
System i

Programming
Optical device programming
Version 6 Release 1

IBM

System i

Programming
Optical device programming
Version 6 Release 1

IBM

Note
Before using this information and the product it supports, be sure to read the information in
“Notices,” on page 49.

This edition applies to version 6, release 1, modification 0 of IBM i5/OS (product number 5761-SS1) and to all
subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all
reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright IBM Corporation 2006, 2008.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Optical device programming 1
PDF file for Optical device programming 1
Optical device programming concepts 1

Integrated file system and optical device
programming 2
Hierarchical file system and optical device
programming 3
Volume, directory, and file considerations. . . . 3

Integrated file system programming for IBM i . . . 5
Integrated file system APIs 5
Integrated file system generic commands . . . 12
Examples: Integrated file system 14

Hierarchical file system programming 17
Hierarchical File System APIs 17
Control file system functions 24
Standard attributes 28
Extended attributes 29
Copied file attributes using hierarchical file
system 30

Example: Programming Hierarchical File System
APIs for the optical file system 31

Tips: Optical device programming 33
Media capacity and volume threshold 34
Media capacity management on a per-file basis 34
Expanding buffer I/O method 35
Forced buffered data APIs 36
Management of held optical files 36
Path names requirements 36
Examples: Moving spooled files to and from
optical storage 37

Related information for Optical device
programming. 47

Appendix. Notices 49
Programming interface information 50
Trademarks 51
Terms and conditions 51

© Copyright IBM Corp. 2006, 2008 iii

iv System i: Programming Optical device programming

Optical device programming

Certain application programming interfaces (APIs) work with IBM® i optical file systems. IBM i optical
file systems consist of any data storage system that uses optical media, which includes CD-ROM, digital
video disc (DVD), Write Once Read Many (WORM) media, and magneto-optical media.

Programmers can use these APIs to create, access, change, or maintain optical files and directories. You
can also use these APIs to customize the use of optical support for specific business applications.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 47.

Related concepts:
Application programming interfaces

PDF file for Optical device programming
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select Optical device programming (about 538
KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:
1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) .
Related reference:
“Related information for Optical device programming” on page 47
Web sites and other information center topic collections contain information that relates to the Optical
device programming topic collection. You can view or print any of the PDF files.

Optical device programming concepts
You can manipulate optical files and directories by using either integrated file system support or
hierarchical file system (HFS) support. Programming for optical devices can be easier if you understand
volume, directory, and file considerations.

Two categories of APIs can be used to manipulate optical files and directories:
v Integrated file system support, which consists of UNIX-type APIs and the generic command interface
v Hierarchical file system (HFS) support, which consists of APIs and generic commands.

© Copyright IBM Corp. 2006, 2008 1

http://www.adobe.com/products/acrobat/readstep.html

You can use both categories of APIs concurrently. For example, an optical file that is opened for reading
by one application by using the HFS Open Stream File API can be opened for reading by another
application using the Open UNIX-type API.

Because different file systems exist in IBM i, you must provide some means for the HFS or the integrated
file system to differentiate for which file system a call is targeted. This is accomplished by requiring that
the first name in the path name parameter be the name of the file system to be called, preceded by a
leading slash. In order for the optical file system to be identified as the receiver of a request submitted to
the HFS or the integrated file system, the first portion of the path name parameter must be /QOPT. The
remaining path elements to follow /QOPT are volume/directory/subdirectory/file. See the following
example for a path name:

/QOPT/CD001/Dir1/SubDir1/File
Related concepts:
Application programming interfaces

Integrated file system and optical device programming
The integrated file system is a part of the IBM i operating system that supports stream input/output and
storage management similar to personal computer and UNIX operating systems, while providing an
integrated structure over all information stored on your system.

The integrated file system comprises 11 file systems, each with its own set of logical structures and rules
for interacting with information in storage. Key features of the integrated file system include the
following items:
v Support for storing information in stream files that can contain long continuous strings of data. These

strings of data might be, for example, the text of a document or the picture elements in a picture. The
stream file support is designed for efficient use in client/server applications.

v A hierarchical directory structure that allows objects to be organized similar to common PC file
structures. A path specified through the directories to an object accesses the object.

v A common interface that allows users and applications to access not only the stream files but also
database files, documents, and other objects that are stored on your system.

v A common view of stream files that are stored locally on your system, on an integrated System x or
IBM BladeCenter server, or on a remote Windows server. Stream files can also be stored remotely on a
local area network (LAN) server, a Novell NetWare server, another remote system running the IBM i
operating system, or a Network File System server.

The integrated file system enhances the already extensive data management capabilities of IBM i with
additional capabilities to better support emerging and future forms of information processing, such as
client/server, open systems, and multimedia.

The integrated file system enables you to do the following tasks:
v Attain fast access to IBM i data, especially for applications such as System i® Access that use the IBM i

file server.
v Handle types of stream data, such as images, audio, and video more efficiently.
v Use a file system base and a directory base for supporting UNIX-based open system standards, such as

Portable Operating System Interface for Computer Environments (POSIX) and XPG. This file structure
and this directory structure also provides a familiar environment for users of PC operating systems
such as Disk Operating System (DOS), and Windows operating systems.

v Gain access to file support with unique capabilities (such as record-oriented database files, UNIX-based
stream files, and file serving) to be handled as separate file systems, while allowing them all to be
managed through a common interface.

LAN-attached optical devices do not support this interface.

2 System i: Programming Optical device programming

Related concepts:
Integrated file system

Hierarchical file system and optical device programming
A hierarchical file system (HFS) is a part of the operating system that includes the application
programming interface (API) and the underlying file system (optical or otherwise) support.

The HFS API makes it possible for an application that is written in a high-level language to create, store,
retrieve, and manipulate data on a directly attached optical library device, LAN-attached optical library
device, CD-ROM, or DVD device.

HFS API optical support consists of two parts:
v An application programming call interface to the hierarchical file system to manipulate objects known

as files and directories.
v An optical or other registered file system that manages the storage devices where the files and

directories are stored.

HFS API optical functions include the following items:
v Creating or deleting a directory
v Opening, reading, or closing a directory
v Opening, reading, writing, or closing a file
v Locking or unlocking bytes in a file
v Getting or setting the size of a file
v Renaming, copying, deleting, or removing a file
v Retrieving or changing directory entry attributes

Applications use HFS APIs to manage stream files on an IBM i system. These stream files are also called
objects to identify them as data elements that do not have a conventional record structure. The object is
treated as a named byte stream of known length, whose size can vary from a few bytes to megabytes.

HFS APIs allow applications to create and manage file objects on storage devices and to perform
input/output operations to those file objects. HFS APIs allow applications to create and manage directory
objects, which can be thought of as a logical grouping of similar file objects. These directory objects
contain information about the file objects that belong to that directory. Directories can be contained
within directories resulting in the hierarchical structure.
Related concepts:
Application programming interfaces

Volume, directory, and file considerations
Programming for optical devices can be easier if you understand these considerations for volumes,
directories, and files.

Volume considerations

Consider the following terms when referring to volumes:

Online
The volume is mounted in a drive under the read/write heads.

Near online
The volume is in the optical media library, but not online. The volume can be in a storage slot or
the opposite side of an online volume.

Optical device programming 3

Removed
The volume is not physically in an optical media library, but volume information for the volume
is kept when the volume is removed.

Offline
The volume is in an optical device, but the device is powered off, varied off, or no longer
connected.

Consider the following characteristics of optical volumes:
v An optical volume is one side of an optical cartridge.
v Some optical cartridges contain two volumes, others contain one.
v All volume names must be unique.
v Depending on the optical media density and type, the capacity of a volume can range from a few

hundred megabytes to many gigabytes.
v Normally, a near online volume takes less than 10 seconds to become an online volume. This requires

the volume to be mounted into a drive.
v The number of drives in the optical media library determines how many volumes can be online at any

time. Only one volume can be mounted in a drive (online) at one time. The remaining volumes in the
library are near online.

v Volumes are generally independent of each other, with one exception. The two volumes on the same
cartridge can never be completely independent. Both volumes on a cartridge can never be online at the
same time. Copying between two volumes on the same cartridge can be done, but it requires the
cartridge to be “flipped” several times to copy all of the requested files.

v There is no limit to the number of removed volumes that can exist.

How an application manages volumes depends almost entirely on the requirements of the application.
Data need to be written to volumes strategically, depending on the required retrieval time in the future. If
it is not desirable to wait for a near online volume to become online, the application might need to be set
up so that the most likely volumes to be accessed are online.

Directory considerations

The only limit to the number of directories that can be created on a volume is the capacity of the media.
This restriction also applies to the number of files that can exist in an optical directory. Directories are not
required to exist for files to be stored on a volume. If you want, all files can be stored in the root
directory of a volume. The root directory is the "/" directory that is created when a volume is initialized.
This root is not considered a directory in the traditional sense since it cannot be created or deleted like
other directories. The root directory will always exist on initialized optical volumes.

Directories can be used to categorize optical files into more manageable subsets. Directories can contain
files from a particular time period, subject, characteristic, or any combination of these. For example, there
may be a directory SPOOLFILES with subdirectories YEAR_1994 and YEAR_1995. Taking this one step further,
there can be subdirectories within these subdirectories named MONTH_MARCH and MONTH_APRIL. See the
following example for this structure:
/SPOOLFILES /YEAR_1994 /MONTH_MARCH
86 Optical Support V5R3
|
|
/MONTH_APRIL /YEAR_1995 /MONTH_MARCH /MONTH_APRIL

The following example contains the fully qualified directory names:
/SPOOLFILES
/SPOOLFILES/YEAR_1994
/SPOOLFILES/YEAR_1994/MONTH_MARCH

4 System i: Programming Optical device programming

/SPOOLFILES/YEAR_1994/MONTH_APRIL
/SPOOLFILES/YEAR_1995
/SPOOLFILES/YEAR_1995/MONTH_MARCH
/SPOOLFILES/YEAR_1995/MONTH_APRIL

Directories can be useful when categorizing files, but they are not necessary. Like volume names,
directory names must be unique within the same volume. For example, volume VOL001 cannot have two
directories named DIR001. Volume VOL001 can, however, have a DIR001 directory and a DIR000/DIR001
directory. Also, a DIR001 directory can exist on volume VOL001 and volume VOL002. For information
about directory naming conventions, see “Path names requirements” on page 36.

File considerations

The size of optical files depends almost entirely on the requirements of the application and the users of
those files. The size of an optical file (accessible through HFS or the integrated file system) can range
from 0 bytes to 4 294 705 152 bytes depending on the capacity of a volume. The physical size of the
target piece of media is limited by the amount of free space available.

When selecting optimal file sizes for your application, pay special attention to the following
considerations:
v The amount of system disk unit or main storage on the system
v How the data will be read (sequentially or randomly)
v Whether the entire file will typically be retrieved, or just a small portion
v Whether files will be updated once they are written to the volume

Generally, the larger the file, the better the performance and media use. When larger files are used, less
media space is taken up by file directory information and more is used for actual data. Also, the
performance related to file size is not a linear comparison. It does not take twice as long to write 20 KB
of data as it does to write 10 KB of data. Performance (KB/second) improves as the amount of data being
read or written increases.

Integrated file system programming for IBM i
The integrated file system support provides a UNIX-type interface that you can use to maintain optical
files and directories. LAN-attached optical devices do not support this interface.

The integrated file system support for optical support consists of UNIX-type APIs and generic
commands.

Like all file systems, the optical file system has unique rules and restrictions for applications that access
optical functions through the integrated file system. Several of the UNIX-type APIs and generic
commands are not supported. Others are only partially supported, or restricted.

Integrated file system APIs
UNIX-type APIs are C language functions that can be used in Integrated Language Environment® (ILE) C
for IBM i programs.

The following table is a quick reference for supported and unsupported UNIX-type optical file system
APIs.

