLV were translated.

« Allow for translation expansion.

Guidelines: DDS online help design

When multiple languages are installed on one system, the help documents are stored in different folders.
The DDS source file needs to be copied, changed, and compiled again for each language on the system.

Related concepts

Command design
The IBM i operating system allows users to define and create their own commands.

Index search tags
Help panel groups can contain index search modules. Index search supplements the help information
that is provided for each display.

To use the information in help panel groups for the index search function, you need to add the appropriate
UIM tags to your help modules.

Users can access the index search function from any display help that specifies that the index search
function is available.

The ISCH tag

The ISCH tag defines the title of a topic in the index and specifies the root words that serve as the link
between the topic and the search words (synonyms) entered by the user. The tag appears immediately
after the HELP tag to which it refers. There can only be one ISCH tag within a single help module.

For each ISCH tag, there can be several lines of root words, provided that the total number of root words
is no more than 50. If more than one line of root words is used, ROOTS= must be repeated at the
beginning of the second line and subsequent lines.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 588.

:PNLGRP.

:HELP name=entryl.

:ISCH ROOTS='rootl root2 root3 root4 rooth5'
ROOTS='rooté6 root7 root8 root9 rootld'
ROOTS='rootll rootl2 rootl3 ... root50'.

68 IBM i: Programing IBM i globalization

Title of First Topic

This is the first index search module in this panel group.
:EHELP.
:EPNLGRP.

The root words on all lines must be enclosed in apostrophes and a period must be placed only at the end
of the last line of root words. The topic title follows the period on the ISCH tag and can be placed on the
line immediately following the period.

The ISCHSYN tag

The ISCHSYN tag defines the words (synonyms) that, if entered by a user, match a specific root word. If a
word that is entered by a user is a synonym for a root word, then a match is found for each topic whose
ISCH tag contains that root.

If you want a word that is used as a root word to be used as a synonym as well, you must include the word
as a synonym on the ISCHSYN tag. For example:

:ISCHSYN ROOT='ocean'.ocean water sea

The synonyms for the ISCHSYN tag must be entered on one line, and at least one ISCHSYN tag must exist
for each root word. If more than one line is needed, more ISCHSYN tags can be entered for the same root
word.

UIM does not differentiate between synonyms entered in uppercase, lowercase, or mixed case. For this
reason, it is not necessary to repeat synonyms to cover all the different cases.

You can use alphabetic or numeric characters for synonyms; however, the following characters (including
their hexadecimal equivalents) are not allowed to be used as a synonym or part of a synonym:

« . (period)

((left parenthesis)

) (right parenthesis)

; (semicolon)
e, (comma)

? (question mark)

: (colon)

The ISCHSYN tags can be placed anywhere in the panel group, but to make maintenance and translation
easier, place them all in one area (such as at the beginning of your panel group or in a panel group object
that contains only ISCHSYN tags).

Example: ISCH and ISCHSYN usage
The following example shows some ISCHSYN tags and the ISCH tags that use them:

:PNLGRP.

:ISCHSYN ROOT='ocean'.ocean water sea

:ISCHSYN ROOT='lake'.lake water pond

:ISCHSYN ROOT='definition'.definition define description what
:ISCHSYN ROOT='definition'.summary concept information explanation
:HELP name='defocean'.

:ISCH ROOTS='definition ocean'.

Definition of ocean

An ocean is one of the five large bodies of salt water, which
together cover nearly three-fourths of the world.

:EHELP.

:HELP name='deflake'.

:ISCH ROOTS='definition lake'.

Definition of lake

A lake is a body of standing water that is enclosed by land.

IBM i globalization 69

:EHELP.
:EPNLGRP.

Index search and double-byte character set

The index search function can be used with either double-byte character set (DBCS) or single-byte
character set (SBCS) data. When DBCS data is used, the device from which it is requested must be
capable of entering and presenting the data in DBCS.

The object that contains the index search data is marked as containing DBCS data. The system
determines if the device is capable of handling the DBCS data.

When the data is being prepared for DBCS format and the index search function is used with that data,
consider the following information:

« When the index search data is prepared for a DBCS system, the synonyms entered on the ISCHSYN tag
must be in double-byte character mode. That is, the first byte after the tag must be a shift-out character
and the last byte of the data must be a shift-in character. The system does not convert data on the
ISCHSYN tag to double-byte character data.

- Words must be separated by a single-byte blank. From 1 to 19 double-byte characters can be combined
to form a word. Intervening shift-out and shift-in characters are allowed, but are ignored by index
search.

« The words that are used to link the ISCH and ISCHSYN tags (the ROOTS attribute of the ISCH tag and
the ROOT attribute of ISCHSYN tag) must be identical and should not be entered in DBCS.

« Search words can be entered in either single-byte mode or double-byte mode. Single-byte blanks can
be entered to separate the words.

When the search words are shown on the screen, the double-byte character representation (the character
that was actually used in the search) is shown. Special processing takes place so that index search is not
case sensitive. The search words from the ISCHSYN tag are converted to uppercase using a conversion
table for the code page that is specified with the TXTCHRID attribute of the PNLGRP tag. If the search
words are DBCS, they are not converted to uppercase. Shift-out and shift-in characters are treated as
blanks during parsing; leading and trailing blanks are removed. All SBCS words are converted to
uppercase using a conversion table for the code page of the device description.

Program message design
A message can be predefined orimmediate.

Consider the following information when you design and code:

- Do not use immediate messages. They are created by the sender or program at the time they are sent
and are not stored in a message file. Therefore, they cannot be translated by the translator.

