
IBM i

Programming
IBM Toolbox for Java
7.1

IBM

IBM i

Programming
IBM Toolbox for Java
7.1

IBM

Note
Before using this information and the product it supports, read the information in “Notices,” on
page 761.

This edition applies to IBM i 7.1 (product number 5770-SS1) and to all subsequent releases and modifications until
otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC)
models nor does it run on CISC models.

© Copyright IBM Corporation 1999, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

IBM Toolbox for Java 1
What's new for IBM i 7.1 1
PDF file for IBM Toolbox for Java 2
Installing and managing IBM Toolbox for Java . . . 2

Managing your IBM Toolbox for Java installation 3
Installing IBM Toolbox for Java 3
System properties 12

IBM Toolbox for Java classes. 21
Access classes 21
Commtrace classes 182
HTML Classes 190
ReportWriter classes 223
Resource classes 224
Security classes 227
Servlet classes 231
Utility classes 238
Vaccess classes 248

Graphical Toolbox and PDML 289
Setting up the Graphical Toolbox 295
Creating your user interface 297
Displaying your panels at runtime 300
Editing help documents generated by GUI
Builder 304
Using the Graphical Toolbox in a browser . . . 307
GUI Builder Panel Builder toolbar 311

IBM Toolbox for Java beans 313
JDBC 314

Enhancements to IBM Toolbox for Java JDBC
support for IBM i 7.1 314
Enhancements to IBM Toolbox for Java JDBC
support for IBM i 6.1 318
Enhancements to IBM Toolbox for Java JDBC
support for IBM i 5.4 321
IBM Toolbox for Java JDBC properties 326
JDBC SQL Types 343

Proxy Support 344
Secure Sockets Layer and Java Secure Socket
Extension. 349
IBM Toolbox for Java 2 Micro Edition 349

ToolboxME requirements 349
Downloading and setting up ToolboxME . . . 350
Concepts important for using ToolboxME . . . 350
ToolboxME classes. 351
Creating and running a ToolboxME program 362
ToolboxME working examples. 376

Extensible Markup Language components 377
Program Call Markup Language 377
Graphical Toolbox and PDML 402

Record Format Markup Language 408
XML parser and XSLT processor 417
Extensible Program Call Markup Language . . 418

Frequently asked questions (FAQ) 445
Tips for programming 445

Shutting down your Java program 445
Integrated file system path names for server
objects. 445
Managing connections in Java programs . . . 447
IBM i Java virtual machine 453
Independent auxiliary storage pool (ASP) . . . 457
Exceptions 458
Error events 459
Trace class 460
IBM i optimization 462
Performance improvements. 464
Client installation and update classes 465
AS400ToolboxJarMaker 466
Java national language support 467
Service and support for the IBM Toolbox for
Java 467

Code examples 468
Examples: Access classes 469
Examples: JavaBeans 555
Examples: Commtrace classes 562
Graphical Toolbox examples 562
Examples from the HTML classes 596
Examples: Program Call Markup Language
(PCML) 619
Examples: ReportWriter classes 628
Examples: Resource classes 645
Examples: RFML 649
Example: Using a profile token credential to
swap the IBM i thread identity 650
Examples from the servlet classes 651
Simple programming examples 678
Examples: Tips for programming 695
Examples: ToolboxME 696
Examples: Utility classes. 716
Examples: Vaccess classes 717
Examples: XPCML 747

Related information for IBM Toolbox for Java . . 757

Appendix. Notices 761
Programming interface information 763
Trademarks 763
Terms and conditions. 763

© Copyright IBM Corp. 1999, 2010 iii

|
||

iv IBM i: Programming IBM Toolbox for Java

IBM Toolbox for Java

IBM® Toolbox for Java™ is a set of Java classes that allow you to use Java programs to access data on
your system. You can use these classes to write client/server applications, applets, and servlets that work
with data on your system. You can also run Java applications that use the IBM Toolbox for Java classes
on the IBM i Java virtual machine (JVM).

IBM Toolbox for Java uses the IBM i Host Servers as access points to the system. Because IBM Toolbox
for Java uses communication functions built into Java, you do not need to use IBM i Access for Windows
to use IBM Toolbox for Java. Each server runs in a separate job on the server, and each server job sends
and receives data streams on a socket connection.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 760.

What's new for IBM i 7.1
Read about new or significantly changed information for the IBM Toolbox for Java topic collection.

The following changes have been made to IBM Toolbox for Java in IBM i 7.1:
v The licensed program product JC1 (IBM Toolbox for Java) no longer exists in IBM i 7.1. The product

software has been integrated into SS1 (product ID 5770-SS1) Option 3 . The same Java JAR files
continue to be made available in the same integrated file system directories as in the past, but now
they are all installed as part of 5770-SS1.

v The following classes have been added since the previous release of IBM i. All classes listed here are in
package "com.ibm.as400.access," unless otherwise noted.
– AS400JDBCArray class
– AS400JDBCArrayResultSet class
– ErrorCodeParameter class
– ObjectLockListEntry class
– UserObjectsOwnedList class
– UserObjectsOwnedListEntry class
– com.ibm.as400.security.auth.ProfileTokenProvider interface
– com.ibm.as400.security.auth.DefaultProfileTokenProvider class

v Significant enhancements were made to the following classes. All classes listed here are in package
"com.ibm.as400.access," unless otherwise noted.
– Many of the JDBC classes
– CommandCall and ProgramCall - new default thread-safety behavior, new methods
– IFSFile and IFSJavaFile - new methods
– AS400 - new system properties, new methods
– AS400ConnectionPool
– Trace
– DataArea
– SpooledFile

Obtaining IBM Toolbox for Java

IBM Toolbox for Java is available in the following forms:

© Copyright IBM Corp. 1999, 2010 1

|

|
|
|
|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

javadoc/com/ibm/as400/access/AS400JDBCArray.html
javadoc/com/ibm/as400/access/AS400JDBCArrayResultSet.html
javadoc/com/ibm/as400/access/ErrorCodeParameter.html
javadoc/com/ibm/as400/access/ObjectLockListEntry.html
javadoc/com/ibm/as400/access/UserObjectsOwnedList.html
javadoc/com/ibm/as400/access/UserObjectsOwnedListEntry.html
javadoc/com/ibm/as400/security/auth/ProfileTokenProvider.html
javadoc/com/ibm/as400/security/auth/DefaultProfileTokenProvider.html
javadoc/com/ibm/as400/access/CommandCall.html
javadoc/com/ibm/as400/access/ProgramCall.html
javadoc/com/ibm/as400/access/IFSFile.html
javadoc/com/ibm/as400/access/IFSJavaFile.html
javadoc/com/ibm/as400/access/AS400.html
javadoc/com/ibm/as400/access/AS400ConnectionPool.html
javadoc/com/ibm/as400/access/Trace.html
javadoc/com/ibm/as400/access/DataArea.html
javadoc/com/ibm/as400/access/SpooledFile.html

v The IBM Toolbox for Java JAR files are installed in the integrated file system of IBM i, under directory
/QIBM/ProdData/OS400/jt400/.

v IBM Toolbox for Java is also available in an open source version. You can download the code and get

more information from the JTOpen

Web site.

How to see what's new or changed

To help you see where technical changes have been made, the information center uses:
v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

In PDF files, you might see revision bars (|) in the left margin of new and changed information.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for IBM Toolbox for Java
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select IBM Toolbox for Java (about 3100 KB).

You can view or download these related topic PDFs:
v IBM Developer Kit for Java (4585 KB)
v System i® Debugger (134 KB)

Other information

You can also download a zipped package of the IBM Toolbox for Java topic that includes the Javadocs at

the IBM Toolbox for Java and JTOpen Web site .

Note: The information in the zipped package has links to documents that are not included in the zipped
package, so these links do not work.

Saving PDF files

To save a PDF on your workstation for viewing or printing:
1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) .

Installing and managing IBM Toolbox for Java
Using IBM Toolbox for Java makes it easier to write client Java applets, servlets, and applications that
access system resources, data, and programs.

2 IBM i: Programming IBM Toolbox for Java

http://www.ibm.com/systems/i/software/toolbox/
http://www.ibm.com/servers/eserver/iseries/toolbox/downloads.html
http://www.adobe.com/products/acrobat/readstep.html

Managing your IBM Toolbox for Java installation
You need to install IBM Toolbox for Java only on client systems that use it, or in a location on your
network where your clients can access it. Your clients can be personal computers, dedicated workstations,
or IBM i systems. It is important to remember that you can configure an IBM i server or a partition of the
server to be a client. In the latter case, you need to install IBM Toolbox for Java on the client partition of
the server.

You can use any of the following methods (alone or in combination) to install and manage IBM Toolbox
for Java:
v Individual management to install and individually manage IBM Toolbox for Java on each client
v Network management of a single installation by using your network to install and manage a single,

shared installation of IBM Toolbox for Java on a server

The following sections briefly explain how each method affects both performance and manageability.
How you choose to develop your Java applications and manage your resources determines which of the
methods (or which combination of methods) you use.

Individual management

You can choose to individually manage your IBM Toolbox for Java installations on individual clients. The
main advantage of installing IBM Toolbox for Java on individual clients is that it reduces the time that a
client takes to start an application that uses IBM Toolbox for Java classes.

The main disadvantage is managing those installations individually. Either a user or an application that
you create must track and manage which version of IBM Toolbox for Java is installed on each
workstation.

Network management of a single installation

You can also use your network to install and manage a single copy of IBM Toolbox for Java on a server
that all your clients can access. This kind of network installation provides the following advantages:
v All clients use the same version of IBM Toolbox for Java
v Updating the single installation of IBM Toolbox for Java benefits all clients
v Individual clients have no maintenance issues, other than setting the same initial CLASSPATH

This kind of installation also has the disadvantage of increasing the time that a client takes to start a IBM
Toolbox for Java application. You must also enable your client CLASSPATH to point to your server. You
can use NetServer, which is integrated into IBM i, or a different method that enables you to access files
on the system, such as IBM i Access for Windows.

Installing IBM Toolbox for Java
How you install IBM Toolbox for Java depends on how you want to manage your installation. Use these
topics to install IBM Toolbox for Java.

IBM i requirements for IBM Toolbox for Java
This topic details the requirements that your environment must meet in order use IBM Toolbox for Java.

Note: Before you use IBM Toolbox for Java, make sure to address the workstation requirements that
pertain to your environment.

Required IBM i options:

To run IBM Toolbox for Java in a client/server environment, you must enable the QUSER user profile,
start the host servers, and have TCP/IP running.

IBM Toolbox for Java 3

v The QUSER user profile must be enabled in order to start the host servers.
v Host servers listen for and accept connection requests from clients. IBM i Host Servers option is

included with the base option of IBM i. For more information, see Host server administration.
v TCP/IP support, which is integrated into IBM i, allows you to connect your server to a network. For

more information, see TCP/IP.

Starting required IBM i options

From a command line, start the required IBM i options by completing the following steps:
1. Ensure that the QUSER profile is enabled.
2. To start the IBM i host servers, use the CL Start Host Server command. Type STRHOSTSVR *ALL

and press ENTER.
3. To start the TCP/IP distributed data management (DDM) server, use the CL Start TCP/IP Server

command. Type STRTCPSVR SERVER(*DDM) and press ENTER.

Determining if IBM Toolbox for Java is installed on your system:

To see if IBM Toolbox for Java is already installed on your IBM i server, complete the steps in this topic.
1. In System i Navigator, select and sign on to the system that you want to use.
2. In the Function Tree (the left pane), expand the system, then expand Configuration and Service.
3. Expand Software, then expand Installed Products.
4. In the Details pane (the right pane), see if product 5770-SS1 option 3 is installed. If you see this

product and option combination, the IBM Toolbox for Java is installed on the selected server.

Note: You can also find out if IBM Toolbox for Java is installed by using the CL Go to Menu
command (GO MENU(LICPGM)), Option 11.

If IBM Toolbox for Java is not installed, you can install the IBM Toolbox for Java by installing option 3 of
product 5770-SS1.

Checking the QUSER profile:

The IBM i Host Servers start under the QUSER user profile, so you first need to ensure that the QUSER
profile is enabled in order to run IBM Toolbox for Java in a client/server environment.

Check the QUSER profile

To use the command line to check the QUSER profile, complete the following steps:
1. On a command line, type DSPUSRPRF USRPRF(QUSER) and press Enter.
2. Make sure that the Status is *ENABLED. If the profile status is not *ENABLED, change the QUSER

profile.

Changing the QUSER user profile:

If the QUSER profile is not *ENABLED, you must enable it to start the IBM i Host Servers. Also, the
QUSER profile password cannot be *NONE. If this is true, you must reset it.

To use the command line to enable the QUSER profile, complete the following steps:
1. Type CHGUSRPRF USRPRF(QUSER) and press ENTER.
2. Change the Status field to *ENABLED and press ENTER.

The QUSER user profile is now ready to start the IBM i Host Servers.

4 IBM i: Programming IBM Toolbox for Java

|
|

|
|

Dependencies on other licensed programs:

Depending on how you want to use IBM Toolbox for Java, you may need to install other licensed
programs.

Spooled file viewer

When you want to use the spooled file viewer functions (SpooledFileViewer class) of IBM Toolbox for
Java, ensure that you have installed host option 8 (AFP Compatibility Fonts) on your server.

Note: SpooledFileViewer, PrintObjectPageInputStream, and PrintObjectTransformedInputStream classes
work only when connecting to V4R4 or later systems.

Secure Sockets Layer

When you want to use Secure Sockets Layer (SSL), ensure that you have installed the following:
v IBM HTTP Server for i licensed program, 5770-DG1
v IBM i Option 34 (Digital Certificate Manager)

For more information about SSL, see “Secure Sockets Layer and Java Secure Socket Extension” on page
349.

HTTP server for using applets, servlets, or SSL

If you want to use applets, servlets, or SSL on the IBM i server, you must set up an HTTP server and
install the class files on the system. For more information about the IBM HTTP Server for i, see the HTTP

Server

Web site.

For information about the Digital Certificate Manager and how to create and work with digital
certificates using the IBM HTTP Server, see Digital Certificate Management.

Compatibility with different levels of IBM i:

Because you can use IBM Toolbox for Java both on your server and your client, the compatibility issues
affect both running on a server and connecting from a client back to a server.

Using IBM Toolbox for Java to connect from a client back to the server

You can use different versions of IBM Toolbox for Java on a client and on the server to which you are
connecting. To use IBM Toolbox for Java to access data and resources on an IBM i server, the server to
which you are connecting must be running one of the following:
v IBM i 7.1
v IBM i 6.1
v IBM i 5.4

The following table shows the compatibility requirements for connecting back to different versions of
IBM i.

Note: IBM Toolbox for Java does not support forward compatibility. You cannot install IBM Toolbox for
Java on or use it to connect to a server that runs a more recent version of IBM i. For example, if
you are using the version of IBM Toolbox for Java that ships with IBM i 5.2, you cannot connect to
a server that runs IBM i 5.4.

IBM Toolbox for Java 5

|

http://www.ibm.com/systems/i/software/http/docs/doc.html
http://www.ibm.com/systems/i/software/http/docs/doc.html

LPP Ships with IBM i Connects back to IBM i

5722-JC1 5.3 5.1 and later

5722-JC1 5.4 5.2 and later

5761-JC1 6.1 5.3 and later

5770-SS1 7.1 5.4 and later

Native optimizations when running on the IBM i JVM:

Native optimizations are a set of functions that make the IBM Toolbox for Java classes work the way a
user would expect them to work when running on IBM i. The optimizations affect operation of IBM
Toolbox for Java only when running on the IBM i JVM.

The IBM Toolbox for Java optimizations when running on IBM i are:
v Signon: When no userid or password is specified in the AS400 object, the userid and password of the

current job are used
v Directly calling IBM i APIs instead of making socket calls to host servers:

– Record-level database access, data queues and user space when security requirements are met.
– Program call and command call when security requirements and thread safety requirements are met.

Note: For best performance, set your JDBC driver property to use the native driver when the Java
program and database file are on the same server.

No change to the Java application is needed to get the optimizations. IBM Toolbox for Java automatically
enables the optimizations when appropriate.

In order to gain the performance improvements, you need to make sure to use the JAR file that includes
IBM i native optimizations. For more information, see Note 1 in JAR files.

When you do not use the JAR file that includes IBM i native optimizations, IBM Toolbox for Java works
as if it is running on a client.

ToolboxME requirements:

Your workstation, wireless device, and server must meet certain requirements (listed below) for
developing and running IBM Toolbox for Java 2 Micro Edition applications.

Although Toolbox ME is considered a part of IBM Toolbox for Java, it is not included in the licensed
product. ToolboxME (jt400Micro.jar) is included in the open source version of Toolbox for Java, called
JTOpen. You must separately download and set up ToolboxME, which is contained in JTOpen.

Requirements

To use ToolboxME, your workstation, Tier0 wireless device, and server must meet the following
requirements.

Workstation requirements

Workstation requirements for developing ToolboxME applications:
v A supported version of Java Standard Edition
v Java virtual machine for wireless devices
v Wireless device simulator or emulator

6 IBM i: Programming IBM Toolbox for Java

|||

Wireless device requirements

The only requirement for running ToolboxME applications on your Tier0 device is using a Java virtual
machine for wireless devices.

Server requirements

Server requirements for using ToolboxME applications:
v MEServer class, which is included in IBM Toolbox for Java or the latest version of JTOpen
v IBM i requirements for IBM Toolbox for Java

Workstation requirements for IBM Toolbox for Java
Ensure that your workstation meets the following requirements.

Note: Before you use IBM Toolbox for Java, make sure to address the IBM i requirements that pertain to
your environment.

Workstation requirements for running IBM Toolbox for Java applications:

To develop and run IBM Toolbox for Java applications, ensure that your workstation meets the following
requirements.
v We recommend using a supported Java 2 Standard Edition (J2SE) Java virtual machine. Many new IBM

Toolbox for Java functions require using version 1.4 or higher of the JVM.
v Using the vaccess classes or the Graphical Toolbox requires Swing, which comes with J2SE. You can

also download Swing 1.1 from the Sun Java Foundation Classes

Web site. The following
environments have been tested:
– Windows 2000
– Windows XP
– AIX® Version 4.3.3.1
– Sun Solaris Version 5.7
– IBM i 5.4 or later
– Linux (Red Hat 7.0)

v TCP/IP installed and configured

Workstation requirements for running IBM Toolbox for Java applets:

To develop and run IBM Toolbox for Java applications, ensure that your workstation meets the following
requirements.
v A browser that has a compatible Java virtual machine (JVM).

Note: IBM Toolbox for Java no longer supports running in the default JVM in Netscape Navigator or
Microsoft Internet Explorer. For your applet that uses IBM Toolbox for Java classes to run in a
browser, you should install a plug-in such as the Sun Java 2 Runtime Environment (JRE) plug-in

.
v TCP/IP installed and configured
v The workstation must connect to a server that is running IBM i 5.4 or newer release.

ToolboxME requirements:

Your workstation, wireless device, and server must meet certain requirements (listed below) for
developing and running IBM Toolbox for Java 2 Micro Edition applications.

IBM Toolbox for Java 7

|

http://java.sun.com/products/jfc/
http://java.sun.com/products/plugin/

Although Toolbox ME is considered a part of IBM Toolbox for Java, it is not included in the licensed
product. ToolboxME (jt400Micro.jar) is included in the open source version of Toolbox for Java, called
JTOpen. You must separately download and set up ToolboxME, which is contained in JTOpen.

Requirements

To use ToolboxME, your workstation, Tier0 wireless device, and server must meet the following
requirements.

Workstation requirements

Workstation requirements for developing ToolboxME applications:
v A supported version of Java Standard Edition
v Java virtual machine for wireless devices
v Wireless device simulator or emulator

Wireless device requirements

The only requirement for running ToolboxME applications on your Tier0 device is using a Java virtual
machine for wireless devices.

Server requirements

Server requirements for using ToolboxME applications:
v MEServer class, which is included in IBM Toolbox for Java or the latest version of JTOpen
v IBM i requirements for IBM Toolbox for Java

Workstation Swing requirements for IBM Toolbox for Java:

IBM Toolbox for Java switched to support Swing 1.1 in V4R5, and this release continues that support.
Switching to Swing required programming changes in the IBM Toolbox for Java classes. So, if your
programs use the Graphical Toolbox or the vaccess classes from releases before V4R5, you will need to
change your programs as well.

In addition to a programming change, the Swing classes must be in the CLASSPATH when the program
is run. The Swing classes are part of the Java 2 Platform. If you don't have the Java 2 Platform, you can

download the Swing 1.1 classes from Sun Microsystems, Inc.

Installing IBM Toolbox for Java on your system
You need to install IBM Toolbox for Java on your IBM i server only when you have configured the
system or a partition of the system as a client.

Before installing IBM Toolbox for Java, you need to ensure that your version of IBM i meets the
requirements for running IBM Toolbox for Java. You may want to determine whether the IBM Toolbox for
Java is already installed on your server.

Installing IBM Toolbox for Java

You can install the IBM Toolbox for Java by installing 5770-SS1 option 3. You can use either System i
Navigator or the command line.

Using System i Navigator to install IBM Toolbox for Java

To install IBM Toolbox for Java using System i Navigator, complete the following steps:

8 IBM i: Programming IBM Toolbox for Java

|
|

http://java.sun.com/products/jfc/index.html

1. In System i Navigator, sign on to the system that you want to use.
2. In the Function Tree (the left pane), expand My Connections.
3. Under My Connections, right click the system where you want to install IBM Toolbox for Java.
4. Select Run command.
5. In the Restore Licensed Program (RSTLICPGM) dialog, type the following information, then click

OK:
v Product: 5770-SS1
v Device: The name of the device or save file
v Optional part to be restored: 3

Note: For more information, click Help in the Restore Licensed Program (RSTLICPGM) dialog,

You can use System i Navigator to view the status of the resulting Management Central Command task
by completing the following steps:
1. Expand Management Central.
2. Expand Task Activity.
3. Under Task Activity, select Commands.
4. In the Detail pane, click on the appropriate Run Command task.

Using the command line to install IBM Toolbox for Java

To install IBM Toolbox for Java from a command line, complete the following steps:
1. On a command line, use the CL Go to Menu command. Type GO MENU(LICPGM) and press

ENTER.
2. Select 11. Install licensed program.
3. Select 5770-SS1 3 Extended Base Directory Support.

For more information about installing licensed programs, see Managing software and licensed programs.

Installing IBM Toolbox for Java on your workstation
Before you install IBM Toolbox for Java, make sure to address the workstation requirements that pertain
to your environment.

How you install IBM Toolbox for Java on your workstation depends on how you want to manage your
installation:
v To install IBM Toolbox for Java on individual clients, copy the JAR files to your workstation and

configure your workstation CLASSPATH.
v To use IBM Toolbox for Java that is installed on a server, you only have to configure your workstation

CLASSPATH to point to the server installation. To point your workstation CLASSPATH to the server,
your server must have IBM i NetServer installed.

This documentation explains how to copy the class files to your workstation. For more information about
setting the CLASSPATH on your workstation, refer to the operating system documentation for your

workstation or information available at the Sun Java Web site .

Note: Using the IBM Toolbox for Java classes in your application also requires that your system meets
the requirements for IBM i.

The IBM Toolbox for Java class files are packaged in several JAR files, consequently you need to copy one
or more of these JAR files to your workstation. For more information about which JAR files are required
for specific IBM Toolbox for Java functions, see JAR files.

IBM Toolbox for Java 9

|

|

|

http://developer.java.sun.com/developer/

Example: Copying jt400.jar

The following example assumes you want to copy jt400.jar, which contains the core IBM Toolbox for Java
classes.

To manually copy the JAR file, complete the following steps:
1. Find the jt400.jar file in the following directory: /QIBM/ProdData/HTTP/Public/jt400/lib
2. Copy jt400.jar from the server to your workstation. You can do this in a variety of ways:
v Use IBM i Access for Windows to map a network drive on your workstation to the server, then

copy the file.
v Use file transfer protocol (FTP) to send the file (in binary mode) to your workstation.

3. Update the CLASSPATH environment variable of your workstation.
v For example, if you are using Windows NT and you copied jt400.jar to C:\jt400\lib, add the

following string to the end of your CLASSPATH:
;C:\jt400\lib\jt400.jar

You also have the option of using the open source version of IBM Toolbox for Java, called JTOpen. For

more information about JTOpen, see the IBM Toolbox for Java and JTOpen Web site .

JAR files:

The IBM Toolbox for Java is shipped as a set of JAR files. Each JAR file contains Java packages that
provide specific functions. You can reduce the amount of required storage space by using only the JAR
files required to enable the specific functions that you want.

To use a JAR file, make sure that you include an entry for it in your CLASSPATH.

The following chart indicates which JAR files you must add to your CLASSPATH to use the associated
function or package.

IBM Toolbox for Java package or function JAR files required to be in your CLASSPATH

Access classes jt400.jar (client) or jt400Native.jar (server) Note 1, or
jt400Proxy.jar in a proxy environment

“CommandHelpRetriever class” on page 245 jt400.jar (client) or jt400Native.jar (server) Note 1 and an
XML parser and XSLT processor Note 3

CommandPrompter Note 3 jt400.jar, jui400.jar, util400.jar Note 4, and an XML parser Note

3

Commtrace classes jt400.jar (client) or jt400Native.jar (server) Note 1

HTML classes jt400.jar Note 1 plus jt400Servlet.jar (client), or
jt400Native.jar (server) Note 1

HTMLDocument class The same JAR files required for HTML classes, plus an
XML parser and XSLT processor Note 3

JCA classes jt400.jar (client) or jt400Native.jar (server) Note 1

JDBC Data Source GUI jt400.jar (client) Note 1 and jui400.jarNote 5

NLS system and error messages jt400Mri_lang_cntry.jar Note 6

PCML (development and run-time, parsed) Note 7 jt400.jar (client) or jt400Native.jar (server) Note 1, Note 8, and
an XML parser Note 3

PCML (run-time, serialized) jt400.jar (client) or jt400Native.jar (server) Note 1, Note 8

PDML (development) Note 3 uitools.jar, jui400.jar, util400.jar Note 4, and an XML parser
Note 3

10 IBM i: Programming IBM Toolbox for Java

http://www.ibm.com/servers/eserver/iseries/toolbox/downloads.html

IBM Toolbox for Java package or function JAR files required to be in your CLASSPATH

PDML (run-time, parsed) Note 3 jui400.jar, util400.jar Note 4, and an XML parser Note 3

PDML (run-time, serialized) Note 3 jui400.jar, and util400.jar Note 4

ReportWriter classes jt400.jar (client) or jt400Native.jar (server) Note 1,
reportwriter JAR files Note 9, and an XML parser and XSLT
processor Note 3

Resource classes jt400.jar (client) or jt400Native.jar (server) Note 1

RFML jt400.jar (client) or jt400Native.jar (server) Note 1, and an
XML parser Note 3

Security classes jt400.jar (client) or jt400Native.jar (server) Note 1, or
jt400Proxy.jar in a proxy environment

Servlet classes jt400.jar Note 1 plus jt400Servlet.jar (client), or
jt400Native.jar (server) Note 1

System i Debugger Note 4 jt400.jar (client) Note 1 and tes.jar

“IBM Toolbox for Java 2 Micro Edition” on page 349 jt400Micro.jar (client) Note 10 and jt400.jar (server) or
jt400Native.jar (server)Note 1

Vaccess classes jt400.jar (client) Note 1

XPCML jt400.jar (client) or jt400Native.jar (server) Note 1, and an
XML parser and XSLT processor Note 3

Note 1: Do not put both jt400.jar and jt400Native.jar in your CLASSPATH. Choose the JAR file most
appropriate for your environment and use only that JAR in your CLASSPATH.

Note 2: Some of the IBM Toolbox for Java classes are in more than one JAR file:
v jt400.jar - Access, commtrace, JCA, JDBC support, MEServer, PCML, resource, RFML, security, utilities,

vaccess, and XPCML.
v jt400.zip - Use jt400.jar instead of jt400.zip. jt400.zip is shipped to retain compatibility with previous

releases of IBM Toolbox for Java.
v jt400Access.zip - The same classes that are in jt400.jar minus the vaccess classes. jtAccess400.zip is

shipped to retain compatibility with previous releases of IBM Toolbox for Java. Use jt400.jar or
jt400Native.jar instead of jt400Access.zip.

v jt400Native.jar - Access, HTML, MEServer, PCML, resource, RFML, security, XPCML, and native
optimizations. Native optimizations is a set of classes (fewer than 20) that take advantage of IBM i
function when running on the IBM i JVM. Because jt400Native.jar contains the native optimizations,
when running on theIBM i JVM, use jt400Native.jar instead of jt400.jar. jt400Native.jar ships with IBM i
and resides in directory /QIBM/ProdData/OS400/jt400/lib.

v jt400Native11x.jar - Use jt400Native.jar instead of jt400Native11x.jar. jt400Native11x.jar is shipped to
retain compatibility with previous releases of IBM Toolbox for Java.

Note 3: When you must use an XML parser or XSLT processor, make sure that they are JAXP-compliant.
For more information, see the following page:

“XML parser and XSLT processor” on page 417

Note 4: Using CommandPrompter, PDML, or the System i Debugger also requires one additional JAR file
that is not part of IBM Toolbox for Java: jhall.jar. For more information about downloading jhall.jar, see

the Sun JavaHelp Web site .

IBM Toolbox for Java 11

http://java.sun.com/products/javahelp/index.html

Note 5: util400.jar contains IBM i-specific classes for formatting input and for using the command line
prompter. Using the CommandPrompter class requires util400.jar. Using PDML does not require
util400.jar, but it is useful.

Note 6: jui400.jar contains the classes necessary to use the JDBC DataSource GUI interface. jt400.jar (Note
1) contains the classes necessary for all other JDBC functions.

Note 7: jt400Mri_xx_yy.jar contains translated messages, including strings contained in exception
messages, dialogs, and output from other normal processing. In jt400Mri_lang_cntry.jar, lang = the ISO
Language Code and cntry = the ISO Country or Region Code used to translate the contained text. In
some cases, the ISO Country or Region Code is not used. Installing a particular national language version
of the IBM Toolbox for Java licensed program on the system installs the appropriate
jt400Mri_lang_cntry.jar file. If the language is not supported, the install defaults to the English version,
which is included in the IBM Toolbox for Java JAR files.
v For example, installing the German language version of licensed program 5770-SS1 installs the German

language JAR file, jt400Mri_de.jar.

You can add support for other languages by adding more than one of these JAR files to the classpath.
Java loads the correct string based on the current locale.

Note 8: Serializing your PCML file during development has two benefits:
1. You need to parse the PCML file only during development and not during run-time
2. Users need fewer JAR files in their CLASSPATH to run the application

To parse the PCML file during development, you need both the PCML run-time in data.jar or jt400.jar
and the PCML parser in x4j400.jar. To run the serialized application , users need only jt400.jar. For more
information, see “Building IBM i program calls with PCML” on page 378.

Note 9: Use jt400.jar and jt400Native.jar instead of data400.jar. data400.jar contains the PCML runtime
classes, which are now also in jt400.jar and jt400Native.jar (Note 1). data400.jar is shipped to retain
compatibility with previous releases of IBM Toolbox for Java.

Note 10: Copies of the ReportWriter classes are in more than one JAR file:
v composer.jar
v outputwriter.jar
v reportwriters.jar

If your application streams PCL data to an IBM i spooled file, you must make the access classes available
by using the appropriate JAR file (Note 1). Creating a spooled file to hold PCL data requires the AS400,
OutputQueue, PrintParameterList, and SpooledFileOutputStream classes. For more information, see the
ReportWriter classes.

Note 11: jt400Micro.jar does not contain the classes needed to run MEServer, which reside in both jt400.jar
and jt400Native.jar (Note 1). jt400Micro.jar is available only from the IBM Toolbox for Java and JTOpen

Web site .

System properties
You can specify system properties to configure various aspects of the IBM Toolbox for Java.

For example, you can use system properties to define a proxy server or a level of tracing. System
properties are useful for convenient runtime configuration without needing to recompile code. System
properties work like environment variables in that when you change a system property during runtime,
the change is generally not reflected until the next time you run the application.

12 IBM i: Programming IBM Toolbox for Java

|
|

http://www.ibm.com/servers/eserver/iseries/toolbox/downloads.html

There are several ways that you can set system properties:
v Using the java.lang.System.setProperties() method

You can set system properties programmatically by using the java.lang.System.setProperties() method.
For example, the following code sets the com.ibm.as400.access.AS400.proxyServer property to
hqoffice:

Properties systemProperties = System.getProperties();
systemProperties.put ("com.ibm.as400.access.AS400.proxyServer", "hqoffice");
System.setProperties (systemProperties);

v Using the -D option of the java command

Many environments allow you to set system properties when running applications from a command
line by using the -D option of the java command.
For example, the following program runs the application called Inventory with the
com.ibm.as400.access.AS400.proxyServer property set to hqoffice:

java -Dcom.ibm.as400.access.AS400.proxyServer=hqoffice Inventory

v Using a jt400.properties file

In some environments, it may be inconvenient to instruct all users to set their own system properties.
As an alternative, you can specify IBM Toolbox for Java system properties in a file called
jt400.properties that is searched for as if it is part of the com.ibm.as400.access package. In other words,
place the jt400.properties file in a com/ibm/as400/access directory pointed to by the classpath.
For example, set the com.ibm.as400.access.AS400.proxyServer property to hqoffice by inserting the
following line into the jt400.properties file:

com.ibm.as400.access.AS400.proxyServer=hqoffice

The backslash character (\) functions as an escape character in properties files. Specify a literal
backslash character by using two backslashes (\\).
Modify this sample of a jt400.properties file for your environment.

v Using a Properties class

Some browsers do not load properties files without explicitly changing security settings. However,
most browsers do allow properties in .class files, so IBM Toolbox for Java system properties can also be
specified by a class called com.ibm.as400.access.Properties which extends java.util.Properties.
For example, to set the com.ibm.as400.access.AS400.proxyServer property to hqoffice, use the
following Java code:

package com.ibm.as400.access;

public class Properties
extends java.util.Properties
{

public Properties ()
{

put ("com.ibm.as400.access.AS400.proxyServer", "hqoffice");
}

}

Modify and compile this sample of a Properties.java source file for your environment.

If an IBM Toolbox for Java system property is set using more than one of the mechanisms described
above, then the precedence is as follows (in order of decreasing precedence):
1. The system property set programmatically using java.lang.System.setProperties()
2. The system property set using the -D option of the java command
3. The system property set using a Properties class
4. The system property set using a jt400.properties file

IBM Toolbox for Java supports the following system properties:
v “Proxy server properties” on page 14

IBM Toolbox for Java 13

v “Trace properties”
v “CommandCall/ProgramCall properties”
v “FTP properties” on page 15
v “Connection properties” on page 15

Proxy server properties

Proxy server property Description

com.ibm.as400.access.AS400.proxyServer Specifies the proxy server host name and
port number, using the format:

hostName:portNumber

The port number is optional.

com.ibm.as400.access.TunnelProxyServer.clientCleanupInterval Specifies how often, in seconds, the proxy
server looks for idle connections. The proxy
server starts a thread to look for clients that
are no longer communicating. Use this
property to set how often the thread looks
for idle connections.

com.ibm.as400.access.TunnelProxyServer.clientLifetime Specifies how long, in seconds, a client can
be idle before the proxy server removes
references to the objects so the JVM can
garbage collect them. The proxy server starts
a thread to look for clients that are no longer
communicating. Use this property to set how
long a client can be idle before performing
garbage collection on it.

Trace properties

Trace property Description

com.ibm.as400.access.Trace.category Specifies which trace categories to enable. This is a
comma-delimited list containing any combination of
trace categories. The complete list of trace categories is
defined in the Trace class.

com.ibm.as400.access.Trace.file Specifies the file to which trace output is written. The
default is to write trace output to System.out.

com.ibm.as400.access.ServerTrace.JDBC Specifies which trace categories to start on the JDBC
server job. For information about supported values, see
the JDBC server trace property.

CommandCall/ProgramCall properties

CommandCall/ProgramCall property Description

com.ibm.as400.access.CommandCall.threadSafe Specifies whether CommandCalls might be assumed to
be thread-safe. If true, all CommandCalls are assumed to
be thread-safe. If false, all CommandCalls are assumed
to be non-thread-safe. This property is ignored for a
given CommandCall object if either
CommandCall.setThreadSafe() or
AS400.setMustUseSockets(true) has been performed on
the object.

14 IBM i: Programming IBM Toolbox for Java

CommandCall/ProgramCall property Description

com.ibm.as400.access.ProgramCall.threadSafe Specifies whether ProgramCalls might be assumed to be
thread-safe. If true, all ProgramCalls are assumed to be
thread-safe. If false, all ProgramCalls are assumed to be
non-thread-safe. This property is ignored for a given
ProgramCall object if either
ProgramCall.setThreadSafe() or
AS400.setMustUseSockets(true) has been performed on
the object.

FTP properties

FTP property Description

com.ibm.as400.access.FTP.reuseSocket Specifies whether the socket is reused for multiple file
transfers (through a single FTP instance), when in
"active" mode. If true, the socket is reused. If false, a
new socket is created for each file transfer. This property
is ignored for a given FTP object if FTP.setReuseSocket()
has been performed on the object.

Connection properties

Connection property Description

com.ibm.as400.access.AS400.guiAvailable Indicates whether the current environment has GUI
capability. If true, prompting may occur during signon
to display error conditions, to prompt for additional
information, or to prompt for change password. If false,
error conditions or missing information will result in
exceptions. Applications that are running as IBM i
applications or want to control the signon user interface
may want to run with prompting mode set to false. The
default is true.

com.ibm.as400.access.AS400.mustAddLanguageLibrary Indicates whether AS400 objects should attempt to add
the appropriate secondary language library to the library
list when running on the system. Setting the language
library will ensure that any system error messages that
are returned, will be returned in the appropriate national
language for the client locale. If true, AS400 objects will
attempt to add the secondary language library to the
library list when running on the system. If false, no
attempt is made by AS400 objects to add the secondary
language library to the library list. The default is false.

com.ibm.as400.access.AS400.mustUseNetSockets Specifies whether AS400 objects should use Internet
domain sockets only. When your Java program runs on
the system, some IBM Toolbox for Java classes create
UNIX domain socket connections. If true, only Internet
domain sockets will be used by AS400 objects. If false,
AS400 objects may use UNIX domain socket connections
in addition to Internet domain sockets. The default is
false.

IBM Toolbox for Java 15

||
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|

Connection property Description

com.ibm.as400.access.AS400.mustUseSockets Specifies whether AS400 objects should use sockets.
When your Java program runs on the system, some IBM
Toolbox for Java classes access data by calling an API
instead of making a socket call to the system. There are
minor differences in the behavior of the classes when
API calls are used instead of socket calls. If your
program is affected by these differences you can force
the classes to use socket calls instead of API calls by
setting this property to true. The default is false.

com.ibm.as400.access.AS400.mustUseSuppliedProfile Specifies whether AS400 objects should use a supplied
profile only. When your Java program runs on the
system, the information from the currently signed-on
user profile (*CURRENT) can be used. If true, a user
profile must be supplied. If false, AS400 objects retrieves
the current user profile information if a user profile is
not supplied. . The default is false.

com.ibm.as400.access.AS400.signonHandler Specifies the default signon handler. This property is
ignored for a given AS400 object if
AS400.setSignonHandler() has been performed on the
object, or if AS400.setDefaultSignonHandler() has been
called.

com.ibm.as400.access.AS400.threadUsed Specifies whether AS400 objects use threads in
communication with the host servers. Letting the IBM
Toolbox for Java use threads may be beneficial to
performance; turning threads off may be necessary if
your application needs to be compliant with the
Enterprise Java Beans specification. The default is true.

Example: Properties File
This example shows properties for the proxy server, trace categories, command calls, program calls, file
transfers, and connections.
#===#
IBM Toolbox for Java
#---#
Sample properties file
#
Name this file jt400.properties and store it in a
com/ibm/as400/access directory that is pointed to by
the classpath.
#===#

#---#
Proxy server system properties
#---#

This system property specifies the proxy server host name
and port number, specified in the format: hostName:portNumber
The port number is optional.
com.ibm.as400.access.AS400.proxyServer=hqoffice

This system property specifies how often, in seconds,
the proxy server will look for idle connections. The
proxy server starts a thread to look for clients that are
no longer communicating. Use this property to set how
often the thread looks for idle connections.
com.ibm.as400.access.TunnelProxyServer.clientCleanupInterval=7200

This system property specifies how long, in seconds, a
client can be idle before it is cleaned up. The proxy server

16 IBM i: Programming IBM Toolbox for Java

||
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|

starts a thread to look for clients that are no longer
communicating. Use this property to set long a client can
be idle before it is cleaned up.
com.ibm.as400.access.TunnelProxyServer.clientLifetime=2700

#---#
Trace system properties
#---#

This system property specifies which trace categories to enable.
This is a comma-delimited list containing any combination of trace
categories. The complete list of trace categories is defined in
the Trace class.
com.ibm.as400.access.Trace.category=error,warning,information

This system property specifies the file to which trace output
is written. The default is to write trace output to System.out.
com.ibm.as400.access.Trace.file=c:\\temp\\trace.out

#---#
Command Call system properties
#---#

This system property specifies whether CommandCalls should
be assumed to be thread-safe. If true, all CommandCalls are
assumed to be thread-safe. If false, all CommandCalls are
assumed to be non-thread-safe. This property is ignored
for a given CommandCall object if either
CommandCall.setThreadSafe(true/false) or
AS400.setMustUseSockets(true) has been performed on the object.
com.ibm.as400.access.CommandCall.threadSafe=true

#---#
Program Call system properties
#---#

This system property specifies whether ProgramCalls should
be assumed to be thread-safe. If true, all ProgramCalls are
assumed to be thread-safe. If false, all ProgramCalls are
assumed to be non-thread-safe. This property is ignored
for a given ProgramCall object if either
ProgramCall.setThreadSafe(true/false) or
AS400.setMustUseSockets(true) has been performed on the object.
com.ibm.as400.access.ProgramCall.threadSafe=true

#---#
FTP system properties
#---#

This system property specifies whether the socket is reused
for multiple file transfers (through a single FTP instance),
when in "active" mode.
If true, the socket is reused. If false, a new socket is
created for each file transfer.
This property is ignored for a given FTP object if
FTP.setReuseSocket(true/false) has been performed on the object.
com.ibm.as400.access.FTP.reuseSocket=true

#---#
Connection system properties
#---#

IBM Toolbox for Java 17

This system property specifies the default signon handler.
This property is ignored for a given AS400 object if
AS400.setSignonHandler() has been performed on
the object, or if AS400.setDefaultSignonHandler()
has been called.
com.ibm.as400.access.AS400.signonHandler=mypackage.MyHandler

This system property specifies whether the Toolbox should
assume that the current environment has GUI capability.
This property is ignored for a given AS400 object if
AS400.setGuiAvailable() has been performed on the object.
com.ibm.as400.access.AS400.guiAvailable=true

This system property specifies whether the appropriate
secondary language library must be added to the library list,
when running on the system. By default the library is not added.
This property is ignored for a given AS400 object if
AS400.setMustAddLanguageLibrary() has been performed
on the object.
com.ibm.as400.access.AS400.mustAddLanguageLibrary=true

This system property specifies whether sockets
must be used when communicating with the system.
Setting this property to true directs the Toolbox to refrain
from exploiting native optimizations, when running directly on
the system.
By default, when running directly on the system the Toolbox
will exploit native optimizations if they are available,
and bypass sockets.
This property is ignored for a given AS400 object if
AS400.setMustUseSockets() has been performed on the object.
com.ibm.as400.access.AS400.mustUseSockets=true

This system property specifies whether Internet domain sockets
must be used when communicating with the system.
Setting this property to true directs the Toolbox to refrain
from exploiting Unix sockets, when running directly on
the system.
By default, when running directly on the system the Toolbox
will exploit Unix sockets if they are available,
rather than Internet domain sockets.
This property is ignored for a given AS400 object if
AS400.setMustUseNetSockets() has been performed on the object.
com.ibm.as400.access.AS400.mustUseNetSockets=true

This system property specifies whether the explicitly supplied
profile must be used when communicating with the system.
Setting this property to true directs the Toolbox to
refrain from exploiting the currently signed-on profile
by default, when running directly on the system.
This property is ignored for a given AS400 object if
AS400.setMustUseSuppliedProfile() has been performed on the object.
com.ibm.as400.access.AS400.mustUseSuppliedProfile=true

This system property specifies whether threads are used
when communicating with the host servers.
By default, the AS400 object creates separate threads
to listen on communication sockets to the host servers.
Setting this property to false directs the Toolbox to refrain
from creating separate threads for host server communications.
This property is ignored for a given AS400 object if
AS400.setThreadUsed() has been performed on the object.
com.ibm.as400.access.AS400.threadUsed=true
End

18 IBM i: Programming IBM Toolbox for Java

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example: System Properties Class Source File
//===
// IBM Toolbox for Java
//---
// Sample properties class source file
//
// Compile this source file and store the class file in
// the classpath.
//===
package com.ibm.as400.access;

public class Properties
extends java.util.Properties
{

public Properties ()
{

/*---*/
/* Proxy server system properties */
/*---*/

// This system property specifies the proxy server host name
// and port number, specified in the format: hostName:portNumber
// The port number is optional.
put ("com.ibm.as400.access.AS400.proxyServer", "hqoffice");

// This system property specifies how often, in seconds,
// the proxy server will look for idle connections. The
// proxy server starts a thread to look for clients that are
// no longer communicating. Use this property to set how
// often the thread looks for idle connections.
put("com.ibm.as400.access.TunnelProxyServer.clientCleanupInterval", "7200");

// This system property specifies how long, in seconds, a
// client can be idle before it is cleaned up. The proxy server
// starts a thread to look for clients that are no longer
// communicating. Use this property to set long a client can
// be idle before it is cleaned up.
put("com.ibm.as400.access.TunnelProxyServer.clientLifetime", "2700");

/*---*/
/* Trace system properties */
/*---*/

// This system property specifies which trace categories to enable.
// This is a comma-delimited list containing any combination of trace
// categories. The complete list of trace categories is defined in
// the Trace class.
put ("com.ibm.as400.access.Trace.category", "error,warning,information");

// This system property specifies the file to which trace output
// is written. The default is to write trace output to System.out.
put ("com.ibm.as400.access.Trace.file", "c:\temp\trace.out");

/*---*/
/* Command Call system properties */
/*---*/

// This system property specifies whether CommandCalls should
// be assumed to be thread-safe. If true, all CommandCalls are
// assumed to be thread-safe. If false, all CommandCalls are
// assumed to be non-thread-safe. This property is ignored
// for a given CommandCall object if either
// CommandCall.setThreadSafe(true/false) or
// AS400.setMustUseSockets(true) has been performed on the object.
put ("com.ibm.as400.access.CommandCall.threadSafe", "true");

IBM Toolbox for Java 19

/*---*/
/* Program Call system properties */
/*---*/

// This system property specifies whether ProgramCalls should
// be assumed to be thread-safe. If true, all ProgramCalls are
// assumed to be thread-safe. If false, all ProgramCalls are
// assumed to be non-thread-safe. This property is ignored
// for a given ProgramCall object if either
// ProgramCall.setThreadSafe(true/false) or
// AS400.setMustUseSockets(true) has been performed on the object.
put ("com.ibm.as400.access.ProgramCall.threadSafe", "true");

/*---*/
/* FTP system properties */
/*---*/

// This system property specifies whether the socket is reused
// for multiple file transfers (through a single FTP instance),
// when in "active" mode. If true, the socket is reused.
// If false, a new socket is created for each file transfer.
// This property is ignored for a given FTP object if
// FTP.setReuseSocket(true/false) has been performed on the object.
put ("com.ibm.as400.access.FTP.reuseSocket", "true");

/*---*/
/* Connection system properties */
/*---*/

// This system property specifies the default signon handler.
// This property is ignored for a given AS400 object if
// AS400.setSignonHandler() has been performed on
// the object, or if AS400.setDefaultSignonHandler()
// has been called.
put ("com.ibm.as400.access.AS400.signonHandler", "mypackage.MyHandler");

// This system property specifies whether the Toolbox should
// assume that the current environment has GUI capability.
// This property is ignored for a given AS400 object if
// AS400.setGuiAvailable() has been performed on the object.
put ("com.ibm.as400.access.AS400.guiAvailable", "true");

// This system property specifies whether the appropriate
// secondary language library must be added to the library list,
// when running on the system. By default the library is not added.
// This property is ignored for a given AS400 object if
// AS400.setMustAddLanguageLibrary() has been performed
// on the object.
put ("com.ibm.as400.access.AS400.mustAddLanguageLibrary", "true");

// This system property specifies whether sockets
// must be used when communicating with the system.
// By default, when running directly on the system the Toolbox
// will exploit native optimizations if they are available,
// and bypass sockets.
// This property is ignored for a given AS400 object if
// AS400.setMustUseSockets() has been performed on the object.
put ("com.ibm.as400.access.AS400.mustUseSockets", "true");

// This system property specifies whether Internet domain sockets
// must be used when communicating with the system.
// Setting this property to true directs the Toolbox to refrain
// from exploiting Unix sockets, when running directly on
// the system.

20 IBM i: Programming IBM Toolbox for Java

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

// By default, when running directly on the system the Toolbox
// will exploit Unix sockets if they are available,
// rather than Internet domain sockets.
// This property is ignored for a given AS400 object if
// AS400.setMustUseNetSockets() has been performed on the object.
put ("com.ibm.as400.access.AS400.mustUseNetSockets", "true");

// This system property specifies whether the explicitly supplied
// profile must be used when communicating with the system.
// Setting this property to true directs the Toolbox to
// refrain from exploiting the currently signed-on profile
// by default, when running directly on the system.
// This property is ignored for a given AS400 object if
// AS400.setMustUseSuppliedProfile() has been performed on the object.
put ("com.ibm.as400.access.AS400.mustUseSuppliedProfile", "true");

// This system property specifies whether threads are used
// when communicating with the host servers.
// By default, the AS400 object creates separate threads
// to listen on communication sockets to the host servers.
// Setting this property to false directs the Toolbox to refrain
// from creating separate threads for host server communications.
// This property is ignored for a given AS400 object if
// AS400.setThreadUsed() has been performed on the object.
put ("com.ibm.as400.access.AS400.threadUsed", "true");

}
}

IBM Toolbox for Java classes
The IBM Toolbox for Java classes are categorized, like all Java classes, into packages. Each package
provides a certain kind of functionality.

For convenience, this documentation usually refers to each package with a short name. For example, the
com.ibm.as400.access package is called the access package.

In addition to the packages listed below, you can also read more about the micro package, which enables
you to create Java programs that give your wireless devices direct access to IBM i data and services, in
the “IBM Toolbox for Java 2 Micro Edition” on page 349 topic.

Access classes
The IBM Toolbox for Java access classes represent IBM i data and resources.

Note: IBM Toolbox for Java provides a second set of classes, called the resource classes, for working with
IBM i objects and lists. The resource classes present a generic framework and consistent
programming interface for working with various IBM i objects and lists.

Related information:
EventLog classes Javadoc
Provides a way to log exceptions and messages independent of the device used to display them.
Access package summary
Resource package summary

Server access points
The IBM Toolbox for Java access classes provide functionality that is similar to using IBM i Access for
Windows APIs. However, installing IBM i Access for Windows is not a requirement for using these
classes.

The access classes use the existing systems as the access points. Each server runs in a separate job on the
system and sends and receives data streams on a socket connection.

IBM Toolbox for Java 21

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

javadoc/com/ibm/as400/access/EventLog.html
javadoc/com/ibm/as400/access/package-summary.html
javadoc/com/ibm/as400/resource/package-summary.html

Figure 1: Server access points

AS400 class
The IBM Toolbox for Java AS400 class manages a set of socket connections to the server jobs on server
and sign-on behavior for the server, including prompting the user for sign-on information, password
caching, and default user management.

The Java program must provide an AS400 object when the Java program uses an instance of a class that
accesses the IBM i system. For example, the CommandCall object requires an AS400 object before it can
send commands to the system.

The AS400 object handles connections, user IDs, and passwords differently when it is running in the IBM
i Java virtual machine. For more information, see “IBM i Java virtual machine” on page 453.

AS400 objects now support Kerberos authentication, using the Java Generic Security Service Application
Programming Interface (JGSS API) to authenticate to the server, instead of using a user ID and password.

Note: Using Kerberos tickets requires that you install J2SDK, v1.4 and configure the Java Generic Security
Services (JGSS) Application Programming Interface. For more information about JGSS, see the

J2SDK, v1.4 Security Documentation .

22 IBM i: Programming IBM Toolbox for Java

http://java.sun.com/j2se/1.4/docs/guide/security/index.html

See managing connections for information about managing connections to the server through the AS400
object. See the AS400ConnectionPool Javadoc for information about reducing initial connect time by
requesting connections from a connection pool.

The AS400 class provides the following sign-on functions:
v Authenticate the user profile
v Get a profile token credential and authenticate the associated user profile
v Set a profile token credential
v Manage default user IDs
v Cache passwords
v Prompt for user ID
v Change a password
v Get the version and release of the operating system

For information about using an AS400 object when sending or receiving encrypted data, see the
SecureAS400 class.
Related information:
AS400ConnectionPool Javadoc
AS400 Javadoc

Managing default user IDs:

To minimize the number of times a user has to sign on, use a default user ID. The Java program uses the
default user ID when a the program does not provide a user ID. The default user ID can be set either by
the Java program or through the user interface. If the default user ID has not been established, the
Sign-On dialog allows the user to set the default user ID.

Once the default user ID is established for a given server, the Sign-On dialog does not allow the default
user ID to be changed. When an AS400 object is constructed, the Java program can supply the user ID
and password. When a program supplies the user ID to the AS400 object, the default user ID is not
affected. The program must explicitly set the default user ID setUseDefaultUser() if the program wants to
set or change the default user ID. See Prompting, default user ID, and password caching summary for
more information.

The AS400 object has methods to get, set, and remove the default user ID. The Java program can also
disable default user ID processing through the setUseDefaultUser() method. If default user ID processing
is disabled and the Java application does not supply a user ID, the AS400 object prompts for user ID
every time a connection is made to the server.

All AS400 objects that represent the same IBM i system within a Java virtual machine use the same
default user ID.

In the following example, two connections to the server are created by using two AS400 objects. If the
user checked the Default User ID box when signing on, the user is not prompted for a user ID when the
second connection is made.

// Create two AS400 objects to the same system.
AS400 sys1 = new AS400("mySystem.myCompany.com");
AS400 sys2 = new AS400("mySystem.myCompany.com");

// Start a connection to the command call service.
// The user is prompted for user ID and password.
sys1.connectService(AS400.COMMAND);

IBM Toolbox for Java 23

javadoc/com/ibm/as400/access/AS400ConnectionPool.html
javadoc/com/ibm/as400/access/AS400.html
javadoc/com/ibm/as400/access/AS400.html
javadoc/com/ibm/as400/access/AS400.html#SETUSEDEFAULTUSER(BOOLEAN)
javadoc/com/ibm/as400/access/AS400.html#GETDEFAULTUSER(JAVA.LANG.STRING)
javadoc/com/ibm/as400/access/AS400.html#SETDEFAULTUSER(JAVA.LANG.STRING, JAVA.LANG.STRING)
javadoc/com/ibm/as400/access/AS400.html#REMOVEDEFAULTUSER(JAVA.LANG.STRING)
javadoc/com/ibm/as400/access/AS400.html#SETUSEDEFAULTUSER(BOOLEAN)

// Start another connection to the command call service.
// The user is not prompted.
sys2.connectService(AS400.COMMAND);

The default user ID information is discarded when the last AS400 object for the server is garbage
collected.

Using a password cache:

The password cache allows the IBM Toolbox for Java to save password and user ID information so that it
does not prompt the user for that information every time a connection is made.

Use the methods provided by the AS400 object to do the following:
v Clear the password cache and disable the password cache
v Minimize the number of times a user must type sign-on information

The password cache applies to all AS400 objects that represent an IBM i system within a Java virtual
machine. Java does not allow sharing information between virtual machines, so a cached password in one
Java virtual machine is not visible to another virtual machine. The cache is discarded when the last AS400
object is garbage collected. The Sign-on dialog has a checkbox that gives the user the option to cache the
password. When an AS400 object is constructed, the Java program has the option to supply the user ID
and password. Passwords supplied on constructors are not cached.

The AS400 object provides methods to clear the password cache and disable the password cache . See
Prompting, default user ID, and password caching summary for more information.

Prompting for user IDs and passwords:

When you are using the AS400 class, prompting for user ID and password may occur when connecting to
the server. Prompting can be turned off by your Java program.

Java programs can turn off user ID and password prompting and message windows displayed by the
AS400 object. An example of when this may be needed is when an application is running on a gateway
on behalf of many clients. If prompts and messages are displayed on the gateway machine, the user has
no way of interacting with the prompts. These types of applications can turn off all prompting by using
the setGuiAvailable() method on the AS400 object.

See Prompting, default user ID, and password caching summary for more information.

Prompting, default user ID, and password caching summary:

Java programs can control when prompting for user ID and password caching occurs. The information
from the Sign-On dialog can be used to set the default user ID and cache the password. The following
table summarizes when prompting takes place, what information is retrieved, and what information is
set.

This table assumes that the Java program allows default user ID processing and password caching, and
that you checked the Default User ID box and the Save Password box on the Sign-On dialog.

Use this table for client connections, not for running Java on your server.

24 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400.html#CLEARPASSWORDCACHE()
javadoc/com/ibm/as400/access/AS400.html#SETUSEPASSWORDCACHE(BOOLEAN)
javadoc/com/ibm/as400/access/AS400.html

System supplied
on constructor

User ID supplied
on constructor

Password
supplied on
constructor

Default user is
established

Password in
cache for user ID

Result of using
marked settings

User is prompted
for system name,
user ID, and
password. Default
user ID is
established and
password is
cached.

Yes User is prompted
for user ID and
password. System
name is displayed
but cannot be
changed. Default
user ID is
established and
password is
cached.

Yes Yes User is prompted
for password.
User ID is
displayed and
can be changed.
System name is
displayed but
cannot be
changed. Default
user ID is not
changed.
Password is
cached.

Yes Yes Yes No prompt.
Default user ID is
not changed.
Password is not
cached.

Yes User is prompted
for system name
and password.
User ID is
displayed and
can be changed.
Changing the
user ID will not
change the
default user ID.
Password is
cached.

IBM Toolbox for Java 25

System supplied
on constructor

User ID supplied
on constructor

Password
supplied on
constructor

Default user is
established

Password in
cache for user ID

Result of using
marked settings

Yes Yes Prompt for
password for the
default user ID.
User ID is
displayed and
can be changed.
System name is
displayed but
cannot be
changed.
Password is
cached.

Yes Yes Yes No prompt.
Connect using
default user ID
and password
from cache.

Yes Yes Yes No prompt.
Connect as
specified user
using password
from cache.

Yes Yes Yes Yes No prompt.
Connect as
specified user
using password
from cache.

Yes Yes Yes Yes No prompt.
Connect as
specified user.

SecureAS400 class
The SecureAS400 class enables you to use an AS400 object when sending or receiving encrypted data.
When an AS400 object communicates with the server, user data (except the user password) is sent
unencrypted to the server. So, IBM Toolbox for Java objects associated with an AS400 object exchange
data with the server over a normal connection.

When you want to use IBM Toolbox for Java to exchange sensitive data with the server, you can encrypt
data by using Secure Sockets Layer (SSL). Use the SecureAS400 object to designate which data you want
to encrypt. IBM Toolbox for Java objects associated with a SecureAS400 object exchange data with the
server over a secure connection.

For more information, see Secure Sockets Layer and Java Secure Socket Extension.

The SecureAS400 class is a subclass of the AS400 class.

You can set up a secure server connection by creating an instance of a SecureAS400 object in the
following ways:
v SecureAS400(String systemName, String userID) prompts you for sign-on information
v SecureAS400(String systemName, String userID, String password) does not prompt you for sign-on

information

26 IBM i: Programming IBM Toolbox for Java

The following example shows you how to use CommandCall to send commands to the server using a
secure connection:

// Create a secure AS400 object. This is the only statement that changes
// from the non-SSL case.

SecureAS400 sys = new SecureAS400("mySystem.myCompany.com");

// Create a command call object
CommandCall cmd = new CommandCall(sys, "myCommand");

// Run the commands. A secure connection is made when the
// command is run. All the information that passes between the
// client and server is encrypted.
cmd.run();

Related information:
SecureAS400 Javadoc
AS400 Javadoc

AS400JPing class
The IBM Toolbox for Java AS400JPing class allows your Java program to query the host servers to see
which services are running and which ports are in service.

To query the servers from a command line, use the JPing class.

The AS400JPing class provides several methods:
v Ping the server
v Ping a specific service on the server
v Set a PrintWriter object to which you want to log ping information
v Set the time out for the ping operation

Example: Using AS400JPing

The following example shows how you can use AS400JPing within a Java program to ping the Remote
Command Service:

AS400JPing pingObj = new AS400JPing("myAS400", AS400.COMMAND, false);
if (pingObj.ping())

System.out.println("SUCCESS");
else

System.out.println("FAILED");

Related information:
AS400JPing class

BidiTransform class
The IBM Toolbox for Java BidiTransform class provides layout transformations that enable you to convert
bidirectional text in IBM i format (after first converting it to Unicode) to bidirectional text in Java format,
or from Java format to IBM i format.

AS400BidiTransform class

The AS400BidiTransform class allows you to:
v Get and set the system CCSID
v Get and set the string type of IBM i data
v Get and set the string type of Java data
v Convert data from a Java layout to IBM i
v Convert data from an IBM i layout to Java

IBM Toolbox for Java 27

javadoc/com/ibm/as400/access/SecureAS400.html
javadoc/com/ibm/as400/access/AS400.html
javadoc/utilities/JPing.html
javadoc/com/ibm/as400/access/AS400JPing.html
javadoc/com/ibm/as400/access/AS400BidiTransform.html#NAVBAR_TOP

Example: Using AS400BidiTransform

The following example shows how you can use the AS400BidiTransform class to transform bidirectional
text:

// Java data to system layout:
AS400BidiTransform abt;
abt = new AS400BidiTransform(424);
String dst = abt.toAS400Layout("some bidirectional string");

Note: Read the Code example disclaimer for important legal information.

BidiConversionProperties class
The BidiConversionProperties class provides a set of properties that can be used to control the conversion
of character set data.
Related information:
BidiConversionProperties Javadoc

CallStackEntry class
The CallStackEntry class represents an entry in the call stack of a specific thread of a server job.

Objects of this type are generated by calling Job.getCallStack().
Related information:
CallStackEntry Javadoc

ClusteredHashTable classes
The IBM Toolbox for Java ClusteredHashTable classes enable your Java programs to use highly available
clustered hash tables to share and replicate data to nonpersistent storage among the nodes in a cluster.

To use the ClusteredHashTable classes, ensure that you can use nonpersistent storage for the data.
Replicated data is not encrypted.

Note: The following information assumes that you understand the concepts and terminology common to
IBM i cluster technology. See IBM i cluster technology for details.

Using the ClusteredHashTable class requires that you have defined and activated a cluster on the
systems. You must also start a clustered has table server. For more information, see Configure clusters
and Clustered Hash Table APIs.

Required parameters are the name of the clustered hash table server and the AS400 object, which
represents the system that contains the clustered hash table server.

In order to store data in a clustered hash table server, you need a connection handle and a key:
v When you open a connection, the clustered hash table server assigns the connection handle that you

must specify on subsequent requests to the clustered hash table server. This connection handle is good
only for the instantiated AS400 object, so you must open another connection if you use a different
AS400 object.

v You must specify the key to access and change data in the clustered hash table. Duplicate keys are not
supported.

The ClusteredHashTable class provides methods that enable you to perform the following actions:
v Open a connection to the clustered hash table server job
v Generate a unique key to store data into the clustered hash table
v Close the active connection to the clustered hash table server job

28 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/BidiConversionProperties.html
javadoc/com/ibm/as400/access/CallStackEntry.html
javadoc/com/ibm/as400/access/ClusteredHashTable.html
javadoc/com/ibm/as400/access/ClusteredHashTable.html#OPEN()
javadoc/com/ibm/as400/access/ClusteredHashTable.html#GENERATEKEY()
javadoc/com/ibm/as400/access/ClusteredHashTable.html#CLOSE()

Some methods in the ClusteredHashTable class use the ClusteredHashTableEntry class to perform the
following actions:
v Get an entry from the clustered hash table
v Store an entry in the clustered hash table
v Get a list of entries from the clustered hash table for all user profiles

Example: Using ClusteredHashTable

The following example operates on clustered hash table server named CHTSVR01. It assumes a cluster
and a clustered hash table server is already active. It opens a connection, generates a key, puts an entry
using the new key in the clustered hash table, gets an entry from the clustered hash table, and closes the
connection.

ClusteredHashTableEntry myEntry = null;

String myData = new String("This is my data.");
System.out.println("Data to be stored: " + myData);

AS400 system = new AS400();

ClusteredHashTable cht = new ClusteredHashTable(system,"CHTSVR01");

// Open a connection.
cht.open();

// Get a key to the hash table.
byte[] key = null;
key = cht.generateKey();

// Prepare some data that you want to store into the hash table.
// ENTRY_AUTHORITY_ANY_USER means that any user can access the
// entry in the clustered hash table.
// DUPLICATE_KEY_FAIL means that if the specified key already exists,
// the ClusteredHashTable.put() request will not succeed.
int timeToLive = 500;
myEntry = new ClusteredHashTableEntry(key,myData.getBytes(),timeToLive,

ClusteredHashTableEntry.ENTRY_AUTHORITY_ANY_USER,
ClusteredHashTableEntry.DUPLICATE_KEY_FAIL);

// Store (or put) the entry into the hash table.
cht.put(myEntry);

// Get an entry from the hash table.
ClusteredHashTableEntry output = cht.get(key);

// Close the connection.
cht.close();

Using the ClusteredHashTable class causes the AS400 object to connect to the server. For more
information, see Managing connections.

CommandCall class
The CommandCall class allows a Java program to call a non-interactive IBM i command.

Results of the command are available in a list of AS400Message objects.

Input to CommandCall is as follows:
v The command string to run
v The AS400 object that represents the system that will run the command

IBM Toolbox for Java 29

javadoc/com/ibm/as400/access/ClusteredHashTableEntry.html
javadoc/com/ibm/as400/access/ClusteredHashTable.html#GET(BYTE[])
javadoc/com/ibm/as400/access/ClusteredHashTable.html#PUT(COM.IBM.AS400.ACCESS.CLUSTEREDHASHTABLEENTRY)
javadoc/com/ibm/as400/access/ClusteredHashTable.html#ELEMENTS()

The command string can be set on the constructor, through the CommandCall setCommand() method, or
on the run() method. After the command is run, the Java program can use the getMessageList() method
to retrieve any IBM i messages resulting from the command.

Using the CommandCall class causes the AS400 object to connect to the system. See managing
connections for information about managing connections.

When the Java program and the IBM i command are on the same server, the default IBM Toolbox for
Java behavior is to look up the thread safety for the command on the system. If threadsafe, the command
is run on-thread. You can suppress the run-time lookup by explicitly specifying thread-safety for the
command by using the setThreadSafe() method.

Examples

The following examples show ways you can use the CommandCall class to run different kinds of
commands.

Note: Read the Code example disclaimer for important legal information.

Example: Running a command

The following example shows how to use the CommandCall class to run a command on the system:
// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a command call object. This
// program sets the command to run later.
// It could set it here on the constructor.
CommandCall cmd = new CommandCall(sys);

// Run the CRTLIB command
cmd.run("CRTLIB MYLIB");

// Get the message list which
// contains the result of the command.
AS400Message[] messageList = cmd.getMessageList();

// ... process the message list.

// Disconnect since I am done sending
// commands to the server
sys.disconnectService(AS400.COMMAND);

Example: Running a user-specified command

“Example: Using CommandCall” on page 472 shows how to run a command that is specified by the user.
Related information:
CommandCall Javadoc
AS400Message Javadoc
AS400 Javadoc

Connection pooling
Use connection pools to share connections and manage sets (pools) of connections to an IBM i system.
For example, an application can retrieve a connection from a pool, use it, then return it to the pool for
reuse.

The AS400ConnectionPool class manages a pool of AS400 objects. The AS400JDBCConnectionPool class
represents a pool of AS400JDBCConnections that are available for use by a Java program as part of IBM

30 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/CommandCall.html
javadoc/com/ibm/as400/access/AS400Message.html
javadoc/com/ibm/as400/access/AS400.html

Toolbox for Java support for the JDBC 2.0 Optional Package API. The JDBC ConnectionPool interface is
also supported in the JDBC 3.0 API, which is bundled with the Java 2 Platform, Standard Edition, version
1.4.

A connection pool of either type keeps track of the number of connections it creates. Using methods
inherited from ConnectionPool, you can set several connection pool properties, including:
v the maximum number of connections that can be given out by a pool
v the maximum lifetime of a connection
v the maximum inactivity time of a connection

In terms of performance, connecting to the server is an expensive operation. Using connection pools can
improve performance by avoiding repeated connection times. For example, create connections when you
create the connection pool by filling the pool with active (preconnected) connections using the
AS400ConnectionPool class. Instead of creating new connections, you can use a connection pool to easily
retrieve, use, return, and reuse the connection objects.

Retrieve a connection using an AS400ConnectionPool by specifying the system name, user id, the
password, and (optionally) the service. To specify the service to which you want to connect, use constants
from the AS400 class (FILE, PRINT, COMMAND, and so on).

After retrieving and using the connection, applications return connections to the pool. It is the
responsibility of each application to return connections to the pool for reuse. When connections are not
returned to the pool, the connection pool continues to grow in size and connections are not reused.

See managing connections for more information about managing when a connection to the system is
opened when using the AS400ConnectionPool classes.

Example: Using AS400ConnectionPool

“Example: Using AS400ConnectionPool” on page 473 shows how to reuse AS400 objects.
Related information:
AS400ConnectionPool Javadoc
AS400 Javadoc

Data area
The IBM Toolbox for Java DataArea class is an abstract base class that represents an IBM i data area
object.

This base class has four subclasses that support the following: character data, decimal data, logical data,
and local data areas that contain character data.

Using the DataArea class, you can do the following:
v Get the size of the data area
v Get the name of the data area
v Return the AS400 system object for the data area
v Refresh the attributes of the data area
v Set the system where the data area exists

Using the DataArea class causes the AS400 object to connect to the server. See managing connections for
information about managing connections.

IBM Toolbox for Java 31

javadoc/com/ibm/as400/access/AS400ConnectionPool.html
javadoc/com/ibm/as400/access/AS400.html

CharacterDataArea

The CharacterDataArea class represents a data area on the server that contains character data. Character
data areas do not have a facility for tagging the data with the proper CCSID; therefore, the data area
object assumes that the data is in the user's CCSID. When writing, the data area object converts from a
string (Unicode) to the user's CCSID before writing the data to the server. When reading, the data area
object assumes that the data is the CCSID of the user and converts from that CCSID to Unicode before
returning the string to the program. When reading data from the data area, the amount of data read is by
number of characters, not by the number of bytes.

Using the CharacterDataArea class, you can do the following:
v Clear the data area so that it contains all blanks.
v Create a character data area on the system using default property values
v Create a character data area with specific attributes
v Delete the data area from the system where the data area exists
v Return the IFS path name of the object represented by the data area.
v Read all of the data that is contained in the data area
v Read a specified amount of data from the data area starting at offset 0 or the offset that you specified
v Set the fully qualified integrated file system path name of the data area
v Write data to the beginning of the data area
v Write a specified amount of data to the data area starting at offset 0 or the offset that you specified

DecimalDataArea

The DecimalDataArea class represents a data area on the server that contains decimal data.

Using the DecimalDataArea class, you can do the following:
v Clear the data area so that it contains 0.0
v Create a decimal data area on the system using default property values
v Create a decimal data area with specified attributes
v Delete the data area from the server where the data area exists
v Return the number of digits to the right of the decimal point in the data area
v Return the IFS path name of the object represented by the data area.
v Read all of the data that is contained in the data area
v Set the fully qualified integrated file system path name of the data area
v Write data to the beginning of the data area

Example: Using DecimalDataArea The following example shows how to create and to write to a decimal
data area:

Note: Read the Code example disclaimer for important legal information.
// Establish a connection to the server "MyServer".

AS400 system = new AS400("MyServer");
// Create a DecimalDataArea object.

QSYSObjectPathName path = new QSYSObjectPathName("MYLIB", "MYDATA", "DTAARA");
DecimalDataArea dataArea = new DecimalDataArea(system, path.getPath());

// Create the decimal data area on the server using default values.
dataArea.create();

// Clear the data area.
dataArea.clear();

// Write to the data area.
dataArea.write(new BigDecimal("1.2"));

32 IBM i: Programming IBM Toolbox for Java

// Read from the data area.
BigDecimal data = dataArea.read();

// Delete the data area from the server.
dataArea.delete();

LocalDataArea

The LocalDataArea class represents a local data area on the server. A local data area exists as a character
data area on the server, but the local data area does have some restrictions of which you should be
aware.

The local data area is associated with a server job and cannot be accessed from another job. Therefore,
you cannot create or delete the local data area. When the server job ends, the local data area associated
with that server job is automatically deleted, and the LocalDataArea object that is referring to the job is
no longer valid. You should also note that local data areas are a fixed size of 1024 characters on the
server.

Using the LocalDataArea class, you can do the following:
v Clear the data area so that it contains all blanks
v Read all of the data that is contained in the data area
v Read a specified amount of data from the data area starting at offset that you specified
v Write data to the beginning of the data area
v Write a specified amount of data to the data area where the first character is written to offset

LogicalDataArea

The LogicalDataArea class represents a data area on the server that contains logical data.

Using the LogicalDataArea class, you can do the following:
v Clear the data area so that it contains false
v Create a character data area on the server using default property values
v Create a character data area with specified attributes
v Delete the data area from the server where the data area exists
v Return the IFS path name of the object represented by the data area.
v Read all of the data that is contained in the data area
v Set the fully qualified integrated file system path name of the data area
v Write data to the beginning of the data area

DataAreaEvent

The DataAreaEvent class represents a data area event.

You can use the DataAreaEvent class with any of the DataArea classes. Using the DataAreaEvent class,
you can do the following:
v Get the identifier for the event

DataAreaListener

The DataAreaListener class provides an interface for receiving data area events.

You can use the the DataAreaListener class with any of the DataArea classes. You can invoke the
DataAreaListener class when any of the following are performed:
v Clear

IBM Toolbox for Java 33

v Create
v Delete
v Read
v Write

DataArea Javadoc
CharacterDataArea Javadoc
DecimalDataArea Javadoc
LocalDataArea Javadoc
LogicalDataArea Javadoc
DataAreaEvent Javadoc
DataAreaListener Javadoc

Data conversion and description
The data conversion classes provide the capability to convert numeric and character data between IBM i
and Java formats. Conversion may be needed when accessing IBM i data from a Java program. The data
conversion classes support conversion of various numeric formats and between various EBCDIC code
pages and Unicode.

The data description classes build on the data conversion classes to convert all fields in a record with a
single method call. The RecordFormat class allows the program to describe data that makes up a
DataQueueEntry, ProgramCall parameter, a record in a database file accessed through record-level access
classes, or any buffer of system data. The Record class allows the program to convert the contents of the
record and access the data by field name or index.

The converter classes provide fast and efficient conversion between Java and your system.
BinaryConverter converts between Java byte arrays and Java simple types. CharConverter converts
between Java String objects and IBM i code pages. For more information, see the Converters topic.

Data types

The AS400DataType is an interface that defines the methods required for data conversion. A Java
program uses data types when individual pieces of data need to be converted. Conversion classes exist
for the following types of data:
v Numeric
v Text (character)
v Composite (numeric and text)

Example: Using AS400DataType classes

The following example illustrates using AS400DataType classes with ProgramCall to supply data for
program parameters and to interpret the data returned in program parameters.

Example: Using AS400DataType classes with ProgramCall

Conversion specifying a record format

The IBM Toolbox for Java provides classes for building on the data types classes to handle converting
data one record at a time instead of one field at a time. For example, suppose a Java program reads data
off a data queue. The data queue object returns a byte array of IBM i data to the Java program. This array
can potentially contain many types of IBM i data. The application can convert one field at a time out of
the byte array by using the data types classes, or the program can create a record format that describes
the fields in the byte array. That record then does the conversion.

34 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/DataArea.html
javadoc/com/ibm/as400/access/CharacterDataArea.html
javadoc/com/ibm/as400/access/DecimalDataArea.html
javadoc/com/ibm/as400/access/LocalDataArea.html
javadoc/com/ibm/as400/access/LogicalDataArea.html
javadoc/com/ibm/as400/access/DataAreaEvent.html
javadoc/com/ibm/as400/access/DataAreaListener.html

Record format conversion can be useful when you are working with data from the program call, data
queue, and record-level access classes. The input and output from these classes are byte arrays that can
contain many fields of various types. Record format converters can make it easier to convert this data
between IBM i format and Java format.

Conversion through record format uses three classes:
v FieldDescription classes identify a field or parameter with a data type and a name.
v A RecordFormat class describes a group of fields.
v A Record class joins the description of a record (in the RecordFormat class) with the actual data.
v A LineDataRecordWriter class writes a record to an OutputStream in line data format

Examples: Using record format conversion classes

The following examples illustrate using the record format conversion classes with data queues:

Using the Record and RecordFormat classes to put data on a queue

Using the FieldDescription, RecordFormat, and Record classes
AS400DataType Javadoc

Conversion classes for numeric data:

Conversion classes for numeric data convert numeric data from the format used on the IBM i (called
system format in the following table) to the Java format.