Table 1. Optical implementation of UNIX-type APIs

UNIX-type API Supported Comments and usage notes

Optical device programming 5

Table 1. Optical implementation of UNIX-type APIs (continued)

access (Determine File
Accessibility)

Yes Requires *X authority to the parent optical
volume. For non-Universal Disk Format (UDF)
volumes, no other authority is required. For
UDF formatted volumes, the following
authorization rules apply:
v Requires *X authority to each directory in the

path preceding the object tested.
v Requires *R authority when R_OK is specified.
v Requires *W authority when W_OK is

specified.
v Requires *X authority when X_OK is specified.
v Requires *RX authority when R_OK|X_OK is

specified.
v Requires *WX authority when W_OK|X_OK

is specified.
v Requires *RX authority when R_OK|W_OK is

specified.
v Requires no authority when F_OK is specified.

accessx (Determine File
accessibility based on the who
parameter)

Yes Does not require *X authority to the parent
optical volume. For UDF volumes, the following
authorization rules apply:

Valid values for the who parameter are:
v ACC_INVOKER
v ACC_SELF
v ACC_ALL
v ACC_OTHERS
1. Requires *R authority when R_OK is

specified
2. Requires *W authority when W_OK is

specified
3. Requires *X authority when X_OK is

specified

Authority checks are mutually exclusive.

chdir (Change Current
Directory)

Yes Requires *X authority to the parent optical
volume.

For non-UDF volumes, no other authority is
required.

For UDF formatted volumes, *X authority is
required to each directory in the path

6 System i: Programming Optical device programming

Table 1. Optical implementation of UNIX-type APIs (continued)

chmod (Change File
Authorizations)

Yes Only supported for UDF formatted optical
volumes. Requires *CHANGE authority to the
parent optical volume. Requires *X authority to
each directory in the path preceding the object.
To perform this operation, you must be the
owner of the file or have *ALLOBJ special
authority.

chown (Change Owner and
Group of File)

Yes Only supported for UDF formatted optical
volumes. Requires *CHANGE authority to the
parent optical volume. Requires *X authority to
each directory in the path preceding the object.
To perform this operation, you must be the
owner of the file, or have *ALLOBJ special
authority. Files and directories on non-UDF
formatted volumes are owned by QDFTOWN
user profile.

close (Close File Descriptor) Yes

closedir (Close Directory) Yes

creat (Create or Rewrite File) Yes Requires *CHANGE authority to the parent
optical volume. For non-UDF volumes, no other
authority is required. For UDF formatted
volumes, *X authority is required to each
directory in the path and *WX authority to the
parent directory.

The change and modification time stamps for
the parent directory are not updated.

dup (Duplicate Open File
Descriptor)

Yes

dup2 (Duplicate Open File
Descriptor to Another
Descriptor)

Yes

fchmod (Change File
Authorizations by Descriptor)

Yes Only supported for UDF formatted optical
volumes. To perform this operation, you must be
the owner of the file or have *ALLOBJ special
authority.

fchown (Change Owner and
Group of File by Descriptor)

Yes Only supported for UDF formatted optical
volumes. To perform this operation, you must be
the owner of the file or have *ALLOBJ special
authority. Files and directories on non-UDF
formatted volumes are owned by QDFTOWN
user profile.

fcntl (Perform File Control
Command)

No

Optical device programming 7

Table 1. Optical implementation of UNIX-type APIs (continued)

fpathconf (Get Configurable
Path Name Variables by
Descriptor)

Yes

fstat (Get File Information by
Descriptor)

Yes Owner, group, and other mode bits are always
on, regardless of the user's authority to the file.

File access time stamp is not changed.

fsync (Synchronize Changes to
File)

Yes For UDF formatted volumes, data is forced to
optical disk. For non-UDF formatted volumes,
data is forced to internal disk storage that is
recoverable through held optical files.

ftruncate (Truncate File) Yes

getcwd (Get Current
Directory)

Yes Requires *X authority to the parent optical
volume. For non-UDF volumes, no other
authority is required. For UDF formatted
volumes, *RX authority is required to each
directory in the path name preceding the object.

getegid Yes

geteuid Yes

getgid Yes

getgrid Yes

getgrnam Yes

getgroups Yes

getpwnam Yes

getpwuid Yes

getuid Yes

ioctl (Perform File I/O Control
Request)

No

link (Create Link to File) No QOPT does not support links.

lseek (Get File Read/Write
Offset)

Yes

lstat (Get File or Link
Information)

Yes File access time stamp is not changed.

Requires *X authority to the parent optical
volume. For non-UDF volumes, no other
authority is required. For UDF formatted
volumes, *X authority is required to each
directory in the path preceding the object and *R
authority is required to the object.

8 System i: Programming Optical device programming

Table 1. Optical implementation of UNIX-type APIs (continued)

mkdir (Make Directory) Yes Requires *CHANGE authority to the parent
optical volume. For non-UDF volumes, no other
authority is required. For UDF formatted
volumes, *X authority is required to each
directory in the path and *WX authority to the
parent directory.

The change and modification time stamps for
the parent directory are not updated.

Owner ID and group ID are not set.

open (Open File) Yes If the file is opened for write access , *CHANGE
authority is required to the parent optical
volume.

If the file is opened for read access, *USE
authority is required to the parent optical
volume.

For UDF formatted volumes, the following
additional authorization rules apply:
v Requires *R authority when object is being

opened O_RDONLY.
v Requires *W authority when object is being

opened O_WRONLY.
v Requires *RW authority when object is being

opened O_RDWR.
v Requires *WX to the parent directory when

object does not exist and O_CREAT is
specified.

opendir (Open Directory) Yes Requires *USE authority to the parent optical
volume.

For UDF formatted volumes, *X authority is
required to each directory in the path preceding
the object, and *R authority is required to the
object being opened.

pathconf (Get Configuration
Path Name Variables)

Yes

Qp0lGetPathFromFileId Yes

Optical device programming 9

Table 1. Optical implementation of UNIX-type APIs (continued)

Qp0lRenameKeep Partial QOPT does not support renaming a directory.
The object must be a file.

Requires *CHANGE authority to the parent
optical volume. For non-UDF volumes, no other
authority is required. UDF formatted volumes
require *X authority to each directory in the
path, and *WX authority to the parent directory,
and *W authority to the file. If renaming the
volume, *RWX is required to the root (/)
directory of the volume.

New and old files must exist in the same
directory.

Qp0lRenameUnLink Partial QOPT does not support renaming a directory.
The object must be a file.

Requires *CHANGE authority to the parent
optical volume. For non-UDF volumes, no other
authority is required. UDF formatted volumes
require *X authority to each directory in the
path, *WX authority to the parent directory, and
*W authority to the file. If renaming the volume,
*RWX is required to the root (/) directory of the
volume.

The object that is identified by a new path
cannot exist.

read (Read from File) Yes The file access time is not updated. When
reading from files on volumes formatted in
Universal Disk Format (UDF), byte locks on the
range being read are ignored. The same is true
for readv().

readdir (Read Directory Entry) Yes The directory access time is not updated.

readlink (Read Value of
Symbolic Link)

No QOPT does not have symbolic links.

10 System i: Programming Optical device programming

Table 1. Optical implementation of UNIX-type APIs (continued)

rename (Rename File or
Directory)

Partial QOPT does not support renaming a directory.
The object must be a file or a volume.

Requires *CHANGE authority to the parent
optical volume. For non-UDF volumes, no other
authority is required. UDF formatted volumes
require *X authority to each directory in the
path, *WX authority to the parent directory, and
*W authority to the file. If renaming the volume,
*RWX is required to the root (/) directory of the
volume.

The object that is identified by a new path
cannot exist.

rewinddir Yes

rmdir (Remove Directory) Yes Requires *CHANGE authority to the parent
optical volume. For non-UDF volumes, no other
authority is required. For UDF formatted
volumes, *X authority is required to each
directory in the path and *WX authority is
required to the parent directory.

Change and modification time stamps for the
parent directory are not updated.

The operation will not be allowed if the
directory is busy.

stat (Get File Information) Yes File access time stamp is not changed.

Requires *X authority to the parent optical
volume. For non-UDF volumes, no other
authority is required. For UDF formatted
volumes, *X authority is required to each
directory in the path preceding the object and *R
authority is required to the object. When issued
to an optical volume, the size returned is the
volume capacity or 2 147 483 647, whichever is
smaller.

symlink (Make Symbolic Link) No QOPT does not support symbolic links.

sysconf (Get System
Configuration Variables)

Yes

Optical device programming 11

Table 1. Optical implementation of UNIX-type APIs (continued)

unlink (Remove Link to File) Yes Requires *CHANGE authority to the parent
optical volume. For non-UDF volumes, no other
authority is required. For UDF formatted
volumes, *X authority is required to each
directory in the path and *RX authority is
required to the parent directory.

Change and modification time stamps for parent
directory are not updated.

Link to a file cannot be removed when a job has
the file opened.

unmask (Set Authorization
Mask for Job)

Yes

utime (Set File Access and
Modification Times)

No QOPT does not support setting the file access or
modification time.

write (Write to File) Yes Change and modification time stamps for the file
are updated when the file is closed. When
writing to files on volumes formatted in
Universal Disk Format (UDF), byte locks on the
range being written are ignored. The same is
true for writev().

Integrated file system generic commands
Generic commands are system control language (CL) commands that provide an interface to optical
support.

Table 2 is a quick reference of generic CL commands that are related to the integrated file system.

For authorities that are required to issue generic commands, see the Security Reference.

Table 2. Optical implementation of generic commands

Generic command Supported Comments and restrictions

ADDLNK No

CHGAUD No

CHGAUT Yes Supported only for UDF-formatted
optical volumes.1

CHGCURDIR Yes

CHGOWN Yes Supported only for UDF-formatted
optical volumes.

CHGPGP Yes Supported only for UDF-formatted
optical volumes.

CHKIN No

CHKOUT No

CPY Yes

12 System i: Programming Optical device programming

Table 2. Optical implementation of generic commands (continued)

Generic command Supported Comments and restrictions

CRTDIR Yes Command will fail if attempt is to
create /QOPT or next level directory,
which represents a volume.

DSPAUT Yes

DSPCURDIR Yes

DSPLNK Yes

ENDJRN No

MOV Partial QOPT does not support moving a
directory, if it contains files or
subdirectories. QOPT does not
support moving a volume.

RMVDIR Partial QOPT does not support
RMVLNK(*YES).

RMVLNK Yes

RNM Partial QOPT does not support renaming a
directory.

RST Partial QOPT supports restoring an entire
volume using SUBTREE (*STG).

RTVCURDIR Yes

SAV Partial QOPT supports saving an entire
volume using SUBTREE (*STG).

SAVRST No

STRJRN No

WRKAUT Yes Supported only for UDF-formatted
optical volumes.1, 2

WRKLNK Yes

Notes:

1. To perform this operation, you must be the owner of the file or have *ALLOBJ special
authority.
QOPT does not maintain or honor object level authorities associated with optical files and
directories. Therefore, any attempt to change or revoke object level authorities is not allowed.
The only allowed value for the New object authorities (OBJAUT) parameter is *SAME.
You are not allowed to specify *EXCLUDE for the New data authorities (DTAAUT) parameter.
Command parameter rules require that if *EXCLUDE is specified for the New data authorities
parameter, a value of *NONE must be specified for the New object authorities parameter.
If the desire is to revoke authority associated with the owner, group, or other user, *NONE
may be specified as a value for the New data authorities parameter. In this case the specified
user and the user's data authorities are removed from the list of authorized users.
QOPT does not maintain or honor a private authority list. An attempt to assign New data
authorities to a user other than the owner, group, or other (*PUBLIC) is not allowed.

2. QOPT does not maintain or honor a private authority list. An attempt to add a new user
(option 1 from the WRKAUT display) and assign new data authorities to a user other than the
owner, group, or other (*PUBLIC) is not allowed.

Optical device programming 13

Option 4 is not supported to remove the user from list of authorized users. Select and prompt
(F4) option 2 for the user you with to remove. The New data authorities parameter (DTAAUT)
must be set to *NONE and the New object authorities parameter (OBJAUT) must be set to
(*SAME).

Examples: Integrated file system
These programming examples demonstrate the use of the integrated file system UNIX-type APIs that
pertain to the QOPT physical file system. The examples are written in Integrated Language Environment
(ILE) C for the IBM i operating system.

The programming examples demonstrate the following functions:
v Retrieving optical directory entries
v Creating an optical file
v Writing a file
v Closing a file
v Opening a file
v Reading a file
v Changing the offset into a file

Example code

This example program demonstrates the use of various integrated file system APIs. This program is
written in C language.

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer
information” on page 47.