« Use predefined message descriptions that can both:
— Exist outside of the program that uses them.
— Be stored in a message file.

Do not specify the maximum size for a message file. When the message file becomes full, you cannot
change the size of the message file. You need to create another message file and add the message
description again.

Use the Create Message File (CRTMSGF) command to create a message file to hold the predefined
message description. The contents of the predefined message description can be put into a message
file by the Add Message Description (ADDMSGD) command.

« Use substitution variables with care. Different languages have different orders for substitution variables.
For example, in the English message:

File &1 in Library &2 not found.

&1; and &2; are the substitution variables. Those substitution variables can appear in different positions
for different languages.

70 IBMi: Programing IBM i globalization

- Make your design and coding able to understand a reply code for different languages. For example,

English Y
Danish J

Yes
Ja (means Yes)

The following figure shows the creation of different NLV messages from message files.

- LIse display file
D'E?Ela? to access message
inmessage file
e essage file
iLanguage 1)
ABCO001. ..
Call display file ABCOOOZ. .
Frogram to >
output message | CLprograms use
to display SHODPGMMSG
ar SNDUSEMSG to access
message in message file
Display message REAGEE0-0

A program can directly access the message file for program messages, or it can indirectly access the
message file through display files for program messages.

Related concepts

CCSID support for messages

You can use CCSID support for handling messages and message catalogs on the IBM i operating system
by using commands and application programming interfaces. You can send messages tagged with one
CCSID to users with a different CCSID.

Related reference

Create Message File (CRTMSGF) command

Add Message Description (ADDMSGD) command
Control language

Menu design
You can define your own menus on the system. The types of user-defined menus include display file
menus, UIM (reference) menus, and program menus.

To use an application system, users need to deal with a lot of menus and displays. When an application is
being translated from one language to another, a large portion of the literal text to be translated comes
from menus.

Display file menu

A display file menu uses a display defined by DDS to present a menu format. The menu functions are
controlled by a menu object that contains the commands used to run each of the menu options. The
following figure shows how display file menus are created for different national language versions.

IBM i globalization 71

Display file
iLanguage 3)

Display file
(Language 2)
Display file t%arLlaryleésage
(Language 1) option selection Mes;age ﬂl?
: Holding option
Functions
Llse CRTMEML to
create menu object
M enu
iLanguage 3)
Menu
(Language 2)
Menu
(Language 1)
RE&AGZS10-0

Program menu

A program menu uses programs to present the menu format (defined by DDS) and to provide functions
necessary to run the menu options. The following figure shows how program menus are created in
different national language versions.

72 IBMi: Programing IBM i globalization

Display file
iLanguage 3)

Display file
Frogram tq _ _ (Language 23
handle aption | Call display file
selection for for menu output Display file
Mmenu > (Language 1)
lse programto create menus
M enu
iLanguage 3)
Menu
(Language 2)
Menu
(Language 1)
FEAGSS13-0

Menu translation
To allow for easy translation into national language versions of your menus:

- Keep the literal text of menus external by holding the constant text as externally defined message
descriptions in a message file and by incorporating the text into a menu file when the program is run.

- Be aware of the expansion space needed when a menu is translated from one language to the next.
Leave space for translation expansion when you design your menus.

- Be aware of cultural conventions when date, time, or edited fields are displayed on the menu.

« Use numerals 0 through 9, instead of uppercase and lowercase English letters (A through 2), as the
option fields for selection. Numeric characters are more standard among different languages.

Command design
The IBM i operating system allows users to define and create their own commands.

To create a command, you must first define the command through command definition statements. Then
use the Create Command (CRTCMD) command to process the command definition statements to create
the command definition object.

When you define and create a command, take into consideration the following information:

« Use help panel groups to provide online help information for the command.

- Use message identifiers instead of literal text for the PROMPT keyword on the CL CMD, PARM, ELEM,
and QUAL command definition statements.

- Translate the text that is displayed to the right of the prompt line of each parameter on the prompt
display. This text is specified by the CHOICE parameter of the PARM command definition statements, so
the appearance of the command prompt display maintains its coherency.

IBM i globalization 73

« Compile command-prompt text into separate command definition object versions for each national
language. Use the Change System Library List (CHGSYSLIBL) command before creating the command to
get the national language version prompt text from the correct national language version library.

 The function keys of the command prompt display are provided by the operating system. If the NLV of
the operating system is different from the NLV of the command, two different languages appear on the
command prompt display. For example, when translating an English display into German, both the
English and German appear on the command prompt display.

The Control language information includes additional information about creating and defining
commands.

Related concepts

Online help design

You can define online help by using panel groups or records. By using panel groups, you can define online
help as objects into which user interface manager (UIM) source is entered. By using records, you can
define online help as a set of DDS keywords contained in a source file member.

User interfaces

A user interface is the part of a software product that your customer actually sees.
Related reference

Create Command (CRTCMD) command

Change System Library List (CHGSYSLIBL) command

Control language

Cultural-dependent design

Different countries might have different standards, which you must consider when developing an NLS-
enabled application. This culturally sensitive information must be placed outside the program the same
way as the textual data is handled.

Many languages have characters (such as common-usage vowels essential to the correct spelling of a
word) outside of the A-Z alphabet that must be considered for collating purposes.

Through system values, the system supplies linguistic support, cultural support, and the ordering of data.

Related concepts

Default system values for national language versions
Jobs and functions on the IBM i operating system use system values as default values.

Field editing specifications
For the edit specification of your numeric, date, and time fields, you must consider the different cultural
conventions of the users.