Supported types are shown in the following table:

Numeric Type Description

AS400Bin2 Converts between a signed two-byte number in the
system format to a Java Short object.

AS400Bin4 Converts between a signed four-byte number in the
system format and a Java Integer object.

AS400ByteArray Converts between two byte arrays. This is useful because
the converter correctly zero-fills and pads the target
buffer.

AS400Float4 Converts between a signed four-byte floating point
number in the system format and a Java Float object.

AS400Float8 Converts between a signed eight-byte floating point
number in the system format and a Java Double object.

AS400PackedDecimal Converts between a packed-decimal number in the
system format and a Java BigDecimal object.

AS400UnsignedBin2 Converts between an unsigned two-byte number in the
system format and a Java Integer object.

AS400UnsignedBin4 Converts between an unsigned four-byte number in the
system format and a Java Long object.

AS400ZonedDecimal Converts between a zoned-decimal number in the system
format and a Java BigDecimal object.

Examples

The following examples show data conversions that use a numeric type in the system format and a Java
int:

IBM Toolbox for Java 35

javadoc/com/ibm/as400/access/AS400DataType.html
javadoc/com/ibm/as400/access/AS400Bin2.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/AS400Bin4.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/AS400ByteArray.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/AS400Float4.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/AS400Float8.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/AS400PackedDecimal.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/AS400UnsignedBin2.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/AS400UnsignedBin4.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/AS400ZonedDecimal.html#NAVBAR_TOP

Example: Converting from the system format to a Java int
// Create a buffer to hold the system data type. Assume the buffer is
// filled with numeric data in the system format by data queues,
// program call, and so on.
byte[] data = new byte[100];

// Create a converter for this system data type.
AS400Bin4 bin4Converter = new AS400Bin4();

// Convert from system type to Java object. The number starts at the
// beginning of the buffer.
Integer intObject = (Integer) bin4Converter.toObject(data,0);

// Extract the simple Java type from the Java object.
int i = intObject.intValue();

Example: Converting from a Java int to the system format
// Create a Java object that contains the value to convert.
Integer intObject = new Integer(22);

// Create a converter for the system data type.
AS400Bin4 bin4Converter = new AS400Bin4();

// Convert from Java object to system data type.
byte[] data = bin4Converter.toBytes(intObject);

// Find out how many bytes of the buffer were filled with the
// system value.
int length = bin4Converter.getByteLength();

Text conversion:

Character data is converted through the IBM Toolbox for Java AS400Text class. This class converts
character data between an EBCDIC code page and character set (CCSID), and Unicode.

When the AS400Text object is constructed, the Java program specifies the length of the string to be
converted and the server CCSID or encoding. The CCSID of the Java program is assumed to be 13488
Unicode. The toBytes() method converts from Java form to byte array inIBM i format. The toObject()
method converts from a byte array in IBM i format to Java format.

The AS400BidiTransform class provides layout transformations that allow the conversion of bidirectional
text in IBM i format (after its conversion to Unicode) to bidirectional text in Java format, or from Java
format to IBM i format. The default conversion is based on the CCSID of the job. To alter the direction
and shaping of the text, specify a BidiStringType. Note that where IBM Toolbox for Java objects perform
the conversion internally, as in the DataArea class, the objects have a method to override the string type.
For example, the DataArea class has addVetoableChangeListener() method that you can specify to listen
for a veto changes to certain properties, including string type.

Example: Converting text data

The following example assumes that a DataQueueEntry object returns text in EBCDIC. The example
converts the EBCDIC data to Unicode, so that the Java program can use data:

// Assume the data queue work has already been done to
// retrieve the text from the system and the data has been
// put in the following buffer.
int textLength = 100;
byte[] data = new byte[textLength];

// Create a converter for the system data type. Note a default
// converter is being built. This converter assumes the IBM i
// EBCDIC code page matches the client’s locale. If this is not

36 IBM i: Programming IBM Toolbox for Java

// true the Java program can explicitly specify the EBCDIC
// CCSID to use. However, it is recommended that you specify a
// CCSID whenever possible (see the Notes: below).
AS400Text textConverter = new AS400Text(textLength)

// Note: Optionally, you can create a converter for a specific
// CCSID. Use an AS400 object in case the program is running
// as an IBM Toolbox for Java proxy client.
int ccsid = 37;
AS400 system = ...; // AS400 object
AS400Text textConverter = new AS400Text(textLength, ccsid, system);

// Note: You can also create a converter with just the AS400 object.
// This converter assumes the IBM i code page matches
// the CCSID returned by the AS400 object.
AS400Text textConverter = new AS400Text(textLength, system);

// Convert the data from EBCDIC to Unicode. If the length of
// the AS400Text object is longer than the number of
// converted characters, the resulting String will be
// blank-padded out to the specified length.
String javaText = (String) textConverter.toObject(data);

Related information:
AS400Text Javadoc
AS400BidiTransform Javadoc
BidiStringType Javadoc

Conversion classes for composite types:

This topic describes IBM Toolbox for Java conversion classes for composite types.
v AS400Array - Allows the Java program to work with an array of data types.
v AS400Structure - Allows the Java program to work with a structure whose elements are data types.

Example: Converting composite data types

The following example shows conversion from a Java structure to a byte array and back again. The
example assumes that the same data format is used for both sending and receiving data.

// Create a structure of data types that corresponds to a structure
// that contains: - a four-byte number
// - four bytes of pad
// - an eight-byte number
// - 40 characters
AS400DataType[] myStruct =
{

new AS400Bin4(),
new AS400ByteArray(4),
new AS400Float8(),
new AS400Text(40)

};

// Create a conversion object using the structure.
AS400Structure myConverter = new AS400Structure(myStruct);

// Create the Java object that holds the data to send to the server.
Object[] myData =
{

new Integer(88), // the four-byte number
new byte[0], // the pad (let the conversion object 0 pad)
new Double(23.45), // the eight-byte floating point number
"This is my structure" // the character string

};

IBM Toolbox for Java 37

javadoc/com/ibm/as400/access/AS400Text.html
javadoc/com/ibm/as400/access/AS400BidiTransform.html
javadoc/com/ibm/as400/access/BidiStringType.html

// Convert from Java object to byte array.
byte[] myAS400Data = myConverter.toBytes(myData);

// ... send the byte array to the server. Get data back from the
// server. The returned data will also be a byte array.

// Convert the returned data from IBM i to Java format.
Object[] myRoundTripData = (Object[])myConverter.toObject(myAS400Data,0);

// Pull the third object out of the structure. This is the double.
Double doubleObject = (Double) myRoundTripData[2];

// Extract the simple Java type from the Java object.
double d = doubleObject.doubleValue();

AS400Array Javadoc
AS400Structure Javadoc

FieldDescription classes:

The field description classes allow the Java program to describe the contents of a field or parameter with
a data type and a string containing the name of the field. If the program is working with data from
record-level access, it can also specify any IBM i data definition specification (DDS) keywords that further
describe the field.

Field description classes

The field description classes are as follows:
v BinaryFieldDescription
v CharacterFieldDescription
v DateFieldDescription
v DBCSEitherFieldDescription
v DBCSGraphicFieldDescription
v DBCSOnlyFieldDescription
v DBCSOpenFieldDescription
v FloatFieldDescription
v HexFieldDescription
v PackedDecimalFieldDescription
v TimeFieldDescription
v TimestampFieldDescription
v ZonedDecimalFieldDescription

Example: Creating field descriptions

The following example assumes that the entries on a data queue have the same format. Each entry has a
message number (AS400Bin4), a time stamp (8 characters), and message text (50 characters) that you can
describe with field descriptions:

// Create a field description for the numeric data. Note it uses the
// AS400Bin4 data type. It also names the field so it can be accessed by
// name in the record class.
BinaryFieldDescription bfd = new BinaryFieldDescription(new AS400Bin4(), "msgNumber");

// Create a field description for the character data. Note it uses the
// AS400Text data type. It also names the field so it can be accessed by
// name by the record class.

38 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400Array.html
javadoc/com/ibm/as400/access/AS400Structure.html
javadoc/com/ibm/as400/access/FieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/BinaryFieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/CharacterFieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/DateFieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/DBCSEitherFieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/DBCSGraphicFieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/DBCSOnlyFieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/DBCSOpenFieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/FloatFieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/HexFieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/PackedDecimalFieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/TimeFieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/TimestampFieldDescription.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/ZonedDecimalFieldDescription.html#NAVBAR_TOP

CharacterFieldDescription cfd1 = new CharacterFieldDescription(new AS400Text(8), "msgTime");

// Create a field description for the character data. Note it uses the
// AS400Text data type. It also names the field so it can be accessed by
// name by the record class.
CharacterFieldDescription cfd2 = new CharacterFieldDescription(new AS400Text(50), "msgText");

You can now group the field descriptions in an instance of the RecordFormat class. To see how to add the
field descriptions to a RecordFormat object, see the example on the following page:

“RecordFormat class”

RecordFormat class:

The IBM Toolbox for Java RecordFormat class allows the Java program to describe a group of fields or
parameters. A record object contains data described by a RecordFormat object. If the program is using
record-level access classes, the RecordFormat class also allows the program to specify descriptions for key
fields.

A RecordFormat object contains a set of field descriptions. The field description can be accessed by index
or by name. Methods exist on the RecordFormat class to do the following:
v Add field descriptions to the record format.
v Add key field descriptions to the record format.
v Retrieve field descriptions from the record format by index or by name.
v Retrieve key field descriptions from the record format by index or by name.
v Retrieve the names of the fields that make up the record format.
v Retrieve the names of the key fields that make up the record format.
v Retrieve the number of fields in the record format.
v Retrieve the number of key fields in the record format.
v Create a Record object based on this record format.

Example: Adding field descriptions to a record format

The following example adds the field descriptions created in the field description example to a record
format:

// Create a record format object, then fill it with field descriptions.
RecordFormat rf = new RecordFormat();
rf.addFieldDescription(bfd);
rf.addFieldDescription(cfd1);
rf.addFieldDescription(cfd2);

To see how to create a record from the record format, see the example on the following page:

“Record class”
RecordFormat Javadoc

Record class:

The IBM Toolbox for Java record class allows the Java program to process data described by the record
format class.

Data is converted between byte arrays containing the server data and Java objects. Methods are provided
in the record class to do the following:
v Retrieve the contents of a field, by index or by name, as a Java object.
v Retrieve the number of fields in the record.

IBM Toolbox for Java 39

javadoc/com/ibm/as400/access/RecordFormat.html
javadoc/com/ibm/as400/access/Record.html#GETNUMBEROFFIELDS()

v Set the contents of a field, by index or by name, with a Java object.
v Retrieve the contents of the record as server data into a byte array or output stream.
v Set the contents of the record from a byte array or an input stream.
v Convert the contents of the record to a String.

Example: Reading a record

The following example uses the record format created in the record format example:
// Assume data queue setup work has already been done. Now read a
// record from the data queue.
DataQueueEntry dqe = dq.read();

// The data from the data queue is now in a data queue entry. Get
// the data out of the data queue entry and put it in the record.
// We obtain a default record from the record format object and
// initialize it with the data from the data queue entry.
Record dqRecord = rf.getNewRecord(dqe.getData());

// Now that the data is in the record, pull the data out one
// field at a time, converting the data as it is removed. The result
// is data in a Java object that the program can now process.
Integer msgNumber = (Integer) dqRecord.getField("msgNumber");
String msgTime = (String) dqRecord.getField("msgTime");
String msgText = (String) dqRecord.getField("msgText");

Related information:
Record Javadoc

Retrieving the contents of a field:

Retrieve the contents of a Record object by having your Java program either get one field at a time or get
all the fields at once.

Use the getField() method of the Record class to retrieve a single field by name or by index. Use the
getFields() method to retrieve all of the fields as an Object[].

The Java program must cast the Object (or element of the Object[]) returned to the appropriate Java object
for the retrieved field. The following table shows the appropriate Java object to cast based on the field
type.

Field Type (DDS) Field Type (FieldDescription) Java Object

BINARY (B), length <= 4 BinaryFieldDescription Short

BINARY (B), length >= 5 BinaryFieldDescription Integer

CHARACTER (A) CharacterFieldDescription String

DBCS Either (E) DBCSEitherFieldDescription String

DBCS Graphic (G) DBCSGraphicFieldDescription String

DBCS Only (J) DBCSOnlyFieldDescription String

DBCS Open (O) DBCSOpenFieldDescription String

DATE (L) DateFieldDescription String

FLOAT (F), single precision FloatFieldDescription Float

FLOAT (F), double precision FloatFieldDescription Double

HEXADECIMAL (H) HexFieldDescription byte[]

PACKED DECIMAL (P) PackedDecimalFieldDescription BigDecimal

TIME (T) TimeDecimalFieldDescription String

40 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/Record.html#GETCONTENTS()
javadoc/com/ibm/as400/access/Record.html#SETCONTENTS(BYTE[])
javadoc/com/ibm/as400/access/Record.html#TOSTRING()
javadoc/com/ibm/as400/access/Record.html

Field Type (DDS) Field Type (FieldDescription) Java Object

TIMESTAMP (Z) TimestampDecimalFieldDescription String

ZONED DECIMAL (P) ZonedDecimalFieldDescription BigDecimal

Related information:
Record Javadoc

Setting the contents of a field:

Set the contents of a Record object by using the setField() method in your Java program.

The Java program must specify the appropriate Java object for the field being set. The following table
shows the appropriate Java object for each possible field type.

Field Type (DDS) Field Type (FieldDescription) Java Object

BINARY (B), length <= 4 BinaryFieldDescription Short

BINARY (B), length >= 5 BinaryFieldDescription Integer

CHARACTER (A) CharacterFieldDescription String

DBCS Either (E) DBCSEitherFieldDescription String

DBCS Graphic (G) DBCSGraphicFieldDescription String

DBCS Only (J) DBCSOnlyFieldDescription String

DBCS Open (O) DBCSOpenFieldDescription String

DATE (L) DateFieldDescription String

FLOAT (F), single precision FloatFieldDescription Float

FLOAT (F), double precision FloatFieldDescription Double

HEXADECIMAL (H) HexFieldDescription byte[]

PACKED DECIMAL (P) PackedDecimalFieldDescription BigDecimal

TIME (T) TimeDecimalFieldDescription String

TIMESTAMP (Z) TimestampDecimalFieldDescription String

ZONED DECIMAL (P) ZonedDecimalFieldDescription BigDecimal

Related information:
Record Javadoc

LineDataRecordWriter class:

The LineDataRecordWriter class writes the record data, in line data format, to an OutputStream. The class
translates the data into bytes by using the specified CCSID. The record format associated with the record
determines the format of the data.

LineDataRecordWriter

Using LineDataRecordWriter requires that the following record format attributes be set:
v Record format ID
v Record format type

In conjunction with the Record or the RecordFormat classes, the LineDataRecordWriter takes a record as
input to the writeRecord() method. (Record takes a RecordFormat as input when you instantiate it.)

IBM Toolbox for Java 41

javadoc/com/ibm/as400/access/Record.html
javadoc/com/ibm/as400/access/Record.html
javadoc/com/ibm/as400/access/LineDataRecordWriter.html#NAVBAR_TOP

The LineDataRecordWriter class provides methods that allow you to:
v Get the CCSID
v Get the name of the encoding
v Write the record data, in line data format, to an OutputStream

Example: Using the LineDataRecordWriter class

Note: Read the Code example disclaimer for important legal information.

The following example shows one way to use the LineDataRecordWriter class to write a record:
// Example using the LineDataRecordWriter class.

try
{

// create a ccsid
ccsid_ = system_.getCcsid();

// create output queue and specify spooled file data to be *LINE
OutputQueue outQ = new OutputQueue(system_, "/QSYS.LIB/RLPLIB.LIB/LDRW.OUTQ");
PrintParameterList parms = new PrintParameterList();
parms.setParameter(PrintObject.ATTR_PRTDEVTYPE, "*LINE");

// initialize the record format for writing data
RecordFormat recfmt = initializeRecordFormat();

// create a record and assign data to be printed...
Record record = new Record(recfmt);
createRecord(record);

SpooledFileOutputStream os = null;
try {

// create the output spooled file to hold the record data
os = new SpooledFileOutputStream(system_, parms, null, outQ);

}
catch (Exception e) {

System.out.println("Error occurred creating spooled file");
e.printStackTrace();

}

// create the line data record writer
LineDataRecordWriter ldw;
ldw = new LineDataRecordWriter(os, ccsid_, system_);

// write the record of data
ldw.writeRecord(record);

// close the outputstream
os.close();

}

catch(Exception e)
{

failed(e, "Exception occurred.");
}

LineDataRecordWriter Javadoc
Record Javadoc
RecordFormat Javadoc

Data queues
The DataQueue classes allow the Java program to interact with server data queues.

IBM i data queues have the following characteristics:

42 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/LineDataRecordWriter.html
javadoc/com/ibm/as400/access/Record.html
javadoc/com/ibm/as400/access/RecordFormat.html

v The data queue allows for fast communications between jobs. Therefore, it is an excellent way to
synchronize and pass data between jobs.

v Many jobs can simultaneously access the data queues.
v Messages on a data queue are free format. Fields are not required as they are in database files.
v The data queue can be used for either synchronous or asynchronous processing.
v The messages on a data queue can be ordered in one the following ways:

– Last-in first-out (LIFO). The last (newest) message that is placed on the data queue is the first
message that is taken off the queue.

– First-in first-out (FIFO). The first (oldest) message that is placed on the data queue is the first
message that is taken off the queue.

– Keyed. Each message on the data queue has a key associated with it. A message can be taken off the
queue only by specifying the key that is associated with it.

The data queue classes provide a complete set of interfaces for accessing server data queues from your
Java program. It is an excellent way to communicate between Java programs and programs on the server
that are written in any programming language.

A required parameter of each data queue object is the AS400 object that represents the server that has the
data queue or where the data queue is to be created.

Using the data queue classes causes the AS400 object to connect to the server. See managing connections
for information about managing connections.

Each data queue object requires the integrated file system path name of the data queue. The type for the
data queue is DTAQ. See integrated file system path names for more information.

Sequential and keyed data queues

The data queue classes support sequential and keyed data queues.:

Methods common to both types of queues are in the BaseDataQueue class. The DataQueue class extends
the BaseDataQueue class in order to complete the implementation of sequential data queues. The
BaseDataQueue class is extended by the KeyedDataQueue class to complete the implementation of keyed
data queues.

When data is read from a data queue, the data is placed in a DataQueueEntry object. This object holds
the data for both keyed and sequential data queues. Additional data available when reading from a
keyed data queue is placed in a KeyedDataQueueEntry object that extends the DataQueueEntry class.

The data queue classes do not alter data that is written to or is read from the server data queue. The Java
program must correctly format the data. The data conversion classes provide methods for converting
data.

Example: Using DataQueue and DataQueueEntry

The following example creates a DataQueue object, reads data from the DataQueueEntry object, and then
disconnects from the system.

Note: Read the Code example disclaimer for important legal information.
// Create an AS400 object
AS400 sys = new AS400("mySystem.myCompany.com");

// Create the DataQueue object
DataQueue dq = new DataQueue(sys, "/QSYS.LIB/MYLIB.LIB/MYQUEUE.DTAQ");

IBM Toolbox for Java 43

// read data from the queue
DataQueueEntry dqData = dq.read();

// get the data out of the DataQueueEntry object.
byte[] data = dqData.getData();

// ... process the data

// Disconnect since I am done using data queues
sys.disconnectService(AS400.DATAQUEUE);

Related information:
BaseDataQueue Javadoc
DataQueue Javadoc
KeyedDataQueue Javadoc
DataQueueEntry Javadoc
KeyedDataQueueEntry Javadoc

Sequential data queues:

Entries on a sequential data queue on the server are removed in first-in first-out (FIFO) or last-in first-out
(LIFO) sequence.

The BaseDataQueue and DataQueue classes provide the following methods for working with sequential
data queues:
v Create a data queue on the server. The Java program must specify the maximum size of an entry on

the data queue. The Java program can optionally specify additional data queue parameters (FIFO vs
LIFO, save sender information, specify authority information, force to disk, and provide a queue
description) when the queue is created.

v Peek at an entry on the data queue without removing it from the queue. The Java program can wait or
return immediately if no entry is currently on the queue.

v Read an entry off the queue. The Java program can wait or return immediately if no entry is available
on the queue.

v Write an entry to the queue.
v Clear all entries from the queue.
v Delete the queue.

The BaseDataQueue class provides additional methods for retrieving the attributes of the data queue.

Examples: Working with sequential data queues

The following sequential data queue examples illustrate how a producer puts items on a data queue and
how a consumer takes the items off the queue and processes them:

“Example: Using DataQueue classes to put data on a queue” on page 487

“Example: Using DataQueue classes to read entries off a data queue” on page 490
BaseDataQueue Javadoc
DataQueue Javadoc

Keyed data queues:

The BaseDataQueue and KeyedDataQueue classes provide methods for working with keyed data queues.

44 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/BaseDataQueue.html
javadoc/com/ibm/as400/access/DataQueue.html
javadoc/com/ibm/as400/access/KeyedDataQueue.html
javadoc/com/ibm/as400/access/DataQueueEntry.html
javadoc/com/ibm/as400/access/KeyedDataQueueEntry.html
javadoc/com/ibm/as400/access/BaseDataQueue.html
javadoc/com/ibm/as400/access/DataQueue.html

v Create a keyed data queue on the system. The Java program must specify key length and maximum
size of an entry on the queue. The Java program can optionally specify authority information, save
sender information, force to disk, and provide a queue description.

v Peek at an entry based on the specified key without removing it from the queue. The Java program can
wait or return immediately if no entry is currently on the queue that matches the key criteria.

v Read an entry off the queue based on the specified key. The Java program can wait or return
immediately if no entry is available on the queue that matches the key criteria.

v Write a keyed entry to the queue.
v Clear all entries or all entries that match a specified key.
v Delete the queue.

The BaseDataQueue and KeyedDataQueue classes also provide additional methods for retrieving the
attributes of the data queue.

Examples: Working with keyed data queues

The following keyed data queue examples illustrate how a producer puts items on a data queue, and
how a consumer takes the items off the queue and processes them:

“Example: Using KeyedDataQueue” on page 495

“Example: Using KeyedDataQueue classes to read entries off a data queue” on page 498
BaseDataQueue Javadoc
KeyedDataQueue Javadoc

Digital certificates
Digital certificates are digitally-signed statements used for secured transactions over the internet.

To make a secure connection using the Secure Sockets Layer (SSL), a digital certificate is required.

Digital certificates comprise the following:
v The public encryption key of the user
v The name and address of the user
v The digital signature of a third-party certification authority (CA). The authority's signature means that

the user is a trusted entity.
v The issue date of the certificate
v The expiration date of the certificate

As an administrator of a secured server, you can add a certification authority's "trusted root key" to the
server. This means that your server will trust anyone who is certified through that particular certification
authority.

Digital certificates also offer encryption, ensuring a secure transfer of data through a private encryption
key.

You can create digital certificates through the javakey tool. (For more information about javakey and Java

security, see the Sun Microsystems, Inc., Java Security page .) The IBM Toolbox for Java has classes
that administer digital certificates on the system.

The AS400Certificate classes provide methods to manage X.509 ASN.1 encoded certificates. Classes are
provided to do the following:
v Get and set certificate data.

IBM Toolbox for Java 45

javadoc/com/ibm/as400/access/BaseDataQueue.html
javadoc/com/ibm/as400/access/KeyedDataQueue.html
http://java.sun.com/security/index.html

v List certificates by validation list or user profile.
v Manage certificates, for example, add a certificate to a user profile or delete a certificate from a

validation list.

Using a certificate class causes the AS400 object to connect to the server. See managing connections for
information about managing connections.

On the server, certificates belong to a validation list or to a user profile.
v The AS400CertificateUserProfileUtil class has methods for managing certificates on a user profile.
v The AS400CertificateVldlUtil class has methods for managing certificates in a validation list.

Using AS400CertificateUserProfileUtil and AS400CertificateVldlUtil requires that you install base
operating system option 34 (Digital Certificate Manager). These two classes extend AS400CertificateUtil,
which is an abstract base classes that defines methods common to both subclasses.

The AS400Certificate class provides methods to read and write certificate data. Data is accessed as an
array of bytes. The Java.Security package in Java virtual machine 1.2 provides classes that can be used to
get and set individual fields of the certificate.

Listing certificates

To get a list of certificates, the Java program must do the following:
1. Create an AS400 object.
2. Construct the correct certificate object. Different objects are used for listing certificates on a user

profile (AS400CertificateUserProfileUtil) versus listing certificates in a validation list
(AS400CertificateVldlUtil).

3. Create selection criteria based on certificate attributes. The AS400CertificateAttribute class contains
attributes used as selection criteria. One or more attribute objects define the criteria that must be met
before a certificate is added to the list. For example, a list might contain only certificates for a certain
user or organization.

4. Create a user space on the server and put the certificate into the user space. Large amounts of data
can be generated by a list operation. The data is put into a user space before it can be retrieved by the
Java program. Use the listCertificates() method to put the certificates into the user space.

5. Use the AS400CertificateUtil getCertificates() method to retrieve certificates from the user space.

Example: Listing digital certificates

The following example lists certificates in a validation list. It lists only those certificates belonging to a
certain person.

Note: Read the Code example disclaimer for important legal information.
// Create an AS400 object. The certificates are on this system.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create the certificate object.
AS400CertificateVldlUtil certificateList =

new AS400CertificateVldlUtil(sys, "/QSYS.LIB/MYLIB.LIB/CERTLIST.VLDL");

// Create the certificate attribute list. We only want certificates
// for a single person so the list consists of only one element.
AS400CertificateAttribute[] attributeList = new AS400CertificateAttribute[1];
attributeList[0] =

new AS400CertificateAttribute(AS400CertificateAttribute.SUBJECT_COMMON_NAME, "Jane Doe");

// Retrieve the list that matches the criteria. User space "myspace"
// in library "mylib" will be used for storage of the certificates.

46 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400CertificateVldlUtil.html
javadoc/com/ibm/as400/access/AS400CertificateUtil.html
javadoc/com/ibm/as400/access/AS400Certificate.html

// The user space must exist before calling this API.
int count = certificateList.listCertificates(attributeList, "/QSYS.LIB/MYLIB.LIB/MYSPACE.USRSPC");

// Retrieve the certificates from the user space.
AS400Certificates[] certificates =

certificateList.getCertificates("/QSYS.LIB/MYLIB.LIB/MYSPACE.USRSPC", 0, 8);

// Process the certificates

AS400CertificateUserProfileUtil Javadoc
AS400CertificateVldUtil Javadoc
AS400CertificateAttribute Javadoc

EnvironmentVariable class
The IBM Toolbox for Java EnvironmentVariable class and the EnvironmentVariableList class enable you to
access and set IBM i system-level environment variables.

Each variable has unique identifiers: the system name and the environment variable name. Each
environment variable is associated with a CCSID, which is by default the CCSID of the current job, which
describes where the contents of the variable are stored.

Note: Environment variables are different than system values, although they are often used for the same
purpose. See SystemValues for more information on how to access system values.

Use an EnvironmentVariable object to perform the following actions on an environment variable:
v Get and set the name
v Get and set the system
v Get and set the value (which allows you to change the CCSID)
v Refresh the value

Example: Creating, setting, and getting environment variables

The following example creates two EnvironmentVariables and sets and gets their values.

Note: Read the Code example disclaimer for important legal information.
// Create the system object.
AS400 system = new AS400("mySystem");

// Create the foreground color environment variable and set it to red.
EnvironmentVariable fg = new EnvironmentVariable(system, "FOREGROUND");
fg.setValue("RED");

// Create the background color environment variable and get its value.
EnvironmentVariable bg = new EnvironmentVariable(system, "BACKGROUND");
String background = bg.getValue();

EnvironmentVariable Javadoc
EnvironmentVariableList Javadoc

Exceptions
The IBM Toolbox for Java access classes throw exceptions when device errors, physical limitations,
programming errors, or user input errors occur. The exception classes are based upon the type of error
that occurs instead of the location where the error originates.

Most exceptions contain the following information:
v Error type: The exception object that is thrown indicates the type of error that occurred. Errors of the

same type are grouped together in an exception class.

IBM Toolbox for Java 47

javadoc/com/ibm/as400/access/AS400CertificateUserProfileUtil.html
javadoc/com/ibm/as400/access/AS400CertificateVldlUtil.html
javadoc/com/ibm/as400/access/AS400CertificateAttribute.html
javadoc/com/ibm/as400/access/EnvironmentVariable.html
javadoc/com/ibm/as400/access/EnvironmentVariableList.html

v Error details: The exception contains a return code to further identify the cause of the error that
occurred. The return code values are constants within the exception class.

v Error text: The exception contains a text string that describes the error that occurred. The string is
translated in the locale of the client Java virtual machine.

Example: Catching a thrown exception

The following example shows how to catch a thrown exception, retrieve the return code, and display the
exception text:

Note: Read the Code example disclaimer for important legal information.
// All the setup work to delete a file on the server through the
// IFSFile class is done. Now try deleting the file.
try
{

aFile.delete();

}

// The delete failed.
catch (ExtendedIOException e)
{

// Display the translated string containing the reason that the
// delete failed.
System.out.println(e);

// Get the return code out of the exception and display additional
// information based on the return code.
int rc = e.getReturnCode()

switch (rc)
{

case ExtendedIOException.FILE_IN_USE:
System.out.println("Delete failed, file is in use "):
break;

case ExtendedIOException.PATH_NOT_FOUND:
System.out.println("Delete failed, path not found ");
break;

// For every specific error that you want to track...

default:
System.out.println("Delete failed, rc = ");
System.out.println(rc);

}
}

FileAttributes class
The IBM Toolbox for Java FileAttributes class represents the set of file attributes that can be retrieved and
set through the Get Attributes (Qp0lGetAttr) and Set Attributes (Qp0lSetAttr) APIs.

To obtain the attributes of an object, the object must exist and the caller must have authority to it. Only
attributes supported by the specific file system, object type, and system operating release can be retrieved
or set.

You can find a complete list of the available attributes in the FileAttributes Javadoc.
Related information:
FileAttributes Javadoc
Get Attributes (Qp0lGetAttr) API

48 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/FileAttributes.html

Set Attributes (Qp0lSetAttr) API

FTP class
The IBM Toolbox for Java FTP class provides a programmable interface to FTP functions.

You are no longer required to use java.runtime.exec() or tell your users to run FTP commands in a
separate application. That is, you can program FTP functions directly into your application. So, from
within your program, you can do the following:
v Connect to an FTP server
v Send commands to the server
v List the files in a directory
v Get files from the server and put files to the server

Example: Using FTP to copy files from a server

Note: Read the Code example disclaimer for important legal information.

For example, with the FTP class, you can copy a set of files from a directory on a server:
FTP client = new FTP("myServer", "myUID", "myPWD");
client.cd("/myDir");
client.setDataTransferType(FTP.BINARY);
String [] entries = client.ls();

for (int i = 0; i < entries.length; i++)
{

System.out.println("Copying " + entries[i]);
try
{

client.get(entries[i], "c:\\ftptest\\" + entries[i]);
}
catch (Exception e)
{

System.out.println(" copy failed, likely this is a directory");
}

}

client.disconnect();

FTP is a generic interface that works with many different FTP servers. Therefore, it is up to the
programmer to match the semantics of the server.

AS400FTP subclass

While the FTP class is a generic FTP interface, the AS400FTP subclass is written specifically for the FTP
server on the server. That is, it understands the semantics of the FTP server on the IBM i. For example,
this class understands the various steps needed to transfer a save file to the server and performs these
steps automatically. AS400FTP also ties into the security facilities of the IBM Toolbox for Java. As with
other IBM Toolbox for Java classes, AS400FTP depends on the AS400 object for system name, user ID, and
password.

Example: Using AS400FTP to save a file to the server

Note: Read the Code example disclaimer for important legal information.

The following example puts a save file to the server. Note the application does not set data transfer type
to binary or use CommandCall to create the save file. Since the extension is .savf, AS400FTP class detects
the file to put is a save file so it does these steps automatically.

IBM Toolbox for Java 49

AS400 system = new AS400();
AS400FTP ftp = new AS400FTP(system);
ftp.put("myData.savf", "/QSYS.LIB/MYLIB.LIB/MYDATA.SAVF");

FTP Javadoc
AS400FTP Javadoc

Integrated file system classes
The integrated file system classes allow a Java program to access files in the IBM i integrated file system
as a stream of bytes or a stream of characters. The integrated file system classes were created because the
java.io package does not provide file redirection and other IBM i functionality.

The function that is provided by the IFSFile classes is a superset of the function provided by the file IO
classes in the java.io package. All methods in java.io FileInputStream, FileOutputStream, and
RandomAccessFile are in the integrated file system classes.

In addition, the classes contain methods to do the following:
v Specify a file sharing mode to deny access to the file while it is in use
v Specify a file creation mode to open, create, or replace the file
v Lock a section of the file and deny access to that part of the file while it is in use
v List the contents of a directory more efficiently
v Cache the contents of a directory to improve performance by limiting calls to the server
v Determine the number of bytes available on the server file system
v Allow a Java applet to access files in the server file system
v Read and write data as text instead of as binary data
v Determine the type of the file object (logical, physical, save, and so on) when the object is in the

QSYS.LIB file system

Through the integrated file system classes, the Java program can directly access stream files on the
system. The Java program can still use the java.io package, but the client operating system must then
provide a method of redirection. For example, if the Java program is running on a Windows 95 or
Windows NT operating system, the Network Drives function of IBM i Access for Windows is required to
redirect java.io calls to the system. With the integrated file system classes, you do not need IBM i Access
for Windows.

A required parameter of the integrated file system classes is the AS400 object that represents the system
that contains the file. Using the integrated file system classes causes the AS400 object to connect to the
system. See managing connections for information about managing connections.

The integrated file system classes require the hierarchical name of the object in the integrated file system.
Use the forward slash as the path separator character. The following example shows how to access FILE1
in directory path DIR1/DIR2:

/DIR1/DIR2/FILE1

Examples: Using integrated file system classes

“Example: Using IFS classes to copy a file from one directory to another” on page 506 shows how to use
the integrated file system classes to copy a file from one directory to another on the system.

“Example: Using the IFS classes to list the contents of a directory” on page 508 shows how to use the
integrated file system classes to list the contents of a directory on the system.

IFSFile class:

The IBM Toolbox for Java IFSFile class represents an object in the IBM i integrated file system.

50 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/FTP.html
javadoc/com/ibm/as400/access/AS400FTP.html
javadoc/com/ibm/as400/access/AS400.html

The methods on IFSFile represent operations that are done on the object as a whole. You can use
IFSFileInputStream, IFSFileOutputStream, and IFSRandomAccessFile to read and write to the file. The
IFSFile class allows the Java program to do the following:
v Determine if the object exists and is a directory or a file
v Determine if the Java program can read from or write to a file
v Determine the length of a file
v Determine the permissions of an object and set the permissions of an object
v Create a directory
v Delete a file or directory
v Rename a file or directory
v Get or set the last modification date of a file
v List the contents of a directory
v List the contents of a directory and save the attribute information to a local cache
v Determine the amount of space available on the system
v Determine the type of the file object when it is in the QSYS.LIB file system

You can get the list of files in a directory by using either the list() method or the listFiles() method:
v The listFiles() method caches information for each file on the initial call. After calling listFiles(), using

other methods to query file details results in better performance because the information is retrieved
from the cache. For example, calling isDirectory() on an IFSFile object returned from listFiles() does not
require a call to the server.

v The list() method retrieves information about each file in a separate request to the server, making it
slower and more demanding of server resources.

Note: Using listFiles() means that the information in the cache may eventually become stale, so you may
need to refresh the data by calling listFiles() again.

Examples

The following examples show how to use the IFSFile class:
v “Example: Creating a directory” on page 502
v “Example: Using IFSFile exceptions to track errors” on page 502
v “Example: Listing files with a .txt extension” on page 503
v “Example: Using the IFSFile listFiles() method to list the contents of a directory” on page 503
Related information:
IFSFile Javadoc

IFSJavaFile class:

This IBM Toolbox for Java class represents a file in the IBM i integrated file system and extends the
java.io.File class. IFSJavaFile allows you to write files for the java.io.File interface that access integrated
file systems.

IFSJavaFile makes portable interfaces that are compatible with java.io.File and uses only the errors and
exceptions that java.io.File uses. IFSJavaFile uses the security manager features from java.io.File, but
unlike java.io.File, IFSJavaFile uses security features continuously.

You use IFSJavaFile with IFSFileInputStream and IFSFileOutputStream. It does not support
java.io.FileInputStream and java.io.FileOutputStream.

IBM Toolbox for Java 51

javadoc/com/ibm/as400/access/IFSFile.html

IFSJavaFile is based on IFSFile; however, its interface is more like java.io.File than IFSFile. IFSFile is an
alternative to the IFSJavaFile class.

You can get the list of files in a directory by using either the list() method or the listFiles() method:
v The listFiles() method performs better because it retrieves and caches information for each file on the

initial call. After that, information about each file is retrieved from the cache.
v The list() method retrieves information about each file in a separate request, making it slower and

more demanding of server resources.

Note: Using listFiles() means that the information in the cache eventually become stale, so you may need
to refresh the data.

Example: Using IFSJavaFile

Note: Read the Code example disclaimer for important legal information.

The following example shows how to use the IFSJavaFile class:
// Work with /Dir/File.txt on the system flash.
AS400 as400 = new AS400("flash");
IFSJavaFile file = new IFSJavaFile(as400, "/Dir/File.txt");

// Determine the parent directory of the file.
String directory = file.getParent();

// Determine the name of the file.
String name = file.getName();

// Determine the file size.
long length = file.length();

// Determine when the file was last modified.
Date date = new Date(file.lastModified());

// Delete the file.
if (file.delete() == false)
{

// Display the error code.
System.err.println("Unable to delete file.");

}

try
{

IFSFileOutputStream os =
new IFSFileOutputStream(file.getSystem(), file, IFSFileOutputStream.SHARE_ALL, false);

byte[] data = new byte[256];
int i = 0;
for (; i < data.length; i++)
{

data[i] = (byte) i;
os.write(data[i]);

}
os.close();

}
catch (Exception e)
{

System.err.println ("Exception: " + e.getMessage());
}

Related information:
IFSJavaFile Javadoc

52 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/IFSJavaFile.html

IFSFileInputStream:

The IBM Toolbox for Java IFSFileInputStream class represents an input stream for reading data from a file
on the server.

As in the IFSFile class, methods exist in IFSFileInputStream that duplicate the methods in FileInputStream
from the java.io package. In addition to these methods, IFSFileInputStream has additional methods
specific to the IBM i platform. The IFSFileInputStream class allows a Java program to do the following:
v Open a file for reading. The file must exist since this class does not create files on the server. You can

use a constructor that allows you to specify the file sharing mode.
v Determine the number of bytes in the stream.
v Read bytes from the stream.
v Skip bytes in the stream.
v Lock or unlock bytes in the stream.
v Close the file.

As in FileInputStream in java.io, this class allows a Java program to read a stream of bytes from the file.
The Java program reads the bytes sequentially with only the additional option of skipping bytes in the
stream.

In addition to the methods in FileInputStream, IFSFileInputStream gives the Java program the following
options:
v Locking and unlocking bytes in the stream. See IFSKey for more information.
v Specifying a sharing mode when the file is opened. See sharing modes for more information.

Example: Using IFSFileInputStream

The following example shows how to use the IFSFileInputStream class.
// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Open a file object that represents the file.
IFSFileInputStream aFile = new IFSFileInputStream(sys,"/mydir1/mydir2/myfile");

// Determine the number of bytes in the file.
int available = aFile.available();

// Allocate a buffer to hold the data
byte[] data = new byte[10240];

// Read the entire file 10K at a time
for (int i = 0; i < available; i += 10240)
{

aFile.read(data);
}

// Close the file.
aFile.close();

Related information:
IFSFileInputStream Javadoc

IFSTextFileInputStream class:

IFSTextFileInputStream has been deprecated and replaced by class IFSFileReader.

The IFSTextFileInputStream class represents a stream of character data read from a file. The data read
from the IFSTextFileInputStream object is supplied to the Java program in a Java String object, so it is

IBM Toolbox for Java 53

javadoc/com/ibm/as400/access/IFSFileInputStream.html
javadoc/com/ibm/as400/access/IFSTextFileInputStream.html#NAVBAR_TOP

always Unicode. When the file is opened, the IFSTextFileInputStream object determines the CCSID of the
data in the file. If the data is stored in an encoding other than Unicode, the IFSTextFileInputStream object
converts the data from the file's encoding to Unicode before giving the data to the Java program. If the
data cannot be converted, an UnsupportedEncodingException is thrown.

The following example shows how to use the IFSTextFileInputStream:
// Work with /File on the system mySystem.
AS400 as400 = new AS400("mySystem");
IFSTextFileInputStream file = new IFSTextFileInputStream(as400, "/File");

// Read the first four characters of the file.
String s = file.read(4);

// Display the characters read. Read the first four
// characters of the file. If necessary, the data is
// converted to Unicode by the IFSTextFileInputStream object.
System.out.println(s);

// Close the file.
file.close();

Related reference:
“IFSFileReader”
Use this class for reading character files in the integrated file system.

IFSFileReader:

Use this class for reading character files in the integrated file system.

IFSFileReader is meant for reading streams of characters. IFSFileReader replaces IFSTextFileOutputStream.

Example: Using IFSFileReader

The following example illustrates the use of IFSFileReader:
import java.io.BufferedReader;

// Work with /File1 on the system eniac.
AS400 system = new AS400("eniac");
IFSFile file = new IFSFile(system, "/File1");
BufferedReader reader = new BufferedReader(new IFSFileReader(file));

// Read the first line of the file, converting characters.
String line1 = reader.readLine();

// Display the String that was read.
System.out.println(line1);

// Close the reader.
reader.close();

Related information:
IFSFileReader Javadoc

IFSFileOutputStream class:

The IFSFileOutputStream class represents an output stream for writing data to a file on the server.

As in the IFSFile class, methods exist in IFSFileOutputStream that duplicate the methods in
FileOutputStream from the java.io package. IFSFileOutputStream also has additional methods specific to
the server. The IFSFileOutputStream class allows a Java program to do the following:

54 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/IFSFileReader.html

v Open a file for writing. If the file already exists, it is replaced. Constructors are available that specify
the file sharing mode and whether the contents of an existing file have been appended.

v Write bytes to the stream.
v Commit to disk the bytes that are written to the stream.
v Lock or unlock bytes in the stream.
v Close the file.

As in FileOutputStream in java.io, this class allows a Java program to sequentially write a stream of bytes
to the file.

In addition to the methods in FileOutputStream, IFSFileOutputStream gives the Java program the
following options:
v Locking and unlocking bytes in the stream. See IFSKey for more information.
v Specifying a sharing mode when the file is opened. See sharing modes for more information.

Example: Using IFSFileOutputStream

The following example shows how to use the IFSFileOutputStream class:
// Create an AS400 object
AS400 sys = new AS400("mySystem.myCompany.com");

// Open a file object that represents the file.
IFSFileOutputStream aFile =

new IFSFileOutputStream(sys,"/mydir1/mydir2/myfile");

// Write to the file
byte i = 123;
aFile.write(i);

// Close the file.
aFile.close();

IFSFileOutputStream Javadoc

IFSTextFileOutputStream class:

IFSTextFileOutputStream has been deprecated and replaced by class IFSFileWriter.

The IFSTextFileOutputStream class represents a stream of character data being written to a file. The data
supplied to the IFSTextFileOutputStream object is in a Java String object so the input is always Unicode.
The IFSTextFileOutputStream object can convert the data to another CCSID as it is written to the file,
however. The default behavior is to write Unicode characters to the file, but the Java program can set the
target CCSID before the file is opened. In this case, the IFSTextFileOutputStream object converts the
characters from Unicode to the specified CCSID before writing them to the file. If the data cannot be
converted, an UnsupportedEncodingException is thrown.

Example: Using IFSTextFileOutputStream

The following example shows how to use IFSTextFileOutputStream:
// Work with /File on the system mySystem.
AS400 as400 = new AS400("mySystem");
IFSTextFileOutputStream file =

new IFSTextFileOutputStream(as400, "/File");

// Write a String to the file. Because no CCSID was
// specified before writing to the file, Unicode
// characters will be written to the file. The file
// will be tagged as having Unicode data.

IBM Toolbox for Java 55

javadoc/com/ibm/as400/access/IFSFileOutputStream.html
javadoc/com/ibm/as400/access/IFSTextFileOutputStream.html#NAVBAR_TOP

file.write("Hello world");

// Close the file.
file.close();

Related reference:
“IFSFileWriter”
Use IFSFileWriter for writing character files in the integrated file system. IFSFileWriter is meant for
writing streams of characters.

IFSFileWriter:

Use IFSFileWriter for writing character files in the integrated file system. IFSFileWriter is meant for
writing streams of characters.

IFSFileWriter is the replacement of IFSTextFileOutputStream.

Example: Using IFSFileWriter

The following example illustrates the use of IFSFileWriter:
import java.io.PrintWriter;
import java.io.BufferedWriter;

// Work with /File1 on the system mysystem.
AS400 as400 = new AS400("mysystem");
IFSFile file = new IFSFile(system, "/File1");
PrintWriter writer =

new PrintWriter(new BufferedWriter(new IFSFileWriter(file)));

// Write a line of text to the file, converting characters.
writer.println(text);

// Close the file.
writer.close();

Related information:
IFSFileWriter Javadoc

IFSRandomAccessFile:

The IBM Toolbox for Java IFSRandomAccessFile class represents a file on the server for reading and
writing data.

The Java program can read and write data sequentially or randomly. As in IFSFile, methods exist in
IFSRandomAccessFile that duplicate the methods in RandomAccessFile from the java.io package. In
addition to these methods, IFSRandomAccessFile has additional methods specific to IBM i. Through
IFSRandomAccessFile, a Java program can do the following:
v Open a file for read, write, or read/write access. The Java program can optionally specify the file

sharing mode and the existence option.
v Read data at the current offset from the file.
v Write data at the current offset to the file.
v Get or set the current offset of the file.
v Close the file.

In addition to the methods in java.io RandomAccessFile, IFSRandomAccessFile gives the Java program
the following options:
v Committing to disk bytes written.
v Locking or unlocking bytes in the file.

56 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/IFSFileWriter.html

v Locking and unlocking bytes in the stream. See IFSKey for more information.
v Specifying a sharing mode when the file is opened. See sharing modes for more information.
v Specify the existence option when a file is opened. The Java program can choose one of the following:

– Open the file if it exists; create the file if it does not.
– Replace the file if it exists; create the file if it does not.
– Fail the open if the file exists; create the file if it does not.
– Open the file if it exists; fail the open if it does not.
– Replace the file if it exists; fail the open if it does not.

Example: Using IFSRandomAccessFile

The following example shows how to use the IFSRandomAccessFile class to write four bytes at 1K
intervals to a file.

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Open a file object that represents the file.
IFSRandomAccessFile aFile =

new IFSRandomAccessFile(sys,"/mydir1/myfile", "rw");

// Establish the data to write.
byte i = 123;

// Write to the file 10 times at 1K intervals.
for (int j=0; j<10; j++)
{

// Move the current offset.
aFile.seek(j * 1024);

// Write to the file. The current offset advances
// by the size of the write.
aFile.write(i);

}

// Close the file.
aFile.close();

Related information:
IFSRandomAccessFile Javadoc

IFSFileDialog:

The IBM Toolbox for Java IFSFileDialog class allows you to traverse the file system and select a file.

This class uses the IFSFile class to traverse the list of directories and files in the IBM i integrated file
system. Methods on the class allow a Java program to set the text on the push buttons of the dialog and
to set filters. Note that an IFSFileDialog class based on Swing 1.1 is also available.

You can set filters through the FileFilter class. If the user selects a file in the dialog, the getFileName()
method can be used to get the name of the file that was selected. The getAbsolutePath() method can be
used to get the path and name of the file that was selected.

Example: Using IFSFileDialog

The following example shows how to set up a dialog with two filters and to set the text on the push
buttons of the dialog.

IBM Toolbox for Java 57

javadoc/com/ibm/as400/access/IFSRandomAccessFile.html

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a dialog object setting the text of the dialog’s title
// bar and the server to traverse.
IFSFileDialog dialog = new IFSFileDialog(this, "Title Bar Text", sys);

// Create a list of filters then set the filters in the dialog. The
// first filter will be used when the dialog is first displayed.
FileFilter[] filterList = {new FileFilter("All files (*.*)", "*.*"),

new FileFilter("HTML files (*.HTML", "*.HTM")};

dialog.setFileFilter(filterList, 0);

// Set the text on the buttons of the dialog.
dialog.setOkButtonText("Open");
dialog.setCancelButtonText("Cancel");

// Show the dialog. If the user selected a file by pressing the
// Open button, get the file the user selected and display it.
if (dialog.showDialog() == IFSFileDialog.OK)

System.out.println(dialog.getAbsolutePath());

Related information:
FileFilter Javadoc
IFSFileDialog Javadoc

IFSKey class:

If the Java program allows other programs access to a file at the same time, the Java program can lock
bytes in the file for a period of time. During that time, the program has exclusive use of that section of
the file. When a lock is successful, the integrated file system classes return an IFSKey object.

This object is supplied to the unlock() method to indicate which bytes to unlock. When the file is closed,
the system unlocks all locks that are still on the file (the system does an unlock for every lock that the
program did not unlock).

Example: Using IFSKey

The following example shows how to use the IFSKey class.
// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Open an input stream. This constructor opens with
// share_all so other programs can open this file.
IFSFileInputStream aFile =

new IFSFileInputStream(sys,"/mydir1/mydir2/myfile");

// Lock the first 1K bytes in the file. Now no other
// instance can read these bytes.
IFSKey key = aFile.lock(1024);

// Read the first 1K of the file.
byte data[] = new byte[1024];
aFile.read(data);

// Unlock the bytes of the file.
aFile.unlock(key);

// Close the file.
aFile.close();

Related information:
IFSKey Javadoc

58 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/FileFilter.html
javadoc/com/ibm/as400/vaccess/IFSFileDialog.html
javadoc/com/ibm/as400/access/IFSKey.html

File sharing mode:

The Java program can specify a sharing mode when a file is opened. The program either allows other
programs to open the file at the same time or has exclusive access to the file.

The following example shows how to specify a file sharing mode.
// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Open a file object that represents the file. Since
// this program specifies share-none, all other open
// attempts fail until this instance is closed.
IFSFileOutputStream aFile =

new IFSFileOutputStream(sys,
"/mydir1/mydir2/myfile",
IFSFileOutputStream.SHARE_NONE,
false);

// Perform operations on the file.

// Close the file. Now other open requests succeed.
aFile.close();

IFSSystemView:

IFSSystemView provides a gateway to the IBM i integrated file system, for use when constructing
javax.swing.JFileChooser objects.

JFileChooser is a standard Java way to build dialogs for navigating and choosing files.

Example: Using IFSSystemView

The following example demonstrates the use of IFSSystemView:
import com.ibm.as400.access.AS400;
import com.ibm.as400.access.IFSJavaFile;
import com.ibm.as400.access.IFSSystemView;
import javax.swing.JFileChooser;
import java.awt.Frame;

// Work with directory /Dir on the system myAS400.
AS400 system = new AS400("myAS400");
IFSJavaFile dir = new IFSJavaFile(system, "/Dir");

JFileChooser chooser = new JFileChooser(dir, new IFSSystemView(system));
Frame parent = new Frame();
int returnVal = chooser.showOpenDialog(parent);
if (returnVal == JFileChooser.APPROVE_OPTION)
{

IFSJavaFile chosenFile = (IFSJavaFile)(chooser.getSelectedFile());
System.out.println("You selected the file named " +

chosenFile.getName());
}

Related information:
IFSSystemView Javadoc

ISeriesNetServer class
The ISeriesNetServer class represents the NetServer service on a server. This class allows the user to
query and modify the state and configuration of the NetServer.

ISeriesNetServer replaces the NetServer class.
Related information:

IBM Toolbox for Java 59

javadoc/com/ibm/as400/access/IFSSystemView.html

ISeriesNetServer Javadoc

JavaApplicationCall class
The JavaApplicationCall class provides you with the ability to have your client use the server JVM to run
a Java program that resides on the server.

After establishing a connection to the server from the client, the JavaApplicationCall class lets you
configure the following:
1. Set the CLASSPATH environment variable on the server with the setClassPath() method
2. Define your program's parameters with the setParameters() method
3. Run the program with run()
4. Send input from the client to the Java program. The Java program reads the input via standard input

which is set with the sendStandardInString() method. You can redirect standard output and standard
error from the Java program to the client via the getStandardOutString() and getStandardErrorString().

JavaApplicationCall is a class you call from your Java program. However, the IBM Toolbox for Java also
provides utilities to call Java programs that reside on the server. These utilities are complete Java
programs you can run from your workstation. See RunJavaApplication class for more information.

Example

The example in the JavaApplicationCall Javadoc reference documentation shows how to run a program
on the server (that outputs "Hello World!") from the client:

JavaApplicationCall
Related information:
JavaApplicationCall Javadoc

JDBC classes
JDBC is an application programming interface (API) included in the Java platform that enables Java
programs to connect to a wide range of databases.

Supported interfaces

The following table lists the supported JDBC interfaces and the API required to use them:

Supported JDBC interface API required

Blob provides access to binary large objects (BLOBs). JDBC 2.1 core, enhanced support in JDBC 4.0

CallableStatement runs SQL stored procedures. JDK 1.1, enhanced support in JDBC 4.0

Clob provides access to character large objects (CLOBs). JDBC 2.1 core, enhanced support in JDBC 4.0

Connection represents a connection to a specific
database.

JDK 1.1, enhanced support in JDBC 4.0

ConnectionPool represents a pool of Connection objects. JDBC 2.0 Optional Package

ConnectionPoolDataSource represents a factory for
pooled AS400JDBCPooledConnection objects.

JDBC 2.0 Optional Package

DatabaseMetaData provides information about the
database as a whole.

JDK 1.1, enhanced support in JDBC 4.0

DataSource represents a factory for database connections. JDBC 2.0 Optional Package, enhanced support in JDBC
4.0

Driver creates the connection and returns information
about the driver version.

JDK 1.1

60 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/ISeriesNetServer.html
javadoc/com/ibm/as400/access/JavaApplicationCall.html#EX
javadoc/com/ibm/as400/access/JavaApplicationCall.html

Supported JDBC interface API required

ParameterMetaData provides the ability to get
information about the types and properties of the
parameters in a PreparedStatement object.

JDBC 3.0 API, enhanced support in JDBC 4.0

PooledConnection provides hooks for connection pool
management.

JDBC 2.0 Optional Package, enhanced support in JDBC
4.0

PreparedStatement runs compiled SQL statements. JDK 1.1, enhanced support in JDBC 4.0

ResultSet provides access to a table of data that is
generated by running a SQL query or DatabaseMetaData
catalog method.

JDK 1.1, enhanced support in JDBC 4.0

ResultSetMetaData provides information about a specific
ResultSet.

JDK 1.1, enhanced support in JDBC 4.0

RowId represents an SQL ROWID value. JDBC 4.0

RowSet is a connected row set that encapsulates a
ResultSet.

JDBC 2.0 Optional Package

Savepoint provides finer grained control within
transactions

JDBC 3.0 API

SQLXML represents an SQL XML value. JDBC 4.0

Statement runs SQL statements and obtains the results. JDK 1.1, enhanced support in JDBC 4.0

StatementEvent is sent to all StatementEventListeners
which were registered with a PooledConnection. This
occurs when the driver determines that a
PreparedStatement that is associated with the
PooledConnection has been closed or is determined by
the driver to be invalid.

StatementEventListener registers to be notified of events
that occur on PreparedStatements that are in the
Statement pool.

JDBC 4.0

XAConnection is a database connection which
participates in global XA transactions.

JDBC 2.0 Optional Package

XAResource is resource manager for use in XA
transactions.

JDBC 2.0 Optional Package

Related reference:
“JDBC” on page 314
JDBC is an application programming interface (API) included in the Java platform that enables Java
programs to connect to a wide range of databases.
“Example: Using JDBCPopulate to create and populate a table” on page 511
This program uses the IBM Toolbox for Java JDBC driver to create and populate a table.
“Example: Using JDBCQuery to query a table” on page 522
This program uses the IBM Toolbox for Java JDBC driver to query a table and output its contents.
Related information:

JTOpen: The Open Source version of the IBM Toolbox for Java
AS400JDBCConnectionPoolDataSource Javadoc
AS400JDBCPooledConnection Javadoc
RowID

IBM Toolbox for Java 61

||

http://jt400.sourceforge.net/
javadoc/com/ibm/as400/access/AS400JDBCConnectionPoolDataSource.html
javadoc/com/ibm/as400/access/AS400JDBCPooledConnection.html

AS400JDBCBlob class:

You can use a AS400JDBCBlob object to access binary large objects (BLOBs), such as sound byte (.wav)
files or image (.gif) files.

The key difference between the AS400JDBCBlob class and the AS400JDBCBlobLocator class is where the
blob is stored. With the AS400JDBCBlob class, the blob is stored in the database, which inflates the size of
the database file. The AS400JDBCBlobLocator class stores a locator (think of it as a pointer) in the
database file that points to where the blob is located.

With the AS400JDBCBlob class, the lob threshold property can be used. This property specifies the
maximum large object (LOB) size (in kilobytes) that can be retrieved as part of a result set. LOBs that are
larger than this threshold are retrieved in pieces using extra communication to the server. Larger LOB
thresholds reduce the frequency of communication to the server, but they download more LOB data, even
if it is not used. Smaller lob thresholds may increase frequency of communication to the server, but they
only download LOB data as it is needed. See JDBC properties for information about additional properties
that are available.

Using the AS400JDBCBlob class, you can do the following:
v Return the entire blob as a stream of uninterpreted bytes
v Return part of the contents of the blob
v Return the length of the blob
v Create a binary stream to write to the blob
v Write a byte array to the blob
v Write all or a portion of byte array to the blob
v Truncate the blob

Examples

The following examples show how to use the AS400JDBCBlob class to read from a blob and update a
blob:

Example: Using the AS400JDBCBlob class to read from a blob
Blob blob = resultSet.getBlob(1);
long length = blob.length();
byte[] bytes = blob.getBytes(1, (int) length);

Example: Using the AS400JDBCBlob class to update a blob
ResultSet rs = statement.executeQuery ("SELECT BLOB FROM MYTABLE");
rs.absolute(5);
Blob blob = rs.getBlob(1);

// Change the bytes in the blob, starting at the seventh byte
// of the blob
blob.setBytes (7, new byte[] { (byte) 57, (byte) 58, (byte) 98});

//Update the blob in the result set, changing the blob starting
// at the seventh byte of the blob (1-based) and truncating the
// blob at the end of the updated bytes (the blob now has 9 bytes).
rs.updateBlob(1, blob);

// Update the database with the change. This will change the blob
// in the database starting at the seventh byte of the blob, and
// truncating at the end of the updated bytes.
rs.updateRow();
rs.close();

62 IBM i: Programming IBM Toolbox for Java

AS400JDBCBlobLocator class

You can use a AS400JDBCBlobLocator object to access a binary large objects.

Using the AS400JDBCBlobLocator class, you can do the following:
v Return the entire blob as a stream of uninterpreted bytes
v Return part of the contents of the blob
v Return the length of the blob
v Create a binary stream to write to the blob
v Write a byte array to the blob
v Write all or a portion of byte array to the blob
v Truncate the blob

AS400JDBCBlob Javadoc
AS400JDBCBlobLocator Javadoc

CallableStatement interface:

Use a CallableStatement object to run SQL stored procedures. The stored procedure being called must
already be stored in the database. CallableStatement does not contain the stored procedure, it only calls
the stored procedure.

A stored procedure can return one or more ResultSet objects and can use IN parameters, OUT
parameters, and INOUT parameters. Use Connection.prepareCall() to create new CallableStatement
objects.

The CallableStatement object allows you to submit multiple SQL commands as a single group to a
database through the use of batch support. You may get better performance by using batch support
because processing a group of operations is usually faster than processing them one at a time. For more
information about using batch support, see Enhancements to JDBC support.

CallableStatement allows you to get and set parameters and columns by name, although using the
column index results in better performance.

Example: Using CallableStatement

The following example shows how to use the CallableStatement interface.
// Connect to the server.
Connection c = DriverManager.getConnection("jdbc:as400://mySystem");

// Create the CallableStatement object. It precompiles the
// specified call to a stored procedure. The question marks
// indicate where input parameters must be set and where output
// parameters can be retrieved. The first two parameters are
// input parameters, and the third parameter is an output parameter.
CallableStatement cs = c.prepareCall("CALL MYLIBRARY.ADD (?, ?, ?)");

// Set input parameters.
cs.setInt (1, 123);
cs.setInt (2, 234);

// Register the type of the output parameter.
cs.registerOutParameter (3, Types.INTEGER);

// Run the stored procedure.
cs.execute ();

// Get the value of the output parameter.

IBM Toolbox for Java 63

javadoc/com/ibm/as400/access/AS400JDBCBlob.html
javadoc/com/ibm/as400/access/AS400JDBCBlobLocator.html

int sum = cs.getInt (3);

// Close the CallableStatement and the Connection.
cs.close();
c.close();

AS400JDBCCallableStatement Javadoc

AS400JDBCClob class:

You can use a AS400JDBCClob object to access character large objects (CLOBs), such as large documents.

The key difference between the AS400JDBCClob class and the AS400JDBCClobLocator class is where the
blob is stored. With the AS400JDBCClob class, the clob is stored in the database, which inflates the size of
the database file. The AS400JDBCClobLocator class stores a locator (think of it as a pointer) in the
database file that points to where the clob is located.

With the AS400JDBCClob class, the lob threshold property can be used. This property specifies the
maximum large object (LOB) size (in kilobytes) that can be retrieved as part of a result set. LOBs that are
larger than this threshold are retrieved in pieces using extra communication to the server. Larger LOB
thresholds reduce the frequency of communication to the server, but they download more LOB data, even
if it is not used. Smaller lob thresholds may increase frequency of communication to the server, but they
only download LOB data as it is needed. See “IBM Toolbox for Java JDBC properties” on page 326 for
information about additional properties that are available.

Using the AS400JDBCClob class, you can do the following:
v Return the entire clob as a stream of ASCII characters
v Return the contents of the clob as a character stream
v Return a part of the contents of the clob
v Return the length of the clob
v Create a Unicode character stream or an ASCII character stream to write to the clob
v Write a String to the clob
v Truncate the clob

Examples

The following examples show how to use the AS400JDBCClob class to read from a clob and update a
clob:

Example: Using the AS400JDBCClob class to read from a clob
Clob clob = rs.getClob(1);
int length = clob.length();
String s = clob.getSubString(1, (int) length);

Example: Using the AS400JDBCClob class to update a clob
ResultSet rs = statement.executeQuery ("SELECT CLOB FROM MYTABLE");
rs.absolute(4);
Clob clob = rs.getClob(1);

// Change the characters in the clob, starting at the
// third character of the clob
clob.setString (3, "Small");

// Update the clob in the result set, starting at the third
// character of the clob and truncating the clob at the end of
// the update string (the clob now has 7 characters).
rs.updateClob(1, clob);

64 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400JDBCCallableStatement.html

// Update the database with the updated clob. This will change the
// clob in the database starting at the third character of the clob,
// and truncating at the end of the update string.
rs.updateRow();
rs.close();

AS400JDBCClobLocator class

You can use a AS400JDBCClobLocator object to access character large objects (CLOBs).

Using the AS400JDBCClobLocator class, you can do the following:
v Return the entire clob as a stream of ASCII characters
v Return the entire clob as a character stream
v Return a part of the contents of the clob
v Return the length of the clob
v Create a Unicode character stream or an ASCII character stream to write to the clob
v Write a String to the clob
v Truncate the clob

AS400JDBCClob Javadoc
AS400JDBCClobLocator Javadoc

AS400JDBCConnection class:

The AS400JDBCConnection class provides a JDBC connection to a specific DB2® for IBM i database.

Use DriverManager.getConnection() to create new AS400JDBCConnection objects. For more information,
see “Registering the JDBC driver” on page 78.

There are many optional properties that can be specified when the connection is created. Properties can
be specified either as part of the URL or in a java.util.Properties object. See “IBM Toolbox for Java JDBC
properties” on page 326 for a complete list of properties supported by the AS400JDBCDriver.

Note: A connection may contain at most 9999 open statements.

AS400JDBCConnection includes support for savepoints and statement-level holdability, and limited
support for returning auto-generated keys. For more information about these and other enhancements,
see “Enhancements to JDBC support for Version 5 Release 3” on page 323.

To use Kerberos tickets, set only the system name (and not the password) on your JDBC URL object. The
user identity is retrieved through the Java Generic Security Services (JGSS) framework, so you also do not
need to specify a user on your JDBC URL. You can set only one means of authentication in an
AS400JDBCConnection object at a time. Setting the password clears any Kerberos ticket or profile token.

For more information, see the “AS400 class” on page 22 and J2SDK, v1.4 Security Documentation .

Using the AS400JDBCConnection class, you can do the following:
v Create a statement (Statement, PreparedStatement, or CallableStatement objects)
v Create a statement that has a specific result set type and concurrency (Statement, PreparedStatement, or

CallableStatement objects)
v Commit and rollback changes to the database and release database locks currently held
v Close the connection, closing server resources immediately instead of waiting for them to be

automatically released
v Set holdability and get holdability for the Connection

IBM Toolbox for Java 65

javadoc/com/ibm/as400/access/AS400JDBCClob.html
javadoc/com/ibm/as400/access/AS400JDBCClobLocator.html
http://java.sun.com/j2se/1.4/docs/guide/security/index.html

v Set the transaction isolation and get the transaction isolation for the Connection
v Get the meta data for the Connection
v Set auto commit on or off
v Get the job identifier of the host server job that corresponds to the Connection

If you use JDBC 3.0 and connect to a server running IBM i 5.2 or later, you can use
AS400JDBCConnection to perform the following actions:
v Create a statement with a specific result set holdability (Statement, PreparedStatement, or

CallableStatement object)
v Create a prepared statement that returns any auto-generated keys (when getGeneratedKeys() is called

on the Statement object)
v Use savepoints, which offer more granular control over transactions:

– Set savepoints
– Rollback savepoints
– Release savepoints

AS400JDBCConnection Javadoc

AS400JDBCConnectionPool:

The AS400JDBCConnectionPool class represents a pool of AS400JDBCConnection objects that are available
for use by a Java program as part of IBM Toolbox for Java support for the JDBC 2.0 Optional Package
API.

You can use an AS400JDBCConnectionPoolDataSource to specify properties for the connections that are
created in the pool, as in the following example.

You cannot change the connection pool data source after you have requested a connection and the pool is
in use. To reset the connection pool data source, first call close() on the pool.

Return connections to an AS400JDBCConnectionPool by using close() on the AS400JDBCConnection
object.

Note: When connections are not returned to the pool, the connection pool continues to grow in size and
connections are not reused.

Set properties on the pool by using methods inherited from ConnectionPool. Some of the properties that
you can set include:
v maximum number of connections to allow in the pool
v maximum lifetime of a connection
v maximum inactivity time of a connection.

You can also register AS400JDBCConnectionPoolDataSource objects by using a Java Naming and
Directory Interface (JNDI) service provider. For more information about JNDI service providers, see IBM
Toolbox for Java reference links.

Example: Using connection pool

The following example gets a connection pool data source from JNDI and uses it to create a connection
pool with 10 connections:

// Obtain an AS400JDBCConnectionPoolDataSource object from JNDI
// (assumes JNDI environment is set).
Context context = new InitialContext(environment);

66 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400JDBCConnection.html

AS400JDBCConnectionPoolDataSource datasource =
(AS400JDBCConnectionPoolDataSource)context.lookup("jdbc/myDatabase");

// Create an AS400JDBCConnectionPool object.
AS400JDBCConnectionPool pool = new AS400JDBCConnectionPool(datasource);

// Adds 10 connections to the pool that can be used by the
// application (creates the physical database connections based on
// the data source).
pool.fill(10);

// Get a handle to a database connection from the pool.
Connection connection = pool.getConnection();

// ... Perform miscellaneous queries/updates on the database.

// Close the connection handle to return it to the pool.
connection.close();

// ... Application works with some more connections from the pool.

// Close the pool to release all resources.
pool.close();

AS400JDBCConnectionPool Javadoc
AS400JDBCConnectionPool Javadoc
AS400JDBCConnectionPoolDataSource Javadoc

AS400JDBCManagedConnectionPoolDataSource class:

The JDBC connection pool is a managed connection pool that allows you to reuse connections.

The AS400JDBCManagedConnectionPoolDataSource class simplifies connection pool maintenance by
eliminating the need for user applications to implement their own management code. The connection
pool is used in combination with the JDBC DataSource interface mechanism. The class
AS400JDBCManagedConnectionPoolDataSource contains an implementation of the javax.sql.DataSource
interface. This class manages the functionality of the connection pooling mechanism and allows you to
access it like a normal DataSource. Setting up and using self-managed JDBC connection pool manager
involves the usage of Java Naming and Directory Interface (JNDI) to bind the connection pool managed
datasource. In order for self-managed JDBC connection pooling to function, JNDI is necessary.

These properties allow you to configure the attributes of the connection pool:
v InitialPoolSize
v MinPoolSize
v MaxPoolSize
v MaxLifetime
v MaxIdleTime
v PropertyCycle
v ReuseConnections

For more information, see the Javadocs on setX() methods where X is the property.

Examples: Using AS400JDBCManagedConnectionPoolDataSource class:

These examples demonstrate the use of the AS400JDBCManagedConnectionPoolDataSource class. The
AS400JDBCManagedConnectionPoolDataSource class simplifies connection pool maintenance by
eliminating the need for user applications to implement their own management code.

IBM Toolbox for Java 67

javadoc/com/ibm/as400/access/AS400JDBCConnectionPool.html
javadoc/com/ibm/as400/access/AS400JDBCConnection.html
javadoc/com/ibm/as400/access/AS400JDBCConnectionPoolDataSource.html

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 760.

Example 1

This brief example shows the basic use of the AS400JDBCManagedConnectionPoolDataSource class.
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.sql.DataSource;

import com.ibm.as400.access.AS400JDBCManagedConnectionPoolDataSource;
import com.ibm.as400.access.AS400JDBCManagedDataSource;

public class TestJDBCConnPoolSnippet
{

void test()
{

AS400JDBCManagedConnectionPoolDataSource cpds0 = new AS400JDBCManagedConnectionPoolDataSource();

// Set general datasource properties. Note that both connection pool datasource (CPDS) and managed
// datasource (MDS) have these properties, and they might have different values.

cpds0.setServerName(host);
cpds0.setDatabaseName(host);//iasp can be here
cpds0.setUser(userid);
cpds0.setPassword(password);

cpds0.setSavePasswordWhenSerialized(true);

// Set connection pooling-specific properties.
cpds0.setInitialPoolSize(initialPoolSize_);
cpds0.setMinPoolSize(minPoolSize_);
cpds0.setMaxPoolSize(maxPoolSize_);
cpds0.setMaxLifetime((int)(maxLifetime_/1000)); // convert to seconds
cpds0.setMaxIdleTime((int)(maxIdleTime_/1000)); // convert to seconds
cpds0.setPropertyCycle((int)(propertyCycle_/1000)); // convert to seconds
//cpds0.setReuseConnections(false); // do not re-use connections

// Set the initial context factory to use.
System.setProperty(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.fscontext.RefFSContextFactory");

// Get the JNDI Initial Context.
Context ctx = new InitialContext();

// Note: The following is an alternative way to set context properties locally:
// Properties env = new Properties();
// env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.fscontext.RefFSContextFactory");
// Context ctx = new InitialContext(env);

ctx.rebind("mydatasource", cpds0); // We can now do lookups on cpds, by the name "mydatasource".

// Create a standard DataSource object that references it.