/**/
/* This program demonstrates the use of various integrated file */
/* system functions applied to the QOPT physical file system */
/* including: */
/* chdir() - change current directory */
/* close() - close file */
/* closedir() - close directory */
/* creat() - create file */
/* lseek() - seek file (change file offset) */
/* open() - open file */
/* opendir() - open directory */
/* read() - read file */
/* readdir() - read directory entry */
/* rewinddir() - rewind directory entries */
/* stat() - directory statistics */
/* write() - write file */
/**/
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <dirent.h>
#include <sys/stat.h>
#include <fcntl.h>

void main (void)
{

/***/
/* local variables, contents and defines */
/***/
char path[294]; /* optical path */
DIR *dirP; /* pointer to the directory */
int filedes; /* open file descriptor */
struct dirent *direntP; /* directory entry structure */

14 System i: Programming Optical device programming

struct stat info; /* dir/file information */
int volume_number; /* what it says... */
int rc = 0; /* function return codes */
int kk = 0; /* local counter */
char data[] = "The quick red fox jumped over the fence";

/***/
/* Retrieve the list of volumes from the QOPT physical file */
/* system by opening the QOPT pfs root directory and reading the */
/* directory entries. */
/***/
memset(path, /* clear path name */
0x00,
sizeof(path));
strcpy(path, /* set physical file system */
"/QOPT");
rc = stat("/QOPT", &info);; /* determine number of files */
if (rc != 0)
perror("stat() failed:");

dirP = opendir(path); /* open the directory */
if (dirP == NULL)
perror("opendir() failed:");

for (kk = 1; kk <= info.st_nlink; kk++)
{
direntP = readdir(dirP);
if (direntP == NULL)
perror("readdir() failed:");
printf("%d) %s\n", kk, direntP->d_name);
}

/***/
/* Prompt user for the volume they want to work with and make it */
/* the current directory. */
/***/
printf("\nEnter the number the volume you want to work with:\n");
scanf("%d", &volume_number);;

rewinddir(dirP); /* beginning of directory */
for (kk = 1; kk <= volume_number; kk++)
direntP = readdir(dirP); /* get requested dir. entry */

strcat(path, "/");
strcat(path, direntP->d_name);
rc = chdir(path); /* set current working dir. */
if (rc != 0)
perror("chdir() failed:");
if (getcwd(path, sizeof(path)) == NULL)
perror("getcwd() failed:");
printf("\nThe current working directory is: %s\n", path);

rc = closedir(dirP); /* close the directory */
if (rc != 0)
perror("closedir() failed:");

/***/
/* Create and open a file write only. If the file exists it */
/* will be truncated. The owner will have read, write, and */
/* execute authority to the file. */
/***/
strcat(path, "/");
printf("\nEnter a file name:\n");
scanf("%s", &path[strlen(path)]);

filedes = creat(path, S_IRWXU);
if (filedes == -1)

Optical device programming 15

{
perror("creat() failed");
return;
}

rc = write(filedes, data, sizeof(data));
if (rc == -1)
perror("write() failed:");

close(filedes);

/***/
/* Read back the file and print it. */
/***/
memset(data, 0x00, sizeof(data));
filedes = open(path, O_RDWR);
if (filedes == -1)
{
perror("open() failed");
return;
}

read(filedes, data, sizeof(data));
if (filedes == -1)
{
perror("read() failed");
return;
}
printf("\nThe data written to file is: %s\n", data);

/***/
/* Change the offset into the file and change part of it. Read */
/* the entire file, print it out and close the file. */
/***/
lseek(filedes, 4, SEEK_SET);
rc = write(filedes, "slow old ", 9);
if (rc == -1)
{
perror("write() failed");
return;
}
lseek(filedes, 18, SEEK_SET);
rc = write(filedes, "went under ", 11);
if (rc == -1)
{
perror("write() failed");
return;
}

lseek(filedes, 0, SEEK_SET);
read(filedes, data, sizeof(data));
if (filedes == -1)
{
perror("read() failed");
return;
}
printf("\nThe data now is: %s\n", data);

close(filedes);

printf("Done...\n");
return;

}

Related concepts:
UNIX-Type APIs

16 System i: Programming Optical device programming

Hierarchical file system programming
You can use the Hierarchical File System (HFS) APIs to read to or write from a directly attached or
LAN-attached optical device. The HFS APIs are part of the IBM i operating system.

The HFS API support for optical support consists of two parts:
v An application programming call interface to the hierarchical file system to manipulate objects known

as files and directories.
v An optical or other registered file system that manages the storage devices where the files and

directories are stored.

HFS API support includes the following optical functions:
v Creating or deleting a directory
v Opening, reading, or closing a directory
v Opening, reading, writing, or closing a file
v Locking or unlocking bytes in a file
v Getting or setting the size of a file
v Renaming, copying, deleting, or removing a file
v Retrieving or changing directory entry attributes

Hierarchical File System APIs
The use of Hierarchical File System (HFS) APIs is different for the optical file system, as compared to
general API use.

Although the APIs that HFS supports are common to all file systems, each file system has different
interpretations or restrictions regarding those APIs. The following table summarizes the optical
interpretation of each HFS API. LAN-attached optical devices and directly attached optical devices have
different restrictions for several of the APIs. Some examples of directly attached optical devices are CDs,
DVDs, and SCSI attached optical libraries. Some examples of LAN-attached optical devices are Ethernet
or token ring attached optical libraries.

Table 3. Optical HFS API restrictions

HFS APIs Directly attached usage notes LAN-attached usage notes

Change File Pointer
(QHFCHGFP)

None. None.

Close Stream File
(QHFCLOSF)

None. None.

Control File System
(QHFCTLFS)

Supports the following requests:

v SAV saves a held optical file.

v RLS releases a held optical file.

v SRD/VOL returns a sector read from an
optical volume.

v SRD/DEV returns a sector read from an
optical device.

v RTV/VOL returns volume-specific
information.

v GET reads file data directly from the media
with minimal data caching. For UDF
formatted volumes, GET requires *X
authority to each directory in the path
preceding the file and *R authority to the
file.

Supports the following requests:

v UPD/LAN performs a dynamic index
refresh of the list of LAN volumes.

v UPD/VOL returns volume-specific
information.

v RTV/VOL returns volume-specific
information.

v RTV/DIR returns subdirectory and file
entries for a specified directory.

Optical device programming 17

Table 3. Optical HFS API restrictions (continued)

HFS APIs Directly attached usage notes LAN-attached usage notes

Copy Stream File
(QHFCPYSF)

If the source file is in the QOPT file system,
*USE authority is required to the source optical
volume.

If the target file is in the QOPT file system,
*CHANGE authority is required to the target
optical volume. Copy information parameter,
byte 1, option 2 is not supported (Copy
Append). If specified, CPF1F62 will be
returned.

When the operation is complete, QCRTDTTM,
QACCDTTM, and QWRTDTTM are set to the
current date.

When copying between the QOPT and QDLS
file systems, file attributes are optionally
copied depending on global optical attribute
CPYATR. This attribute can be displayed or
changed utilizing the CHGOPTA command.

When copying between the QOPT and QDLS
file systems, file permissions are not copied. If
permissions need to be preserved between
these file systems use the copy (CPY) CL
command.

If the source file is on a UDF formatted
volume, *X authority is required to each
directory in the path preceding the file. *R
authority is required to the file.

If the target file is on a UDF formatted volume,
*WX authority is required to the parent
directory and *X authority is required to each
directory in the path preceding the parent
directory.

If the source file is in the QOPT file
system, *USE authority is required to the
source optical volume.

If the target file is in the QOPT file system,
*CHANGE authority is required to the
target optical volume. Copy information
parameter, Byte 1, Option 2 is not
supported (Copy Append).

Copying from a volume in a directly
attached library to a volume in a
LAN-attached optical device is not
supported.

18 System i: Programming Optical device programming

Table 3. Optical HFS API restrictions (continued)

HFS APIs Directly attached usage notes LAN-attached usage notes

Create Directory
(QHFCRTDR)

When the operation is complete, QCRTDTTM,
QACCDTTM, QWRTDTTM are set to the
current date.

When the operation is complete, QFILSIZE and
QALCSIZE are set to 0.

Requires *CHANGE authority to the optical
volume.

Creating the optical root directory is not
supported.

Creating the volume portion of the directory is
not supported.

Attributes passed in the attribute information
table are not supported, and will result in a
CPF1F71 error message. The length of the
attribute information table parameter must be
0.

Optical attribute OPT.CHGATDTTM, which
indicates the last time that the directory
attributes were changed, is created. This date is
set to the current date. If a user specifies an
attribute, it is ignored.

For UDF formatted volumes, *WX authority is
required to the parent directory. *X authority is
required to each directory in the path
preceding the parent directory. The owner of
the directory will be the user creating the
directory and the owner data authorities will
be set to *RWX. The primary group and
primary group data authorities will be the
same as the parent directory. The *PUBLIC data
authorities will be the same as the parent
directory.

When the operation is complete,
QCRTDTTM, QACCDTTM, QWRTDTTM
are set to the current date.

When the operation is complete, QFILSIZE
and QALCSIZE are set to 0.

Requires *CHANGE authority to the
optical volume.

Creating the optical root directory is not
supported.

Creating a volume portion of a directory is
not supported.

All standard attributes are ignored.

The length of attribute information table
parameter must be set to 0.

Delete Directory
(QHFDLTDR)

Deleting the optical root directory is not
supported.

Deleting the volume portion of a path is not
supported.

Requires *CHANGE authority to the optical
volume.

For UDF formatted volumes, *WX authority is
required to the parent directory and *X
authority is required to each directory in the
path preceding the parent directory. *W
authority is required to the directory being
deleted.

Deleting the optical root directory is not
supported.

Deleting the volume portion of a path is
not supported.

Requires *CHANGE authority to the
optical volume.

Optical device programming 19

Table 3. Optical HFS API restrictions (continued)

HFS APIs Directly attached usage notes LAN-attached usage notes

Delete Stream File
(QHFDLTSF)

Requires *CHANGE authority to the optical
volume.

For UDF formatted volumes, *WX authority is
required to the parent directory. *X authority is
required to each directory in the path
preceding the parent directory. *W authority is
required to the file being deleted.

Requires *CHANGE authority to the
optical volume.

Get File Size
(QHFGETSZ)

None None

Set File Size
(QHFSETSZ)

None Not Supported

20 System i: Programming Optical device programming

Table 3. Optical HFS API restrictions (continued)

HFS APIs Directly attached usage notes LAN-attached usage notes

Open Stream File
(QHFOPNSF)

Parameter open information:

v Opening with an access mode (byte 6) of
write only or read/write requires *CHANGE
authority to the volume.

v Opening with an access mode (byte 6) of
read only requires *USE authority to the
volume.

v Lock Modes (byte 5) are enforced across
different open instances. If the same job
opens a file multiple times, these open locks
can conflict.

If QALCSIZE was specified on an open request
for the write operation, optical media will be
checked to see if enough space is available. If
not, error message CPF1F62 is returned.

All standard attributes except QALCSIZE are
ignored.

If a file is being created, QCRTDTTM,
QACCDTTM, and QWRTDTTM are set to the
current date. If a file is being updated,
QWRTDTTM is set to the current date. If a file
is being read, no time stamps are changed.
QACCDTTM is never changed after a file is
created. It will always equal QCRTDTTM.

The following authorization rules apply only
for UDF formatted volumes:

v If opening a file for READ, *X authority is
required to each directory in the path
preceding the file and *R authority is
required to the file.

v If opening an existing file for WRITE, *X
authority is required to each directory in the
path name preceding the file and *W
authority is required to the file.

v If opening an existing file for READ/WRITE,
*X authority is required to each directory in
the path name preceding the file and *RW
authority is required to the file.

v If creating the file, *WX authority is required
to the parent directory.

v If creating the file, the owner of the file will
be the user creating the file and the owner
data authorities will be set to *RWX. The
primary group and primary group data
authorities will be the same as the parent
directory. The *PUBLIC data authorities will
be the same as the parent directory.

Parameter Open information:

v Byte 3 (write-through flag), is not
supported.

v Byte 7 (type of open operation to
perform), is not supported.

v Opening with an access mode (byte 6) of
read-only requires *USE authority to the
volume.