Database file attributes
Database attributes, such as coded character set identifier (CCSID), sort sequence (SRTSEQ), and
language identifier (LANGID), are cultural dependent.

The CCSID attribute applies only to physical files. The SRTSEQ and LANGID attributes can be used with
both physical files and logical files. A logical file can have a CCSID value only when it has taken the CCSID
from the physical file. The database attributes are stored with the data. They are static in the sense that
they cannot be dynamically altered by the process of accessing the data.

Related concepts

Coded character set identifier (QCCSID) system value
The coded character set identifier (QCCSID) system value specifies the CCSID for the IBM i operating
system.

Sort sequence (QSRTSEQ) system value
The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

Language identifier (QLANGID) system value

74 IBMi: Programing IBM i globalization

The language identifier (QLANGID) system value specifies the default language identifier for the system.

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

« Coded character set identifier (CCSID)
« Sort sequence (SRTSEQ)

« Language identifier (LANGID)

« Country or region identifier (CNTRYID)
« Date format (DATFMT)

« Date separator (DATSEP)

« Decimal format (DECFMT)

« Time separator (TIMSEP)

The default values for CCSID, SRTSEQ, LANGID, and CNTRYID attributes are set from the user profile
when the job starts. The values for CCSID, DATFMT, DATSEP, DECFMT, SRTSEQ, and TIMESEP can be set
from the LOCALE and SETJOBATR attributes associated with the user profile. When you use the Change
Job (CHGJOB) command, you can override the values specified for any of the listed job attributes.

Related concepts

Coded character set identifier (QCCSID) system value
The coded character set identifier (QCCSID) system value specifies the CCSID for the IBM i operating
system.

Sort sequence (QSRTSEQ) system value
The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

Country or region identifier (QCNTRYID) system value
The country or region identifier (QCNTRYID) system value indicates the default country or region identifier
for the system.

Date format (QDATFMT) system value

The date format (QDATFMT) system value is used for the default value for the DATFMT job attribute. This
system value also determines the format in which a date can be specified on the initial program load (IPL)
options prompt.

Date separator (QDATSEP) system value

The date separator (QDATSEP) system value is used as the date separator for the default value of the
DATSEP job attribute. It is also used as the date separator you can specify on the initial program load (IPL)
options prompt.

Decimal format (QDECFMT) system value

The decimal format (QDECFMT) system value determines the type of zero suppression and decimal point
character used by DDS edit codes 1 through 4 and A through M. It also determines the decimal point
character for decimal input fields in the interface.

Time separator (QTIMSEP) system value
The time separator (QTIMSEP) system value specifies the character separator for time.

Related reference
Change Job (CHGJOB) command

IBM i globalization 75

Program attributes
The SRTSEQ and LANGID parameters can be specified as program attributes belonging to a *PGM object

type.

The LANGID parameter is used together with the SRTSEQ parameter only when the SRTSEQ value is set to
*LANGIDUNQ or *LANGIDSHR. Otherwise, the LANGID parameter is not used.

If a program explicitly refers to a sort sequence or a language identifier, then those attributes stored in the
program object take effect. The *JOBRUN value for these parameters is used to refer to the attributes of
the job running the program. *JOBRUN makes it possible to use a single set of programs processing data
according to different sort sequences. The *JOBRUN value affects only the processing of data, however,
not the retrieval sequence of data. The retrieval sequence is determined by the database attributes. To
retrieve data in a sort sequence different than what is defined in the database, use logical files that are
built separately.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

The system message contains these values:

« Code page and character set
« Currency symbol

 Date format

- Date separator

« Decimal format

» Leap year adjustment

« Coded character set identifier
« Time separator

- Language identifier

« Country or region identifier

Cultural-dependent fields in the panel or display should not contain hard-coded values. These fields
should be defined with the maximum length permitted for the field on the display.

If your application is to support users in languages other than the primary language, the callable routines
should use the CPX8416 message values. A callable routine uses the cultural values for the primary
language to determine the contents of the field (for example, date format) and places these values on the
display. NLS system values maintained in message CPX8416 determine the format of the cultural values
appearing in the cultural-dependent fields.

Your application can use the details from the system message.

The following table shows the layout for message CPX8416. This example shows the values in the text
column using the English uppercase and lowercase NLV (feature 2924).

Field Start Length Justify
Description QCHRID 0001 10 L
value 697 37 0012 21 L
Description QCURSYM 0034 10 L
value $ 0045 01 L
Description ODATFMT 0047 10 L
value MDY 0058 03 L

76 IBM i: Programing IBM i globalization

Field Start Length Justify
Description QDATSEP 0062 10 L
value / 0073 01 L
Description QDECFMT 0075 10 L
value 0086 01 L
Description QLEAPADJ 0088 10 L
value 0 0099 01 L
Description QCCSID 0101 10 L
value 37 0112 05 L
Description QTIMSEP 0118 10 L
value : 0129 01 L
Description QLANGID 0131 10 L
value ENU 0142 03 L
Description QCNTRYID 0146 10 L
value us 0157 02 L
Description QIGCCDEFNT 0160 10 L
value *NONE 0171 21 L

Related concepts

Configuring secondary languages
A secondary language consists of textual data for all licensed programs supported for a national language
version.

Currency symbol (QCURSYM) system value
The currency symbol (QCURSYM) system value verifies the currency symbols specified in the DDS
keywords Edit Word (EDTWRD) and Edit Code (EDTCDE).

Date format (QDATFMT) system value

The date format (QDATFMT) system value is used for the default value for the DATFMT job attribute. This
system value also determines the format in which a date can be specified on the initial program load (IPL)
options prompt.