AS400JDBCManagedDataSource mds0 = new AS400JDBCManagedDataSource();
mds0.setDescription("DataSource supporting connection pooling");
mds0.setDataSourceName("mydatasource");
ctx.rebind("ConnectionPoolingDataSource", mds0);

DataSource dataSource_ = (DataSource)ctx.lookup("ConnectionPoolingDataSource");

AS400JDBCManagedDataSource mds_ = (AS400JDBCManagedDataSource)dataSource_;

boolean isHealthy = mds_.checkPoolHealth(false); //check pool health

Connection c = dataSource_.getConnection();

}

}

68 IBM i: Programming IBM Toolbox for Java

Example 2

This example shows more details about how to use the AS400JDBCManagedConnectionPoolDataSource
class.
import java.awt.TextArea;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.OutputStream;
import java.io.PrintStream;
import java.util.Vector;
import java.util.Properties;

import java.sql.Connection;
import javax.sql.DataSource;
import java.sql.ResultSet;
import java.sql.Statement;
import javax.naming.*;
import java.util.Date;
import java.util.ArrayList;
import java.util.Random;
import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400JDBCManagedConnectionPoolDataSource;
import com.ibm.as400.access.AS400JDBCManagedDataSource;
import com.ibm.as400.access.Trace;

public class TestJDBCConnPool
{

private static final boolean DEBUG = false;

// If you turn this flag on, be sure to also turn on the following flag:
// AS400JDBCConnection.TESTING_THREAD_SAFETY.
private static final boolean TESTING_THREAD_SAFETY = false;

private static String userid;
private static String password;
private static String host;

// Note: For consistency, all time values are stored units of milliseconds.
private int initialPoolSize_; // initial # of connections in pool
private int minPoolSize_; // max # of connections in pool
private int maxPoolSize_; // max # of connections in pool
private long maxLifetime_; // max lifetime (msecs) of connections in pool
private long maxIdleTime_; // max idle time (msecs) of available connections in pool
private long propertyCycle_; // pool maintenance frequency (msecs)

private int numDaemons_; // # of requester daemons to create
private static long timeToRunDaemons_; // total duration (msecs) to let the daemons run
private long daemonMaxSleepTime_; // max time (msecs) for requester daemons to sleep each cycle
private long daemonMinSleepTime_; // min time (msecs) for requester daemons to sleep each cycle
private long poolHealthCheckCycle_; // # of msecs between calls to checkPoolHealth()

private boolean keepDaemonsAlive_ = true; // When this is false, the daemons shut down.

private DataSource dataSource_;
private AS400JDBCManagedDataSource mds_;

private final Object daemonSleepLock_ = new Object();

private Random random_ = new Random();

static
{

try {
Class.forName("com.ibm.as400.access.AS400JDBCDriver");

}
catch(Exception e){

System.out.println("Unable to register JDBC driver.");
System.exit(0);

}
}

public static void main(String[] args)

IBM Toolbox for Java 69

{
host = args[0];
userid = args[1];
password = args[2];
timeToRunDaemons_ = (new Integer(args[3])).intValue() * 1000; //milliseconds
//args[3]=time to run in seconds
TestJDBCConnPool cptest = new TestJDBCConnPool();

cptest.setup();
cptest.runTest();

}

public void setup()
{

try
{

if (DEBUG)
System.out.println("TESTING_THREAD_SAFETY flag is "

+ (TESTING_THREAD_SAFETY ? "true" : "false"));

if (TESTING_THREAD_SAFETY)
{

// Adjust values for performing thread-intensive stress testing.
// NOTE: This assumes that the AS400JDBCConnection class has also been modified to

// not make actual connections to an actual server.
// To do this, edit AS400JDBCConnection.java, changing its TESTING_THREAD_SAFETY

// flag to ’false’, and recompile.
minPoolSize_ = 100;
maxPoolSize_ = 190;
initialPoolSize_ = 150; // this should get reset to maxPoolSize_
numDaemons_ = 75;
if (timeToRunDaemons_ == 0) {

timeToRunDaemons_ = 180*1000; // 180 seconds == 3 minutes
}

}
else
{ // Set more conservative values, as we’ll be making actual connections to an

// actual server, and we don’t want to monopolize the server.
minPoolSize_ = 5;
maxPoolSize_ = 15;
initialPoolSize_ = 9;
numDaemons_ = 4;
if (timeToRunDaemons_ == 0) {

timeToRunDaemons_ = 15*1000; // 15 seconds
}

}
maxLifetime_ = (int)timeToRunDaemons_ / 3;
maxIdleTime_ = (int)timeToRunDaemons_ / 4;
propertyCycle_ = timeToRunDaemons_ / 4;
poolHealthCheckCycle_ = Math.min(timeToRunDaemons_ / 4, 20*60*1000);
// at least once every 20 minutes (more frequently if shorter run-time)
daemonMaxSleepTime_ = Math.min(timeToRunDaemons_ / 3, 10*1000);
// at most 10 seconds (less if shorter run-time)
daemonMinSleepTime_ = 20; // milliseconds

if (DEBUG)
System.out.println("setup: Constructing "

+ "AS400JDBCManagedConnectionPoolDataSource (cpds0)");
AS400JDBCManagedConnectionPoolDataSource cpds0 =

new AS400JDBCManagedConnectionPoolDataSource();

// Set datasource properties. Note that both CPDS and MDS have these
// properties, and they might have different values.
cpds0.setServerName(host);
cpds0.setDatabaseName(host);//iasp can be here
cpds0.setUser(userid);
cpds0.setPassword(password);

cpds0.setSavePasswordWhenSerialized(true);

// Set connection pooling-specific properties.
cpds0.setInitialPoolSize(initialPoolSize_);
cpds0.setMinPoolSize(minPoolSize_);
cpds0.setMaxPoolSize(maxPoolSize_);
cpds0.setMaxLifetime((int)(maxLifetime_/1000)); // convert to seconds
cpds0.setMaxIdleTime((int)(maxIdleTime_/1000)); // convert to seconds
cpds0.setPropertyCycle((int)(propertyCycle_/1000)); // convert to seconds
//cpds0.setReuseConnections(false); // don’t re-use connections

70 IBM i: Programming IBM Toolbox for Java

// Set the initial context factory to use.
System.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");

// Get the JNDI Initial Context.
Context ctx = new InitialContext();

// Note: The following is an alternative way to set context properties locally:
// Properties env = new Properties();
// env.put(Context.INITIAL_CONTEXT_FACTORY,
// "com.sun.jndi.fscontext.RefFSContextFactory");
// Context ctx = new InitialContext(env);

ctx.rebind("mydatasource", cpds0);
// We can now do lookups on cpds, by the name"mydatasource".

if (DEBUG)
System.out.println("setup: lookup(\"mydatasource\"" + ")");

// AS400JDBCManagedConnectionPoolDataSource cpds1 =
// (AS400JDBCManagedConnectionPoolDataSource)ctx.lookup("mydatasource");
// if (DEBUG) System.out.println("setup: cpds1.getUser() == |" + cpds1.getUser() + "|");

// Create a standard DataSource object that references it.

if (DEBUG)
System.out.println("setup: Constructing AS400JDBCManagedDataSource (mds0)");

AS400JDBCManagedDataSource mds0 = new AS400JDBCManagedDataSource();
mds0.setDescription("DataSource supporting connection pooling");
mds0.setDataSourceName("mydatasource");
ctx.rebind("ConnectionPoolingDataSource", mds0);

if (DEBUG)
System.out.println("setup: lookup(\"ConnectionPoolingDataSource\"" + ")");

dataSource_ = (DataSource)ctx.lookup("ConnectionPoolingDataSource");
//dataSource_.setLogWriter(output_);
if (DEBUG)
System.out.println("setup: dataSource_.getUser() == |" +

((AS400JDBCManagedDataSource)dataSource_).getUser() + "|");

mds_ = (AS400JDBCManagedDataSource)dataSource_;
}
catch (Exception e)
{

e.printStackTrace();
System.out.println("Setup error during Trace file creation.");

}
}

void displayConnectionType(Connection conn, boolean specifiedDefaultId)
{

if (conn instanceof com.ibm.as400.access.AS400JDBCConnectionHandle)
System.out.print("("+ (specifiedDefaultId ? "+" : "-") + "P)");

else
System.out.print("("+ (specifiedDefaultId ? "+" : "-") + "NP)");

}

/**
* Gets and returns connections from and to a connection pool for a while.
**/
public void runTest()
{

boolean ok = true;
try
{

System.out.println("Started test run at " + new Date());

if (DEBUG)
System.out.println("Checking health just after datasource creation "

+ "(we expect that the pool does not exist yet) ...");
if (mds_.checkPoolHealth(true)) {

ok = false;
System.out.println("\nERROR: Pool exists prior to first getConnection().");

}

// Verify some setters/getters for JDBC properties.
System.out.println("Verifying setters/getters ...");

mds_.setAccess("read only");

IBM Toolbox for Java 71

if (!mds_.getAccess().equals("read only")) {
ok = false;
System.out.println("\nERROR: getAccess() returned unexpected value: "

+ "|" + mds_.getAccess()+"|");
}

boolean oldBool = mds_.isBigDecimal();
boolean newBool = (oldBool ? false : true);
mds_.setBigDecimal(newBool);
if (mds_.isBigDecimal() != newBool) {

ok = false;
System.out.println("\nERROR: isBigDecimal() returned unexpected value: "

+ "|"+mds_.isBigDecimal()+"|");
}
mds_.setBigDecimal(oldBool);

int oldInt = mds_.getBlockCriteria();
int newInt = (oldInt == 2 ? 1 : 2);
mds_.setBlockCriteria(newInt);
if (mds_.getBlockCriteria() != newInt) {

ok = false;
System.out.println("\nERROR: getBlockCriteria() returned unexpected value: "

+ "|"+mds_.getBlockCriteria()+"|");
}
mds_.setBlockCriteria(oldInt);

// Verify some setters and getters for socket properties.

oldBool = mds_.isKeepAlive();
newBool = (oldBool ? false : true);
mds_.setKeepAlive(newBool);
if (mds_.isKeepAlive() != newBool) {

ok = false;
System.out.println("\nERROR: isKeepAlive() returned unexpected value: "

+ "|"+mds_.isKeepAlive()+"|");
}
mds_.setKeepAlive(oldBool);

oldInt = mds_.getReceiveBufferSize();
newInt = (oldInt == 256 ? 512 : 256);
mds_.setReceiveBufferSize(newInt);
if (mds_.getReceiveBufferSize() != newInt) {

ok = false;
System.out.println("\nERROR: getReceiveBufferSize() returned unexpected value: "

+ "|"+mds_.getReceiveBufferSize()+"|");
}
mds_.setReceiveBufferSize(oldInt);

System.out.println("CONNECTION 1");
Object o = dataSource_.getConnection();
System.out.println(o.getClass());
System.out.println("******LOOK ABOVE*******");
Connection c1 = dataSource_.getConnection();

if (DEBUG)
displayConnectionType(c1, true);

if (DEBUG)
System.out.println("Checking health after first getConnection() ...");

if (!mds_.checkPoolHealth(true)) {
ok = false;
System.out.println("\nERROR: Pool is not healthy after first getConnection().");

}

if (!TESTING_THREAD_SAFETY)
{

try
{

c1.setAutoCommit(false);
if (DEBUG)
System.out.println("SELECT * FROM QIWS.QCUSTCDT");

Statement s = c1.createStatement();
ResultSet rs = s.executeQuery("SELECT * FROM QIWS.QCUSTCDT");
while(rs.next()){

if (DEBUG)
System.out.println(rs.getString(2));

}
rs.close();

72 IBM i: Programming IBM Toolbox for Java

s.close();
}
catch (Exception e) {

e.printStackTrace();
if (DEBUG)
System.out.println("Checking health after fatal connection error ...");

if (!mds_.checkPoolHealth(true)) {
ok = false;
System.out.println("\nERROR: Pool is not healthy after fatal connection "

+ "error.");
}

}
}

System.out.println("CONNECTION 2");
Connection c2 = dataSource_.getConnection(userid, password);
if (DEBUG)
displayConnectionType(c2, false);

System.out.println("CONNECTION 3");
Connection c3 = dataSource_.getConnection();
if (DEBUG)
displayConnectionType(c3, true);

c1.close();

if (DEBUG)
System.out.println("Checking health after first close() ...");

if (!mds_.checkPoolHealth(true)) {
ok = false;
System.out.println("\nERROR: Pool is not healthy after first close().");

}

System.out.println("CONNECTION 4");
Connection c4 = dataSource_.getConnection();
if (DEBUG) displayConnectionType(c4, true);

c1.close(); // close this one again
c2.close();
c3.close();
c4.close();

if (DEBUG) System.out.println("Checking health after last close() ...");
if (!mds_.checkPoolHealth(true)) {

ok = false;
System.out.println("\nERROR: Pool is not healthy after last close().");

}

// Start the test daemons.
System.out.println("Starting test daemons");
startThreads();

// Run the test daemons for a while; check pool health periodically.

long startTime = System.currentTimeMillis();
long endTime = startTime + timeToRunDaemons_;
while (System.currentTimeMillis() < endTime)
{

System.out.print("h");
// Let the daemons run for a while, then check pool health.
try {

Thread.sleep(poolHealthCheckCycle_);
}
catch (InterruptedException ie) {}
if (!mds_.checkPoolHealth(true)) {

ok = false;
System.out.println("\nERROR: Pool is not healthy after test daemons started.");

}
}

// Stop the test daemons.
System.out.println("\nStopping test daemons");
stopThreads();

if (DEBUG)
System.out.println("Checking health after connectionGetter daemons have run...");

if (!mds_.checkPoolHealth(true)) {
ok = false;
System.out.println("\nERROR: Pool is not healthy after test daemons stopped.");

}

IBM Toolbox for Java 73

if (!TESTING_THREAD_SAFETY)
{

System.out.println("CONNECTION 5");
Connection c = dataSource_.getConnection();
if (DEBUG) displayConnectionType(c, true);
c.setAutoCommit(false);
if (DEBUG) System.out.println("SELECT * FROM QIWS.QCUSTCDT");
Statement s = c.createStatement();
ResultSet rs = s.executeQuery("SELECT * FROM QIWS.QCUSTCDT");
while(rs.next()){

if (DEBUG) System.out.println(rs.getString(2));
}
rs.close();
s.close();
c.close();

}

System.out.println("\nClosing the pool...");
mds_.closePool();

if (DEBUG)
System.out.println("Checking health after pool closed ...");

Trace.setTraceJDBCOn(true); // make sure the final stats get printed out
Trace.setTraceOn(true);
if (!mds_.checkPoolHealth(true)) {

ok = false;
System.out.println("\nERROR: Pool is not healthy after pool closed.");

}

System.out.println();
if(ok==true)

System.out.println("test ran ok");
else

System.out.println("test failed");
}
catch (Exception e)
{

System.out.println(e);
e.printStackTrace();

}
finally {

System.out.println("Ended test at " + new Date());
}

}

void startThreads()
{

// Create a bunch of threads that call getConnection().
Thread[] threads = new Thread[numDaemons_];
for (int i=0; i<numDaemons_; i++)
{

ConnectionGetter getter;
// Flip a coin to see if this daemon will specify the default uid, or unique uid.
if (random_.nextBoolean())
{

getter = new ConnectionGetter(userid,password);
if (TESTING_THREAD_SAFETY) { // we can use fictional userid

getter = new ConnectionGetter("Thread"+i, "Pwd"+i);
}
else { // must use a real userid

getter = new ConnectionGetter(userid,password);
}

}
else

getter = new ConnectionGetter(null, null);

threads[i] = new Thread(getter, "["+i+"]");
threads[i].setDaemon(true);

}

// Start the threads.
for (int i=0; i<numDaemons_; i++)
{

threads[i].start();
}

}

void stopThreads()
{

74 IBM i: Programming IBM Toolbox for Java

// Tell the threads to stop.
keepDaemonsAlive_ = false;
synchronized (daemonSleepLock_) {

daemonSleepLock_.notifyAll();
}

// Wait for the daemons to stop.
try {

Thread.sleep(3000);
}
catch (InterruptedException ie) {}

}

// ConnectionGetter --

/**
Helper class. This daemon wakes up at random intervals and either
gets another connection from the connection pool or returns a
previously-gotten connection to the pool.

**/
private final class ConnectionGetter implements Runnable
{

private String uid_;
private String pwd_;
private boolean useDefaultUid_;
private long maxSleepTime_;
private String threadName_;
private boolean firstConnection_ = true;
ArrayList connections_ = new ArrayList();
// list of connections that this getter currently ’owns’.

ConnectionGetter(String uid, String pwd) {
uid_ = uid;
pwd_ = pwd;
if (uid_ == null) useDefaultUid_ = true;
else useDefaultUid_ = false;
maxSleepTime_ = daemonMaxSleepTime_; // our own copy that we can adjust

}

public void run()
{

threadName_ = Thread.currentThread().getName();
if (DEBUG) System.out.println("ConnectionGetter("+threadName_+") Starting up");

try
{

while (keepDaemonsAlive_)
{

try
{

// Pick a random sleep-time, between min and max values.
long sleepTime = Math.max((long)(maxSleepTime_ * random_.nextFloat()),

daemonMinSleepTime_);
// Note: Must never call wait(0), because that waits forever.
synchronized (daemonSleepLock_) {

try {
daemonSleepLock_.wait(sleepTime);
System.out.print(".");

}
catch (InterruptedException ie) {}

}
if (!keepDaemonsAlive_) break;

// Decide by chance whether to request another connection or return a
// previously-obtained connection.
Connection conn;
if (random_.nextBoolean()) // Leave the decision to chance.
{ // Request another connection.

if (useDefaultUid_)
{

if (DEBUG)
System.out.println("ConnectionGetter("+threadName_+") - get()");

conn = dataSource_.getConnection();
}
else
{

if (DEBUG)
System.out.println("ConnectionGetter("+threadName_+") - "

IBM Toolbox for Java 75

+ "get("+uid_+",***)");
conn = dataSource_.getConnection(uid_, pwd_);

}

if (conn == null) {
System.out.println("ConnectionGetter("+threadName_+") ERROR: "

+ "getConnection() returned null");
}
else
{

// Occasionally "forget" that we own a connection, and neglect to
// close it.
// Orphaned connections should eventually exceed their maximum
// lifetime and get "reaped" by the connection manager.
float val = random_.nextFloat();
if (firstConnection_ || val < 0.1) {

// ’orphan’ a few gotten connections
firstConnection_ = false;

}
else {

connections_.add(conn);
}
if (DEBUG) displayConnectionType(conn, useDefaultUid_);
if (conn instanceof com.ibm.as400.access.AS400JDBCConnectionHandle)
{ // We got a pooled connection. Try speeding up our cycle time.

if (maxSleepTime_ > 100)
maxSleepTime_--;

else
maxSleepTime_ = 100;

}
else
{ // We didn’t get a pooled connection. That means that the pool

// must be at capacity. Slow down our cycle time a bit.
maxSleepTime_ = maxSleepTime_ + 50;

}
}

}
else { // Close a connection that we currently own.

if (connections_.size() != 0) {
conn = (Connection)connections_.remove(0);
conn.close();

}
}

} // inner try
catch (Exception e)
{

e.printStackTrace();
}

} // outer while
} // outer try
finally
{

if (DEBUG)
System.out.println("ConnectionGetter("+threadName_+") Stopping");

// Return all the connections that I still have in my list.
for (int i=0; i<connections_.size(); i++) {

Connection conn = (Connection)connections_.remove(0);
try { conn.close(); } catch (Exception e) { e.printStackTrace(); }

}

}
}

} // internal class ’ConnectionGetter’
}

DatabaseMetaData interface:

You can use a DatabaseMetaData object to obtain information about the database as a whole as well as
catalog information.

The following example shows how to return a list of tables, which is a catalog function:
// Connect to the server.
Connection c = DriverManager.getConnection("jdbc:as400://mySystem");

76 IBM i: Programming IBM Toolbox for Java

// Get the database metadata from the connection.
DatabaseMetaData dbMeta = c.getMetaData();

// Get a list of tables matching the following criteria.
String catalog = "myCatalog";
String schema = "mySchema";
String table = "myTable%"; // % indicates search pattern
String types[] = {"TABLE", "VIEW", "SYSTEM TABLE"};
ResultSet rs = dbMeta.getTables(catalog, schema, table, types);

// Iterate through the ResultSet to get the values.

// Close the Connection.
c.close();

Related information:
AS400JDBCDatabaseMetaData Javadoc

AS400JDBCDataSource class:

The AS400JDBCDataSource class represents a factory for IBM i database connections. The
AS400JDBCConnectionPoolDataSource class represents a factory for AS400JDBCPooledConnection objects.

You can register either kind of data source object by using a Java Naming and Directory Interface (JNDI)
service provider. For more information about JNDI service providers, see “Related information for IBM
Toolbox for Java” on page 757.

Examples

The following examples demonstrate ways to create and use AS400JDBCDataSource objects. The last two
examples show how to register an AS400JDBCDataSource object with JNDI and then use the object
returned from JNDI to obtain a database connection. Notice that even when using different JNDI service
providers, the code is very similar.

Example: Creating an AS400JDBCDataSource object

The following example shows you how to create an AS400JDBCDataSource object and connect it to a
database:

// Create a data source for making the connection.
AS400JDBCDataSource datasource = new AS400JDBCDataSource("myAS400");
datasource.setUser("myUser");
datasource.setPassword("MYPWD");

// Create a database connection to the server.
Connection connection = datasource.getConnection();

Example: Creating an AS400JDBCConnectionPoolDataSource object that can be used to cache JDBC
connections

The following example shows how you can use an AS400JDBCConnectionPoolDataSource to cache JDBC
connections.

// Create a data source for making the connection.
AS400JDBCConnectionPoolDataSource dataSource =

new AS400JDBCConnectionPoolDataSource("myAS400");
datasource.setUser("myUser");
datasource.setPassword("MYPWD");

// Get the PooledConnection.
PooledConnection pooledConnection = datasource.getPooledConnection();

Example: Using JNDI service provider classes to store an AS400JDBCDataSource object

IBM Toolbox for Java 77

javadoc/com/ibm/as400/access/AS400JDBCDatabaseMetaData.html

The following example shows how you can use JNDI service provider classes to store a DataSource object
directly to the integrated file system on the server:

// Create a data source to the IBM i database.
AS400JDBCDataSource dataSource = new AS400JDBCDataSource();
dataSource.setServerName("myAS400");
dataSource.setDatabaseName("myAS400 Database");

// Register the datasource with the Java Naming and Directory Interface (JNDI).
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.fscontext.RefFSContextFactory");
Context context = new InitialContext(env);
context.bind("jdbc/customer", dataSource);

// Return an AS400JDBCDataSource object from JNDI and get a connection.
AS400JDBCDataSource datasource = (AS400JDBCDataSource) context.lookup("jdbc/customer");
Connection connection = datasource.getConnection("myUser", "MYPWD");

Example: Using AS400JDBCDataSource objects and IBM SecureWay Directory classes with a
Lightweight Directory Access Protocol (LDAP) directory server

The following examples shows how you can use IBM SecureWay Directory classes to store an object to a
Lightweight Directory Access Protocol (LDAP) directory server:

// Create a data source to the IBM i database.
AS400JDBCDataSource dataSource = new AS400JDBCDataSource();
dataSource.setServerName("myAS400");
dataSource.setDatabaseName("myAS400 Database");

// Register the datasource with the Java Naming and Directory Interface (JNDI).
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.ibm.jndi.LDAPCtxFactory");
Context context = new InitialContext(env);
context.bind("cn=myDatasource, cn=myUsers, ou=myLocation,o=myCompany,c=myCountryRegion",

dataSource);

// Return an AS400JDBCDataSource object from JNDI and get a connection.
AS400JDBCDataSource datasource = (AS400JDBCDataSource) context.lookup(

"cn=myDatasource, cn=myUsers, ou=myLocation,o=myCompany,c=myCountryRegion");
Connection connection = datasource.getConnection("myUser", "MYPWD");

AS400JDBCDataSource Javadoc
AS400JDBCConnectionPoolDataSource Javadoc
AS400JDBCPooledConnection Javadoc

Registering the JDBC driver:

Before using JDBC to access data in a server database file, you need to register the IBM Toolbox for Java
JDBC driver with the DriverManager.

You can register the driver either by using a Java system property or by having the Java program register
the driver:
v Register by using a system property

Each virtual machine has its own method of setting system properties. For example, the Java command
from the JDK uses the -D option to set system properties. To set the driver using system properties,
specify the following:

"-Djdbc.drivers=com.ibm.as400.access.AS400JDBCDriver"

v Register by using the Java program
To load the IBM Toolbox for Java JDBC driver, add the following to the Java program before the first
JDBC call:

Class.forName("com.ibm.as400.access.AS400JDBCDriver");

78 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400JDBCDataSource.html
javadoc/com/ibm/as400/access/AS400JDBCConnectionPoolDataSource.html
javadoc/com/ibm/as400/access/AS400JDBCPooledConnection.html

The IBM Toolbox for Java JDBC driver registers itself when it is loaded, which is the preferred way to
register the driver. You can also explicitly register the IBM Toolbox for Java JDBC driver by using the
following:

java.sql.DriverManager.registerDriver (new com.ibm.as400.access.AS400JDBCDriver ());

Calling DriverManager.registerDriver() results in the IBM Toolbox for Java JDBC driver getting
registered twice. Once when AS400JDBCDriver is loaded by the JVM and once for the explicit call to
the registerDriver() method. This is a result of the DriverManager implementation, which IBM Toolbox
for Java has no control over. Having a driver being listed twice in the DriverManager's registry is
normally not a problem. Although there may be situations where both registered driver listings get
used. For example, this could happen when trying to get a connection with an incorrect password. The
DriverManager will fail on the first registered driver to obtain a connection and so it will then try the
second registered driver.

The IBM Toolbox for Java JDBC driver does not require an AS400 object as an input parameter like the
other IBM Toolbox for Java classes that get data from a server. An AS400 object is used internally,
however, to manage default user and password caching. When a connection is first made to the server,
the user may be prompted for user ID and password. The user has the option to save the user ID as the
default user ID and add the password to the password cache. As in the other IBM Toolbox for Java
functions, if the user ID and password are supplied by the Java program, the default user is not set and
the password is not cached. See “Managing connections in Java programs” on page 447 for information
about managing connections.

Using the JDBC driver to connect to a database on the server

You can use the DriverManager.getConnection() method to connect to the server database.
DriverManager.getConnection() takes a uniform resource locator (URL) string as an argument. The JDBC
driver manager attempts to locate a driver that can connect to the database that is represented by the
URL. When using the IBM Toolbox for Java driver, use the following syntax for the URL:

"jdbc:as400://systemName/defaultSchema;listOfProperties"

Note: Either systemName or defaultSchema can be omitted from the URL.

To use Kerberos tickets, set only the system name (and not the password) on your JDBC URL object. The
user identity is retrieved through the Java Generic Security Services (JGSS) framework, so you also do not
need to specify a user on your JDBC URL. You can set only one means of authentication in an
AS400JDBCConnection object at a time. Setting the password clears any Kerberos ticket or profile token.

For more information, see “AS400 class” on page 22 and J2SDK, v1.4 Security Documentation .

Examples: Using the JDBC driver to connect to a server

Example: Using a URL in which a system name is not specified

This example results in the user being prompted to type in the name of the system to which he or she
wants to connect.

// Connect to unnamed system.
// User receives prompt to type system name.
Connection c = DriverManager.getConnection("jdbc:as400:");

Example: Connecting to the server database; no default SQL schema or properties specified
// Connect to system ’mySystem’. No
// default SQL schema or properties are specified.
Connection c = DriverManager.getConnection("jdbc:as400://mySystem");

Example: Connecting to the server database; default SQL schema specified

IBM Toolbox for Java 79

http://java.sun.com/j2se/1.4/docs/guide/security/index.html

// Connect to system ’mySys2’. The
// default SQL schema ’myschema’ is specified.
Connection c2 = DriverManager.getConnection("jdbc:as400://mySys2/mySchema");

Example: Connecting to the server database and using java.util.Properties to specify properties

The Java program can specify a set of JDBC properties either by using the java.util.Properties interface or
by specifying the properties as part of the URL. See “IBM Toolbox for Java JDBC properties” on page 326
for a list of supported properties.

For example, to specify properties using the Properties interface, use the following code as an example:
// Create a properties object.
Properties p = new Properties();

// Set the properties for the connection.
p.put("naming", "sql");
p.put("errors", "full");

// Connect using the properties object.
Connection c = DriverManager.getConnection("jdbc:as400://mySystem",p);

Example: Connecting to the server database and using a uniform resource locator (URL) to specify
properties

// Connect using properties. The
// properties are set on the URL
// instead of through a properties object.
Connection c = DriverManager.getConnection(

"jdbc:as400://mySystem;naming=sql;errors=full");

Example: Connecting to the server database and specifying user ID and password
// Connect using properties on the
// URL and specifying a user ID and password
Connection c = DriverManager.getConnection(

"jdbc:as400://mySystem;naming=sql;errors=full",
"auser",
"apassword");

Example: Disconnecting from the database

To disconnect from the server, use the close() method on the Connecting object. Use the following
statement to close the connection created in the previous example:

c.close();

AS400JDBCDriver Javadoc

AS400JDBCParameterMetaData class:

The AS400JDBCParameterMetaData class enables your programs to retrieve information about the
properties of parameters in PreparedStatement and CallableStatement objects.

AS400JDBCParameterMetaData provides methods that allow you to perform the following actions:
v Get the class name of the parameter
v Get the number of parameters in the PreparedStatement
v Get the SQL type of the parameter
v Get the database-specific type name for the parameter
v Get the precision or the scale of the parameter

80 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400JDBCDriver.html

Example: Using AS400JDBCParameterMetaData

The following example shows one way to use AS400JDBCParameterMetaData to retrieve parameters from
a dynamically generated PreparedStatement object:

// Get a connection from the driver.
Class.forName("com.ibm.as400.access.AS400JDBCDriver");
Connection connection =

DriverManager.getConnection("jdbc:as400://myAS400", "myUserId", "myPassword");

// Create a prepared statement object.
PreparedStatement ps =

connection.prepareStatement("SELECT STUDENTS FROM STUDENTTABLE WHERE STUDENT_ID= ?");

// Set a student ID into parameter 1.
ps.setInt(1, 123456);

// Retrieve the parameter meta data for the prepared statement.
ParameterMetaData pMetaData = ps.getParameterMetaData();

// Retrieve the number of parameters in the prepared statement.
// Returns 1.
int parameterCount = pMetaData.getParameterCount();

// Find out what the parameter type name of parameter 1 is.
// Returns INTEGER.
String getParameterTypeName = pMetaData.getParameterTypeName(1);

Related information:
AS400JDBCParameterMetaData Javadoc

PreparedStatement interface:

You can use a PreparedStatement object when an SQL statement is going to be run many times. A
prepared statement is an SQL statement that has been precompiled.

This approach is more efficient than running the same statement multiple times using a Statement object,
which compiles the statement each time it is run. In addition, the SQL statement contained in a
PreparedStatement object may have one or more IN parameters. Use Connection.prepareStatement() to
create PreparedStatement objects.

The PreparedStatement object allows you to submit multiple SQL commands as a single group to a
database through the use of batch support. You may improve performance by using batch support
because processing a group of operations is typically faster than processing them one at a time. For more
information about using batch support, see Enhancements to JDBC support.

Example: Using PreparedStatement

The following example shows how to use the PreparedStatement interface.
// Connect to the server.
Connection c = DriverManager.getConnection("jdbc:as400://mySystem");

// Create the PreparedStatement object. It precompiles the
// specified SQL statement. The question marks indicate where
// parameters must be set before the statement is run.
PreparedStatement ps =

c.prepareStatement("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (?, ?)");

// Set parameters and run the statement.
ps.setString(1, "JOSH");
ps.setInt(2, 789);
ps.executeUpdate();

IBM Toolbox for Java 81

javadoc/com/ibm/as400/access/AS400JDBCParameterMetaData.html

// Set parameters and run the statement again.
ps.setString(1, "DAVE");
ps.setInt(2, 456);
ps.executeUpdate();

// Close PreparedStatement and the Connection.
ps.close();
c.close();

Related information:
AS400JDBCPreparedStatement Javadoc

ResultSet class:

You can use a ResultSet object to access a table of data that was generated by running a query. The table
rows are retrieved in sequence. Within a row, column values can be accessed in any order.

The data stored in ResultSet is retrieved by using the various get methods, depending on the type of data
being retrieved. The next() method is used to move to the next row.

ResultSet allows you to get and update columns by name, although using the column index results
improves performance.

Cursor movement

A cursor, which is an internal pointer, is used by a result set to point the row in the result set that is
being accessed by the Java program.

The performance of the getRow() method has been improved. Before V5R2, using ResultSet.last(),
ResultSet.afterLast(), and ResultSet.absolute() with a negative value made the current row number not
available. The previous restrictions are lifted, which makes the getRow() method fully functional.

JDBC 2.0 and later JDBC specifications provide additional methods for accessing specific positions within
a database:

Scrollable cursor positions

absolute
afterLast
beforeFirst
first
getRow
isAfterLast
isBeforeFirst

isFirst
isLast
last
moveToCurrentRow
moveToInsertRow
previous
relative

Scrolling capabilities

If a result set is created by executing a statement, you can move (scroll) backward (last-to-first) or
forward (first-to-last) through the rows in a table.

A result set that supports this movement is called a scrollable result set. Scrollable result sets also support
absolute positioning. Absolute positioning allows you to move directly to a row by specifying its position
in the result set.

With JDBC 2.0 and later JDBC specifications, you have two additional scrolling capabilities available to
use when working with the ResultSet class: scroll-insensitive and scroll-sensitive result sets.

82 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400JDBCPreparedStatement.html

A scroll-insensitive result set is not usually sensitive to changes that are made while it is open, while the
scroll-sensitive result set is sensitive to changes.

Note: IBM i only allows read-only access for scrollable insensitive cursors. IBM Toolbox for Java supports
a scroll-insensitive cursor if the result set concurrency is read-only. If the result set type is specified
as insensitive and the concurrency is specified as updateable, the result set type changes to
sensitive and issues a warning to you.

Updateable result sets

In your application, you can use result sets that use either read-only concurrency (no updates can be
made to the data) or updateable concurrency (allows updates to the data and uses database write locks to
control access to the same data item by different transactions). In an updateable result set, rows can be
updated, inserted, and deleted. Numerous update methods are available for you to use in your program,
for example:
v Update ASCII stream
v Update Big Decimal
v Update binary stream

See Method Summary in the AS400JDBCResultSet Javadoc for a complete listing of the update methods
available through the ResultSet interface.

Example: Updatable result sets

The following example shows how to use a result set that allows updates to the data (update
concurrency) and allows changes to be made to the result set while it is open (scroll sensitive).

// Connect to the server.
Connection c = DriverManager.getConnection("jdbc:as400://mySystem");

// Create a Statement object. Set the result set
// concurrency to updatable.
Statement s = c.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);

// Run a query. The result is placed in a ResultSet object.
ResultSet rs = s.executeQuery ("SELECT NAME,ID FROM MYLIBRARY.MYTABLE FOR UPDATE");

// Iterate through the rows of the ResultSet.
// As we read the row, we will update it with a new ID.
int newId = 0;
while (rs.next ())
{

// Get the values from the ResultSet. The first value
// is a string, and the second value is an integer.
String name = rs.getString("NAME");
int id = rs.getInt("ID");

System.out.println("Name = " + name);
System.out.println("Old id = " + id);

// Update the id with a new integer.
rs.updateInt("ID", ++newId);

// Send the updates to the server.
rs.updateRow ();

System.out.println("New id = " + newId);
}

IBM Toolbox for Java 83

// Close the Statement and the Connection.
s.close();
c.close();

ResultSetMetaData

The ResultSetMetaData interface determines the types and properties of the columns in a ResultSet.

When connecting to a server running IBM i 5.2 or later, using the extended metadata property enables
you to increase the accuracy of the following ResultSetMetaData methods:
v getColumnLabel(int)
v isReadOnly(int)
v isSearchable(int)
v isWriteable(int)

Additionally, setting this property to true enables support for the ResultSetMetaData.getSchemaName(int)
method. Be aware that using the extended metadata property may degrade performance because it
requires retrieving more information from the server.

AS400JDBCResultSet Javadoc
AS400ResultSetMetaData Javadoc

AS400JDBCRowSet class:

The AS400JDBCRowSet class represents a connected rowset that encapsulates a JDBC result set. The
methods on AS400JDBCRowSet are very similar to those of the AS400JDBCResultSet. The database
connection is maintained while in use.

You can use an instance of AS400JDBCDataSource or AS400JDBCConnectionPoolDataSource to create the
connection to the database that you want to use to access the data for the AS400JDBCRowSet.

Examples

The following examples show how you can use the AS400JDBCRowSet class.

Example: Creating, populating, and updating an AS400JDBCRowSet object
DriverManager.registerDriver(new AS400JDBCDriver());
// Establish connection by using a URL.
AS400JDBCRowSet rowset = new AS400JDBCRowSet("jdbc:as400://mySystem","myUser", "myPassword");

// Set the command used to populate the list.
rowset.setCommand("SELECT * FROM MYLIB.DATABASE");

// Populate the rowset.
rowset.execute();

// Update the customer balances.
while (rowset.next())
{

double newBalance = rowset.getDouble("BALANCE") +
july_statements.getPurchases(rowset.getString("CUSTNUM"));

rowset.updateDouble("BALANCE", newBalance);
rowset.updateRow();

}

Example: Creating and populating an AS400JDBCRowSet object, while getting the data source from
JNDI

84 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400JDBCResultSet.html
javadoc/com/ibm/as400/access/AS400JDBCResultSetMetaData.html

// Get the data source that is registered in JNDI (assumes JNDI environment is set).
Context context = new InitialContext();
AS400JDBCDataSource dataSource = (AS400JDBCDataSource) context.lookup("jdbc/customer");

AS400JDBCRowSet rowset = new AS400JDBCRowSet();
// Establish connection by setting the data source name.
rowset.setDataSourceName("jdbc/customer");
rowset.setUsername("myuser");
rowset.setPassword("myPasswd");

// Set the prepared statement and initialize the parameters.
rowset.setCommand("SELECT * FROM MYLIBRARY.MYTABLE WHERE STATE = ? AND BALANCE > ?");
rowset.setString(1, "MINNESOTA");
rowset.setDouble(2, MAXIMUM_LIMIT);

// Populate the rowset.
rowset.execute();

AS400JDBCRowSet Javadoc
AS400JDBCResultSet Javadoc

AS400JDBCSavepoint class:

The IBM Toolbox for Java AS400JDBCSavepoint class represents a logical breaking point in a transaction.
Using savepoints gives you more granular control over which changes are affected when you roll back a
transaction.

Figure 1: Using savepoints to control rollbacks in a transaction

For example, Figure 1 shows a transaction that includes two savepoints, A and B. Rolling back the
transaction to either savepoint undoes (or reverses) only those changes from the point a rollback is called
to the savepoint. This prevents having to undo all the changes in the entire transaction. Note that once
you rollback to savepoint A, you cannot later rollback to savepoint B. You cannot access savepoint B after
work is rolled back past it.

Example: Using savepoints

In this scenario, assume that your application updates student records. At the end of updating a certain
field in every student record, you perform a commit. Your code detects a particular error associated with
updating this field and rolls back the work done when this error occurs. You know that this particular
error affects only the work performed on the current record.

IBM Toolbox for Java 85

javadoc/com/ibm/as400/access/AS400JDBCRowSet.html
javadoc/com/ibm/as400/access/AS400JDBCResultSet.html

So, you set a savepoint between each update of student records. Now, when this error occurs, you
rollback only the last update in the student table. Instead of having to roll back a large amount of work,
you can now roll back only a small amount of work.

The following example code helps illustrate how you can use savepoints. The example assumes that the
student ID for John is 123456 and the student ID for Jane is 987654.

// Get a connection from the driver
Class.forName("com.ibm.as400.access.AS400JDBCDriver");

// Get a statement object
Statement statement = connection.createStatement();

// Update John’s record with his ’B’ grade in gym.
int rows = statement.executeUpdate(

"UPDATE STUDENTTABLE SET GRADE_SECOND_PERIOD = ’B’ WHERE STUDENT_ID= ’123456’");

// Set a savepoint marking an intermediate point in the transaction
Savepoint savepoint1 = connection.setSavepoint("SAVEPOINT_1");

// Update Jane’s record with her ’C’ grade in biochemistry.
int rows = statement.executeUpdate(

"UPDATE STUDENTTABLE SET GRADE_SECOND_PERIOD = ’C’ WHERE STUDENT_ID= ’987654’");

// An error is detected, so we need to roll back Jane’s record, but not John’s.
// Rollback the transaction to savepoint 1. The change to Jane’s record is
// removed while the change to John’s record remains.
connection.rollback(savepoint1);

// Commit the transaction; only John’s ’B’ grade is committed to the database.
connection.commit();

Considerations and restrictions

Using savepoints requires that you be aware of the following considerations and restrictions:

Considerations

IBM Toolbox for Java follows database rules regarding how rollbacks affect cursors and retained locks.
For example, when you set the connection option to keep cursors open after a traditional rollback, cursors
also remain open after a rollback to a savepoint. In other words, when a rollback request happens
involving savepoints, IBM Toolbox for Java does not move or close the cursor when the underlying
database does not support this.

Using a savepoint to roll back a transaction undoes only the actions performed from the point where you
start the roll back to the savepoint. Actions performed before that savepoint remain. As in the previous
example, be aware that you can commit a transaction that includes work performed before a particular
savepoint but does not include work performed after the savepoint.

All savepoints are released and become invalid when the transaction is committed or when the entire
transaction is rolled back. You can also release savepoints by calling Connection.releaseSavepoint().

Restrictions

The following restrictions apply when using savepoints:
v Named savepoints must be unique.
v You cannot reuse a savepoint name until the savepoint is released, committed, or rolled back.
v Auto-commit must be set to 'OFF' for savepoints to be valid. You can set auto-commit 'OFF' by using

Connection.setAutoCommit(false). Enabling auto-commit when using savepoints throws an exception.

86 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400JDBCConnection.html

v Savepoints are not valid across XA connections. Using an XA connection with savepoints throws an
exception.

v Your server must be running IBM i Version 5 Release 2 or later. Using savepoints when connecting (or
already connected) to a server running V5R1 or earlier version of IBM i throws an exception.
AS400JDBCSavePoint Javadoc

Running SQL statements with Statement objects:

Use a Statement object to run an SQL statement and optionally obtain the ResultSet produced by it.

PreparedStatement inherits from Statement, and CallableStatement inherits from PreparedStatement. Use
the following Statement objects to run different SQL statements:
v “Statement interface”: Runs a simple SQL statement that has no parameters.
v “PreparedStatement interface” on page 81 - Runs a precompiled SQL statement that may or may not

have IN parameters.
v “CallableStatement interface” on page 63 - Runs a call to a database stored procedure. A

CallableStatement may or may not have IN, OUT, and INOUT parameters.

The Statement object allows you to submit multiple SQL commands as a single group to a database
through the use of batch support. You may improve performance by using batch support because
processing a group of operations is typically faster than processing them one at a time. For more
information about using batch support, see Enhancements to JDBC support.

When using batch updates, typically you turn off auto-commit. Turning off auto-commit allows your
program to determine whether to commit the transaction if an error occurs and not all of the commands
have executed. In JDBC 2.0 and later JDBC specifications, a Statement object can keep track of a list of
commands that can be successfully submitted and executed together in a group. When this list of batch
commands is executed by the executeBatch() method, the commands are executed in the order in which
they were added to the list.

AS400JDBCStatement provides methods that enable you to perform many actions, including the
following:
v Execute different kinds of statements
v Retrieve the values for different parameters of the Statement object, including:

– The connection
– Any auto-generated keys created as a result of executing the Statement
– The fetch size and fetch direction
– The maximum field size and maximum row limit
– The current result set, the next result set, the type of result set, the result set concurrency, and the

result set cursor holdability
v Add an SQL statement to the current batch
v Run the current batch of SQL statements

Statement interface

Use Connection.createStatement() to create new Statement objects.

The following example shows how to use a Statement object.
// Connect to the server.
Connection c = DriverManager.getConnection("jdbc:as400://mySystem");

// Create a Statement object.
Statement s = c.createStatement();

IBM Toolbox for Java 87

javadoc/com/ibm/as400/access/AS400JDBCSavepoint.html

// Run an SQL statement that creates a table in the database.
s.executeUpdate("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID INTEGER)");

// Run an SQL statement that inserts a record into the table.
s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (’DAVE’, 123)");

// Run an SQL statement that inserts a record into the table.
s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (’CINDY’, 456)");

// Run an SQL query on the table.
ResultSet rs = s.executeQuery("SELECT * FROM MYLIBRARY.MYTABLE");

// Close the Statement and the Connection.
s.close();
c.close();

AS400JDBCStatement Javadoc

JDBC XA Distributed Transaction Management:

The JDBC XA distributed transaction management classes enable you to use the IBM Toolbox for Java
JDBC driver within a distributed transaction. Using the XA classes to enable the IBM Toolbox for Java
JDBC driver allows it to participate in transactions that span multiple data sources.

Typically, XA distributed transaction management classes are used and controlled directly by a
transaction manager, which is separate from the JDBC driver. The distributed transaction management
interfaces are defined as part of the JDBC 2.0 Optional Package and the Java Transaction API (JTA). Both
are available from Sun as JAR files. The distributed transaction management interfaces are also supported
in the JDBC 3.0 API, which is bundled with the Java 2 Platform, Standard Edition, version 1.4.

For more information, see the Sun Web sites for JDBC

and the JTA .

Use the following objects to enable the IBM Toolbox for Java JDBC driver to participate in XA distributed
transactions:
v AS400JDBCXADataSource - A factory for AS400JDBCXAConnection objects. This is a subclass of

AS400JDBCDataSource.
v AS400JDBCXACConnection - A pooled connection object that provides hooks for connection pool

management and XA resource management.
v AS400JDBCXAResource - A resource manager for use in XA transaction management.

Note: Prior to V5R3, the database host server used XA APIs for Job Scoped Locks (XA model). In V5R3
and subsequent releases, the database host server uses XA APIs for Transaction Scoped Locks (NTS
model) for all MTS functions. For more information about how these APIs differ, see XA APIs.

Example: Using XA classes

The following example shows simple usage of the XA classes. Keep in mind that the details would be
filled in with work using other data sources. This type of code usually appears within a transaction
manager.

// Create an XA data source for making the XA connection.
AS400JDBCXADataSource xaDataSource = new AS400JDBCXADataSource("myAS400");
xaDataSource.setUser("myUser");
xaDataSource.setPassword("myPasswd");

// Get an XAConnection and get the associated XAResource.
// This provides access to the resource manager.
XAConnection xaConnection = xaDataSource.getXAConnection();
XAResource xaResource = xaConnection.getXAResource();

88 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400JDBCStatement.html
http://java.sun.com/products/jdbc/index.html
http://java.sun.com/products/jta/index.html
javadoc/com/ibm/as400/access/AS400JDBCXADataSource.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/AS400JDBCDataSource.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/AS400JDBCXAConnection.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/AS400JDBCXAResource.html#NAVBAR_TOP

// Generate a new Xid (this is up to the transaction manager).
Xid xid = ...;

// Start the transaction.
xaResource.start(xid, XAResource.TMNOFLAGS);

// ...Do some work with the database...

// End the transaction.
xaResource.end(xid, XAResource.TMSUCCESS);

// Prepare for a commit.
xaResource.prepare(xid);

// Commit the transaction.
xaResource.commit(xid, false);

// Close the XA connection when done. This implicitly
// closes the XA resource.
xaConnection.close();

Jobs classes
The IBM Toolbox for Java Jobs classes, which are in the access package, allow a Java program to retrieve
and change job information.

Use the Jobs classes to work with the following type of job information:
v Date and Time Information
v Job Queue
v Language Identifiers
v Message Logging
v Output Queue
v Printer Information

Examples

The following examples show some of the ways you can use the Job, JobList, and JobLog classes. The
first example shows one way to use a cache with the Job class. Links to other examples immediately
follow the sample code.

Note: Read the Code example disclaimer for important legal information.

Example: Using a cache when setting a value and getting a value
try {

// Creates AS400 object.
AS400 as400 = new AS400("systemName");

// Constructs a Job object
byte[] internalJobID = "xxxxxxxxxxxxxxxx".getBytes();
Job job = new Job(as400, internalJobID);

// Gets job information
System.out.println("User of this job :" + job.getUser());
System.out.println("CPU used : " + job.getCPUUsed());
System.out.println("Job enter system date : " + job.getJobEnterSystemDate());

// Sets cache mode
job.setCacheChanges(true);

// Changes will be store in the cache.

IBM Toolbox for Java 89

job.setRunPriority(66);
job.setDateFormat("*YMD");

// Commit changes. This will change the value on the system.
job.commitChanges();

// Set job information to system directly(without cache).
job.setCacheChanges(false);
job.setRunPriority(60);

} catch (Exception e)
{

System.out.println("error :" + e);
}

The following examples show how to list the jobs belonging to a specific user, list jobs with the job status
information, and display the messages in a job log:

“Example: Using JobList to list job identification information” on page 524

“Example: Using JobList to get a list of jobs” on page 526

“Example: Using JobLog to display messages in the job log” on page 530
Access package Javadoc

Job class:

The Job class (in the access package) allows a Java program to retrieve and change server job information.

The following type of job information can be retrieved and changed with the Job class:
v Job queues
v Output queues
v Message logging
v Printer device
v Country or region identifier
v Date format

The job class also allows the ability to change a single value at a time, or cache several changes using the
setCacheChanges(true) method and committing the changes using the commitChanges() method. If
caching is not turned on, you do not need to do a commit.

Example

For a code example, see the Javadoc reference documentation for the Job class. The example shows how
to set and get values to and from the cache in order to set the run priority with the setRunPriority()
method and set the date format with the setDateFormat() method.

Job Javadoc

JobList class:

You can use the JobList class (in the access package) to list IBM i jobs.

With the JobList class, you can retrieve the following:
v All jobs
v Jobs by name, job number, or user

90 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/package-summary.html
javadoc/com/ibm/as400/access/Job.html

Use the getJobs() method to return a list of jobs or the getLength() method to return the number of jobs
retrieved with the last getJobs().

Example: Using JobList

The following example lists all active jobs on the system:
// Create an AS400 object. List the
// jobs on this server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create the job list object.
JobList jobList = new JobList(sys);

// Get the list of active jobs.
Enumeration list = jobList.getJobs();

// For each active job on the system
// print job information.
while (list.hasMoreElements())
{

Job j = (Job) list.nextElement();

System.out.println(j.getName() + "." +
j.getUser() + "." +
j.getNumber());

}

Job Javadoc

JobLog class:

TheJobLog class (in the access package) retrieves messages in the job log of a server job by calling
getMessages().

Example: Using JobLog

The following example prints all messages in the job log for the specified user:
// ... Setup work to create an AS400
// object and a jobList object has
// already been done

// Get the list of active jobs on the server
Enumeration list = jobList.getJobs();

// Look through the list to find a
// job for the specified user.
while (list.hasMoreElements())
{

Job j = (Job) list.nextElement();

if (j.getUser().trim().equalsIgnoreCase(userID))
{

// A job matching the current user
// was found. Create a job log
// object for this job.
JobLog jlog = new JobLog(system, j.getName(), j.getUser(), j.getNumber());

// Enumerate the messages in the job
// log then print them.
Enumeration messageList = jlog.getMessages();

while (messageList.hasMoreElements())
{

AS400Message message = (AS400Message) messageList.nextElement();

IBM Toolbox for Java 91

javadoc/com/ibm/as400/access/Job.html

System.out.println(message.getText());
}

}
}

Job Javadoc

Message classes
The IBM Toolbox for Java AS400Message class and its associated classes represent a message returned
from a server.

AS400Message

The AS400Message object allows the Java program to retrieve an IBM i message that is generated from a
previous operation (for example, from a command call). From a message object, the Java program can
retrieve the following:
v The IBM i library and message file that contain the message
v The message ID
v The message type
v The message severity
v The message text
v The message help text

The following example shows how to use the AS400Message object:

Note: Read the Code example disclaimer for important legal information.
// Create a command call object.
CommandCall cmd = new CommandCall(sys, "myCommand");

// Run the command
cmd.run();

// Get the list of messages that are
// the result of the command that I just ran
AS400Message[] messageList = cmd.getMessageList();

// Iterate through the list displaying the messages
for (int i = 0; i < messageList.length; i++)
{

System.out.println(messageList[i].getText());
}

Examples: Using message lists

The following examples show how you can use message lists with CommandCall and ProgramCall.
v “Example: Using CommandCall” on page 472
v “Example: Using ProgramCall” on page 542

QueuedMessage

The QueuedMessage class extends the AS400Message class.

The QueuedMessage class accesses information about a message on an IBM i message queue. With this
class, a Java program can retrieve:
v Information about where a message originated, such as program, job number, and user.
v The message queue

92 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/Job.html

v The message key
v The message reply status

The following example prints all messages in the message queue of the current (signed-on) user:

Note: Read the Code example disclaimer for important legal information.
// The message queue is on this system.
AS400 sys = new AS400(mySystem.myCompany.com);

// Create the message queue object.
// This object will represent the
// queue for the current user.
MessageQueue queue = new MessageQueue(sys, MessageQueue.CURRENT);

// Get the list of messages currently in this user’s queue.
Enumeration e = queue.getMessages();

// Print each message in the queue.
while (e.hasMoreElements())
{

QueuedMessage msg = e.getNextElement();
System.out.println(msg.getText());

}

MessageFile

The MessageFile class allows you to receive a message from an IBM i message file. The MessageFile class
returns an AS400Message object that contains the message. Using the MessageFile class, you can do the
following:
v Return a message object that contains the message
v Return a message object that contains substitution text in the message

The following example shows how to retrieve and print a message:

Note: Read the Code example disclaimer for important legal information.
AS400 system = new AS400("mysystem.mycompany.com");
MessageFile messageFile = new MessageFile(system);
messageFile.setPath("/QSYS.LIB/QCPFMSG.MSGF");
AS400Message message = messageFile.getMessage("CPD0170");
System.out.println(message.getText());

MessageQueue

The MessageQueue class allows a Java program to interact with an IBM i message queue.

The MessageQueue class acts as a container for the QueuedMessage class. The getMessages() method, in
particular, returns a list of QueuedMessage objects. The MessageQueue class can do the following:
v Set message queue attributes
v Get information about a message queue
v Receive messages from a message queue
v Send messages to a message queue
v Reply to messages

The following example lists messages in the message queue for the current user:

Note: Read the Code example disclaimer for important legal information.

IBM Toolbox for Java 93

// The message queue is on this system.
AS400 sys = new AS400(mySystem.myCompany.com);

// Create the message queue object.
// This object will represent the
// queue for the current user.
MessageQueue queue = new MessageQueue(sys, MessageQueue.CURRENT);

// Get the list of messages currently in this user’s queue.
Enumeration e = queue.getMessages();

// Print each message in the queue.
while (e.hasMoreElements())
{

QueuedMessage msg = e.getNextElement();
System.out.println(msg.getText());

}

AS400Message Javadoc
QueuedMessage Javadoc
Access package summary
MessageFile Javadoc
MessageQueue Javadoc

NetServer class
The NetServer class has been deprecated and replaced by the ISeriesNetServer class.

The NetServer class represents the NetServer service on the server. NetServer objects allow you to query
and modify the state and configuration of the NetServer service.

For example, you can use the NetServer class to:
v Start or stop the NetServer
v Get a list of all current file shares and print shares
v Get a list of all current sessions
v Query and change attribute values (using methods inherited from ChangeableResource)

Note: In order to use the NetServer class, you need a server user profile that has *IOSYSCFG authority.

The NetServer class is an extension of ChangeableResource and Resource, so it provides a collection of
"attributes" to represent the various NetServer values and settings. You query or change the attributes in
order to access or change the configuration of your NetServer. Some of the NetServer attributes are:
v NAME
v NAME_PENDING
v DOMAIN
v ALLOW_SYSTEM_NAME
v AUTOSTART
v CCSID
v WINS_PRIMARY_ADDRESS

Pending attributes

Many of the NetServer attributes are pending (for example, NAME_PENDING). Pending attributes
represent NetServer values that take effect the next time you start (or restart) the NetServer on the server.

When you have a pair of related attributes and one attribute is pending while the other is nonpending:
v The pending attribute is read/write, so you can change it

94 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400Message.html
javadoc/com/ibm/as400/access/QueuedMessage.html
javadoc/com/ibm/as400/access/package-summary.html
javadoc/com/ibm/as400/access/MessageFile.html
javadoc/com/ibm/as400/access/MessageQueue.html

v The nonpending attribute is read-only, so you can query it but you cannot change it

Other NetServer classes

Related NetServer classes allow you to get and set detailed information about specific connections,
sessions, file shares, and print shares:
v NetServerConnection: Represents a NetServer connection
v NetServerFileShare: Represents a NetServer file server share
v NetServerPrintShare: Represents a NetServer print server share
v NetServerSession: Represents a NetServer session
v NetServerShare: Represents a NetServer share

Example: Using a NetServer object to change the name of the NetServer

Note: Read the Code example disclaimer for important legal information.
// Create a system object to represent the server.
AS400 system = new AS400("MYSYSTEM", "MYUSERID", "MYPASSWD");

// Create an object with which to query and modify the NetServer.
NetServer nServer = new NetServer(system);

// Set the "pending name" to NEWNAME.
nServer.setAttributeValue(NetServer.NAME_PENDING, "NEWNAME");

// Commit the changes. This sends the changes to the server.
nServer.commitAttributeChanges();

// The NetServer name will get set to NEWNAME the next time the NetServer
// is ended and started.

ObjectReferences class
The IBM Toolbox for Java ObjectReferences class represents the set of information about integrated file
system references on an object that can be retrieved through the Retrieve Object References (QP0LROR)
API.

A reference is an individual type of access or lock obtained on the object when using integrated file
system interfaces. An object may have multiple references concurrently held, provided that the reference
types do not conflict with one another. This class will not return information about byte range locks that
may currently be held on an object.

The user must have execute (*X) data authority to each directory preceding the object whose references
are to be obtained. The user must have read (*R) data authority to the object whose references are to be
obtained.

For more information, see the ObjectReferences Javadoc.
Related information:
ObjectReferences Javadoc
Retrieve Object References (QP0LROR) API

Permission classes
The IBM Toolbox for Java permission classes allow you to get and set object authority information. Object
authority information is also known as permission. The Permission class represents a collection of many
users' authority to a specific object. The UserPermission class represents a single user's authority to a
specific object.

IBM Toolbox for Java 95

javadoc/com/ibm/as400/access/ObjectReferences.html

Permission class

The Permission class allows you to retrieve and change object authority information. It includes a
collection of many users who are authorized to the object. The Permission object allows the Java program
to cache authority changes until the commit() method is called. Once the commit() method is called, all
changes made up to that point are sent to the server. Some of the functions provided by the Permission
class include:
v addAuthorizedUser(): Adds an authorized user.
v commit(): Commits the permission changes to the server.
v getAuthorizationList(): Returns the authorization list of the object.
v getAuthorizedUsers(): Returns an enumeration of authorized users.
v getOwner(): Returns the name of the object owner.
v getSensitivityLevel(): Returns the sensitivity level of the object.
v getType(): Returns the object authority type (QDLO, QSYS, or Root).
v getUserPermission(): Returns the permission of a specific user to the object.
v getUserPermissions(): Returns an enumeration of permissions of the users to the object.
v setAuthorizationList(): Sets the authorization list of the object.
v setSensitivityLevel(): Sets the sensitivity level of the object.

Example: Using Permission

Note: Read the Code example disclaimer for important legal information.

The following example shows you how to create a permission and add an authorized user to an object.

// Create AS400 object
AS400 as400 = new AS400();

// Create Permission passing in the AS400 and object
Permission myPermission = new Permission(as400, "QSYS.LIB/myLib.LIB");

// Add a user to be authorized to the object
myPermission.addAuthorizedUser("User1");

UserPermission class

The UserPermission class represents the authority of a single, specific user. UserPermission has three
subclasses that handle the authority based on the object type:
v DLOPermission
v QSYSPermission
v RootPermission

The UserPermission class allows you to do the following:
v Determine if the user profile is a group profile
v Return the user profile name
v Indicate whether the user has authority
v Set the authority of authorization list management

Example: Using UserPermission

Note: Read the Code example disclaimer for important legal information.

96 IBM i: Programming IBM Toolbox for Java

The following example shows you how to retrieve the users and groups that have permission on an
object and print them out one at a time.

// Create a system object.
AS400 sys = new AS400("MYAS400", "USERID", "PASSWORD");

// Represent the permissions to an object on the system, such as a library.
Permission objectInQSYS = new Permission(sys, "/QSYS.LIB/FRED.LIB");

// Retrieve the various users/groups that have permissions set on that object.
Enumeration enum = objectInQSYS.getUserPermissions();
while (enum.hasMoreElements())
{

// Print out the user/group profile names one at a time.
UserPermission userPerm = (UserPermission)enum.nextElement();
System.out.println(userPerm.getUserID());

}

Permission Javadoc
UserPermission Javadoc

DLOPermission class:

The DLOPermission class is a subclass of UserPermission. DLOPermission allows you to display and set
the authorities a user has (called permissions) to a document library object (DLO). DLOs are stored in
QDLS.

One of the following authority values is assigned to each user.

Authority value Description

*ALL The user can perform all operations except those
operations that are controlled by authorization list
management.

*AUTL The authorization list is used to determine the authority
for the document.

*CHANGE The user can change and perform basic functions on the
object.

*EXCLUDE The user cannot access the object.

*USE The user has object operational authority, read authority,
and execute authority.

You must use one of the following methods to change or determine the user's authority:
v Use getDataAuthority() to display the authority value of the user
v Use setDataAuthority() to set the authority value of the user

After setting permissions, it is important that you use the commit() method from the Permissions class to
send the changes to the server.

For more information about permissions and authorities, see the Security reference topic.

Example: Using DLOPermission

The following example shows how to retrieve and print the DLO permissions, including the user profiles
for each permission.

// Create a system object.

AS400 sys = new AS400("MYAS400", "USERID", "PASSWORD");

IBM Toolbox for Java 97

javadoc/com/ibm/as400/access/Permission.html
javadoc/com/ibm/as400/access/UserPermission.html
javadoc/com/ibm/as400/access/DLOPermission.html#GETDATAAUTHORITY()
javadoc/com/ibm/as400/access/DLOPermission.html#SETDATAAUTHORITY(JAVA.LANG.STRING)
javadoc/com/ibm/as400/access/Permission.html#COMMIT()

// Represent the permissions to a DLO object.
Permission objectInQDLS = new Permission(sys, "/QDLS/MyFolder");

// Print the object pathname and retrieve its permissions.
System.out.println("Permissions on " + objectInQDLS.getObjectPath() + " are as follows:");
Enumeration enum = objectInQDLS.getUserPermissions();
while (enum.hasMoreElements())
{

// For each of the permissions, print out the user profile name
// and that user’s authorities to the object.
DLOPermission dloPerm = (DLOPermission)enum.nextElement();
System.out.println(dloPerm.getUserID() + ": " + dloPerm.getDataAuthority());

}

Related information:
DLOPermission Javadoc

QSYSPermission:

QSYSPermission is a subclass of the UserPermission class. QSYSPermission allows you to display and set
the permission a user has for an object in the traditional IBM i library structure stored in QSYS.LIB. You
can set authority for an object stored in QSYS.LIB by setting a system-defined authority value or by
setting the individual object and data authorities.

The following table lists and describes the valid system-defined authority values:

System-defined authority value Description

*ALL The user can perform all operations except those
operations that are controlled by authorization list
management.

*AUTL The authorization list is used to determine the authority
for the document.

*CHANGE The user can change and perform basic functions on the
object.

*EXCLUDE The user cannot access the object.

*USE The user has object operational authority, read authority,
and execute authority.

Each system-defined authority value actually represents a combination of the individual object authorities
and data authorities. The following table illustrates the relationships of system-defined authorities to the
individual object and data authorities:

Table 1. Y refers to those authorities that can be assigned. n refers to those authorities that cannot be assigned.

System-
defined
authority

Object authority Data authority

Opr Mgt Exist Alter Ref Read Add Upd Dlt Exe

All Y Y Y Y Y Y Y Y Y Y

Change Y n n n n Y Y Y Y Y

Exclude n n n n n n n n n n

Use Y n n n n Y n n n Y

Autl Only valid with user (*PUBLIC) and a specified authorization list that determines the individual object
and data authorities.

98 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/DLOPermission.html

Specifying a system-defined authority automatically assigns the appropriate individual authorities.
Likewise, specifying various individual authorities changes the appropriate individual authority values.
When a combination of individual object authorities and data authorities does not map to a single
system-defined authority value, then the single value becomes "User Defined."

Use the getObjectAuthority() method to display the current system-defined authority. Use the
setObjectAuthority() method to set the current system-defined authority using a single value.

Use the appropriate set method to set individual object authority values on or off:
v setAlter()
v setExistence()
v setManagement()
v setOperational()
v setReference()

Use the appropriate set method to set individual data authority values on or off:
v setAdd()
v setDelete()
v setExecute()
v setRead()
v setUpdate()

For more information about the different authorities, see the Security reference topic. For information
about using CL commands to grant and edit object authorities, see the CL commands Grant Object
Authority (GRTOBJAUT) and Edit Object Authority (EDTOBJAUT).

Example

This example shows you how to retrieve and print the permissions for a QSYS object.
// Create a system object.
AS400 sys = new AS400("MYAS400", "USERID", "PASSWORD");

// Represent the permissions to a QSYS object.
Permission objectInQSYS = new Permission(sys, "/QSYS.LIB/FRED.LIB");

// Print the object pathname and retrieve its permissions.
System.out.println("Permissions on "+objectInQSYS.getObjectPath()+" are as follows:");
Enumeration enum = objectInQSYS.getUserPermissions();
while (enum.hasMoreElements())
{

// For each of the permissions, print out the user profile name
// and that user’s authorities to the object.
QSYSPermission qsysPerm = (QSYSPermission)enum.nextElement();
System.out.println(qsysPerm.getUserID()+": "+qsysPerm.getObjectAuthority());

}

QSYSPermission Javadoc
“UserPermission class” on page 96

RootPermission:

The RootPermission class represents a user's authority to objects contained in the root directory structure.
RootPermissions objects are those objects not contained in QSYS.LIB or QDLS.

RootPermission is a subclass of the UserPermission class. The RootPermission class allows you to display
and set the permissions for the user of an object contained in the root directory structure.

IBM Toolbox for Java 99

javadoc/com/ibm/as400/access/QSYSPermission.html

An object on the root directory structure can set the data authority or the object authority. You can set the
data authority to the values listed in the following table. Use the getDataAuthority() method to to display
the current values and the setDataAuthority() method to set the data authority.

The following table lists and describes the valid data authority values:

Data authority value Description

*none The user has no authority to the object.

*RWX The user has read, add, update, delete, and execute authorities.

*RW The user has read, add, and delete authorities.

*RX The user has read and execute authorities.

*WX The user has add, update, delete, and execute authorities.

*R The user has read authority.

*W The user has add, update, and delete authorities.

*X The user has execute authority.

*EXCLUDE The user cannot access the object.

*AUTL The public authorities on this object come from the authorization list.

The object authority can be set to one or more of the following values: alter, existence, management, or
reference. You can use the setAlter(), setExistence(), setManagement(), or setReference() methods to set the
values on or off.

After setting either the data authority or the object authority of an object, it is important that you use the
commit() method from the Permissions class to send the changes to the server.

For more information about the different authorities, see the Security reference topic.

Example

This example shows you how to retrieve and print the permissions for a root object.
// Create a system object.
AS400 sys = new AS400("MYAS400", "USERID", "PASSWORD");

// Represent the permissions to an object in the root file system.
Permission objectInRoot = new Permission(sys, "/fred");

// Print the object pathname and retrieve its permissions.
System.out.println("Permissions on "+objectInRoot.getObjectPath()+" are as follows:");
Enumeration enum = objectInRoot.getUserPermissions();
while (enum.hasMoreElements())
{

// For each of the permissions, print out the user profile name
// and that user’s authorities to the object.
RootPermission rootPerm = (RootPermission)enum.nextElement();
System.out.println(rootPerm.getUserID()+": "+rootPerm.getDataAuthority());

}

Related information:
RootPermission Javadoc

Print classes
Print objects include spooled files, output queues, printers, printer files, writer jobs, and Advanced
Function Printing (AFP) resources, which include fonts, form definitions, overlays, page definitions, and
page segments.

100 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/RootPermission.html

The IBM Toolbox for Java classes for print objects are organized on a base class, PrintObject, and on a
subclass for each of the six types of print objects. The base class contains the methods and attributes
common to all server print objects. The subclasses contain methods and attributes specific to each
subtype.

Examples
v Example: Creating spooled files shows how to create a spooled file on a server from an input stream
v Example: Creating SCS spooled files shows how to generate a SCS data stream using the

SCS3812Writer class, and how to write the stream to a spooled file on the server
v Example: Reading spooled files shows how to use PrintObjectInputStream to read an existing server

spooled file
v Example: Reading and transforming spooled files shows how to use PrintObjectPageInputStream and

PrintObjectTransformedInputStream to obtain different transformations when reading spooled file data
v Example: Copying a spooled file shows how to copy a spooled file to the same queue that contains

the file you want to copy.
v Example: Listing spooled files asynchronously (using listeners) shows how to asynchronously list all

spooled files on a system and how to use the PrintObjectListListener interface to get feedback as the
list is being built

v Example: Listing spooled files asynchronously (without using listeners) shows how to asynchronously
list all spooled files on a system without using the PrintObjectListListener interface

v Example: Listing spooled files synchronously shows how to synchronously list all spooled files on a
system

Related information:
PrintObject Javadoc

Listing Print objects:

You can use the IBM Toolbox for Java PrintObjectList class and its subclasses to work with lists of print
objects. Print objects include spooled files, output queues, printers, Advanced Function Printing (AFP)
resources, printer files, and writer jobs.

Each subclass has methods that allow filtering of the list based on what makes sense for that particular
type of print object. For example, SpooledFileList allows you to filter a list of spooled files based on the
user who created the spooled files, the output queue that the spooled files are on, the form type, or user
data of the spooled files. Only those spooled files that match the filter criteria are listed. If no filters are
set, a default for each of the filters are used.

To actually retrieve the list of print objects from the server, the openSynchronously() or
openAsynchronously() methods are used. The openSynchronously() method does not return until all
objects in the list have been retrieved from the server. The openAsynchronously() method returns
immediately, and the caller can do other things in the foreground while waiting for the list to build. The
asynchronously opened list also allows the caller to start displaying the objects to the user as the objects
come back. Because the user can see the objects as they come back, the response time may seem faster to
the user. In fact, the response time may actually take longer overall due to the extra processing being
done on each object in the list.

If the list is opened asynchronously, the caller may get feedback on the building of the list. Methods, such
as isCompleted() and size(), indicate whether the list has finished being built or return the current size of
the list. Other methods, waitForListToComplete() and waitForItem(), allow the caller to wait for the list to
complete or for a particular item. In addition to calling these PrintObjectList methods, the caller may
register with the list as a listener. In this situation, the caller is notified of events that happen to the list.
To register or unregister for the events, the caller uses PrintObjectListListener(), and then calls
addPrintObjectListListener() to register removePrintObjectListListener()or to unregister. The following
table shows the events that are delivered from a PrintObjectList.

IBM Toolbox for Java 101

javadoc/com/ibm/as400/access/PrintObject.html

PrintObjectList event When event is delivered

listClosed When the list is closed.

listCompleted When the list completes.

listErrorOccurred If any exception is thrown while the list is being retrieved.

listOpened When the list is opened.

listObjectAdded When an object is added to the list.

After the list has been opened and the objects in the list processed, close the list using the close() method.
This frees up any resources allocated to the garbage collector during the open. After a list has been
closed, its filters can be modified, and the list can be opened again.

When print objects are listed, attributes about each print object listed are sent from the server and stored
with the print object. These attributes can be updated using the update() method in the PrintObject class.
Which attributes are sent back from the server depends on the type of print object being listed. A default
list of attributes for each type of print object that can be overridden by using the setAttributesToRetrieve()
method in PrintObjectList exists. See the Retrieving PrintObject attributes section for a list of the
attributes each type of print object supports.

Examples

The following examples show different ways to list spooled files.

“Example: Listing spooled files asynchronously (using listeners)” on page 536 shows how to
asynchronously list all spooled files on a system and how to use the PrintObjectListListener
interface to get feedback as the list is being built

“Example: Listing spooled files asynchronously (without using listeners)” on page 539 shows how to
asynchronously list all spooled files on a system without using the PrintObjectListListener interface

“Example: Listing spooled files synchronously” on page 541 shows how to synchronously list all
spooled files on a system

PrintObjectList Javadoc
SpooledFileList Javadoc
AFPResource Javadoc

Working with Print objects:

PrintObject is an abstract class. An abstract class does not allow you to create an instance of the class.
Instead, you must create an instance of one of its subclasses to work with print objects.

Create objects of the subclasses in any of the following ways:
v If you know the system and the identifying attributes of the object, construct the object explicitly by

calling its public constructor.
v You can use a PrintObjectList subclass to build a list of the objects and then get at the individual

objects through the list.
v An object may be created and returned to you as a result of a method or set methods being called. For

example, the static method start() in the WriterJob class returns a WriterJob object.

Use the base class, PrintObject , and its subclasses to work with server print objects:
v OutputQueue
v Printer

102 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/PrintObjectList.html
javadoc/com/ibm/as400/access/SpooledFileList.html
javadoc/com/ibm/as400/access/AFPResourceList.html

v PrinterFile
v SpooledFile
v WriterJob

PrintObject Javadoc
PrintObjectList Javadoc
OutputQueue Javadoc
Printer Javadoc
PrinterFile Javadoc
SpooledFile Javadoc
WriterJob Javadoc

Retrieving PrintObject attributes:

You can retrieve print object attributes by using the attribute ID and one of several methods from the
base PrintObject class.

The methods you can use include the following:
v Use getIntegerAttribute(int attributeID) to retrieve an integer type attribute.
v Use getFloatAttribute(int attributeID) to retrieve a floating point type attribute.
v Use getStringAttribute(int attributeID) to retrieve a string type attribute.

The attributeID parameter is an integer that identifies which attribute to retrieve. All of the IDs are
defined as public constants in the base PrintObject class. The PrintAttributes file contains an entry of each
attribute ID. The entry includes a description of the attribute and its type (integer, floating point, or
string). For a list of which attributes may be retrieved using these methods, select the following links:
v AFPResourceAttrs for AFP Resources
v OutputQueueAttrs for output queues
v PrinterAttrs for printers
v PrinterFileAttrs for printer files
v SpooledFileAttrs for spooled files
v WriterJobAttrs for writer jobs

To achieve acceptable performance, these attributes are copied to the client. These attributes are copied
either when the objects are listed, or the first time they are needed if the object was created implicitly.
This keeps the object from going to the host every time the application needs to retrieve an attribute. This
also makes it possible for the Java print object instance to contain out-of-date information about the object
on the server. The user of the object can refresh all of the attributes by calling the update() method on the
object. In addition, if the application calls any methods on the object that would cause the object's
attributes to change, the attributes are automatically updated. For example, if an output queue has a
status attribute of RELEASED (getStringAttribute(ATTR_OUTQSTS); returns a string of "RELEASED"),
and the hold() method is called on the output queue, getting the status attribute after that returns HELD.

setAttributes method

You can use the SpooledFile setAttributes method to change the attributes of spooled files and printer file
objects. Select the following links for a list or which attributes may be set:
v PrinterFileAttrs file for printer files
v SpooledFileAttrs for spooled files

The setAttributes method takes a PrintParameterList parameter, which is a class that is used to hold a
collection of attributes IDs and their values. The list starts out empty, and the caller can add attributes to

IBM Toolbox for Java 103

javadoc/com/ibm/as400/access/PrintObject.html
javadoc/com/ibm/as400/access/PrintObjectList.html
javadoc/com/ibm/as400/access/OutputQueue.html
javadoc/com/ibm/as400/access/Printer.html
javadoc/com/ibm/as400/access/PrinterFile.html
javadoc/com/ibm/as400/access/SpooledFile.html
javadoc/com/ibm/as400/access/WriterJob.html

the list by using the various setParameter() methods on it.

PrintParameterList class

You can use the PrintParameterList class to pass a group of attributes to a method that takes any of a
number of attributes as parameters. For example, you can send a spooled file using TCP (LPR) by using
the SpooledFile method, sendTCP(). The PrintParameterList object contains the required parameters for
the send command, such as the remote system and queue, plus any optional parameters desired, such as
whether to delete the spooled file after it is sent. In these cases, the method documentation gives a list of
required and optional attributes. The PrintParameterList setParameter() method does not check which
attributes you are setting and the values that you set them to. The PrintParameterList setParameter()
method simply contains the values to pass along to the method. In general, extra attributes in the
PrintParameterList are ignored, and illegal values on the attributes that are used are diagnosed on the
server.

PrintObject Javadoc
SpooledFile Javadoc
PrintParameterList Javadoc

AFP Resource Attributes:

This topic lists the attributes that can be retrieved and set for an AFP resource.

Retrieve Attributes

The following attributes may be retrieved for an AFP resource using the appropriate getIntegerAttribute(),
getStringAttribute(), or getFloatAttribute() method:
v ATTR_AFP_RESOURCE - AFP resource Integrated File System Path
v ATTR_OBJEXTATTR - Object Extended Attribute
v ATTR_DESCRIPTION - Text Description
v ATTR_DATE - Date File Opened
v ATTR_TIME - Time File Opened
v ATTR_NUMBYTES - Number of bytes to read/write

Set Attributes

Attributes are not allowed to be set for an AFP resource.

Output queue attributes:

This topic lists the attributes available for an output queue.

Retrieve attributes

The following attributes may be retrieved for an output queue using the appropriate
getIntegerAttribute(), getStringAttribute(), or getFloatAttribute() method:
v ATTR_AUTHCHCK - Authority to Check
v ATTR_DATA_QUEUE - Data Queue Integrated File System Name
v ATTR_DISPLAYANY - Display any File
v ATTR_JOBSEPRATR - Job Separators
v ATTR_NUMFILES - Number of Files
v ATTR_NUMWRITERS - Number of Writers Started to Queue
v ATTR_OPCNTRL - Operator Controlled

104 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/PrintObject.html
javadoc/com/ibm/as400/access/SpooledFile.html
javadoc/com/ibm/as400/access/PrintParameterList.html

v ATTR_ORDER - Order of Files On Queue
v ATTR_OUTPUT_QUEUE - Output Queue Integrated File System Name
v ATTR_OUTQSTS - Output Queue Status
v ATTR_PRINTER - Printer
v ATTR_SEPPAGE - Separator page
v ATTR_DESCRIPTION - Text Description
v ATTR_USRDEFOPT - User defined option(s)
v ATTR_USER_DEFINED_OBJECT - User defined object Integrated File System Name
v ATTR_USER_TRANSFORM_PROG - User transform program Integrated File System Name
v ATTR_USER_DRIVER_PROG - User driver program Integrated File System Name
v ATTR_WTRJOBNAME - Writer Job Name
v ATTR_WTRJOBNUM - Writer Job Number
v ATTR_WTRJOBSTS - Writer Job Status
v ATTR_WTRJOBUSER - Writer Job User Name

Set attributes

Attributes are not allowed to be set for an output queue.

Printer Attributes:

The following attributes may be retrieved for a printer using the appropriate getIntegerAttribute(),
getStringAttribute(), or getFloatAttribute() method:

Retrieve Attributes

v ATTR_AFP - Advanced Function Printing
v ATTR_ALIGNFORMS - Align Forms
v ATTR_ALWDRTPRT - Allow Direct Print
v ATTR_BTWNCPYSTS - Between copies status
v ATTR_BTWNFILESTS - Between files status
v ATTR_CODEPAGE - Code Page
v ATTR_CHANGES - Changes
v ATTR_DEVCLASS - Device Class
v ATTR_DEVMODEL - Device Model
v ATTR_DEVTYPE - Device Type
v ATTR_DEVSTATUS - Device Status
v ATTR_DRWRSEP - Drawer for Separators
v ATTR_ENDPNDSTS - End pending status
v ATTR_FILESEP - File Separators
v ATTR_FONTID - Font Identifier
v ATTR_FORM_DEFINITION - Form Definition Integrated File System Name
v ATTR_FORMTYPE - Form Type
v ATTR_FORMTYPEMSG - Form Type Message
v ATTR_FORMFEED - Form Feed
v ATTR_CHAR_ID - Graphic Character Set
v ATTR_HELDSTS - Held status
v ATTR_HOLDPNDSTS - Hold pending status

IBM Toolbox for Java 105

v ATTR_JOBUSER - Job User
v ATTR_MFGTYPE - Manufacturer Type and Model
v ATTR_MESSAGE_QUEUE - Message Queue Integrated File System Name
v ATTR_ONJOBQSTS - On job queue status
v ATTR_OUTPUT_QUEUE - Output Queue Integrated File System Name
v ATTR_OVERALLSTS - Overall Status
v ATTR_POINTSIZE - Point Size
v ATTR_PRINTER - Printer
v ATTR_PRTDEVTYPE - Printer Device Type
v ATTR_PUBINF_COLOR_SUP - Publishing Info Color Supported
v ATTR_PUBINF_PPM_COLOR - Publishing Info Pages per Minute (Color)
v ATTR_PUBINF_PPM - Publishing Info Pages per Minute (Monochrome)
v ATTR_PUBINF_DUPLEX_SUP - Publishing Info Duplex Support
v ATTR_PUBINF_LOCATION - Publishing Info Location
v ATTR_RMTLOCNAME - Remote Location Name
v ATTR_SPOOLFILE - Spooled File Name
v ATTR_SPLFNUM - Spooled File Number
v ATTR_STARTEDBY - Started By User
v ATTR_DESCRIPTION - Text Description
v ATTR_USERDATA - User data
v ATTR_USRDEFOPT - User defined option(s)
v ATTR_USER_DEFINED_OBJECT - User defined object Integrated File System Name
v ATTR_USER_TRANSFORM_PROG - User transform program Integrated File System Name
v ATTR_USER_DRIVER_PROG - User driver program Integrated File System Name
v ATTR_SCS2ASCII - Transform SCS to ASCII
v ATTR_WTNGDATASTS - Waiting for data status
v ATTR_WTNGDEVSTS - Waiting for device status
v ATTR_WTNGMSGSTS - Waiting for message status
v ATTR_WTRAUTOEND - When to Automatically End Writer
v ATTR_WTRJOBNAME - Writer Job Name
v ATTR_WTRJOBSTS - Writer Job Status
v ATTR_WTRSTRTD - Writer started
v ATTR_WRTNGSTS - Writing status

Set Attributes

Attributes are not allowed to be set for a printer.