Unless the file open attempt is for
read-only access, attributes are not
tolerated and result in error message
CPF1F71. The length of the attribute
information table parameter must be 0.

If a file open attempt is for read-only
access, attributes are tolerated but ignored.

Read Stream File
(QHFRDSF)

None. None.

Optical device programming 21

Table 3. Optical HFS API restrictions (continued)

HFS APIs Directly attached usage notes LAN-attached usage notes

Retrieve Directory
Entry Attributes
(QHFRTVAT)

Requires *USE authority to an optical volume.

For UDF formatted volumes, *X authority is
required to each directory in the path name
preceding the file and *R authority is required
to the file or directory being read.

The user can retrieve only LAN-standard
attributes: QFILSIZE, QCRTDTTM, and
QWRTDTTM.

Requires *USE authority to an optical
volume.

The length of attribute information table
parameter must be set to 0.

Write Stream File
(QHFWRTSF)

None. None.

Change Directory
Entry Attributes
(QHFCHGAT)

QFILATTR is the only standard attribute that
can be changed. All others that are specified
are ignored.

Read only flag, byte 1 of the QFILATTR
attribute, can only be set for a file, not a
directory. If specified for a directory, it is
ignored.

Changed flag, byte 5 of the QFILATTR
attribute, can be set to either 0 or 1. It is
automatically set on (1) whenever a file is
created or written to.

If OPT.CHGATDTTM is specified, it is ignored.

Requires *CHANGE authority to an optical
volume.

For UDF formatted volumes, *X authority is
required to each directory in the path name
preceding the file and *W authority is required
to the file.

API not supported.

Close Directory
(QHFCLODR)

None. API not supported.

Force Buffered Data
(QHFFRCSF)

If the volume media format is *UDF, then data
is forced to optical media.

If the volume media format is not *UDF, then
data is forced to internal disk storage, not to
optical media.

For a file opened for read-only access, this API
has no effect.

API not supported.

Lock and Unlock
Range in Stream File
(QHFLULSF)

None. API not supported.

22 System i: Programming Optical device programming

Table 3. Optical HFS API restrictions (continued)

HFS APIs Directly attached usage notes LAN-attached usage notes

Move Stream File
(QHFMOVSF)

If the source file is in the QOPT file system,
*CHANGE authority is required to the optical
source volume.

If the target file is in the QOPT file system,
*CHANGE authority is required to the optical
target volume.

When moving between the QOPT and QDLS
file systems, file attributes are optionally
copied depending on the global optical
attribute CPYATR. This attribute can be
displayed or changed using the CHGOPTA
command.

If the source file is on a UDF formatted
volume, *WX authority is required to the
parent directory and *X authority is required to
each directory in the path name preceding the
parent directory. *RW authority is required to
the file.

If the target file is on a UDF formatted volume,
*WX authority is required to the parent
directory and *X authority is required to each
directory in the path name preceding the file.

API not supported.

Open Directory
(QHFOPNDR)

Opening the file system root (/QOPT) will
allow both directly attached and LAN-attached
volumes to be returned on Read Directory
Entries.

Lock mode is ignored when opening the file
system root.

Lock mode of no lock is not supported. If
requested, a lock mode of deny none is
substituted.

Requires *USE authority to the optical volume.

For UDF formatted volumes, *X authority is
required to each directory in the path name
preceding the directory being opened and *R
authority is required to the directory being
opened.

API not supported.

Read Directory
Entries (QHFRDDR)

QNAME is returned without the QOPT file
system name.

QNAME is the only field that is set for a
LAN-attached volume.

QWRTDTTM will always equal QCRTDTTM.

For files and directories, QACCDTTM will
always equal QCRTDTTM.

For volumes, QACCDTTM will equal the last
volume reference date.

API not supported.

Optical device programming 23

Table 3. Optical HFS API restrictions (continued)

HFS APIs Directly attached usage notes LAN-attached usage notes

Rename Stream File
(QHFRNMSF)

Requires *CHANGE authority to the optical
volume.

For UDF formatted volumes, *WX authority is
required to the parent directory and *X
authority is required to each directory in the
path name preceding the parent directory. *W
authority is required to the file being renamed.

API not supported.

Rename Directory
(QHFRNMDR)

API not supported. API not supported.

Control file system functions
The Control File System (QHFCTLFS) API enables optical support to perform unique operations for the
optical file system.

The following functions are optical-specific functions that are not otherwise available through the HFS
APIs. Different functions are available for directly attached and LAN-attached optical devices.

Control file system functions for directly attached optical devices

These control file system functions are available for directly attached optical devices:
v SAV. Saves a held optical file.
v RLS. Releases a held optical file.
v SRD/VOL. Performs a sector read to an optical volume.
v SRD/DEV. Performs a sector read to an optical device.
v RTV/VOL. Returns volume-specific information.
v GET. Reads file data directly from the media with minimal caching.

Save held optical file function

Use the QHFCTLFS API to save a held optical file. A process must have read access to a held optical file
to save it.

Here is the syntax for the input buffer for the QHFCTLFS program:

’SAV’ + ’/’ + held-file-path + ’//’ + destination-file-path

For example:
v Input data buffer: SAV/VOLUME1/DIRECTORY1/FILE1//VOLUME2/DIRECTORY2/FILE2

v Input data buffer length: 54

This function is also available using an option on the Work with Held Optical File (WRKHLDOPTF)
display. However, unlike the save option on the Work with Held Optical File (WRKHLDOPTF) display,
the save held optical file function of the control file system API does not automatically release a held file
after it is saved. Therefore, an explicit release held optical file request is needed afterward.

24 System i: Programming Optical device programming

Release held optical file function

The QHFCTLFS API clears the held status of a file and releases the optical file system from its obligation
to write to the optical disk. A process must have read and write access to a held file in order to release it.
This means that no locks can currently be imposed on the file by other active jobs.

Here is the syntax for the input buffer for the QHFCTLFS program:
’RLS’ + ’/’ + held-file-path

For example:
v Input data buffer: RLS/VOLUME1/DIRECTORY1/FILE1
v Input data buffer length: 28

This function is also available using an option on the Work Held Optical File (WRKHLDOPTF) display.

Sector read function

The QHFCTLFS API performs a sector reading of optical media. The sector read function is useful if the
application knows precisely where data is stored on the optical media. Sector read functions can be
accomplished without opening and closing files and independently of all HFS APIs. Multiple sectors can
be read at one time.

There are two variations of the input buffer for issuing the Control File System sector read function:
SRD/VOL/volume_name/starting sector/number of sectors

SRD/DEV/device_name/starting sector/number of sectors

Both return the range of sectors requested by the user. Sectors can be requested from an optical volume
or optical device. For example, if an application wanted to read five sectors of optical volume VOL01
beginning at sector 1000, SRD/VOL/VOL01/1000/5 is requested.

Note: DEV is valid for stand-alone CD and DVD devices.

Retrieve volume information function

The QHFCTLFS API retrieves information about a particular volume.

Here is the input buffer format for the QHFCTLFS program:
RTV/VOL/volume_name

The format of the information returned in the output buffer is identical to the output file structure for
volume attributes (QAMODVA).

Get file data function

The QHFCTLFS HFS API reads a block of data from a file directly into your output buffer. This function
improves performance when reading an entire file sequentially or when reading large blocks of data. The
optical file system will not copy or cache the data as it does through normal Open, Read, and Close
Stream File HFS APIs. When doing random read operations to a file, the Open, Read, and Close Steam
File APIs still provides the best performance.

The following restrictions apply when using this API:
v Align output buffer on a 512-byte boundary.
v Maximum-read size is 16 384 000 bytes.
v The HFS API requires Shared No Update (*SHRNUP) access to the file.

Optical device programming 25

v Calling program must be in user (not system) state.
v The HFS API requires *USE authority to the volume.

Here is the syntax for the input buffer for the QHFCTLFS program:
’GET’ + ’/’ + entire path + ’//’ + bytes to read + ’/’ + file offset

The following example will read 15 MB from FILE.XXX, starting at the beginning of the file with
(offset=0):
v Input data buffer: GET/VOL1/DIR1/SUBDIR1/FILE.XXX//15728640/0
v Input data buffer length: 42

The number of bytes read is returned in the Length of data returned parameter. In the above example if
FILE.XXX is only 50 KB in size, 51200 will be returned in the field. Therefore, it is not necessary to know
the file size before issuing this request. Likewise, if 15728640 is returned in the Length of data returned
parameter, the file is at least 15 MB in size. More read operations may be necessary to retrieve all the
data.

It is not required that the number of bytes to read be a multiple of 4096. However, if the number is not a
multiple of 4096, data may be read into the output buffer beyond the number of bytes requested. This is
because the device does I/O in blocks of 4096 bytes. Therefore, reading data in multiples of 4096 bytes is
advised in order to avoid this problem.

Errors from control file system (GET function)

The following table shows some common application errors that may occur using this API.

Table 4. Common errors for the GET function

Message Error

OPT1812 with 6030 as unexpected return code File offset is beyond the end of file.

OPT1812 with A950 as unexpected return code Output buffer is not 512-byte aligned.

OPT1860 Bytes to read is greater than the buffer size.

OPT1812 with C060 as unexpected return code Attempted to read more than 16 384 000 bytes.

CPF1F48 Input buffer is not valid. Verify the syntax.

Control file system functions for LAN-attached optical devices

The following control file system functions are available for LAN-attached media libraries.
v UPD/LAN - performs a dynamic refresh of the LAN volume lists.
v UPD/VOL - returns volume-specific information.
v RTV/VOL - returns volume-specific information.
v RTV/DIR - returns subdirectory and file entries for a specified directory.

Update volume information function

The QHFCTLFS API retrieves information about a particular volume or updates the internal list of
available volumes on a LAN.

Here is the input buffer format for the QHFCTLFS program:
UPD/VOL/volume_name

It performs as follows:

26 System i: Programming Optical device programming

v UPD/VOL/volume-name: Using this input buffer format returns the amount of free space on a
volume, total user space, media type, and opposite-side volume ID. The format is shown here:
– Bytes (1-32): Opposite-side volume ID.
– Bytes (33): Reserved.
– Bytes (34-37): User free space on the volume. This is a 4-byte binary field.
– Bytes (38-41): Total free space on the volume. This consists of the user free space on the volume plus

the reserved space on the volume. The reserved space on the volume is determined when setting the
volume-full threshold for the volume. This is a 4-byte binary field.

– Bytes (42): Media type. This is a 1-byte binary field that can have the following values.
- 0 = Nonvalid Media or 3431 Standalone Drive
- 1 = Write Once Read Many (WORM) media
- 2 = Rewriteable media

– Bytes (43): Magnitude of free space on the volume. This is a 1-byte binary field that can have the
following values:
- 0 = Space field is in number of bytes.
- 1 = Space field is in number of kilobytes (1024).
- 2 = Space field is in number of megabytes (1048576).

– Bytes (44): Magnitude of Total Space on the Volume. This is a 1-byte binary field that can have the
following values:
- 0 = Space field is in number of bytes.
- 1 = Space field is in number of kilobytes (1024).
- 2 = Space field is in number of megabytes (1048576).

v UPD/LAN: Using this input buffer format updates an internal list of available volumes on all activated
servers. You can perform this function after adding or removing cartridges from data servers.

Retrieve volume information function

The QHFCTLFS API retrieves information about a particular volume.

Here is the input buffer format for the QHFCTLFS program:
RTV/VOL/volume_name

The format of the information returned in the output buffer is identical to the output file structure for
volume attributes (QAMODVA).

The system uses format QAMODVA for volumes in all optical device types. While the format is the same,
not all fields contain a value for LAN volumes.

Retrieve directory information function

The QHFCTLFS API retrieves a list of files and subdirectories for a particular directory.

Here is the input buffer for the QHFCTLFS program:
RTV/DIR/volume_name/directory_name

The directory information is returned in the output buffer in the following format:
v CBdirectoryBCBdirectoryBCBfilenameBCBfilenameBB, whereas:

– C
- D = Directory entry
- F = File name entry

Optical device programming 27

– B = EBCDIC blank
– BB = Double EBCDIC blanks to indicate end of string

The output buffer must be at least 31 KB long.