Date separator (QDATSEP) system value

The date separator (QDATSEP) system value is used as the date separator for the default value of the
DATSEP job attribute. It is also used as the date separator you can specify on the initial program load (IPL)
options prompt.

Decimal format (QDECFMT) system value

The decimal format (QDECFMT) system value determines the type of zero suppression and decimal point
character used by DDS edit codes 1 through 4 and A through M. It also determines the decimal point
character for decimal input fields in the interface.

Leap year adjustment (QLEAPADJ) system value
The Leap year adjustment (QLEAPADJ) system value adjusts the system algorithms for the leap year in
different calendar systems.

Coded character set identifier (QCCSID) system value

IBM i globalization 77

The coded character set identifier (QCCSID) system value specifies the CCSID for the IBM i operating
system.

Time separator (QTIMSEP) system value
The time separator (QTIMSEP) system value specifies the character separator for time.

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

Country or region identifier (QCNTRYID) system value
The country or region identifier (QCNTRYID) system value indicates the default country or region identifier
for the system.

English Uppercase and Lowercase (Feature 2924)
The table shows the default system values for the English Uppercase and Lowercase (Feature 2924)
national language version.

Date formats
There is no worldwide standard for the presentation of dates. Therefore, the date format should always be
stored externally as part of the textual data.

The valid date formats on the operating system are:
« *MDY (Month, day, year)

*DMY (Day, month, year)

« *YMD (Year, Month, Day)

« *JUL (yy/ddd)

« *ISO (YYYY-MM-DD)

« *USA (MM/DD/YYYY)

« *EUR (DD.MM.YYYY)

« *JIS (YYYY-MM-DD)

Note: Some operating system functions do not support all of the previous date formats.

In database files, dates can be stored as:

« Normal numeric data fields
« SAA date data-types

When you store dates as numeric data, your application needs to specify the format in which it is stored
and presented.

When you store dates as data type DATE (L), you can specify the format with the DDS keyword DATFMT on
the database file. The date is shown in this predefined format as character data, including the date
separators.

If date sorting and other processing is needed, the date should be stored in *ISO format (YYYY-MM-DD)
and converted to another format during the input and output operations. Write a high-level language
routine to convert dates.

Related concepts

Set job attributes (QSETJOBATR) system value
The set job attributes (QSETIOBATR) system value sets job attributes at job startup time.

Related information
DATFMT (Date Format) keyword for physical and logical files

Date separators
The date separator for presentation should always be stored externally as part of the textual data.

The following list shows valid date separators:
« / (slash)

78 IBM i: Programing IBM i globalization

« - (dash)

« . (period)
., (comma)
« (blank)

When you use decimal fields for dates, not only must your application specify the format, but it also must
handle the date separators during the input operation and presentation.

When you use date-type fields, the date separators are always included in the date. To change the date
separator, you can write a high-level language routine to convert dates.

Related concepts

Set job attributes (QSETJOBATR) system value
The set job attributes (QSETJOBATR) system value sets job attributes at job startup time.

Edit date presentation
You need to handle the presentation of dates in display and printer files differently, depending on how
they are stored.

« As a normal decimal data field

Your application program has responsibility for the way the date is entered, stored, and presented. The
application must check to see that the date is entered in the right format, remove any date separators,
convert the date to another format when necessary, and edit it on the display file or printer file.

The DDS keyword DATE is used as an output-only field. DATE uses the job attributes DATE, DATFMT, and
DATSEP. You can edit DATE using the edit code keyword, EDTCDE, for 6- and 8-digit date fields.

Editing with EDTCDE includes the following changes to the appearance of displayed fields, depending on
which edit code is specified:

— Leading zeros are suppressed.
— Zero values can be displayed as zero or blanks.
— The field can be further edited using a user-defined edit code.

For all other types of fields using the EDTCDE Y keyword, the program has to specify the format, and the
system uses the date separator of the job that created the device file. The date separator is integrated in
the object, and you are not able to change it dynamically at run time.

« As an SAA data type DATE (L) field
The DDS date format (DATFMT) keyword allows you to specify different date formats, including default
date separators, at the database field level. For the *MDY, *DMY, *YMD, and *JUL parameters, the
default date separator can be changed with the date separator (DATSEP) keyword. The *ISO, *USA,
*EUR, and *JIS values have a fixed separator, and the DATSEP keyword is not allowed with these values.

The DATFMT and DATSEP keywords allow you to specify the format and editing characters for storing
date fields. The date is shown as a character string, including the separators.

Any format conversion between the date input and the format the database asks for can be done by:

— Application program routines
— Field mapping through logical files that define different date formats and separators

For example, you can provide a date conversion that is dependent on the actual job attributes by using
the following CL program:

PGM PARM (&fromfmt &fromfld &tofld);
DCL VAR (&fromfmt); TYPE(*CHAR) LEN(4)
DCL VAR (&fromfld); TYPE(*CHAR) LEN(10)
DCL VAR (&tofld); TYPE(*CHAR) LEN(10)

CVTDAT DATE (&fromfld); TOVAR(&tofld);
FROMFMT (&fromfmt); TOFMT(xJOB) TOSEP(%xJOB)
ENDPGM

IBM i globalization 79

Your application program has to pass the format of the date you want to convert and the date itself to the
CL program. The CL program assumes that the job attributes represent the way the user expects to see
date fields edited. It retrieves these values and does the conversion, conforming to these values, and
passes back the date in that way. The *ISO, *USA, *EUR, and *JIS values have a fixed separator that
cannot be changed. If the TOFMT parameter contains one of these values, the TOSEP value is ignored.