Printer file attributes:

This topic contains a list of printer file attributes for use with IBM Toolbox for Java.

Retrieve attributes

The following attributes may be retrieved for a printer file using the appropriate getIntegerAttribute(),
getStringAttribute(), or getFloatAttribute() method:
v ATTR_ALIGN - Align Page
v ATTR_BKMGN_ACR - Back Margin Offset Across

106 IBM i: Programming IBM Toolbox for Java

v ATTR_BKMGN_DWN - Back Margin Offset Down
v ATTR_BACK_OVERLAY - Back Overlay Integrated File System Name
v ATTR_BKOVL_DWN - Back Overlay Offset Down
v ATTR_BKOVL_ACR - Back Overlay offset across
v ATTR_CPI - Characters per Inch
v ATTR_CODEDFNTLIB - Coded Font Library Name
v ATTR_CODEPAGE - Code Page
v ATTR_CODEDFNT - Code Font Name
v ATTR_CONTROLCHAR - Control Character
v ATTR_CONVERT_LINEDATA - Convert Line Data
v ATTR_COPIES - Copies
v ATTR_CORNER_STAPLE - Corner staple
v ATTR_DBCSDATA - User Specified DBCS Data
v ATTR_DBCSEXTENSN - DBCS Extension Characters
v ATTR_DBCSROTATE - DBCS Character Rotation
v ATTR_DBCSCPI - DBCS Characters per Inch
v ATTR_DBCSSISO - DBCS SO/SI Spacing
v ATTR_DFR_WRITE - Defer Write
v ATTR_PAGRTT - Degree of Page Rotation
v ATTR_EDGESTITCH_NUMSTAPLES - Edge Stitch Number of Staples
v ATTR_EDGESTITCH_REF - Edge Stitch Reference
v ATTR_EDGESTITCH_REFOFF - Edge Stitch Reference
v ATTR_ENDPAGE - Ending Page
v ATTR_FILESEP - File Separators
v ATTR_FOLDREC - Fold Records
v ATTR_FONTID - Font Identifier
v ATTR_FORM_DEFINITION - Form Definition Integrated File System Name
v ATTR_FORMFEED - Form Feed
v ATTR_FORMTYPE - Form Type
v ATTR_FTMGN_ACR - Front Margin Offset Across
v ATTR_FTMGN_DWN - Front Margin Offset Down
v ATTR_FRONT_OVERLAY - Front overlay Integrated File System Name
v ATTR_FTOVL_ACR - Front Overlay Offset Across
v ATTR_FTOVL_DWN - Front Overlay Offset Down
v ATTR_CHAR_ID - Graphic Character Set
v ATTR_JUSTIFY - Hardware Justification
v ATTR_HOLD - Hold Spool File
v ATTR_LPI - Lines Per Inch
v ATTR_MAXRCDS - Maximum Spooled Output Records
v ATTR_OUTPTY - Output Priority
v ATTR_OUTPUT_QUEUE - Output Queue Integrated File System Name
v ATTR_OVERFLOW - Overflow Line Number
v ATTR_PAGE_DEFINITION - Page Definition Integrated File System
v ATTR_PAGELEN - Length of Page
v ATTR_MEASMETHOD - Measurement Method

IBM Toolbox for Java 107

v ATTR_PAGEWIDTH - Width of Page
v ATTR_MULTIUP - Pages Per Side
v ATTR_POINTSIZE - Point Size
v ATTR_FIDELITY - Print Fidelity
v ATTR_DUPLEX - Print on Both Sides
v ATTR_PRTQUALITY - Print Quality
v ATTR_PRTTEXT - Print Text
v ATTR_PRINTER - Printer
v ATTR_PRTDEVTYPE - Printer Device Type
v ATTR_RPLUNPRT - Replace Unprintable Characters
v ATTR_RPLCHAR - Replacement Character
v ATTR_SADDLESTITCH_NUMSTAPLES - Saddle Stitch Number of Staples
v ATTR_SADDLESTITCH_REF - Saddle Stitch Reference
v ATTR_SAVE -Save Spooled File
v ATTR_SRCDRWR - Source Drawer
v ATTR_SPOOL - Spool the Data
v ATTR_SCHEDULE - Spooled Output Schedule
v ATTR_STARTPAGE - Starting Page
v ATTR_DESCRIPTION - Text Description
v ATTR_UNITOFMEAS - Unit of Measure
v ATTR_USERDATA - User Data
v ATTR_USRDEFDATA - User defined data
v ATTR_USRDEFOPT - User defined option(s)
v ATTR_USER_DEFINED_OBJECT - User defined object Integrated File System Name

Set attributes

The following attributes may be set for a printer file using the setAttributes() method:
v ATTR_ALIGN - Align Page
v ATTR_BKMGN_ACR - Back Margin Offset Across
v ATTR_BKMGN_DWN - Back Margin Offset Down
v ATTR_BACK_OVERLAY - Back Overlay Integrated File System Name
v ATTR_BKOVL_DWN - Back Overlay Offset Down
v ATTR_BKOVL_ACR - Back Overlay offset across
v ATTR_CPI - Characters per Inch
v ATTR_CODEDFNTLIB - Coded Font Library Name
v ATTR_CODEPAGE - Code Page
v ATTR_CODEDFNT - Code Font Name
v ATTR_CONTROLCHAR - Control Character
v ATTR_CONVERT_LINEDATA - Convert Line Data
v ATTR_COPIES - Copies
v ATTR_CORNER_STAPLE - Corner staple
v ATTR_DBCSDATA - User Specified DBCS Data
v ATTR_DBCSEXTENSN - DBCS Extension Characters
v ATTR_DBCSROTATE - DBCS Character Rotation
v ATTR_DBCSCPI - DBCS Characters per Inch

108 IBM i: Programming IBM Toolbox for Java

v ATTR_DBCSSISO - DBCS SO/SI Spacing
v ATTR_DFR_WRITE - Defer Write
v ATTR_PAGRTT - Degree of Page Rotation
v ATTR_EDGESTITCH_NUMSTAPLES - Edge Stitch Number of Staples
v ATTR_EDGESTITCH_REF - Edge Stitch Reference
v ATTR_EDGESTITCH_REFOFF - Edge Stitch Reference
v ATTR_ENDPAGE - Ending Page
v ATTR_FILESEP - File Separators
v ATTR_FOLDREC - Fold Records
v ATTR_FONTID - Font Identifier
v ATTR_FORM_DEFINITION - Form Definition Integrated File System Name
v ATTR_FORMFEED - Form Feed
v ATTR_FORMTYPE - Form Type
v ATTR_FTMGN_ACR - Front Margin Offset Across
v ATTR_FTMGN_DWN - Front Margin Offset Down
v ATTR_FRONT_OVERLAY - Front overlay Integrated File System Name
v ATTR_FTOVL_ACR - Front Overlay Offset Across
v ATTR_FTOVL_DWN - Front Overlay Offset Down
v ATTR_CHAR_ID - Graphic Character Set
v ATTR_JUSTIFY - Hardware Justification
v ATTR_HOLD - Hold Spool File
v ATTR_LPI - Lines Per Inch
v ATTR_MAXRCDS - Maximum Spooled Output Records
v ATTR_OUTPTY - Output Priority
v ATTR_OUTPUT_QUEUE - Output Queue Integrated File System Name
v ATTR_OVERFLOW - Overflow Line Number
v ATTR_PAGE_DEFINITION - Page Definition Integrated File System
v ATTR_PAGELEN - Length of Page
v ATTR_MEASMETHOD - Measurement Method
v ATTR_PAGEWIDTH - Width of Page
v ATTR_MULTIUP - Pages Per Side
v ATTR_POINTSIZE - Point Size
v ATTR_FIDELITY - Print Fidelity
v ATTR_DUPLEX - Print on Both Sides
v ATTR_PRTQUALITY - Print Quality
v ATTR_PRTTEXT - Print Text
v ATTR_PRINTER - Printer
v ATTR_PRTDEVTYPE - Printer Device Type
v ATTR_RPLUNPRT - Replace Unprintable Characters
v ATTR_RPLCHAR - Replacement Character
v ATTR_SADDLESTITCH_NUMSTAPLES - Saddle Stitch Number of Staples
v ATTR_SADDLESTITCH_REF - Saddle Stitch Reference
v ATTR_SAVE -Save Spooled File
v ATTR_SRCDRWR - Source Drawer
v ATTR_SPOOL - Spool the Data

IBM Toolbox for Java 109

v ATTR_SCHEDULE - Spooled Output Schedule
v ATTR_STARTPAGE - Starting Page
v ATTR_DESCRIPTION - Text Description
v ATTR_UNITOFMEAS - Unit of Measure
v ATTR_USERDATA - User Data
v ATTR_USRDEFDATA - User defined data
v ATTR_USRDEFOPT - User defined option(s)
v ATTR_USER_DEFINED_OBJECT - User defined object Integrated File System Name

Spooled file attributes:

This topic lists the attributes that can be retrieved and set for a spooled file.

Retrieve attributes

The following attributes may be retrieved for a spooled file using the appropriate getIntegerAttribute(),
getStringAttribute(), or getFloatAttribute() method:
v ATTR_AFP - Advanced Function Printing
v ATTR_ALIGN - Align Page
v ATTR_BKMGN_ACR - Back Overlay offset across
v ATTR_BKMGN_DWN - Back Overlay Offset Down
v ATTR_BACK_OVERLAY - Back Overlay Integrated File System Name
v ATTR_BKOVL_DWN - Back Overlay Offset Down
v ATTR_BKOVL_ACR - Back Overlay offset across
v ATTR_CPI - Characters per Inch
v ATTR_CODEDFNTLIB - Coded Font Library Name
v ATTR_CODEDFNT - Code Font Name
v ATTR_CODEPAGE - Code Page
v ATTR_CONTROLCHAR - Control Character
v ATTR_COPIES - Copies
v ATTR_COPIESLEFT - Copies left to Produce
v ATTR_CORNER_STAPLE - Corner staple
v ATTR_CURPAGE - Current Page
v ATTR_DATE - Date Object Created
v ATTR_DATE_WTR_BEGAN_FILE - Date Writer Began Processing Spooled File
v ATTR_DATE_WTR_CMPL_FILE - Date Writer Completed Processing Spooled File
v ATTR_DBCSDATA - User Specified DBCS Data
v ATTR_DBCSEXTENSN - DBCS Extension Characters
v ATTR_DBCSROTATE - DBCS Character Rotation
v ATTR_DBCSCPI - DBCS Characters per Inch
v ATTR_DBCSSISO - DBCS SO/SI Spacing
v ATTR_PAGRTT - Degree of Page Rotation
v ATTR_EDGESTITCH_NUMSTAPLES - Edge Stitch Number of Staples
v ATTR_EDGESTITCH_REF - Edge Stitch Reference
v ATTR_EDGESTITCH_REFOFF - Edge Stitch Reference Offset
v ATTR_ENDPAGE - Ending Page
v ATTR_FILESEP - File Separators

110 IBM i: Programming IBM Toolbox for Java

v ATTR_FOLDREC - Fold Records
v ATTR_FONTID - Font Identifier
v ATTR_FORM_DEFINITION - Form definition Integrated File System Name
v ATTR_FORMFEED - Form Feed
v ATTR_FORMTYPE - Form Type
v ATTR_FTMGN_ACR - Front Margin Offset Across
v ATTR_FTMGN_DWN - Front Margin Offset Down
v ATTR_FRONTSIDE_OVERLAY - Front overlay Integrated File System Name
v ATTR_FTOVL_ACR - Front Overlay Offset Across
v ATTR_FTOVL_DWN - Front Overlay Offset Down
v ATTR_CHAR_ID - Graphic Character Set
v ATTR_JUSTIFY - Hardware Justification
v ATTR_HOLD - Hold Spool File
v ATTR_IPP_ATTR_CHARSET - IPP Attributes-charset
v ATTR_IPP_JOB_ID - IPP Job ID
v ATTR_IPP_JOB_NAME - IPP Job Name
v ATTR_IPP_JOB_NAME_NL - IPP Job Name NL
v ATTR_IPP_JOB_ORIGUSER - IPP Job Originating User
v ATTR_IPP_JOB_ORIGUSER_NL - IPP Job Originating User NL
v ATTR_IPP_PRINTER_NAME - IPP Printer Name
v ATTR_JOBNAME - Job Name
v ATTR_JOBNUMBER - Job Number
v ATTR_JOBUSER - Job User
v ATTR_JOB_SYSTEM - Job System
v ATTR_LASTPAGE - Last Page Printed
v ATTR_LINESPACING - Line Spacing
v ATTR_LPI - Lines Per Inch
v ATTR_MAXRCDS - Maximum Spooled Output Records
v ATTR_PAGELEN - Length of Page
v ATTR_PAGEWIDTH - Width of Page
v ATTR_MEASMETHOD - Measurement Method
v ATTR_NETWORK - Network Identifier
v ATTR_NUMBYTES - Number of bytes to read/write
v ATTR_OUTPUTBIN - Output Bin
v ATTR_OUTPTY - Output Priority
v ATTR_OUTPUT_QUEUE - Output Queue Integrated File System Name
v ATTR_OVERFLOW - Overflow Line Number
v ATTR_MULTIUP - Pages Per Side
v ATTR_POINTSIZE - Point Size
v ATTR_FIDELITY - Print Fidelity
v ATTR_DUPLEX - Print on Both Sides
v ATTR_PRTQUALITY - Print Quality
v ATTR_PRTTEXT - Print Text
v ATTR_PRINTER - Printer
v ATTR_PRTASSIGNED - Printer Assigned

IBM Toolbox for Java 111

v ATTR_PRTDEVTYPE - Printer Device Type
v ATTR_PRINTER_FILE - Printer File Integrated File System Name
v ATTR_RECLENGTH - Record Length
v ATTR_REDUCE - Reduce Output
v ATTR_RPLUNPRT - Replace Unprintable Characters
v ATTR_RPLCHAR - Replacement Character
v ATTR_RESTART - Restart Printing
v ATTR_SADDLESTITCH_NUMSTAPLES - Saddle Stitch Number of Staples
v ATTR_SADDLESTITCH_REF - Saddle Stitch Reference
v ATTR_SAVE - Save Spooled File
v ATTR_SRCDRWR - Source Drawer
v ATTR_SPOOLFILE - Spooled File Name
v ATTR_SPLFNUM - Spooled File Number
v ATTR_SPLFSTATUS - Spooled File Status
v ATTR_SCHEDULE - Spooled Output Schedule
v ATTR_STARTPAGE - Starting Page
v ATTR_SYSTEM - System Where Created
v ATTR_TIME - Time Object Created
v ATTR_TIME_WTR_BEGAN_FILE - Time Writer Began Processing Spooled File
v ATTR_TIME_WTR_CMPL_FILE - Time Writer Completed Processing Spooled File
v ATTR_PAGES - Total Pages
v ATTR_UNITOFMEAS - Unit of Measure
v ATTR_USERCMT - User Comment
v ATTR_USERDATA - User Data
v ATTR_USRDEFDATA - User Defined Data
v ATTR_USRDEFFILE - User Defined File
v ATTR_USRDEFOPT - User Defined Option(s)
v ATTR_USER_DEFINED_OBJECT - User Defined Object Integrated File System Name

Set attributes

The following attributes may be set for a spooled file using the setAttributes() method:
v ATTR_ALIGN - Align Page
v ATTR_BACK_OVERLAY - Back Overlay Integrated File System Name
v ATTR_BKOVL_DWN - Back Overlay Offset Down
v ATTR_BKOVL_ACR - Back Overlay offset across
v ATTR_COPIES - Copies
v ATTR_ENDPAGE - Ending Page
v ATTR_FILESEP - File Separators
v ATTR_FORM_DEFINITION - Form definition Integrated File System Name
v ATTR_FORMFEED - Form Feed
v ATTR_FORMTYPE - Form Type
v ATTR_FRONTSIDE_OVERLAY - Front overlay Integrated File System Name
v ATTR_FTOVL_ACR - Front Overlay Offset Across
v ATTR_FTOVL_DWN - Front Overlay Offset Down
v ATTR_OUTPTY - Output Priority

112 IBM i: Programming IBM Toolbox for Java

v ATTR_OUTPUT_QUEUE - Output Queue Integrated File System Name
v ATTR_MULTIUP - Pages Per Side
v ATTR_FIDELITY - Print Fidelity
v ATTR_DUPLEX - Print on Both Sides
v ATTR_PRTQUALITY - Print Quality
v ATTR_PRTSEQUENCE - Print Sequence
v ATTR_PRINTER - Printer
v ATTR_RESTART - Restart Printing
v ATTR_SAVE - Save Spooled File
v ATTR_SCHEDULE - Spooled Output Schedule
v ATTR_STARTPAGE - Starting Page
v ATTR_USERDATA - User Data
v ATTR_USRDEFOPT - User defined option(s)
v ATTR_USER_DEFINED_OBJECT - User defined object Integrated File System Name

Writer Job Attributes:

This topic lists the attributes for writer jobs.

Retrieve Attributes

The following attributes may be retrieved for a writer job using the appropriate getIntegerAttribute(),
getStringAttribute(), or getFloatAttribute() method:
v ATTR_WTRJOBNAME - Writer Job Name
v ATTR_WTRJOBNUM - Writer Job Number
v ATTR_WTRJOBSTS - Writer Job Status
v ATTR_WTRJOBUSER - Writer Job User Name

Set Attributes

Attributes are not allowed to be set for a writer job.

Print Object Attributes:

This topic lists the attributes available for print objects.
v Advanced Function Printing
v AFP Resource
v Align Forms
v Align Page
v Allow Direct Print
v Authority
v Authority to Check
v Automatically End Writer
v Auxiliary Storage
v Back Margin Offset Across
v Back Margin Offset Down
v Backside Overlay
v Back Overlay offset across

IBM Toolbox for Java 113

v Back Overlay Offset Down
v Between Copies Status
v Between Files Status
v Changes
v Characters per Inch
v Code Page
v Code Font Name
v Coded Font Library Name
v Control Character
v Convert line data
v Copies
v Copies left to Produce
v Corner staple
v Current Page
v Data Format
v Data Queue
v Date File Opened
v Date Spooled File Job Create End
v Date Writer Began Processing Spooled File
v Date Writer Completed Processing Spooled File
v User Specified DBCS Data
v DBCS Extension Characters
v DBCS Character Rotation
v DBCS Characters per Inch
v DBCS SO/SI Spacing
v Defer Write
v Degree of Page Rotation
v Delete File After Sending
v Destination Option
v Destination Type
v Device Class
v Device Model
v Device Status
v Device Type
v Display any File
v Drawer for Separators
v Edge Stitch Number of Staples
v Edge Stitch Reference
v Edge Stitch Reference Offset
v End Pending Status
v Ending Page
v Envelope Source
v File Separators
v Fold Records
v Font Identifier

114 IBM i: Programming IBM Toolbox for Java

v Form Definition
v Form Feed
v Form Type
v Form Type Message Option
v Front Margin Offset Across
v Front Margin Offset Down
v Front Overlay
v Front Overlay Offset Across
v Front Overlay Offset Down
v Graphic Character Set
v Hardware Justification
v Held Status
v Hold Spool File
v Hold Pending Status
v Image Configuration
v Initialize the writer
v Internet Address
v IPP Attributes-charset
v IPP Job ID
v IPP Job Name
v IPP Job Name NL
v IPP Job Originating User Name
v IPP Job Originating User Name NL
v IPP IPP Printer Name
v Job Name
v Job Number
v Job Separators
v Job System
v Job User
v Last Page Printed
v Length of Page
v Library Name
v Lines Per Inch
v Line Spacing
v Manufacturer Type and Model
v Max Jobs per Client List
v Maximum Spooled Output Records
v Measurement Method
v Message Help
v Message ID
v Message Queue
v Message Reply
v Message Text
v Message Type
v Message Severity

IBM Toolbox for Java 115

v Multi_Item Reply Capability
v Network Identifier
v Network Print Server Object Attributes
v Number of Bytes in Spooled File
v Number of Bytes to Read/Write
v Number of Files
v Number of Writers Started to Queue
v Object Extended Attribute
v On Job Queue Status
v Open time commands
v Operator Controlled
v Order of Files On Queue
v Output Bin
v Output Priority
v Output Queue
v Output Queue Status
v Overall Status
v Overflow Line Number
v Page At A Time
v Page Count Estimated
v Page Definition
v Page Number
v Pages Per Side
v Paper Source 1
v Paper Source 2
v Pel Density
v Point Size
v Print Fidelity
v Print on Both Sides
v Print Quality
v Print Sequence
v Print Text
v Printer
v Printer Assigned
v Printer Device Type
v Printer File
v Printer Queue
v Publishing Info Color Supported
v Publishing Info Pages per Minute (Color)
v Publishing Info Pages per Minute (Monochrome)
v Publishing Info Duplex Support
v Publishing Info Location
v Remote Location Name
v Record Length
v Reduce Output

116 IBM i: Programming IBM Toolbox for Java

v Remote System
v Replace Unprintable Characters
v Replacement Character
v Restart Printing
v Saddle Stitch Number of Staples
v Saddle Stitch Reference
v Save Spooled File
v Seek Offset
v Seek Origin
v Send Priority
v Separator page
v Source Drawer
v Spool SCS
v Spool the Data
v Spooled File Creation Authentication Method
v Spooled File Creation Security Method
v Spooled File Name
v Spooled File Number
v Spooled File Status
v Spooled Output Schedule
v Started By User
v Starting Page
v System Where Created
v Text Description
v Time File Opened
v Time Spooled File Create Job End
v Time Writer Began Processing Spooled File
v Time Writer Completed Processing Spooled File
v Total Pages
v Transform SCS to ASCII
v Unit of Measure
v User Comment
v User Data
v User Defined Data
v User Defined File
v User Defined Object
v User Defined Option(s)
v User Driver Program Data
v User Driver Program
v User ID
v User ID Address
v User Transform Program
v Viewing Fidelity
v VM/MVS Class
v Waiting for Data Status

IBM Toolbox for Java 117

v Waiting for Device Status
v Waiting for Message Status
v When to Automatically End Writer
v When to End Writer
v When to Hold File
v Width of Page
v Workstation Customizing Object
v Writer Job Name
v Writer Job Number
v Writer Job Status
v Writer Job User Name
v Writer Started
v Writer Starting Page
v Writing Status
v NPS CCSID
v NPS Level

Advanced Function Printing

ID ATTR_AFP

Type String

Description
Indicates whether this spooled file uses AFP resources external to the spooled file. Valid values
are *YES and *NO.

AFP Resource

ID ATTR_AFP_RESOURCE

Type String

Description
The Integrated File System path of the external AFP (Advanced Function Print) resource. The
format of the Integrated File System path is "/QSYS.LIB/library.LIB/resource.type" where library
is the library that contains the resource, resource is the name of the resource and type is the
resource type. Valid values for type include "FNTRSC", "FORMDF", "OVL", "PAGSEG", and
"PAGDFN".

Align Forms

ID ATTR_ALIGNFORMS

Type String

Description
The time at which a forms alignment message will be sent. Valid values are *WTR, *FILE, *FIRST.

Align Page

ID ATTR_ALIGN

Type String

Description
Indicates whether a forms alignment message is sent before printing this spooled file. Valid
values are *YES, *NO.

118 IBM i: Programming IBM Toolbox for Java

Allow Direct Print

ID ATTR_ALWDRTPRT

Type String

Description
Indicates whether the printer writer allows the printer to be allocated to a job that prints directly
to a printer. Valid values are *YES, *NO.

Authority

ID ATTR_AUT

Type String

Description
Specifies the authority that is given to users who do not have specific authority to the output
queue. Valid values are *USE, *ALL, *CHANGE, *EXCLUDE, *LIBCRTAUT.

Authority to Check

ID ATTR_AUTCHK

Type String

Description
Indicates what type of authorities to the output queue allow the user to control all the files on the
output queue. Valid values are *OWNER, *DTAAUT.

Automatically End Writer

ID ATTR_AUTOEND

Type String

Description
Specifies if the writer must be automatically ended. Valid values are *NO, *YES.

Auxiliary Storage

ID ATTR_AUX_POOL

Type Integer

Description
Specifies the number of the auxiliary storage pool (ASP) that the spooled file is stored on. The
possible values are:
v 1: System ASP
v 2-32: One of the user ASPs

Back Margin Offset Across

ID ATTR_BACKMGN_ACR

Type Float

Description
For the back side of a piece of paper, it specifies, how far in from the left side of the page
printing starts. The special value *FRONTMGN will be encoded as -1.

Back Margin Offset Down

ID ATTR_BACKMGN_DWN

IBM Toolbox for Java 119

Type Float

Description
For the back side of a piece of paper, it specifies, how far down from the top of the page printing
starts. The special value *FRONTMGN will be encoded as -1.

Back Overlay

ID ATTR_BACK_OVERLAY

Type String

Description
The Integrated File System path of the back overlay or a special value. If the value is an
Integrated File System path it will have the format "/QSYS.LIB/library.LIB/overlay.OVL" where
library is the library of the resource and overlay is the name of the overlay. Valid special values
include *FRONTOVL.

Back Overlay offset across

ID ATTR_BKOVL_ACR

Type Float

Description
The offset across from the point of origin where the overlay is printed.

Back Overlay Offset Down

ID ATTR_BKOVL_DWN

Type Float

Description
The offset down from the point of origin where the overlay is printed.

Between Copies Status

ID ATTR_BTWNCPYSTS

Type String

Description
Whether the writer is between copies of a multiple copy spooled file. Returned values are *YES
or *NO.

Between Files Status

ID ATTR_BTWNFILESTS

Type String

Description
Whether the writer is between files. Returned values are *YES or *NO.

Changes

ID ATTR_CHANGES

Type String

Description
The time at which pending changes take effect. Valid values are *NORDYF, *FILEEND, or blank
which implies no changes pending to the writer.

120 IBM i: Programming IBM Toolbox for Java

Characters per Inch

ID ATTR_CPI

Type Float

Description
The number of characters per horizontal inch.

Code Page

ID ATTR_CODEPAGE

Type String

Description
The mapping of graphic characters to code points for this spooled file. If the graphic character set
field contains a special value, this field may contain a zero (0).

Code Font Name

ID ATTR_CODEDFNT

Type String

Description
The name of the coded font. A coded font is an AFP resource that is composed of a character set
and a code page. Special values include *FNTCHRSET.

Coded Font Library Name

ID ATTR_CODEDFNTLIB

Type String

Description
The name of the library that contains the coded font. This field may contain blanks if the coded
font name field has a special value.

Control Character

ID ATTR_CONTROLCHAR

Type String

Description
Whether this file uses the American National Standards printer control character. The possible
values are *NONE for no print control characters are passed in the data that is printed or *FCFC
which means that the first character of every record is an American National Standards printer
control character.

Convert Line Data

ID ATTR_CONVERT_LINEDATA

Type String

Description
Whether the line data is converted to AFPDS before it is written to spool. The possible values are
*NO and *YES.

Copies

ID ATTR_COPIES

Type Integer

IBM Toolbox for Java 121

Description
The total number of copies to be produced for this spooled file.

Copies left to Produce

ID ATTR_COPIESLEFT

Type Integer

Description
The remaining number of copies to be produced for this spooled file.

Corner Staple

ID ATTR_CORNER_STAPLE

Type String

Description
The reference corner to be used for a corner staple. A staple is driven into the media at the
reference corner. Valid values are *NONE, *DEVD, *BOTRIGHT, *TOPRIGHT, *TOPLEFT, and
*BOTLEFT.

Current Page

ID ATTR_CURPAGE

Type Integer

Description
Current page that is being written by the writer job.

Data Format

ID ATTR_DATAFORMAT

Type String

Description
Data format. Valid values are *RCDDATA, *ALLDATA.

Data Queue

ID ATTR_DATA_QUEUE

Type String

Description
Specifies the Integrated File System path of the data queue that is associated with the output
queue or "*NONE" if no data queue is associated with the the output queue. The format of the
Integrated File System path is "/QSYS.LIB/library.LIB/dataqueue.DTAQ" where library is the
library that contains the data queue and dataqueue is the name of the data queue.

Date File Opened

ID ATTR_DATE

Type String

Description
For spooled files this is the date the spooled file was opened. For AFP resources this is the date
the object was last modified. The date is encoded in a character string with the following format,
C YY MM DD.

122 IBM i: Programming IBM Toolbox for Java

Date Spooled File Job Create End

ID ATTR_DATE_END

Type String

Description
The date the job ended that created the spooled file on the system. If the Starting spooled file
create date field is set to *ALL, then this field must be set to blanks. If a date has been specified
for the Starting spooled file create date field, then this field must be set to a valid date. The date
must be in the CYYMMDD format or be one of the following special values:
v *LAST: All spooled files with a create date and time equal to or later than the starting spooled

file create date are to be returned.
v Date: All spooled files with a create date and time equal to or later than the starting spooled

file create date and time and less than or equal to the ending spooled file create date and time
are to be returned.

The date format CYYMMDD is defined as follows:
v C is the Century, where 0 indicates years 19xx and 1 indicates years 20xx
v YY is the Year
v MM is the Month
v DD is the Day

Date Writer Began Processing Spooled File

ID ATTR_DATE_WTR_BEGAN_FILE

Type String

Description
Indicates the date at which the writer began processing this spooled file. The date is encoded in a
character string with the following format, C YY MM DD.

Date Writer Completed Processing Spooled File

ID ATTR_DATE_WTR_CMPL_FILE

Type String

Description
Indicates the date at which the writer began finished this spooled file. The date is encoded in a
character string with the following format, C YY MM DD.

User Specified DBCS Data

ID ATTR_DBCSDATA

Type String

Description
Whether the spooled file contains double-byte character set (DBCS) data. Valid values are *NO
and *YES.

DBCS Extension Characters

ID ATTR_DBCSEXTENSN

Type String

Description
Whether the system is to process the DBCS extension characters. Valid values are *NO and *YES.

IBM Toolbox for Java 123

DBCS Character Rotation

ID ATTR_DBCAROTATE

Type String

Description
Whether the DBCS characters are rotated 90 degrees counterclockwise before printing. Valid
values are *NO and *YES.

DBCS Characters per Inch

ID ATTR_DBCSCPI

Type Integer

Description
The number of double-byte characters to be printed per inch. Valid values are -1, -2, 5, 6, and 10.
The value *CPI is encoded as -1. The value *CONDENSED is encoded as -2.

DBCS SO/SI Spacing

ID ATTR_DBCSSISO

Type String

Description
Determines the presentation of shift-out and shift-in characters when printed. Valid values are
*NO, *YES, and *RIGHT.

Defer Write

ID ATTR_DFR_WRITE

Type String

Description
Whether print data is held in system buffers before

Degree of Page Rotation

ID ATTR_PAGRTT

Type Integer

Description
The degree of rotation of the text on the page, with respect to the way the form is loaded into the
printer. Valid values are -1, -2, -3, 0, 90, 180, 270. The value *AUTO is encoded as -1, the value
*DEVD is encoded as -2, and the value *COR is encoded as -3.

Delete File After Sending

ID ATTR_DELETESPLF

Type String

Description
Delete the spooled file after sending? Valid values are *NO and *YES.

Destination Option

ID ATTR_DESTOPTION

Type String

124 IBM i: Programming IBM Toolbox for Java

Description
Destination option. A text string that allows the user to pass options to the receiving system.

Destination Type

ID ATTR_DESTINATION

Type String

Description
Destination type. Valid values are *OTHER, *AS400, *PSF2.

Device Class

ID ATTR_DEVCLASS

Type String

Description
The device class.

Device Model

ID ATTR_DEVMODEL

Type String

Description
The model number of the device.

Device Status

ID ATTR_DEVSTATUS

Type Integer

Description
The status of the printer device. Valid values are 0 (varied off), 10 (vary off pending), 20 (vary on
pending), 30 (varied on), 40 (connect pending), 60 (active), 66 (active writer), 70 (held), 75
(powered off), 80 (recovery pending), 90 (recovery canceled), 100 (failed), 106 (failed writer), 110
(being serviced), 111 (damaged), 112 (locked), 113 (unknown).

Device Type

ID ATTR_DEVTYPE

Type String

Description
The device type.

Display any File

ID ATTR_DISPLAYANY

Type String

Description
Whether users who have authority to read this output queue can display the output data of any
output file on this queue or only the data in their own files. Valid values are *YES, *NO,
*OWNER.

Drawer for Separators

ID ATTR_DRWRSEP

IBM Toolbox for Java 125

Type Integer

Description
Identifies the drawer from which the job and file separator pages are to be taken. Valid values are
-1, -2, 1, 2, 3. The value *FILE is encoded as -1, and the value *DEVD is encoded as -2.

Edge Stitch Number of Staples

ID ATTR_EDGESTITCH_NUMSTAPLES

Type Integer

Description
The number of staples that are applied along the finishing operation axis.

Edge Stitch Reference

ID ATTR_EDGESTITCH_REF

Type String

Description
Where one or more staples are driven into the media along the finishing operation axis. Valid
values are *NONE, *DEVD, *BOTTOM, *RIGHT, *TOP, and *LEFT.

Edge Stitch Reference Offset

ID ATTR_EDGESTITCH_REFOFF

Type Float

Description
The offset of the edge stitch from the reference edge toward the center of the media.

End Pending Status

ID ATTR_ENDPNDSTS

Type String

Description
Whether an End Writer (ENDWTR) command has been issued for this writer. Possible values are
*NO - no ENDWTR command was issued, *IMMED - the writer ends as soon as its output
buffers are empty, *CTRLD - the writer ends after the current copy of the spooled file has printed,
*PAGEEND - the writer ends at the end of the page.

Ending Page

ID ATTR_ENDPAGE

Type Integer

Description
The page number at which to end printing the spooled file. Valid values are 0 or the ending page
number. The value *END is encoded as 0.

Envelope Source

ID ATTR_ENVLP_SOURCE

Type String

Description
The size of the envelope in the envelope source. If this field is not specified or the value is not
valid, the special value of *MFRTYPMDL is used. Valid values are *NONE - there is no envelope

126 IBM i: Programming IBM Toolbox for Java

source, *MFRTYPMDL - the envelope size suggested by the manufacturer type and model is
used, *MONARCH (3.875 x 7.5 inches), *NUMBER9 (3.875 x 8.875 inches), *NUMBER10 (4.125 x
9.5 inches), *B5 (176mm x 250mm), *C5 (162mm x 229mm), *DL (110mm x 220mm).

File Separators

ID ATTR_FILESEP

Type Integer

Description
The number of file separator pages that are placed at the beginning of each copy of the spooled
file. Valid values are -1, or the number of separators. The value *FILE is encoded as -1.

Fold Records

ID ATTR_FOLDREC

Type String

Description
Whether records that exceed the printer forms width are folded (wrapped) to the next line. Valid
values are *YES, *NO.

Font Identifier

ID ATTR_FONTID

Type String

Description
The printer font that is used. Valid special values include *CPI and *DEVD.

Form Definition

ID ATTR_FORM_DEFINITION

Type String

Description
The Integrated File System path name of the form definition or a special value. If an Integrated
File System path is specified the format is "/QSYS.LIB/library.LIB/formdef.FORMDF" where
library is the library of the form definition and formdef is the name of the form definition. Valid
special values include *NONE, *INLINE, *INLINED, and *DEVD.

Form Feed

ID ATTR_FORMFEED

Type String

Description
The manner in which forms feed to the printer. Valid values are *CONT, *CUT, *AUTOCUT,
*DEVD.

Form Type

ID ATTR_FORMTYPE

Type String

Description
The type of form to be loaded in the printer to print this spooled file.

IBM Toolbox for Java 127

Form Type Message Option

ID ATTR_FORMTYPEMSG

Type String

Description
Message option for sending a message to the writer's message queue when the current form type
is finished. Valid values are *MSG, *NOMSG, *INFOMSG, *INQMSG.

Front Margin Offset Across

ID ATTR_FTMGN_ACR

Type Float

Description
For the front side of a piece of paper, it specifies, how far in from the left side of the page
printing starts. The special value *DEVD is encoded as -2.

Front Margin Offset Down

ID ATTR_FTMGN_DWN

Type Float

Description
For the front side of a piece of paper, it specifies, how far down from the top of the page printing
starts. The special value *DEVD is encoded as -2.

Front Overlay

ID ATTR_FRONT_OVERLAY

Type String

Description
The Integrated File System path of the front overlay. The format of the Integrated File System
path is "/QSYS.LIB/library.LIB/overlay.OVL" where library is the library of the resource and
overlay is the name of the overlay. The string "*NONE" is used to indicate that no front overlay is
specified.

Front Overlay Offset Across

ID ATTR_FTOVL_ACR

Type Float

Description
The offset across from the point of origin where the overlay is printed.

Front Overlay Offset Down

ID ATTR_FTOVL_DWN

Type Float

Description
The offset down from the point of origin where the overlay is printed.

Graphic Character Set

ID ATTR_CHAR_ID

Type String

128 IBM i: Programming IBM Toolbox for Java

Description
The set of graphic characters to be used when printing this file. Valid special values include
*DEVD, *SYSVAL, and *JOBCCSID.

Hardware Justification

ID ATTR_JUSTIFY

Type Integer

Description
The percentage that the output is right justified. Valid values are 0, 50, 100.

Held Status

ID ATTR_HELDSTS

Type String

Description
Whether the writer is held. Valid values are *YES, *NO.

Hold Spool File

ID ATTR_HOLD

Type String

Description
Whether the spooled file is held. Valid values are *YES, *NO.

Hold Pending Status

ID ATTR_HOLDPNDSTS

Type String

Description
Whether a Hold Writer (HLDWTR) command has been issued for this writer. Possible values are
*NO - no HLDWTR command was issued, *IMMED - the writer is held when its output buffers
are empty, *CTRLD - writer held after the current copy of the spooled file has printed,
*PAGEEND - writer held at the end of the page.

Image Configuration

ID ATTR_IMGCFG

Type String

Description
The transform services for a variety of image and print data-stream formats.

Initialize the writer

ID ATTR_WTRINIT

Type String

Description
The user can specify when to initialize the printer device. Valid values are *WTR, *FIRST, *ALL.

Internet Address

ID ATTR_INTERNETADDR

Type String

IBM Toolbox for Java 129

Description
The internet address of the receiving system.

IPP Attributes-charset

ID ATTR_IPP_ATTR_CHARSET

Type String

Description
Indicates the charset (coded character set and encoding method) of the IPP specified spooled file
attributes.

IPP Job ID

ID ATTR_IPP_JOB_ID

Type Integer

Description
IPP Job ID relative to the IPP printer that created the job.

IPP Job Name

ID ATTR_IPP_ATR_CHARSET

Type String

Description
User friendly name of job.

IPP Job Name NL

ID ATTR_IPP_JOB_NAME_NL

Type String

Description
Natural language of job name.

IPP Job Originating User Name

ID ATTR_IPP_JOB_ORIGUSER

Type String

Description
Identifies the end user that submitted this IPP job.

IPP Job Originating User Name NL

ID ATTR_IPP_JOB_ORIGUSER_NL

Type String

Description
Identifies the natural language of job-originating user name.

IPP Printer Name

ID ATTR_IPP_PRINTER_NAME

Type String

Description
Identifies the IPP printer that created this job.

130 IBM i: Programming IBM Toolbox for Java

Job Name

ID ATTR_JOBNAME

Type String

Description
The name of the job that created the spooled file.

Job Number

ID ATTR_JOBNUMBER

Type String

Description
The number of the job that created the spooled file.

Job Separators

ID ATTR_JOBSEPRATR

Type Integer

Description
The number of job separators to be placed at the beginning of the output for each job having
spooled files on this output queue. Valid values are -2, 0-9. The value *MSG is encoded as -2. Job
separators are specified when the output queue is created.

Job System

ID ATTR_JOBSYSTEM

Type String

Description
The system job which created spooled file was running.

Job User

ID ATTR_JOBUSER

Type String

Description
The name of the user that created the spooled file.

Last Page Printed

ID ATTR_LASTPAGE

Type Integer

Description
The number of the last printed page is the file if printing ended before the job completed
processing.

Length of Page

ID ATTR_PAGELEN

Type Float

Description
The length of a page. Units of measurement are specified in the measurement method attribute.

IBM Toolbox for Java 131

Library Name

ID ATTR_LIBRARY

Type String

Description
The name of the library.

Lines Per Inch

ID ATTR_LPI

Type Float

Description
The number of lines per vertical inch in the spooled file.

Line Spacing

ID ATTR_LINESPACING

Type String

Description
How a file's line data records are spaced when printed. The information is returned only for
*LINE and *AFPDSLINE printer device types files. Valid values are *SINGLE, *DOUBLE,
*TRIPLE, or *CTLCHAR.

Manufacturer Type and Model

ID ATTR_MFGTYPE

Type String

Description
Specifies the manufacturer, type, and model when transforming print data from SCS to ASCII.

Maximum Jobs per Client List

ID ATTR_MAX_JOBS_PER_CLIENT

Type Integer

Description
Supplied by the client to indicate the maximum printer queue size of limitation.

Maximum Spooled Output Records

ID ATTR_MAXRECORDS

Type Integer

Description
The maximum number of records allowed in this file at the time this file was opened. The value
*NOMAX is encoded as 0.

Measurement Method

ID ATTR_MEASMETHOD

Type String

Description
The measurement method that is used for the length of page and width of page attributes. Valid
values are *ROWCOL, *UOM.

132 IBM i: Programming IBM Toolbox for Java

Message Help

ID ATTR_MSGHELP

Type char(*)

Description
The message help, which is sometimes known as second-level text, can be returned by a "retrieve
message" request. The system limits the length to 3000 characters (English version must be 30%
less to allow for translation).

Message ID

ID ATTR_MESSAGEID

Type String

Description
The message ID.

Message Queue

ID ATTR_MESSAGE_QUEUE

Type String

Description
The Integrated File System path of the message queue that the writer uses for operational
messages. The format of the Integrated File System path is "/QSYS.LIB/library.LIB/
messageque.MSGQ" where library is the library that contains the message queue and messageque is
the name of the message queue.

Message Reply

ID ATTR_MSGREPLY

Type String

Description
The message reply. Text string to be provided by the client which answers a message of type
"inquiry". In the case of message retrieved, the attribute value is returned by the server and
contains the default reply which the client can use. The system limits the length to 132 characters.
Must be null-terminated due to variable length.

Message Text

ID ATTR_MSGTEXT

Type String

Description
The message text, that is sometimes known as first-level text, can be returned by a "retrieve
message" request. The system limits the length to 132 characters.

Message Type

ID ATTR_MSGTYPE

Type String

Description
The message type, a 2-digit, EBCDIC encoding. Two types of messages indicate whether one can
"answer" a "retrieved" message: '04' Informational messages convey information without asking
for a reply (may require a corrective action instead), '05' Inquiry messages convey information
and ask for a reply.

IBM Toolbox for Java 133

Message Severity

ID ATTR_MSGSEV

Type Integer

Description
Message severity. Values range from 00 to 99. The higher the value, the more severe or important
the condition.

Multi-item Reply Capability

ID ATTR_MULTI_ITEM_REPLY

Type String

Description
When this attribute value is set to *YES by the client, the performance of list spooled file
operations can be greatly improved. The default value is *NO.

Network Identifier

ID ATTR_NETWORK

Type String

Description
The network identifier of the system where the file was created.

Number of Bytes in Spooled File

ID ATTR_NUMBYTES_SPLF

Type Integer

Description
The total number of bytes available in the stream or spooled file. The value indicates the number
of bytes BEFORE any transform of the data takes place. In order to accommodate files of sizes
greater than 2**31 - 1 bytes, this value is scaled; the user needs to multiply the value by 10K to
get the actual number of bytes. This attribute is not valid for spooled files being viewed in
page-at-a-time mode.

Number of Bytes to Read/Write

ID ATTR_NUMBYTES

Type Integer

Description
The number of bytes to read for a read operation, or the number of bytes to write for a write
operation. The object action determines how to interpret this attribute.

Number of Files

ID ATTR_NUMFILES

Type Integer

Description
The number of spooled files that exist on the output queue.

Number of Writers Started to Queue

ID ATTR_NUMWRITERS

Type Integer

134 IBM i: Programming IBM Toolbox for Java

Description
The number of writer jobs started to the output queue.

Object Extended Attribute

ID ATTR_OBJEXTATTR

Type String

Description
An "extended" attribute used by some objects like font resources. This value shows up via
WRKOBJ and DSPOBJD commands on the server. The title on a server screen may just indicate
"Attribute". In the case of object types of font resources, for example, common values are
CDEPAG, CDEFNT, and FNTCHRSET.

On Job Queue Status

ID ATTR_ONJOBQSTS

Type String

Description
Whether the writer is on a job queue and therefore is not currently running. The possible values
are *YES, *NO.

Open time commands

ID ATTR_OPENCMDS

Type String

Description
Specifies whether user wants SCS open time commands to be inserted into datastream before
spool file data. Valid values are *YES, *NO.

Operator Controlled

ID ATTR_OPCNTRL

Type String

Description
Whether users with job control authority are allowed to manage or control the spooled files on
this queue. Valid values are *YES, *NO.

Order of Files On Queue

ID ATTR_ORDER

Type String

Description
The order of spooled files on this output queue. Valid values are *FIFO, *JOBNBR.

Output Bin

ID ATTR_OUTPUTBIN

Type Integer

Description
The output bin the printer uses for the printed output. Values range from 1 to 65535. The value
*DEVD is encoded as 0.

IBM Toolbox for Java 135

Output Priority

ID ATTR_OUTPTY

Type String

Description
The priority of the spooled file. The priority ranges from 1 (highest) to 9 (lowest). Valid values
are 0-9, where 0 represents *JOB.

Output Queue

ID ATTR_OUTPUT_QUEUE

Type String

Description
The Integrated File System path of the output queue. The format of the Integrated File System
path is "/QSYS.LIB/library.LIB/queue.OUTQ" where library is the library that contains the output
queue and queue is the name of the output queue.

Output Queue Status

ID ATTR_OUTQSTS

Type String

Description
The status of the output queue. Valid values are RELEASED, HELD.

Overall Status

ID ATTR_OVERALLSTS

Type Integer

Description
The overall status of the "logical printer". "Logical printer" refers to printer device, output queue
and writer job. Valid values are 1 (unavailable), 2 (powered off or not yet available), 3 (stopped),
4 (message waiting), 5 (held), 6 (stop pending), 7 (hold pending), 8 (waiting for printer), 9
(waiting to start), 10 (printing), 11 (waiting for output queue), 12 (connect pending), 13 (powered
off), 14 (unusable), 15 (being serviced), 999 (unknown).

Overflow Line Number

ID ATTR_OVERFLOW

Type Integer

Description
The last line to be printed before the data that is being printed overflows to the next page.

Page At A Time

ID ATTR_PAGE_AT_A_TIME

Type String

Description
Specifies whether the spooled file is to be opened in page-at-a-time mode. Valid values are *YES
and *NO.

Page Count Estimated

ID ATTR_PAGES_EST

136 IBM i: Programming IBM Toolbox for Java

Type String

Description
Specifies whether the page count is estimated rather than actual. Valid values are *YES and *NO.

Page Definition

ID ATTR_PAGE_DEFINITION

Type String

Description
The Integrated File System path name of the page definition or a special value. If an Integrated
File System path is specified the format is "/QSYS.LIB/library.LIB/pagedef.PAGDFN" where
library is the library of the page definition and pagedef is the name of the page definition. Valid
special values include *NONE.

Page Number

ID ATTR_PAGENUMBER

Type Integer

Description
The number of the page to be read from a spooled file opened in page-at-a-time mode.

Pages Per Side

ID ATTR_MULTIUP

Type Integer

Description
The number of logical pages that print on each side of each physical page when the file is
printed. Valid values are 1, 2, 4.

Paper Source 1

ID ATTR_PAPER_SOURCE_1

Type String

Description
The size of the paper in paper source one. If this field is not specified or the value is not valid,
the special value of *MFRTYPMDL is used. Valid values are *NONE - there is no paper source
one or the paper is manually fed into the printer, *MFRTYPMDL - the paper size suggested by
the manufacturer type and model is used, *LETTER (8.5 x 11.0 inches), *LEGAL (8.5 x 14.0
inches), *EXECUTIVE (7.25 x 10.5 inches), *LEDGER (17.0 x 11.0 inches), *A3 (297mm x 420mm),
*A4 (210mm x 297mm), *A5 (148mm x 210mm), *B4 (257mm x 364mm), *B5 (182mm x 257mm),
*CONT80 (8.0 inches wide with continuous form), *CONT132 (13.2 inches wide with continuous
form).

Paper Source 2

ID ATTR_PAPER_SOURCE_2

Type String

Description
The size of the paper in paper source two. If this field is not specified or the value is not valid,
the special value of *MFRTYPMDL is used. Valid values are *NONE - there is no paper source
two or the paper is manually fed into the printer, *MFRTYPMDL - the paper size suggested by
the manufacturer type and model is used, *LETTER (8.5 x 11.0 inches), *LEGAL (8.5 x 14.0
inches), *EXECUTIVE (7.25 x 10.5 inches), *LEDGER (17.0 x 11.0 inches), *A3 (297mm x 420mm),

IBM Toolbox for Java 137

*A4 (210mm x 297mm), *A5 (148mm x 210mm), *B4 (257mm x 364mm), *B5 (182mm x 257mm),
*CONT80 (8.0 inches wide with continuous form), *CONT132 (13.2 inches wide with continuous
form).

Pel Density

ID ATTR_PELDENSITY

Type String

Description
For font resources only, this value is an encoding of the number of pels ("1" represents a pel size
of 240, "2" represents a pel size of 320). Additional values may become meaningful as the server
defines them.

Point Size

ID ATTR_POINTSIZE

Type Float

Description
The point size in which this spooled file's text is printed. The special value *NONE will be
encoded as 0.

Print Fidelity

ID ATTR_FIDELITY

Type String

Description
The kind of error handling that is performed when printing. Valid values are *ABSOLUTE,
*CONTENT.

Print on Both Sides

ID ATTR_DUPLEX

Type String

Description
How the information prints. Valid values are *FORMDF, *NO, *YES, *TUMBLE.

Print Quality

ID ATTR_PRTQUALITY

Type String

Description
The print quality that is used when printing this spooled file. Valid values are *STD, *DRAFT,
*NLQ, *FASTDRAFT.

Print Sequence

ID ATTR_PRTSEQUENCE

Type String

Description
Print sequence. Valid values are *NEXT.

138 IBM i: Programming IBM Toolbox for Java

Print Text

ID ATTR_PRTTEXT

Type String

Description
The text that is printed at the bottom of each page of printed output and on separator pages.
Valid special values include *BLANK and *JOB.

Printer

ID ATTR_PRINTER

Type String

Description
The name of the printer device.

Printer Assigned

ID ATTR_PRTASSIGNED

Type String

Description
Indicates if the printer is assigned. Valid values are 1 (assigned to a specific printer), 2 (assigned
to multiple printers), 3 (not assigned).

Printer Device Type

ID ATTR_PRTDEVTYPE

Type String

Description
The printer data stream type. Valid values are *SCS, *IPDS, *USERASCII, *AFPDS, *LINE.

Printer File

ID ATTR_PRINTER_FILE

Type String

Description
The Integrated File System path of the printer file. The format of the Integrated File System path
is "/QSYS.LIB/library.LIB/printerfile.FILE" where library is the library that contains the printer
file and printerfile is the name of the printer file.

Printer Queue

ID ATTR_RMTPRTQ

Type String

Description
The name of the destination printer queue when sending spooled files via SNDTCPSPLF (LPR).

Publishing Info Color Supported

ID ATTR_PUBINF_COLOR_SUP

Type String

Description
Indicates color is supported for this publishing list entry.

IBM Toolbox for Java 139

Publishing Info Pages per Minute (Color)

ID ATTR_PUBINF_PPM_COLOR

Type Integer

Description
The pages per minute supported in color mode for this publishing list entry.

Publishing Info Pages per Minute (Monochrome)

ID ATTR_PUBINF_PPM

Type Integer

Description
The pages per minute supported in monochrome for this publishing list entry.

Publishing Info Duplex Support

ID ATTR_PUBINF_DUPLEX_SUP

Type String

Description
The duplex supported indicator for this publishing list entry.

Publishing Info Location

ID ATTR_PUBINF_LOCATION

Type String

Description
The location description for this publishing list entry.

Remote Location Name

ID ATTR_RMTLOCNAME

Type String

Description
The printer device location name.

Record Length

ID ATTR_RECLENGTH

Type Integer

Description
Record length.

Reduce Output

ID ATTR_REDUCE

Type String

Description
The manner in which multiple logical pages print on each side of a physical page. Valid values
*TEXT or ????.

Remote System

ID ATTR_RMTSYSTEM

140 IBM i: Programming IBM Toolbox for Java

Type String

Description
Remote system name. Valid special values include *INTNETADR.

Replace Unprintable Characters

ID ATTR_RPLUNPRT

Type String

Description
Whether characters that cannot be printed are to be replaced with another character. Valid values
are *YES or *NO.

Replacement Character

ID ATTR_RPLCHAR

Type String

Description
The character that replaces any unprintable characters.

Restart Printing

ID ATTR_RESTART

Type Integer

Description
Restart printing. Valid values are -1, -2, -3, or the page number to restart at. The value *STRPAGE
is encoded as -1, the value *ENDPAGE is encoded as -2, and the value *NEXT is encoded as -3.

Saddle Stitch Number of Staples

ID ATTR_SADDLESTITCH_NUMSTAPLES

Type Integer

Description
The number of staples that are to be applied along the finishing operation axis.

Saddle Stitch Reference

ID ATTR_SADDLESTITCH_REF

Type String

Description
One or more staples are driven into the media along the finishing operation axis, which is
positioned at the center of the media parallel to the reference edge. Valid values are *NONE,
*DEVD, *TOP, and *LEFT.

Save Spooled File

ID ATTR_SAVESPLF

Type String

Description
Whether the spooled file is to be saved after it is written. Valid values are *YES, *NO.

Seek Offset

ID ATTR_SEEKOFF

IBM Toolbox for Java 141

Type Integer

Description
Seek offset. Allows both positive and negative values relative to the seek origin.

Seek Origin

ID ATTR_SEEKORG

Type Integer

Description
Valid values include 1 (beginning or top), 2 (current), and 3 (end or bottom).

Send Priority

ID ATTR_SENDPTY

Type String

Description
Send priority. Valid values are *NORMAL, *HIGH.

Separator page

ID ATTR_SEPPAGE

Type String

Description
Allows a user the option of printing a banner page or not. Valid values are *YES or *NO.

Source Drawer

ID ATTR_SRCDRWR

Type Integer

Description
The drawer to be used when the automatic cut sheet feed option is selected. Valid values are -1,
-2, 1-255. The value *E1 is encoded as -1, and the value *FORMDF is encoded as -2.

Spool SCS

ID ATTR_SPLSCS

Type Long

Description
Determines how SCS data is used during create spool file.

Spool the Data

ID ATTR_SPOOL

Type String

Description
Whether the output data for the printer device is spooled. Valid values are *YES, *NO.

Spooled File Creation Authentication Method

ID ATTR_SPLF_AUTH_METHOD

Type Integer

142 IBM i: Programming IBM Toolbox for Java

Description
Indicates the client authentication method used to create this spooled file. Valid values include
x'00'(*NONE), x'01'(*REQUESTER), x'02'(*BASIC), x'03'(*CERTIFICATE), and 'x'04'(*DIGEST).

Spooled File Creation Security Method

ID ATTR_SPLF_SECURITY_METHOD

Type String

Description
Indicates the security method used to create this spooled file. Valid values are x'00'(*NONE),
x'01'(*SSL3), and x'02'(*TLS).

Spooled File Name

ID ATTR_SPOOLFILE

Type String

Description
The name of the spooled file.

Spooled File Number

ID ATTR_SPLFNUM

Type Integer

Description
The spooled file number. Special values allowed are -1 and 0. The value *LAST is encoded as -1,
the value *ONLY is encoded as 0.

Spooled File Status

ID ATTR_SPLFSTATUS

Type String

Description
The status of the spooled file. Valid values are *CLOSED, *HELD, *MESSAGE, *OPEN,
*PENDING, *PRINTER, *READY, *SAVED, *WRITING.

Spooled Output Schedule

ID ATTR_SCHEDULE

Type String

Description
Specifies, for spooled files only, when the spooled file is available to the writer. Valid values are
*IMMED, *FILEEND, *JOBEND.

Started By User

ID ATTR_STARTEDBY

Type String

Description
The name of the user who started the writer.

Starting Page

ID ATTR_STARTPAGE

IBM Toolbox for Java 143

Type Integer

Description
The page number at which to start printing the spooled file. Valid values are -1, 0, 1, or the page
number. The value *ENDPAGE is encoded as -1. For the value 0, printing starts on page 1. For
the value 1, the entire file prints.

System Where Created

ID ATTR_SYSTEM

Type String

Description
The name of the system where the spooled file was created. When the name of the system where
this spooled file was created cannot be determined, the receiving system name is used.

Text Description

ID ATTR_DESCRIPTION

Type String

Description
Text to describe an instance of an AS400 object.

Time File Opened

ID ATTR_TIMEOPEN

Type String

Description
For spooled files this is the time this spooled file was opened. For AFP resources this is the time
the object was last modified. The time is encoded in a character string with the following format,
HH MM SS.

Time Spooled File Create Job End

ID ATTR_TIME_END

Type String

Description
The time the job that created the spooled file on the system ended. This field must be set to
blanks when special value *ALL is used for field Starting spooled file create date or when special
value *LAST is used for field Ending spooled file create date. This field must have a value set if a
date is specified for field Ending spooled file create date. The time must be in the HHMMSS
format, defined as follows:
v HH - Hour
v MM - Minutes
v SS - Seconds

Time Writer Began Processing Spooled File

ID ATTR_TIME_WTR_BEGAN_FILE

Type String

Description
Indicates the time at which the writer began processing the spooled file. The time is encoded in a
character string with the following format, HH MM SS.

144 IBM i: Programming IBM Toolbox for Java

Time Writer Completed Processing Spooled File

ID ATTR_TIME_WTR_CMPL_FILE

Type String

Description
Indicates the time at which the writer finished processing the spooled file. The time is encoded in
a character string with the following format, HH MM SS.

Total Pages

ID ATTR_PAGES

Type Integer

Description
The number of pages that are contained in a spooled file.

Transform SCS to ASCII

ID ATTR_SCS2ASCII

Type String

Description
Whether the print data is to be transformed from SCS to ASCII. Valid values are *YES, *NO.

Unit of Measure

ID ATTR_UNITOFMEAS

Type String

Description
The unit of measure to use for specifying distances. Valid values are *CM, *INCH.

User Comment

ID ATTR_USERCMT

Type String

Description
The 100 characters of user-specified comment that describe the spooled file.

User Data

ID ATTR_USERDATA

Type String

Description
The 10 characters of user-specified data that describe the spooled file. Valid special values include
*SOURCE.

User Defined Data

ID ATTR_USRDFNDTA

Type String

Description
User defined data to be utilized by user applications or user specified programs that process
spool files. All characters are acceptable. Max size is 255.

IBM Toolbox for Java 145

User Defined File

ID ATTR_USRDEFFILE

Type String

Description
Whether the spooled file was created using an API. Valid values are *YES, or *NO.

User Defined Object

ID ATTR_USER_DEFINED_OBJECT

Type String

Description
The Integrated File System path of the user defined object to be utilized by user applications that
process spool files. If an Integrated File System path the format of the Integrated File System path
is "/QSYS.LIB/library.LIB/object.type" where library is the name of the library that contains the
object or one of the special values %LIBL% or %CURLIB%. object is the name of the object and
type is the object type. Valid values for type include "DTAARA", "DTAQ", "FILE", "PSFCFG",
"USRIDX", "USRQ" and "USRSPC". The string "*NONE" is used to indicate no user defined object
is to be used.

User Defined Option(s)

ID ATTR_USEDFNOPTS

Type String

Description
User defined options to be utilized by user applications that process spool files. Up to 4 options
may be specifies, each value is length char(10). All characters are acceptable.

User Driver Program Data

ID ATTR_USRDRVPGMDTA

Type String

Description
User data to be used with the user driver program. All characters are acceptable. Maximum size
is 5000 characters.

User Driver Program

ID ATTR_USER_DRIVER_PROG

Type String

Description
The Integrated File System path of the user defined driver program that processes spooled files.
The format of the Integrated File System path is "/QSYS.LIB/library.LIB/program.PGM" where
library is the name of the library that contains the program and program is the program name. The
library may be one of the special values %LIBL% and %CURLIB% or a specific library name. The
string "*NONE" is used to indicate that no driver program is defined.

User ID

ID ATTR_TOUSERID

Type String

Description
User id to whom the spooled file is sent.

146 IBM i: Programming IBM Toolbox for Java

User ID Address

ID ATTR_TOADDRESS

Type String

Description
Address of user to whom the spooled file is sent.

User Transform Program

ID ATTR_USER_TRANSFORM_PROG

Type String

Description
The Integrated File System path of the user defined transform program that transforms spool file
data before it is processed by the driver program. The format of the Integrated File System path
is "/QSYS.LIB/library.LIB/program.PGM" where library is the name of the library that contains
the program and program is the program name. The library may be one of the special values
%LIBL% and %CURLIB% or a specific library name. The string "*NONE" is used to indicate that
no transform program is defined.

Viewing Fidelity

ID ATTR_VIEWING_FIDELITY

Type String

Description
The processing to take place when viewing a page of spooled file data (in page-at-a-time mode).
Valid values are *ABSOLUTE and *CONTENT(default). To process all non-raster data
(commands) prior to the current page, *ABSOLUTE is used. For SCS files, *CONTENT is used to
process only open time commands plus the current page. For AFPDS files, *CONTENT is used to
process the first page of data plus the current page.

VM/MVS Class

ID ATTR_VMMVSCLASS

Type String

Description
VM/MVS class. Valid values are A-Z and 0-9.

Waiting for Data Status

ID ATTR_WTNGDATASTS

Type String

Description
Whether the writer has written all the data currently in the spooled file and is waiting for more
data. Possible values are *NO - the writer is not waiting for more data, *YES - the writer has
written all the data currently in the spooled file and is waiting for more data. This condition
occurs when the writer is producing an open spooled file with SCHEDULE(*IMMED) specified.

Waiting for Device Status

ID ATTR_WTNGDEVSTS

Type String

IBM Toolbox for Java 147

Description
Whether the writer is waiting to get the device from a job that is printing directly to the printer.
Values are *NO - the writer is not waiting for the device, *YES - the writer is waiting for the
device.

Waiting for Message Status

ID ATTR_WTNGMSGSTS

Type String

Description
Whether the writer is waiting for a reply to an inquiry message. Values are *NO and *YES.

When to Automatically End Writer

ID ATTR_WTRAUTOEND

Type String

Description
When to end the writer if it is to be ended automatically. Valid values are *NORDYF, *FILEEND.
Attribute Automatically end writer must be set to *YES.

When to End Writer

ID ATTR_WTREND

Type String

Description
When to end the writer. Valid value are *CNTRLD, *IMMED, and *PAGEEND. This is different
from when to automatically end the writer.

When to Hold File

ID ATTR_HOLDTYPE

Type String

Description
When to hold the spooled file. Valid values are *IMMED, and *PAGEEND.

Width of Page

ID ATTR_PAGEWIDTH

Type Float

Description
The width of a page. Units of measurement are specified in the measurement method attribute.

Workstation Customizing Object

ID ATTR_WORKSTATION_CUST_OBJECT

Type String

Description
The Integrated File System path of the workstation customizing object. The format of the
Integrated File System path is "/QSYS.LIB/library.LIB/custobj.WSCST" where library is the library
that contains the customization object and custobj is the name of the workstation customization
object.

148 IBM i: Programming IBM Toolbox for Java

Writer Job Name

ID ATTR_WRITER

Type String

Description
The name of the writer job.

Writer Job Number

ID ATTR_WTRJOBNUM

Type String

Description
The writer job number.

Writer Job Status

ID ATTR_WTRJOBSTS

Type String

Description
The status of the writer job. Valid values are STR, END, JOBQ, HLD, MSGW.

Writer Job User Name

ID ATTR_WTRJOBUSER

Type String

Description
The name of the user that started the writer job.

Writer Started

ID ATTR_WTRSTRTD

Type String

Description
Indicates whether a writer is started for this printer. Values are 1 - yes a writer is started, 0 - no
writer is started.

Writer Starting Page

ID ATTR_WTRSTRPAGE

Type Integer

Description
Specifies the page number of the first page to print from the first spooled file when the writer job
starts. This is only valid if the spooled file name is also specified when the writer starts.

Writing Status

ID ATTR_WRTNGSTS

Type String

Description
Indicates whether the print writer is in writing status. Values are *YES - the writer is in writing
status, *NO - the writer is not in writing status, *FILE - the writer is writing the file separators.

IBM Toolbox for Java 149

Network Print Server Object Attributes

NPS CCSID

ID ATTR_NPSCCSID

Type Integer

Description
CCSID that the Network Print Server expects that all strings will be encoded in.

NPS Level

ID ATTR_NPSLEVEL

Description
The version, release, and modification level of the Network Print Server. This attribute is a
character string encoded as VXRYMY (ie. "V3R1M0") where

X is in (0..9)
Y is in (0..9,A..Z)

Copying spooled files:

You can use the copy method of the SpooledFile class to create a copy of the spooled file that the
SpooledFile object represents.

Using SpooledFile.copy() performs the following actions:
v Creates the new spooled file on the same output queue and on the same system as the original spooled

file
v Returns a reference to the new spooled file

SpooledFile.copy() is a new method available to you only if you download JTOpen 3.2 or later or apply
an IBM i fix. It is recommended that the better solution is to download and use JTOpen. For more
information, see the following:

v IBM Toolbox for Java and JTOpen: Downloads

v IBM Toolbox for Java and JTOpen: Service Packs

The copy method uses the Create Spooled File (QSPCRTSP) API within the network print server job to
create an exact replica of the spooled file. You need only a unique creation date and time to preserve the
identity of the newly created copy of the spooled file.

Specifying an output queue as a parameter to the copy method creates the copy of the spooled file to the
first position on the specified output queue. Both the output queue and the original spooled file must
reside on the same system

Example: Copying a spooled file using SpooledFile.copy()

Note: Read the Code example disclaimer for important legal information.

This example shows how to use SpooledFile.copy() to copy a spooled file to the same queue that contains
the file you want to copy. When you want to route the newly copied spooled file to a specific output
queue, pass the output queue as a parameter to the copy method:

SpooledFile newSplf = new sourceSpooledFile.copy(<outqname>);

where <outqname> is the OutputQueue object.

150 IBM i: Programming IBM Toolbox for Java

http://www.ibm.com/servers/eserver/iseries/toolbox/downloads.html
http://www.ibm.com/servers/eserver/iseries/toolbox/servicepacks.html

public static void main(String args[]) {
// Create the system object
AS400 as400 = new AS400(<systemname>,<username>, <password>);
// Identify the output queue that contains the spooled file you want to copy.
OutputQueue outputQueue =

new OutputQueue(as400, "/QSYS.LIB/QUSRSYS.LIB/<outqname>.OUTQ");

// Create an array that contains all the elements required to
// uniquely identify a spooled file on the server.
String[][] splfTags = { {

<spoolfilename>,
<spoolfilenum>,
<jobname>,
<username>,
<jobnumber>,
// Note that <systemname>,<date>, and <time> are optional.
// If you do not include them, remove the corresponding
// splfTags[i],[j], where j has the value of 5,6, or 7.
<systemname>,
<date>,
<time>},

};

// Print the information that identifies the spooled file to System.out
for (int i=0; i<splfTags.length; i++) {

System.out.println("Copying -> " + splfTags[i][0] + ","
+ splfTags[i][1] + ","
+ splfTags[i][2] + ","
+ splfTags[i][3] + ","
+ splfTags[i][4] + ","
+ splfTags[i][5] + ","
+ splfTags[i][6] + ","
+ splfTags[i][7]);

// Create the SpooledFile object for the source spooled file.
SpooledFile sourceSpooledFile =

new SpooledFile(as400,
splfTags[i][0],
Integer.parseInt(splfTags[i][1]),
splfTags[i][2],
splfTags[i][3],
splfTags[i][5],
splfTags[i][6],
splfTags[i][7]);

}

// Copy the spooled file, which creates a new SpooledFile object.
// To route the copy of the spooled file to a specific output queue,
// use the following code:
// SpooledFile newSplf = new sourceSpooledFile.copy(<outqname>);
// where <outqname> is an OutputQueue object. Specify the output
// queue in the following way:
// OutputQueue outputQueue =
// new OutputQueue(as400, "/QSYS.LIB/QUSRSYS.LIB/<outqname>.OUTQ");
try { SpooledFile newSplf = new sourceSpooledFile.copy();
}

catch (Exception e){
}

SpooledFile Javadoc
Create Spooled File (QSPCRTSP) API

IBM Toolbox for Java 151

javadoc/com/ibm/as400/access/SpooledFile.html

Creating new spooled files:

You can use the SpooledFileOutputStream class to create new server spooled files. The class derives from
the standard JDK java.io.OutputStream class; after its construction, it can be used anywhere an
OutputStream is used.

When creating a new SpooledFileOutputStream, the caller may specify the following:
v Which printer file to use
v Which output queue to put the spooled file on
v A PrintParameterList object that may contain parameters to override fields in the printer file

These parameters are all optional (the caller may pass null of any or all of them). If a printer file is not
specified, the network print server uses the default network print printer file, QPNPSPRTF. The output
queue parameter is there as a convenience; it also can be specified in the PrintParameterList. If the output
queue parameter is specified in both places, the PrintParameterList field overrides the output queue
parameter. See the documentation of the SpooledFileOutputStream constructor in the Javadoc for a
complete list of which attributes may be set in the PrintParameterList for creating new spooled files.

Use one of the write() methods to write data into the spooled file. The SpooledFileOutputStream object
buffers the data and sends it when either the output stream is closed or the buffer is full. Buffering is
done for two reasons:
v It allows the automatic data typing (see Data stream types in spooled files) to analyze a full-buffer of

data to determine the data type
v It makes the output stream work faster because not every write request is communicated to the server

Use the flush() method to force the data to be written to the server.

When the caller is finished writing data to the new spooled file, the close() method is called to close the
spooled file. Once the spooled file has been closed, no more data can be written to it. By calling the
getSpooledFile() method once the spooled file has been closed, the caller can get a reference to a
SpooledFile object that represents the spooled file.

Data stream types in spooled files

Use the Printer Data Type attribute of the spooled file to set the type of data to be put into the spooled
file. If the caller does not specify a printer data type, the default is to use automatic data typing. This
method looks at the first few thousand bytes of the spooled file data, determines if it fits either SNA
Character Stream (SCS) or Advanced Function Printing data stream (AFPDS) data stream architectures,
and then sets the attribute appropriately. If the bytes of spooled file data do not match either of these
architectures, the data is tagged as *USERASCII. Automatic data typing works most of the time. The
caller generally uses it unless the caller has a specific case in which automatic data typing does not work.
In those cases, the caller can set the Printer Data Type attribute to a specific value (for example, *SCS). If
the caller wants to use the printer data that is in the printer file, the caller must use the special value
*PRTF. If the caller overrides the default data type when creating a spooled file, caution must be used to
ensure that the data put into the spooled file matches the data type attribute. Putting non-SCS data into a
spooled file that is marked to receive SCS data triggers an error message from the host and the loss of the
spooled file.

Generally, this attribute can have three values:
v *SCS - an EBCDIC, text-based printer data stream.
v *AFPDS (Advanced Function Presentation Data Stream) - another data stream supported on the server.

*AFPDS can contain text, image, and graphics, and can use external resources such as page overlays
and external images in page segments.

152 IBM i: Programming IBM Toolbox for Java

v *USERASCII - any non-SCS and non-AFPDS printer data that the server handles by just passing it
through. Postscript and HP-PCL data streams are examples data streams that are in a *USERASCII
spooled file.
SpooledFileOutputStream Javadoc
“Example: Creating spooled files” on page 531
This example shows how to create a spooled file on a server from an input stream.
“Example: Creating SCS spooled files” on page 532
This example uses the SCS3812Writer class to generate an SCS data stream and write it to a spooled
file on the server.

Generating an SCS data stream:

To generate spooled files that will print on certain printers attached to the server, an SNA Character
Stream (SCS) data stream must be created. SCS is a text-based, EBCDIC data stream that can be printed
on SCS printers, IPDS printers, or to PC printers. SCS can be printed by converting it using an emulator
or the host print transform on the server.

You can use the SCS writer classes to generate such an SCS data stream. The SCS writer classes convert
Java Unicode characters and formatting options into an SCS data stream. Five SCS writer classes generate
varying levels of SCS data streams. The caller chooses the writer that matches the final printer destination
to which the caller or end user will be printing.

Use the following SCS writer classes to generate an SCS printer data stream:

SCS writer class Description

SCS5256Writer The simplest SCS writer class. Supports text, carriage
return, line feed, new line, form feed, absolute horizontal
and vertical positioning, relative horizontal and vertical
positioning, and set vertical format.

SCS5224Writer Extends the 5256 writer and adds methods to set
character per inch (CPI) and lines per inch (LPI).

SCS5219Writer Extends the 5224 writer and adds support for left
margin, underline, form type (paper or envelope), form
size, print quality, code page, character set, source
drawer number, and destination drawer number.

SCS5553Writer Extends the 5219 writer and adds support for character
rotation, grid lines, and font scaling. The 5553 is a
double-byte character set (DBCS) data stream.

SCS3812Writer Extends the 5219 writer and adds support for bold,
duplex, text orientation, and fonts.

To construct an SCS writer, the caller needs an output stream and, optionally, an encoding. The data
stream is written to the output stream. To create an SCS spooled file, the caller first constructs a
SpooledFileOutputStream, and then uses that to construct an SCS writer object. The encoding parameter
gives a target EBCDIC coded character set identifier (CCSID) to convert the characters to.

Once the writer is constructed, use the write() methods to output text. Use the carriageReturn(),
lineFeed(), and newLine() methods to position the write cursor on the page. Use the endPage() method to
end the current page and start a new page.

When all of the data has been written, use the close() method to end the data stream and close the output
stream.

IBM Toolbox for Java 153

javadoc/com/ibm/as400/access/SpooledFileOutputStream.html
javadoc/com/ibm/as400/access/SCS5256Writer.html
javadoc/com/ibm/as400/access/SCS5224Writer.html
javadoc/com/ibm/as400/access/SCS5219Writer.html
javadoc/com/ibm/as400/access/SCS5553Writer.html
javadoc/com/ibm/as400/access/SCS3812Writer.html

Example

“Example: Creating SCS spooled files” on page 532 shows how to generate a SCS data stream using the
SCS3812Writer class, and how to write the stream to a spooled file on the server:

Reading spooled files and AFP resources:

You can use the PrintObjectInputStream class to read the raw contents of a spooled file or Advanced
Function Printing (AFP) resource from the server. The class extends the standard JDK java.io.InputStream
class so that it can be used anywhere an InputStream is used.

Obtain a PrintObjectInputStream object by calling either the getInputStream() method on an instance of
the SpooledFile class or the getInputStream() method on an instance of the AFPResource class.

Use one of the read() methods for reading from the input stream. These methods all return the number of
bytes actually read, or -1 if no bytes were read and the end of file was reached.

Use the available() method of PrintObjectInputStream to return the total number of bytes in the spooled
file or AFP resource. The PrintObjectInputStream class supports marking the input stream, so
PrintObjectInputStream always returns true from the markSupported() method. The caller can use the
mark() and reset() methods to move the current read position backward in the input stream. Use the
skip() method to move the read position forward in the input stream without reading the data.

Example

The following example shows how to use PrintObjectInputStream to read an existing server spooled file

Example: Reading spooled files
PrintObjectInputStream Javadoc

Reading spooled files using PrintObjectPageInputStream and PrintObjectTransformedInputStream:

You can use the PrintObjectPageInputStream class to read the data out of a server AFP and SCS spooled
file one page at a time.

You can obtain a PrintObjectPageInputStream object with the getPageInputStream() method.

Use one of the read() methods for reading from the input stream. All these methods return the number of
bytes actually read, or -1 if no bytes were read and the end of page was reached.

Use the available() method of PrintObjectPageInputStream to return the total number of bytes in the
current page. The PrintObjectPageInputStream class supports marking the input stream, so
PrintObjectPageInputStream always returns true from the markSupported() method. The caller can use
the mark() and reset() methods to move the current read position backward in the input stream so that
subsequent reads reread the same bytes. The caller can use the skip() method to move the read position
forward in the input stream without reading the data.

However, when transforming an entire spooled file data stream is desired, use the
PrintObjectTransformedInputStream class.

Example

The following example shows how to use PrintObjectPageInputStream and
PrintObjectTransformedInputStream to obtain different transformations when reading spooled file data:

“Example: Reading and transforming spooled files” on page 535

154 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/PrintObjectInputStream.html

Related information:
PrintObjectPageInputStream Javadoc
PrintObjectTransformedInputStream Javadoc

ProductLicense class
The ProductLicense class enables you to request licenses for products installed on the system. To be
compatible with other IBM i license users, the class works through IBM i product license support when
requesting or releasing a license.

The class does not enforce the license policy but returns enough information such that the application can
enforce the policy. When a license is requested the ProductLicense class will return the status of the
request -- license granted or denied. If the request is denied the application must disable the behavior
that required the license because the IBM Toolbox for Java does not know which function to disable.

Use the ProductLicense class with IBM i license support to enforce the license of your application:
v The server side of your application registers your product and license terms with IBM i license

support.
v The client side of your application uses the ProductLicense object to request and release licenses.