Standard attributes
Directory entries for files and directories have information that is associated with them called attributes.
Each attribute consists of a name and a value. Standard attributes are those attributes that generate
automatically when you create a directory or file. Standard attribute names start with the letter Q for ease
of identification.

All file systems use standard attributes. Several receive unique interpretation by the optical file system.
LAN-attached optical devices have a different interpretation of standard attributes than directly attached
optical devices.

QALCSIZE attribute

As an output field, QALCSIZE is the number of bytes allocated on optical disk by the file. It will always
be 0 for directories.

When the QALCSIZE attribute is specified on the Open Stream File during a write request, the media is
checked to see if there is enough space available to allocate the amount specified. If there is not enough
space available on the optical volume, message CPF1F61, No free space available on media, is issued.
“Media capacity and volume threshold” on page 34 contains more information about using this attribute.

QACCDTTM attribute

The QACCDTTM attribute is not supported by the optical file system. It is always the same as the file
creation date and time (QCRTDTTM) attribute.

QCRTDTTM attribute

The QCRTDTTM attribute indicates the creation date of a file or directory.

QWRTDTTM attribute

The QWRTDTTM attribute indicates the last date and time that data was written to an optical file. It does
not reflect the date and time when the file attributes were last written.

QFILATTR attribute

Support of the QFILATTR attribute is only provided by directly attached optical support devices. The
optical interpretation of the file flags is as follows:
v Read-only file: The IBM i operating system provides full support of this attribute through the optical

file system. When setting this attribute to ON (1), you cannot delete or overwrite the file.
v Hidden file: The IBM i operating system maintains this attribute for the user application to manage,

but does not fully support it through the optical file system. When setting this attribute to ON (1), the
optical file system does not recognize the file as hidden. User applications require no special access to
files that have this attribute set on.

v System file: The IBM i operating system maintains this attribute for the user application to manage,
but does not fully support it through the optical file system. When setting this attribute to ON (1), the
optical file system does not recognize the file as a system file. User applications require no special
access to files that have this attribute set on.

28 System i: Programming Optical device programming

v Changed file: The IBM i operating system supports this attribute by the optical file system. It is
automatically set to ON (1) when a file is created or written to. You can only set it to OFF (0) by using
the Change Directory Entry Attributes (QHFCHGAT) API.

Extended attributes
Extended attributes are special attributes for files and directories that are not standard and therefore not
recognized by the hierarchical file system (HFS). They are typically defined by a business application, but
some are recognized by the optical file system as having special meanings.

OPT.CHGATDTTM attribute

The OPT.CHGATDTTM attribute reflects the last date and time that the file attributes were written. It is
returned to the user application as an extended attribute through the Retrieve Directory Entry Attributes
(QHFRTVAT) command.

QOPT.IOMETH attribute

The QOPT.IOMETH attribute is a special attribute to the optical file system. Support is provided only by
directly attached optical support devices. It is ignored by LAN support. The system also ignores this
attribute when the media format is Universal Disk Format.

When an extended attribute of this name is passed by the application as the attribute name field in the
Attribute Information Table (AIT) during an open stream file request, the optical file system knows that a
special method of I/O is being requested. The optical file system retrieves the special method of I/O
from the attribute value field in the AIT.

Currently, there is only one special method of I/O supported by the optical file system: You can request
this method of I/O when the attribute value field for the QOPT.IOMETH attribute contains the value
(EXPNBUFF). The optical software recognizes this special extended attribute as a requested I/O method,
and not as a normal extended attribute. It is not hereafter associated with the file in any way, and does
not appear when attributes for the file are retrieved. All read operations for the process use expanding
buffer I/O until the file is closed. Methodology and restrictions for using expanding buffer I/O are listed
here. In order to determine if expanding buffer I/O should be used, see the Expanding buffer I/O
method topic.

An HFS attribute in an attribute information table consists of several fields. These fields and the values
you specify when opening a file for expanding buffer I/O are summarized in the following table.

Table 5. Expanding buffer attribute definition

Field Data type (see note) Value for EBIO

Attribute name CHAR(*) QOPT.IOMETH

Attribute value CHAR(*) EXPNBUFF

Length attribute name BIN(4) 0000000B

Length attribute value BIN(4) 00000008

Notes:

v CHAR(*) indicates a variable number of bytes of character information.

v BIN(4) indicates 4 bytes of binary information.

v All character fields should be set in uppercase.

In addition to the values for attribute fields, two additional fields are required to build an attribute
information table:
v The number of attributes defined in the table

Optical device programming 29

v The table offset to each attribute, in bytes

The Open Stream File (QHFOPNSF) API requires 10 bytes of open information as input. When you
attempt to open a file for expanding buffer I/O the open information is subject to the following
restrictions:
v The action to take if a file exists must be to open the file.
v The action to take if a file does not exist must be to return an error.
v The lock mode for the file must be Deny Write or Deny Read/Write (exclusive).
v The access mode for the file must be Read Only.

If there is an expanded buffer I/O attribute in the attribute information table and any of these restrictions
are not observed, an OPT1133 message is issued, indicating which of the fields in the open information
was passed in error.

The APIs topic contains more information about the format of attributes, the Attribute Information Table,
or the Open Stream File API.

Restrictions for expanding buffer I/O

In addition to the restrictions that are detailed when opening a file for expanded buffer I/O, you cannot
use the following APIs for expanding buffer I/O, after a file is opened:
v Lock or Unlock Range in Stream File
v Set Stream File Size
v Write Stream File
Related concepts:
Application programming interfaces
Related tasks:
“Expanding buffer I/O method” on page 35
When you use the QOPT.IOMETH extended attribute to open a stream file through the hierarchical file
system (HFS), you can improve performance for applications that typically read portions, but not all, of
the data in large optical files. This method of input/output is referred to as expanding buffer I/O.

Copied file attributes using hierarchical file system
File attributes can be copied between file systems that support the Hierarchical File System (HFS) APIs.

Copied attributes between QOPT and QDLS file systems

When you copy files between QOPT and QDLS file systems using the hierarchical file system, the target
file is assigned either default file attributes or the file attributes of the source file. This depends on the
value you specify for the copy attributes (CPYATR) global value on the Change Optical Attributes
(CHGOPTA) command.

When the CPYATR global value is specified as *NO on the CHGOPTA command, default file attributes
are created for files that are copied between the QOPT and QDLS file systems.

When the CPYATR global value is specified as *YES on the CHGOPTA command, file attributes from the
source file are copied to the target file for copies between the QOPT and QDLS file system.

Copied attributes from QDLS to QOPT

In a copy operation or move operation from QDLS to QOPT, the following default attributes are assigned
to the target file:

30 System i: Programming Optical device programming

v Standard file attributes:
– Creation date and time is set to the current date and time.
– Modification date and time is set to the current date and time.
– Access date and time is set to the current date and time.
– The QFILATTR standard attribute is set to 00000; the file is not read-only, the file is not hidden, the

file is not a system file, the file is not a directory, and the file has not changed since it was last
archived or created.

v No DIA document attributes are copied.
v No user-defined extended attributes are copied.

The file name (QNAME) and file size (QFILSIZE) are maintained.

Copied attributes from QOPT to QDLS

In a copy operation or move operation from QOPT to QDLS, the following default attributes are created:
v Standard file attributes:

– Creation date and time is set to the current date and time.
– Modification date and time is set to the current date and time.
– Access date and time is set to the current date and time.
– The QFILATTR standard attribute is set to 00000; the file is not read-only, the file is not hidden, the

file is not a system file, the file is not a directory, and the file has not changed since it was last
archived or created.

v DIA document attributes:
– DIA.CA04C700 (text description) is set to the file name.
– DIA.CA04C701 (profile GCID) is set to code page 697 and character set 500.
– DIA.CA04C706 (file type) is set to 000E (PC file).
– DIA.CA04C720 (library assigned document name) is assigned to represent this file.
– DIA.CA04C708 (last changed date and time) is set to the current date and time.
– DIA.CA04C707 (creation date and time) is set to the current date and time.
– DIA.CA04C710 (NLS information) is set to the language ID and country or region ID of the job.
– DIA.CA04C740 (file date and time) is set to the current date and time.

v No user-defined extended attributes are copied.

The file name (QNAME) and file size (QFILSIZE) are maintained.

Example: Programming Hierarchical File System APIs for the optical
file system
These hierarchical file system (HFS) examples can help you program your optical file system.

This topic demonstrates how the HFS API can be used with the ILE RPG programming language.

The programming examples demonstrate the following functions:
v Retrieving a path name from an array
v Calling the HFS API to open a stream file
v Calling the HFS API to write a 256-byte buffer passed to the program as a parameter
v Calling the HFS API to close the stream file

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer
information” on page 47.

Optical device programming 31

Getting a path and calling subroutines

This example gets a path and calls subroutines.
E AR 1 5 36
C *ENTRY PLIST
* 2 PARAMETERS - A DATA BUFFER ID AND AN INDEX TO THE ARRAY
C PARM DATAIN 256
C PARM IDX 10
* MOVE THE ARRAY ELEMENT TO A FIELD CALLED "PATH"
C MOVE AR,IDX PATH
* EXECUTE SUBROUTINES TO OPEN, WRITE AND CLOSE A FILE
C EXSR OPNSF
C RTCD IFEQ 0
C EXSR WRTSF
C EXSR CLOSF
C END
C SETON LR
* TABLE/ARRAY : AR
** /QOPT/MYVOL1/DIRA/FILE
/QOPT/MYVOL1/DIRA/SUBDIRB/FILE
/QOPT/MYVOL1/DIRA/SUBDIRB/C/FILE
/QOPT/MYVOL1/DIRA/SUBDIRB/C/D/FILE
/QOPT/MYVOL1/DIRA/SUBDIRB/C/D/E/FILE

Defining data structures for opening files

This example defines data structures in the HFS.
* PATH LENGTH PARAMETER
IPATHLN DS
I B 1 40PATHL
* OPEN INFORMATION PARAMETER
IOPNINF DS
I 1 1 EXISTS
I 2 2 NOTTHR
I 3 3 SYNASY
I 4 4 RSV1
I 5 5 SHAREM
I 6 6 ACCESS
I 7 7 OTYPE
I 8 10 RSV3
* ATTRIBUTE LENGTH PARAMETER
IATTRLN DS
I B 1 40ATTRL
* RETURN CODE PARAMETER
IRETCD DS
I B 1 40RCLEN
I B 5 80RTCD
I 9 15 CONDTN
I 16 16 RSV
I 17 272 MSG
* BYTES TO READ/WRITE PARAMETER
IBYTRDW DS B 1 40BYT2RW
* BYTES ACTUALLY READ/WRITTEN PARAMETER
IBYTACT DS B 1 40BYTARW

Opening an optical file

This example opens an optical file.
* PARAMETER LIST FOR QHFOPNSF CALL
C POPNSF PLIST
C PARM FHDLE 16
C PARM PATH 36
C PARM PATHL
C PARM OPNINF

32 System i: Programming Optical device programming

C PARM ATRTBL 1
C PARM ATTRLN
C PARM ACTION 1
C PARM RETCD
C* OPEN FILE SUBROUTINE
C OPNSF BEGSR
C* FILL IN THE PATH AND ATTRIBUTE LENGTHS
C Z-ADD36 PATHL SET PATH LEN=36
C Z-ADD*ZEROS ATTRL ZERO ATTRIBUTE LENGTH
C* FILL IN THE OPNINF PARAMETER
C MOVE ’0’ EXISTS 1 FAIL IF EXISTS
C MOVE ’1’ NOTTHR 1 CREATE IF NOT THERE
C MOVE ’0’ SYNASY 1 ASYNCHRONOUS
C MOVE *BLANKS RSV1 1
C MOVE ’1’ SHAREM 1 DENY NONE
C MOVE ’2’ ACCESS 1 READ/WRITE
C MOVE ’0’ OTYPE 1 NORMAL
C MOVE *BLANKS RSV3 3
C* CALL THE API TO OPEN THE STREAM FILE
C CALL ’QHFOPNSF’POPNSF 50
C OPNEND ENDSR

Writing a file to an optical disk

This example writes a file to an optical disk.
* PARAMETER LIST FOR QHFRDSF OR QHFWRTSF CALL
C PRWSF PLIST
C PARM FHDLE 16
C PARM DATAIN
C PARM BYT2RW
C PARM BYTARW
C PARM RETCD
C* CALL API TO WRITE TO THE FILE
C WRTSF BEGSR
C Z-ADD256 BYT2RW SET WRITE LENGTH=256
C CALL ’QHFWRTSF’PRWSF 50
C WRTEND ENDSR

Closing an optical file

This example closes an optical file.
* PARAMETER LIST FOR QHFCLOSF CALL
C PCLOSF PLIST
C PARM FHDLE 16
C PARM RETCD
C* CALL API TO CLOSE THE FILE
C CLOSF BEGSR
C CALL ’QHFCLOSF’PCLOSF 50
C CLSEND ENDSR
C* END OF SAMPLE RPG CALL TO THE HFS API

Related concepts:
Application programming interfaces

Tips: Optical device programming
The techniques in this topic are often helpful in designing custom optical programs for your business.