Related information

DATE (Date) keyword for display files

DATFMT (Date Format) keyword for display files
DATSEP (Date Separator) keyword for display files

Time formats
The IBM i operating system supports several time formats.

* *HMS (hh:mm:ss)

*ISO (hh.mm.ss)

« *USA (hh:mm AM or hh:mm PM)
*EUR (hh.mm.ss)

*JIS (hh:mm:ss)

The system value QTIME has one format (hhmmess). The time separator value is determined by the
QTIMSEP system value.

The time format for presentation should always be stored externally as part of the textual data.
In database files, times can be stored as:

« Normal numeric data fields

« SAA time data-types

When you store the time as numeric data, your application needs to specify the format in which it is
stored and presented.

When you store the time as data type TIME (T), you can specify the format with the DDS keyword TIMFMT
on the database file. The time is sorted in this predefined format as character data, including the time
separators. To convert time fields from one format to another, write a CL program or high-level language
routine to do the conversion.

Time separators
The IBM i operating system allows several valid time separators.

: (colon)

. (period)
(blank)
« , (comma)

The time separator for presentation should always be stored externally as part of the textual data.

When you use decimal-data fields for time fields, your application needs to specify the format and time
separators on the input and presentation operations.

When you use time-type fields, the time separators are always included in the time field. To change the
time separators, write a CL program or high-level language routine to do the conversion.

Related concepts
Set job attributes (QSETJOBATR) system value

80 IBMi: Programing IBM i globalization

The set job attributes (QSETIOBATR) system value sets job attributes at job startup time.

Edit time presentation
You need to handle the presentation of times in display files and printer files differently, depending on the
way they are stored.

« As a decimal data field

Your application program has responsibility for the way the value is entered, stored, and presented. The
program must check for the correct format, eliminate the time separators, convert the time to another
format when necessary, and edit it on the display file or printer file.

The editing can be done by specifying the edit word (EDTWRD) for the field. The TIME keyword is an
output-only field. Both the edit word and TIME keyword use the information available at creation time.
The time separators are integrated in the device file object.

Both ways force you to have different copies of the source and objects for different editing
requirements.

« As an SAA data type TIME (T) field

The operating system allows you to specify different time formats and time separators on the database
file level. The TIME keywords allow you to specify the format and editing characters for storing time
fields. The time type field is shown as a character string that includes the separators.

As an SAA data type, you can specify such time fields as normal character fields on the display file or
printer file. On an input operation, your program has to check entered values for the correct format and
separators and move them over to the database field. On an output operation, you just move the
character string from the database file field to the device file field, including the separators. Any format
conversion between the input and output format and the format that the database asks for can be done
by either of the following two ways:

— Application program routines
— Field mapping through logical files that define different time format and separators

Decimal formats

You can change the decimal format with the QDECFMT system value to reflect the way decimals are
presented for your country or location.

Related concepts

Decimal format (QDECFMT) system value

The decimal format (QDECFMT) system value determines the type of zero suppression and decimal point
character used by DDS edit codes 1 through 4 and A through M. It also determines the decimal point
character for decimal input fields in the interface.

Sort sequences
The IBM i operating system supports sort sequence. By using one of the listed options, you can order your
data according to cultural-dependent requirements for specific applications.

« Hexadecimal sorting (sort sequence tables not used). This is the default.

« A user-supplied or system-supplied shared-weight sort sequence table or unique-weight sort sequence
table, determined by the SRTSEQ parameter.

The following example shows how to use one DDS source file to create database files with different sort
sequences. The following steps can be performed:

CRTxF FILE (*CURLIB/NAME)
SRTSEQ(*xJOB)
LANGID(*JOB)

You can then change the job attributes to create files with different sort sequences.

The CL program and high-level language programs can be created by specifying either early binding or
late binding of a sort sequence. With early binding of a sort sequence, the sort sequence table to be used

IBM i globalization 81

is determined at compile time. With late binding of a sort sequence, the sort sequence table to be used is
determined at run time.

Late binding makes it possible to use one set of programs in different national language environments.

The following figure illustrates using different sort sequences for different jobs with one set of physical
files and program code. The sort sequence table defined for the job and used by the program should be
the same as (or compatible with) the sort sequence table assigned to the logical files accessed through
the library list.

Job for LS. English user Job for German user
SETSEQ *LANGIDSHE) SRETSEQ*LAMNGIDSHRE)
LAMGID (EML LAMGID (DELN

Frogram code created with

SETSEQIJOBRLUMN) and LANGID (*JOBRLIM

Logical filesfor LS. English user Logical files for German user
SRTSEQ *LANGIDSHRE]) SRTSEQ*LANGIDSHR)
LAMGID (EMLY LAMGID (DEL)

Fhysical files
REAGES11-0

Designing for running with different sort sequences:
If your program is expected to run with different sort sequences, consider the following conditions:

» Presenting the data in different order.
 Processing different records.

Specifying selection criteria such as less than or greater than can result in selecting different records.
The selection criteria equal to can result in selecting a different number of records when the shared-
weight sort sequence table is used.

 Processing of a conditional branch may be different.

Note: System lists (such as the output from the WRKOBJ command) are not affected by sort sequence
support.

You can use the DDS file-level keyword alternate sequence (ALTSEQ) to specify the sequencing table and
the library in which it is contained. The system-supplied sort sequence tables with shared and unique
weight can be used for defining the alternative collating sequence.

The alternative collating sequence table is inserted into the file at compile time and is not needed at run
time. You can have different files containing different collating sequences using one set of DDS.