Example: ProductLicense scenario

For example, suppose your customer bought 15 concurrent use licenses for your product. Concurrent use
means 15 users can use the product at the same time, but it does not need to be 15 specific users. It can
be any 15 users in the organization. This information is registered with IBM i license support. As users
connect your application uses the ProductLicense class to request a license.
v When the number of concurrent users is fewer than 15, the request is successful and your application

runs.
v When the 16th user connects, the ProductLicense request fails. Your application then displays an error

message and terminates.

When a user stops running the application, your application releases the license by way of the
ProductLicense class. The license is now available for someone else to use.
Related information:
ProductLicense Javadoc

ProgramCall class
The IBM Toolbox for Java ProgramCall class allows the Java program to call a IBM i program. You can
use the ProgramParameter class to specify input, output, and input/output parameters. If the program
runs, the output and input/output parameters contain the data that is returned by the IBM i program. If
the IBM i program fails to run successfully, the Java program can retrieve any resulting IBM i messages
as a list of AS400Message objects.

Required parameters are as follows:
v The program and parameters to run
v The AS400 object that represents the server that has the program.

The program name and parameter list can be set on the constructor, through the ProgramCall
setProgram() method, or on the run() method The run() method calls the program.

Using the ProgramCall class causes the AS400 object to connect to the server. See managing connections
for information about managing connections.

Example: Using ProgramCall

IBM Toolbox for Java 155

javadoc/com/ibm/as400/access/PrintObjectPageInputStream.html
javadoc/com/ibm/as400/access/PrintObjectTransformedInputStream.html
javadoc/com/ibm/as400/access/ProductLicense.html

Note: Read the Code example disclaimer for important legal information.

The following example shows how to use the ProgramCall class:
// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a program object. I choose
// to set the program to run later.
ProgramCall pgm = new ProgramCall(sys);

// Set the name of the program.
// Because the program does not take
// any parameters, pass null for the
// ProgramParameter[] argument.
pgm.setProgram(QSYSObjectPathName.toPath("MYLIB", "MYPROG", "PGM"));

// Run the program. My program has
// no parms. If it fails to run, the failure
// is returned as a set of messages
// in the message list.
if (pgm.run() != true)
{

// If you get here, the program
// failed to run. Get the list of
// messages to determine why the
// program didn’t run.
AS400Message[] messageList = pgm.getMessageList();

// ... Process the message list.
}

// Disconnect since I am done running programs
sys.disconnectService(AS400.COMMAND);

The ProgramCall object requires the integrated file system path name of the program.

The default behavior is for IBM i programs to run in a separate server job, even when the Java program
and the IBM i program are on the same server. You can override the default behavior and have the IBM i
program run in the Java job using the ProgramCall setThreadSafe() method.

Using ProgramParameter objects

You can use the ProgramParameter objects to pass parameter data between the Java program and the
IBM i program. Set the input data with the setInputData() method. After the program is run, retrieve the
output data with the getOutputData() method. Each parameter is a byte array. The Java program must
convert the byte array between Java and IBM i formats. The data conversion classes provide methods for
converting data. Parameters are added to the ProgramCall object as a list.

Example: Using ProgramParameter

Note: Read the Code example disclaimer for important legal information.

The following example shows how to use the ProgramParameter object to pass parameter data.
// Create an AS400 object
AS400 sys = new AS400("mySystem.myCompany.com");

// My program has two parameters.
// Create a list to hold these parameters.
ProgramParameter[] parmList = new ProgramParameter[2];

// First parameter is an input parameter
byte[] key = {1, 2, 3};

156 IBM i: Programming IBM Toolbox for Java

parmList[0] = new ProgramParameter(key);

// Second parameter is an output
// parameter. A four-byte number is returned.
parmList[1] = new ProgramParameter(4);

// Create a program object specifying the name of the
// program and the parameter list.
ProgramCall pgm = new ProgramCall(sys, "/QSYS.LIB/MYLIB.LIB/MYPROG.PGM", parmList);

// Run the program.
if (pgm.run() != true)
{

// If the system cannot run the
// program, look at the message list
// to find out why it didn’t run.
AS400Message[] messageList = pgm.getMessageList();

}
else
{

// Else the program ran. Process the
// second parameter, which contains the returned data.

// Create a converter for this data type
AS400Bin4 bin4Converter = new AS400Bin4();

// Convert from system type to Java
// object. The number starts at the
// beginning of the buffer.
byte[] data = parmList[1].getOutputData();
int i = bin4Converter.toInt(data);

}

// Disconnect since I am done running programs
sys.disconnectService(AS400.COMMAND);

ProgramCall Javadoc
ProgramParameter Javadoc
AS400Message Javadoc
AS400 Javadoc
CommandCall Javadoc
ProgramParameter Javadoc

QSYSObjectPathName class
You can use the QSYSObjectPathName class to represent an object in the integrated file system. Use this
class to build an integrated file system name or to parse an integrated file system name into its
components.

Several of the IBM Toolbox for Java classes require an integrated file system path name in order to be
used. Use a QSYSObjectPathName object to build the name.

Note: Read the Code example disclaimer for important legal information.

The following examples show how to use the QSYSObjectPathName class:

Example 1: The ProgramCall object requires the integrated file system name of the server program to call.
A QSYSObjectPathName object is used to build the name. To call program PRINT_IT in library REPORTS
using a QSYSObjectPathName:

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a program call object.

IBM Toolbox for Java 157

javadoc/com/ibm/as400/access/ProgramCall.html
javadoc/com/ibm/as400/access/ProgramParameter.html
javadoc/com/ibm/as400/access/AS400Message.html
javadoc/com/ibm/as400/access/AS400.html
javadoc/com/ibm/as400/access/CommandCall.html
javadoc/com/ibm/as400/access/ProgramParameter.html

ProgramCall pgm = new ProgramCall(sys);

// Create a path name object that
// represents program PRINT_IT in library REPORTS.
QSYSObjectPathName pgmName =

new QSYSObjectPathName("REPORTS","PRINT_IT","PGM");

// Use the path name object to set
// the name on the program call object.
pgm.setProgram(pgmName.getPath());

// ... run the program, process the
// results

Example 2: If the name of the object is used just once, the Java program can use the toPath() method to
build the name. This method is more efficient than creating a QSYSObjectPathName object.

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a program call object.
ProgramCall pgm = new ProgramCall(sys);

// Use the toPath method to create
// the name that represents program
// PRINT_IT in library REPORTS.
pgm.setProgram(QSYSObjectPathName.toPath("REPORTS",

"PRINT_IT",
"PGM"));

// ... run the program, process the
// results

Example 3: In this example, a Java program was given an integrated file system path. The
QSYSObjectPathName class can be used to parse this name into its components.

// Create a path name object from
// the fully qualified integrated
// file system name.
QSYSObjectPathName ifsName = new QSYSObjectPathName(pathName);

// Use the path name object to get
// the library, name and type of server object.
String library = ifsName.getLibraryName();
String name = ifsName.getObjectName();
String type = ifsName.getObjectType();

QSYSObjectPathName Javadoc

Record-level access
The record-level access classes create, read, update, and delete IBM i files and members.
v Create a IBM i physical file specifying one of the following:

– The record length
– An existing data description specifications (DDS) source file
– A RecordFormat object

v Retrieve the record format from a physical or logical file, or the record formats from a IBM i multiple
format logical file.

Note: The record format of the file is not retrieved in its entirety. The record formats retrieved are
meant to be used when setting the record format for an AS400File object. Only enough
information is retrieved to describe the contents of a record of the file. Record format
information, such as column headings and aliases, is not retrieved.

v Access the records in an IBM i file sequentially, by record number, or by key.

158 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/QSYSObjectPathName.html

v Write records to a system file.
v Update records in a system file sequentially, by record number, or by key.
v Delete records in a system file sequentially, by record number, or by key.
v Lock a file for different types of access.
v Use commitment control to allow a Java program to do the following:

– Start commitment control for the connection.
– Specify different commitment control lock levels for different files.
– Commit and rollback transactions.

v Delete system files.
v Delete a member from a system file.

Note: The record-level access classes do not support logical join files or null key fields.

The following classes perform these functions:
v The AS400File class is the abstract base class for the record-level access classes. It provides the methods

for sequential record access, creation and deletion of files and members, and commitment control
activities.

v The KeyedFile class represents a system file that has access by key.
v The SequentialFile class represents a system file that has access by record number.
v The AS400FileRecordDescription class provides the methods for retrieving the record format of a

system file.

The record-level access classes require an AS400 object that represents the system that has the database
files. Using the record-level access classes causes the AS400 object to connect to the IBM i system. See
managing connections for information about managing connections.

The record-level access classes require the integrated file system path name of the data base file. See
integrated file system path names for more information.

The record-level access classes use the following:
v The RecordFormat class to describe a record of the database file
v The Record class to provide access to the records of the database file
v The LineDataRecordWriter class to write a record in line data format

These classes are described in the data conversion section.

Examples

v The sequential access example shows how to access a system file sequentially.
v The read file example shows how to use the record-level access classes to read a system file.
v The keyed file example shows how to use the record-level access classes to read records by key from a

system file.

AS400File:

The AS400File class provides the methods for several actions.
v Creating and deleting server physical files and members
v Reading and writing records in server files
v Locking files for different types of access
v Using record blocking to improve performance
v Setting the cursor position within an open server file

IBM Toolbox for Java 159

v Managing commitment control activities
Related information:
AS400File Javadoc

KeyedFile:

The KeyedFile class gives a Java program keyed access to a file on the server. Keyed access means that
the Java program can access the records of a file by specifying a key. Methods exist to position the cursor,
read, update, and delete records by key.

To position the cursor, use the following methods:
v positionCursor(Object[]) - set cursor to the first record with the specified key.
v positionCursorAfter(Object[]) - set cursor to the record after the first record with the specified key.
v positionCursorBefore(Object[]) - set cursor to the record before the first record with the specified key.

To delete a record, use the following method:
v deleteRecord(Object[]) - delete the first record with the specified key.

The read methods are:
v read(Object[]) - read the first record with the specified key.
v readAfter(Object[]) - read the record after the first record with the specified key.
v readBefore(Object[]) - read the record before the first record with the specified key.
v readNextEqual() - read the next record whose key matches the specified key. Searching starts from the

record after the current cursor position.
v readPreviousEqual() - read the previous record whose key matches the specified key. Searching starts

from the record before the current cursor position.

To update a record, use the following method:
v update(Object[]) - update the record with the specified key.

Methods are also provided for specifying a search criteria when positioning, reading, and updating by
key. Valid search criteria values are as follows:
v Equal - find the first record whose key matches the specified key.
v Less than - find the last record whose key comes before the specified key in the key order of the file.
v Less than or equal - find the first record whose key matches the specified key. If no record matches the

specified key, find the last record whose key comes before the specified key in the key order of the file.
v Greater than - find the first record whose key comes after the specified key in the key order of the file.
v Greater than or equal - find the first record whose key matches the specified key. If no record matches

the specified key, find the first record whose key comes after the specified key in the key order of the
file.

KeyedFile is a subclass of AS400File; all methods in AS400File are available to KeyedFile.

Specifying the key

The key for a KeyedFile object is represented by an array of Java Objects whose types and order
correspond to the types and order of the key fields as specified by the RecordFormat object for the file.

The following example shows how to specify the key for the KeyedFile object.
// Specify the key for a file whose key fields, in order,
// are:
// CUSTNAME CHAR(10)

160 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400File.html
javadoc/com/ibm/as400/access/RecordFormat.html

// CUSTNUM BINARY(9)
// CUSTADDR CHAR(100)VARLEN()
// Note that the last field is a variable-length field.
Object[] theKey = new Object[3];
theKey[0] = "John Doe";
theKey[1] = new Integer(445123);
theKey[2] = "2227 John Doe Lane, ANYTOWN, NY 11199";

A KeyedFile object accepts partial keys as well as complete keys. However, the key field values that are
specified must be in order.

For example:
// Specify a partial key for a file whose key fields,
// in order, are:
// CUSTNAME CHAR(10)
// CUSTNUM BINARY(9)
// CUSTADDR CHAR(100)VARLEN()
Object[] partialKey = new Object[2];
partialKey[0] = "John Doe";
partialKey[1] = new Integer(445123);

// Example of an INVALID partial key
Object[] INVALIDPartialKey = new Object[2];
INVALIDPartialKey[0] = new Integer(445123);
INVALIDPartialKey[1] = "2227 John Doe Lane, ANYTOWN, NY 11199";

Null keys and null key fields are not supported.

The key field values for a record can be obtained from the Record object for a file through the
getKeyFields() method.

The following example shows how to read from a file by key:
// Create an AS400 object, the file exists on this
// server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a file object that represents the file
KeyedFile myFile =
new KeyedFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");

// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in library MYLIB. The code was
// compiled and is available for use by the Java program.
RecordFormat recordFormat = new MYKEYEDFILEFormat();

// Set the record format for myFile. This must
// be done before invoking open()
myFile.setRecordFormat(recordFormat);

// Open the file.
myFile.open(AS400File.READ_WRITE, 0, AS400File.COMMIT_LOCK_LEVEL_NONE);

// The record format for the file contains
// four key fields, CUSTNUM, CUSTNAME, PARTNUM
// and ORDNUM in that order.
// The partialKey will contain 2 key field
// values. Because the key field values must be
// in order, the partialKey will consist of values for
// CUSTNUM and CUSTNAME.
Object[] partialKey = new Object[2];
partialKey[0] = new Integer(1);
partialKey[1] = "John Doe";

IBM Toolbox for Java 161

javadoc/com/ibm/as400/access/Record.html

// Read the first record matching partialKey
Record keyedRecord = myFile.read(partialKey);

// If the record was not found, null is returned.
if (keyedRecord != null)
{ // Found the record for John Doe, print out the info.

System.out.println("Information for customer " + (String)partialKey[1] + ":");
System.out.println(keyedRecord);

}

....

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using record-level access
sys.disconnectService(AS400.RECORDACCESS);

Related information:
KeyedFile Javadoc

SequentialFile:

The SequentialFile class gives a Java program access to a file on the server by record number. Methods
exist to position the cursor, read, update, and delete records by record number.

To position the cursor, use the following methods:
v positionCursor(int) - set cursor to the record with the specified record number.
v positionCursorAfter(int) - set cursor to the record after the specified record number.
v positionCursorBefore(int) - set cursor to the record before the specified record number.

To delete a record, use the following method:
v deleteRecord(int) - delete the record with the specified record number.

To read a record, use the following methods:
v read(int) - read the record with the specified record number.
v readAfter(int) - read the record after the specified record number.
v readBefore(int) - read the record before the specified record number.

To update a record, use the following method:
v update(int) - update the record with the specified record number.

SequentialFile is a subclass of AS400File; all methods in AS400File are available to SequentialFile.

The following example shows how to use the SequentialFile class:
// Create an AS400 object, the file exists on this
// server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a file object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");

// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in library MYLIB. The code was
// compiled and is available for use by the Java program.
RecordFormat recordFormat = new MYFILEFormat();

162 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/KeyedFile.html

// Set the record format for myFile. This must
// be done before invoking open()
myFile.setRecordFormat(recordFormat);

// Open the file.
myFile.open(AS400File.READ_WRITE, 0, AS400File.COMMIT_LOCK_LEVEL_NONE);

// Delete record number 2.
myFile.delete(2);

// Read record number 5 and update it
Record updateRec = myFile.read(5);
updateRec.setField("CUSTNAME", newName);

// Use the base class’ update() method since I am
// already positioned on the record.
myFile.update(updateRec);

// Update record number 7
updateRec.setField("CUSTNAME", nextNewName);
updateRec.setField("CUSTNUM", new Integer(7));
myFile.update(7, updateRec);

//

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using record-level access
sys.disconnectService(AS400.RECORDACCESS);

Related information:
SequentialFile Javadoc

AS400FileRecordDescription:

The IBM Toolbox for Java AS400FileRecordDescription class provides the methods for retrieving the
record format of a file on the server.

This class provides methods for creating Java source code for subclasses of RecordFormat and for
returning RecordFormat objects, which describe the record formats of user-specified physical or logical
files on the server. The output of these methods can be used as input to an AS400File object when setting
the record format.

It is recommended that the AS400FileRecordDescription class always be used to generate the
RecordFormat object when the file already exists on the server.

Note: The AS400FileRecordDescription class does not retrieve the entire record format of a file. Only
enough information is retrieved to describe the contents of the records that make up the file.
Information such as column headings, aliases, and reference fields is not retrieved. Therefore, the
record formats retrieved cannot necessarily be used to create a file whose record format is identical
to the file from which the format was retrieved.

Creating Java source code for subclasses of RecordFormat to represent the record format of files on the
server

The AS400FileRecordDescription createRecordFormatSource() method creates Java source files for
subclasses of the RecordFormat class. The files can be compiled and used by an application or applet as
input to the AS400File.setRecordFormat() method.

IBM Toolbox for Java 163

javadoc/com/ibm/as400/access/SequentialFile.html

The createRecordFormatSource() method should be used as a development time tool to retrieve the record
formats of existing files on the server. This method allows the source for the subclass of the
RecordFormat class to be created once, modified if necessary, compiled, and then used by many Java
programs accessing the same files on the server. Because this method creates files on the local system, it
can be used only by Java applications. The output (the Java source code), however, can be compiled and
then used by Java applications and applets alike.

Note: This method overwrites files with the same names as the Java source files being created.

Example 1: The following example shows how to use the createRecordFormatSource() method:
// Create an AS400 object, the file exists on this
// server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create an AS400FileRecordDescription object that represents the file
AS400FileRecordDescription myFile = new AS400FileRecordDescription(sys,

"/QSYS.LIB/MYLIB.LIB/MYFILE.FILE");
// Create the Java source file in the current working directory.
// Specify "package com.myCompany.myProduct;" for the
// package statement in the source since I will ship the class
// as part of my product.
myFile.createRecordFormatSource(null, "com.myCompany.myProduct");

// Assuming that the format name for file MYFILE is FILE1, the
// file FILE1Format.java will be created in the current working directory.
// It will overwrite any file by the same name. The name of the class
// will be FILE1Format. The class will extend from RecordFormat.

Example 2: Compile the file you created above, FILE1Format.java, and use it as follows:
// Create an AS400 object, the file exists on this
// server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create an AS400File object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE");

// Set the record format
// This assumes that import.com.myCompany.myProduct.FILE1Format;
// has been done.

myFile.setRecordFormat(new FILE1Format());

// Open the file and read from it
//

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using record-level access
sys.disconnectService(AS400.RECORDACCESS);

Creating RecordFormat objects to represent the record format of files on the server

The AS400FileRecordDescription retrieveRecordFormat() method returns an array of RecordFormat objects
that represent the record formats of an existing file on the server. Typically, only one RecordFormat object
is returned in the array. When the file for which the record format is being retrieved is a multiple format
logical file, more than one RecordFormat object is returned. Use this method to dynamically retrieve the
record format of an existing file on the server during runtime. The RecordFormat object then can be used
as input to the AS400File.setRecordFormat() method.

The following example shows how to use the retrieveRecordFormat() method:

164 IBM i: Programming IBM Toolbox for Java

// Create an AS400 object, the file exists on this
// server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create an AS400FileRecordDescription object that represents the file
AS400FileRecordDescription myFile = new AS400FileRecordDescription(sys,

"/QSYS.LIB/MYLIB.LIB/MYFILE.FILE");
// Retrieve the record format for the file
RecordFormat[] format = myFile.retrieveRecordFormat();

// Create an AS400File object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE");

// Set the record format
myFile.setRecordFormat(format[0]);

// Open the file and read from it
//

// Close the file as I am done using it
myFile.close();

// Disconnect since I am done using record-level access
sys.disconnectService(AS400.RECORDACCESS);

AS400FileRecordDescription Javadoc
RecordFormat Javadoc
AS400File Javadoc

Creating and deleting files and members:

Physical files on the server are created by specifying a record length, an existing server data description
specifications (DDS) source file, or a RecordFormat object.

When you create a file and specify a record length, a data file or a source file can be created. The method
sets the record format for the object. Do not call the setRecordFormat() method for the object.

A data file has one field. The field name is the name of the file, the field type is of type character, and the
field length is the length that is specified on the create method.

A source file has three fields:
v Field SRCSEQ is ZONED DECIMAL (6,2)
v Field SRCDAT is ZONED DECIMAL (6,0)
v SRCDTA is a character field with a length that is the length specified on the create method minus 12

The following examples show how to create files and members.

Example 1: To create a data file with a 128-byte record:
// Create an AS400 object, the file
// will be created on this server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a file object that represents the file
SequentialFile newFile =

new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");

// Create the file
newFile.create(128, "*DATA", "Data file with a 128 byte record");

// Open the file for writing only.
// Note: The record format for the file

IBM Toolbox for Java 165

javadoc/com/ibm/as400/access/AS400FileRecordDescription.html
javadoc/com/ibm/as400/access/RecordFormat.html
javadoc/com/ibm/as400/access/AS400File.html

// has already been set by create()
newFile.open(AS400File.WRITE_ONLY, 0, AS400File.COMMIT_LOCK_LEVEL_NONE);

// Write a record to the file. Because the record
// format was set on the create(), getRecordFormat()
// can be called to get a record properly formatted
// for this file.
Record writeRec = newFile.getRecordFormat().getNewRecord();
writeRec.setField(0, "Record one");
newFile.write(writeRec);

//

// Close the file since I am done using it
newFile.close();

// Disconnect since I am done using record-level access
sys.disconnectService(AS400.RECORDACCESS);

Example 2: When creating a file specifying an existing DDS source file, the DDS source file is specified on
the create() method. The record format for the file must be set using the setRecordFormat() method before
the file can be opened. For example:

// Create an AS400 object, the
// file will be created on this server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create QSYSObjectPathName objects for
// both the new file and the DDS file.
QSYSObjectPathName file = new QSYSObjectPathName("MYLIB", "MYFILE", "FILE", "MBR");
QSYSObjectPathName ddsFile = new QSYSObjectPathName("MYLIB", "DDSFILE", "FILE", "MBR");

// Create a file object that represents the file
SequentialFile newFile = new SequentialFile(sys, file);

// Create the file
newFile.create(ddsFile, "File created using DDSFile description");

// Set the record format for the file
// by retrieving it from the server.
newFile.setRecordFormat(new AS400FileRecordDescription(sys,
newFile.getPath()).retrieveRecordFormat()[0]);

// Open the file for writing
newFile.open(AS400File.WRITE_ONLY, 0, AS400File.COMMIT_LOCK_LEVEL_NONE);

// Write a record to the file. The getRecordFormat()
// method followed by the getNewRecord() method is used to get
// a default record for the file.
Record writeRec = newFile.getRecordFormat().getNewRecord();
newFile.write(writeRec);

//

// Close the file since I am done using it
newFile.close();

// Disconnect since I am done using
// record-level access
sys.disconnectService(AS400.RECORDACCESS);

Example 3: When creating a file specifying a RecordFormat object, the RecordFormat object is specified
on the create() method. The method sets the record format for the object. The setRecordFormat() method
must not be called for the object.

166 IBM i: Programming IBM Toolbox for Java

// Create an AS400 object, the file will be created
// on this server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a file object that represents the file
SequentialFile newFile =

new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");

// Retrieve the record format from an existing file
RecordFormat recordFormat = new AS400FileRecordDescription(sys,
"/QSYS.LIB/MYLIB.LIB/EXISTING.FILE/MBR1.MBR").retrieveRecordFormat()[0];

// Create the file
newFile.create(recordFormat, "File created using record format object");

// Open the file for writing only.
// Note: The record format for the file
// has already been set by create()
newFile.open(AS400File.WRITE_ONLY, 0, AS400File.COMMIT_LOCK_LEVEL_NONE);

// Write a record to the file. The recordFormat
// object is used to get a default record
// properly formatted for the file.
Record writeRec = recordFormat.getNewRecord();
newFile.write(writeRec);

//

// Close the file since I am done using it
newFile.close();
// Disconnect since I am done using
// record-level access
sys.disconnectService(AS400.RECORDACCESS);

When deleting files and members, use these methods:
v Use the delete() method to delete server files and all of their members.
v Use the deleteMember()method to delete just one member of a file.

Use the addPhysicalFileMember() method to add members to a file.
Related information:
AS400File Javadoc

Reading and writing records:

You can use the AS400File class to read, write, update, and delete records in files on the server.

The record is accessed through the Record class, which is described by a RecordFormat class. The record
format must be set through the setRecordFormat() method before the file is opened, unless the file was
just created (without an intervening close()) by one of the create() methods, which sets the record format
for the object.

Use the read() methods to read a record from the file. Methods are provided to do the following:
v read() - read the record at the current cursor position
v readFirst() - read the first record of the file
v readLast() - read the last record of the file
v readNext() - read the next record in the file
v readPrevious() - read the previous record in the file

The following example shows how to use the readNext() method:

IBM Toolbox for Java 167

javadoc/com/ibm/as400/access/AS400File.html

// Create an AS400 object, the file exists on this
// server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a file object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");

// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in library MYLIB. The code was
// compiled and is available for use by the Java
// program.
RecordFormat recordFormat = new MYFILEFormat();

// Set the record format for myFile. This must
// be done before invoking open()
myFile.setRecordFormat(recordFormat);

// Open the file.
myFile.open(AS400File.READ_ONLY, 0, AS400File.COMMIT_LOCK_LEVEL_NONE);

// Read each record in the file writing field
// CUSTNAME to System.out
System.out.println(" CUSTOMER LIST");
System.out.println("__");

Record record = myFile.readNext();
while(record != null)
{

System.out.println(record.getField("CUSTNAME"));
record = myFile.readNext();

}

....

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using
// record-level access.
sys.disconnectService(AS400.RECORDACCESS);

Use the update() method to update the record at the cursor position.

For example:
// Create an AS400 object, the file exists on this
// server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a file object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");

// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in library MYLIB. The code was
// compiled and is available for use by the Java program.
RecordFormat recordFormat = new MYFILEFormat();

// Set the record format for myFile. This must
// be done prior to invoking open()
myFile.setRecordFormat(recordFormat);

// Open the file for updating
myFile.open(AS400File.READ_WRITE, 0, AS400File.COMMIT_LOCK_LEVEL_NONE);

168 IBM i: Programming IBM Toolbox for Java

// Update the first record in the file. Assume
// that newName is a String with the new name for
// CUSTNAME
Record updateRec = myFile.readFirst();
updateRec.setField("CUSTNAME", newName);
myFile.update(updateRec);

....

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using record-level access
sys.disconnectService(AS400.RECORDACCESS);

Use the write() method to append records to the end of a file. A single record or an array of records can
be appended to the file.

Use the deleteCurrentRecord() method to delete the record at the cursor position.
Related information:
AS400File Javadoc

Locking files:

The Java program can lock a file to prevent other users from accessing the file while the first Java
program is using the file.

Lock types are as follows. You can find more information about the lock types in the AS400File Javadoc.
v Read/Exclusive Lock - The current Java program reads records, and no other program can access the

file.
v Read/Allow shared read Lock - The current Java program reads records, and other programs can read

records from the file.
v Read/Allow shared write Lock - The current Java program reads records, and other programs can

change the file.
v Write/Exclusive Lock - The current Java program changes the file, and no other program can access

the file.
v Write/Allow shared read Lock - The current Java program changes the file, and other programs can

read records from the file.
v Write/Allow shared write Lock - The current Java program changes the file, and other programs can

change the file.

To give up the locks obtained through the lock() method, the Java program starts the
releaseExplicitLocks() method.
Related information:
AS400File Javadoc

Using record blocking:

The IBM Toolbox for Java AS400File class uses record blocking to improve performance.
v If the file is opened for read-only access, a block of records is read when the Java program reads a

record. Blocking improves performance because subsequent read requests may be handled without
accessing the server. Little performance difference exists between reading a single record and reading
several records. Performance improves significantly if records can be served out of the block of records
cached on the client.
The number of records to read in each block can be set when the file is opened. For example:

IBM Toolbox for Java 169

javadoc/com/ibm/as400/access/AS400File.html
javadoc/com/ibm/as400/access/AS400File.html

// Create an AS400 object, the file exists on this
// server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a file object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");

// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in library MYLIB. The code was
// compiled and is available for use by the Java
// program.
RecordFormat recordFormat = new MYFILEFormat();

// Set the record format for myFile. This must
// be done before invoking open()
myFile.setRecordFormat(recordFormat);

// Open the file. Specify a blocking factor of 50.
int blockingFactor = 50;
myFile.open(AS400File.READ_ONLY, blockingFactor, AS400File.COMMIT_LOCK_LEVEL_NONE);

// Read the first record of the file. Because
// a blocking factor was specified, 50 records
// are retrieved during this read() invocation.
Record record = myFile.readFirst();
for (int i = 1; i < 50 && record != null; i++)
{

// The records read in this loop will be served out of the block of
// records cached on the client.
record = myFile.readNext();

}
....

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using
// record-level access
sys.disconnectService(AS400.RECORDACCESS);

v If the file is opened for write-only access, the blocking factor indicates how many records are written to
the file at one time when the write(Record[]) method is invoked.
For example:

// Create an AS400 object, the file exists on this
// server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a file object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");

// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in library MYLIB. The code was
// compiled and is available for use by the Java
// program.
RecordFormat recordFormat = new MYFILEFormat();

// Set the record format for myFile. This must
// be done prior to invoking open()
myFile.setRecordFormat(recordFormat);

// Open the file. Specify a blocking factor of 50.
int blockingFactor = 50;

170 IBM i: Programming IBM Toolbox for Java

myFile.open(AS400File.WRITE_ONLY, blockingFactor, AS400File.COMMIT_LOCK_LEVEL_NONE);

// Create an array of records to write to the file
Record[] records = new Record[100];
for (int i = 0; i < 100; i++)
{

// Assume the file has two fields,
// CUSTNAME and CUSTNUM
records[i] = recordFormat.getNewRecord();
records[i].setField("CUSTNAME", "Customer " + String.valueOf(i));
records[i].setField("CUSTNUM", new Integer(i));

}
// Write the records to the file. Because the
// blocking factor is 50, only two trips to the
// server are made with each trip writing 50 records
myFile.write(records);

....

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using
// record-level access
sys.disconnectService(AS400.RECORDACCESS);

v If the file is opened for read-write access, no blocking is done. Any blocking factor specified on open()
is ignored.
AS400File Javadoc

Setting the cursor position:

An open file has a cursor. The cursor points to the record to be read, updated, or deleted. When a file is
first opened the cursor points to the beginning of the file. The beginning of the file is before the first
record.

Use the following methods to set the cursor position:
v positionCursorAfterLast() - Set cursor to after the last record. This method exists so Java programs can

use the readPrevious() method to access records in the file.
v positionCursorBeforeFirst() - Set cursor to before the first record. This method exists so Java programs

can use the readNext() method to access records in the file.
v positionCursorToFirst() - Set the cursor to the first record.
v positionCursorToLast() - Set the cursor to the last record.
v positionCursorToNext() - Move the cursor to the next record.
v positionCursorToPrevious() - Move the cursor to the previous record.

The following example shows how to use the positionCursorToFirst() method to position the cursor.
// Create an AS400 object, the file exists on this
// server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a file object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");

// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in library MYLIB. The code was
// compiled and is available for use by the Java
// program.
RecordFormat recordFormat = new MYFILEFormat();

IBM Toolbox for Java 171

javadoc/com/ibm/as400/access/AS400File.html

// Set the record format for myFile. This must
// be done before invoking open()
myFile.setRecordFormat(recordFormat);

// Open the file.
myFile.open(AS400File.READ_WRITE, 1, AS400File.COMMIT_LOCK_LEVEL_NONE);

// I want to delete the first record of the file.
myFile.positionCursorToFirst();
myFile.deleteCurrentRecord();

....

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using
// record-level access
sys.disconnectService(AS400.RECORDACCESS);

Related information:
AS400File Javadoc

Commitment control:

Through commitment control, your Java program has another level of control over changing a file. With
commitment control turned on, transactions to a file are pending until they are either committed or rolled
back. If committed, all changes are put to the file. If rolled back, all changes are discarded. The
transaction can be changing an existing record, adding a record, deleting a record, or even reading a
record depending on the commitment control lock level specified on the open().

The levels of commitment control are as follows. To see more details about each level, refer to the
AS400File Javadoc.
v All - Every record accessed in the file is locked until the transaction is committed or rolled back.
v Change - Updated, added, and deleted records in the file are locked until the transaction is committed

or rolled back.
v Cursor Stability - Updated, added, and deleted records in the file are locked until the transaction is

committed or rolled back. Records that are accessed but not changed are locked only until another
record is accessed.

v None - There is no commitment control on the file. Changes are immediately put to the file and cannot
be rolled back.

You can use the AS400File startCommitmentControl() method to start commitment control. Commitment
control applies to the AS400 connection. Once commitment control is started for a connection, it applies
to all files opened under that connection from the time that commitment control was started. Files
opened before commitment control is started are not under commitment control. The level of
commitment control for individual files is specified on the open() method. Specify
COMMIT_LOCK_LEVEL_DEFAULT to use the same level of commitment control as was specified on the
startCommitmentControl() method.

For example:
// Create an AS400 object, the files exist on this
// server.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create three file objects
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");
SequentialFile yourFile = new SequentialFile(sys, "/QSYS.LIB/YOURLIB.LIB/YOURFILE.FILE/%FILE%.MBR");
SequentialFile ourFile = new SequentialFile(sys, "/QSYS.LIB/OURLIB.LIB/OURFILE.FILE/%FILE%.MBR");

172 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400File.html

// Open yourFile before starting commitment control
// No commitment control applies to this file. The
// commit lock level parameter is ignored because
// commitment control is not started for the connection.
yourFile.setRecordFormat(new YOURFILEFormat());
yourFile.open(AS400File.READ_WRITE, 0, AS400File.COMMIT_LOCK_LEVEL_DEFAULT);

// Start commitment control for the connection.
// Note: Any of the three files might be used for
// this call to startCommitmentControl().
myFile.startCommitmentControl(AS400File.COMMIT_LOCK_LEVEL_CHANGE);

// Open myFile and ourFile
myFile.setRecordFormat(new MYFILEFormat());

// Use the same commit lock level as specified
// when commitment control was started
myFile.open(AS400File.WRITE_ONLY, 0, COMMIT_LOCK_LEVEL_DEFAULT);

ourFile.setRecordFormat(new OURFILEFormat());
// Specify a different commit lock level than
// when commitment control was started
ourFile.open(AS400File.READ_WRITE, 0, COMMIT_LOCK_LEVEL_CURSOR_STABILITY);

// write and update records in all three files
....

// Commit the changes for files myFile and ourFile.
// Note that the commit commits all changes for the connection
// even though it is invoked on only one AS400File object.
myFile.commit();
// Close the files
myFile.close();
yourFile.close();
ourFile.close();

// End commitment control
// This ends commitment control for the connection.
ourFile.endCommitmentControl();

// Disconnect since I am done using record-level access
sys.disconnectService(AS400.RECORDACCESS);

The commit() method commits all transactions since the last commit boundary for the connection. The
rollback() method discards all transactions since the last commit boundary for the connection.
Commitment control for a connection is ended through the endCommitmentControl() method. If a file is
closed before invoking the commit() or rollback() method, all uncommitted transactions are rolled back.
All files opened under commitment control must be closed before the endCommitmentControl() method
is called.

The following examples shows how to start commitment control, commit or roll back functions, and then
end commitment control:

// ... assume the AS400 object and file have been
// instantiated.

// Start commitment control for *CHANGE
aFile.startCommitmentControl(AS400File.COMMIT_LOCK_LEVEL_CHANGE);

// ... open the file and do several changes. For
// example, update, add or delete records.

// Based on a flag either save or discard the
// transactions.
if (saveChanges)

IBM Toolbox for Java 173

aFile.commit();
else

aFile.rollback();

// Close the file
aFile.close();

// End commitment control for the connection.
aFile.endCommitmentControl();

Related information:
AS400File Javadoc

SaveFile class
The SaveFile class represents a save file on a server.
Related information:
SaveFile Javadoc

ServiceProgramCall class
The IBM Toolbox for Java ServiceProgramCall class allows you to call an IBM i service program.
ServiceProgramCall is a subclass of the ProgramCall class that you use to call IBM i programs. If you
want to call an IBM i program, use the ProgramCall class.

The ServiceProgramCall class makes it possible for you to call an IBM i service program, pass data to a
service program through input parameters, and access data the service program returns through output
parameters. Using ServiceProgramCall causes the AS400 object to connect to the server. See managing
connections for information about managing connections.

The default behavior is for service programs to run in a separate server job, even when the Java program
and the service program are on the same server. You can override the default behavior and have the
service program run in the Java job using the setThreadSafe() method, inherited from ProgramCall.

Using the ServiceProgramCall class

In order to use the ServiceProgramCall class, you must be sure to meet the following requirements:
v The service program must be on an server
v You can pass no more than seven parameters to the service program
v The return value of the service program is void or numeric

Working with ProgramParameter objects

The ProgramParameter class works with the ServiceProgramCall class to pass parameter data to and from
an IBM i service program. You pass input data to the service program with setInputData().

You request the amount of output data you want returned with setOutputDataLength(). You retrieve the
output data after the service program is finished running with getOutputData(). In addition to the data
itself, ServiceProgramCall needs to know how to pass parameter data to the service program. The
setParameterType() method of ProgramParameter is used to supply this information. The type indicates if
the parameter is pass by value or pass by reference. In either case, data is sent from the client to the
server. Once the data is on the server, the server uses the parameter type to correctly call the service
program.

All parameters will be in the form of a byte array. Therefore, to convert between IBM i and Java formats,
you use the data conversion and description classes.

ServiceProgramCall Javadoc
ProgramCall Javadoc

174 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400File.html
javadoc/com/ibm/as400/access/SaveFile.html
javadoc/com/ibm/as400/access/ServiceProgramCall.html
javadoc/com/ibm/as400/access/ProgramCall.html

ProgramParameter Javadoc

Subsystem class
The Subsystem class represents a subsystem on the server.
Related information:
Subsystem Javadoc

SystemStatus classes
The SystemStatus classes allow you to retrieve system status information and to retrieve and change
system pool information.

The SystemStatus object allows you to retrieve system status information including the following:
v getUsersCurrentSignedOn(): Returns the number of users currently signed on the system
v getUsersTemporarilySignedOff(): Returns the number of interactive jobs that are disconnected
v getDateAndTimeStatusGathered(): Returns the date and time when the system status information was

gathered
v getJobsInSystem(): Returns the total number of user and system jobs that are currently running
v getBatchJobsRunning(): Returns the number of batch jobs currently running on the system
v getBatchJobsEnding(): Returns the number of batch jobs that are in the process of ending
v getSystemPools(): Returns an enumeration containing a SystemPool object for each system pool

In addition to the methods within the SystemStatus class, you also can access SystemPool through
SystemStatus. SystemPool allows you to get information about system pools and change system pool
information.

Example

Note: Read the Code example disclaimer for important legal information.

This example shows you how to use caching with the SystemStatus class:
AS400 system = new AS400("MyAS400");
SystemStatus status = new SystemStatus(system);

// Turn on caching. It is off by default.
status.setCaching(true);

// This will retrieve the value from the system.
// Every subsequent call will use the cached value
// instead of retrieving it from the system.
int jobs = status.getJobsInSystem();

// ... Perform other operations here ...

// This determines if caching is still enabled.
if (status.isCaching())
{

// This will retrieve the value from the cache.
jobs = status.getJobsInSystem();

}

// Go to the system next time, regardless if caching is enabled.
status.refreshCache();

// This will retrieve the value from the system.
jobs = status.getJobsInSystem();

IBM Toolbox for Java 175

javadoc/com/ibm/as400/access/ProgramParameter.html
javadoc/com/ibm/as400/access/Subsystem.html

// Turn off caching. Every subsequent call will go to the system.
status.setCaching(false);

// This will retrieve the value from the system.
jobs = status.getJobsInSystem();

SystemStatus Javadoc

SystemPool class:

The SystemPool class allows you to retrieve and change system pool information.

The SystemPool class includes the following methods:
v The getPoolSize() method returns the size of the pool, and the setPoolSize() method sets the size of the

pool.
v The getPoolName() method retrieves the name of the pool, and the setPoolName() method sets the

pool's name.
v The getReservedSize() method returns the amount of storage in the pool that is reserved for system

use.
v The getDescription() method returns the description of the system pool.
v The getMaximumActiveThreads() method returns the maximum number of threads that can be active

in the pool at any one time.
v The setMaximumFaults() method sets the maximum faults-per-second guideline to use for this system

pool.
v The setPriority() method sets the priority of this system pool relative to the priority of the other system

pools.

Example

Note: Read the Code example disclaimer for important legal information.
//Create AS400 object.
AS400 as400 = new AS400("system name");

//Construct a system pool object.
SystemPool systemPool = new SystemPool(as400,"*SPOOL");

//Get system pool paging option
System.out.println("Paging option : "+systemPool.getPagingOption());

Related information:
SystemPool Javadoc

System values
The system value classes allow a Java program to retrieve and change system values and network
attributes. You can also define your own group to contain the system values you want.

A SystemValue object primarily contains the following information:
v Name
v Description
v Release
v Value

Using the SystemValue class, retrieve a single system value by using the getValue() method and change a
system value by using the setValue() method.

You can also retrieve group information about a particular system value:

176 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/SystemStatus.html
javadoc/com/ibm/as400/access/SystemPool.html

v To retrieve the system-defined group to which a system value belongs, use the getGroup() method.
v To retrieve the user-defined group to which a SystemValue object belongs (if any), use the

getGroupName() and getGroupDescription() methods.

Whenever the value of a system value is retrieved for the first time, the value is retrieved from the server
and cached. On subsequent retrievals, the cached value is returned. If the current value is what you want
instead of the cached value, a clear() must be done to clear the current cache.

System value list

SystemValueList represents a list of system values on the specified server. The list is divided into several
system-defined groupsthat allow the Java program to access a portion of the system values at a time.

System value group

SystemValueGroup represents a user-defined collection of system values and network attributes. Rather
than a container, it is instead a factory for generating and maintaining unique collections of system
values.

You can create a SystemValueGroup by specifying one of the system-defined groups (one of the constants
in the SystemValueList class) or by specifying an array of system value names.

You can individually add the names of system values to include in the group by using the add() method.
You can also remove them by using the remove() method.

Once the SystemValueGroup is populated with the required system value names, obtain the real
SystemValue objects from the group by calling the getSystemValues() method. In this way, a
SystemValueGroup object takes a set of system value names and generates a Vector of SystemValue
objects, all having the system, group name, and group description of the SystemValueGroup.

To refresh a Vector of SystemValue objects all at once, use the refresh() method.

Examples of using the SystemValue and SystemValueList classes

Note: Read the Code example disclaimer for important legal information.

The following example shows how to create and retrieve a system value:
//Create an AS400 object
AS400 sys = new AS400("mySystem.myCompany.com");

//Create a system value representing the current second on the system.
SystemValue sysval = new SystemValue(sys, "QSECOND");

//Retrieve the value.
String second = (String)sysval.getValue();

//At this point QSECOND is cached. Clear the cache to retrieve the most
//up-to-date value from the system.
sysval.clear();
second = (String)sysval.getValue();

//Create a system value list.
SystemValueList list = new SystemValueList(sys);

//Retrieve all the of the date/time system values.
Vector vec = list.getGroup(SystemValueList.GROUP_DATTIM);

//Disconnect from the system.
sys.disconnectAllServices();

IBM Toolbox for Java 177

Examples of using the SystemValueGroup class

The following example shows how to build a group of system value names and then manipulate them:
//Create an AS400 object
AS400 sys = new AS400("mySystem.myCompany.com");

//Create a system value group initially representing all of the network attributes on the system.
String name = "My Group";
String description = "This is one of my system values.";
SystemValueGroup svGroup = new SystemValueGroup(sys, name, description, SystemValueList.GROUP_NET);

//Add some more system value names to the group and remove some we do not want.
svGroup.add("QDATE");
svGroup.add("QTIME");
svGroup.remove("NETSERVER");
svGroup.remove("SYSNAME");

//Obtain the actual SystemValue objects. They are returned inside a Vector.
Vector sysvals = svGroup.getSystemValues();

//You will notice that this is one of my system values.
SystemValue mySystemValue = (SystemValue)sysvals.elementAt(0);
System.out.println(mySystemValue.getName()+" - "+mySystemValue.getGroupDescription());

//We can add another SystemValue object from another system into the group.
AS400 sys2 = new AS400("otherSystem.myCompany.com");
SystemValue sv = new SystemValue(sys2, "QDATE");
sysvals.addElement(sv);

//Now refresh the entire group of system values all at once.
//It does not matter if some system values are from different System i servers.
//It does not matter if some system values were generated using SystemValueGroup and some were not.
SystemValueGroup.refresh(sysvals);

//Disconnect from the systems.
sys.disconnectAllServices();
sys2.disconnectAllServices();

SystemValue Javadoc
SystemValueList Javadoc
SystemValueGroup Javadoc

Trace class
The Trace class allows the Java program to log trace points and diagnostic messages. This information
helps reproduce and diagnose problems.

Note: You can also set tracing by using the trace system properties.

The Trace class logs the following categories of information:

Information category Description

Conversion Logs character set conversions between Unicode and
code pages. This category is used only by the IBM
Toolbox for Java classes.

Datastream Logs the data that flows between the system and the
Java program. This category is used only by the IBM
Toolbox for Java classes.

Diagnostic Logs state information.

Error Logs additional errors that cause an exception.

Information Traces the flow through a program.

178 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/SystemValue.html
javadoc/com/ibm/as400/access/SystemValueList.html
javadoc/com/ibm/as400/access/SystemValueGroup.html

Information category Description

PCML This category is used to determine how PCML interprets
the data that is sent to and from the server.

Proxy This category is used by IBM Toolbox for Java classes to
log data flow between the client and the proxy server.

Warning Logs information about errors the program was able to
recover from.

All This category is used to enable or disable tracing for all
of the above categories at once. Trace information cannot
be directly logged to this category.

The IBM Toolbox for Java classes also use the trace categories. When a Java program enables logging,
IBM Toolbox for Java information is included with the information that is recorded by the application.

You can enable the trace for a single category or a set of categories. Once the categories are selected, use
the setTraceOn method to turn tracing on and off. Data is written to the log using the log method.

You can send trace data for different components to separate logs. Trace data, by default, is written to
the default log. Use component tracing to write application-specific trace data to a separate log or
standard output. By using component tracing, you can easily separate trace data for a specific application
from other data.

Excessive logging can impact performance. Use the isTraceOn method to query the current state of the
trace. Your Java program can use this method to determine whether it builds the trace record before it
calls the log method. Calling the log method when logging is off is not an error, but it takes more time.

The default is to write log information to standard out. To redirect the log to a file, call the
setFileName() method from your Java application. In general, this works only for Java applications
because most browsers do not give applets access to write to the local file system.

Logging is off by default. Java programs provide a way for the user to turn on logging so that it is easy
to enable logging. For example, the application can parse for a command line parameter that indicates
which category of data is logged. The user can set this parameter when log information is needed.

Examples

Note: Read the Code example disclaimer for important legal information.

The following examples show how to use the Trace class.

Example Using setTraceOn() and writing data to a log by using the log method
// Enable diagnostic, information, and warning logging.
Trace.setTraceDiagnosticOn(true);
Trace.setTraceInformationOn(true);
Trace.setTraceWarningOn(true);

// Turn tracing on.
Trace.setTraceOn(true);

// ... At this point in the Java program, write to the log.
Trace.log(Trace.INFORMATION, "Just entered class xxx, method xxx");

// Turning tracing off.
Trace.setTraceOn(false);

Example: Using Trace

IBM Toolbox for Java 179

In the following code, Method 2 is the preferable way to use Trace.
// Method 1 - build a trace record
// then call the log method and let the trace class determine if the
// data should be logged. This will work but will be slower than the
// following code.
String traceData = new String("Just entered class xxx, data = ");
traceData = traceData + data + "state = " + state;
Trace.log(Trace.INFORMATION, traceData);

// Method 2 - check the log status before building the information to
// log. This is faster when tracing is not active.
if (Trace.isTraceOn() && Trace.isTraceInformationOn())
{

String traceData = new String("just entered class xxx, data = ");
traceData = traceData + data + "state = " + state;
Trace.log(Trace.INFORMATION, traceData);

}

Example: Using component tracing
// Create a component string. It is more efficient to create an
// object than many String literals.
String myComponent1 = "com.myCompany.xyzComponent";
String myComponent2 = "com.myCompany.abcComponent";

// Send IBM Toolbox for Java and the component trace data each to separate files.
// The trace will contain all trace information, while each
// component log file will only contain trace information specific to
// that component. If a Trace file is not specified, all trace data
// will go to standard out with the component specified in front of
// each trace message.

// Trace.setFileName("c:\\bit.bucket");
// Trace.setFileName(myComponent1, "c:\\Component1.log");
// Trace.setFileName(myComponent2, "c:\\Component2.log");

Trace.setTraceOn(true); // Turn trace on.
Trace.setTraceInformationOn(true); // Enable information messages.

// Log component specific trace data or general IBM Toolbox for Java
// trace data.

Trace.setFileName("c:\\bit.bucket");
Trace.setFileName(myComponent1, "c:\\Component1.log");

Related information:
Trace Javadoc

User and group classes
The IBM Toolbox for Java user and group classes allow you to get a list of users and user groups on the
server as well as information about each user through a Java program.

Some of the user information you can retrieve includes previous sign-on date, status, date the password
was last changed, date the password expires, and user class. When you access the User object, use the
setSystem() method to set the system name and the setName() method to set the user name. After those
steps, you use the loadUserInformation() method to get the information from the server.

The UserGroup object represents a special user whose user profile is a group profile. Using the
getMembers() method, a list of users that are members of the group can be returned.

The Java program can iterate through the list using an enumeration. All elements in the enumeration are
User objects; for example:

180 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/Trace.html

// Create an AS400 object.
AS400 system = new AS400 ("mySystem.myCompany.com");

// Create the UserList object.
UserList userList = new UserList (system);

// Get the list of all users and groups.
Enumeration enum = userList.getUsers ();

// Iterate through the list.
while (enum.hasMoreElements ())
{

User u = (User) enum.nextElement ();
System.out.println (u);

}

Retrieving information about users and groups

You use a UserList to get a list of the following:
v All users and groups
v Only groups
v All users who are members of groups
v All users who are not members of groups

The only property of the UserList object that must be set is the AS400 object that represents the system
from which the list of users is to be retrieved.

By default, all users are returned. Use a combination of UserList methods setUserInfo() and
setGroupInfo() to specify exactly which users are returned.

User Javadoc
UserGroup Javadoc
UserList Javadoc
AS400 Javadoc
“Example: Using UserList to list all of the user in a given group” on page 554
This source is an example of IBM Toolbox for Java UserList. This program lists all of the users in a
given group.

UserSpace class
The UserSpace class represents a user space on the server. Required parameters are the name of the user
space and the AS400 object that represents the server that has the user space.

Methods exist in user space class to do the following:
v Create a user space.
v Delete a user space.
v Read from a user space.
v Write to user space.
v Get the attributes of a user space. A Java program can get the initial value, length value, and automatic

extendible attributes of a user space.
v Set the attributes of a user space. A Java program can set the initial value, length value, and automatic

extendible attributes of a user space.

The UserSpace object requires the integrated file system path name of the program. See integrated file
system path names for more information.

IBM Toolbox for Java 181

javadoc/com/ibm/as400/access/User.html
javadoc/com/ibm/as400/access/UserGroup.html
javadoc/com/ibm/as400/access/UserList.html
javadoc/com/ibm/as400/access/AS400.html

Using the UserSpace class causes the AS400 object to connect to the server. See managing connections for
information about managing connections.

The following example creates a user space, then writes data to it.

Note: Read the Code example disclaimer for important legal information.
// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a user space object.
UserSpace US = new UserSpace(sys,

"/QSYS.LIB/MYLIB.LIB/MYSPACE.USRSPC");

// Use the create method to create the user space on
// the server.
US.create(10240, // The initial size is 10KB

true, // Replace if the user space already exists
" ", // No extended attribute
(byte) 0x00, // The initial value is a null
"Created by a Java program", // The description of the user space
"*USE"); // Public has use authority to the user space

// Use the write method to write bytes to the user space.
US.write("Write this string to the user space.", 0);

UserSpace Javadoc
AS400 Javadoc

Commtrace classes
The IBM Toolbox for Java commtrace classes enable your Java programs to work with communications
trace data for a specified LAN (Ethernet or token ring) line description. The commtrace package includes
a class that you can run as a standalone utility program to format communications trace data.

When you dump a communications trace for a server to a stream file, the information is saved in a
binary format. The commtrace classes enable you to work with the various components of the stream file.

Note: Communications trace files may contain confidential information, for example, unencrypted
passwords. When the communications trace file is on server, only users who have *SERVICE
special authority can access the trace data. If you move the file to a client, make sure that you
protect the file in an appropriate manner. For more information about communications traces, see
the links at the bottom of this page.

Use the commtrace classes to perform the following tasks:
v Format the raw trace data.
v Parse any of the data to extract the information you want. You can parse both raw and formatted data,

provided that you used the commtrace classes to format the data.

Other classes in the com.ibm.as400.commtrace package not listed here are specific to the type of trace
data that you want to work with. For more information about communications traces and about all the
commtrace classes, see Communications trace.

Commtrace model
The following illustration shows how the commtrace classes correspond to a communications trace file.
The graphic also indicates the naming conventions that the commtrace classes use for the components in
a communications trace.

Figure 1: Commtrace model

182 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/UserSpace.html
javadoc/com/ibm/as400/access/AS400.html

Each Frame in the trace file contains two initial sections (that provide general information about the
contents of the frame) and the packet that the server transmitted between itself and a different point on
the network.

The very first 24-byte section of data contains general information about the contents of the frame, such
as the frame number and data length. Use the Frame class to process this information.

Format and FormatProperties classes
The IBM Toolbox for Java Format class reads both raw data and formatted data from a communications
trace. FormatProperties sets the properties for your Format object, such as start and end times, IP
addresses, and ports.

The Format class serves as the interface between the calling program and the frames of the trace. The
FormatProperties class enables you to set and retrieve properties that determine how the Format object
behaves when it encounters information in the Frames of the trace.

Format class

Use the format class to read both the raw trace data and the trace data that you have already formatted
by using the commtrace classes.

Note: You cannot use the commtrace classes to read a communications trace that you formatted by using
the Print Communications Trace (PRTCMNTRC) control language command.

Use the Format class to parse and format the information in a trace, then send that formatted information
to a file or a print device. Additionally, you might want to create a graphical front end that displays the
information in a standalone application or within a browser. When you want to select only specific data,

IBM Toolbox for Java 183

use the Format class to supply that information to your Java program. For example you could use the
Format class to read IP addresses out of a trace and then use that data in your program.

The Format constructors accept arguments that represent unformatted data, such as an
IFSFileInputStream object, a local file, or the binary trace file. To display a trace that you have already
formatted, use the default Format constructor, then use Format.openIFSFile() or Format.openLclFile() to
specify the formatted file that you want to display.

Examples

The following examples show how you can display a saved trace or format a binary trace.

Note: Read the Code example disclaimer for important legal information.

Example: Displaying a saved trace
Format fmt = new Format();
fmt.openLclFile("/path/to/file");

// Read the Prolog
System.out.println(fmt.getRecFromFile());
// The total number of records in the trace TCP and non-TCP
System.out.println("Total Records:" + fmt.getIntFromFile());
String rec;
// Read in records until we reach the end.
while((rec = fmt.getRecFromFile())!=null) {
System.out.println(rec);

Example: Formatting a binary trace
// Create a FormatProperties. By default display everything.
FormatProperties fmtprop = new FormatProperties();

Format fmt = new Format("/path/to/file");
// Sets the filtering properties for this format
fmt.setFilterProperties(fmtprop);
fmt.setOutFile("/path/to/output/file");
// Format the prolog
fmt.formatProlog();
// Format the trace and send data to the specified file
fmt.toLclBinFile();

Running Format as a standalone utility

You can also run the Format class as a standalone utility program. For more information, see the
following topic:

Running Format as a standalone program

FormatProperties class

Use the FormatProperties class to specify and retrieve the properties for your Format object. In other
words, when you use the Format class to send information to a file, use the FormatProperties class to
filter the information that you want to send.

These properties specify how you want your Format object to handle the information that it encounters in
the Frames of the communications trace. The default behavior is for the Format object to ignore
properties for which you have not given a specific value.

184 IBM i: Programming IBM Toolbox for Java

The FormatProperties class provides constants that you use to set properties. Setting properties enables
the Format object to verify which filters you want to use. For example, the following code sets a Format
object to display a progess dialog and not display broadcast frames:

FormatProperties prop = new FormatProperties();
prop.setProgress(FormatProperties.TRUE);
prop.setBroadcast(FormatProperties.NO);

Most of the properties are available to your Format object as filters that you set to explicitly include
specific data. Once you set the filters, the Format object displays only data that matches those filters. For
example, the following code set a filter to display frames that occurred between a particular start and end
time:

FormatProperties prop = new FormatProperties();
// Set the filter to start and end times of 22 July, 2002,
// 2:30 p.m. and 2:45 p.m. GMT.
// The time is expressed as a Unix(TM) timestamp, which is
// based on the standard epoch of 01/01/1970 at 00:00:00 GMT.
prop.setStartTime("1027348200");
prop.setEndTime("1027349100");

Example

The following example shows how you can use many of the commtrace classes, including the Format and
FormatProperties classes, to display trace information to your monitor:

“Example: Using the commtrace classes” on page 189
Format Javadoc
FormatProperties Javadoc

Running Format as a standalone program:

In addition to using the Format class in your Java programs, you can run it as a standalone, command
line utility to format a communications trace. The program connects an IFSFileOutputStream to the
specified outfile and writes the data to that file.

Running format as a standalone utility enables you to format files by using the processing power and
storage space of your server.

Running Format from a command line

To run the Format utility from a command line prompt, use the following command:
java com.ibm.as400.commtrace.Format [options]

where [options] equals one or more of the available options. Options include:
v The system to which you want to connect
v The userID and password for the system
v The communications trace that you want to parse
v The file in which you want to store the results

For a complete list of available options, see the Javadoc reference documentation for the Format class.

Running Format remotely

To run this class remotely use the JavaApplicationCall class:
// Construct a JavaApplicationCall object.
jaCall = new JavaApplicationCall(sys);

IBM Toolbox for Java 185

javadoc/com/ibm/as400/util/commtrace/Format.html
javadoc/com/ibm/as400/util/commtrace/FormatProperties.html

// Set the Java application you want to run.
jaCall.setJavaApplication("com.ibm.as400.util.commtrace.Format");

// Set the classpath environment variable used by the JVM on
// the server, so it can find the class to run.
jaCall.setClassPath("/QIBM/ProdData/OS400/JT400/lib/JT400Native.jar");

String[] args2 =
{ "-c", "true", "-t", "/path/to/trace", "-o", "/path/to/trace.extension"};

jaCall.setParameters(args2);

if (jaCall.run() != true) {
// Call Failed

}

Related information:
Format Javadoc

Prolog class
The IBM Toolbox for Java Prolog class represents the initial 256-byte section of a communications trace
for a LAN line description. The Prolog contains general information about the trace, such as start and end
times, number of bytes collected, and so on. Use the Prolog class to retrieve information from this section
of trace, which you can then print, display, filter, or process in some other way.

The Prolog class provides methods that allow you to perform a variety of actions that include the
following:
v Retrieve values from the fields of the prolog, such as the trace description, Ethernet Type, data

direction, IP address, and so on
v Return a formatted String that contains all the fields of the prolog
v Test the prolog fields for invalid data

Example

The following example shows how you can use many of the commtrace classes, including the Prolog
class, to display trace information to your monitor:

“Example: Using the commtrace classes” on page 189
Related information:
Prolog Javadoc

Frame class
The Frame class represents all the data in one record, or frame, in a communications trace for a LAN line
description.

Each Frame contains three main sections of data that appear in the following order:
1. An initial 24-byte section that contains general information about the frame
2. General information about the frame (represented by the LanHeader class)
3. The packet data (represented by subclasses of the IPacket abstract class)

Use the Frame class to parse and create a printable representation the data in the frame. The Frame class
maintains the packet data in a linked list-like structure that uses specific formats. For specific information
about the possible formats for packet data in a frame and for general information about the structure of a
frame, see “Commtrace model” on page 182.

The Frame class provides methods that allow you to perform a variety of actions that include the
following:

186 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/commtrace/Format.html
javadoc/com/ibm/as400/util/commtrace/Prolog.html

v Retrieve the data packet
v Retrieve the number, status, and type of the frame
v Return specific data from the frame as a formatted String

You can use the following process to access the data in a packet:
1. Use Frame.getPacket() to retrieve the packet
2. Access the data in the header by calling Packet.getHeader()
3. After you retrieve the header, call Header.getType() to find the type
4. Use the specific Header subclass to access the data associated with that header (the payload) and any

additional headers

Example

The following example shows how you can use many of the commtrace classes, including the Format and
FormatProperties classes, to display trace information to your monitor:

“Example: Using the commtrace classes” on page 189

LanHeader class
The LanHeader class retrieves information from the section of data that occurs once, near the beginning
of a frame, in the initial 24-byte section. This section typically contains hardware-specific information that
includes general information about the frame, such as the frame number, and data length.

Use the LanHeader class to parse and print the information in the LanHeader. The kind of information
contained by the LanHeader includes:
v The byte that identifies the start of the first header in this packet
v Medium Access Control (MAC) addresses
v Token ring addresses and routing information

LanHeader also provides two methods that enable you to return a formatted String that contains the
following:
v Token ring routing data
v Source MAC addresses, destination MAC addresses, frame format, and frame type
Related information:
LanHeader Javadoc

IPPacket class
The IBM Toolbox for Java IPPacket class represents all the data packets that the network transmitted for
this frame during the communications trace. IPPacket is an abstract class, so you will use the various
concrete subclasses to process the headers and data in the packets.

The subclasses of IPPacket include:
v ARPPacket
v IP4Packet
v IP6Packet
v UnknownPacket

Packet classes enable you to retrieve the type of packet and access the raw data (the header and payload)
that the packet contains. All the subclasses use similar constructors and include one additional method
that returns a printable version of the packet contents as a String.

IBM Toolbox for Java 187

javadoc/com/ibm/as400/util/commtrace/LanHeader.html

All the Packet class constructors take a byte array of packet data as an argument, but the ARPPacket also
requires an integer that specifies the type of frame. Creating an instance of a Packet class automatically
creates the appropriate Header object.

The Packet classes provide methods that allow you to perform a variety of actions that include the
following:
v Retrieve the name and type of the packet
v Set the type of the packet
v Return the top-level Header object associated with the packet
v Return all the packet data as an unformatted String
v Return specific data from the packet as a formatted String

IPPacket Javadoc
ARPPacket Javadoc
IP4Packet Javadoc
IP6Packet Javadoc
UnknownPacket Javadoc

Header class
The Header class is the abstract superclass for creating classes that represent specific kinds of packet
headers. Packet headers include the associated data (or payload), which can be other headers and
payloads.

The subclasses of Header include:
v ARPHeader
v ExtHeader
v ICMP4Header
v ICMP6Header
v IP4Header
v IP6Header
v TCPHeader
v UDPHeader
v UnknownHeader

Header classes enable you to retrieve the data for the header and the payload. One header can
encapsulate other headers and their payloads.

Creating an instance of a Packet class automatically creates the appropriate Header object. The Header
classes provide methods that allow you to perform a variety of actions that include the following:
v Return the length, name, and type of the header
v Retrieve the data in the header as a byte array
v Retrieve the next header in the packet
v Retrieve the payload as a byte array, ASCII string, and hexadecimal string
v Return all the header data as an unformatted String
v Return specific data from the header as a formatted String

Header Javadoc
ARPHeader Javadoc
ExtHeader Javadoc
ICMP4Header Javadoc
ICMP6Header Javadoc

188 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/commtrace/IPPacket.html
javadoc/com/ibm/as400/util/commtrace/ARPPacket.html
javadoc/com/ibm/as400/util/commtrace/IP4Packet.html
javadoc/com/ibm/as400/util/commtrace/IP6Packet.html
javadoc/com/ibm/as400/util/commtrace/UnknownPacket.html
javadoc/com/ibm/as400/util/commtrace/Header.html
javadoc/com/ibm/as400/util/commtrace/ARPHeader.html
javadoc/com/ibm/as400/util/commtrace/ExtHeader.html
javadoc/com/ibm/as400/util/commtrace/ICMP4Header.html
javadoc/com/ibm/as400/util/commtrace/ICMP6Header.html

IP4Header Javadoc
IP6Header Javadoc
TCPHeader Javadoc
UDPHeader Javadoc
UnknownHeader Javadoc

Example: Using the commtrace classes
This example uses the IBM Toolbox for Java commtrace classes to print communications trace data to a
monitor by using a communications trace binary file as the source for the data.

Note: Read the Code example disclaimer for important legal information.
//
//
// Example using the commtrace classes to print communications trace
// data to a monitor by using a communications trace binary file as
// the source for the data.
//
// Command syntax:
// java CommTraceExample
//
//

import com.ibm.as400.util.commtrace.*;

public class CommTraceExample {

public CommTraceExample() {
// Create a FormatProperties. By default display everything.
FormatProperties fmtprop = new FormatProperties();

Format fmt = new Format("/path/to/file");
// Sets the filtering properties for this format
fmt.setFilterProperties(fmtprop);
fmt.formatProlog(); // Format the prolog

Prolog pro = fmt.getProlog();
System.out.println(pro.toString());

// If this is not a valid trace
if (!pro.invalidData()) {

Frame rec;

// Get the records
while ((rec = fmt.getNextRecord()) != null) {

// Print out the Frame Number
System.out.print("Record:" + rec.getRecNum());
// Print out the time
System.out.println(" Time:" + rec.getTime());
// Get this records packet
IPPacket p = rec.getPacket();
// Get the first header
Header h = p.getHeader();

// If IP6 IPPacket
if (p.getType() == IPPacket.IP6) {

// If IP6 Header
if (h.getType() == Header.IP6) {

// Cast to IP6 so we can access methods
IP6Header ip6 = (IP6Header) h;

IBM Toolbox for Java 189

javadoc/com/ibm/as400/util/commtrace/IP4Header.html
javadoc/com/ibm/as400/util/commtrace/IP6Header.html
javadoc/com/ibm/as400/util/commtrace/TCPHeader.html
javadoc/com/ibm/as400/util/commtrace/UDPHeader.html
javadoc/com/ibm/as400/util/commtrace/UnknownHeader.html

System.out.println(h.getName() + " src:" + ip6.getSrcAddr() + " dst:" + ip6.getDstAddr());
// Print the header as hex
System.out.println(ip6.printHexHeader());
// Print a string representation of the header.
System.out.println("Complete " + h.getName() + ":\n" + ip6.toString(fmtprop));

// Get the rest of the headers
while ((h = h.getNextHeader()) != null) {

// If it is a TCP header
if (h.getType() == Header.TCP) {

// Cast so we can access methods
TCPHeader tcp = (TCPHeader) h;
System.out.println(h.getName() +" src:" + tcp.getSrcPort() +" dst:" + tcp.getDstPort());
System.out.println("Complete " + h.getName() + ":\n" + tcp.toString(fmtprop));

// If it is a UDP header
} else if (h.getType() == Header.UDP) {

// Cast so we can access methods
UDPHeader udp = (UDPHeader) h;
System.out.println(h.getName() +" src:" + udp.getSrcPort() + " dst:" + udp.getDstPort());
System.out.println("Complete " + h.getName() + ":\n" + udp.toString(fmtprop));

}
}

}
}

}
}

}

public static void main(String[] args) {
CommTraceExample e = new CommTraceExample();

}
}

HTML Classes
The IBM Toolbox for Java HTML classes provide representations for many common HTML tag elements.

IBM Toolbox for Java HTML classes assist you in:
v Setting up forms and tables for HTML pages
v Aligning text
v Working with a variety of HTML tags
v Creating Extensible Stylesheet Language (XSL) formatting object (FO) source data
v Altering the language and direction of text
v Creating ordered and unordered lists
v Creating file lists and HTML hierarchical trees (and the elements within them)
v Adding tag attributes not already defined in the HTML classes (for example, bgcolor and style

attributes)

The HTML classes implement the HTMLTagElement interface. Each class produces an HTML tag for a
specific element type. The tag may be retrieved using the getTag() method and can then be embedded
into any HTML document. The tags you generate with the HTML classes are consistent with the HTML
3.2 specification.

The HTML classes can work with servlet classes to get data from the server. However, they can also be
used alone if you supply the table or form data.

190 IBM i: Programming IBM Toolbox for Java

Additionally, you can use the HTMLDocument class to easily create HTML pages or XSL FO source data.
You can convert XSL FO data into Portable Document Format (PDF) documents. Using the PDF format
enables your documents to retain the same graphical appearance when you print them as when you view
them electronically.

Note: The jt400Servlet.jar file includes both the HTML and Servlet classes. You must update your
CLASSPATH to point to the jt400Servlet.jar file if you want to use the classes in the
com.ibm.as400.util.html package.

Related information:
HTMLTagElement Javadoc
DirFilter Javadoc - Use to determine if a File object is a directory
HTMLFileFilter Javadoc - Use to determine if a File object is a file
URLEncoder Javadoc - Encodes delimiters to use in a URL string
URLParser Javadoc - Allows you to parse a URL string for the URI, properties, and reference

BidiOrdering class
The IBM Toolbox for Java BidiOrdering class represents an HTML tag that alters the language and
direction of text. An HTML <BDO> string requires two attributes, one for language and the other for the
direction of the text.

The BidiOrdering class allows you to:
v Get and set the language attribute
v Get and set the direction of text

For more information about using the <BDO> HTML tag, see the W3C

Web site.

Example: Using BidiOrdering

Note: Read the Code example disclaimer for important legal information.
The following example creates a BidiOrdering object and sets its language and direction:

// Create a BidiOrdering object and set the language and direction.
BidiOrdering bdo = new BidiOrdering();
bdo.setDirection(HTMLConstants.RTL);
bdo.setLanguage("AR");

// Create some text.
HTMLText text = new HTMLText("Some Arabic Text.");
text.setBold(true);

// Add the text to the BidiOrdering and get the HTML tag.
bdo.addItem(text);
bdo.getTag();

The print statement produces the following tag:
<bdo lang="AR" dir="rtl">

Some Arabic Text.
</bdo>

When you use this tag in an HTML page, browsers that can understand the <BDO> tag display the
example like this:

.txeT cibarA emoS

Related information:
BidiOrdering Javadoc

IBM Toolbox for Java 191

javadoc/com/ibm/as400/util/html/HTMLTagElement.html
javadoc/com/ibm/as400/util/html/DirFilter.html
javadoc/com/ibm/as400/util/html/HTMLFileFilter.html
javadoc/com/ibm/as400/util/html/URLEncoder.html
javadoc/com/ibm/as400/util/html/URLParser.html
http://www.w3.org/
javadoc/com/ibm/as400/util/html/BidiOrdering.html

HTMLAlign class
The IBM Toolbox for Java HTMLAlign class enables you to align sections of your HTML document,
instead of just aligning individual items such as paragraphs or headings.

The HTMLAlign class represents the <DIV> tag and its associated align attribute. You can use right, left,
or center alignment.

You can use this class to perform a variety of actions that include the following:
v Add or remove items from the list of tags you want to align
v Get and set the alignment
v Get and set the direction of the text interpretation
v Get and set the language of the input element
v Get a string representation of the HTMLAlign object

Example: Creating HTMLAlign objects

Note: Read the Code example disclaimer for important legal information.
The following example creates an unordered list, then creates an HTMLAlign object to align the entire
list:

// Create an unordered list.
UnorderedList uList = new UnorderedList();
uList.setType(HTMLConstants.DISC);
UnorderedListItem uListItem1 = new UnorderedListItem();
uListItem1.setItemData(new HTMLText("Centered unordered list"));
uList.addListItem(uListItem1);
UnorderedListItem uListItem2 = new UnorderedListItem();
uListItem2.setItemData(new HTMLText("Another item"));
uList.addListItem(uListItem2);

// Align the list.
HTMLAlign align = new HTMLAlign(uList, HTMLConstants.CENTER);
System.out.println(align);

The previous example produces the following tag:
<div align="center">
<ul type="disc">

Centered unordered list
Another item

When you use this tag in an HTML page, it looks like this:
v Centered unordered list
v Another item
Related information:
HTMLAlign Javadoc

HTMLDocument class
The HTMLDocument class enables you to use existing IBM Toolbox for Java HTML classes to create
either HTML pages or Portable Document Format (PDF) documents.

When you create an HTMLDocument, you specify whether it contains HTML tags or Extensible
Stylesheet Language (XSL) Formatting Object (FOs) tags:
v When you want to create HTML pages, the HTMLDocument class offers you an easier way to group

all the required HTML tags. However, HTML pages do not always look the same when you print them
as when you view them in a Web browser.

192 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/HTMLAlign.html

v When you want to create PDF documents, the HTMLDocument class offers you the ability to create
XSL FO source that contains all the information you need to produce a PDF document. PDF documents
retain the same graphical appearance when you print them as when you view them electronically.

To use HTMLDocument, you need to include an XML parser and an XSLT processor in your
CLASSPATH environment variable. For more information, see the following pages:
v “JAR files” on page 10
v “XML parser and XSLT processor” on page 417

You can process the resulting HTML or XSL source data the way you want, for example, by displaying
the HTML, saving the XSL to a file, or using the streamed data in another part of your Java program.

For more information about creating HTML pages and XSL FO source data, see the following pages:
v “Using HTMLDocument to create HTML data”
v “Using HTMLDocument to create XSL FO data” on page 194
v “Examples: Using HTMLDocument” on page 196

HTMLDocument Javadoc

Using HTMLDocument to create HTML data:

An HTMLDocument functions as a wrapper that holds the information necessary to create either HTML
or Extensible Stylesheet Language (XSL) Formatting Object (FO) source data. When you want to create
HTML pages, the HTMLDocument class offers you an easier way to group all the required HTML tags.

Generating HTML source data

When creating HTML source, HTMLDocument retrieves HTML tags from the HTML objects you have
created. You can use either HTMLDocument.getTag() to stream all the elements you have defined or the
getTag() for each individual HTML object.

HTMLDocument generates HTML data as you define it in your Java program, so be sure that the
resulting HTML is complete and correct.

When you call HTMLDocument.getTag(), the HTMLDocument object performs the following actions:
v Generates the opening <HTML> tag. At the end of the data, it generates the closing </HTML> tag.
v Converts your HTMLHead and HTMLMeta objects into HTML tags.
v Generates the opening <BODY> tag immediately after the <HEAD> tag. At the end of the data, just

before the closing </HTML> tag, it generates the closing </BODY> tag.

Note: If you do not specify a <HEAD> tag, HTMLDocument generates the <BODY> tag after the
<HTML> tag.

v Converts your remaining HTML objects into HTML tags as your program directs.

Note: HTMLDocument streams the HTML tags as your Java program directs, so make sure that you call
the tags in the proper order.

Examples: Using HTMLDocument

The following example shows how to use HTMLDocument to generate HTML source data (and XSL FO
source):

“Example: Using HTMLDocument to generate both HTML source and XSL FO source” on page 199

IBM Toolbox for Java 193

javadoc/com/ibm/as400/util/html/HTMLDocument.html

Javadoc reference documentation

For more information about the HTMLDocument class, see the following Javadoc reference
documentation:

HTMLDocument

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Using HTMLDocument to create XSL FO data:

An HTMLDocument functions as a wrapper that holds the information necessary to create either
Extensible Stylesheet Language (XSL) Formatting Object (FO) or HTML source data.

Generated XSL FO source follows the XSL FO formatting model. The model uses rectangular elements,
called areas, to hold the individual content elements, which can be images, text, other XSL FOs, or
nothing. The following list describes the four basic types of areas:
v Regions function as the highest level container.
v Block areas represent block level elements, for example, paragraphs or list items.
v Line areas represent a line of text inside of a block.
v Inline areas represent parts of a line, for example, a single character, a footnote, or a mathematical

equation.

XSL FO tags created by IBM Toolbox for Java adhere to the XSL standards described the W3C
recommendation. For more information about XSL, XSL FOs, and the W3C recommendation, see the
following:

Extensible Stylesheet Language (XSL) Version 1.0

Generating XSL FO source data

When creating XSL FO source, HTMLDocument properties represent XSL FO tags that specify page size,
orientation, and margins. Additionally, HTMLDocument retrieves from many HTML classes the
corresponding XSL FO tags for that content element.

After you use HTMLDocument to generate the XSL FO source, you can use an XSL formatter (for
example, the XSLReportWriter class) to place the content elements on the pages of a document.

HTMLDocument generates XSL FO source data in two major sections:
v The first section contains the <fo:root> and <fo:layout-master-set> XSL FO tags that hold general page

layout information for page height, page width, and page margins. To specify the values for the layout
information, use HTMLDocument set methods to set the values for the associated properties.

194 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/HTMLDocument.html
http://www.w3.org/TR/xsl/

v The second section contains the XSL FO <fo:page-sequence> tag that holds the individual content
elements. To specify individual content elements, which are instances of HTML classes, retrieve the
corresponding XSL FO tag from the HTML object. Make sure that for your content elements you use
only HTML classes that have the getFoTag() method.

Note: Trying to retrieve XSL FO tags from HTML classes that do not have the getFoTag() method
results in a comment tag.