This topic describes how the optical file system manages file data so application programmers can
optimize their applications. Since applications have different requirements, this topic does not suggest the
best way to write an optical application. It does, however, provide explanations that all application
programmers can find useful.

Optical device programming 33

Use this topic to determine the best way to handle optical file management, either through the HFS or
UNIX-type APIs. Use this topic only for applications to directly attached optical support.

Note: Concepts in this topic do not apply to optical LAN support.

Media capacity and volume threshold
The optical file system provides a logical threshold capability to prevent applications from reaching the
absolute volume capacity. The logical threshold is defined when the volume is initialized, and is unique
for each volume. You can change this threshold by using the Change Optical Volume (CHGOPTVOL)
command.

Note: The logical volume threshold is applicable only for the high performance optical file system
(HPOFS) media format. For Universal Disk Format (UDF) media format, the logical volume
threshold is always 100% and cannot be changed.

You need to devise a strategy to deal with the situation when the media becomes full. This is especially
true when writing to Write Once Read Many (WORM) media. You might consider the following
questions:
v How should I use the volume threshold?
v What should I do when the volume is full?
v How can I prepare for a volume-full condition?

The logical volume threshold is applicable only for the HPOFS media format. For UDF media format, the
logical volume threshold is always 100% and cannot be changed.

The volume threshold is provided to allow applications to prepare for an actual volume-full condition.
When WORM media becomes full, there can be no further write operations. Depending on the
requirements of the application, the threshold can be used in various ways to prepare for the media
becoming physically full.

For example, an application might write groups of spooled files to optical disk. After each group is
written, an additional file might be written that contains an index to the spooled files just written.
Without the index, the spooled files can be useless. Unless the application can manage the media
capacity, the volume might run out of space before the index file can be written. One way to avoid
running out of space is to set the volume threshold to 99%. When the message No space available is
issued, the application can then increase the threshold to 100% and write any necessary additional files.

Media capacity management on a per-file basis
An application might need to manage the media capacity on a per-file basis.

The following methods help you determine if a file fits on a volume.
v Handle error on a close operation.

Assume an optical volume is initialized to a 95% threshold and an application writes files until the
volume threshold is reached. When the threshold is reached, the application will receive message
CPF1F61, No free space available on media. At this point, the volume threshold can be increased to
97% (or anything else up to 100%) by using the CHGOPTVOL command. You can then attempt to close
the file.

v Specify QALCSIZE on the Open Stream File HFS API.
Another method to determine if a file will fit on a volume is by specifying an allocation size
(QALCSIZE) on an open stream file. On an open stream file, the system can pass a value in attribute
QALCSIZE. This attribute is valid when the open operation is for create or replace; otherwise, it is
ignored. Specifying a value for QALCSIZE results in comparing the specified value against the space
available on the volume. If the space available is less than QALCSIZE, then the system issues message

34 System i: Programming Optical device programming

CPF1F61. The space available must exceed the QALCSIZE in order for the open operation to occur.
Only on the first open instance of a file honors this attribute. If specified by more than one opening of
a file, the system ignores the additional attributes.

Note: This does not actually allocate space on the optical volume at the time of the open operation. It
checks the volume to see if the number of requested bytes are available.

There are drawbacks to using this method:
1. You need to know the size of the file you are creating at the time you make the open request.
2. If multiple jobs are writing to the same media, there is no guarantee that by the time the data is

written, the space will still be available.
If the size of the file is known before the time the open request is made, and there will not be other
jobs writing to that volume during the time your file is open, this is an excellent method to check
media capacity before creating a file.

v Retrieve the space available on a volume.
Another method is to have the application retrieve the space available on the volume. You can do this
by using the Display Optical (DSPOPT) command through output file support. The output file can then
be read to retrieve the number of bytes that are assumed to be available on the media.

Expanding buffer I/O method
When you use the QOPT.IOMETH extended attribute to open a stream file through the hierarchical file
system (HFS), you can improve performance for applications that typically read portions, but not all, of
the data in large optical files. This method of input/output is referred to as expanding buffer I/O.

Expanding buffer I/O is available only to HFS API applications when accessing high performance optical
file system (HPOFS) or ISO 9660 formatted media. This attribute is ignored when the media format is
UDF.

Note: Using the HFS APIs, optical file data is buffered into a virtual optical file in IBM i main storage. If
expanding buffer I/O is not selected as an option, the size of this buffer is equal to the size of the
actual optical file. For example, a 100 MB file on optical media has a 100 MB buffer when the file is
opened through the HFS API Open Stream File. The performance cost for overhead operations
involving the optical buffer is proportional to the buffer size. The time it would take to read one
byte of a 100 MB file is substantially greater than reading one byte of a 50 KB file.

When an optical file is opened for expanding buffer I/O, the size of the buffer begins at zero and
expands as data is read into the buffer as requested by the application. The minimum amount of the size
expansion is 256 KB. The buffer expands only if the requested data is contained within a logical 256 KB
page that is not yet contained in the buffer. For these reasons, the amount of time it would take to read
one byte of a 100 MB file opened for expanding buffer I/O should be roughly identical to the time to
read one byte of a 50 KB file opened in the same manner.

Situations in which expanding buffer I/O is useful

Expanding buffer I/O should be considered as an option for improving the performance of the read
operation if any of the following conditions are met:
v The typical size of an optical file to be read is greater than 256 KB.
v The amount of data read from the optical file between the open and close stream file is a fraction of

the total file data. The exact fraction would be impossible to specify, but the performance
improvements that are achieved will be greater the smaller the fraction. For example, an application
that used expanding buffer I/O to read 25 KB of a 50 MB file would experience much greater
performance improvements than an application that read 45 MB of the same file. An application that
reads the entire 50 MB example file 40 KB at a time through multiple reads probably would not
experience any performance improvement using expanding buffer I/O.

Optical device programming 35

v The application will not issue the Set Stream File Size, Lock-Unlock Byte Range, or Write Stream file
APIs while the file is open for expanding buffer I/O.

Related reference:
“Extended attributes” on page 29
Extended attributes are special attributes for files and directories that are not standard and therefore not
recognized by the hierarchical file system (HFS). They are typically defined by a business application, but
some are recognized by the optical file system as having special meanings.

Forced buffered data APIs
Forced buffered data APIs synchronously force file and directory information. When you use the Force
Buffered Data (QHFFRCSF) or fsync() API, you can write optical file data to nonvolatile media while you
are writing optical file data to optical media.

When creating or updating optical files, the data is not guaranteed to exist on optical disk until the file is
successfully closed. Optical file data can, however, be synchronously written to nonvolatile storage using
either the QHFFRCSF or fsync() API. The type of nonvolatile storage is different depending on the optical
media format.

For the high performance optical file system (HPOFS), all file data will be written to the internal disk
storage. The data can then be recovered through a held optical file if a power loss or other unexpected
error occurred which prevented the file from being closed.

For Universal Disk Format (UDF), all file data is written to the optical disk when a force operation is
issued. No recovery is required if a power loss or other unexpected error occurs that prevents the file
from being closed. However, if write operations are issued after the data is forced and the close operation
is not successful, the file data is unpredictable. Because the write operations that follow the force
operation are asynchronous, the data might not be written to the optical disc.

Management of held optical files
Virtual files that are held due to an error while writing to optical media can be saved to another volume.
Held optical files are virtual files that were never successfully written to optical media.

A virtual file becomes held if an error occurs during the close operation of a file on a non-UDF formatted
volume. You can manage these virtual files by using application interfaces and optical utilities. No
creation of held files occurs for files that fail to archive on UDF formatted volumes.

Assume an optical volume is initialized to a 95% threshold and an application writes files until the
volume threshold is reached. When the threshold is reached, the application will receive message
CPF1F61, No free space available on media. In this example, the absolute volume capacity is reached
and the file is too large to fit on the volume. Because increasing the volume threshold will not help,
another solution is needed. When the close request fails, the virtual file becomes held. Using the Work
With Held Optical Files command, this virtual file can be saved to another volume. If you want, the file
can be saved under a different name. The save request can also be performed using a control file system
function.

Path names requirements
The term path name refers to a file-system name, volume name, directory name, and file name.

Path names for volumes in directly attached devices

In the path name for volumes in directly attached devices, the forward slash (/) is used as a separator
character. The path name must begin with a forward slash and contain no more than 294 characters. See
the following example for the format of a path name on a directly attached device:
/QOPT/VOL_NAME/DIRECTORY_NAME/SUB_DIR1/.../SUB_DIRn/FILE_NAME

36 System i: Programming Optical device programming

QOPT refers to the optical file system. You must use it to qualify the optical file system when issuing calls
to optical support through the HFS API or the Unix-type APIs. The portion of the path following the file
system name cannot contain more than 289 characters. For the rules for using path names, see the
following items:
v A path name can consist of any EBCDIC characters, except the characters that are listed below:

– X'00' through X'3F'
– X'FF'
– The quotation mark (")
– The asterisk (*)
– The less than (<) and greater than (>) signs
– The question mark (?)
– The hyphen (-)
– The back slash (\)
When accessing UDF formatted volumes through the integrated file system APIs, the only characters
not valid are X’00’ through X’3F’, X’FF’, and back slash.

v The volume identifier can be a maximum of 32 characters for HPOFS media format, and a maximum
of 30 characters for UDF media format. The identifier must contain only alphabetic characters (A
through Z), numeric characters (0 through 9), a hyphen (-), an underscore(_), or a period (.). The first
character must be alphabetic or numeric, and the identifier cannot contain blanks.

v You can include one or more directories in the path name, but it is not required. The total number of
characters in all of the subdirectories together cannot exceed 256 characters.

v The file name is the last element in the path. The directory length in the path limits the file name
length. The directory name and file name combined cannot exceed 256 characters. The preceding
forward slash of the directory name is considered part of this 256 characters.

Path names for volumes in LAN-attached devices

For a path name on an optical volume in a LAN-attached optical device, the forward slash (/) is used as
a separator character. The path name must begin with a forward slash and contain no more than 261
characters. See the following example for the format of a path name on an optical volume in a
LAN-attached optical device:
/QOPT/VOL_NAME/DIRECTORY_NAME/SUB_DIR1/.../SUB_DIRn/FILE_NAME

QOPT refers to the optical file system, and must be used to qualify the optical file system when issuing
calls to optical support through the HFS or integrated file system APIs. The portion of the path following
the file system name cannot contain more than 256 characters. For the rules for using path names on
LAN-attached devices, see the following items:

v See IBM 3995 Optical Library Dataserver Operator Guide for C-Series Models

for the allowed
characters for path names.

v The volume name is required and can contain a maximum of 32 characters.
v One or more directories can be included in the path name, but it is not required. The total number of

characters in all of the subdirectories together cannot exceed 254 characters.
v The file name is the last element in the path. The file name length is limited by the volume and

directory length in the path. The volume name, directory name, and file name combined cannot exceed
256 characters. The preceding forward slashes of the volume and directory name are considered part of
the 256 characters.

Examples: Moving spooled files to and from optical storage
These basic optical programming examples use APIs to create control language (CL) programs.

Optical device programming 37

http://www.ibm.com/support/docview.wss?uid=ssg1S7000193

Copy Stream File: Command source

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer
information” on page 47.