82 IBMi: Programing IBM i globalization

Note: The alternative collating sequence defined in your database files must also be defined in your
application programs; otherwise, you might get unexpected results.

The DDS ALTSEQ keyword provides limited support for sequencing. It has no effect on select/omit logic.
The ALTSEQ keyword can only be used with the SRTSEQ(*SRC) parameter on the Create Physical File
(CRTPF) and Create Logical File (CRTLF) commands.

Related concepts

Set job attributes (QSETJOBATR) system value
The set job attributes (QSETJOBATR) system value sets job attributes at job startup time.

ALTSEQ (Alternate Collating Sequence) keyword

Character sorting

Traditionally, information is displayed in sorted order to enable users to easily find the items they are
looking for. However, users of different languages might have very different expectations of what a sorted
list should look like.

Related reference
Create Physical File (CRTPF) command
Create Logical File (CRTLF) command

Display file design
Application panels typically consist of major elements, such as constant text strings, input and output
fields, and cursor positioning specifications.

Note: You can handle these either as a program-described or an externally described file using DDS. The
information found in this topic is based on the externally described technique using DDS.

Constant text strings
When designing your panels, keep in mind that different languages have different space needs for the
same expression.

Do not place many fields on the same line, except for a list panel that has column headings instead of field
prompts. Do not overload the panels with information. Choose one of the techniques described under
Textual data code design to make your panels.

Related concepts

Textual data code design

You can use different techniques to specify, store, and use constant text. You can use each technique for
specific types of textual data components. Each technique has its advantages and disadvantages.

Input and output fields
You must define fields according to the needs of the different languages, countries, cultures, currencies,
and laws that you want to address with your application.

For example, assume that you want to store the British pound and the Japanese yen in the same field as
the United States dollar. You must set the field size to accommodate the higher number of digits needed
for the British pound.

Field editing specifications
For the edit specification of your numeric, date, and time fields, you must consider the different cultural
conventions of the users.

Do not code the format and editing instructions in your application program in a way that requires
program modification when another convention is needed.

Related concepts
Cultural-dependent design

IBM i globalization 83

Different countries might have different standards, which you must consider when developing an NLS-
enabled application. This culturally sensitive information must be placed outside the program the same
way as the textual data is handled.

Cursor positioning specifications
Do not specify cursor positioning values to fixed locations on the screen, because different languages
have different space requirements.

When you work with different display files, you can adjust them with the translation process. When you
need to work with field-independent cursor locations, store the positional information outside of your
code and retrieve the variable values for the keyword within your program.

For example:
A record-name CSRLOC(field-name-1 field-name-2)

Cursor positioning on the field level is more useful in an NLS environment. For normal records, this is done
by specifying the DSPATR(PC) keyword on a specific field. For subfiles, the cursor can be positioned using
SFLRCDNBR(CURSOR) keyword on a special positioning field. In addition, the subfile record number must
be stored in that field before the format is written.

For example:
A field-name 4S OB 1line pos SFLRCDNBR(CURSOR)

Note: The name of the record and field where the cursor is positioned, the subfile relative record number,
and subfile fold/truncate indicator can be returned to your application program. This function is provided
by hidden fields on the DDS keywords RTNCSRLOC, SFLCSRRRN, and SFLMODE.

Related information

RTNCSRLOC (Return Cursor Location) keyword for display files

SFLCSRRRN (Subfile Cursor Relative Record Number) keyword for display files
SFLMODE (Subfile Mode) keyword for display files

Input field default values
You can use these methods to put default values into the input fields of your display. Users can override
the default values with their own data.

 Getting information from program

Never hard code the values as a literal if they are language or cultural-dependent values. Use values you
can get from the system-provided information, such as system or job date, or get the values from a data
object, such as a database file or data area from outside of the program.

« Using DDS keywords DFT (Default) or DFTVAL (Default Value)

Specify the default input value directly on the DDS after the keyword. The DDS keyword DFT is for input-
only (I) fields. For output-only (O) or input-output (B) fields, use the keyword DFTVAL.

For example:

A field-name length type I line pos DFT('default ")
or
A field-name length type 0/B line pos DFTVAL('default value ')

« Using DDS keyword MSGID (Message Identification)

Using the Message Identification (MSGID) keyword allows you to retrieve the content of a specified
message description when the program is run and to put that value as a default in your display file field.
The field must be input-output capable (B) for you to use this technique.

For example:

A field-name length type B line pos MSGID(message-id [xlibl/message-file)

84 IBMi: Programing IBM i globalization

This allows you to use different message files for each national language version by setting the library
list accordingly when the program is run.

Related information

DFT (Default) keyword for display files

DFTVAL (Default Value) keyword for display files

MSGID (Message Identifier) keyword for display files

Field validation specifications
Some DDS keywords provide validation checks on input-capable fields on your display.

« RANGE (Range checking)

« VALUES (Values checking)

« CMP and COMP (Comparison)

« CHECK (Check validity, keyboard control and cursor control)

Using the DDS keywords with any hard-coded values that are language, country, or cultural-dependent
makes duplication and modification of the DDS and the application program necessary.