For more information about the HTML classes that include methods for working with XSL FO tags, see
the following Javadoc reference documentation:

“XSL FO-enabled classes” on page 196

After you create an instance of HTMLDocument and set the layout properties, retrieve XSL FO tags from
HTML objects by using the setUseFO(), getFoTag(), and getTag() methods.
v You can use setUseFO() on either the HTMLDocument or the individual HTML objects. When you use

setUseFO(), you can retrieve XSL FO tags by using HTMLDocument.getTag().
v Alternatively, you can use the getFoTag() method on either the HTMLDocument or the individual

HTML objects. You might want to use this alternative method when you need to be able to generate
both XSL FO and HTML source from the HTMLDocument or the HTML objects.

Example: Using HTMLDocument

After you create XSL FO source data, you need to convert that XSL FO data to a form that your users can
view and print. The following examples show how to generate XSL FO source data (and HTML source)
and convert the XSL FO source data to a PDF document by using the XSLReportWriter and Context
classes:

“Example: Using HTMLDocument to generate both HTML source and XSL FO source” on page 199

“Example: Converting XSL FO source data to a PDF” on page 197

Javadoc reference documentation

For more information about the HTMLDocument class, see the following Javadoc reference
documentation:

HTMLDocument

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

IBM Toolbox for Java 195

javadoc/com/ibm/as400/util/html/HTMLDocument.html

XSL FO-enabled classes:

This topic describes the IBM Toolbox for Java classes that are compatible with the HTMLDocument class.

Many IBM Toolbox for Java HTML classes feature the following methods, which enable instances of those
classes to work with HTMLDocument:
v getFoTag()
v getTag()
v setUseFO()

For more information about the HTMLDocument class and about the HTML classes that include methods
for working with XSL FOs, see the following Javadoc reference documentation:
v HTMLDocument
v BidiOrdering
v HTMLAlign
v HTMLHead
v HTMLHeading
v HTMLImage
v HTMLList
v HTMLListItem
v HTMLTable
v HTMLTableCaption
v HTMLTableCell
v HTMLTableHeader
v HTMLTableRow
v HTMLTagElement
v OrderedList
v UnorderedList

Examples: Using HTMLDocument:

The following examples show ways that you can use the HTMLDocument class to generate HTML and
Extensible Stylesheet Language (XSL) Formatting Object (FO) source data.

Example: Using HTMLDocument to generate both HTML source and XSL FO source

The following example shows how to generate both HTML source data and XSL FO source data at the
same time:

“Example: Using HTMLDocument to generate both HTML source and XSL FO source” on page 199

Example: Converting XSL FO source data to a PDF

After you create XSL FO source data, you need to convert that XSL FO data to a form that your users can
view and print. The following example shows how to convert a file that contains XSL FO source data to a
PDF document by using the XSLReportWriter and Context classes:

“Example: Converting XSL FO source data to a PDF” on page 197

The following disclaimer applies to all of the IBM Toolbox for Java examples:

196 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/HTMLDocument.html
javadoc/com/ibm/as400/util/html/BidiOrdering.html
javadoc/com/ibm/as400/util/html/HTMLAlign.html
javadoc/com/ibm/as400/util/html/HTMLHead.html
javadoc/com/ibm/as400/util/html/HTMLHeading.html
javadoc/com/ibm/as400/util/html/HTMLImage.html
javadoc/com/ibm/as400/util/html/HTMLList.html
javadoc/com/ibm/as400/util/html/HTMLListItem.html
javadoc/com/ibm/as400/util/html/HTMLTable.html
javadoc/com/ibm/as400/util/html/HTMLTableCaption.html
javadoc/com/ibm/as400/util/html/HTMLTableCell.html
javadoc/com/ibm/as400/util/html/HTMLTableHeader.html
javadoc/com/ibm/as400/util/html/HTMLTableRow.html
javadoc/com/ibm/as400/util/html/HTMLTagElement.html
javadoc/com/ibm/as400/util/html/OrderedList.html
javadoc/com/ibm/as400/util/html/UnorderedList.html

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Example: Converting XSL FO source data to a PDF:

This example program should not be used as the XSLReportProcessor class is no longer supported.

Note: Read the Code example disclaimer for important legal information.
///
//
// Example: Converting XSL FO source to a PDF.
//
// This program uses the IBM Toolbox for Java ReportWriter classes to convert
// XSL FO source data (created by using HTMLDocument) to a PDF.
//
// This example requires the following.jars to be in the classpath.
//
// composer.jar
// outputwriters.jar
// reportwriter.jar
// x4j400.jar
// xslparser.jar
//
// These JAR files are part of the IBM ToolBox for Java, and reside in directory
// /QIBM/ProdData/HTTP/Public/jt400/lib on your server.
//
// You will also need the class definition for
// org/apache/xerces/dom/NodeContainer, which resides
// in directory /QIBM/ProdData/OS400/xml/lib.
//
// Command syntax:
// ProcessXslFo FOfilename PDFfilename
//
///

import java.io.FileInputStream;
import java.io.FileOutputStream;

import java.awt.print.Paper;
import java.awt.print.PageFormat;

import org.w3c.dom.Document;

import com.ibm.xsl.composer.framework.Context;

import com.ibm.as400.util.reportwriter.pdfwriter.PDFContext;
import com.ibm.as400.util.reportwriter.processor.XSLReportProcessor;

public class ProcessXslFo
{

public static void main(String args[])
{

IBM Toolbox for Java 197

if (args.length != 2)
{

System.out.println("Usage: java ProcessXslFo <fo file name> <pdf file name>");
System.exit(0);

}

try
{

String inName = args[0];
String outName = args[1];

/* Input. File containing XML FO. */
FileInputStream fin = null;

/* Output. Which in this example will be PDF. */
FileOutputStream fout = null;

try
{

fin = new FileInputStream(inName);
fout = new FileOutputStream(outName);

}
catch (Exception e)
{

e.printStackTrace();
System.exit(0);

}

/*
* Setup Page format.
*/
Paper paper = new Paper();
paper.setSize(612, 792);
paper.setImageableArea(0, 0, 756, 936);

PageFormat pageFormat = new PageFormat();
pageFormat.setPaper(paper);

/*
* Create a PDF context. Set output file name.
*/
PDFContext pdfContext = new PDFContext(fout, pageFormat);

/*
* Create XSLReportProcessor instance.
*/
XSLReportProcessor report = new XSLReportProcessor(pdfContext);

/*
* Open XML FO source.
*/
try
{

report.setXSLFOSource(fin);
}
catch (Exception e)
{

e.printStackTrace();
System.exit(0);

}

/*
* Process the report.
*/
try
{

report.processReport();

198 IBM i: Programming IBM Toolbox for Java

}
catch (Exception e)
{

e.printStackTrace();
System.exit(0);

}
}
catch (Exception e)
{

e.printStackTrace();
System.exit(0);

}

/* exit */
System.exit(0);

}
}

Example: Using HTMLDocument to generate both HTML source and XSL FO source:

This example uses the HTMLDocument class to generate HTML and XSL FO source data.

Note: Read the Code example disclaimer for important legal information.
///
//
// Example: Using the Toolbox HTMLDocument Class
// to generate both HTML and XSL FO source data.
//
// This program uses the HTMLDocument class to
// generate two files: one that has HTML source and
// another than has XSL FO source.
//
// Command syntax:
// HTMLDocumentExample
//
///

import com.ibm.as400.util.html.*;
import java.*;
import java.io.*;
import java.lang.*;
import java.beans.PropertyVetoException;

public class HTMLDocumentExample
{

public static void main (String[] args)
{

//Create the HTMLDocument that holds necessary document properties
HTMLDocument doc = new HTMLDocument();

//Set page and margin properties. Numbers are in inches.
doc.setPageWidth(8.5);
doc.setPageHeight(11);
doc.setMarginTop(1);
doc.setMarginBottom(1);
doc.setMarginLeft(1);
doc.setMarginRight(1);

//Create a header for the page.
HTMLHead head = new HTMLHead();
//Set the title for the header
head.setTitle("This is the page header.");

//Create several headings
HTMLHeading h1 = new HTMLHeading(1, "Heading 1");

IBM Toolbox for Java 199

HTMLHeading h2 = new HTMLHeading(2, "Heading 2");
HTMLHeading h3 = new HTMLHeading(3, "Heading 3");
HTMLHeading h4 = new HTMLHeading(4, "Heading 4");
HTMLHeading h5 = new HTMLHeading(5, "Heading 5");
HTMLHeading h6 = new HTMLHeading(6, "Heading 6");

//Create some text that is printed from right to left.
//Create BidiOrdering object and set the direction
BidiOrdering bdo = new BidiOrdering();
bdo.setDirection(HTMLConstants.RTL);

//Create some text
HTMLText text = new HTMLText("This is Arabic text.");
//Add the text to the bidi-ordering object
bdo.addItem(text);

// Create an UnorderedList.
UnorderedList uList = new UnorderedList(HTMLConstants.SQUARE);
// Create and set the data for UnorderedListItems.
UnorderedListItem listItem1 = new UnorderedListItem();
UnorderedListItem listItem2 = new UnorderedListItem();
listItem1.setItemData(new HTMLText("First item"));
listItem2.setItemData(new HTMLText("Second item"));
// Add the list items to the UnorderedList.
uList.addListItem(listItem1);
uList.addListItem(listItem2);

// Create an OrderedList.
OrderedList oList = new OrderedList(HTMLConstants.SMALL_ROMAN);
// Create the OrderedListItems.
OrderedListItem olistItem1 = new OrderedListItem();
OrderedListItem olistItem2 = new OrderedListItem();
OrderedListItem olistItem3 = new OrderedListItem();
// Set the data in the OrderedListItems.
olistItem1.setItemData(new HTMLText("First item"));
olistItem2.setItemData(new HTMLText("Second item"));
olistItem3.setItemData(new HTMLText("Third item"));
// Add the list items to the OrderedList.
oList.addListItem(olistItem1);
oList.addListItem(olistItem2);
// Add (nest) the unordered list to OrderedListItem2
oList.addList(uList);
// Add another OrderedListItem to the OrderedList
// after the nested UnorderedList.
oList.addListItem(olistItem3);

// Create a default HTMLTable object.
HTMLTable table = new HTMLTable();
try
{

// Set the table attributes.
table.setAlignment(HTMLTable.LEFT);
table.setBorderWidth(1);

// Create a default HTMLTableCaption object and set the caption text.
HTMLTableCaption caption = new HTMLTableCaption();
caption.setElement("Customer Account Balances - January 1, 2000");

// Set the caption.
table.setCaption(caption);

// Create the table headers and add to the table.
HTMLTableHeader account_header = new HTMLTableHeader(new HTMLText("ACCOUNT"));
HTMLTableHeader name_header = new HTMLTableHeader(new HTMLText("NAME"));
HTMLTableHeader balance_header = new HTMLTableHeader(new HTMLText("BALANCE"));

table.addColumnHeader(account_header);

200 IBM i: Programming IBM Toolbox for Java

table.addColumnHeader(name_header);
table.addColumnHeader(balance_header);

// Add rows to the table. Each customer record represents a row in the table.
int numCols = 3;
for (int rowIndex=0; rowIndex< 5; rowIndex++)
{

HTMLTableRow row = new HTMLTableRow();
row.setHorizontalAlignment(HTMLTableRow.CENTER);

HTMLText account = new HTMLText("000" + rowIndex);
HTMLText name = new HTMLText("Customer" + rowIndex);
HTMLText balance = new HTMLText("" + (rowIndex + 1)*200);

row.addColumn(new HTMLTableCell(account));
row.addColumn(new HTMLTableCell(name));
row.addColumn(new HTMLTableCell(balance));

// Add the row to the table.
table.addRow(row);

}
}
catch(Exception e)
{

System.out.println("Problem creating table");
System.exit(0);

}

//Add the items to the HTMLDocument
doc.addElement(head);
doc.addElement(h1);
doc.addElement(h2);
doc.addElement(h3);
doc.addElement(h4);
doc.addElement(h5);
doc.addElement(h6);
doc.addElement(oList);
doc.addElement(table);
doc.addElement(bdo);

//Print the fo tags to a file.
try
{

FileOutputStream fout = new FileOutputStream("FOFILE.fo");
PrintStream pout = new PrintStream(fout);
pout.println(doc.getFOTag());

}
catch (Exception e)
{

System.out.println("Unable to write fo tags to FOFILE.fo");
}

//Print the html tags to a file
try
{

FileOutputStream htmlout = new FileOutputStream("HTMLFILE.html");
PrintStream phtmlout = new PrintStream(htmlout);
phtmlout.println(doc.getTag());

}
catch (Exception e)
{

System.out.println("Unable to write html tags to HTMLFILE.html");
}

}
}

IBM Toolbox for Java 201

HTML form classes
The IBM Toolbox for Java HTMLForm class represents an HTML form. Use these classes to make forms
more easily than you could with CGI scripting.

This class allows you to:
v Add an element, like a button, hyperlink or HTML table to a form
v Remove an element from a form
v Set other form attributes, such as which method to use to send form contents to the server, the hidden

parameter list, or the action URL address

The constructor for the HTMLForm object takes a URL address. This address is referred to as an action
URL. It is the location of the application on the server that will process the form input. The action URL
can be specified on the constructor or by setting the address using the setURL() method. Form attributes
are set using various set methods and retrieved using various get methods.

Any HTML tag element may be added to an HTMLForm object using addElement() and removed using
removeElement().

Of course, you can add other tag elements to a form, including HTMLText, HTMLHyperlink, and
HTMLTable.

HTMLForm Javadoc
“HTML Text class” on page 218
The IBM Toolbox for Java HTMLText class allows you to access text properties for your HTML page.
Using the HTMLText class, you can get, set, and check the status of many text attributes.
“HTMLHyperlink class” on page 211
The IBM Toolbox for Java HTMLHyperlink class represents an HTML hyperlink tag. You use the
HTMLHyperlink class to create a link within your HTML page.
“HTML Table classes” on page 216
The IBM Toolbox for Java HTMLTable class allows you to easily set up tables that you can use in
HTML pages.
“Example: Using the HTML form classes” on page 597
The following IBM Toolbox for Java example shows you how to use the HTML form classes.
“HTML class example output” on page 607
These are some possible sample outputs you may get from running the HTML class example.

FormInput classes:

The IBM Toolbox for Java FormInput class represents an input element in an HTML form.

The FormInput class allows you to:
v Get and set the name of an input element
v Get and set the size of an input element
v Get and set the initial value of an input element

The FormInput class is extended by the classes in the following list. These classes provide a way to create
specific types of form input elements and allow you to get and set various attributes or retrieve the
HTML tag for the input element:
v ButtonFormInput: Represents a button element for an HTML form
v FileFormInput: Represents a file input type, for an HTML form
v HiddenFormInput: Represents a hidden input type for an HTML form
v ImageFormInput: Represents an image input type for an HTML form.
v ResetFormInput: Represents a reset button input for an HTML form

202 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/HTMLForm.html

v SubmitFormInput: Represents a submit button input for an HTML form
v TextFormInput: Represents a single line of text input for an HTML form where you define the

maximum number of characters in a line. For a password input type, you use PasswordFormInput,
which extends TextFormInput and represents a password input type for an HTML form

v ToggleFormInput: Represents a toggle input type for an HTML form. The user can set or get the text
label and specify whether the toggle should be checked or selected. The toggle input type can be one
of two:
– RadioFormInput: Represents a radio button input type for an HTML form. Radio buttons may be

placed in groups with the RadioFormInputGroup class; this creates a group of radio buttons where
the user selects only one of the choices presented.

– CheckboxFormInput: Represents a checkbox input type for an HTML form where the user may
select more than one from the choices presented, and where the checkbox is initialized as either
checked or unchecked.

FormInput Javadoc
ToggleFormInput Javadoc
RadioFormInputGroup Javadoc

ButtonFormInput class:

The ButtonFormInput class represents a button element for an HTML form.

The following example shows you how to create a ButtonFormInput object:
ButtonFormInput button = new ButtonFormInput("button1", "Press Me", "test()");
System.out.println(button.getTag());

This example produces the following tag:
<input type="button" name="button1" value="Press Me" onclick="test()" />

Related information:
ButtonFormInput Javadoc

FileFormInput class:

The IBM Toolbox for Java FileFormInput class represents a file input type in an HTML form.

The following code example shows you how to create a new FileFormInput object
FileFormInput file = new FileFormInput("myFile");
System.out.println(file.getTag());

The above code creates the following output:
<input type="file" name="myFile" />

Related information:
FileFormInput Javadoc

HiddenFormInput class:

The IBM Toolbox for Java HiddenFormInput class represents a hidden input type in an HTML form.

The following code example shows how to create a HiddenFormInput object:
HiddenFormInput hidden = new HiddenFormInput("account", "123456");
System.out.println(hidden.getTag()):

The previous code generates the following tag:
<input type="hidden" name="account" value="123456" />

IBM Toolbox for Java 203

javadoc/com/ibm/as400/util/html/FormInput.html
javadoc/com/ibm/as400/util/html/ToggleFormInput.html
javadoc/com/ibm/as400/util/html/RadioFormInputGroup.html
javadoc/com/ibm/as400/util/html/ButtonFormInput.html
javadoc/com/ibm/as400/util/html/FileFormInput.html

In an HTML page, the HiddenInputType does not display. It sends the information (in this case the
account number) back to the server.
Related information:
HiddenFormInput Javadoc

ImageFormInput class:

The ImageFormInput class represents an image input type in an HTML form.

You can retrieve and update many of the attributes for the ImageFormInput class by using the methods
provided.
v Get or set the source
v Get or set the alignment
v Get or set the height
v Get or set the width

Example: Creating an ImageFormInput object

The following code example shows you how to create an ImageFormInput object:
ImageFormInput image = new ImageFormInput("myPicture", "myPicture.gif");
image.setAlignment(HTMLConstants.TOP);
image.setHeight(81);
image.setWidth(100);

The above code example generates the following tag:
<input type="image" name="MyPicture" src="myPicture.gif" align="top" height="81" width="100" />

Related information:
ImageFormInput Javadoc

ResetFormInput class:

The ResetFormInput class represents a reset button input type in an HTML form.

The following code example shows you how to create a ResetFormInput object:
ResetFormInput reset = new ResetFormInput();
reset.setValue("Reset");
System.out.println(reset.getTag());

The above code example generates the following HTML tag:
<input type="reset" value="Reset" />

Related information:
ResetFormInput Javadoc

SubmitFormInput class:

The SubmitFormInput class represents a submit button input type in an HTML form.

The following code example shows you how to create a SubmitFormInput object:
SubmitFormInput submit = new SubmitFormInput();
submit.setValue("Send");
System.out.println(submit.getTag());

The code example above generates the following output:
<input type="submit" value="Send" />

204 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/HiddenFormInput.html
javadoc/com/ibm/as400/util/html/ImageFormInput.html
javadoc/com/ibm/as400/util/html/ResetFormInput.html

Related information:
SubmitFormInput Javadoc

TextFormInput class:

The TextFormInput class represents a single line text input type in an HTML form. The TextFormInput
class provides methods that let you get and set the maximum number of characters a user can enter in
the text field.

The following example shows you how to create a new TextFormInput object:
TextFormInput text = new TextFormInput("userID");
text.setSize(40);
System.out.println(text.getTag());

The code example above generates the following tag:
<input type="text" name="userID" size="40" />

Related information:
TextFormInput Javadoc

PasswordFormInput class:

The PasswordFormInput class represents a password input field type in an HTML form.

The following code example shows you how to create a new PasswordFormInput object:
PasswordFormInput pwd = new PasswordFormInput("password");
pwd.setSize(12);
System.out.println(pwd.getTag());

The code example above generates the following tag:
<input type="password" name="password" size="12" />

Related information:
PasswordFormInput Javadoc

RadioFormInput class:

The RadioFormInput class represents a radio button input type in an HTML form. The radio button may
be initialized as selected when constructed.

A set of radio buttons with the same control name make a radio button group. The
RadioFormInputGroup class creates radio button groups. Only one radio button within the group may be
selected at any time. Also, a specific button may be initialized as selected when the group is constructed.

The following code example shows you how to create a RadioFormInput object:
RadioFormInput radio = new RadioFormInput("age", "twentysomething", "Age 20 - 29", true);
System.out.println(radio.getTag());

The above code example generates the following tag:
<input type="radio" name="age" value="twentysomething" checked="checked" />

RadioFormInput Javadoc
RadioFormInputGroup Javadoc

IBM Toolbox for Java 205

javadoc/com/ibm/as400/util/html/SubmitFormInput.html
javadoc/com/ibm/as400/util/html/TextFormInput.html
javadoc/com/ibm/as400/util/html/PasswordFormInput.html
javadoc/com/ibm/as400/util/html/RadioFormInput.html
javadoc/com/ibm/as400/util/html/RadioFormInputGroup.html

CheckboxFormInput class:

The IBM Toolbox for Java CheckboxFormInput class represents a checkbox input type in an HTML form.
The user may select more than one of the choices presented as checkboxes within a form.

The following example shows you how to create a new CheckboxFormInput object:
CheckboxFormInput checkbox = new CheckboxFormInput("uscitizen", "yes", "textLabel", true);
System.out.println(checkbox.getTag());

The code above produces the following output:
<input type="checkbox" name="uscitizen" value="yes" checked="checked" /> textLabel

LayoutFormPanel class:

The IBM Toolbox for Java LayoutFormPanel class represents a layout of form elements for an HTML
form. You can use the methods provided by the LayoutFormPanel to add and remove elements from a
panel or get the number of elements in the layout.

You may choose to use one of two layouts:
v GridLayoutFormPanel: Represents a grid layout of form elements for an HTML form
v LineLayoutFormPanel: Represents a line layout of form elements for an HTML form

LayoutFormPanel Javadoc
“GridLayoutFormPanel”
The GridLayoutFormPanel class represents a grid layout of form elements. You use this layout for an
HTML form where you specify the number of columns for the grid.
“LineLayoutFormPanel class” on page 207
The LineLayoutFormPanel class represents a line layout of form elements for an HTML form. The
form elements are arranged in a single row within a panel.

GridLayoutFormPanel:

The GridLayoutFormPanel class represents a grid layout of form elements. You use this layout for an
HTML form where you specify the number of columns for the grid.

The following example creates a GridLayoutFormPanel object with two columns:
// Create a text form input element for the system.
LabelFormElement sysPrompt = new LabelFormElement("System:");
TextFormInput system = new TextFormInput("System");

// Create a text form input element for the userId.
LabelFormElement userPrompt = new LabelFormElement("User:");
TextFormInput user = new TextFormInput("User");

// Create a password form input element for the password.
LabelFormElement passwordPrompt = new LabelFormElement("Password:");
PasswordFormInput password = new PasswordFormInput("Password");

// Create the GridLayoutFormPanel object with two columns and add the form elements.
GridLayoutFormPanel panel = new GridLayoutFormPanel(2);
panel.addElement(sysPrompt);
panel.addElement(system);
panel.addElement(userPrompt);
panel.addElement(user);
panel.addElement(passwordPrompt);
panel.addElement(password);

// Create the submit button to the form.
SubmitFormInput logonButton = new SubmitFormInput("logon", "Logon");

206 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/LayoutFormPanel.html

// Create HTMLForm object and add the panel to it.
HTMLForm form = new HTMLForm(servletURI);
form.addElement(panel);
form.addElement(logonButton);

This example produces the following HTML code:
<form action=servletURI method="get">
<table border="0">
<tr>
<td>System:</td>
<td><input type="text" name="System" /></td>
</tr>
<tr>
<td>User:</td>
<td><input type="text" name="User" /></td>
</tr>
<tr>
<td>Password:</td>
<td><input type="password" name="Password" /></td>
</tr>
</table>
<input type="submit" name="logon" value="Logon" />
</form>

Related information:
GridLayoutFormPanel Javadoc

LineLayoutFormPanel class:

The LineLayoutFormPanel class represents a line layout of form elements for an HTML form. The form
elements are arranged in a single row within a panel.

Example: Using LineLayoutFormPanel

This example creates a LineLayoutFormPanel object and adds two form elements.
CheckboxFormInput privacyCheckbox =

new CheckboxFormInput("confidential", "yes", "Confidential", true);
CheckboxFormInput mailCheckbox =

new CheckboxFormInput("mailingList", "yes", "Join our mailing list", false);
LineLayoutFormPanel panel = new LineLayoutFormPanel();
panel.addElement(privacyCheckbox);
panel.addElement(mailCheckbox);
String tag = panel.getTag();

The code example above generates the following HTML code:
<input type="checkbox" name="confidential" value="yes" checked="checked" /> Confidential
<input type="checkbox" name="mailingList" value="yes" /> Join our mailing list

Related information:
LineLayoutFormPanel Javadoc

TextAreaFormElement class:

The TextAreaFormElement class represents a text area element in an HTML form. You specify the size of
the text area by setting the number of rows and columns. You can determine the size that a text area
element is set for with the getRows() and getColumns() methods.

You set the initial text within the text area with the setText() method. You use the getText() method to see
what the initial text has been set to.

IBM Toolbox for Java 207

javadoc/com/ibm/as400/util/html/GridLayoutFormPanel.html
javadoc/com/ibm/as400/util/html/LineLayoutFormPanel.html

The following example shows you how to create a TextAreaFormElement:
TextAreaFormElement textArea = new TextAreaFormElement("foo", 3, 40);
textArea.setText("Default TEXTAREA value goes here");
System.out.println(textArea.getTag());

The code example above generates the following HTML code:
<form>
<textarea name="foo" rows="3" cols="40">
Default TEXTAREA value goes here
</textarea>
</form>

TextAreaFormElement Javadoc

LabelFormElement class:

The LabelFormElement class represents a label for an HTML form element.

You use the LabelFormElement class to label elements of an HTML form such as a text area or password
form input. The label is one line of text that you set using the setLabel() method. This text does not
respond to user input and is there to make the form easier for the user to understand.

Example: Using LabelFormElement

The following code example shows you how to create a LabelFormElement object:
LabelFormElement label = new LabelFormElement("Account Balance");
System.out.println(label.getTag());

This example produces the following output:
Account Balance

Related information:
LabelFormElement Javadoc

SelectFormElement class:

The SelectFormElement class represents a select input type for an HTML form. You can add and remove
various options within the select element.

SelectFormElement has methods available that allow you to view and change attributes of the select
element:
v Use setMultiple() to set whether or not the user can select more than one option
v Use getOptionCount() to determine how many elements are in the option layout
v Use setSize() to set the number of options visible within the select element and use getSize() to

determine the number of visible options.

The following example creates a SelectFormElement object with three options. The SelectFormElement
object named list, is highlighted. The first two options added specify the option text, name, and select
attributes. The third option added is defined by a SelectOption object.

SelectFormElement list = new SelectFormElement("list1");
SelectOption option1 = list.addOption("Option1", "opt1");
SelectOption option2 = list.addOption("Option2", "opt2", false);
SelectOption option3 = new SelectOption("Option3", "opt3", true);
list.addOption(option3);
System.out.println(list.getTag());

The above code example produces the following HTML code:

208 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/TextAreaFormElement.html
javadoc/com/ibm/as400/util/html/LabelFormElement.html

<select name="list1">
<option value="opt1">Option1</option>
<option value="opt2">Option2</option>
<option value="opt3" selected="selected">Option3</option>
</select>

Related reference:
“SelectOption class”
The SelectOption class represents an option in an HTML SelectFormElement. You use the option form
element in a select form.
Related information:
SelectFormElement Javadoc

SelectOption class:

The SelectOption class represents an option in an HTML SelectFormElement. You use the option form
element in a select form.

Methods are provided that you can use to retrieve and set attributes within a SelectOption. For instance,
you can set whether the option defaults to being selected. You can also set the input value it will use
when the form is submitted.

The following example creates three SelectOption objects within a select form. Each of the following
SelectOption objects are highlighted. They are named option1, option2 and option3. The option3 object is
initially selected.

SelectFormElement list = new SelectFormElement("list1");
SelectOption option1 = list.addOption("Option1", "opt1");
SelectOption option2 = list.addOption("Option2", "opt2", false);
SelectOption option3 = new SelectOption("Option3", "opt3", true);
list.addOption(option3);
System.out.println(list.getTag());

The above code example produces the following HTML tag:
<select name="list1">
<option value="opt1">Option1</option>
<option value="opt2">Option2</option>
<option value="opt3" selected="selected">Option3</option>
</select>

Related reference:
“SelectFormElement class” on page 208
The SelectFormElement class represents a select input type for an HTML form. You can add and remove
various options within the select element.
Related information:
SelectOption Javadoc

RadioFormInputGroup class:

The RadioFormInputGroup class represents a group of RadioFormInput objects. A user can select only
one of the RadioFormInput objects from a RadioFormInputGroup.

The RadioFormInputGroup class methods allow you to work with various attributes of a group of radio
buttons. With these methods, you can:
v Add a radio button
v Remove a radio button
v Get or set the name of the radio group

IBM Toolbox for Java 209

javadoc/com/ibm/as400/util/html/SelectFormElement.html
javadoc/com/ibm/as400/util/html/SelectOption.html

The following example creates a radio button group:
// Create some radio buttons.
RadioFormInput radio0 = new RadioFormInput("age", "kid", "0-12", true);
RadioFormInput radio1 = new RadioFormInput("age", "teen", "13-19", false);
RadioFormInput radio2 = new RadioFormInput("age", "twentysomething", "20-29", false);
RadioFormInput radio3 = new RadioFormInput("age", "thirtysomething", "30-39", false);
// Create a radio button group and add the radio buttons.
RadioFormInputGroup ageGroup = new RadioFormInputGroup("age");
ageGroup.add(radio0);
ageGroup.add(radio1);
ageGroup.add(radio2);
ageGroup.add(radio3);
System.out.println(ageGroup.getTag());

The code example above generates the following HTML code:
<input type="radio" name="age" value="kid" checked="checked" /> 0-12
<input type="radio" name="age" value="teen" /> 13-19
<input type="radio" name="age" value="twentysomething" /> 20-29
<input type="radio" name="age" value="thirtysomething" /> 30-39

Related information:
RadioFormInputGroup Javadoc
RadioFormInput Javadoc

HTMLHead class
The IBM Toolbox for Java HTMLHead class represents an HTML head tag. The head section of an HTML
page features an opening and closing head tag that typically contains other tags. Typically, the head tag
contains a title tag and possibly meta tags.

Constructors for HTMLHead enable you to construct a head tag that is empty, that contains a title tag, or
that contains a title tag and a meta tag. You can easily add title and meta tags to the empty HTMLHead
object.

Methods for the HTMLHead class include setting and getting the page title and the meta tags. Define the
contents of the meta tags by using the HTMLMeta class.

The following code shows one way to create an HTMLHead tag:
// Create an empty HTMLHead.
HTMLHead head = new HTMLHead("My Main Page");

// Add the title.
head.setTitle("My main page");

// Define your meta information and add it to HTMLHead.
HTMLMeta meta = new HTMLMeta("Content-Type", "text/html; charset=iso-8859-1");
head.addMetaInformation(meta);

This is the output of the example HTMLHead tag:
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"/>
<title>My main page</title>
</head>

Related reference:
“HTMLMeta class” on page 215
The IBM Toolbox for Java HTMLMeta class represents meta-information used within an HTMLHead tag.
Attributes in META tags are used when identifying, indexing, and defining information within the HTML
document.
Related information:
HTMLHead Javadoc

210 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/RadioFormInputGroup.html
javadoc/com/ibm/as400/util/html/RadioFormInput.html
javadoc/com/ibm/as400/util/html/HTMLHead.html

HTMLHeading class
The IBM Toolbox for Java HTMLHeading class represents an HTML heading. Each heading can have its
own alignment and level from 1 (largest font, most importance) to 6.

Methods for the HTMLHeading class include:
v Get and set the text for the heading
v Get and set the level of the heading
v Get and set the alignment of the heading
v Get and set the direction of the text interpretation
v Get and set the language of the input element
v Get a String representation of the HTMLHeading object

Example: Creating HTMLHeading objects

The following example creates three HTMLHeading objects:
// Create and display three HTMLHeading objects.
HTMLHeading h1 = new HTMLHeading(1, "Heading", HTMLConstants.LEFT);
HTMLHeading h2 = new HTMLHeading(2, "Subheading", HTMLConstants.CENTER);
HTMLHeading h3 = new HTMLHeading(3, "Item", HTMLConstants.RIGHT);
System.out.print(h1 + "\r\n" + h2 + "\r\n" + h3);

The previous example produces the following tags:
<h1 align="left">Heading</h1>
<h2 align="center">Subheading</h2>
<h3 align="right">Item</h3>

Related information:
HTMLHeading Javadoc

HTMLHyperlink class
The IBM Toolbox for Java HTMLHyperlink class represents an HTML hyperlink tag. You use the
HTMLHyperlink class to create a link within your HTML page.

You can get and set many attributes of hyperlinks with this class, including:
v Get and set the Uniform Resource Identifier for the link
v Get or set the title for the link
v Get or set the target frame for the link

The HTMLHyperlink class can print the full hyperlink with defined properties so that you can use the
output in your HTML page.

The following is an example for HTMLHyperlink:
// Create an HTML hyperlink to the IBM Toolbox for Java home page.
HTMLHyperlink toolbox =

new HTMLHyperlink("http://www.ibm.com/as400/toolbox", "IBM Toolbox for Java home page");
toolbox.setTarget(TARGET_BLANK);

// Display the toolbox link tag.
System.out.println(toolbox.toString());

The code above produces the following tag:
IBM Toolbox for Java home page

Related information:
HTMLHyperlink Javadoc

IBM Toolbox for Java 211

javadoc/com/ibm/as400/util/html/HTMLHeading.html
javadoc/com/ibm/as400/util/html/HTMLHyperlink.html

HTMLImage class
The HTMLImage class allows you to create image tags for your HTML page.

The HTMLImage class provides methods that allow you to get and set image attributes, including the
following:
v Get or set the height of the image
v Get or set the width of the image
v Get or set the name of the image
v Get or set the alternate text for the image
v Get or set the horizontal space around the image
v Get or set the vertical space around the image
v Get or set the absolute or relative reference to the image
v Retrieve a string representation of the HTMLImage object

The following example shows one way to create an HTMLImage object:
// Create an HTMLImage.
HTMLImage image = new HTMLImage("http://myWebSite/picture.gif", "Alternate text for this graphic");
image.setHeight(94);
image.setWidth(105);
System.out.println(image);

The print statement produces the following tag on a single line. Text wrapping is for display purposes
only.

<img src="http://myWebSite/picture.gif"
alt="Alternate text for this graphic"
height="94" width="105" />

Related information:
HTMLImage Javadoc

HTMLList classes
The IBM Toolbox for Java HTMLList classes allow you to easily create lists within your HTML pages.
These classes provide methods to get and set various attributes of the lists and the items within the lists.

In particular, the parent class HTMLList provides a method to produce a compact list that displays items
in as small a vertical space as possible.
v Methods for HTMLList include:

– Compact the list
– Add and remove items from the list
– Add and remove lists from the list (making it possible to nest lists)

v Methods for HTMLListItem include:
– Get and set the contents of the item
– Get and set the direction of the text interpretation
– Get and set the language of the input element

Use the subclasses of HTMLList and HTMLListItem to create your HTML lists:
v OrderedList and OrderedListItem
v UnorderedList and UnorderedListItem

For coding snippets, see the following examples:
v Example: Creating ordered lists
v Example: Creating unordered lists

212 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/HTMLImage.html
javadoc/com/ibm/as400/util/html/HTMLList.html
javadoc/com/ibm/as400/util/html/HTMLListItem.html

v Example: Creating nested lists

OrderedList and OrderedListItem

Use the OrderedList and OrderedListItem classes to create ordered lists in your HTML pages.
v Methods for OrderedList include:

– Get and set the starting number for the first item in the list
– Get and set the type (or style) for the item numbers

v Methods for OrderedListItem include:
– Get and set the number for the item
– Get and set the type (or style) for the item number

By using the methods in OrderedListItem, you can override the numbering and type for a specific item in
the list.

See the example for creating ordered lists.

UnorderedList and UnorderedListItem

Use the UnorderedList and UnorderedListItem classes to create unordered lists in your HTML pages.
v Methods for UnorderedList include:

– Get and set the type (or style) for the items
v Methods for UnorderedListItem include:

– Get and set the type (or style) for the item

See the example for creating unordered lists.

Examples: Using HTMLList classes

The following examples show you how to use the HTMLList classes to create ordered lists, unordered
lists, and nested lists.

Example: Creating ordered lists

The following example creates an ordered list:
// Create an OrderedList.

OrderedList oList = new OrderedList(HTMLConstants.SMALL_ROMAN);
// Create the OrderedListItems.

OrderedListItem listItem1 = new OrderedListItem();
OrderedListItem listItem2 = new OrderedListItem();

// Set the data in the OrderedListItems.
listItem1.setItemData(new HTMLText("First item"));
listItem2.setItemData(new HTMLText("Second item"));

// Add the list items to the OrderedList.
oList.addListItem(listItem1);
oList.addListItem(listItem2);
System.out.println(oList.getTag());

The previous example produces the following tags:
<ol type="i">
First item
Second item

Example: Creating unordered lists

IBM Toolbox for Java 213

javadoc/com/ibm/as400/util/html/OrderedList.html#NAVBAR_TOP
javadoc/com/ibm/as400/util/html/OrderedListItem.html#NAVBAR_TOP
javadoc/com/ibm/as400/util/html/UnorderedList.html#NAVBAR_TOP
javadoc/com/ibm/as400/util/html/UnorderedListItem.html#NAVBAR_TOP

The following example creates an unordered list:
// Create an UnorderedList.

UnorderedList uList = new UnorderedList(HTMLConstants.SQUARE);
// Create the UnorderedListItems.

UnorderedListItem listItem1 = new UnorderedListItem();
UnorderedListItem listItem2 = new UnorderedListItem();

// Set the data in the UnorderedListItems.
listItem1.setItemData(new HTMLText("First item"));
listItem2.setItemData(new HTMLText("Second item"));

// Add the list items to the UnorderedList.
uList.addListItem(listItem1);
uList.addListItem(listItem2);
System.out.println(uList.getTag());

The previous example produces the following tags:
<ul type="square">
First item
Second item

Example: Creating nested lists

The following example creates a nested list:
// Create an UnorderedList.

UnorderedList uList = new UnorderedList(HTMLConstants.SQUARE);
// Create and set the data for UnorderedListItems.

UnorderedListItem listItem1 = new UnorderedListItem();
UnorderedListItem listItem2 = new UnorderedListItem();
listItem1.setItemData(new HTMLText("First item"));
listItem2.setItemData(new HTMLText("Second item"));

// Add the list items to the UnorderedList.
uList.addListItem(listItem1);
uList.addListItem(listItem2);

// Create an OrderedList.
OrderedList oList = new OrderedList(HTMLConstants.SMALL_ROMAN);

// Create the OrderedListItems.
OrderedListItem listItem1 = new OrderedListItem();
OrderedListItem listItem2 = new OrderedListItem();
OrderedListItem listItem3 = new OrderedListItem();

// Set the data in the OrderedListItems.
listItem1.setItemData(new HTMLText("First item"));
listItem2.setItemData(new HTMLText("Second item"));
listItem3.setItemData(new HTMLText("Third item"));

// Add the list items to the OrderedList.
oList.addListItem(listItem1);
oList.addListItem(listItem2);

// Add (nest) the unordered list to OrderedListItem2
oList.addList(uList);

// Add another OrderedListItem to the OrderedList
// after the nested UnorderedList.

oList.addListItem(listItem3);
System.out.println(oList.getTag());

The previous example produces the following tags:
<ol type="i">
First item
Second item
<ul type="square">
First item
Second item

Third item

214 IBM i: Programming IBM Toolbox for Java

HTMLList Javadoc
HTMLListItem Javadoc

HTMLMeta class
The IBM Toolbox for Java HTMLMeta class represents meta-information used within an HTMLHead tag.
Attributes in META tags are used when identifying, indexing, and defining information within the HTML
document.

Attributes of the META tag include:
v NAME - the name associated with the contents of the META tag
v CONTENT - values associated with the NAME attribute
v HTTP-EQUIV - information gathered by HTTP servers for response message headers
v LANG - the language
v URL - used to redirect users from the current page to another URL

For example, to help search engines determine the contents of a page, you might use the following META
tag:

<META name="keywords" lang="en-us" content="games, cards, bridge">

You can also use HTMLMeta to redirect a user from one page to another.

Methods for the HTMLMeta class include:
v Get and set the NAME attribute
v Get and set the CONTENT attribute
v Get and set the HTTP-EQUIV attribute
v Get and set the LANG attribute
v Get and set the URL attribute

Example: Creating META tags

The following example creates two META tags:
// Create a META tag to help search engines determine page content.
HTMLMeta meta1 = new HTMLMeta();
meta1.setName("keywords");
meta1.setLang("en-us");
meta1.setContent("games, cards, bridge");
// Create a META tag used by caches to determine when to refresh the page.
HTMLMeta meta2 = new HTMLMeta("Expires", "Mon, 01 Jun 2000 12:00:00 GMT");
System.out.print(meta1 + "\r\n" + meta2);

The previous example produces the following tags:
<meta name="keywords" content="games, cards, bridge">
<meta http-equiv="Expires" content="Mon, 01 Jun 2000 12:00:00 GMT">

Related information:
HTMLMeta Javadoc

HTMLParameter class
The HTMLParameter class represents the parameters you can use with the HTMLServlet class. Each
parameter has its own name and value.

Methods for the HTMLParameter class include:
v Get and set the name of the parameter
v Get and set the value of the parameter

IBM Toolbox for Java 215

javadoc/com/ibm/as400/util/html/HTMLList.html
javadoc/com/ibm/as400/util/html/HTMLListItem.html
javadoc/com/ibm/as400/util/html/HTMLMeta.html

Example: Creating HTMLParameter tags

The following example creates an HTMLParameter tag:
// Create an HTMLServletParameter.

HTMLParameter parm = new HTMLParameter ("age", "21");
System.out.println(parm);

The previous example produces the following tag:
<param name="age" value="21">

Related information:
HTMLParameter Javadoc

HTMLServlet class
The HTMLServlet class represents a server-side include. The servlet object specifies the name of the
servlet and, optionally, its location. You may also choose to use the default location on the local system.

The HTMLServlet class works with the HTMLParameter class, which specifies the parameters available to
the servlet.

Methods for the HTMLServlet class include:
v Add and remove HTMLParameters from the servlet tag
v Get and set the location of the servlet
v Get and set the name of the servlet
v Get and set the alternate text of the servlet

Example: Creating HTMLServlet tags

The following example an HTMLServlet tag:
// Create an HTMLServlet.
HTMLServlet servlet = new HTMLServlet("myServlet", "http://server:port/dir");

// Create a parameter, then add it to the servlet.
HTMLParameter param = new HTMLParameter("parm1", "value1");
servlet.addParameter(param);

// Create and add second parameter
HTMLParameter param2 = servlet.add("parm2", "value2");

// Create the alternate text if the Web server does not support the servlet tag.
servlet.setText("The Web server providing this page does not support the SERVLET tag.");
System.out.println(servlet);

The previous example produces the following tags:
<servlet name="myServlet" codebase="http://server:port/dir">
<param name="parm1" value="value1">
<param name="parm2" value="value2">
The Web server providing this page does not support the SERVLET tag.
</servlet>

HTMLServlet Javadoc
“HTMLParameter class” on page 215
The HTMLParameter class represents the parameters you can use with the HTMLServlet class. Each
parameter has its own name and value.

HTML Table classes
The IBM Toolbox for Java HTMLTable class allows you to easily set up tables that you can use in HTML
pages.

216 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/HTMLParameter.html
javadoc/com/ibm/as400/util/html/HTMLServlet.html

This class provides methods to get and set various attributes of the table, including:
v Get and set the width of the border
v Get the number of rows in the table
v Add a column or row to the end of the table
v Remove a column or row at a specified column or row position

Example: Using HTMLTable classes

The following example shows how to use the HTMLTable classes::

“Example: Using HTMLTable classes” on page 618
Related information:
HTMLTable Javadoc

HTMLTableCell class:

The HTMLTableCell class takes any HTMLTagElement object as input and creates the table cell tag with
the specified element. The element can be set on the constructor or through either of two setElement()
methods.

Many cell attributes can be retrieved or updating using methods that are provided in the HTMLTableCell
class. Some of the actions you can do with these methods are:
v Get or set the row span
v Get or set the cell height
v Set whether the cell data will use normal HTML line breaking conventions

The following example creates an HTMLTableCell object and displays the tag:
//Create an HTMLHyperlink object.
HTMLHyperlink link = new HTMLHyperlink("http://www.ibm.com",

"IBM Home Page");
HTMLTableCell cell = new HTMLTableCell(link);
cell.setHorizontalAlignment(HTMLConstants.CENTER);
System.out.println(cell.getTag());

The getTag() method above gives the output of the example:

<td align="center">IBM Home Page</td>
HTMLTableCell Javadoc
HTMLTagElement Javadoc

HTMLTableRow class:

The HTMLTableRow class creates a row within a table. This class provides various methods for getting
and setting attributes of a row.

The methods of the HTMLTableRow class allow you to:
v Add or remove a column from the row
v Get column data at the specified column Index
v Get column index for the column with the specified cell.
v Get the number of columns in a row
v Set horizontal and vertical alignments

The following is an example for HTMLTableRow:

IBM Toolbox for Java 217

javadoc/com/ibm/as400/util/html/HTMLTable.html
javadoc/com/ibm/as400/util/html/HTMLTableCell.html
javadoc/com/ibm/as400/util/html/HTMLTagElement.html

// Create a row and set the alignment.
HTMLTableRow row = new HTMLTableRow();
row.setHorizontalAlignment(HTMLTableRow.CENTER);

// Create and add the column information to the row.
HTMLText account = new HTMLText(customers_[rowIndex].getAccount());
HTMLText name = new HTMLText(customers_[rowIndex].getName());
HTMLText balance = new HTMLText(customers_[rowIndex].getBalance());

row.addColumn(new HTMLTableCell(account));
row.addColumn(new HTMLTableCell(name));
row.addColumn(new HTMLTableCell(balance));

// Add the row to an HTMLTable object (assume that the table already exists).
table.addRow(row);

Related information:
HTMLTableRow Javadoc

HTMLTableHeader class:

The HTMLTableHeader class inherits from the HTMLTableCell class. It creates a specific type of cell, the
header cell, giving you a <th> cell instead of a <td> cell. Like the HTMLTableCell class, you call various
methods in order to update or retrieve attributes of the header cell.

The following is an example for HTMLTableHeader:
// Create the table headers.
HTMLTableHeader account_header = new HTMLTableHeader(new HTMLText("ACCOUNT"));
HTMLTableHeader name_header = new HTMLTableHeader(new HTMLText("NAME"));
HTMLTableHeader balance_header = new HTMLTableHeader();
HTMLText balance = new HTMLText("BALANCE");
balance_header.setElement(balance);

// Add the table headers to an HTMLTable object (assume that the table already exists).
table.addColumnHeader(account_header);
table.addColumnHeader(name_header);
table.addColumnHeader(balance_header);

Related information:
HTMLTableHeader Javadoc

HTMLTableCaption class:

The HTMLTableCaption class creates a caption for your HTML table. The class provides methods for
updating and retrieving the attributes of the caption. For example, you can use the setAlignment()
method to specify to which part of the table the caption should be aligned.

The following is an example for HTMLTableCaption:
// Create a default HTMLTableCaption object and set the caption text.
HTMLTableCaption caption = new HTMLTableCaption();
caption.setElement("Customer Account Balances - January 1, 2000");

// Add the table caption to an HTMLTable object (assume that the table already exists).
table.setCaption(caption);

Related information:
HTMLTableCaption Javadoc

HTML Text class
The IBM Toolbox for Java HTMLText class allows you to access text properties for your HTML page.
Using the HTMLText class, you can get, set, and check the status of many text attributes.

218 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/HTMLTableRow.html
javadoc/com/ibm/as400/util/html/HTMLTableHeader.html
javadoc/com/ibm/as400/util/html/HTMLTableCaption.html

These attributes include the following:
v Get or set the size of the font
v Set the bold attribute on (true) or off (false) or determine if it is already on
v Set the underscore attribute on (true) or off (false) or determine if it is already on
v Get or set the horizontal alignment of the text

The following example shows you how to create an HTMLText object and set its bold attribute on and its
font size to 5.

HTMLText text = new HTMLText("IBM");
text.setBold(true);
text.setSize(5);
System.out.println(text.getTag());

The print statement produces the following tag:
IBM

When you use this tag in an HTML page, it looks like this:

IBM

Related information:
HTMLText Javadoc

HTMLTree classes
The HTMLTree class allows you to easily set up a hierarchical tree of HTML elements that you can use in
HTML pages.

This class provides methods to get and set various attributes of the tree, in addition to methods allowing
you to:
v Get and set the HTTP Servlet Request
v Add an HTMLTreeElement or FileTreeElement to the tree
v Remove an HTMLTreeElement or FileTreeElement from the tree

Examples: Using HTMLTree classes

The following examples show different ways to use the HTMLTree classes.
v “Example: Using HTMLTree classes” on page 608
v “Example: Creating a traversable integrated file system tree”
Related information:
HTMLTree Javadoc

Example: Creating a traversable integrated file system tree:

The following example is made of three files that, together, show how you can create a traversable
integrated file system tree. The example uses frames to display an HTMLTree and FileListElement in a
servlet.
v FileTreeExample.java - generates the HTML frames and starts the servlet
v TreeNav.java - builds and manages the tree
v TreeList.java - displays the contents of selections made in the TreeNav.java class

IBM Toolbox for Java 219

javadoc/com/ibm/as400/util/html/HTMLText.html
javadoc/com/ibm/as400/util/html/HTMLTree.html

HTMLTreeElement class:

The HTMLTreeElement class represents an hierarchical element within an HTMLTree or other
HTMLTreeElements.

Many tree element attributes can be retrieved or updating using methods that are provided in the
HTMLTreeElement class. Some of the actions you can do with these methods are:
v Get or set the visible text of the tree element
v Get or set the URL for the expanded and collapsed icon
v Set whether the tree element will be expanded

The following example creates an HTMLTreeElement object and displays the tag:
// Create an HTMLTree.
HTMLTree tree = new HTMLTree();

// Create parent HTMLTreeElement.
HTMLTreeElement parentElement = new HTMLTreeElement();
parentElement.setTextUrl(new HTMLHyperlink("http://myWebPage", "My Web Page"));

// Create HTMLTreeElement Child.
HTMLTreeElement childElement = new HTMLTreeElement();
childElement.setTextUrl(new HTMLHyperlink("http://anotherWebPage", "Another Web Page"));
parentElement.addElement(childElement);

// Add the tree element to the tree.
tree.addElement(parentElement);
System.out.println(tree.getTag());

The getTag() method in the above example generates HTML tags like the following:
<table cellpadding="0" cellspacing="3">
<tr>
<td><u>-</u> </td>
<td><u>My Web Page</u></td>
</tr>

<tr>
<td> </td>
<td>
<table cellpadding="0" cellspacing="3">
<tr>
<td><u>-</u> </td>
<td><u>Another Web Page</u> </td>
</tr>
</table>
</td>
</tr>
</table>

Related information:
HTMLTreeElement Javadoc

FileTreeElement class:

The IBM Toolbox for Java FileTreeElement class represents the Integrated File System within an
HTMLTree view.

Many tree element attributes can be retrieved or updating using methods that are provided in the
HTMLTreeElement class. You can also get and set the name and path of NetServer shared drives.

Some of the actions these methods enable you to perform are:

220 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/HTMLTreeElement.html

v Get or set the URL for the expanded and collapsed icon (inherited method)
v Set whether the tree element will be expanded (inherited method)
v Get or set the name of the NetServer shared drive
v Get or set the path of the NetServer shared drive

Example: Using FileTreeElement

The following example creates a FileTreeElement object and displays the tag:
// Create an HTMLTree.
HTMLTree tree = new HTMLTree();

// Create a URLParser object.
URLParser urlParser = new URLParser(httpServletRequest.getRequestURI());

// Create an AS400 object.
AS400 system = new AS400(mySystem, myUserId, myPassword);

// Create an IFSJavaFile object.
IFSJavaFile root = new IFSJavaFile(system, "/QIBM");

// Create a DirFilter object and get the directories.
DirFilter filter = new DirFilter();
File[] dirList = root.listFiles(filter);

for (int i=0; i < dirList.length; i++)
{

// Create a FileTreeElement.
FileTreeElement node = new FileTreeElement(dirList[i]);

// Set the Icon URL.
ServletHyperlink sl = new ServletHyperlink(urlParser.getURI());
sl.setHttpServletResponse(resp);
element.setIconUrl(sl);

// Add the FileTreeElement to the tree.
tree.addElement(element);

}

System.out.println(tree.getTag());

The getTag() method above gives the output of the example.
Related information:
FileTreeElement Javadoc

FileListElement class:

The IBM Toolbox for Java FileListElement class allows you to create a file list element, which represents
the contents of an integrated file system directory.

You can use the FileListElement object to represent the contents of a NetServer shared drive by getting
and setting the name and path of NetServer shared drives.

The FileListElement class provides methods that allow you to:
v List and sort the elements of the file list
v Get and set the HTTP Servlet Request
v Get and set the FileListRenderer
v Get and set the HTMLTable with which to display the file list
v Get and set the name of a NetServer shared drive

IBM Toolbox for Java 221

javadoc/com/ibm/as400/util/html/FileTreeElement.html

v Get and set the path of a NetServer shared drive

You can use the FileListElement class with other classes in the html package:
v With a FileListRenderer, you can specify how you want to display the list of files
v With the FileTreeElement class, you can create a traversable list of integrated file system files or

NetServer shared files

Example: Using FileListElement to create a traversable integrated file system tree

The following example shows how you can use the FileListElement class with HTMLTree classes
(FileTreeElement and HTMLTreeElement) to create a traversable integrated file system tree. The example
also includes code for setting the path of a NetServer shared drive.

“Example: Creating a traversable integrated file system tree” on page 219
Related information:
FileListElement Javadoc
FileTreeElement Javadoc
HTMLTreeElement Javadoc

FileListRenderer class:

The IBM Toolbox for Java FileListRenderer class renders any field for File objects (directories and files) in
a FileListElement.

The FileListRenderer class offers methods that allow you to perform the following actions:
v Get the name of the directory
v Get the name of the file
v Get the name of the parent directory
v Return the row data that you want to display in the FileListElement

This example creates an FileListElement object with a renderer:
// Create a FileListElement.
FileListElement fileList = new FileListElement(sys, httpservletrequest);

// Set the renderer specific to this servlet, which extends
// FileListRenderer and overrides applicable methods.
fileList.setRenderer(new myFileListRenderer(request));

If you don't want to use the default renderer, you can extend FileListRenderer and override methods or
create new ones. For example, you might want to ensure that you prevent passing the names of specific
directories or files with certain extensions to the FileListElement. By extending the class and overriding
the appropriate method, you can return null for these files and directories, ensuring that they are not
displayed.

To fully customize the rows within a FileListElement, use the getRowData() method. An example of
customizing row data using getRowData() might be adding a column to the row data or rearranging the
columns. When the default behavior of FileListRenderer is satisfactory, you need no additional
programming because the FileListElement class creates a default FileListRenderer.
Related reference:
“FileListElement class” on page 221
The IBM Toolbox for Java FileListElement class allows you to create a file list element, which represents
the contents of an integrated file system directory.
Related information:

222 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/html/FileListElement.html
javadoc/com/ibm/as400/util/html/FileTreeElement.html
javadoc/com/ibm/as400/util/html/HTMLTreeElement.html

FileListRenderer Javadoc

ReportWriter classes
The com.ibm.as400.util.reportwriter package provides classes that enable you to easily access and format
data from an XML source file or data produced by servlets or JavaServer Pages.

The reportwriter package is a convenient way to name three different but related packages:
v com.ibm.as400.util.reportwriter.pclwriter
v com.ibm.as400.util.reportwriter.pdfwriter
v com.ibm.as400.util.reportwriter.processor

These packages include a variety of classes that allow you to format XML data streams and generate
reports in those formats. Make sure you have the necessary JAR files in your CLASSPATH, including an
XML parser and an XSLT processor. For more information, see the following pages:
v JAR files

Context classes (in the pclwriter and pdfwriter packages) define methods that the ReportProcessor classes
need to render XML and JSP data in the chosen format:
v Use PCLContext in combination with a ReportWriter class to generate a report in the Hewlett Packard

Printer Control Language (PCL) format.
v Use PDFContext in combination with a ReportWriter class to generate a report in the Adobe Portable

Document Format (PDF).

ReportProcessor classes (in the processor package) enable you to generate formatted reports from
information your application gathers from Java servlets and JavaServer Pages (JSPs).
v Use the JSPReportProcessor class to retrieve data from servlets and JSP pages to produce reports in the

available formats (contexts).

Context classes
The IBM Toolbox for Java context classes support specific data formats, that, in combination with the
OutputQueue and SpooledFileOutputStream classes, enable the ReportWriter classes to generate reports
in that format and put those reports in a spool file.

Your application only has to create an instance of the Context class, which the ReportWriter classes then
use to generate the reports. Your application never directly calls any of the methods in either Context
class. The PCLContext and PDFContext methods are meant to be used internally by the ReportWriter
classes.

Constructing an instance of the Context class requires an OutputStream (from the java.io package) and a
PageFormat (from the java.awt.print package). Example: Using JSPReportProcessor with PDFContext
show how you can construct and use the Context classes with other ReportWriter classes to generate
reports.

OutputQueue Javadoc
SpooledFileOutputStream Javadoc
“ReportWriter classes”
The com.ibm.as400.util.reportwriter package provides classes that enable you to easily access and
format data from an XML source file or data produced by servlets or JavaServer Pages.
“Example: Using XSLReportProcessor with PCLContext” on page 633
This example should not be used as the XSLReportProcessor class is no longer supported.
“Example: Using JSPReportProcessor with PDFContext” on page 629
This example uses the JSPReportProcessor and the PDFContext classes to obtain data from a specified
URL and convert the data to the PDF format. The data is then streamed to a file as a PDF document.

IBM Toolbox for Java 223

javadoc/com/ibm/as400/util/html/FileListRenderer.html
javadoc/com/ibm/as400/access/OutputQueue.html
javadoc/com/ibm/as400/access/SpooledFileOutputStream.html

JSPReportProcessor class
The JSPReportProcessor class enables you to create a document or report from the contents of a
JavaServer Page (JSP) or Java servlet.

Use this class to obtain a JSP or servlet from a given URL and create a document from the contents. The
JSP or servlet must provide the document data, including XSL formatting objects. You must specify the
output context and the JSP input data source before you can generate any pages of the document. You
can then convert the report data to a specified output data stream format.

The JSPReportProcessor class allows you to:
v Process the report
v Set a URL as the template

The following examples show how you can use the JSPReportProcessor and the PDFContext classes to
generate a report. The examples include both the Java and the JSP code, which you can view by using the
following links. You can also download a ZIP file that contains the example JSP, XML, and XSL source
files for the JSPReportProcessor examples:
v “Example: Using JSPReportProcessor with PDFContext” on page 629
v “Example: JSPReportProcessor sample JSP file” on page 630

Java Server Pages technology

XSLReportProcessor class
The XSLReportProcessor class is no longer supported and should not be used.

The XSLReportProcessor class enables you to create a document or report by transforming and formatting
your XML source data using an XSL stylesheet. Use this class to create the report by using an XSL
stylesheet that contains XSL formatting objects (FOs), which must conform to the XSL specification. You
then use a Context class to convert the report data to a specified output data stream format.

The XSLReportProcessor class allows you to:
v Set the XSL stylesheet
v Set the XML data source
v Set the XSL FO source
v Process a report

Examples

The following examples show how you can use the XSLReportProcessor and the PCLContext classes to
generate a report. The examples include the Java, XML, and XSL code, which you can view by using the
following links. You can also download a zip file that contains the example XML, XSL, and JSP source
files for both the XSLReportProcessor and JSPReportProcessor examples:
v Example: Using XSLReportProcessor with PCLContext
v Example: XSLReportProcessor sample XML file
v Example: XSLReportProcessor sample XSL file

For more information about XML and XSL, see the XML Toolkit topic in the Information Center.

Resource classes
The Resource package and its classes have been deprecated. You are advised to use the Access package
instead.

224 IBM i: Programming IBM Toolbox for Java

xmlxsljspsamples.zip
http://java.sun.com/products/jsp/
xmlxsljspsamples.zip

The com.ibm.as400.resource package provides a generic framework for working with various AS400
objects and lists. This framework provides a consistent programming interface to all such objects and
lists.

The resource package includes the following classes:
v Resource - an object that represents a system resource, such as a user, printer, job, message, or file.

Concrete subclasses of resource include:
– RIFSFile
– RJavaProgram
– RJob
– RPrinter
– RQueuedMessage
– RSoftwareResource
– RUser

Note: The NetServer classes in the access package are also concrete subclasses of Resource.
v ResourceList - an object that represents a list of system resources, such as a list of users, printers, jobs,

messages, or files. Concrete subclasses of resource include:
– RIFSFileList
– RJobList
– RJobLog
– RMessageQueue
– RPrinterList
– RUserList

v Presentation - an object that allows you to present information about resource objects, resource lists,
attributes, selections, and sorts to end users

Resource and ChangeableResource classes
The Resource package and its classes have been deprecated. You are advised to use the Access package
instead.

The com.ibm.as400.resource.Resource and com.ibm.as400.resource.ChangeableResource abstract classes
represent an IBM i resource.

Resource

Resource is an abstract class that provides generic access to the attributes of any resource. Every attribute
is identified using an attribute ID, and any given subclass of Resource will normally document the
attribute IDs that it supports.

Resource provides only read access to the attribute values.

IBM Toolbox for Java provides the following resource objects:
v RIFSFile - represents a file or directory in the integrated file system
v RJavaProgram - represents a Java program on the server
v RJob - represents an IBM i job
v RPrinter - represents an IBM i printer
v RQueuedMessage - represents a message in an IBM i message queue or job log
v RSoftwareResource - represents a licensed program on the system
v RUser - represents an IBM i user

IBM Toolbox for Java 225

javadoc/com/ibm/as400/resource/package-summary.html

ChangeableResource

The ChangeableResource abstract class, a subclass of Resource, adds the ability to change attribute values
of a system resource. Attribute changes are cached internally until they are committed or canceled. This
allows you to change many attribute values at once.

Note: The NetServer classes in the access package are also concrete subclasses of Resource and
ChangeableResource.

Examples

The following examples show how you can directly use concrete subclasses of Resource and
ChangeableResource, and also how generic code can work with any Resource or ChangeableResource
subclass.
v Retrieving an attribute value from RUser, a concrete subclass of Resource
v Setting attribute values for RJob, a concrete subclass of ChangeableResource
v Using generic code to access resources

Resource lists
The Resource package and its classes have been deprecated. You are advised to use the Access package
instead.

The com.ibm.as400.resource.ResourceList class represents a list of system resources. This is an abstract
class which provides generic access to the contents of the list.

IBM Toolbox for Java provides the following resource lists:
v RIFSFileList - represents a list of files and directories in the integrated file system
v RJobList - represents a list of system jobs
v RJobLog - represents a list of messages in a system job log
v RMessageQueue - represents a list of messages in a system message queue
v RPrinterList - represents a list of system printers
v RUserList - represents a list of system users

A resource list is always either open or closed. The resource list must be open in order to access its
contents. In order to provide immediate access to the contents of the list and manage memory efficiently,
most resource lists are loaded incrementally.

Resource lists allow you to:
v Open the list
v Close the list
v Access a specific Resource from the list
v Wait for a particular resource to load
v Wait for the complete resource list to load

You can also filter resource lists by using selection values. Every selection value is identified using a
selection ID. Similarly, resource lists can be sorted using sort values. Every sort value is identified using a
sort ID. Any given subclass of ResourceList will normally document the selection IDs and sort IDs that it
supports.

226 IBM i: Programming IBM Toolbox for Java

Examples

The following examples show various ways of working with resource lists:
v Example: Getting and printing the contents of a ResourceList
v Example: Using generic code to access a ResourceList
v Example: Presenting a resource list in a servlet (HTML table)

Code example disclaimer

The following disclaimer applies to all of the IBM Toolbox for Java examples:

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Presentation class
The Resource package and its classes have been deprecated. You are advised to use the Access package
instead.

Every resource object, resource list, and meta data object has an associated
com.ibm.as400.resource.Presentation object that provides translated information, such as the name, full
name, and icon.

Example: Printing a resource list and its sort values using their Presentations

You can use the Presentation information to present resource objects, resource lists, attributes, selections,
and sorts to end users in text format.

void printCurrentSort(ResourceList resourceList) throws ResourceException
{

// Get the presentation for the ResourceList and print its full name.
Presentation resourceListPresentation = resourceList.getPresentation();
System.out.println(resourceListPresentation.getFullName());

// Get the current sort value.
Object[] sortIDs = resourceList.getSortValue();

// Print each sort ID.
for(int i = 0; i < sortIDs.length; ++i)
{

ResourceMetaData sortMetaData = resourceList.getSortMetaData(sortIDs[i]);
System.out.println("Sorting by " + sortMetaData.getName());

}
}

Security classes
You use the IBM Toolbox for Java security classes to provide secured connections to a server, verify a
user's identity, and associate a user with the operating system thread when running on the local server.

The security services included are:

IBM Toolbox for Java 227

javadoc/com/ibm/as400/resource/Presentation.html

v Communications infrastructure using Java Secure Socket Extension (JSSE) provides secure connections
both by encrypting the data exchanged between a client and a server session and by performing server
authentication.

v Authentication Services provide the ability to:
– Authenticate a user identity and password against the IBM i user registry.
– Ability to assign an identity to the current IBM i thread.

Secure Sockets Layer
Secure Sockets Layer (SSL) provides secure connections by encrypting the data exchanged between a
client and server session, and by performing server authentication.

Using SSL negatively affects performance because SSL connections perform more slowly than connections
that do not have encryption. Use SSL connections when the security of the data transferred is a higher
priority than performance, for example, when transferring credit card or bank statement information.

Contact your IBM representative for more information.

Using encryption between the IBM Toolbox for Java classes and the IBM i servers

Using SSL to encrypt data between IBM Toolbox for Java and IBM i servers:

You can use SSL to encrypt data exchanged between IBM Toolbox for Java classes and IBM i servers.

On the client side, use JSSE to encrypt the data. On the server side, you must use the IBM i digital
certificate manager to configure the IBM i servers to exchange encrypted data.

Setting up your client and server to use SSL

To encrypt data flowing between the IBM Toolbox for Java classes and IBM i servers, complete the
following tasks:
1. Set up your servers to exchange encrypted data.
2. Use the SecureAS400 object to force IBM Toolbox for Java to encrypt data.

Note: Completing the first two steps above only creates a secure path between the client and the
server. Your application must use the SecureAS400 object to tell the IBM Toolbox for Java which
data to encrypt. Data that flows through the SecureAS400 object is the only data that is
encrypted. If you use an AS400 object, data is not encrypted and the normal path to the server
is used.

Setting up IBM i to use SSL:

To set up your system to use SSL with IBM Toolbox for Java, complete the following steps.
1. Get and configure the server certificate.
2. Apply the certificate to the following systems that are used by IBM Toolbox for Java:
v QIBM_OS400_QZBS_SVR_CENTRAL
v QIBM_OS400_QZBS_SVR_DATABASE
v QIBM_OS400_QZBS_SVR_DTAQ
v QIBM_OS400_QZBS_SVR_NETPRT
v QIBM_OS400_QZBS_SVR_RMTCMD
v QIBM_OS400_QZBS_SVR_SIGNON
v QIBM_OS400_QZBS_SVR_FILE
v QIBM_OS400_QRW_SVR_DDM_DRDA

228 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/SecureAS400.html

Getting and configuring server certificates

Before you get and configure your server certificate, you need to install the following products:

v IBM HTTP Server

(5770-DG1) licensed program
v Base operating system option 34 (Digital Certificate Manager)

The process you follow to get and configure your server certificate depends on the kind of certificate you
use:
v If you get a certificate from a trusted authority (such as VeriSign, Inc., or RSA Data Security, Inc.),

install the certificate on the system then apply it to the host servers.
v If you choose not to use a certificate from a trusted authority, you can build your own certificate to be

used on the system. Build the certificate by using Digital Certificate Manager:
1. Create the certificate authority on the system. See the Information Center topic Acting as your own

CA.
2. Create a system certificate from the certificate authority that you created.
3. Assign which host servers will use the system certificate that you created.

Authentication services
Classes are provided by the IBM Toolbox for Java that interact with the security services provided by
IBM i.

Specifically, support is provided to authenticate a user identity, sometimes referred to as a principal, and
password against the IBM i user registry. A credential representing the authenticated user can then be
established. You can use the credential to alter the identity of the current IBM i thread to perform work
under the authorities and permissions of the authenticated user. In effect, this swap of identity results in
the thread acting as if a signon was performed by the authenticated user.

Overview of support provided

The AS400 object provides authentication for a given user profile and password against the server. You
can also retrieve Kerberos tickets and profile tokens that represent authenticated user profiles and
passwords for the system.

Note: Using Kerberos tickets requires that you install J2SDK, v1.4 and configure the Java General
Security Services (JGSS) Application Programming Interface. For more information about JGSS, see

the J2SDK, v1.4 Security Documentation .

To use Kerberos tickets, set only the system name (and not the password) into the AS400 object. The user
identity is retrieved through the JGSS framework. You can set only one means of authentication in an
AS400 object at a time. Setting the password clears any Kerberos ticket or profile token.

To use profile tokens, use the getProfileToken() methods to retrieve instances of the
ProfileTokenCredential class. Think of profile tokens as a representation of an authenticated user profile
and password for a specific server. Profile tokens expire based on time, up to one hour, but can be
refreshed in certain cases to provide an extended life span.

Note: If you use the ProfileTokenCredential class, make sure to review the information at the bottom of
this page that discuss the methods for setting tokens.

The following example creates a system object and uses that object to generate a profile token. The
example then uses the profile token to create another system object, and uses the second system object to
connect to the command service:

IBM Toolbox for Java 229

http://java.sun.com/j2se/1.4/docs/guide/security/index.html

AS400 system = new AS400("mySystemName", "MYUSERID", "MYPASSWORD");
ProfileTokenCredential myPT = system.getProfileToken();
AS400 system2 = new AS400("mySystemName", myPT);
system2.connectService(AS400.COMMAND);

Setting thread identities

You can establish a credential on either a remote or local context. Once created, you can serialize or
distribute the credential as required by the calling application. When passed to a running process on the
associated server, a credential can be used to modify or swap the IBM i thread identity and perform work
on behalf of the previously authenticated user.

A practical application of this support might be in a two tier application, with authentication of a user
profile and password being performed by a graphical user interface on the first tier (i.e. a PC) and work
being performed for that user on the second tier (the server). By utilizing ProfileTokenCredentials, the
application can avoid directly passing user IDs and passwords over the network. The profile token can
then be distributed to the program on the second tier, which can perform the swap() and operate under
the IBM i authorities and permissions assigned to the user.

Note: While inherently more secure than passing a user profile and password due to limited life span,
profile tokens should still be considered sensitive information by the application and handled
accordingly. Since the token represents an authenticated user and password, it could potentially be
exploited by a hostile application to perform work on behalf of that user. It is ultimately the
responsibility of the application to ensure that credentials are accessed in a secure manner.

Methods for setting tokens in ProfileTokenCredential

The methods for setting tokens in ProfileTokenCredential class require that you distinguish different ways
to specify passwords:
v As a special value, such as *NOPWD or *NOPWDCHK, by using a defined special value integer
v As the password for the user profile by using a String that represents the password

Note: In V5R3, IBM Toolbox for Java deprecates the setToken methods that do not require you to
distinguish how to specify the password.

Additionally, the setToken methods allow remote users to specify password special values and allow
longer user profile passwords of up to 128 characters.

To specify a password special value integer, such as *NOPWD or *NOPWDCHK, use one of the following
methods:
v setToken(AS400Principal principal, int passwordSpecialValue)
v setToken(String name, int passwordSpecialValue)

The ProfileTokenCredential class includes the following static constants for password special value
integers:
v ProfileTokenCredential.PW_NOPWD: indicates *NOPWD
v ProfileTokenCredential.PW_NOPWDCHK: indicates *NOPWDCHK

To specify a user profile password as a String, use one of the following methods:
v setTokenExtended(AS400Principal principal, String password)
v setTokenExtended(String name, String password)

The setTokenExended methods do not allow you to pass password special value strings as the password
parameter. For example, these methods do not allow a password string of *NOPWD.

230 IBM i: Programming IBM Toolbox for Java

For more information, see the ProfileTokenCredential Javadoc reference information.

Example

Refer to this code for an example of how to use a profile token credential to swap the IBM i thread
identity and perform work on behalf of a specific user.

AS400 Javadoc
ProfileTokenCredential Javadoc

Servlet classes
The servlet classes that are provided with IBM Toolbox for Java work with the access classes, which are
located on the Webserver, to give you access to information located on the server. You decide how to use
the servlet classes to assist you with your own servlet projects.

The following diagram shows how the servlet classes work between the browser, webserver, and IBM i
data. A browser connects to the webserver that is running the servlet. jt400Servlet.jar and jt400.jar files
reside on the webserver because the servlet classes use some of the access classes to retrieve the data and
the HTML classes to present the data. The webserver is connected to the server where the data is.

Figure 1: How servlets work

“Long description of
Figure 1: How servlets work (rzahh585.gif)”

Note: The jt400Servlet.jar file includes both the HTML and Servlet classes. You must update your
CLASSPATH to point to both jt400Servlet.jar and jt400.jar if you want to use classes in the
com.ibm.as400.util.html and com.ibm.as400.util.servlet packages.

For more information about servlets in general, see the reference section.

Long description of Figure 1: How servlets work (rzahh585.gif)
found in IBM Toolbox for Java: Servlet classes

This figure illustrates in a general way how servlets work.

Description

The figure is composed of the following:
v An image on the left of a personal computer, labeled 'Browser,' that represents an instance of a browser

running on a personal computer.
v An image of an IBM i server on the right, labeled 'System i Data,' that represents the location of the

data that you want the servlet to access.

IBM Toolbox for Java 231

javadoc/com/ibm/as400/access/AS400.html
javadoc/com/ibm/as400/security/auth/ProfileTokenCredential.html

v An image of an IBM i server in the middle (between the other two images), labeled 'WebServer,' that
represents the Web server. Several labeled shapes on the WebServer image indicate files or functions
that reside on the Web server:
– A green oval labeled Servlet that represents the location of the servlet code.
– A tan circle labeled jt400Servlet that indicates the location of the jt400Servlet.jar file.
– A tan circle labeled jt400 that indicates the location of the jt400.jar file.

Note: The Web server does not have to be on an IBM i server, but it can be, and can even be the same
server as that indicated by the System i Data image.

v Lines that connect the images together.

A line labeled HTML connects the Browser (the left image) to a Servlet (the green oval) on the Web server
(middle image). The line is labeled HTML because servlets most often use HTML to 'serve' data to the
browser.

The Web server is running two IBM Toolbox for Java JAR files (the tan circles), jt400Servlet.jar and
jt400.jar. The classes in jt400Servlet.jar, along with the classes in jt400.jar, enable the Web server to run a
servlet that easily connects to servers that contain IBM i data (the right image). The line with arrowheads
on both ends that connects the two images indicates this connection.

Authentication classes
Two classes in the servlet package perform authentication for servlets, AuthenticationServlet and
AS400Servlet.

AuthenticationServlet class

AuthenticationServlet is an HttpServlet implementation that performs basic authentication for servlets.
Subclasses of AuthenticationServlet override one or more of the following methods:
v Override the validateAuthority() method to perform the authentication (required)
v Override the bypassAuthentication() method so that the subclass authenticates only certain requests
v Override the postValidation() method to allow additional processing of the request after authentication

The AuthenticationServlet class provides methods that allow you to:
v Initialize the servlet
v Get the authenticated user ID
v Set a user ID after bypassing authentication
v Log exceptions and messages

AS400Servlet class

The AS400Servlet class is an abstract subclass of AuthenticationServlet that represents an HTML servlet.
You can use a connection pool to share connections and manage the number of connections to the server
that a servlet user can have.

The AS400Servlet class provides methods that allow you to:
v Validate user authority (by overriding the validateAuthority() method of the AuthenticationServlet

class)
v Connect to a system
v Get and return connection pool objects to and from the pool
v Close a connection pool
v Get and set the HTML document head tags
v Get and set the HTML document end tags

232 IBM i: Programming IBM Toolbox for Java

For more information about servlets in general, see the reference section.
AuthenticationServlet Javadoc
AS400Servlet Javadoc

RowData class
The RowData class is an abstract class that provides a way to describe and access a list of data.

The RowData classes allow you to:
v Get and set the current position
v Get the row data at a given column using the getObject() method
v Get the meta data for the row
v Get or set the properties for an object at a given column
v Get the number of rows in the list using the length() method.

RowData position

There are several methods that allow you to get and set the current position within a list. The following
table lists both the set and get methods for the RowData classes.

Set methods Get methods

absolute() next() getCurrentPosition()

afterLast() previous() isAfterLast()

beforeFirst() relative() isBeforeFirst()

first() isFirst()

last() isLast()

Related information:
RowData Javadoc

ListRowData class:

The IBM Toolbox for Java ListRowData class represents a list of data in table form. In the table, each row
contains a finite number of columns determined by the ListMetaData object and each column within a
row contains an individual data item. The data can be a directory in the integrated file system, a list of
jobs, a list of printers, or a variety of other data.