/***/
/* */
/* COMMAND NAME: CPYSTRF */
/* */
/* COMMAND TITLE: Copy Stream File */
/* */
/* COMMAND DESCRIPTION: Copy stream file between two file systems */
/* */
/***/

CMD PROMPT(’Copy Stream File’)

PARM KWD(SRCFILE) TYPE(*CHAR) LEN(300) MIN(1) +
MAX(1) PROMPT(’Source file name’) +

VARY(*YES)
PARM KWD(TGTFILE) TYPE(*CHAR) LEN(300) MIN(1) +

MAX(1) PROMPT(’Target file name’) +
VARY(*YES)

PARM KWD(RPLFILE)TYPE(*CHAR) LEN(6) DFT(*NO) +
SPCVAL((*NO ’0 ’) (*YES ’1 ’)) +
PROMPT(’Replace existing file’)

Copy Stream File: CL program source

This CL example can be used to copy stream files between file systems.
/**/
/* */
/* PROGRAM: CPYSTRF (Copy Stream File) */
/* */
/* */
/* DESCRIPTION: */
/* This is the CL program for sample CL command CPYSTRF. This */
/* program can be used to copy stream files between file */
/* systems. The actual copy is done by making a call to */
/* the HFS API program QHFCPYSF (Copy stream file). */
/* */
/* */
/* INPUT PARAMETERS: */
/* - Complete source path */
/* Example: /filesystem/directory1/directoryx/file */
/* /QDLS/DIRA/DIRB/FILE01 */
/* - or - */
/* /filesystem/volume/directory1/directoryx/file */
/* /QOPT/VOLN01/DIRA/DIRB/FILE01 */
/* - Complete target path */
/* Note: Except for the file the path must already exist. */
/* Example: /filesystem/directory1/directoryx/file */
/* /QDLS/DIRA/DIRB/FILE01 */
/* - or - */
/* /filesystem/volume/directory1/directoryx/file */
/* /QOPT/VOLN01/DIRA/DIRB/FILE01 */
/* - Replace existing target file */
/* *YES - replace existing file */
/* *NO - do not replace existing file */
/* */
/* */
/* LOGIC: */
/* - Separate source file length and value */
/* - Ensure source path is converted to upper case */
/* - Separate target file length and value */
/* - Ensure target path is converted to upper case */
/* - Call copy stream file */

38 System i: Programming Optical device programming

/* */
/* */
/* EXAMPLE: */
/* The example will copy document THISWEEK from folder BILLS */
/* to optical volume YEAR1993. The document will be put into */
/* directory /BILLS/DEC as file WEEK50. */
/* Folders are stored in file system DLS (document library services)*/
/* */
/* CPYSTRF SRCFILE(’/QDLS/BILLS/THISWEEK’) */
/* TGTFILE(’/QOPT/YEAR1993/BILLS/DEC/WEEK50’) */
/* RPLFILE(*NO) */
/* */
/**/

PGM PARM(&SRCFILE &TGFILE &CPYINFO);

/**/
/* Input parameters */
/**/
DCL VAR(&SRCFILE); TYPE(*CHAR) LEN(300)
DCL VAR(&TGTFILE); TYPE(*CHAR) LEN(300)
DCL VAR(&CPYINFO); TYPE(*CHAR) LEN(6)

/**/
/* Program variables */
/**/
DCL VAR(&SRCLEN); TYPE(*CHAR) LEN(4) +

VALUE(X’00000000’)
DCL VAR(&TGTLEN); TYPE(*CHAR) LEN(4) +

VALUE(X’00000000’)
DCL VAR(&ERRCODE); TYPE(*CHAR) LEN(4) +

VALUE(X’00000000’)
DCL VAR(&COUNT); TYPE(*DEC) LEN(5 0)
DCL VAR(&TBL); TYPE(*CHAR) LEN(10) +

VALUE(’QSYSTRNTBL’)
DCL VAR(&LIB); TYPE(*CHAR) LEN(10) +

VALUE(’QSYS ’)

/**/
/* Monitor for any messages sent to this program */
/**/
MONMSG MSGID(CPF0000) EXEC(GOTO CMDLBL(DONE))
MONMSG MSGID(OPT0000) EXEC(GOTO CMDLBL(DONE))

/**/
/* The HFS API needs to be passed the file and the file length. */
/* By coding the VARY(*YES) parameter on the command definition */
/* for the source and target file we are passed the length of */
/* entered value as a 2 byte binary field which precedes the */
/* actual value entered. */
/**/

/**/
/* Separate source file length and file value. Ensure source */
/* file is upper case. */
/**/
CHGVAR VAR(%SST(&SRCLEN 3 2)) VALUE(%SST(&SRCFILE 1 2))
CHGVAR VAR(%SST(&SRCFILE 1 300)) VALUE(%SST(&SRCFILE 3 298))

CHGVAR VAR(&COUNT); VALUE(%BIN(&SRCLEN 3 2))
CALL QDCXLATE (&COUNT +

&SRCFILE +
&TBL +
&LIB)

/**/
/* Separate target file length and file value. Ensure target */
/* file is upper case. */

Optical device programming 39

/**/
CHGVAR VAR(%SST(&TGTLEN 3 2)) VALUE(%SST(&TGTFILE 1 2))
CHGVAR VAR(%SST(&TGTFILE 1 300)) VALUE(%SST(&TGTFILE 3 298))

CHGVAR VAR(&COUNT); VALUE(%BIN(&TGTLEN 3 2))
CALL QDCXLATE (&COUNT +

&TGTFILE +
&TBL +
&LIB)

/**/
/* Call the copy stream file HFS API to copy the source file to */
/* the target file. */
/**/
CALL QHFCPYSF (&SRCFILE +

&SRCLEN +
&CPYINFO +
&TGTFILE +
&TGTLEN +
&ERRCODE)

SNDPGMMSG MSG(’CPYSTRF completed successfully’)
RETURN

DONE:
SNDPGMMSG MSGID(OPT0125) MSGF(QSYS/QCPFMSG) +

MSGDTA(CPYSTRF) MSGTYPE(*ESCAPE)
RETURN

ENDPGM

Copy Database File to Optical: command source
/**/
/* */
/* COMMAND NAME: CPYDBOPT */
/* */
/* COMMAND TITLE: Copy Database to Optical */
/* */
/* DESCRIPTION: Copy database file to an optical file */
/* */
/**/
CPYDBOPT: CMD PROMPT(’Copy DB to Optical’)

PARM KWD(FRMFILE) TYPE(QUAL1) MIN(1) +
PROMPT(’From file’)

PARM KWD(FRMMBR) TYPE(*NAME) LEN(10) +
SPCVAL((*FIRST)) EXPR(*YES) MIN(1) +

PROMPT(’From member’)

PARM KWD(TGTFILE) TYPE(*CHAR) LEN(300) +
MIN(1) EXPR(*YES) +
PROMPT(’Target file’)

QUAL1: QUAL TYPE(*NAME) LEN(10)
QUAL TYPE(*NAME) LEN(10) DFT(*LIBL) +

SPCVAL((*LIBL) (*CURLIB)) +
PROMPT(’Library’)

Copy Database File to Optical: CL program source

This CL example can be used to copy a member from a database file to optical storage.
/**/
/* */
/* PROGRAM: CPYDBOPT (Copy Database to Optical) */
/* */

40 System i: Programming Optical device programming

/* */
/* DESCRIPTION: */
/* This is the CL program for sample CL command CPYDBOPT. This */
/* program can be used to copy a member from a database file to */
/* optical storage. */
/* */
/* */
/* DEPENDENCIES: */
/* - The sample command and program CPYSTRF exists. */
/* - There is an existing folder named OPTICAL.FLR */
/* This folder is used for temporary storage when copying */
/* from database to optical. It is assumed that this folderis */
/* empty and that the user will delete anything which gets */
/* copied into it. */
/* */
/* */
/* INPUT PARAMETERS: */
/* -From file */
/* - From member */
/* - Complete target path */
/* Assumption: - Except for the file the complete path currently */
/* exists. */
/* - File does not currently exist. */
/* Example: /filesystem/volume/directory1/directoryx/file */
/* /QOPT/VOLN01/DIRA/DIRB/FILE01 */
/* */
/* */
/* LOGIC: */
/* - Separate file and library */
/* - Copy file to folder */
/* - Build source file */
/* - Copy file from Document Library Service (DLS) to OPT */
/* */
/* */
/* EXAMPLE: */
/* The example will copy member MYMEMBER in file MYFILE in library */
/* MYLIB to optical storage. It will be stored as file */
/* MYFILE.MYMEMBER in directory /MYLIB on volume VOLN01. */
/* */
/* CPYDBOPT FRMFILE(MYLIB/MYFILE) */
/* FRMMBR(MYMEMBER) */
/* TGTFILE(’/QOPT/VOLN01/MYLIB/MYFILE.MYMEMBER’) */
/* */
/**/

PGM PARM(&FROMFILE &FROMMBR &TGTFILE);

/**/
/* Input parameters */
/**/
DCL VAR(&FROMFILE); TYPE(*CHAR) LEN(20)
DCL VAR(&FROMMBAR); TYPE(*CHAR) LEN(10)
DCL VAR(&TGTFILE); TYPE(*CHAR) LEN(300)

/**/
/* Program variables */
/**/
DCL VAR(&FILE); TYPE(*CHAR) LEN(10)
DCL VAR(&LIB); TYPE(*CHAR) LEN(10)
DCL VAR(&SRCFILE); TYPE(*CHAR) LEN(28) +
VALUE(’/QDLS/OPTICAL.FLR/xxxxxxxxxx’)

/**/
/* Monitor for all messages sent to this program */
/**/
MONMSG MSGID(CPF0000) EXEC(GOTO CMDLBL(DONE))
MONMSG MSGID(IWS0000) EXEC(GOTO CMDLBL(DONE))
MONMSG MSGID(OPT0000) EXEC(GOTO CMDLBL(DONE))

Optical device programming 41

/**/
/* Separate file and library names then copy the DB file to a */
/* PC folder. */
/**/
CHGVAR VAR(&FILE); VALUE(%SST(&FROMFILE 1 10))
CHGVAR VAR(&LIB); VALUE(%SST(&FROMFILE 11 10))

CPYTOPCD FROMFILE(&LIB/&FILE); +
TOFLR(OPTICAL.FLR) +
FROMMBR(&FROMMBR); +
TRNTBL(*NONE)

/**/
/* Complete the source file path name with the member and copy */
/* the stream file from DLS to optical */
/**/
CHGVAR VAR(%SST(&SRCFILE 19 10)) VALUE(&FROMMBR);

CPYSTRF SRCFILE(&SRCFILE); +
TGTFILE(&TGTFILE);

SNDPGMMSG MSG(’CPYDBOPT completed successfully’)
RETURN

DONE:
SNDPGMMSG MSGID(OPT0125) MSGF(QSYS/QCPFMSG) +

MSGDTA(CPYDBOPT) MSGTYPE(*ESCAPE)
RETURN

ENDPGM

Copy Spooled File to Optical: command source
/**/
/* */
/* COMMAND NAME: CPYSPLFOPT */
/* */
/* COMMAND TITLE: Copy Spooled File to Optical */
/* */
/* DESCRIPTION: Copy spooled file to an optical file */
/* */
/**/
CPYSPLFO: CMD PROMPT(’Copy Spooled File to Optical’)

PARM KWD(FRMFILE) TYPE(*NAME) LEN(10) +
MIN(1) +
PROMPT(’From file’)

PARM KWD(TGTFILE) TYPE(*CHAR) LEN(300) +
MIN(1) EXPR(*YES) +

PROMPT(’Target file’)

PARM KWD(JOB) TYPE(Q2) +
DFT(*) SNGVAL(*) +
MIN(0) MAX(1) +
PROMPT(’Jobname’)

PARM KWD(SPLNBR) TYPE(*CHAR) LEN(5) +
SPCVAL((*ONLY) (*LAST)) DFT(*ONLY) +
PROMPT(’Spool number’)

Q2: QUAL TYPE(*NAME) LEN(10) +
MIN(1) +

EXPR(*YES)

QUAL TYPE(*NAME) LEN(10) +

42 System i: Programming Optical device programming

EXPR(*YES) +
PROMPT(’User’)

QUAL TYPE(*CHAR) LEN(6) +
RANGE(000000 999999) +

EXPR(*YES) FULL(*YES) +
PROMPT(’Number’)