Example: Validation checks

An example of field validation checks on input-capable fields on your display using the DDS keywords
VALUES, COMP, and CHECK follows:

A field-name length type usage line pos VALUES('Y' 'N')
or

A field-name length type usage line pos COMP(EQ 'US$')

or

A field-name length type usage line pos CHECK(M10 or M11)
(Modulus checking)

or

A field-name length type usage line pos CHECK(RL)

(Right-to-left support)

Validation checks are provided according to the sort sequence defined for the display file at creation time.
You can use the same DDS source file to create objects for different languages. For example, the following
command creates a display object tagged with the Latin 1 sort sequence table:

CRTDSPF FILE(name) SRTSEQ(*LANGIDSHR) LANGID(DEU)
The following specification:
A field-name length type usage line pos COMP(EQ 'a')
accepts all lowercase, uppercase, and accented characters, as defined by the shared-weight in the Latin 1

sort sequence

In addition, note that all the checks specified using those DDS keywords are done by the data
management function of the operating system. Any error message caused by wrong input or handling by
the user appears in the language of the operating system. This can be the primary language or a
secondary language, depending how the library list of the job is set up.

You can override this when you use the additional DDS keyword CHKMSGID (Check Message Identifier).
This keyword allows you to specify your own customized messages and message file to be used by the
checking routines of the operating system.

For example:

A field-name length type usage RANGE(1 999)

A CHKMSGID(USR1234 [%1ibl/]APPMSGF [&MSGFLD1])
A MSGFLD1 length type P TEXT('Message data field')

and

ADDMSGD MSGID(USR1234) MSGF (APPTXDENU/APPMSGF)

IBM i globalization 85

MSG('Value &1; is out of range 1 to 999')
and

ADDMSGD MSGID(USR1234) MSGF (APPTXDDEU/APPMSGF)

MSG('Wert &1; ist ausserhalb des g ﬁltigen Bereichs 1 bis 999')

To use different message files of different library names, do not specify a fixed library name. You can use a
message file for different languages by setting the library list when you run the program.

Related information

RANGE (Range) keyword for display files

VALUES (Values) keyword for display files

CMP (Comparison) keyword for display files

CHECK (Check) keyword for display files

CHKMSGID (Check Message Identifier) keyword for display files

Error messages
You can provide error messages in a display file by specifying text as constant, or by using predefined
messages.

« Specifying text as constant on ERRMSG or SFLMSG keywords

Specify the text directly as a constant on the DDS keyword. When you want to have more than one
language, you must duplicate the DDS source code and translate constants within the DDS
specifications. You can then create a separate display file object for each language.

 Using predefined messages on ERRMSGID or SFLMSGID keyword
When using predefined messages instead of constants, you need to have multiple display files.

Instead of using different display files, exchange only the used message file by setting the library
according to the language that you want to use.

For example:

A field-name length type usage EDTCDE(x)

A 61 ERRMSGID (USR3456 [x1ibl/]JAPPMSGF [&MSGFLD2])
A MSGFLD2 length type P TEXT('Message data field')

and

ADDMSGD MSGID(USR3456) MSGF (APPTXDENU/APPMSGF)
MSG('Delivery date &1; is earlier than production end date &2')
and

ADDMSGD MSGID(USR3456) MSGF (APPTXDDEU/APPMSGF)
MSG('Lieferdatum &1; ist . . .')

Related information
ERRMSG (Error Message) and ERRMSGID (Error Message Identifier) keywords for display files
SFLMSG (Subfile Message) and SFLMSGID (Subfile Message Identifier) keywords for display files

Printer file design and translation

Program-described printer files and externally described printer files are two types of printer files. When
you design printer files to be translated into a national language version, you should follow some specific
guidelines.

» Program-described printer files

Program-described files rely on the high-level language program to define records and fields to be
printed.

 Externally described printer files

86 IBMi: Programing IBM i globalization

Externally described printer files use DDS rather than the high-level language to define records and
fields to be printed.

The following figure shows how externally described printer files are used in creating reports for a
different national language version.

Brodram t Call printer file
rogram to far report manual Report
process data * (language n
forreporing
Feport
(language 2)
Generate —
report Feport
(language 1)
Feport
(language n)

Report
(language 2)

Fepaort
(language 1)

Fi B&GS505-0

Printer file translation
When you design printer files to be translated into a national language version, consider these guidelines:

- Use externally described printer files to define records and fields to be printed. Avoid using program-
described printer files. Program-described printer files are described inside the high-level language
program. Translators trying to translate text imbedded within the program can mistakenly translate
literals that are within your program.

« Print data in one national graphic character set on devices that support the corresponding character
sets and code pages. Not all printers support all CHRID parameters.

« Use the MSGCON keyword to access the constant text described in the message file. A printer file does
not have the MSGID keyword. However, the techniques of direct coding as unnamed output field (literal)
and storing text in a database file can be used to specify the constant text in a printer file.

- Take culture conventions into consideration when bar codes are being described in the printer file.
Different countries have different standards for bar codes.

« When entering data, consider these parameters on the Create Printer File (CRTPRTF) command.
— PAGESIZE (page size)
Different countries have different page-size standards.
— OVRFLW (overflow line number)
The overflow line number must be less than or equal to the page length.
— CHRID (character set and code page)

If the CHRID parameter of the printer file is set to *DEVD, the printer uses the character identifier that
was set on the control panel or specified in the device description.

IBM i globalization 87

If the CHRID parameter of the printer file is set to a specific value, this value determines the code
page and character set used to print the data. For externally described printer files, the CHRID
parameter is used only for fields that also have the CHRID DDS keyword specified. For all other fields,
the code page and character set used is the same as if *DEVD was specified.

If the CHRID parameter of the printer file is set to *JOBCCSID, constant text from an externally
described printer file is converted to the CCSID of the job. The printer data stream is tagged with the
CHRID taken from the job CCSID, using this CHRID value to print the data. When using the
*JOBCCSID value on the CHRID parameter, the CHRID DDS keyword is ignored.

Note: All code pages and character sets cannot be handled by all printers.