The ListRowData class allows you to do the following:
v Add and remove rows to and from the result list.
v Get and set the row
v Get information about the list's columns with the getMetaData() method
v Set column information with the setMetaData() method

The ListRowData class represents a list of data. ListRowData can represent many types of information,
including the following, through IBM Toolbox for Java access classes:
v A directory in the integrated file system
v A list of jobs
v A list of messages in a message queue
v A list of users
v A list of printers
v A list of spooled files

IBM Toolbox for Java 233

javadoc/com/ibm/as400/util/servlet/AuthenticationServlet.html
javadoc/com/ibm/as400/util/servlet/AS400Servlet.html
javadoc/com/ibm/as400/util/servlet/RowData.html

Example

The following example shows how the ListRowData and HTMLTableConverter classes work. The
example shows the Java code, HTML code, and HTML look and feel.

“Example: Using ListRowData” on page 652
ListRowData Javadoc

RecordListRowData class:

The IBM Toolbox for Java RecordListRowData class allows you to do the following:
v Add and remove rows to and from the record list.
v Get and set the row
v Set the record format with the setRecordFormat method
v Get the record format

The RecordListRowData class represents a list of records. A record can be obtained from the server in
different formats, including:
v A record to be written to or read from a server file
v An entry in a data queue
v The parameter data from a program call
v Any data returned that needs to be converted between the server format and Java format

This example shows you how RecordListRowData and HTMLTableConverter work. It shows the java
code, HTML code, and HTML look and feel.
Related information:
RecordListRowData Javadoc

ResourceListRowData class:

The IBM Toolbox for Java ResourceListRowData class represents a resource list of data. Use
ResourceListRowData objects to represent any implementation of the ResourceList interface.

Resource lists are formatted into a series of rows, where each row contains a finite number of columns
determined by the number of column attribute IDs. Each column within a row contains an individual
data item.

The ResourceListRowData class offers methods that enable you to perform the following actions:
v Get and set column attribute IDs
v Get and set the resource list
v Retrieve the number of rows in the list
v Get the column data for the current row
v Get the property list of the data object
v Get the metadata for the list

Example: Presenting a resource list in a servlet

Code example disclaimer

The following disclaimer applies to all of the IBM Toolbox for Java examples:

234 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/servlet/ListRowData.html
javadoc/com/ibm/as400/util/servlet/RecordListRowData.html

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Related reference:
“Resource lists” on page 226
The Resource package and its classes have been deprecated. You are advised to use the Access package
instead.
Related information:
ResourceListRowData Javadoc

SQLResultSetRowData class:

The SQLResultSetRowData class represents an SQL result set as a list of data. This data is generated by
an SQL statement through JDBC. With methods provided, you can get set the result set metadata.

This example shows you how ListRowData and HTMLTableConverter work. It shows the Java code,
HTML code, and HTML look and feel.
Related reference:
“JDBC classes” on page 60
JDBC is an application programming interface (API) included in the Java platform that enables Java
programs to connect to a wide range of databases.
Related information:
SQLResultSetRowData Javadoc

RowMetaData classes
The RowMetaData class defines an interface that you use to find out information about the columns of a
RowData object.

With the RowMetaData classes you can do the following:
v Get the number of columns
v Get the name, type, or size of the column
v Get or set the column label
v Get the precision or scale of the column data
v Determine if the column data is text data
Related information:
RowMetaData Javadoc

ListMetaData class:

The IBM Toolbox for Java ListMetaData class lets you get information about and change settings for the
columns in a ListRowData class. It uses the setColumns() method to set the number of columns, clearing
any previous column information. Alternatively, you can also pass the number of columns when you set
the constructor's parameters.

IBM Toolbox for Java 235

javadoc/com/ibm/as400/util/servlet/ResourceListRowData.html
javadoc/com/ibm/as400/util/servlet/SQLResultSetRowData.html
javadoc/com/ibm/as400/util/servlet/RowMetaData.html

Example

The following example shows how ListMetaData, ListRowData and HTMLTableConverter work. It shows
the Java code, HTML code, and HTML look and feel.

“Example: Using ListRowData” on page 652
ListMetaData Javadoc
“ListRowData class” on page 233
The IBM Toolbox for Java ListRowData class represents a list of data in table form. In the table, each
row contains a finite number of columns determined by the ListMetaData object and each column
within a row contains an individual data item. The data can be a directory in the integrated file
system, a list of jobs, a list of printers, or a variety of other data.

RecordFormatMetaData class:

The RecordFormatMetaData makes use of the IBM Toolbox for Java RecordFormat class. It allows you to
provide the record format when you set the constructor's parameters or use the get set methods to access
the record format.

The following example shows you how to create a RecordFormatMetaData object:
// Create a RecordFormatMetaData object from a sequential file’s record format.
RecordFormat recordFormat = sequentialFile.getRecordFormat();
RecordFormatMetaData metadata = new RecordFormatMetaData(recordFormat);

// Display the file’s column names.
int numberOfColumns = metadata.getColumnCount();
for (int column=0; column < numberOfColumns; column++)
{

System.out.println(metadata.getColumnName(column));
}

Related information:
RecordFormatMetaData Javadoc
RecordFormat Javadoc

SQLResultSetMetaData class:

The SQLResultSetMetaData class returns information about the columns of an SQLResultSetRowData
object. You can either provide the result set when you set the constructor's parameters or use the get and
set methods to access the result set meta data.

The following example shows you how to create an SQLResultSetMetaData object:
// Create an SQLResultSetMetaData object from the result set’s metadata.
SQLResultSetRowData rowdata = new SQLResultSetRowData(resultSet);
SQLResultSetMetaData sqlMetadata = rowdata.getMetaData();

// Display the column precision for non-text columns.
String name = null;
int numberOfColumns = sqlMetadata.getColumnCount();
for (int column=0; column < numberOfColumns; column++)
{

name = sqlMetadata.getColumnName(column);
if (sqlMetadata.isTextData(column))
{

System.out.println("Column: " + name + " contains text data.");
}
else

236 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/servlet/ListMetaData.html
javadoc/com/ibm/as400/util/servlet/RecordFormatMetaData.html
javadoc/com/ibm/as400/access/RecordFormat.html

{
System.out.println("Column: " + name + " has a precision of " + sqlMetadata.getPrecision(column));

}
}

SQLResultSetMetaData Javadoc
“SQLResultSetRowData class” on page 235
The SQLResultSetRowData class represents an SQL result set as a list of data. This data is generated
by an SQL statement through JDBC. With methods provided, you can get set the result set metadata.

Converter classes
You use the IBM Toolbox for Java converter classes to convert row data into formatted string arrays.

The result is in HTML format and ready for presentation on your HTML page. The following classes take
care of the conversion for you:

StringConverter class:

The StringConverter class is an abstract class that represents a row data string converter. It provides a
convert() method to convert row data. This returns a string array representation of that row's data.
Related information:
StringConverter Javadoc

HTMLFormConverter class:

The IBM Toolbox for Java HTMLFormConverter classes extend StringConverter by providing an
additional convert method called convertToForms(). This method converts row data into an array of
single-row HTML tables. You can use these table tags to display the formatted information on a browser.

You can tailor the appearance of the HTML form by using the various get and set methods to view or
change the attributes of the form. For example, some of the attributes that you can set include:
v Alignment
v Cell spacing
v Header hyper links
v Width

Example: Using HTMLFormConverter

The following example illustrates using HTMLFormConverter. (You can compile and run this example
with a webserver running.)

Using HTMLFormConverter
Related reference:
“StringConverter class”
The StringConverter class is an abstract class that represents a row data string converter. It provides a
convert() method to convert row data. This returns a string array representation of that row's data.
Related information:
HTMLFormConverter Javadoc

HTMLTableConverter class:

The HTMLTableConverter class extends StringConverter by providing a convertToTables() method. This
method converts row data into an array of HTML tables that a servlet can use to display the list on a
browser.

IBM Toolbox for Java 237

javadoc/com/ibm/as400/util/servlet/SQLResultSetMetaData.html
javadoc/com/ibm/as400/util/servlet/StringConverter.html
javadoc/com/ibm/as400/util/servlet/HTMLFormConverter.html

You can use the getTable() and setTable() methods to choose a default table that will be used during
conversion. You can set table headers within the HTML table object or you can use the meta data for the
header information by setting setUseMetaData() to true.

The setMaximumTableSize() method allows you to limit the number of rows in a single table. If the row
data does not all fit within the specified size of table, the converter will produce another HTML table
object in the output array. This will continue until all row data has been converted.

Examples

The following examples illustrate how to use the HTMLTableConverter class:
v Example: Using ListRowData
v Example: Using RecordListRowData
v Example: Using SQLResultSetRowData
v Example: Presenting ResourceList in a servlet

Code example disclaimer

The following disclaimer applies to all of the IBM Toolbox for Java examples:

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

HTMLTableConverter Javadoc

Utility classes
The utility classes enable you to do administrative tasks, such as using the AS400JarMaker class.

IBM Toolbox for Java offers the following utilities:

Client installation and update classes
For most installation and update purposes, the IBM Toolbox for Java classes can be referenced at their
location in the integrated file system on the server.

Because program temporary fixes (PTFs) are applied to this location, Java programs that access these
classes directly on the server automatically receive these updates. But, accessing the classes from the
server does not always work, specifically for the following situations:
v If a low-speed communication link connects server and the client, the performance of loading the

classes from the server may be unacceptable.
v If Java applications use the CLASSPATH environment variable to access the classes on the client file

system, you need IBM i Access for Windows to redirect file system calls to the server. It may not be
possible for IBM i Access for Windows to reside on the client.

In these cases, installing the classes on the client is a better solution.

238 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/servlet/HTMLTableConverter.html

AS400ToolboxJarMaker
While the JAR file format was designed to speed up the downloading of Java program files, the
AS400ToolboxJarMaker generates an even faster loading IBM Toolbox for Java JAR file through its ability
to create a smaller JAR file from a larger one.

Also, the AS400ToolboxJarMaker class can unzip a JAR file for you to gain access to the individual
content files for basic use.

Flexibility of AS400ToolboxJarMaker

All of the AS400ToolboxJarMaker functions are performed with the JarMaker class and the
AS400ToolboxJarMaker subclass:
v The generic JarMaker tool operates on any JAR or Zip file; it splits a JAR file or reduces the size of a

JAR file by removing classes that are not used.
v The AS400ToolboxJarMaker customizes and extends JarMaker functions for easier use with IBM

Toolbox for Java JAR files.

According to your needs, you can invoke the AS400ToolboxJarMaker methods from within your own Java
program or from a command line. Call AS400ToolboxJarMaker from the command line by using the
following syntax:

java utilities.JarMaker [options]

where
v options = one or more of the available options

For a complete set of options available to run at a command line prompt, see the following in the
Javadoc:
v Options for the JarMaker base class
v Extended options for the AS00ToolboxJarMaker subclass

Using AS400ToolboxJarMaker

You can use AS400ToolboxJarMaker to work with JAR files in several ways:
v Uncompress one file bundled within a JAR file
v Split a large JAR file into smaller JAR files
v Exclude any IBM Toolbox for Java files that your application does not need to run

Uncompressing a JAR file

Suppose you wanted to uncompress just one file bundled within a JAR file. AS400ToolboxJarMaker
allows you to expand the file into one of the following:
v Current directory (extract(jarFile))
v Another directory (extract(jarFile, outputDirectory))

For example, with the following code, you are extracting AS400.class and all of its dependent classes from
jt400.jar:

java utilities.AS400ToolboxJarMaker -source jt400.jar
-extract outputDir
-requiredFile com/ibm/as400/access/AS400.class

Splitting up a single JAR file into multiple, smaller JAR files

IBM Toolbox for Java 239

javadoc/utilities/JarMaker.html
javadoc/utilities/AS400ToolboxJarMaker.html

Suppose you wanted to split up a large JAR file into smaller JAR files, according to your preference for
maximum JAR file size. AS400ToolboxJarMaker, accordingly, provides you with the split(jarFile, splitSize)
function.

In the following code, jt400.jar is split into a set of smaller JAR files, none larger than 300KB:
java utilities.AS400ToolboxJarMaker -split 300

Removing unused files from a JAR file

With AS400ToolboxJarMaker, you can exclude any IBM Toolbox for Java files not needed by your
application by selecting only the IBM Toolbox for Java components, languages, and CCSIDs that you
need to make your application run. AS400ToolboxJarMaker also provides you with the option of
including or excluding the JavaBean files associated with the components you select.

For example, the following command creates a JAR file that contains only those IBM Toolbox for Java
classes needed to make the CommandCall and ProgramCall components of the IBM Toolbox for Java
work:

java utilities.AS400ToolboxJarMaker -component CommandCall,ProgramCall

Additionally, if it is unnecessary to convert text strings between Unicode and the double byte character
set (DBCS) conversion tables, you can create a 400KB byte smaller JAR file by omitting the unneeded
conversion tables with the -ccsid option:

java utilities.AS400ToolboxJarMaker -component CommandCall,ProgramCall -ccsid 61952

Note: Conversion classes are not included with the program call classes. When including program call
classes, you must also explicitly include the conversion classes used by your program by using the
-ccsid option.

JarMaker Javadoc
AS400ToolboxJarMaker Javadoc

Components supported by IBM Toolbox for Java:

Following table lists the component IDs that you can specify when invoking the AS400ToolboxJarMaker
tool.
v The Component column lists the common name for the component.
v The Keyword column lists the keyword that you should specify when using the -component option tag.
v The Constant column lists the Integer value that you should specify in setComponents() and

getComponents().

Component Keyword Constant

Server object AS400 AS400ToolboxJarMaker.AS400

Command Call CommandCall AS400ToolboxJarMaker.COMMAND_CALL

Connection Pool ConnectionPool AS400ToolboxJarMaker.CONNECTION_POOL

Data Areas DataArea AS400ToolboxJarMaker.DATA_AREA

Data Description
and Conversion

DataDescription AS400ToolboxJarMaker.DATA_DESCRIPTION

Data Queues DataQueue AS400ToolboxJarMaker.DATA_QUEUE

Digital Certificates DigitalCertificate AS400ToolboxJarMaker.DIGITAL_CERTIFICATE

FTP FTP AS400ToolboxJarMaker.FTP

Integrated File
System

IntegratedFileSystem AS400ToolboxJarMaker.INTEGRATED_FILE_SYSTEM

240 IBM i: Programming IBM Toolbox for Java

javadoc/utilities/JarMaker.html
javadoc/utilities/AS400ToolboxJarMaker.html

Component Keyword Constant

JAAS JAAS AS400ToolboxJarMaker.JAAS

Java Application
Call

JavaApplicationCall AS400ToolboxJarMaker.JAVA_APPLICATION_CALL

JDBC JDBC AS400ToolboxJarMaker.JDBC

Jobs and Job
Queues

Job AS400ToolboxJarMaker.JOB

Messages and
Message Queues

Message AS400ToolboxJarMaker.MESSAGE

Numeric Data
Types

NumericDataTypes AS400ToolboxJarMaker.NUMERIC_DATA_TYPES

NetServer NetServer AS400ToolboxJarMaker.NETSERVER

Network Print Print AS400ToolboxJarMaker.PRINT

Program Call ProgramCall AS400ToolboxJarMaker.PROGRAM_CALL

Record Level
Access

RecordLevelAccess AS400ToolboxJarMaker.RECORD_LEVEL_ACCESS

Secure server SecureAS400 AS400ToolboxJarMaker.SECURE_AS400

Service Program
Call

ServiceProgramCall AS400ToolboxJarMaker.SERVICE_PROGRAM_CALL

System Status SystemStatus AS400ToolboxJarMaker.SYSTEM_STATUS

System Values SystemValue AS400ToolboxJarMaker.SYSTEM_VALUE

Trace and Logging Trace AS400ToolboxJarMaker.TRACE

Users and Groups User AS400ToolboxJarMaker.USER

User Spaces UserSpace AS400ToolboxJarMaker.USER_SPACE

Visual server
object

AS400Visual AS400ToolboxJarMaker.AS400_VISUAL

Visual Command
Call

CommandCallVisual AS400ToolboxJarMaker.COMMAND_CALL_VISUAL

Visual Data
Queues

DataQueueVisual AS400ToolboxJarMaker.DATA_QUEUE_VISUAL

Visual Integrated
File System

IntegratedFileSystemVisual AS400ToolboxJarMaker.INTEGRATED_FILE_SYSTEM_VISUAL

Visual Java
Application Call

JavaApplicationCallVisual AS400ToolboxJarMaker.JAVA_APPLICATION_CALL_VISUAL

Visual JDBC JDBCVisual AS400ToolboxJarMaker.JDBC_VISUAL

Visual Jobs and
Job Queues

JobVisual AS400ToolboxJarMaker.JOB_VISUAL

Visual Messages
and Message
Queues

MessageVisual AS400ToolboxJarMaker.MESSAGE_VISUAL

Visual Network
Print

PrintVisual AS400ToolboxJarMaker.PRINT_VISUAL

Visual Program
Call

ProgramCallVisual AS400ToolboxJarMaker.PROGRAM_CALL_VISUAL

Visual Record
Level Access

RecordLevelAccessVisual AS400ToolboxJarMaker.RECORD_LEVEL_ACCESS_VISUAL

IBM Toolbox for Java 241

Component Keyword Constant

Visual Users and
Groups

UserVisual AS400ToolboxJarMaker.USER_VISUAL

CCSID and encoding values supported by IBM Toolbox for Java:

IBM Toolbox for Java is shipped with a set of conversion tables, named according to the CCSID.

These tables are used internally by IBM Toolbox for Java classes (such as CharConverter) when
converting data that is transferred to or from an IBM i system. For example, the conversion table for
CCSID 1027 is in file com/ibm/as400/access/ConvTable1027.class. Conversion tables for the following
CCSIDs are included in the IBM Toolbox for Java JAR file; other encodings are supported by using the
JDK. The central server on the server is no longer used to download tables at runtime. Any specified
CCSID for which a conversion table or a JDK encoding cannot be found will cause an exception to be
thrown. Some of these tables may be redundant to tables included in your JDK. IBM Toolbox for Java
presently supports the following 122 different IBM i CCSIDs.

For additional information about CCSIDs, including a complete list of CCSIDs that are recognized on the
IBM i platform, see Globalization.

Supported CCSIDs in IBM Toolbox for Java

CCSID Format Description

37 Single-byte EBCDIC United States and others

273 Single-byte EBCDIC Austria, Germany

277 Single-byte EBCDIC Denmark, Norway

278 Single-byte EBCDIC Finland, Sweden

280 Single-byte EBCDIC Italy

284 Single-byte EBCDIC Spain, Latin America

285 Single-byte EBCDIC United Kingdom

290 Single-byte EBCDIC Japanese Katakana (single-byte only)

297 Single-byte EBCDIC France

300 Double-byte EBCDIC Japanese Graphic (subset of 16684)

367 ASCII/ISO/Windows ASCII (ANSI X3.4 standard)

420 Single-byte EBCDIC (bidirectional) Arabic EBCDIC ST4

423 Single-byte EBCDIC Greek (for compatibility; see 875)

424 Single-byte EBCDIC (bidirectional) Hebrew EBCDIC ST4

437 ASCII/ISO/Windows ASCII (USA PC Data)

500 Single-byte EBCDIC Latin-1 (MNCS)

720 ASCII/ISO/Windows Arabic (MS-DOS)

737 ASCII/ISO/Windows Greek (MS-DOS)

775 ASCII/ISO/Windows Baltic (MS-DOS)

813 ASCII/ISO/Windows ISO 8859-7 (Greek/Latin)

819 ASCII/ISO/Windows ISO 8859-1 (Latin-1)

833 Single-byte EBCDIC Korean (single-byte only)

834 Double-byte EBCDIC Korean Graphic (subset of 4930)

242 IBM i: Programming IBM Toolbox for Java

CCSID Format Description

835 Double-byte EBCDIC Traditional Chinese Graphic

836 Single-byte EBCDIC Simplified Chinese (single-byte only)

837 Double-byte EBCDIC Simplified Chinese Graphic

838 Single-byte EBCDIC Thai

850 ASCII/ISO/Windows Latin-1

851 ASCII/ISO/Windows Greek

852 ASCII/ISO/Windows Latin-2

855 ASCII/ISO/Windows Cyrillic

857 ASCII/ISO/Windows Turkish

860 ASCII/ISO/Windows Portuguese

861 ASCII/ISO/Windows Iceland

862 ASCII/ISO/Windows (bidirectional) Hebrew ASCII ST4

863 ASCII/ISO/Windows Canada

864 ASCII/ISO/Windows (bidirectional) Arabic ASCII ST5

865 ASCII/ISO/Windows Denmark/Norway

866 ASCII/ISO/Windows Cyrillic/Russian

869 ASCII/ISO/Windows Greek

870 Single-byte EBCDIC Latin-2

871 Single-byte EBCDIC Iceland

874 ASCII/ISO/Windows Thai (subset of 9066)

875 Single-byte EBCDIC Greek

878 ASCII/ISO/Windows Russian

880 Single-byte EBCDIC Cyrillic Multilingual (for
compatibility; see 1025)

912 ASCII/ISO/Windows ISO 8859-2 (Latin-2)

914 ASCII/ISO/Windows ISO 8859-4 (Latin-4)

915 ASCII/ISO/Windows ISO 8859-5 (Cyrillic 8-bit)

916 ASCII/ISO/Windows (bidirectional) ISO 8859-8 (Hebrew) ST5

920 ASCII/ISO/Windows ISO 8859-9 (Latin-5)

921 ASCII/ISO/Windows ISO 8859-13 (Baltic 8-bit)

922 ASCII/ISO/Windows Estonia ISO-8

923 ASCII/ISO/Windows ISO 8859-15 (Latin-9)

930 Mixed-byte EBCDIC Japanese (subset of 5026)

933 Mixed-byte EBCDIC Korean (subset of 1364)

935 Mixed-byte EBCDIC Simplified Chinese (subset of 1388)

937 Mixed-byte EBCDIC Traditional Chinese

939 Mixed-byte EBCDIC Japanese (subset of 5035)

1025 Single-byte EBCDIC Cyrillic

1026 Single-byte EBCDIC Turkish

1027 Single-byte EBCDIC Japanese Latin (single-byte only)

1046 ASCII/ISO/Windows (bidirectional) Windows Arabic ST5

IBM Toolbox for Java 243

CCSID Format Description

1089 ASCII/ISO/Windows (bidirectional) ISO 8859-6 (Arabic) ST5

1112 Single-byte EBCDIC Baltic Multilingual

1122 Single-byte EBCDIC Estonian

1123 Single-byte EBCDIC Ukraine

1125 ASCII/ISO/Windows Ukraine

1129 ASCII/ISO/Windows Vietnamese

1130 Single-byte EBCDIC Vietnamese

1131 ASCII/ISO/Windows Belarus

1132 Single-byte EBCDIC Lao

1140 Single-byte EBCDIC United States and others (Euro
support)

1141 Single-byte EBCDIC Austria, Germany (Euro support)

1142 Single-byte EBCDIC Denmark, Norway (Euro support)

1143 Single-byte EBCDIC Finland, Sweden (Euro support)

1144 Single-byte EBCDIC Italy (Euro support)

1145 Single-byte EBCDIC Spain, Latin America (Euro support)

1146 Single-byte EBCDIC United Kingdom (Euro support)

1147 Single-byte EBCDIC France (Euro support)

1148 Single-byte EBCDIC Latin-1 (MNCS) (Euro support)

1149 Single-byte EBCDIC Iceland (Euro support)

1200 Unicode Unicode UCS-2 (little-endian)

1250 ASCII/ISO/Windows Windows Latin-2

1251 ASCII/ISO/Windows Windows Cyrillic

1252 ASCII/ISO/Windows Windows Latin-1

1253 ASCII/ISO/Windows Windows Greek

1254 ASCII/ISO/Windows Windows Turkey

1255 ASCII/ISO/Windows (bidirectional) Windows Hebrew ST5

1256 ASCII/ISO/Windows (bidirectional) Windows Arabic ST5

1257 ASCII/ISO/Windows Windows Baltic

1258 ASCII/ISO/Windows Windows Vietnam

1364 Mixed-byte EBCDIC Japanese

1388 Mixed-byte EBCDIC Simplified Chinese

1399 Mixed-byte EBCDIC Japanese (in V4R5 and higher)

4396 Double-byte EBCDIC Japanese (subset of 300)

4930 Double-byte EBCDIC Korean

4931 Double-byte EBCDIC Traditional Chinese (subset of 835)

4933 Double-byte EBCDIC Simplified Chinese GBK Graphic

4948 ASCII/ISO/Windows Latin-2 (subset of 852)

4951 ASCII/ISO/Windows Cyrillic (subset of 855)

5026 Mixed-byte EBCDIC Japanese

5035 Mixed-byte EBCDIC Japanese

244 IBM i: Programming IBM Toolbox for Java

CCSID Format Description

5123 Single-byte EBCDIC Japanese (single-byte only, Euro
support)

5351 ASCII/ISO/Windows (bidirectional) Windows Hebrew (Euro support) ST5

8492 Double-byte EBCDIC Japanese (subset of 300)

8612 Single-byte EBCDIC Arabic EBCDIC ST5

9026 Double-byte EBCDIC Korean (subset of 834)

9029 Double-byte EBCDIC Simplified Chinese (subset of 4933)

9066 ASCII/ISO/Windows Thai (SBCS extended)

12588 Double-byte EBCDIC Japanese (subset of 300)

13122 Double-byte EBCDIC Korean (subset of 834)

16684 Double-byte EBCDIC Japanese (available in V4R5)

17218 Double-byte EBCDIC Korean (subset of 834)

12708 Single-byte EBCDIC Arabic EBCDIC ST7

13488 Unicode Unicode UCS-2 (big-endian)

28709 Single-byte EBCDIC Traditional Chinese (single-byte only)

61952 Unicode IBM i Unicode (used primarily in the
integrated file system)

62211 Single-byte EBCDIC Hebrew EBCDIC ST5

62224 Single-byte EBCDIC Arabic EBCDIC ST6

62235 Single-byte EBCDIC Hebrew EBCDIC ST6

62245 Single-byte EBCDIC Hebrew EBCDIC ST10

CommandHelpRetriever class
The CommandHelpRetriever class retrieves help text for IBM i control language (CL) commands and
generates that text either in HTML or User Interface Manager (UIM) format. You can run
CommandHelpRetriever from a command line or embed the functionality into your Java program.

To use CommandHelpRetriever, your server must have an XML parser and XSL processor in the
CLASSPATH environment variable. For more information, see “XML parser and XSLT processor” on page
417.

Additionally, the Generate Command Documentation (GENCMDDOC) CL command uses the
CommandHelpRetriever class. So you can simply use the GENCMDDOC command to take advantage of
the functionality offered by the CommandHelpRetriever class. For more information, see Generate
Command Documentation (GENCMDDOC) in the CL reference topic.

Running CommandHelpRetriever from a command line

You can run the CommandHelpRetriever class as a stand-alone command line program. To run
CommandHelpRetriever from a command line, you must pass the following minimum parameters:
v The library on your server that contains the CL command. System commands reside in the QSYS

library.
v The CL command.

You can also pass optional parameters to CommandHelpRetriever that include the server, the user ID,
password, and the location for the generated file.

IBM Toolbox for Java 245

For more information, see the Javadoc reference documentation for CommandHelpRetriever.

Example: Using CommandHelpRetriever from a command line

The following example generates an HTML file called CRTLIB.html in the current directory.

Note: The example command appears on two lines for display purposes only. Type your command on a
single line.

java com.ibm.as400.util.CommandHelpRetriever -library QSYS -command CRTLIB
-system MySystem -userid MyUserID -password MyPassword

Embedding the CommandHelpRetriever class in your program

You can also use the CommandHelpRetriever class in your Java application to display the help
documentation for specified CL commands. After you create a CommandHelpRetriever object, you can
use the generateHTML and generateUIM methods to generate help documentation in either format.

When you use generateHTML(), you can display the generated HTML in the panel group for the
command or you can specify a different panel group.

The following example creates a CommandHelpRetriever object and generates String objects that
represent the HTML and UIM help documentation for the CRTLIB command.

CommandHelpRetriever helpGenerator = new CommandHelpRetriever();
AS400 system = new AS400("MySystem", "MyUserID", "MyPassword");
Command crtlibCommand = new Command(system, "/QSYS.LIB/CRTLIB.CMD");
String html = helpGenerator.generateHTML(crtlibCommand);
String uim = helpGenerator.generateUIM(crtlibCommand);

Related information:
CommandHelpRetriever Javadoc

CommandPrompter class
The IBM Toolbox for Java CommandPrompter class prompts for the parameter on a given command.

The CommandPrompter class offers functionality that is similar to the CL command prompt (pressing F4)
and the same as the Management Central command prompt.

Using CommandPrompter requires that you have the following JAR files in your CLASSPATH:
v jt400.jar
v jui400.jar
v util400.jar
v jhall.jar

You must also have an XML parser in your CLASSPATH. For more information about using a suitable
XML parser, see the following page:

“XML parser and XSLT processor” on page 417

All of the JAR files, except for jhall.jar, are included in IBM Toolbox for Java. For more information about
IBM Toolbox for Java JAR files, see Jar files. For more information about downloading jhall.jar, see the

Sun JavaHelp Web site .

246 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/util/CommandHelpRetriever.html
http://java.sun.com/products/javahelp/index.html

To construct a CommandPrompter object, you pass it parameters for the parent frame that launches the
prompter, the AS400 object on which the command will be prompted, and the command string. The
command string can be a command name, a full command string, or a partial command name, such as
crt*.

The CommandPrompter display is a modal dialog that the user must close before returning to the parent
frame. The CommandPrompter handles any errors encountered during prompting. For a programming
example that shows one way to use the CommandPrompter, see the following page:

“Example: Using CommandPrompter” on page 716

RunJavaApplication
The RunJavaApplication and VRunJavaApplication classes are utilities to run Java programs on the IBM i
JVM.

Unlike JavaApplicationCall and VJavaApplicationCall classes that you call from your Java program,
RunJavaApplication and VRunJavaApplication are complete programs.

The RunJavaApplication class is a command line utility. It lets you set the environment (CLASSPATH and
properties, for example) for the Java program. You specify the name of the Java program and its
parameters, then you start the program. Once started, you can send input to the Java program which it
receives via standard input. The Java program writes output to standard output and standard error.

The VRunJavaApplication utility has the same capabilities. The difference is VJavaApplicationCall uses a
graphical user interface while JavaApplicationCall is a command line interface.

RunJavaApplication Javadoc
VRunJavaApplication Javadoc
“JavaApplicationCall class” on page 60
The JavaApplicationCall class provides you with the ability to have your client use the server JVM to
run a Java program that resides on the server.
“VJavaApplicationCall class” on page 262
The VJavaApplicationCall class allows you to run a Java application on the server from a client by
using a graphical user interface (GUI).

JPing
The JPing class is a command line utility that allows you to query your servers to see which services are
running and which ports are in service. To query your servers from within a Java application, use the
AS400JPing class.

See the JPing Javadoc for more information about using JPing from within your Java application.

Call JPing from the command line by using the following syntax:
java utilities.JPing System [options]

where:
v System = the system that you want to query
v [options] = one or more of the available options

Options

You can use one or more of the following options. For options that have abbreviations, the abbreviation is
listed in parenthesis.

-help (-h or -?)
Displays the help text.

IBM Toolbox for Java 247

javadoc/utilities/RunJavaApplication.html
javadoc/utilities/VRunJavaApplication.html

-service i_Service (-s i_Service)
Specifies one specific service to ping. The default action is to ping all services. You can use this
option to specify one of the following services: as-file, as-netprt, as-rmtcmd, as-dtaq, as-database,
as-ddm, as-central, and as-signon.

-ssl Specifies whether or not to ping the ssl ports. The default action is not to ping the ssl ports.

-timeout (-t)
Specifies the timeout period in milliseconds. The default setting is 20000, or 20 seconds.

Example: Using JPing from the command line

For example, use the following command to ping the as-dtaq service, including ssl ports, with a timeout
of 5 seconds:

java utilities.JPing myServer -s as-dtaq -ssl -t 5000

Related information:
JPing Javadoc
AS400JPing Javadoc

Vaccess classes
The Vaccess package and its classes have been deprecated. You are advised to use the Access package in
combination with Java Swing instead.

IBM Toolbox for Java provides a set of graphical user interface (GUI) classes in the vaccess package.
These classes use the access classes to retrieve data and to present the data to the user.

Java programs that use the IBM Toolbox for Java vaccess classes require the Swing package, which comes
with the Java 2 Platform, Standard Edition (J2SE). For more information about Swing, see the Sun Java

Foundation Classes

Web site.

For more information about the relationships between theIBM Toolbox for Java GUI classes, the Access
classes, and Java Swing, see the Vaccess classes diagram.

Note: AS400 panes are used with other vaccess classes (see items marked above with an asterisk) to
present and allow manipulation of system resources.

When programming with the IBM Toolbox for Java graphical user interface components, use the Error
events classes to report and handle error events to the user.

See Access classes for more information about accessing system data.

Vaccess classes
The Vaccess package and its classes have been deprecated. You are advised to use the Access package in
combination with Java Swing instead.

IBM Toolbox for Java provides graphical user interface (GUI) classes in the vaccess package to retrieve,
display, and in some cases manipulate, server data. These classes use the Java Swing 1.1 framework.
Figure 1 shows the relationship between these classes:

Figure 1: Vaccess classes

248 IBM i: Programming IBM Toolbox for Java

javadoc/utilities/JPing.html
javadoc/com/ibm/as400/access/AS400JPing.html
javadoc/com/ibm/as400/vaccess/package-summary.html
http://java.sun.com/products/jfc/
http://java.sun.com/products/jfc/

“Long description of Figure 1: Vaccess classes (rzahh508.gif)”

Long description of Figure 1: Vaccess classes (rzahh508.gif):
found in IBM Toolbox for Java: Vaccess package diagram

This figure shows the relationship between the classes in the vaccess package, the access package, and the
Java Swing classes.

Description

The figure is composed of the following:
v The topmost image is actually a thick brown border, as of the left and top sides of a rectangle, labeled

'Application,' that represents a Java application. The rectangle delineated by the Java application
contains the following irregularly shaped images that fit together like pieces of a puzzle:

v A tan polygon that represents the IBM Toolbox for Java vaccess (GUI) classes. This shape contains
smaller images that represent the functions contained in the vaccess classes.

v A green polygon that represents the Java Swing classes

IBM Toolbox for Java 249

v Below these images is a light blue bar labeled Access Classes, that represents classes in the IBM
Toolbox for Java access package.

v Below the light blue bar is an identically shaped dark blue bar, labeled 'Sockets/TCP.'
v The bottom image is a picture of an IBM i server.
v A lightning bolt, which represents a socket connection from the Java application to the server, extends

downward from Sockets/TCP (the dark blue bar) and connects to the server (the image of an IBM i
server).

A Java application (the area delineated by the thick brown border) contains vaccess classes (the tan
polygon) and Java Swing classes (the green polygon). The vaccess classes enable the Java application to
access the following data and functions on the server (small images in the tan polygon):

AS400Panes, CommandCall, DataQueues, integrated file system, JDBC, jobs, messages, print,
ProgramCall, record-level input and output, and users and groups

The Java application uses IBM Toolbox for Java access classes (the light blue bar) to create one or more
socket connections (the dark blue bar). The socket connections enable the Java application to
communicate (the lightning bolt) with the server (bottom image of the IBM i server).

AS400Panes
AS400Panes are components in the vaccess package that present and allow manipulation of one or more
server resources in a GUI. The behavior of each server resource varies depending on the type of resource.

All panes extend the Java Component class. As a result, they can be added to any AWT Frame, Window,
or Container.

The following AS400Panes are available:
v AS400DetailsPane presents a list of server resources in a table where each row displays various details

about a single resource. The table allows selection of one or more resources.
v AS400ExplorerPane combines an AS400TreePane and AS400DetailsPane so that the resource selected in

the tree is presented in the details.
v AS400JDBCDataSourcePane presents the property values of an AS400JDBCDataSource object.
v AS400ListPane presents a list of server resources and allows selection of one or more resources.
v AS400TreePane presents a tree hierarchy of server resources and allows selection of one or more

resources.

Server resources

Server resources are represented in the graphical user interface with an icon and text. Server resources are
defined with hierarchical relationships where a resource might have a parent and zero or more children.
These are predefined relationships and are used to specify what resources are displayed in an AS400Pane.
For example, VJobList is the parent to zero or more VJobs, and this hierarchical relationship is
represented graphically in an AS400Pane.

The IBM Toolbox for Java provides access to the following server resources:
v VIFSDirectory represents a directory in the integrated file system
v VJob and VJobList represent a job or a list of jobs
v VMessageList and VMessageQueue represent a list of messages returned from a CommandCall or

ProgramCall or a message queue
v VPrinter, VPrinters, and VPrinterOutput represent a printer, a list of printers, or a list of spooled files
v VUserList represents a list of users

All resources are implementations of the VNode interface.

250 IBM i: Programming IBM Toolbox for Java

Setting the root

To specify which server resources are presented in an AS400Pane, set the root using the constructor or
setRoot() method. The root defines the top level object and is used differently based on the pane:
v AS400ListPane presents all of the root's children in its list
v AS400DetailsPane presents all of the root's children in its table
v AS400TreePane uses the root as the root of its tree
v AS400ExplorerPane uses the root as the root of its tree

Any combination of panes and roots is possible.

The following example creates an AS400DetailsPane to present the list of users defined on the system:
// Create the server resource
// representing a list of users.
// Assume that "system" is an AS400
// object created and initialized
// elsewhere.
VUserList userList = new VUserList (system);

// Create the AS400DetailsPane object
// and set its root to be the user
// list.
AS400DetailsPane detailsPane = new AS400DetailsPane ();
detailsPane.setRoot (userList);

// Add the details pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (detailsPane);

Loading the contents

When AS400Pane objects and server resource objects are created, they are initialized to a default state.
The relevant information that makes up the contents of the pane is not loaded at creation time.

To load the contents, the application must explicitly call the load() method. In most cases, this initiates
communication to the server to gather the relevant information. Because it can sometimes take a while to
gather this information, the application can control exactly when it happens. For example, you can:
v Load the contents before adding the pane to a frame. The frame does not appear until all information

is loaded.
v Load the contents after adding the pane to a frame and displaying that frame. The frame appears, but

it does not contain much information. A "wait cursor" appears and the information is filled in as it is
loaded.

The following example loads the contents of a details pane before adding it to a frame:
// Load the contents of the details
// pane. Assume that the detailsPane
// was created and initialized
// elsewhere.
detailsPane.load ();

// Add the details pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (detailsPane);

Actions and properties panes

IBM Toolbox for Java 251

At run time, the user can select a pop-up menu on any server resource. The pop-up menu presents a list
of relevant actions that are available for the resource. When the user selects an action from the pop-up
menu, that action is performed. Each resource has different actions defined.

In some cases, the pop-up menu also presents an item that allows the user to view a properties pane. A
properties pane shows various details about the resource and may allow the user to change those details.

The application can control whether actions and properties panes are available by using the
setAllowActions() method on the pane.

Models

The AS400Panes are implemented using the model-view-controller paradigm, in which the data and the
user interface are separated into different classes. The AS400Panes integrate IBM Toolbox for Java models
with Java GUI components. The models manage server resources and the vaccess components display
them graphically and handle user interaction.

The AS400Panes provide enough functionality for most requirements. However, if an application needs
more control of the JFC component, then the application can access a server model directly and provide
customized integration with a different vaccess component.

The following models are available:
v AS400ListModel implements the JFC ListModel interface as a list of server resources. This can be used

with a JFC JList object.
v AS400DetailsModel implements the JFC TableModel interface as a table of server resources where each

row contains various details about a single resource. This can be used with a JFC JTable object.
v AS400TreeModel implements the JFC TreeModel interface as a tree hierarchy of server resources. This

can be used with a JFC JTree object.

Examples

v Present a list of users on the system using an AS400ListPane with a VUserList object. Figure 1 shows
the finished product:
Figure 1: Using AS400ListPane with a VUserList object

v Present the list of messages generated by a command call using an AS400DetailsPane with a
VMessageList object. Figure 2 shows the finished product:

252 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/AS400ListModel.html#NAVBAR_TOP
javadoc/com/ibm/as400/vaccess/AS400DetailsModel.html#NAVBAR_TOP
javadoc/com/ibm/as400/vaccess/AS400TreeModel.html#NAVBAR_TOP

Figure 2: Using AS400DetailsPane with a VMessageList object

v Present an integrated file system directory hierarchy using an AS400TreePane with a VIFSDirectory
object. Figure 3 shows the finished product:
Figure 3: Using AS400TreePane with a VIFSDirectory object

v Present print resources using an AS400ExplorerPane with a VPrinters object. Figure 4 shows the
finished product:
Figure 4: Using AS400ExplorerPane with a VPrinters object

AS400DetailsPane Javadoc
AS400ExplorerPane Javadoc
AS400JDBCDataSourcePane Javadoc
AS400ListPane Javadoc
AS400TreePane Javadoc
VNode Javadoc

IBM Toolbox for Java 253

javadoc/com/ibm/as400/vaccess/AS400DetailsPane.html
javadoc/com/ibm/as400/vaccess/AS400ExplorerPane.html
javadoc/com/ibm/as400/vaccess/AS400JDBCDataSourcePane.html
javadoc/com/ibm/as400/vaccess/AS400ListPane.html
javadoc/com/ibm/as400/vaccess/AS400TreePane.html
javadoc/com/ibm/as400/vaccess/VNode.html

Command Call
The command call vaccess (GUI) components allow a Java program to present a button or menu item
that calls a non-interactive server command.

A CommandCallButton object represents a button that calls a server command when pressed. The
CommandCallButton class extends the Java Foundation Classes (JFC) JButton class so that all buttons
have a consistent appearance and behavior.

Similarly, a CommandCallMenuItem object represents a menu item that calls a server command when
selected. The CommandCallMenuItem class extends the JFC JMenuItem class so that all menu items also
have a consistent appearance and behavior.

To use a command call graphical user interface component, set both the system and command properties.
These properties can be set using a constructor or through the setSystem() and setCommand() methods.

The following example creates a CommandCallButton. At run time, when the button is pressed, it creates
a library called "FRED":

// Create the CommandCallButton
// object. Assume that "system" is
// an AS400 object created and
// initialized elsewhere. The button
// text says "Press Me", and there is
// no icon.
CommandCallButton button = new CommandCallButton ("Press Me", null, system);

// Set the command that the button will run.
button.setCommand ("CRTLIB FRED");

// Add the button to a frame. Assume
// that "frame" is a JFrame created
// elsewhere.
frame.getContentPane ().add (button);

When a server command runs, it may return zero or more server messages. To detect when the server
command runs, add an ActionCompletedListener to the button or menu item using the
addActionCompletedListener() method. When the command runs, it fires an ActionCompletedEvent to all
such listeners. A listener can use the getMessageList() method to retrieve any server messages that the
command generated.

This example adds an ActionCompletedListener that processes all server messages that the command
generated:

// Add an ActionCompletedListener that
// is implemented using an anonymous
// inner class. This is a convenient
// way to specify simple event
// listeners.
button.addActionCompletedListener (new ActionCompletedListener ()
{

public void actionCompleted (ActionCompletedEvent event)
{

// Cast the source of the event to a
// CommandCallButton.
CommandCallButton sourceButton = (CommandCallButton) event.getSource ();

// Get the list of server messages
// that the command generated.
AS400Message[] messageList = sourceButton.getMessageList ();

// ... Process the message list.
}

});

254 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/CommandCallButton.html#NAVBAR_TOP
javadoc/com/ibm/as400/vaccess/CommandCallMenuItem.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/ActionCompletedListener.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/ActionCompletedEvent.html#NAVBAR_TOP

Examples

This example shows how to use a CommandCallMenuItem in an application.

Figure 1 shows the CommandCall graphical user interface component:

Figure 1: CommandCall GUI component

Data queues
The data queue graphical components allow a Java program to use any Java Foundation Classes (JFC)
graphical text component to read or write to a server data queue.

The DataQueueDocument and KeyedDataQueueDocument classes are implementations of the JFC
Document interface. These classes can be used directly with any JFC graphical text component. Several
text components, such as single line fields (JTextField) and multiple line text areas (JTextArea), are
available in JFC.

Data queue documents associate the contents of a text component with a server data queue. (A text
component is a graphical component used to display text that the user can optionally edit.) The Java
program can read and write between the text component and data queue at any time. Use
DataQueueDocument for sequential data queues and KeyedDataQueueDocument for keyed data queues.

To use a DataQueueDocument, set both the system and path properties. These properties can be set using
a constructor or through the setSystem() and setPath() methods. The DataQueueDocument object is then
"plugged" into the text component, usually using the text component's constructor or setDocument()
method. KeyedDataQueueDocuments work the same way.

The following example creates a DataQueueDocument whose contents are associated with a data queue:
// Create the DataQueueDocument
// object. Assume that "system" is
// an AS400 object created and
// initialized elsewhere.
DataQueueDocument dqDocument = new DataQueueDocument (system, "/QSYS.LIB/MYLIB.LIB/MYQUEUE.DTAQ");

IBM Toolbox for Java 255

// Create a text area to present the
// document.
JTextArea textArea = new JTextArea (dqDocument);

// Add the text area to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (textArea);

Initially, the contents of the text component are empty. Use read() or peek() to fill the contents with the
next entry on the queue. Use write() to write the contents of the text component to the data queue. Note
that these documents only work with String data queue entries.

Examples

Example of using a DataQueueDocument in an application.

Figure 1 shows the DataQueueDocument graphical user interface component being used in a JTextField.
A button has been added to provide a GUI interface for the user to write the contents of the test field to
the data queue.

Figure 1: DataQueueDocument GUI component

Related information:
DataQueueDocument Javadoc
KeyedDataQueueDocument Javadoc

Error events
In most cases, the IBM Toolbox for Java GUI components fire error events instead of throw exceptions.

An error event is a wrapper around an exception that is thrown by an internal component.

You can provide an error listener that handles all error events that are fired by a particular graphical user
interface component. Whenever an exception is thrown, the listener is called, and it can provide
appropriate error reporting. By default, no action takes place when error events are fired.

The IBM Toolbox for Java provides a graphical user interface component called ErrorDialogAdapter,
which automatically displays a dialog to the user whenever an error event is fired.

Examples

The following examples show how you can handle errors and define a simple error listener.

Example: Handling error events by displaying a dialog

The following example shows how you can handle error events by displaying a dialog:
// All the setup work to lay out a graphical user interface component
// is done. Now add an ErrorDialogAdapter as a listener to the component.
// This will report all error events fired by that component through

256 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/DataQueueDocument.html
javadoc/com/ibm/as400/vaccess/KeyedDataQueueDocument.html

// displaying a dialog.

ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (parentFrame);
component.addErrorListener (errorHandler);

Example: Defining an error listener

You can write a custom error listener to handle errors in a different way. Use the ErrorListener interface
to accomplish this.

The following example shows how to define an simple error listener that only prints errors to System.out:
class MyErrorHandler
implements ErrorListener
{

// This method is invoked whenever an error event is fired.
public void errorOccurred(ErrorEvent event)
{

Exception e = event.getException ();
System.out.println ("Error: " + e.getMessage ());

}
}

Example: Handling error events by using an error listener

The following example shows how to handle error events for a graphical user interface component using
this customized handler:

MyErrorHandler errorHandler = new MyErrorHandler ();
component.addErrorListener (errorHandler);

Related reference:
“Vaccess classes” on page 248
The Vaccess package and its classes have been deprecated. You are advised to use the Access package in
combination with Java Swing instead.
“Exceptions” on page 47
The IBM Toolbox for Java access classes throw exceptions when device errors, physical limitations,
programming errors, or user input errors occur. The exception classes are based upon the type of error
that occurs instead of the location where the error originates.
Related information:
ErrorDialogAdapter Javadoc

IFS graphical user interface components
The integrated file system graphical user interface components allow a Java program to present
directories and files in the integrated file system on the server in a GUI.

To use the integrated file system graphical user interface components, set both the system and the path or
directory properties. These properties can be set using a constructor or through the setDirectory() (for
IFSFileDialog) or setSystem() and setPath() methods (for VIFSDirectory and IFSTextFileDocument).

The following components are available:

Set the path to something other than "/QSYS.LIB" because this directory is typically large, and
downloading its contents can take a long time.

IFSFileSystemView:

This class has been deprecated and replaced by class com.ibm.as400.access.IFSSystemView.

IBM Toolbox for Java 257

javadoc/com/ibm/as400/vaccess/ErrorListener.html#NAVBAR_TOP
javadoc/com/ibm/as400/vaccess/ErrorDialogAdapter.html

The IFSFileSystemView provides a gateway to the IBM i integrated file system, for use when constructing
javax.swing.JFileChooser objects.

JFileChooser is a standard Java way to build dialogs for navigating and choosing files, and is the
recommended replacement for IFSFileDialog.

Example: Using IFSFileSystemView

The following example demonstrates the use of IFSFileSystemView.
import com.ibm.as400.access.AS400;
import com.ibm.as400.access.IFSJavaFile;
import com.ibm.as400.vaccess.IFSFileSystemView;
import javax.swing.JFileChooser;
import java.awt.Frame;

// Work with directory /Dir on the system myAS400.
AS400 system = new AS400("myAS400");
IFSJavaFile dir = new IFSJavaFile(system, "/Dir");
JFileChooser chooser = new JFileChooser(dir, new IFSFileSystemView(system));
Frame parent = new Frame();
int returnVal = chooser.showOpenDialog(parent);
if (returnVal == JFileChooser.APPROVE_OPTION) {

IFSJavaFile chosenFile = (IFSJavaFile)(chooser.getSelectedFile());
System.out.println("You selected the file named " +

chosenFile.getName());
}

Related information:
IFSFileSystemView Javadoc

File dialogs:

The IFSFileDialog class is a dialog that allows the user to traverse the directories of the integrated file
system on the server and select a file. The caller can set the text on the buttons on the dialog. In addition,
the caller can use FileFilter objects, which allow the user to limit the choices to certain files.

If the user selects a file in the dialog, use the getFileName() method to get the name of the selected file.
Use the getAbsolutePath() method to get the full path name of the selected file.

The following example sets up an integrated file system file dialog with two file filters:
// Create a IFSFileDialog object
// setting the text of the title bar.
// Assume that "system" is an AS400
// object and "frame" is a JFrame
// created and initialized elsewhere.
IFSFileDialog dialog = new IFSFileDialog (frame, "Select a file", system);

// Set a list of filters for the dialog.
// The first filter will be used
// when the dialog is first displayed.
FileFilter[] filterList = {new FileFilter ("All files (*.*)", "*.*"),

new FileFilter ("HTML files (*.HTML", "*.HTM")};

// Then, set the filters in the dialog.
dialog.setFileFilter (filterList, 0);

// Set the text on the buttons.
dialog.setOkButtonText ("Open");
dialog.setCancelButtonText ("Cancel");

// Show the dialog. If the user
// selected a file by pressing the
// "Open" button, then print the path

258 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/IFSFileSystemView.html

// name of the selected file.
if (dialog.showDialog () == IFSFileDialog.OK)

System.out.println (dialog.getAbsolutePath ());

Example

Present an IFSFileDialog and print the selection, if any.

Figure 1 shows the IFSFileDialog graphical user interface component:

Figure 1: IFSFileDialog GUI component

IFSFileDialog Javadoc
FileFilter Javadoc

Directories in AS400Panes:

AS400Panes are GUI components that present and allow manipulation of one or more server resources. A
VIFSDirectory object is a resource that represents a directory in the integrated file system for use in
AS400Panes. AS400Pane and VIFSDirectory objects can be used together to present many views of the
integrated file system, and to allow the user to navigate, manipulate, and select directories and files.

To use a VIFSDirectory, set both the system and path properties. You set these properties using a
constructor or through the setSystem() and setPath() methods. You then plug the VIFSDirectory object
into the AS400Pane as the root, using the constructor or setRoot() method of the AS400Pane.

VIFSDirectory has some other useful properties for defining the set of directories and files that are
presented in AS400Panes. Use setInclude() to specify whether directories, files, or both appear. Use
setPattern() to set a filter on the items that are shown by specifying a pattern that the file name must
match. You can use wildcard characters, such as "*" and "?", in the patterns. Similarly, use setFilter() to set
a filter with an IFSFileFilter object.

IBM Toolbox for Java 259

javadoc/com/ibm/as400/vaccess/IFSFileDialog.html
javadoc/com/ibm/as400/vaccess/FileFilter.html

When AS400Pane objects and VIFSDirectory objects are created, they are initialized to a default state. The
subdirectories and the files that make up the contents of the root directory have not been loaded. To load
the contents, the caller must explicitly call the load() method on either object to initiate communication to
the server to gather the contents of the directory.

At run-time, a user can perform actions on any directory or file by right-clicking it to display the context
menu. The directory context menu can include the following items:
v Create file - creates a file in the directory. This will give the file a default name
v Create directory - creates a subdirectory with a default name
v Rename - renames a directory
v Delete - deletes a directory
v Properties - displays properties such as the location, number of files and subdirectories, and

modification date

The file context menu can include the following items:
v Edit - edits a text file in a different window
v View - views a text file in a different window
v Rename - renames a file
v Delete - deletes a file
v Properties - displays properties such as the location, size, modification date, and attributes

Users can only read or write directories and files to which they are authorized. In addition, the caller can
prevent the user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VIFSDirectory and presents it in an AS400ExplorerPane:
// Create the VIFSDirectory object.
// Assume that "system" in an AS400
// object created and initialized
// elsewhere.
VIFSDirectory root = new VIFSDirectory (system, "/DirectoryA/DirectoryB");

// Create and load an AS400ExplorerPane object.
AS400ExplorerPane explorerPane = new AS400ExplorerPane (root);
explorerPane.load ();

// Add the explorer pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (explorerPane);

Example

Present an integrated file system directory hierarchy using an AS400TreePane with a VIFSDirectory object.

Figure 1 shows the VIFSDirectory graphical user interface component:

Figure 1: VIFSDirectory GUI component

260 IBM i: Programming IBM Toolbox for Java

“AS400Panes” on page 250
AS400Panes are components in the vaccess package that present and allow manipulation of one or
more server resources in a GUI. The behavior of each server resource varies depending on the type of
resource.
VIFSDirectory Javadoc
IFSFileFilter Javadoc

IFSTextFileDocument:

Text file documents allow a Java program to use any Java Foundation Classes (JFC) graphical text
component to edit or view text files in the integrated file system on a server. (A text component is a
graphical component used to display text that the user can optionally edit.)

The IFSTextFileDocument class is an implementation of the JFC Document interface. It can be used
directly with any JFC graphical text component. Several text components, such as single line fields
(JTextField) and multiple line text areas (JTextArea), are available in JFC.

Text file documents associate the contents of a text component with a text file. The Java program can load
and save between the text component and the text file at any time.

To use an IFSTextFileDocument, set both the system and path properties. These properties can be set
using a constructor or through the setSystem() and setPath() methods. The IFSTextFileDocument object is
then "plugged" into the text component, typically using the text component's constructor or
setDocument() method.

Initially, the contents of the text component are empty. Use load() to load the contents from the text file.
Use save() to save the contents of the text component to the text file.

The following example creates and loads an IFSTextFileDocument:

IBM Toolbox for Java 261

javadoc/com/ibm/as400/vaccess/VIFSDirectory.html
javadoc/com/ibm/as400/access/IFSFileFilter.html

// Create and load the
// IFSTextFileDocument object. Assume
// that "system" is an AS400 object
// created and initialized elsewhere.
IFSTextFileDocument ifsDocument = new IFSTextFileDocument (system, "/DirectoryA/MyFile.txt");
ifsDocument.load ();

// Create a text area to present the
// document.
JTextArea textArea = new JTextArea (ifsDocument);

// Add the text area to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (textArea);

Example

Present an IFSTextFileDocument in a JTextPane.

Figure 1 shows the IFSTextFileDocument graphical user interface component:

Figure 1: IFSTextFileDocument example

IFSTextFileDocument Javadoc

VJavaApplicationCall class
The VJavaApplicationCall class allows you to run a Java application on the server from a client by using
a graphical user interface (GUI).

The GUI is a panel with two sections. The top section is an output window that displays output that the
Java program writes to standard output and standard error. The bottom section is an input field where
the user enters the Java environment, the Java program to run with parameters and input the Java
program receives via standard input. Refer to the Java command options for more information.

For example, this code might create the following GUI for your Java program.

VJavaApplicationCall is a class that you call from your Java program. However, the IBM Toolbox for Java
also provides a utility that is a complete Java application that can be used to call your Java program from
a workstation. Refer to the RunJavaApplication class for more information.
Related information:
VJavaApplicationCall Javadoc

JDBC classes
The JDBC graphical user interface components allow a Java program to present various views and
controls for accessing a database using SQL (Structured Query Language) statements and queries.

The following components are available:

262 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/IFSTextFileDocument.html
javadoc/com/ibm/as400/vaccess/VJavaApplicationCall.html
javadoc/com/ibm/as400/vaccess/VJavaApplicationCall.html#EX
javadoc/com/ibm/as400/vaccess/VJavaApplicationCall.html

v SQLStatementButton and SQLStatementMenuItem are either a button or a menu item that issues an
SQL statement when clicked or selected.

v SQLStatementDocument is a document that can be used with any Java Foundation Classes (JFC)
graphical text component to issue an SQL statement.

v SQLResultSetFormPane presents the results of an SQL query in a form.
v SQLResultSetTablePane presents the results of an SQL query in a table.
v SQLResultSetTableModel manages the results of an SQL query in a table.
v SQLQueryBuilderPane presents an interactive tool for dynamically building SQL queries.

All JDBC graphical user interface components communicate with the database using a JDBC driver. The
JDBC driver must be registered with the JDBC driver manager in order for any of these components to
work. The following example registers the IBM Toolbox for Java JDBC driver:

// Register the JDBC driver.
DriverManager.registerDriver (new com.ibm.as400.access.AS400JDBCDriver ());

SQL connections

An SQLConnection object represents a connection to a database using JDBC. The SQLConnection object
is used with all of the JDBC graphical user interface components.

To use an SQLConnection, set the URL property using the constructor or setURL(). This identifies the
database to which the connection is made. Other optional properties can be set:
v Use setProperties() to specify a set of JDBC connection properties.
v Use setUserName() to specify the user name for the connection.
v Use setPassword() to specify the password for the connection.

The actual connection to the database is not made when the SQLConnection object is created. Instead, it
is made when getConnection() is called. This method is normally called automatically by the JDBC
graphical user interface components, but it can be called at any time in order to control when the
connection is made.

The following example creates and initializes an SQLConnection object:
// Create an SQLConnection object.
SQLConnection connection = new SQLConnection ();

// Set the URL and user name properties of the connection.
connection.setURL ("jdbc:as400://MySystem");
connection.setUserName ("Lisa");

An SQLConnection object can be used for more than one JDBC graphical user interface component. All
such components will use the same connection, which can improve performance and resource usage.
Alternately, each JDBC graphical user interface component can use a different SQL object. It is sometimes
necessary to use separate connections, so that SQL statements are issued in different transactions.

When the connection is no longer needed, close the SQLConnection object using close(). This frees up
JDBC resources on both the client and server.

SQLConnection Javadoc

Buttons and menu items:

An SQLStatementButton object represents a button that issues an SQL (Structured Query Language)
statement when pressed. The SQLStatementButton class extends the Java Foundation Classes (JFC)
JButton class so that all buttons have a consistent appearance and behavior.

IBM Toolbox for Java 263

javadoc/com/ibm/as400/vaccess/SQLConnection.html

Similarly, an SQLStatementMenuItem object represents a menu item that issues an SQL statement when
selected. The SQLStatementMenuItem class extends the JFC JMenuItem class so that all menu items have
a consistent appearance and behavior.

To use either of these classes, set both the connection and the SQLStatement properties. These properties
can be set using a constructor or the setConnection() and setSQLStatement() methods.

The following example creates an SQLStatementButton. When the button is pressed at run time, it deletes
all records in a table:

// Create an SQLStatementButton object.
// The button text says "Delete All",
// and there is no icon.
SQLStatementButton button = new SQLStatementButton ("Delete All");

// Set the connection and SQLStatement
// properties. Assume that "connection"
// is an SQLConnection object that is
// created and initialized elsewhere.
button.setConnection (connection);
button.setSQLStatement ("DELETE FROM MYTABLE");

// Add the button to a frame. Assume
// that "frame" is a JFrame created
// elsewhere.
frame.getContentPane ().add (button);

After the SQL statement is issued, use getResultSet(), getMoreResults(), getUpdateCount(), or
getWarnings() to retrieve the results.

SQLStatementButton Javadoc
SQLStatementMenuItem Javadoc

SQLStatementDocument class:

The SQLStatementDocument class is an implementation of the Java Foundation Classes (JFC) Document
interface. It can be used directly with any JFC graphical text component.

Several text components, such as single line fields (JTextField) and multiple line text areas (JTextArea), are
available in JFC. SQLStatementDocument objects associate the contents of text components with
SQLConnection objects. The Java program can run the SQL statement contained in the document contents
at any time and then process the results, if any.

To use an SQLStatementDocument, you must set the connection property. Set this property by using the
constructor or the setConnection() method. The SQLStatementDocument object is then "plugged" into the
text component, typically using the text component's constructor or setDocument() method. Use the
execute() method at any time to run the SQL statement contained in the document.

The following example creates an SQLStatementDocument in a JTextField:
// Create an SQLStatementDocument
// object. Assume that "connection"
// is an SQLConnection object that is
// created and initialized elsewhere.
// The text of the document is
// initialized to a generic query.
SQLStatementDocument document = new SQLStatementDocument (connection, "SELECT * FROM QIWS.QCUSTCDT");

// Create a text field to present the
// document.
JTextField textField = new JTextField ();
textField.setDocument (document);

264 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/SQLStatementButton.html
javadoc/com/ibm/as400/vaccess/SQLStatementMenuItem.html

// Add the text field to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (textField);

// Run the SQL statement that is in
// the text field.
document.execute ();

After the SQL statement is issued, use getResultSet(), getMoreResults(), getUpdateCount(), or
getWarnings() to retrieve the results.
Related information:
SQLStatementDocument Javadoc

SQLResultSetFormPane class:

An SQLResultSetFormPane presents the results of an SQL (Structured Query Language) query in a form.
The form displays one record at a time and provides buttons that allow the user to scroll forward,
backward, to the first or last record, or refresh the view of the results.

To use an SQLResultSetFormPane, set the connection and query properties. Set these properties by using
the constructor or the setConnection() and setQuery() methods. Use load() to execute the query and
present the first record in the result set. When the results are no longer needed, call close() to ensure that
the result set is closed.

The following example creates an SQLResultSetFormPane object and adds it to a frame:
// Create an SQLResultSetFormPane
// object. Assume that "connection"
// is an SQLConnection object that is
// created and initialized elsewhere.
SQLResultSetFormPane formPane = new SQLResultSetFormPane (connection, "

SELECT * FROM QIWS.QCUSTCDT");
// Load the results.
formPane.load ();

// Add the form pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (formPane);

Related information:
SQLResultSetFormPane Javadoc

SQLResultSetTablePane class:

An SQLResultSetTablePane presents the results of an SQL (Structured Query Language) query in a table.
Each row in the table displays a record from the result set and each column displays a field.

To use an SQLResultSetTablePane, set the connection and query properties. Set properties by using the
constructor or the setConnection() and setQuery() methods. Use load() to execute the query and present
the results in the table. When the results are no longer needed, call close() to ensure that the result set is
closed.

The following example creates an SQLResultSetTablePane object and adds it to a frame:
// Create an SQLResultSetTablePane
// object. Assume that "connection"
// is an SQLConnection object that is
// created and initialized elsewhere.
SQLResultSetTablePane tablePane = new SQLResultSetTablePane (connection,

"SELECT * FROM QIWS.QCUSTCDT");

IBM Toolbox for Java 265

javadoc/com/ibm/as400/vaccess/SQLStatementDocument.html
javadoc/com/ibm/as400/vaccess/SQLResultSetFormPane.html

// Load the results.
tablePane.load ();

// Add the table pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (tablePane);

Example

Present an SQLResultSetTablePane that displays the contents of a table. This example uses an
SQLStatementDocument (denoted in the following image by the text, "Enter a SQL statement here") that
allows the user to type in any SQL statement, and an SQLStatementButton (denoted by the text, "Delete
all rows") that allows the user to delete all rows from the table.

Figure 1 shows the SQLResultSetTablePane graphical user interface component:

Figure 1: SQLResultSetTablePane GUI component

Related information:
SQLResultSetTablePane Javadoc

SQLResultSetTableModel class:

SQLResultSetTablePane is implemented using the model-view-controller paradigm, in which the data and
the user interface are separated into different classes. The implementation integrates
SQLResultSetTableModel with the Java Foundation Classes' (JFC) JTable. The SQLResultSetTableModel
class manages the results of the query and JTable displays the results graphically and handles user
interaction.

SQLResultSetTablePane provides enough functionality for most requirements. However, if a caller needs
more control of the JFC component, then the caller can use SQLResultSetTableModel directly and provide
customized integration with a different graphical user interface component.

To use an SQLResultSetTableModel, set theconnection and query properties. Set these properties by using
the constructor or the setConnection() and setQuery() methods. Use load() to execute the query and load
the results. When the results are no longer needed, call close() to ensure that the result set is closed.

The following example creates an SQLResultSetTableModel object and presents it with a JTable:
// Create an SQLResultSetTableModel
// object. Assume that "connection"
// is an SQLConnection object that is
// created and initialized elsewhere.
SQLResultSetTableModel tableModel = new SQLResultSetTableModel (connection,

266 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/SQLResultSetTablePane.html

"SELECT * FROM QIWS.QCUSTCDT");
// Load the results.
tableModel.load ();

// Create a JTable for the model.
JTable table = new JTable (tableModel);

// Add the table to a frame. Assume
// that "frame" is a JFrame created
// elsewhere.
frame.getContentPane ().add (table);

Related information:
SQLResultSetTableModel Javadoc

SQL query builders:

An SQLQueryBuilderPane presents an interactive tool for dynamically building SQL queries.

To use an SQLQueryPane, set the connection property. This property can be set using the constructor or
the setConnection() method. Use load() to load data needed for the query builder graphical user interface.
Use getQuery() to get the SQL query that the user has built.

The following example creates an SQLQueryBuilderPane object and adds it to a frame:
// Create an SQLQueryBuilderPane
// object. Assume that "connection"
// is an SQLConnection object that is
// created and initialized elsewhere.
SQLQueryBuilderPane queryBuilder = new SQLQueryBuilderPane (connection);

// Load the data needed for the query
// builder.
queryBuilder.load ();

// Add the query builder pane to a
// frame. Assume that "frame" is a
// JFrame created elsewhere.
frame.getContentPane ().add (queryBuilder);

Example

Present an SQLQueryBuilderPane and a button. When the button is clicked, present the results of the
query in an SQLResultSetFormPane in another frame.

Figure 1 shows the SQLQueryBuilderPane graphical user interface component:

Figure 1: SQLQueryBuilderPane GUI component

IBM Toolbox for Java 267

javadoc/com/ibm/as400/vaccess/SQLResultSetTableModel.html

Related information:
SQLQueryBuilderPane Javadoc

Jobs
The jobs vaccess (GUI) components allow a Java program to present lists of server jobs and job log
messages in a GUI.

The following components are available:
v A VJobList object is a resource that represents a list of server jobs for use in AS400Panes.
v A VJob object is a resource that represents the list of messages in a job log for use in AS400Panes.

You can use AS400Panes, VJobList objects, and VJob objects together to present many views of a job list
or job log.

To use a VJobList, set the system, name, number, and user properties. Set these properties by using a
constructor or through the setSystem(), setName(), setNumber(), and setUser() properties.

To use a VJob, set the system property. Set this property by using a constructor or through the
setSystem() method.

268 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/SQLQueryBuilderPane.html

Either the VJobList or VJob object is then "plugged" into the AS400Pane as the root, using the pane's
constructor or setRoot() method.

VJobList has some other useful properties for defining the set of jobs that are presented in AS400Panes.
Use setName() to specify that only jobs with a certain name appear. Use setNumber() to specify that only
jobs with a certain number appear. Similarly, use setUser() to specify that only jobs for a certain user
appear.

When AS400Pane, VJobList, and VJob objects are created, they are initialized to a default state. The list of
jobs or job log messages are not loaded at creation time. To load the contents, the caller must explicitly
call the load() method on either object. This will initiate communication to the server to gather the
contents of the list.

At run-time, right-click a job, job list, or job log message to display the shortcut menu. Select Properties
from the shortcut menu to perform actions on the selected object:
v Job - Work with properties, such as the type and status. You can also change the value of some of the

properties.
v Job list - Work with the properties, such as name, number, and user properties. You can also change the

contents of the list.
v Job log message - Display properties, such as the full text, severity, and time sent.

Users can only access jobs to which they are authorized. In addition, the Java program can prevent the
user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VJobList and presents it in an AS400ExplorerPane:
// Create the VJobList object. Assume
// that "system" is an AS400 object
// created and initialized elsewhere.
VJobList root = new VJobList (system);

// Create and load an
// AS400ExplorerPane object.
AS400ExplorerPane explorerPane = new AS400ExplorerPane (root);
explorerPane.load ();

// Add the explorer pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (explorerPane);

Examples

This VJobList example presents an AS400ExplorerPane filled with a list of jobs. The list shows jobs on the
system that have the same job name.

The following image shows the VJobList graphical user interface component:

IBM Toolbox for Java 269

VJobList Javadoc
“AS400Panes” on page 250
AS400Panes are components in the vaccess package that present and allow manipulation of one or
more server resources in a GUI. The behavior of each server resource varies depending on the type of
resource.
VJob Javadoc

Vaccess message classes
The messages graphical user interface components allow a Java program to present lists of server
messages in a GUI.

The following components are available:
v A Message list object is a resource that represents a list of messages for use in AS400Panes. This is for

message lists generated by command or program calls.
v A Message queues object is a resource that represents the messages in a server message queue for use

in AS400Ppanes.

AS400Panes are graphical user interface components that present and allow manipulation of one or more
server resources. VMessageList and VMessageQueue objects are resources that represent lists of server
messages in AS400Panes.

You can use AS400Pane, VMessageList, and VMessageQueue objects together to present many views of a
message list and to allow the user to select and perform operations on messages.

VMessageList class:

A VMessageList object is a resource that represents a list of messages for use in AS400Panes. This is for
message lists generated by command or program calls.

The following methods return message lists:
v CommandCall.getMessageList()
v CommandCallButton.getMessageList()
v CommandCallMenuItem.getMessageList()
v ProgramCall.getMessageList()
v ProgramCallButton.getMessageList()
v ProgramCallMenuItem.getMessageList()

270 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/VJobList.html
javadoc/com/ibm/as400/vaccess/VJob.html

To use a VMessageList, set the messageList property. Set this property by using a constructor or through
the setMessageList() method. The VMessageList object is then "plugged" into the AS400Pane as the root,
using the constructor or setRoot() method of the AS400Pane.

When AS400Pane and VMessageList objects are created, they are initialized to a default state. The list of
messages is not loaded at creation time. To load the contents, the caller must explicitly call the load()
method on either object.

At run-time, a user can perform actions on a message by right-clicking it to display the context menu.
The message context menu can include an item called Properties that displays properties such as the
severity, type, and date.

The caller can prevent the user from performing actions by using the setAllowActions() method on the
pane.

The following example creates a VMessageList for the messages generated by a command call and
presents it in an AS400DetailsPane:

// Create the VMessageList object.
// Assume that "command" is a
// CommandCall object created and run
// elsewhere.

VMessageList root = new VMessageList (command.getMessageList ());

// Create and load an AS400DetailsPane
// object.

AS400DetailsPane detailsPane = new AS400DetailsPane (root);
detailsPane.load ();

// Add the details pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.

frame.getContentPane ().add (detailsPane);

Example

Present the list of messages generated by a command call using an AS400DetailsPane with a
VMessageList object. Figure 1 shows the VMessageList graphical user interface component:

Figure 1: VMessageList GUI component

Related reference:
“AS400Panes” on page 250
AS400Panes are components in the vaccess package that present and allow manipulation of one or more
server resources in a GUI. The behavior of each server resource varies depending on the type of resource.

Related information:
VMessageList Javadoc

IBM Toolbox for Java 271

javadoc/com/ibm/as400/vaccess/VMessageList.html

VMessageQueue class:

A VMessageQueue object is a resource that represents the messages in a server message queue for use in
AS400Panes.

To use a VMessageQueue, set the system and path properties. These properties can be set using a
constructor or through the setSystem() and setPath() methods. The VMessageQueue object is then
"plugged" into the AS400Pane as the root by using the constructor or setRoot() method of the AS400Pane.

VMessageQueue has some other useful properties for defining the set of messages that are presented in
AS400Panes. Use setSeverity() to specify the severity of messages that appear. Use setSelection() to specify
the type of messages that appear.

When AS400Pane and VMessageQueue objects are created, they are initialized to a default state. The list
of messages is not loaded at creation time. To load the contents, the caller must explicitly call the load()
method on either object. This will initiate communication to the server to gather the contents of the list.

At run-time, a user can perform actions on a message or message queue by right-clicking it to display the
context menu. The context menu for message queues can include the following items:
v Clear - clears the message queue
v Properties - allows the user to set the severity and selection properties. This may be used to change the

contents of the list

The following action is available for messages on a message queue:
v Remove - removes the message from the message queue
v Reply - replies to an inquiry message
v Properties - displays properties such as the severity, type, and date

Of course, users can only access message queues to which they are authorized. In addition, the caller can
prevent the user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VMessageQueue and presents it in an AS400ExplorerPane:
// Create the VMessageQueue object.
// Assume that "system" is an AS400
// object created and initialized
// elsewhere.

VMessageQueue root = new VMessageQueue (system, "/QSYS.LIB/MYLIB.LIB/MYMSGQ.MSGQ");

// Create and load an
// AS400ExplorerPane object.

AS400ExplorerPane explorerPane = new AS400ExplorerPane (root);
explorerPane.load ();

// Add the explorer pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.

frame.getContentPane ().add (explorerPane);

Example

Present the list of messages in a message queue using an AS400ExplorerPane with a VMessageQueue
object. Figure 1 shows the VMessageQueue graphical user interface component:

Figure 1: VMessageQueue GUI component

272 IBM i: Programming IBM Toolbox for Java

Related information:
VMessageQueue Javadoc

Permission classes
The Permission classes information can be used in a graphical user interface (GUI) through the VIFSFile
and VIFSDirectory classes. Permission has been added as an action in each of these classes.

The following example shows how to use Permission with the VIFSDirectory class:
// Create AS400 object
AS400 as400 = new AS400();

// Create an IFSDirectory using the system name
// and the full path of a QSYS object
VIFSDirectory directory = new VIFSDirectory(as400,

"/QSYS.LID/testlib1.lib");

// Create as explorer Pane
AS400ExplorerPane pane = new AS400ExplorerPane((VNode)directory);

// Load the information
pane.load();

Vaccess print classes
The vaccess package components listed here allow a Java program to present lists of server print
resources in a graphical user interface.
v A VPrinters object is a resource that represents a list of printers for use in AS400Panes.
v A VPrinter object is a resource that represents a printer and its spooled files for use in AS400Panes.
v A VPrinterOutput object is a resource that represents a list of spooled files for use in AS400Panes.
v A SpooledFileViewer object is a resource that visually represents spooled files.

AS400Panes are GUI components that present and allow manipulation of one or more server resources.
VPrinters, VPrinter, and VPrinterOutput objects are resources that represent lists of server print resources
in AS400Panes.

You can use AS400Pane, VPrinters, VPrinter, and VPrinterOutput objects together to present many views
of print resources and to allow the user to select and perform operations on them.

VPrinters class:

A VPrinters object is a resource that represents a list of printers for use in AS400Panes.

To use a VPrinters object, set the system property. Set this property by using a constructor or through the
setSystem() method. The VPrinters object is then "plugged" into the AS400Pane as the root, using the
pane's constructor or setRoot() method.

A VPrinters object has another useful property for defining the set of printers that is presented in
AS400Panes. Use setPrinterFilter() to specify a filter that defines which printers should appear.

IBM Toolbox for Java 273

javadoc/com/ibm/as400/vaccess/VMessageQueue.html

When AS400Pane and VPrinters objects are created, they are initialized to a default state. The list of
printers has not been loaded. To load the contents, the caller must explicitly call the load() method on
either object.

At run-time, a user can perform actions on any printer list or printer by right-clicking it to display the
context menu. The printer list context menu can include an item called Properties that allows the user to
set the printer filter property, which can change the contents of the list.

The printer context menu can include the following items:
v Hold - holds the printer
v Release - releases the printer
v Start - starts the printer
v Stop - stops the printer
v Make available - makes the printer available
v Make unavailable - makes the printer unavailable
v Properties - displays properties of the printer and allows the user to set filters

Users can only access printers to which they are authorized. In addition, the caller can prevent the user
from performing actions by using the setAllowActions() method on the pane.

The following example creates a VPrinters object and presents it in an AS400TreePane
// Create the VPrinters object.
// Assume that "system" is an AS400
// object created and initialized
// elsewhere.

VPrinters root = new VPrinters (system);

// Create and load an AS400TreePane
// object.

AS400TreePane treePane = new AS400TreePane (root);
treePane.load ();

// Add the tree pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.

frame.getContentPane ().add (treePane);

Example

Present print resources using an AS400ExplorerPane with a VPrinters object. Figure 1 shows the VPrinters
graphical user interface component:

Figure 1: VPrinters GUI component

Related information:
VPrinters Javadoc

274 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/VPrinters.html

VPrinter class:

A VPrinter object is a resource that represents a server printer and its spooled files for use in AS400Panes.