Copy Spooled File to Optical: CL program source

This CL example can be used to copy a spooled file to optical storage.
/***/
/* */
/* PROGRAM: CPYSPLFOPT (Copy Spooled File to Optical) */
/* */
/* */
/* DESCRIPTION: */
/* This is the CL program for sample CL command CPYSPLFOPT. This */
/* program can be used to copy a spooled file to optical storage. */
/* */
/* */
/* DEPENDENCIES: */
/* - The sample command and program CPYDBOPT exists. */
/* - The sample command and program CPYSTRF exists. */
/* - There is an existing folder named OPTICAL.FLR */
/* This folder is used for temporary storage when copying */
/* from spooled files to optical. It is assumed that this folder */
/* is empty and that the user will delete anything which gets */
/* copied into it. */
/* - This CL program uses the CL command CPYSPLF to copy the */
/* spooled files to a physical file before copying them to */
/* optical. When you use the CPYSPLF command to copy */
/* a spooled file to a physical file, certain information can */
/* be lost or changed. Before using this command please */
/* refer to the CL Reference Book for the limitations and */
/* restrictions of the CPYSPLF command. */
/* - There is an existing file named LISTINGS in library QUSRSYS. */
/* It is assumed that this file contains no existing members */
/* and that any members that are created will be deleted by the */
/* user. The record length of the file is 133. */
/* */
/* */
/* INPUT PARAMETERS: */
/* - From file */
/* Specify the name of the spooled file to be copied. */
/* - Target file */
/* Assumption: Except for the file the path must already exist. */
/* Example: /filesystem/volume/directory1/directoryx/file */
/* /QOPT/VOLN01/DIRA/DIRB/FILE01 */
/* - Job */
/* Specify the name of the job that created the spooled file */
/* which is to be copied. The possible values are: */
/* The job that issued this command is the job that */
/* created the spooled file. */
/* - or - */
/* job-name Specify the name of the job that created the */
/* spooled file. */
/* user-name Specify the user name that identifies the user */
/* profile under which the job was run. */
/* job-number Specify the system assigned job number. */
/* - Spool number */
/* If there are multiple files for a job specify the files */
/* spool number. */
/* */
/* */
/* LOGIC: */

Optical device programming 43

/* - Separate job into its three parts: job name, user, job number */
/* - Copy spooled files to database */
/* - Copy database to optical */
/* */
/* */
/* EXAMPLE: */
/* The example will copy spooled file QSYSPRT spool number 2 which */
/* the current process has printed to optical storage. */
/* It will be stored on volume YEAR92 in directory */
/* /DEC/WEEK01/MONDAY as file INVOICES */
/* */
/* CPYSPLFO SPLFILE(QSYSPRT) */
/* TGTFILE(’/QOPT/YEAR92/DEC/WEEK01/MONDAY/INVOICES’) */
/* SPLNBR(2) */
/* */
/***/

PGM PARM(&FROMFILE &TGTFILE &JOB &SPLNBR);

/**/
/* Input parameters */
/**/
DCL VAR(&FROMFILE); TYPE(*CHAR) LEN(10)
DCL VAR(&TGTFILE); TYPE(*CHAR) LEN(300)
DCL VAR(&JOB); TYPE(*CHAR) LEN(26)
DCL VAR(&SPLNBR); TYPE(*CHAR) LEN(5)

/**/
/* Program variables */
/**/
DCL VAR(&JNAME); TYPE(*CHAR) LEN(10)
DCL VAR(&JUSER); TYPE(*CHAR) LEN(10)
DCL VAR(&JNUM); TYPE(*CHAR) LEN(6)

/**/
/* Monitor for all messages that can be signalled */
/**/
MONMSG MSGID(CPF0000) EXEC(GOTO CMDLBL(DONE))
MONMSG MSGID(OPT0000) EXEC(GOTO CMDLBL(DONE))

/**/
/* Separate each part of the job name and call the copy spool */
/* file command using the current job or the specified name. */
/**/
CHGVAR VAR(&JNAME); VALUE(%SST(&JOB 1 10))
CHGVAR VAR(&JUSER); VALUE(%SST(&JOB 11 10))
CHGVAR VAR(&JNUM); VALUE(%SST(&JOB 21 6))

IF COND(&JNAME *EQ ’*’) THEN(DO)
CPYSPLF FILE(&FROMFILE); +

TOFILE(QUSRSYS/LISTINGS) +
TOMBR(&FROMFILE); +
SPLNBR(&SPLNBR); +
CTLCHAR(*FCFC)

ENDDO

ELSE DO
CPYSPLF FILE(&FROMFILE); +

TOFILE(QUSRSYS/LISTINGS) +
TOMBR(&FROMFILE); +
JOB(&JNUM/&JUSER/&JNAME); +
SPLNBR(&SPLNBR); +
CTLCHAR(*FCFC)

ENDDO

/**/
/* Copy the database file to optical storage */
/**/

44 System i: Programming Optical device programming

CPYDBOPT FRMFILE(QUSRSYS/LISTINGS) +
FRMMBR(&FROMFILE); +
TGTFILE(&TGTFILE);

SNDPGMMSG MSG(’CPYSPLFOPT completed successfully’)
RETURN

DONE:
SNDPGMMSG MSGID(OPT0125) MSGF(QSYS/QCPFMSG) +

MSGDTA(CPYSPLFOPT) MSGTYPE(*ESCAPE)

RETURN

ENDPGM

Copy Optical to Database: command source
/**/
/* */
/* COMMAND NAME: CPYOPTDB */
/* */
/* COMMAND TITLE: Copy Optical to Database */
/* */
/* DESCRIPTION: Copy optical file to database file */
/* */
/**/
CPYOPTDB: CMD PROMPT(’Copy Optical to DB ’)

PARM KWD(SRCFILE) TYPE(*CHAR) LEN(300) +
MIN(1) EXPR(*YES) +
PROMPT(’Source file’)

PARM KWD(TOFILE) TYPE(QUAL1) MIN(1) +
PROMPT(’To file’)

PARM KWD(TOMBR) TYPE(*NAME) LEN(10) +
SPCVAL((*FIRST)) EXPR(*YES) MIN(1) +
PROMPT(’To member’)

QUAL1: QUAL TYPE(*NAME) LEN(10)

QUAL TYPE(*NAME) LEN(10) DFT(*LIBL) +
SPCVAL((*LIBL) (*CURLIB)) +

PROMPT(’Library’)

Copy Optical to Database: CL program source

This CL example can be used to copy a file from an optical volume to a member of an existing file on a
database.
/**/
/* */
/* PROGRAM: CPYOPTDB (Copy Optical to Database) */
/* */
/* */
/* DESCRIPTION: */
/* This is the CL program for sample CL command CPYOPTDB. This */
/* program can be used to copy a file which is on optical */
/* storage to a member of an existing file. */
/* */
/* */
/* DEPENDENCIES: */
/* - The sample command and program CPYSTRF exist. */
/* - There is an existing folder named OPTICAL.FLR */
/* This folder is used for temporary storage when copying */
/* from optical to database. It is assumed that this folder is */
/* empty and that the user will delete anything which gets */

Optical device programming 45

/* copied into it. */
/* */
/* */
/* INPUT PARAMETERS: */
/* - Complete source path */
/* Example: /filesystem/volume/directory1/directoryx/file */
/* /QOPT/VOLN01/DIRA/DIRB/FILE01 */
/* - To file */
/* Assumptions: */
/* - Target library already exists. */
/* - Target file already exists and has the same attributes */
/* as that which contained the original file. */
/* - To member */
/* */
/* */
/* LOGIC: */
/* - Build target file */
/* - Copy file from OPT to Document Library Services (DLS) */
/* - Separate file and library */
/* - Copy from folder to database file */
/* */
/* */
/* EXAMPLE: */
/* The example will copy file invoices which is in directory */
/* DEC on volume YEAR1992. INVOICES was originally a spooled file */
/* which had a record length of 133. It will be placed in file */
/* LISTINGS which is in library QUSRSYS as member INVOCDEC92. */
/* */
/* CPYDBOPT TGTFILE(’/QOPT/YEAR1992/DEC/INVOICES’) */
/* TOFILE(QUSRSYS/LISTINGS) */
/* TOMBR(INVOCDEC92) */
/* */
/**/

PGM PARM(&SRCFILE &TOFILE &TOMBR);

/***/
/* Input parameters */
/***/
DCL VAR(&SRCFILE); TYPE(*CHAR) LEN(300)
DCL VAR(&TOFILE); TYPE(*CHAR) LEN(20)
DCL VAR(&TOMBR); TYPE(*CHAR) LEN(10)

/***/
/* Program variables */
/***/
DCL VAR(&FILE); TYPE(*CHAR) LEN(10)
DCL VAR(&LIB); TYPE(*CHAR) LEN(10)
DCL VAR(&TGTFILE); TYPE(*CHAR) LEN(28) +

VALUE(’/QDLS/OPTICAL.FLR/xxxxxxxxxx’)

/***/
/* Monitor for all messages signalled */
/***/
MONMSG MSGID(CPF0000) EXEC(GOTO CMDLBL(DONE))
MONMSG MSGID(IWS0000) EXEC(GOTO CMDLBL(DONE))
MONMSG MSGID(OPT0000) EXEC(GOTO CMDLBL(DONE))

/***/
/* Build the target file name and copy the stream file from */
/* optical to DLS */
/***/
CHGVAR VAR(%SST(&TGTFILE 19 10)) VALUE(&TOMBR);

CPYSTRF SRCFILE(&SRCFILE); +
TGTFILE(&TGTFILE);

/***/

46 System i: Programming Optical device programming

/* Separate the file and library names. Copy the folder to DB. */
/***/
CHGVAR VAR(&FILE); VALUE(%SST(&TOFILE 1 10))
CHGVAR VAR(&LIB); VALUE(%SST(&TOFILE 11 10))

CPYFRMPCD FROMFLR(OPTICAL.FLR) +
TOFILE(&LIB/&FILE); +
FROMDOC(&TOMBR); +
TOMBR(&TOMBR); +
TRNTBL(*NONE)

SNDPGMMSG MSG(’CPYOPTDB completed successfully’)
RETURN

DONE:
SNDPGMMSG MSGID(OPT0125) MSGF(QSYS/QCPFMSG) +

MSGDTA(CPYOPTDB) MSGTYPE(*ESCAPE)
RETURN

ENDPGM

Related information for Optical device programming
Web sites and other information center topic collections contain information that relates to the Optical
device programming topic collection. You can view or print any of the PDF files.

Web sites

v Optical Storage (www-03.ibm.com/servers/eserver/iseries/optical)
v Optical Storage: System i application software (www.ibm.com/servers/eserver/iseries/optical/

applications/applications.htm)

Other information
v Integrated file system
v Optical storage
v Application programming interfaces
Related reference:
“PDF file for Optical device programming” on page 1
You can view and print a PDF file of this information.

Code license and disclaimer information
IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:
1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

Optical device programming 47

http://www-03.ibm.com/servers/eserver/iseries/optical/
http://www.ibm.com/servers/eserver/iseries/optical/applications/applications.htm

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

48 System i: Programming Optical device programming

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 2006, 2008 49

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This Optical device programming publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of IBM i5/OS.

50 System i: Programming Optical device programming

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

BladeCenter
i5/OS
IBM
IBM (logo)
Integrated Language Environment
System i
System x

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE
PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 51

52 System i: Programming Optical device programming

IBM®

Printed in USA

	Contents
	Optical device programming
	PDF file for Optical device programming
	Optical device programming concepts
	Integrated file system and optical device programming
	Hierarchical file system and optical device programming
	Volume, directory, and file considerations

	Integrated file system programming for IBM i
	Integrated file system APIs
	Integrated file system generic commands
	Examples: Integrated file system

	Hierarchical file system programming
	Hierarchical File System APIs
	Control file system functions
	Standard attributes
	Extended attributes
	Copied file attributes using hierarchical file system
	Example: Programming Hierarchical File System APIs for the optical file system

	Tips: Optical device programming
	Media capacity and volume threshold
	Media capacity management on a per-file basis
	Expanding buffer I/O method
	Forced buffered data APIs
	Management of held optical files
	Path names requirements
	Examples: Moving spooled files to and from optical storage

	Related information for Optical device programming

	Appendix. Notices
	Programming interface information
	Trademarks
	Terms and conditions