Related concepts

Textual data code design

You can use different techniques to specify, store, and use constant text. You can use each technique for
specific types of textual data components. Each technique has its advantages and disadvantages.

Related reference
Create Printer File (CRTPRTF) command

Source file design

Database source files are implicitly assigned the CCSID of the job when they are created, unless they have
been explicitly assigned a CCSID value through the CCSID parameter on the Create Physical File (CRTPF)
or Create Source Physical File (CRTSRCPF) command.

If the job CCSID is 65535, the job default CCSID (DFTCCSID) is used as the implicitly assigned CCSID. The
job default CCSID is determined by the system language identifier value and the job DBCS-capable
indicator.

Related reference
Create Physical File (CRTPF) command
Create Source Physical File (CRTSRCPF) command

Character data representation architecture design

To enable your application for a multilingual environment, avoid coding CCSID values directly in your DDS
for physical files. When database sharing takes place, you need to define your files with the CCSID of the
primary language or use Unicode.

« Avoid coding CCSID values directly in your DDS for physical files. When creating different physical files
for different languages, change the CCSID for your job (using the CHGJOB command). Only one set of
DDS source code needs to be maintained.

Conversions between all CCSIDs might not make sense in all cases. For example, if you access a Greek
database with a CCSID of 00875 from a German display station with a job CCSID of 00273, you see
garbled data on your display.

Countries outside the Latin-1 character set use character sets that include non-Latin characters. No
meaningful conversion is possible between the non-Latin code points and the Latin code points. Arabic,
Greek, Hebrew, and Turkish are SBCS languages with non-Latin characters.

- When database sharing takes place, define your files with the CCSID of the primary language being
used. Make sure that all users have the CCSID of the language that they use defined in their user profile.

Related concepts

Working with CCSIDs

Using the system implementation of Character Data Representation Architecture (CDRA), you can achieve
consistent representation, processing, and interchange of coded characters (data) on the IBM i operating
system and across IBM Systems. The primary implementation of CDRA on the IBM i operating system is
through coded character set identifier (CCSID) support.

Working with Unicode

88 IBMi: Programing IBM i globalization

Unicode is a standard that precisely defines a character set as well as a small number of encodings for it.
It enables you to handle text in any language efficiently. It allows a single application to work for a global
audience.

Related reference
Change Job (CHGJOB) command

Use of the Send Network File command

When you use the Send Network File (SNDNETF) command, the data (if the command is sending a
member only) is assumed to be in the CCSID of the job that is running the command. Therefore, no
conversion takes place.

When the data is received, you should store the member in a file with the same CCSID as the originating
file.

If the receiver does not know the CCSID of the incoming file member, it can be received into a file with a
CCSID of 65535, which indicates that no conversion takes place.

Related reference
Send Network File (SNDNETF) command

Scenario: Multilingual single system
This scenario shows a multilingual single system with German as the primary language and English and
French as secondary languages. All users enter data into the same database file.

French
display job —
CCSID 00297

German
depayjor | V9" L Database | gEEESH
CCSID 00273 QCCSID= 9 00273

00273

UK English
display job —
DDSID 00285

RBAGS502-1

On this multilingual system, all users are entering character data into a single file with CCSID 00273
(German), and character data entered from the English and French display stations is being mapped into
the German file.

To preserve correct mapping, fields defined as character fields should be actual character fields. If the
fields contain application development values (for example, control characters or fields that are not used
as real character fields), the fields either should be specified as hexadecimal fields or assigned a CCSID
value of 65535.

Using CCSIDs, characters that cannot be converted between different code pages are replaced with a
substitution code. If you are using a user-defined data stream (UDDS) to format and lay out your display
(instead of using DDS), you might get substitution codes returned after the system reads and inserts that
data in your user-defined data stream. Substitution codes might cause unpredictable results on the
display.

Scenario: Multilingual network
This scenario shows a multilingual network with three systems located in three different countries, each
with a different language.

In this example, the application on the Danish system is using distributed relational database. All national
characters (regardless of the language that the data is stored in) are displayed correctly at the Danish
display. When the CCSID of the language is used by the database, the integrity of the database is

IBM i globalization 89

preserved. The conversion of data between the different code pages is completely automatic and part of
the database management.

French UK English
system system
Danish
system
Database Database
file CCSID file CCSID
00297 00285
v v
Database Danish g
file CCSID display job B2
00277 CCSID 00277 %
o

Handling languages with no NLV support
If you need to support a language that does not have a supported national language version, follow these
steps.

1.

Study the available national language versions. Find out which national language version most closely
resembles your language in character representation.

. Install the most appropriate national language version as your primary language.
. Modify the system values to meet your cultural needs. For example, set date and time formats to meet

those of the culture that you are supporting.

. Configure your workstations and printers to match your primary language. Then, handle discrepancies

between support for the installed NLV and your own language.

Note: The workstation customization functions can support only those capabilities built into your
hardware. You cannot support functions through workstation customization that your hardware is
unable to support.

. Use the Create Table (CRTTBL) command to create a sort sequence table based on the existing table

that most nearly matches the appropriate sorting sequence for your language.

. If your language is a DBCS language, create your own characters (UDC) to represent missing

characters in the code page associated with the NLV you installed. UDC is an acronym for a user-
defined character that is created through the character generator utility (CGU). CGU is an extension of
the code page with special user-defined ideographic characters, symbols, or logos.

Related concepts
System values for other languages with no national language version

Some of the system values are associated with languages and countries that do not have a national
language version. You should set these values immediately after initially installing the IBM i operating
system.

Related reference
Create Table (CRTTBL) command

Programming considerations in globalized application design

As you develop your globalized applications, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>