To use a VPrinter, set the printer property. Set this property by using a constructor or through the
setPrinter() method. The VPrinter object is then "plugged" into the AS400Pane as the root, using the
pane's constructor or setRoot() method.

When AS400Pane and VPrinter objects are created, they are initialized to a default state. The printer's
attributes and list of spooled files are not loaded at creation time.

To load the contents, the caller must explicitly call the load() method on either object. This will initiate
communication to the server to gather the contents of the list.

At run-time, a user can perform actions on any printer or spooled file by right-clicking it to display the
context menu. The context menu for message queues can include the following items:
v Hold - holds the printer
v Release - releases the printer
v Start - starts the printer
v Stop - stops the printer
v Make available - makes the printer available
v Make unavailable - makes the printer unavailable
v Properties - displays properties of the printer and allows the user to set filters

The context menu for spooled files listed for a printer can include the following items:
v Reply - replies to the spooled file
v Hold - holds the spooled file
v Release - releases the spooled file
v Print next - prints the next spooled file
v Send - sends the spooled file
v Move - moves the spooled file
v Delete - deletes the spooled file
v Properties - displays many properties of the spooled file and allows the user to change some of them

Users can only access printers and spooled files to which they are authorized. In addition, the caller can
prevent the user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VPrinter and presents it in an AS400ExplorerPane:
// Create the VPrinter object.
// Assume that "system" is an AS400
// object created and initialized
// elsewhere.

VPrinter root = new VPrinter (new Printer (system, "MYPRINTER"));

// Create and load an
// AS400ExplorerPane object.

AS400ExplorerPane explorerPane = new AS400ExplorerPane (root);
explorerPane.load ();

// Add the explorer pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.

frame.getContentPane ().add (explorerPane);

IBM Toolbox for Java 275

Example

Present print resources using an AS400ExplorerPane with a VPrinter object. Figure 1 shows the VPrinter
graphical user interface component:

Figure 1: VPrinter GUI component

Related information:
VPrinter Javadoc

VPrinterOutput class:

A VPrinterOutput object is a resource that represents a list of spooled files on a server for use in
AS400Panes.

To use a VPrinterOutput object, set the system property. This property can be set using a constructor or
through the setSystem() method. The VPrinterOutput object is then "plugged" into the AS400Pane as the
root, using the constructor or setRoot() method of the AS400Pane.

A VPrinterOutput object has other useful properties for defining the set of spooled files that is presented
in AS400Panes. Use setFormTypeFilter() to specify which types of forms should appear. Use
setUserDataFilter() to specify which user data should appear. Finally, use setUserFilter() to specify which
users spooled files should appear.

When AS400Pane and VPrinterOutput objects are created, they are initialized to a default state. The list of
spooled files is not loaded at creation time. To load the contents, the caller must explicitly call the load()
method on either object. This will initiate communication to the server to gather the contents of the list.

At run-time, a user can perform actions on any spooled file or spooled file list by right-clicking it to
display the context menu. The spooled file list context menu can include an item called Properties that
allows the user to set the filter properties, which can change the contents of the list.

The spooled file context menu can include the following items:
v Reply - replies to the spooled file
v Hold - holds the spooled file
v Release - releases the spooled file
v Print next - prints the next spooled file
v Send - sends the spooled file
v Move - moves the spooled file
v Delete - deletes the spooled file
v Properties - displays many properties of the spooled file and allows the user to change some of them

276 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/VPrinter.html

Of course, users can only access spooled files to which they are authorized. In addition, the caller can
prevent the user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VPrinterOutput and presents it in an AS400ListPane:
// Create the VPrinterOutput object.
// Assume that "system" is an AS400
// object created and initialized
// elsewhere.

VPrinterOutput root = new VPrinterOutput (system);

// Create and load an AS400ListPane
// object.

AS400ListPane listPane = new AS400ListPane (root);
listPane.load ();

// Add the list pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.

frame.getContentPane ().add (listPane);

Example

Present a list of spooled files by using the print resource, VPrinterOutput object. Figure 1 shows the
VPrinterOutput graphical user interface component:

Figure 1: VPrinterOutput GUI component

Related information:
VPrinterOutput Javadoc

SpooledFileViewer class:

The IBM Toolbox for Java SpooledFileViewer class creates a window for viewing Advanced Function
Printing (AFP) and Systems Network Architecture character string (SCS) files that have been spooled for
printing.

The class essentially adds a "print preview" function to your spooled files, common to most word
processing programs, as illustrated in Figure 1.

The spooled file viewer is especially helpful when viewing the accuracy of the layout of the files is more
important than printing the files, or when viewing the data is more economical than printing, or when a
printer is not available.

IBM Toolbox for Java 277

javadoc/com/ibm/as400/vaccess/VPrinterOutput.html

Note: SS1 Option 8 (AFP Compatibility Fonts) must be installed on the host server.

Using the SpooledFileViewer class

Three constructor methods are available to create an instance of the SpooledFileViewer class. The
SpooledFileViewer() constructor can be used to create a viewer without a spooled file associated with it.
If this constructor is used, a spooled file will need to be set later using setSpooledFile(SpooledFile). The
SpooledFileViewer(SpooledFile) constructor can be used to create a viewer for the given spooled file, with
page one as the initial view. Finally, the SpooledFileViewer(spooledFile, int) constructor can be used to
create a viewer for the given spooled file with the specified page as the initial view. No matter which
constructor is used, once a viewer is created, a call to load() must be performed in order to actually
retrieve the spooled file data.

Then, your program can traverse the individual pages of the spooled file by using the following methods:
v load FlashPage()
v load Page()
v pageBack()
v pageForward()

If, however, you need to examine particular sections of the document more closely, you can magnify or
reduce the image of a page of the document by altering the ratio proportions of each page with the
following:
v fitHeight()
v fitPage()
v fitWidth()
v actualSize()

Your program concludes with calling the close() method that closes the input stream and releases any
resource associations with the stream.

Using the SpooledFileViewer

An instance of the SpooledFileViewer class is actually a graphical representation of a viewer capable of
displaying and navigating through an AFP or SCS spooled file. For example, the following code creates
the spooled file viewer in Figure 1 to display a spooled file previously created on the server.

Note: You can either select a button on the image in Figure 1 for an explanation of its function, or (if
your browser is not JavaScript enabled) see the toolbar description.

// Assume splf is the spooled file.
// Create the spooled file viewer
SpooledFileViewer splfv = new SpooledFileViewer(splf, 1);
splfv.load();
// Add the spooled file viewer to a frame
JFrame frame = new JFrame("My Window");
frame.getContentPane().add(splfv);
frame.pack();
frame.show();

Figure 1: SpooledFileViewer

278 IBM i: Programming IBM Toolbox for Java

SpooledFileViewer Toolbar description

The actual size button returns the spooled file page image to its original size by using the
actualSize() method.

The fit width button stretches the spooled file page image to the left and right edges of the
viewer's frame by using the fitWidth() method.

The fit page button stretches the spooled file page image vertically and horizontally to fit within
the spooled file viewer's frame by using the fitPage() method.

The zoom button allows you to increase or decrease the size of the spooled file page image by
selecting one of the preset percentages or entering your own percent in a text field that appears in a
dialog box after selecting the zoom button.

The go to page button allows you to go to a specific page within the spooled file when selected.

The first page button takes you to the first page of the spooled file when selected and indicates
that you are on the first page when deactivated.

IBM Toolbox for Java 279

The previous page button takes you to the page immediately before the page you are viewing
when selected.

The next page button advances you to the page immediately after the page you are viewing
when selected.

The last page button advances you to the last page of the spooled file when selected and indicates
that you are on the last page when deactivated.

The load flash page button loads the previously viewed page by using the loadFlashPage()
method when selected.

The set paper size button allows you to set the paper size when selected.

The set viewing fidelity button allows you to set the viewing fidelity when selected.
SpooledFileViewer Javadoc

Vaccess ProgramCall classes
The program call components in the vaccess package allow a Java program to present a button or menu
item that calls a server program. Input, output, and input/output parameters can be specified using
ProgramParameter objects. When the program runs, the output and input/output parameters contain
data returned by the server program.

A ProgramCallButton object represents a button that calls an server program when pressed. The
ProgramCallButton class extends the Java Foundation Classes (JFC) JButton class so that all buttons have
a consistent appearance and behavior.

Similarly, a ProgramCallMenuItem object represents a menu item that calls an server program when
selected. The ProgramCallMenuItem class extends the JFC JMenuItem class so that all menu items also
have a consistent appearance and behavior.

To use a vaccess program call component, set both the system and program properties. Set these
properties by using a constructor or through the setSystem() and setProgram() methods.

The following example creates a ProgramCallMenuItem. At run time, when the menu item is selected, it
calls a program:

// Create the ProgramCallMenuItem
// object. Assume that "system" is
// an AS400 object created and
// initialized elsewhere. The menu
// item text says "Select Me", and
// there is no icon.

ProgramCallMenuItem menuItem = new ProgramCallMenuItem ("Select Me", null, system);

// Create a path name object that

280 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/SpooledFileViewer.html

// represents program MYPROG in
// library MYLIB

QSYSObjectPathName programName = new QSYSObjectPathName("MYLIB", "MYPROG", "PGM");

// Set the name of the program.
menuItem.setProgram (programName.getPath());

// Add the menu item to a menu.
// Assume that the menu was created
// elsewhere.

menu.add (menuItem);

When a server program runs, it may return zero or more server messages. To detect when the server
program runs, add an ActionCompletedListener to the button or menu item using the
addActionCompletedListener() method. When the program runs, it fires an ActionCompletedEvent to all
such listeners. A listener can use the getMessageList() method to retrieve any server messages that the
program generated.

This example adds an ActionCompletedListener that processes all server messages that the program
generated:

// Add an ActionCompletedListener
// that is implemented by using an
// anonymous inner class. This is a
// convenient way to specify simple
// event listeners.

menuItem.addActionCompletedListener (new ActionCompletedListener ()
{

public void actionCompleted (ActionCompletedEvent event)
{

// Cast the source of the event to a
// ProgramCallMenuItem.

ProgramCallMenuItem sourceMenuItem = (ProgramCallMenuItem) event.getSource ();

// Get the list of server messages
// that the program generated.

AS400Message[] messageList = sourceMenuItem.getMessageList ();

// ... Process the message list.
}

});

Parameters

ProgramParameter objects are used to pass parameter data between the Java program and the server
program. Input data is set with the setInputData() method. After the program is run, output data is
retrieved with the getOutputData() method.

Each parameter is a byte array. It is up to the Java program to convert the byte array between Java and
server formats. The data conversion classes provide methods for converting data.

You can add parameters to a program call graphical user interface component one at a time using the
addParameter() method or all at once using the setParameterList() method.

For more information about using ProgramParameter objects, see the ProgramCall access class.

The following example adds two parameters:
// The first parameter is a String
// name of up to 100 characters.
// This is an input parameter.
// Assume that "name" is a String
// created and initialized elsewhere.

IBM Toolbox for Java 281

AS400Text parm1Converter = new AS400Text (100, system.getCcsid (), system);
ProgramParameter parm1 = new ProgramParameter (parm1Converter.toBytes (name));
menuItem.addParameter (parm1);

// The second parameter is an Integer
// output parameter.

AS400Bin4 parm2Converter = new AS400Bin4 ();
ProgramParameter parm2 = new ProgramParameter (parm2Converter.getByteLength ());
menuItem.addParameter (parm2);

// ... after the program is called,
// get the value returned as the
// second parameter.

int result = parm2Converter.toInt (parm2.getOutputData ());

Examples

Example of using a ProgramCallButton in an application. Figure 1 shows how the ProgramCallButton
looks:

Figure 1: Using ProgramCallButton in an application

ProgramParameter Javadoc
ProgramCallButton Javadoc
ProgramCallMenuItem Javadoc
ActionCompletedListener Javadoc
ActionCompletedEvent Javadoc

Vaccess record-level access classes
The record-level access classes in the vaccess package allow a Java program to present various views of
server files.

The following components are available:
v RecordListFormPane presents a list of records from a server file in a form.
v RecordListTablePane presents a list of records from a server file in a table.
v RecordListTableModel manages the list of records from a server file for a table.

Keyed access

You can use the record-level access graphical user interface components with keyed access to a server file.
Keyed access means that the Java program can access the records of a file by specifying a key.

Keyed access works the same for each record-level access graphical user interface component. Use
setKeyed() to specify keyed access instead of sequential access. Specify a key using the constructor or the
setKey() method. See Specifying the key for more information about how to specify the key.

282 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/ProgramParameter.html
javadoc/com/ibm/as400/vaccess/ProgramCallButton.html
javadoc/com/ibm/as400/vaccess/ProgramCallMenuItem.html
javadoc/com/ibm/as400/access/ActionCompletedListener.html
javadoc/com/ibm/as400/access/ActionCompletedEvent.html

By default, only records whose keys are equal to the specified key are displayed. To change this, specify
the searchType property using the constructor or setSearchType() method. Possible choices are as follows:
v KEY_EQ - Display records whose keys are equal to the specified key.
v KEY_GE - Display records whose keys are greater than or equal to the specified key.
v KEY_GT - Display records whose keys are greater than the specified key.
v KEY_LE - Display records whose keys are less than or equal to the specified key.
v KEY_LT - Display records whose keys are less than the specified key.

The following example creates a RecordListTablePane object to display all records less than or equal to a
key.

// Create a key that contains a
// single element, the Integer 5.

Object[] key = new Object[1];
key[0] = new Integer (5);

// Create a RecordListTablePane
// object. Assume that "system" is an
// AS400 object that is created and
// initialized elsewhere. Specify
// the key and search type.

RecordListTablePane tablePane = new RecordListTablePane (system,
"/QSYS.LIB/QGPL.LIB/PARTS.FILE", key, RecordListTablePane.KEY_LE);

// Load the file contents.
tablePane.load ();

// Add the table pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.

frame.getContentPane ().add (tablePane);

RecordListFormPane class:

A RecordListFormPane presents the contents of a server file in a form. The form displays one record at a
time and provides buttons that allow the user to scroll forward, backward, to the first or last record, or
refresh the view of the file contents.

To use a RecordListFormPane, set the system and fileName properties. Set these properties by using the
constructor or the setSystem() and setFileName() methods. Use load() to retrieve the file contents and
present the first record. When the file contents are no longer needed, call close() to ensure that the file is
closed.

The following example creates a RecordListFormPane object and adds it to a frame:
// Create a RecordListFormPane
// object. Assume that "system" is
// an AS400 object that is created
// and initialized elsewhere.

RecordListFormPane formPane = new RecordListFormPane (system,
"/QSYS.LIB/QIWS.LIB/QCUSTCDT.FILE");

// Load the file contents.
formPane.load ();

// Add the form pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.

frame.getContentPane ().add (formPane);

Example

IBM Toolbox for Java 283

Present an RecordListFormPane which displays the contents of a file. Figure 1 shows the
RecordListFormPane graphical user interface component:

Figure 1: RecordListFormPane GUI component

Related information:
RecordListFormPane Javadoc

RecordListTablePane class:

A RecordListTablePane presents the contents of a server file in a table. Each row in the table displays a
record from the file and each column displays a field.

To use a RecordListTablePane, set the system and fileName properties. Set these properties by using the
constructor or the setSystem() and setFileName() methods. Use load() to retrieve the file contents and
present the records in the table. When the file contents are no longer needed, call close() to ensure that
the file is closed.

The following example creates a RecordListTablePane object and adds it to a frame:

284 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/RecordListFormPane.html

// Create an RecordListTablePane
// object. Assume that "system" is
// an AS400 object that is created
// and initialized elsewhere.

RecordListTablePane tablePane = new RecordListTablePane (system,
"/QSYS.LIB/QIWS.LIB/QCUSTCDT.FILE");

// Load the file contents.
tablePane.load ();

// Add the table pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.

frame.getContentPane ().add (tablePane);

Related information:
RecordListTablePane Javadoc

RecordListTablePane and RecordListTableModel classes:

RecordListTablePane is implemented using the model-view-controller paradigm, in which the data and
the user interface are separated into different classes.

The implementation integrates RecordListTableModel with Java Foundation Classes' (JFC) JTable. The
RecordListTableModel class retrieves and manages the contents of the file and JTable displays the file
contents graphically and handles user interaction.

RecordListTablePane provides enough functionality for most requirements. However, if a caller needs
more control of the JFC component, then the caller can use RecordListTableModel directly and provide
customized integration with a different graphical user interface component.

To use a RecordListTableModel, set the system and fileName properties. Set these properties by using the
constructor or the setSystem() and setFileName() methods. Use load() to retrieve the file contents. When
the file contents are no longer needed, call close() to ensure that the file is closed.

The following example creates a RecordListTableModel object and presents it with a JTable:

RecordListTableModel Javadoc

ResourceListPane and ResourceListDetailsPane
Use the ResourceListPane and ResourceListDetailsPane classes to present a resource list in a graphical
user interface (GUI).
v ResourceListPane displays the contents of the resource list in a graphical javax.swing.JList. Every item

displayed in the list represents a resource object from the resource list.
v ResourceListDetailsPane displays the contents of the resource list in a graphical javax.swing.JTable.

Every row in the table represents a resource object from the resource list.

// Create a RecordListTableModel
// object. Assume that "system" is
// an AS400 object that is created
// and initialized elsewhere.

RecordListTableModel tableModel = new RecordListTableModel (system, "/QSYS.LIB/QIWS.LIB/QCUSTCDT.FILE");

// Load the file contents.
tableModel.load ();

// Create a JTable for the model.
JTable table = new JTable (tableModel);

// Add the table to a frame. Assume
// that "frame" is a JFrame
// created elsewhere.

frame.getContentPane ().add (table);

IBM Toolbox for Java 285

javadoc/com/ibm/as400/vaccess/RecordListTablePane.html
javadoc/com/ibm/as400/vaccess/RecordListTableModel.html

The table columns for a ResourceListDetailsPane are specified as an array of column attribute IDs. The
table contains a column for each element of the array and a row for each resource object.

Pop-up menus are enabled by default for both ResourceListPane and ResourceListDetailsPane.

Most errors are reported as com.ibm.as400.vaccess.ErrorEvents rather than thrown exceptions. Listen for
ErrorEvents in order to diagnose and recover from error conditions.

Example: Displaying a resource list in a GUI

This example creates a ResourceList of all users on a system and displays it in a GUI (details pane):
// Create the resource list.
AS400 system = new AS400("MYSYSTEM", "MYUSERID", "MYPASSWORD");
RUserList userList = new RUserList(system);

// Create the ResourceListDetailsPane. In this example,
// there are two columns in the table. The first column
// contains the icons and names for each user. The
// second column contains the text description for each
// user.
Object[] columnAttributeIDs = new Object[] { null, RUser.TEXT_DESCRIPTION };
ResourceListDetailsPane detailsPane = new ResourceListDetailsPane();
detailsPane.setResourceList(userList);
detailsPane.setColumnAttributeIDs(columnAttributeIDs);

// Add the ResourceListDetailsPane to a JFrame and show it.
JFrame frame = new JFrame("My Window");
frame.getContentPane().add(detailsPane);
frame.pack();
frame.show();

// The ResourceListDetailsPane will appear empty until
// we load it. This gives us control of when the list
// of users is retrieved from the server.
detailsPane.load();

ResourceListPane Javadoc
ResourceListDetailsPane Javadoc

System status classes
The System status components in the vaccess package allow you to create GUIs by using the existing
AS400Panes.

You also have the option to create your own GUIs using the Java Foundation Classes (JFC). The
VSystemStatus object represents a system status on the server. The VSystemPool object represents a
system pool on the server. The VSystemStatusPane represents a visual pane that displays the system
status information.

The VSystemStatus class allows you to get information about the status of a server session within a GUI
environment:
v The getSystem() method returns the server where the system status information is contained
v The getText() method returns the description text
v The setSystem() method sets the server where the system status information is located

In addition to the methods mentioned above, you can also access and change system pool information in
a GUI.

You use VSystemStatus with VSystemStatusPane. VSystemPane is the visual display pane where
information is shown for both system status and system pool.

286 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/ErrorEvent.html#NAVBAR_TOP
javadoc/com/ibm/as400/vaccess/ResourceListPane.html
javadoc/com/ibm/as400/vaccess/ResourceListDetailsPane.html

VSystemStatus Javadoc
VSystemStatusPane Javadoc

VSystemPool class:

The VSystemPool class allows you to retrieve and set system pool information from a server using a GUI
design. VSystemPool works with various panes in the vaccess package including the VSystemStatusPane.

The following list is some of the methods that are available to use in VSystemPool:
v The getActions() method returns a list of actions that you can perform
v The getSystem() method returns the server where the system pool information is found
v The setSystemPool() method sets the system pool object
Related information:
VSystemPool Javadoc
VSystemStatusPane

VSystemStatusPane class:

The VSystemStatusPane class allows a Java program to display system status and system pool
information.

VSystemStatusPane includes the following methods:
v getVSystemStatus(): Returns the VSystemStatus information in a VSystemStatusPane.
v setAllowModifyAllPools(): Sets the value to determine if system pool information can be modified.

The following example shows you how to use the VSystemStatusPane class:
// Create an as400 object.
AS400 mySystem = new AS400("mySystem.myCompany.com");

// Create a VSystemStatusPane
VSystemStatusPane myPane = new VSystemStatusPane(mySystem);

// Set the value to allow pools to be modified
myPane.setAllowModifyAllPools(true);

//Load the information
myPane.load();

VSystemStatusPane Javadoc

System values GUI
The system value components in the vaccess package allow a Java program to create GUIs by using the
existing AS400Panes or by creating your own panes using the Java Foundation Classes(JFC).

The VSystemValueList object represents a system value list on the server.

To use the System Value GUI component, set the system name with a constructor or through the
setSystem() method.

Example The following example creates a system value GUI using the AS400Explorer Pane:
//Create an AS400 object
AS400 mySystem = newAS400("mySystem.myCompany.com");
VSystemValueList mySystemValueList = new VSystemValueList(mySystem);
as400Panel=new AS400ExplorerPane((VNode)mySystemValueList);
//Create and load an AS400ExplorerPane object
as400Panel.load();

Related information:

IBM Toolbox for Java 287

javadoc/com/ibm/as400/vaccess/VSystemStatus.html
javadoc/com/ibm/as400/vaccess/VSystemStatusPane.html
javadoc/com/ibm/as400/vaccess/VSystemPool.html
javadoc/com/ibm/as400/vaccess/VSystemStatusPane.html
javadoc/com/ibm/as400/vaccess/VSystemStatusPane.html

VSystemValueList Javadoc

Vaccess users and groups classes
The users and groups components in the vaccess package allow you to present lists of server users and
groups through the VUser class.

The following components are available:
v AS400Panes are GUI components that present and allow manipulation of one or more server resources.
v A VUserList object is a resource that represents a list of server users and groups for use in AS400Panes.
v A VUserAndGroup object is a resource for use in AS400Panes that represents groups of server users. It

allows a Java program to list all users, list all groups, or list users who are not in groups.

AS400Pane and VUserList objects can be used together to present many views of the list. They can also
be used to allow the user to select users and groups.

To use a VUserList, you must first set the system property. Set this property by using a constructor or
through the setSystem() method. The VUserList object is then "plugged" into the AS400Pane as the root,
using the constructor or setRoot() method of the AS400Pane.

VUserList has some other useful properties for defining the set of users and groups that are presented in
AS400Panes:
v Use the setUserInfo() method to specify the types of users that should appear.
v Use the setGroupInfo() method to specify a group name.

You can use the VUserAndGroup object to get information about the Users and Groups on the system.
Before you can get information about a particular object, you need to load the information so that it can
be accessed. You can display the server in which the information is found by using the getSystem
method.

When AS400Pane objects and VUserList or VUserAndGroup objects are created, they are initialized to a
default state. The list of users and groups has not been loaded. To load the contents, the Java program
must explicitly call the load() method on either object to initiate communication to the server to gather
the contents of the list.

At run-time, right-click a user, user list, or group to display the shortcut menu. Select Properties from the
shortcut menu to perform actions on the selected object:
v User - Display a list of user information including the description, user class, status, job description,

output information, message information, international information, security information, and group
information.

v User list - Work with user information and group information properties. You can also change the
contents of the list.

v Users and groups - Display properties, such as the user name and description.

Users can only access users and groups to which they are authorized. In addition, the Java program can
prevent the user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VUserList and presents it in an AS400DetailsPane:
// Create the VUserList object.
// Assume that "system" is an AS400
// object created and initialized
// elsewhere.
VUserList root = new VUserList (system);

// Create and load an
// AS400DetailsPane object.

288 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/VSystemValueList.html

AS400DetailsPane detailsPane = new AS400DetailsPane (root);
detailsPane.load ();

// Add the details pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (detailsPane);

The following example shows how to use the VUserAndGroup object:
// Create the VUserAndGroup object.
// Assume that "system" is an AS400 object created and initialized elsewhere.
VUserAndGroup root = new VUserAndGroup(system);

// Create and Load an AS400ExplorerPane
AS400ExplorerPane explorerPane = new AS400ExplorerPane(root);
explorerPane.load();

// Add the explorer pane to a frame
// Assume that "frame" is a JFrame created elsewhere
frame.getContentPane().add(explorerPane);

Other Examples

Present a list of users on the system using an AS400ListPane with a VUserList object.

The following image shows the VUserList graphical user interface component:

VUser Javadoc
VUserAndGroup Javadoc

Graphical Toolbox and PDML
The Graphical Toolbox, a set of UI tools, enables you to create custom user interface panels in Java.

You can incorporate the panels into your Java applications, applets, or System i Navigator plug-ins. The
panels may contain data obtained from the system, or data obtained from another source such as a file in
the local file system or a program on the network.

IBM Toolbox for Java 289

javadoc/com/ibm/as400/vaccess/VUser.html
javadoc/com/ibm/as400/vaccess/VUserAndGroup.html
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/rzakx/rzakxkickoff.htm

The GUI Builder is a WYSIWYG visual editor for creating Java dialogs, property sheets and wizards.
With the GUI Builder you can add, arrange, or edit user interface controls on a panel, and then preview
the panel to verify the layout behaves the way you expected. The panel definitions you create can be
used in dialogs, inserted within property sheets and wizards, or arranged into splitter, deck, and tabbed
panes. The GUI Builder also allows you to build menu bars, toolbars, and context menu definitions. You
can also incorporate JavaHelp in your panels, including context sensitive help.

The Resource Script Converter converts Windows resource scripts into an XML representation that is
usable by Java programs. With the Resource Script Converter you can process Windows resource scripts
(RC files) from your existing Windows dialogs and menus. These converted files can then be edited with
the GUI Builder. Property sheets and wizards can be made from RC files using the resource script
converter along with the GUI Builder.

Underlying these two tools is a new technology called the Panel Definition Markup Language, or
PDML. PDML is based on the Extensible Markup Language (XML) and defines a platform-independent
language for describing the layout of user interface elements. Once your panels are defined in PDML,
you can use the runtime API provided by the Graphical Toolbox to display them. The API displays your
panels by interpreting the PDML and rendering your user interface using the Java Foundation Classes.

Note: Using PDML requires that you run version 1.4 or later of the Java Runtime Environment.

Benefits of the Graphical Toolbox

Write Less Code and Save Time
With the Graphical Toolbox you have the ability to create Java-based user interfaces quickly and
easily. The GUI Builder lets you have precise control over the layout of UI elements on your
panels. Because the layout is described in PDML, you are not required to develop any Java code
to define the user interface, and you do not need to recompile code in order to make changes. As
a result, significantly less time is required to create and maintain your Java applications. The
Resource Script Converter lets you migrate large numbers of Windows panels to Java quickly and
easily.

Custom Help
Defining user interfaces in PDML creates some additional benefits. Because all of a panel's
information is consolidated in a formal markup language, the tools can be enhanced to perform
additional services on behalf of the developer. For example, both the GUI Builder and the
Resource Script Converter are capable of generating HTML skeletons for the panel's online help.
You decide which help topics are required and the help topics are automatically built based on
your requirements. Anchor tags for the help topics are built right into the help skeleton, which
frees the help writer to focus on developing appropriate content. The Graphical Toolbox runtime
environment automatically displays the correct help topic in response to a user's request.

Automatic Panel to Code Integration
In addition, PDML provides tags that associate each control on a panel with an attribute on a
JavaBean. Once you have identified the bean classes that will supply data to the panel and have
associated a attribute with each of the appropriate controls, you can request that the tools
generate Java source code skeletons for the bean objects. At runtime, the Graphical Toolbox
automatically transfers data between the beans and the controls on the panel that you identified.

Platform Independent
The Graphical Toolbox runtime environment provides support for event handling, user data
validation, and common types of interaction among the elements of a panel. The correct platform
look and feel for your user interface is automatically set based on the underlying operating
system, and the GUI Builder lets you toggle the look and feel so that you can evaluate how your
panels will look on different platforms.

The Graphical Toolbox provides you with two tools and, therefore, two ways of automating the creation
of your user interfaces. You can use the GUI Builder to quickly and easily create new panels from scratch,

290 IBM i: Programming IBM Toolbox for Java

or you can use the Resource Script Converter to convert existing Windows-based panels to Java. The
converted files can then be edited with GUI Builder. Both tools support internationalization.

GUI Builder

Two windows are displayed when you invoke the GUI Builder for the first time, as shown in Figure 1:

Figure 1: GUI Builder windows

Use the File Builder window to create and edit your PDML files.

Figure 2: File Builder window

Use the Properties window to view or change the properties of the currently selected control.

Figure 3: Properties window

IBM Toolbox for Java 291

Use the Panel Builder window to create and edit your graphical user interface components. Select the
desired component from the toolbar and click on the panel to place it where ever you want. The toolbar
also facilities for aligning groups of controls, for previewing the panel, and for requesting online help for
a GUI Builder function. See GUI Builder Panel Builder toolbar for a description of what each icon does.

Figure 4: Panel Builder window

The panel being edited is displayed in the Panel Builder window. Figure 5 shows how the windows work
together:

Figure 5: Example of how GUI Builder windows work together

292 IBM i: Programming IBM Toolbox for Java

Resource Script Converter

The Resource Script Converter consists of a two-paned tabbed dialog. On the Convert pane you specify
the name of the Microsoft or VisualAge® for Windows RC file that is to be converted to PDML. You can
specify the name of the target PDML file and associated Java resource bundle that will contain the
translated strings for the panels. In addition, you can request that online help skeletons be generated for
the panels, generate Java source code skeletons for the objects that supply data to the panels, and
serialize the panel definitions for improved performance at runtime. The Converter's online help provides
a detailed description of each input field on the Convert pane.

Figure 6: Resource Script Converter Convert pane

IBM Toolbox for Java 293

After the conversion has run successfully, you can use the View pane to view the contents of your
newly-created PDML file, and preview your new Java panels. You can use the GUI Builder to make
minor adjustments to a panel if needed. The Converter always checks for an existing PDML file before
performing a conversion, and attempts to preserve any changes in case you need to run the conversion
again later.

Figure 7: Resource Script Converter View pane

294 IBM i: Programming IBM Toolbox for Java

Setting up the Graphical Toolbox
The Graphical Toolbox is delivered as a set of JAR files. To set up the Graphical Toolbox you must install
the JAR files on your workstation and set your CLASSPATH environment variable.

You must also ensure that your workstation meets the requirements to run IBM Toolbox for Java.

Installing the Graphical Toolbox on your workstation

To develop Java programs using the Graphical Toolbox, first install the Graphical Toolbox JAR files on
your workstation. Use one of the following methods:

Transfer the JAR Files
Note: The following list represents some of the methods you can use to transfer the JAR files. The
IBM Toolbox for Java licensed program must be installed on your system. Additionally, you need

to download the JAR file for JavaHelp, jhall.jar, from the Sun JavaHelp Web site .
v Use FTP (ensure you transfer the files in binary mode) and copy the JAR files from the

directory /QIBM/ProdData/HTTP/Public/jt400/lib to a local directory on your workstation
v Use IBM i Access for Windows to map a network drive.

Install JAR files with IBM i Access for Windows
You can also install the Graphical Toolbox when you install IBM i Access for Windows. The IBM
Toolbox for Java is now shipped as part of IBM i Access for Windows. If you are installing IBM i
Access for Windows for the first time, choose Custom Install and select the IBM Toolbox for Java
component on the install menu. If you have already installed IBM i Access for Windows, you
can use the Selective Setup program to install this component if it is not already present.

IBM Toolbox for Java 295

http://www.javasoft.com/products/javahelp/index.html

Setting your classpath

To use the Graphical Toolbox, you must add these JAR files to your CLASSPATH environment variable
(or specify them on the classpath option on the command line).

For example, if you have copied the files to the directory C:\gtbox\lib on your workstation, you must
add the following path names to your classpath:

C:\gtbox\lib\uitools.jar;
C:\gtbox\lib\jui400.jar;
C:\gtbox\lib\data400.jar;
C:\gtbox\lib\util400.jar;
C:\gtbox\lib\jhall.jar;

You also need to add an XML parser to your CLASSPATH. For more information, see the following page:

“XML parser and XSLT processor” on page 417

If you have installed the Graphical Toolbox using IBM i Access for Windows, the JAR files (except
jhall.jar) will all reside in the directory \Program Files\Ibm\Client Access\jt400\lib on the drive where
you have installed IBM i Access for Windows. IBM i Access for Windows installs jhall.jar in the \Program
Files\Ibm\Client Access\jre\lib directory. The path names in your classpath reflect this.

JAR File Descriptions
v uitools.jar: Contains the GUI Builder and Resource Script Converter tools.
v jui400.jar: Contains the runtime API for the Graphical Toolbox. Java programs use this API to

display the panels constructed using the tools. These classes may be redistributed with applications.
v data400.jar: Contains the runtime API for the Program Call Markup Language (PCML). Java programs

use this API to call IBM i programs whose parameters and return values are identified using PCML.
These classes may be redistributed with applications.

v util400.jar: Contains utility classes for formatting IBM i data and handling IBM i messages. These
classes may be redistributed with applications.

v jhall.jar: Contains the JavaHelp classes that displays the online help and context sensitive help for the
panels you build with the GUI Builder.

v XML parser: Contains the XML parser used by the API classes to interpret PDML and PCML
documents.

Note: You can use internationalized versions of the GUI Builder and Resource Script Converter tools. To
run a non-U.S. English version, you must add to your Graphical Toolbox installation the correct
version of uitools.jar for your language and country or region. These JAR files are available on the
server in /QIBM/ProdData/HTTP/Public/jt400/Mri29xx, where 29xx is the 4-digit IBM i NLV code
that corresponds to your language and country or region. The names of the JAR files in the various
Mri29xx directories include 2-character suffixes for the Java language code and the country or
region code. This additional JAR file is be added to your classpath ahead of uitools.jar in the
search order.

Using the Graphical Toolbox

Once you have installed the Graphical Toolbox, follow these links to learn how to use the tools:
v Using the GUI Builder
v Using the Resource Script Converter

296 IBM i: Programming IBM Toolbox for Java

Creating your user interface
Use the GUI Builder tool to create a user interface.

To start the GUI Builder, use the following command:
java com.ibm.as400.ui.tools.GUIBuilder [-plaf look and feel]

If you did not set your CLASSPATH environment variable to contain the Graphical Toolbox JAR files,
then you will need to specify them on the command line using the classpath option. See Setting Up the
Graphical Toolbox.

Options -plaf look and feel
The platform look and feel that you want. This option lets you override the default look and feel
that is set based on the platform you are developing on, so you can preview your panels to see
how they will look on different operating system platforms. The following look and feel values
are accepted:
v Windows
v Metal
v Motif

Currently, additional look and feel attributes that Swing 1.1 may support are not supported by
the GUI Builder

Types of user interface resources

When you start the GUI Builder for the first time, you need to create a new PDML file. From the menu
bar on the GUI Builder widow, select File --> New File. After you create your new PDML file, you can
define any of the following types of UI resources that you want it to contain.

Panel The fundamental resource type. It describes a rectangular area within which UI elements are
arranged. The UI elements may consist of simple controls, such as radio buttons or text fields,
images, animations, custom controls, or more sophisticated subpanels (see the following
definitions for Split Pane, Deck Pane and Tabbed Pane). A panel may define the layout for a
stand-alone window or dialog, or it may define one of the subpanels that is contained in another
UI resource.

Menu A popup window containing one or more selectable actions, each represented by a text string
("Cut", "Copy" and "Paste" are examples). You can define mnemonics and accelerator keys for
each action, insert separators and cascading submenus, or define special checked or radio button
menu items. A menu resource may be used as a stand-alone context menu, as a drop-down menu
in a menu bar, or it may itself define the menu bar associated with a panel resource.

Toolbar
A window consisting of a series of push buttons, each representing a possible user action. Each
button may contain text, an icon or both. You can define the toolbar as floatable, which lets the
user drag the toolbar out of a panel and into a stand-alone window.

Property Sheet
A stand-alone window or dialog consisting of a tabbed panels and OK, Cancel, and Help
buttons. Panel resources define the layout of each tabbed window.

Wizard
A stand-alone window or dialog consisting of a series of panels that are displayed to the user in a
predefined sequence, with Back, Next, Cancel, Finish, and Help buttons. The wizard window
may also display a list of tasks to the left of the panels which track the user's progress through
the wizard.

Split Pane
A subpane consisting of two panels separated by a splitter bar. The panels may be arranged
horizontally or vertically.

IBM Toolbox for Java 297

Tabbed Pane
A subpane that forms a tabbed control. This tabbed control can be placed inside of another panel,
split pane, or deck pane.

Deck Pane
A subpane consisting of a collection of panels. Of these, only one panel can be displayed at a
time. For example, at runtime the deck pane might change the panel which is displayed
depending on a given user action.

String Table
A collection of string resources and their associated resource identifiers.

Generated files

The translatable strings for a panel are not stored in the PDML file itself, but in a separate Java resource
bundle. The tools let you specify how the resource bundle is defined, either as a Java PROPERTIES file or
as a ListResourceBundle subclass. A ListResourceBundle subclass is a compiled version of the translatable
resources, which enhances the performance of your Java application. However, it will slow down the GUI
Builder's saving process, because the ListResourceBundle will be compiled in each save operation.
Therefore it's best to start with a PROPERTIES file (the default setting) until you're satisfied with the
design of your user interface.

You can use the tools to generate HTML skeletons for each panel in the PDML file. At runtime, the
correct help topic is displayed when the user clicks on the panel's Help button or presses F1 while the
focus is on one of the panel's controls. You must insert your help content at the appropriate points in the
HTML, within the scope of the <!-- HELPDOC:SEGMENTBEGIN --> and <!-- HELPDOC:SEGMENTEND --> tags. For
more specific help information see Editing Help Documents generated by GUI builder.

You can generate source code skeletons for the JavaBeans that will supply the data for a panel. Use the
Properties window of the GUI Builder to fill in the DATACLASS and ATTRIBUTE properties for the
controls which will contain data. The DATACLASS property identifies the class name of the bean, and
the ATTRIBUTE property specifies the name of the gettor/settor methods that the bean class
implements. Once you've added this information to the PDML file, you can use the GUI Builder to
generate Java source code skeletons and compile them. At runtime, the appropriate gettor/settor
methods will be called to fill in the data for the panel.

Note: The number and type of gettor/settor methods is dependent on the type of UI control with
which the methods are associated. The method protocols for each control are documented in the
class description for the DataBean class.

Finally, you can serialize the contents of your PDML file. Serialization produces a compact binary
representation of all of the UI resources in the file. This greatly improves the performance of your user
interface, because the PDML file must not be interpreted in order to display your panels.

To summarize: If you have created a PDML file named MyPanels.pdml, the following files will also be
produced based on the options you have selected on the tools:
v MyPanels.properties if you have defined the resource bundle as a PROPERTIES file
v MyPanels.java and MyPanels.class if you have defined the resource bundle as a ListResourceBundle

subclass
v <panel name>.html for each panel in the PDML file, if you have elected to generate online help

skeletons
v <dataclass name>.java and <dataclass name>.class for each unique bean class that you have specified

on your DATACLASS properties, if you have elected to generate source code skeletons for your
JavaBeans

v <resource name>.pdml.ser for each UI resource defined in the PDML file, if you've elected to serialize
its contents.

298 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/ui/framework/java/DataBean.html

Note: The conditional behavior functions (SELECTED/DESELECTED) will not work if the panel name is
the same as the one in which the conditional behavior function is being attached. For instance, if
PANEL1 in FILE1 has a conditional behavior reference attached to a field that references a field in
PANEL1 in FILE2, the conditional behavior event will not work. To fix this, rename PANEL1 in
FILE2 and then update the conditional behavior event in FILE1 to reflect this change.

Running the Resource Script Converter

To start the Resource Script Converter, invoke the Java interpreter as follows:
java com.ibm.as400.ui.tools.PDMLViewer

If you did not set your CLASSPATH environment variable to contain the Graphical Toolbox JAR files,
then you will need to specify them on the command line using the classpath option. See Setting Up the
Graphical Toolbox.

You can also run the Resource Script Converter in batch mode using the following command:
java com.ibm.as400.ui.tools.RC2XML file [options]

Where file is the name of the resource script (RC file) to be processed. Options

-x name
The name of the generated PDML file. Defaults to the name of the RC file to be processed.

-p name
The name of the generated PROPERTIES file. Defaults to the name of the PDML file.

-r name
The name of the generated ListResourceBundle subclass. Defaults to the name of the PDML file.

-package name
The name of the package to which the generated resources will be assigned. If not specified, no
package statements will be generated.

-l locale
The locale in which to produce the generated resources. If a locale is specified, the appropriate
2-character ISO language and country or region codes are suffixed to the name of the generated
resource bundle.

-h Generate HTML skeletons for online help.

-d Generate source code skeletons for JavaBeans.

-s Serialize all resources.

Mapping Windows Resources to PDML

All dialogs, menus, and string tables found in the RC file will be converted to the corresponding
Graphical Toolbox resources in the generated PDML file. You can also define DATACLASS and
ATTRIBUTE properties for Windows controls that will be propagated to the new PDML file by following
a simple naming convention when you create the identifiers for your Windows resources. These
properties will be used to generate source code skeletons for your JavaBeans when you run the
conversion.

The naming convention for Windows resource identifiers is:
IDCB_<class name>_<attribute>

IBM Toolbox for Java 299

where <class name> is the fully-qualified name of the bean class that you want to designate as the
DATACLASS property of the control, and <attribute> is the name of the bean property that you want to
designate as the ATTRIBUTE property of the control.

For example, a Windows text field with the resource ID
IDCB_com_MyCompany_MyPackage_MyBean_SampleAttribute produces a DATACLASS property of
com.MyCompany.MyPackage.MyBean and an ATTRIBUTE property of SampleAttribute. If you elect to
generate JavaBeans when you run the conversion, the Java source file MyBean.java is produced,
containing the package statement package com.MyCompany.MyPackage, and gettor and settor methods
for the SampleAttribute property.

Displaying your panels at runtime
The Graphical Toolbox provides a redistributable API that your Java programs can use to display user
interface panels defined using PDML. The API displays your panels by interpreting the PDML and
rendering your user interface using the Java Foundation Classes.

The Graphical Toolbox runtime environment provides the following services:
v Handles all data exchanges between user interface controls and the JavaBeans that you identified in the

PDML.
v Performs validation of user data for common integer and character data types, and defines an interface

that allows you to implement custom validation. If data is found to be invalid, an error message is
displayed to the user.

v Defines standardized processing for Commit, Cancel and Help events, and provides a framework for
handling custom events.

v Manages interactions between user interface controls based on state information defined in the PDML.
(For example, you may want to disable a group of controls whenever the user selects a particular radio
button.)

The package com.ibm.as400.ui.framework.java contains the Graphical Toolbox runtime API.

The elements of the Graphical Toolbox runtime environment are shown in Figure 1. Your Java program is
a client of one or more of the objects in the Runtime Managers box.

Figure 1: Graphical Toolbox Runtime Environment

300 IBM i: Programming IBM Toolbox for Java

Examples

Assume that the panel MyPanel is defined in the file TestPanels.pdml, and that a properties file
TestPanels.properties is associated with the panel definition. Both files reside in the directory
com/ourCompany/ourPackage, which is accessible either from a directory defined in the classpath or
from a ZIP or JAR file defined in the classpath.

Note: Read the Code example disclaimer for important legal information.

Example: Creating and displaying a panel

The following code creates and displays the panel:
import com.ibm.as400.ui.framework.java.*;

// Create the panel manager. Parameters:
// 1. Resource name of the panel definition
// 2. Name of panel
// 3. List of DataBeans omitted

PanelManager pm = null;
try {

pm = new PanelManager("com.ourCompany.ourPackage.TestPanels", "MyPanel", null);
}

catch (DisplayManagerException e) {
e.displayUserMessage(null);
System.exit(-1);

}

// Display the panel
pm.setVisible(true);

IBM Toolbox for Java 301

Example: Creating a dialog

Once the DataBeans that supply data to the panel have been implemented and the attributes have been
identified in the PDML, the following code may be used to construct a fully-functioning dialog:
import com.ibm.as400.ui.framework.java.*;
import java.awt.Frame;

// Instantiate the objects which supply data to the panel
TestDataBean1 db1 = new TestDataBean1();
TestDataBean2 db2 = new TestDataBean2();

// Initialize the objects
db1.load();
db2.load();

// Set up to pass the objects to the UI framework
DataBean[] dataBeans = { db1, db2 };

// Create the panel manager. Parameters:
// 1. Resource name of the panel definition
// 2. Name of panel
// 3. List of DataBeans
// 4. Owner frame window

Frame owner;
...
PanelManager pm = null;
try {

pm = new PanelManager("com.ourCompany.ourPackage.TestPanels", "MyPanel", dataBeans, owner);
}

catch (DisplayManagerException e) {
e.displayUserMessage(null);
System.exit(-1);

}

// Display the panel
pm.setVisible(true);

Example: Using the dynamic panel manager

A new service has been added to the existing panel manager. The dynamic panel manager dynamically
sizes the panel at runtime. Let's look at the MyPanel example again, using the dynamic panel manager:
import com.ibm.as400.ui.framework.java.*;

// Create the dynamic panel manager. Parameters:
// 1. Resource name of the panel definition
// 2. Name of panel
// 3. List of DataBeans omitted

DynamicPanelManager dpm = null;
try {

pm = new DynamicPanelManager("com.ourCompany.ourPackage.TestPanels", "MyPanel", null);
}

catch (DisplayManagerException e) {
e.displayUserMessage(null);
System.exit(-1);

}

// Display the panel
pm.setVisible(true);

302 IBM i: Programming IBM Toolbox for Java

When you instantiate this panel application you can see the dynamic sizing feature of the panels. Move
your cursor to the edge of the GUI's display and, when you see the sizing arrows, you can change the
size of the panel.
Related information:
Package com.ibm.as400.ui.framework.java summary

Long description of Figure 1: Graphical Toolbox runtime environment
(rzahh504.gif)
found in IBM Toolbox for Java: Displaying your panels at runtime

This figure illustrates how the elements of the Graphical Toolbox runtime environment interact with
application code.

Description

The figure is composed of several boxes of differing shapes, sizes, and colors that are connected to each
other by lines terminated by arrowheads at one or both ends.

In order to visualize the figure, it is useful to divide it into three columns and four rows, numbering the
areas in sequence from top left to bottom right. fo example, The first row contains areas 1, 2, and 3; the
second row contains areas 4, 5, and 6; and so on:
v The image of a dialog box that occupies areas 2 and 5 represents the GUI interface for your Java

program. The dialog box features a variety of options, like check boxes, text fields, and so on.
v Two tan cylinders at the top of area 1 are labeled PDML Source and Resource Bundle. These cylinders

represent PDML source and Java resource files that reside on a storage medium.
v One tan cylinder in area 10 labeled PDML Serialized represents one or more serialized PDML files that

reside on a storage medium.
v Five blue rectangles that surround the bottom portion of the dialog box represent components of the

Graphical Toolbox. Starting at the leftmost rectangle and moving counter-clockwise, they are labeled:
– XML Parser (Pure Java) in area 4, which represents the IBM XML Parser.
– Runtime Managers (Pure Java) in area 7. Your Java program is a client of one or more of the objects

contained in Runtime Managers: Panels, Property sheets, Wizards, and Layout.
– Common Data Exchanger (Pure Java) in area 8.
– Common Formatters (Pure Java) in area 9.
– Common Handlers (Pure Java) in area 6.

v Three green rectangles represent code provided by the application programmer and are labeled:
– Custom Handlers (Java Application) in area 3
– Custom Formatters (Java Application) in are 12
– User Interface Data Beans (Pure Java) in area 11

v Lines connect many of the shapes:
– A line that has a single arrowhead (on one end) indicates an action. Single arrowhead lines point

toward a function or component that uses the object from which the line originates. In the following
description, the word "use" means that a line with a single arrowhead points toward an object from
the component that acts upon it.

– A line that has a double arrowhead (one at each end) indicates an interaction. These lines connect
objects that share a two-way exchange of information. In the following description, the word
"interact" means that the components are connected by a line with a double arrowhead.

The GUI interface for your Java program (the image of the dialog in areas 2 and 5) interacts with the
Runtime Managers for the Graphical Toolbox (the blue rectangle in area 7).

IBM Toolbox for Java 303

javadoc/com/ibm/as400/ui/framework/java/package-summary.html

The Runtime Managers, which are pure Java, contain panels, property sheets, wizards, and the GUI
layouts. To generate the GUI, the Runtime Managers use a Java resource bundle (one of two tan cylinders
in area 1) and PDML data. Runtime Managers can process PDML data in one of two ways:
v Using serialized PDML files (the tan cylinder in area 10)
v Using the IBM XML Parser (the blue rectangle in area 4), which in turn uses (parses) the PDML source

files (one of two tan cylinders in area 1)

Your GUI-enabled Java program operates on data in one of the following ways:
v Having the GUI interface interact with custom handlers (the green rectangle in area 3) and common

handlers (the blue rectangle in area 6)
v Having the common data exchanger (the blue rectangle in area 8) use the GUI interface to obtain

information

The custom handlers, common handlers, and the common data exchanger all interact with the user
interface data beans (the green rectangle in area 11), passing information back and forth. The common
data exchanger interacts with common formatters (the blue rectangle in area 9) and custom formatters
(the green rectangle in area 12) to convert the data into appropriate formats for the user interface data
beans.

Editing help documents generated by GUI Builder
For each PDML project file, the GUI Builder generates a help skeleton and puts it into a single HTML
document. Before use, this HTML file is broken up into single topic HTML files for each dialog of the
PDML project. This provides the user with granular help for each topic and allows you to manage only a
few large help files.

The Help Document is a valid HTML file and can be viewed in any browser and edited using most
HTML editors. Tags that define the sections in a Help Document are embedded within comments, so they
do not show up in a browser. The comment tags are used to break the Help Document into several
sections:
v Header
v Topic section for each dialog
v Topic section for each control that is help-enabled
v Footer

In addition, you can add additional topic sections before the footer to provide additional information or
common information. Topic sections have only the html body until they are split, when a header and
footer are created. When the Help Document is split up, the processor adds a header and footer to the
topic section to make a complete HTML file. The header and footer from the Help Document are used as
default header and footer. However, you can override the default header with your own.

Inside the Help Document

The following sections explain the parts of the Help Document:

Header
The end of the header section is shown by the following tag:
<!-- HELPDOC:HEADEREND -->

If you want to override the default header for all of the individual topics when they are split, use
the HEADER keyword and provide the name of an html fragment to include. For example:
<!-- HELPDOC:HEADEREND HEADER="defaultheader.html" -->

Topic segment
Each topic is surrounded by the following tags:

304 IBM i: Programming IBM Toolbox for Java

<!-- HELPDOC:SEGMENTBEGIN -->

and
<!-- HELPDOC:SEGMENTEND -->

Immediately following the SEGMENTBEGIN tag is an anchor tag which names the segment. It also
provides the file name of the HTML document that is created when the Help Document is split.
The name of the segment combines the panel identifier, control identifier, and future file
extension (html). For example: "MY_PANEL.MY_CONTROL.html" Segments for panels have only
the panel identifier and future file extension.

The help generator will place text in the document indicating where you place your help
information:
<!-- HELPDOC:SEGMENTBEGIN PDMLSYNCH="YES" -->
<H2>My favorite control</H2>
Insert help for "My favorite control" here.
<P><!-- HELPDOC:SEGMENTEND -->

You can add additional HTML 2.0 tags as needed after the anchor tag and before the SEGMENTEND
tag.

The PDMLSYNCH tag controls how closely a segment is tied to the controls defined in PDML. If
PDMLSYCH is "YES", the Help Document segment will be removed if the control of the same name
is removed in the PDML. PDMLSYNCH="NO" indicates the topic must be kept in the Help Document
regardless of whether a corresponding control exists in the PDML. This is used, for example,
when you create additional topics for depth or a common topic.

The help generated for a panel has links to each control enabled for help on the panel. These
links are generated with a local anchor reference, so that you can test them as internal links in a
standard browser. When the Help Document is split, the processor removes the "#" on these
internal links making them external links in the resulting single topic HTML files. Because you
may want to have internal links within a topic, the processor only removes any preceding "#"
when the reference has ".html" embedded in it.

If you want to override the default header for any particular topic, use the HEADER keyword and
provide the name of an html fragment to include. For example:
<!-- HELPDOC:SEGMENTBEGIN PDMLSYNCH="YES" HEADER="specialheader.html" -->

Footer The footer in the Help Document begins with the following tag:
<!-- HELPDOC:FOOTERBEGIN -->

The standard footer is </BODY></HTML>This footer is added to each HTML file.

Adding links

You can add links to any external or internal URL as well as any other segment. However, you must
follow some conventions:
v External URLs are used in the standard manner. This includes internal links to external URLs
v Internal links within the same topic are written in the standard way, but must not have ".html" as part

of the tag name. This is because the Help Document processor assumes that any link with .html will
need to be an external link when the topics are separate. Therefore, it removes the preceding "#".

v Links to other topic segments must be written with a preceding "#" as though they are an internal
anchor reference.

v Internal links to other topic segments may also be created. Only the leading "#" is removed during
processing.

Note:

IBM Toolbox for Java 305

v At run-time, the PanelManager class looks for help files in a subdirectory with the same name as
the PDML file. When the processor splits the Help Document, it creates this subdirectory by
default and places the resulting HTML files in it.

v The processor does not make any adjustments for external URL references that are relative links.
When you link from an individual topic file, any relative links will be searching from the new
subdirectory. Therefore, you will need to place copies of resources such as images where they
can be found or use "../" in the path in order to search from the panel directory.

Editing using a visual editor

You can edit your help content in almost any visual HTML editor. Because the HELPDOC tags are
comments they may not be obvious in some editors. For convenience, a horizontal rule is added to the
help skeleton immediately before the SEGMENTBEGIN tag and immediately after the SEGMENTEND
tag. These horizontal rules provide clear visual indication of the entire segment in a visual editor. If you
select a segment because you want to move, copy, or delete it, select the surrounding horizontal rules to
be sure you have included the SEGMENTBEGIN and SEGMENTEND tags in your selection. These
horizontal rules are not copied to the final individual HTML files.

306 IBM i: Programming IBM Toolbox for Java

Creating Additional Topics

You can create additional topic segments in the Help Document. It is often easiest to do this by copying
another segment. When you copy the segment, you must copy the horizontal rules just before the
SEGMENTBEGIN and after the SEGMENTEND tag. This will make future visual editing much easier and
help avoid mismatched tags. For best results, use the following tips:
v The name of the anchor must be the name you want for the resulting single file when the Help

Document is split. It must end in ".html".
v Use the PDMLSYNCH="NO" keyword on the SEGMENTBEGIN tag to prevent the segment from being

removed if the help skeleton is regenerated.
v Any references to your new topic will be made as an internal link in the Help Document with a

preceding "#". This "#" will be removed in later processing when the segments are split into single files.

Checking Your Links

For most writing, you can check your links by viewing your document in a Web browser and selecting
different links. In the single Help Document, the links are still in their internal form.

As you reach completion, or when you want to test with the application you are developing help for, you
will need to break the Help Document into single files. You do this with Help Document to HTML
Processing.

If you need to regenerate the Help Document after editing, your writing will be preserved. You may
want to regenerate the Help Document if you add new controls after generating the original help
skeleton. In this case, the help generator checks for an existing Help Document before it creates a new
skeleton. If one is found, it preserves any existing segments and then adds the new controls.

Using the Graphical Toolbox in a browser
You can use the Graphical Toolbox to build panels for Java applets that run in a Web browser.

This section describes how to convert the simple panel from the Graphical Toolbox Example to run in a
browser. The minimum browser levels supported are Netscape 4.05 and Internet Explorer 4.0. In order to
avoid having to deal with the idiosyncrasies of individual browsers, it is recommend that your applets
run using Sun's Java Plug-in. Otherwise, you will need to construct signed JAR files for Netscape, and
separate signed CAB files for Internet Explorer.

Note: Read the Code example disclaimer for important legal information.

Constructing the applet

The code to display a panel in an applet is nearly identical to the code used in the Java application
example, but first, the code must be repackaged in the init method of a JApplet subclass. Also, some
code was added to ensure that the applet panel is sized to the dimensions specified in the panel's PDML
definition. Here is the source code for the example applet, SampleApplet.java.
import com.ibm.as400.ui.framework.java.*;

import javax.swing.*;
import java.awt.*;
import java.applet.*;
import java.util.*;

public class SampleApplet extends JApplet
{

// The following are needed to maintain the panel’s size
private PanelManager m_pm;
private Dimension m_panelSize;

IBM Toolbox for Java 307

// Define an exception to throw in case something goes wrong
class SampleAppletException extends RuntimeException {}

public void init()
{

System.out.println("In init!");

// Trace applet parameters
System.out.println("SampleApplet code base=" + getCodeBase());
System.out.println("SampleApplet document base=" + getDocumentBase());

// Do a check to make sure we’re running a Java virtual machine that’s compatible with Swing 1.1
if (System.getProperty("java.version").compareTo("1.1.5") < 0)

throw new IllegalStateException("SampleApplet cannot run on Java VM version " +
System.getProperty("java.version") +
" - requires 1.1.5 or higher");

// Instantiate the bean object that supplies data to the panel
SampleBean bean = new SampleBean();

// Initialize the object
bean.load();

// Set up to pass the bean to the panel manager
DataBean[] beans = { bean };

// Update the status bar
showStatus("Loading the panel definition...");

// Create the panel manager. Parameters:
// 1. PDML file as a resource name
// 2. Name of panel to display
// 3. List of data objects that supply panel data
// 4. The content pane of the applet

try { m_pm = new PanelManager("MyGUI", "PANEL_1", beans, getContentPane()); }
catch (DisplayManagerException e)
{

// Something didn’t work, so display a message and exit
e.displayUserMessage(null);
throw new SampleAppletException();

}

// Identify the directory where the online help resides
m_pm.setHelpPath("http://MyDomain/MyDirectory/");

// Display the panel
m_pm.setVisible(true);

}

public void start()
{

System.out.println("In start!");

// Size the panel to its predefined size
m_panelSize = m_pm.getPreferredSize();
if (m_panelSize != null)
{

System.out.println("Resizing to " + m_panelSize);
resize(m_panelSize);

}
else

System.err.println("Error: getPreferredSize returned null");
}

public void stop()
{

308 IBM i: Programming IBM Toolbox for Java

System.out.println("In stop!");
}

public void destroy()
{

System.out.println("In destroy!");
}

public void paint(Graphics g)
{

// Call the parent first
super.paint(g);

// Preserve the panel’s predefined size on a repaint
if (m_panelSize != null)

resize(m_panelSize);
}

}

The applet's content pane is passed to the Graphical Toolbox as the container to be laid out. In the start
method, the applet pane is set to its correct size, and then override the paint method in order to preserve
the panel's size when the browser window is resized.

When running the Graphical Toolbox in a browser, the HTML files for your panel's online help cannot be
accessed from a JAR file. They must reside as separate files in the directory where your applet resides.
The call to PanelManager.setHelpPath identifies this directory to the Graphical Toolbox, so that your
help files can be located.

HTML tags

Because it is recommended to use Sun's Java Plug-in to provide the correct level of the Java runtime
environment, the HTML for identifying a Graphical Toolbox applet is not as straightforward as preferred.
Fortunately, the same HTML template may be reused, with only slight changes, for other applets. The
markup is designed to be interpreted in both Netscape Navigator and Internet Explorer, and it generates
a prompt for downloading the Java Plug-in from Sun's Web site if it's not already installed on the user's
machine. For detailed information on the workings of the Java Plug-in see the Java Plug-in HTML

Specification.

Here is the HTML for the sample applet, in the file MyGUI.html:
<html>

<head>
<title>Graphical Toolbox Demo</title>
</head>

<body>
<h1>Graphical Toolbox Demo Using Java(TM) Plug-in</h1>
<p>

<!-- BEGIN JAVA(TM) PLUG-IN APPLET TAGS -->

<!-- The following tags use a special syntax which allows both Netscape and Internet Explorer to load -->
<!-- the Java Plug-in and run the applet in the Plug-in’s JRE. Do not modify this syntax. -->
<!-- For more information see http://java.sun.com/products/jfc/tsc/swingdoc-current/java_plug_in.html.-->

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
width="400"
height="200"
align="left"
codebase="http://java.sun.com/products/plugin/1.1.3/jinstall-113-win32.cab#Version=1,1,3,0">

<PARAM name="code" value="SampleApplet">
<PARAM name="codebase" value="http://www.mycompany.com/~auser/applets/">

IBM Toolbox for Java 309

http://java.sun.com/products/plugin/1.1.3/docs/tags.html
http://java.sun.com/products/plugin/1.1.3/docs/tags.html

<PARAM name="archive" value="MyGUI.jar,jui400.jar,util400.jar,x4j400.jar">
<PARAM name="type" value="application/x-java-applet;version=1.1">

<COMMENT>
<EMBED type="application/x-java-applet;version=1.1"

width="400"
height=200"
align="left"
code="SampleApplet"
codebase="http://www.mycompany.com/~auser/applets/"
archive="MyGUI.jar,jui400.jar,util400.jar,x4j400.jar"
pluginspage="http://java.sun.com/products/plugin/1.1.3/plugin-install.html">

<NOEMBED>
</COMMENT>

No support for JDK 1.1 applets found!
</NOEMBED>

</EMBED>
</OBJECT>

<!-- END JAVA(TM) PLUG-IN APPLET TAGS -->

<p>
</body>
</html>

It is important that the version information be set for 1.1.3.

Note: In this example, the XML parser JAR file, x4j400.jar, is stored on the Web server. You can use other
XML parsers. For more information, see “XML parser and XSLT processor” on page 417. This is
required only when you include your PDML file as part of your applet's installation. For
performance reasons, you would normally serialize your panel definitions so that the Graphical
Toolbox does not have to interpret the PDML at runtime. This greatly improves the performance of
your user interface by creating compact binary representations of your panels. For more
information see the description of files generated by the tools.

Installing and running the applet

Install the applet on your favorite Web server by performing the following steps:
1. Compile SampleApplet.java.
2. Create a JAR file named MyGUI.jar to contain the applet binaries. These include the class files

produced when you compiled SampleApplet.java and SampleBean.java, the PDML file
MyGUI.pdml, and the resource bundle MyGUI.properties.

3. Copy your new JAR file to a directory of your choice on your Web server. Copy the HTML files
containing your online help into the server directory.

4. Copy the Graphical Toolbox JAR files into the server directory.
5. Finally, copy the HTML file MyGUI.html containing the embedded applet into the server directory.

Tip: When testing your applets, ensure that you have removed the Graphical Toolbox JAR files from the
CLASSPATH environment variable on your workstation. Otherwise, you will see error messages
saying that the resources for your applet cannot be located on the server.

Now you are ready to run the applet. Point your Web browser to MyGUI.html on the server. If you do
not already have the Java Plug-in installed, you will be asked if you want to install it. Once the Plug-in is
installed and the applet is started, your browser display should look similar to the Figure 1:

Figure 1: Running the sample applet in a browser

310 IBM i: Programming IBM Toolbox for Java

GUI Builder Panel Builder toolbar
Figure 1 shows the GUI Builder Panel Builder window. Following Figure 1 is a list that shows each Panel
Builder tool icon and describes its function.

Figure 1: The GUI Builder Panel window

Click Pointer to move and resize a component on a panel.

Click Label to insert a static label on a panel.

Click Text to insert a text box on a panel.

Click Button to insert a button on a panel.

Click Combo Box to insert a drop down list box on a panel.

Click List Box to insert a list box on a panel.

IBM Toolbox for Java 311

Click Radio Button to insert a radio button on a panel.

Click Checkbox to insert a check box on a panel.

Click Spinner to insert a spinner on a panel.

Click Image to insert an image on a panel.

Click Menu Bar to insert a menu bar on a panel.

Click Group Box to insert a labeled group box on a panel.

Click Tree to insert an hierarchical tree on a panel.

Click Table to insert a table on a panel.

Click Slider to insert an adjustable slider on a panel.

Click Progress Bar to insert a progress bar on a panel.

Click Deck Pane to insert a deck pane on a panel. A deck pane contains a stack of panels. The user

can select any of the panels, but only the selected panel is fully visible.

Click Split Pane to insert a split pane on a panel. A split pane is one pane divided into two

horizontal or vertical panes.

Click Tabbed Pane to insert a tabbed pane on a panel. A tabbed pane contains a collection of panels

with tabs at the top. The user clicks a tab to display the contents of a panel. The title of the panel is used
as the text for a tab.

Click Custom to insert a custom-defined user interface component on a panel.

Click Toolbar to insert a toolbar on a panel.

Click Toggle Grid to enable a grid on a panel.

Click Align Top to align multiple components on a panel with the top edge of a specific, or primary,

component.

Click Align Bottom to align multiple components on a panel with the bottom edge of a specific, or

primary, component.

312 IBM i: Programming IBM Toolbox for Java

Click Equalize Height to equalize the height of multiple components with the height of a specific, or
primary, component.

Click Center Vertically to center a selected component vertically relative to the panel.

Click Toggle Margins to view the margins of the panel.

Click Align Left to align multiple components on a panel with the left edge of a specific, or primary,

component.

Click Align Right to align multiple components on a panel with the left edge of a specific, or

primary, component.

Click Equalize Width to equalize the width of multiple components with the width of a specific, or

primary, component.

Click Center Horizontally to center a selected component horizontally relative to the panel.

Click Cut to cut panel components.

Click Copy button to copy panel components.

Click Paste to paste panel components between different panels or files.

Click Undo to undo the last action.

Click Redo to redo the last action.

Click Tab Order to control the selection order of each panel component when the user presses TAB

to navigate through the panel.

Click Preview to display a preview of what a panel will look like.

Click Help to get more specific information about the Graphical Toolbox.

IBM Toolbox for Java beans
JavaBeans are reuseable software components that are written in Java. The component is a piece of
program code that provides a well-defined, functional unit, which can be as small as a label for a button
on a window or as large as an entire application.

JavaBeans can be either visual or nonvisual components. Non-visual JavaBeans still have a visual
representation, such as an icon or a name, to allow visual manipulation.

IBM Toolbox for Java 313

Many IBM Toolbox for Java public classes are also JavaBeans. These classes were built to Javasoft
JavaBean standards; they function as reuseable components. The properties and methods for an IBM
Toolbox for Java bean are the same as the properties and methods of the class.

JavaBeans can be used within an application program or they can be visually manipulated in builder
tools, such as the IBM VisualAge for Java product.

Examples

The following examples show how to use JavaBeans in your program and how to create a program from
JavaBeans by using a visual bean builder:

“Example: IBM Toolbox for Java bean code” on page 556

“Example: Creating beans with a visual bean builder” on page 557

JDBC
JDBC is an application programming interface (API) included in the Java platform that enables Java
programs to connect to a wide range of databases.

The IBM Toolbox for Java JDBC driver allows you to use JDBC API interfaces to issue structured query
language (SQL) statements to and process results from databases on the server. You can also use IBM
Developer Kit for Java JDBC driver, called the 'native' JDBC driver:
v Use the IBM Toolbox JDBC driver when the Java program is on one system and the database files are

on another system, as in a client/server environment
v Use the native JDBC driver when both the Java program and database files are on the same server

Different versions of JDBC

Different versions of the JDBC API exist, and the IBM Toolbox for Java JDBC driver supports the
following versions:
v JDBC 1.2 API (the java.sql package) is included in the Java Platform 1.1 core API and JDK 1.1.
v JDBC 2.1 core API (the java.sql package) is included in both the Java 2 Platform, Standard Edition

(J2SE) and the Java 2 Platform Enterprise Edition (J2EE).
v JDBC 2.0 Optional Package API (the javax.sql package) is included in J2EE and is available as a

separate download from Sun. These extensions were formerly named the JDBC 2.0 Standard Extension
API.

v JDBC 3.0 API (the java.sql and javax.sql packages) is included in J2SE, Version 1.4 and 5.0.
v JDBC 4.0 API is included in Java SE Version 6.

Enhancements to IBM Toolbox for Java JDBC support for IBM i 7.1
Many additions were made to JDBC support in IBM i 7.1.

The enhancements to IBM Toolbox for Java JDBC support are detailed in the following sections:
v “XML data type support” on page 315
v “Database metadata updates” on page 316
v “Currently committed support” on page 316
v “Array type support” on page 316
v “Long schema name support” on page 317

314 IBM i: Programming IBM Toolbox for Java

|

|

|

|

|

|

|

|

http://java.sun.com/products/jdbc/index.html

XML data type support

The JDBC 4.0 interface specification adds new methods and classes for XML data type support. IBM
Toolbox for Java implements XML support in its JDBC 4.0 driver. This allows JDBC clients easy access to
IBM i 7.1 XML support.

You can set the data in the JDBC SQLXML object by passing in various data types such as Java String. As
is done for all other text column data types, IBM Toolbox for Java or the Database Management System
(DBMS) does the necessary conversions of XML data to match column CCSID for the XML column.

The DBMS reads and writes XML data using SQL locators.

XML being sent as input to the DBMS has to be handled with a few special rules in order for correct
CCSID conversion. Input XML data which has an XML declaration with encoding specified must
correctly encode the XML data with that specified encoding. For example XML encoded in UTF-16 (Java
String), but having a UTF-8 specified in its encoding in the XML declaration is incorrect. If the XML input
data has no declaration, then the DBMS expects the data stream to be sent in UTF-8. In this case IBM
Toolbox for Java first converts the XML data to UTF-8 before sending the data to the DBMS for
processing.

Note: XML columns in the database are stored without the XML declaration. When the XML data is
retrieved, the XML declaration is dynamically generated, which can lead to the XML data not
being identical to the XML data that was sent as input.

The DBMS may optimize XML data when appropriate. For example an empty tag, "<tag><tag/>",
becomes "</tag>". Generally if input XML data that is not in UTF-16 and has an XML declaration along
with an encoding specified, it should not be passed into JDBC through PreparedStatement.setString. This
is because the data in Strings is UTF-16 and it does not match the specified encoding.

There are some rules that govern how XML declarations are returned from a query. JDBC handles the
declaration visibility depending on which type ResultSet getter method called. Methods that return
characters, such as getString() and getClob(), do not return the XML declaration with the data. Methods
that return binary data, such as getBytes() and getBlob(), will return the XML declaration. This is due to
the difference in XML declaration encoding and the CCSID of the actual XML column on the table. Note
that calling getString() will return a Unicode String, which could be different from the CCSID specified in
the XML declaration encoding. Because of this anomaly, the declaration is simply discarded unless
accessed with binary getter methods. The retrieval of XML tags with methods such as getString will
allow XML data to be easily concatenated with other XML data since it will have its declaration removed
already.

XML JDBC support is implemented in the following IBM Toolbox for Java JDBC methods:
v AS400JDBCConnection.createSQLXML()
v AS400JDBCSQLXML - all methods in this new class
v AS400JDBCPreparedStatement.setSQLXML(int parameterIndex, SQLXML xmlObject)
v AS400JDBCCallableStatement.setSQLXML(String parameterName, SQLXML xmlObject)
v AS400JDBCCallableStatement.getSQLXML(int parameterIndex)
v AS400JDBCCallableStatement.getSQLXML(String parameterName)
v AS400JDBCResultSet.getSQLXML(int columnIndex)
v AS400JDBCResultSet.getSQLXML(String columnLabel)
v AS400JDBCResultSet.updateSQLXML(int columnIndex, SQLXML xmlObject)
v AS400JDBCResultSet.updateSQLXML(String columnLabel, SQLXML xmlObject)
v AS400JDBCRowSet.setSQLXML(int parameterIndex, SQLXML xmlObject)
v AS400JDBCRowSet.setSQLXML(String parameterName, SQLXML xmlObject)

IBM Toolbox for Java 315

|

|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

Database metadata updates

Database metadata is obtained by calling the various methods of the AS400JDBCDatabaseMetaData class.
Starting with IBM i 7.1, the default behavior of IBM Toolbox for Java JDBC is to obtain this metadata
from a set of standard system stored procedures. This brings IBM Toolbox for Java into alignment with
IBM i native JDBC support in addition to JDBC drivers on other platforms. Prior to IBM i 7.1, IBM
Toolbox for Java obtained the metadata from the host servers ROI data server. This approach has worked
well, and has also kept IBM Toolbox for Java in alignment with ODBC, .net, and other IBM i clients. The
problem with this approach though, is that across IBM, all JDBC DB2 drivers should function the same
way. This can be achieved by using a set of system stored procedures that are common across all of the
DB2 platforms. These system stored procedures are called to obtain system database metadata.

In order to provide backwards compatibility of the metadata functionality, a new connection property,
"metadata source", can be used to force IBM Toolbox for Java JDBC to use the old method of retrieval of
database metadata.

Currently committed support

Lock timeouts and deadlocks can occur under the isolation levels that perform row-level locking,
especially with applications that are not designed to prevent such problems. Some high throughput
database applications cannot tolerate waiting on locks that are issued during transaction processing, and
some applications cannot tolerate processing uncommitted data, but still require non-blocking behavior
for read transactions.

Under the new currently committed semantics, if currently committed is enabled then only committed data
is returned, as was the case previously, but now readers do not wait for writers to release row locks.
Instead, the data returned to readers is based on the currently committed version; that is, data prior to
the start of the write operation.

This feature also implements a way to direct the database manager to wait for the outcome when
encountering data in the process of being updated.

IBM Toolbox for Java JDBC has added support for currently committed semantics on data sources and
connections. This support is added with the following class updates:
v AS400JDBCDataSource.CONCURRENTACCESS_NOT_SET
v AS400JDBCDataSource.CONCURRENTACCESS_USE_CURRENTLY_COMMITTED
v AS400JDBCDataSource.CONCURRENTACCESS_WAIT_FOR_OUTCOME
v AS400JDBCDataSource.CONCURRENTACCESS_SKIP_LOCKS
v AS400JDBCDataSource.setConcurrentAccessResolution (int)
v AS400JDBCDataSource.getConcurrentAccessResolution ()
v AS400JDBCConnection.setConcurrentAccessResolution (int)
v AS400JDBCConnection.getConcurrentAccessResolution ()

Note: Setting concurrent access resolution on the connection only affects new statements created on the
connections following the change. Existing statements continue to use the value that was in effect
when the statement was created. A corresponding connection property "concurrent access
resolution" is also available for setting this information.

Array type support

IBM Toolbox for Java supports the IBM i 7.1 SQL array data type in stored procedure parameters. Arrays
of all of the various DB2 types are supported except data that is returned in a locator.

316 IBM i: Programming IBM Toolbox for Java

|

|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|
|
|
|

|

|
|

IBM Toolbox for Java JDBC adds support for arrays as IN, OUT, and INOUT parameters to stored
procedures. However, ResultSets returned from stored procedures or other queries containing arrays is
not supported.

JDBC supports the calling of stored procedures in the java.sql.CallableStatement class, which IBM Toolbox
for Java implements in AS400JDBCCallableStatement.

The JDBC specification from Sun says that JDBC drivers support arrays by implementing java.sql.Array
interface. The IBM Toolbox for Java implementation exists in the class
com.ibm.as400.access.AS400JDBCArray. Below are new interfaces and methods which IBM Toolbox for
Java has implemented to support arrays:
v AS400JDBC.PreparedStatement.setArray (int parameterIndex, Array x)
v AS400JDBCCallableStatement.getArray()
v AS400JDBCArray.getResultSet()
v AS400JDBCArray.getBaseType()
v AS400JDBCArray.getBaseTypeName()
v AS400JDBCArrayResultSet - all methods in this new class
v AS400JDBConnection.createArrayOf(String typeName, Object[] elements)

Note: An AS400JDBCArrayResultSet is a local copy of the array data in a ResultSet interface object.

Long schema name support

IBM i 7.1 DBMS has added support for 128 byte schema names. IBM Toolbox for Java JDBC is also
adding support for long schema names.

IBM Toolbox for Java converts schemas from Java Strings to the system CCSID prior to sending the data
to the host DBMS. IBM Toolbox for Java does allow a long schema name as the default-schema. However,
long schema names in the library list is not supported. If a long schema name is specified in the
"libraries" property, a warning back from host and trace that the library was not added will be issued. If a
long schema name is specified as the first name in the "libraries" property, then IBM Toolbox for Java still
sets the name as the default schema, but does not add it to the library list. Clients which need to use long
schema names in the library list have to make use of the DB2 SET PATH command.

Database metadata also supports long schema names for parameters and ResultSets returned.

The following metadata methods provide support for long schema names:
v AS400JDBCDatabaseMetadata.getMaxSchemaNameLength()
v AS400JDBCDatabaseMetadata.getProcedures(String catalog, String schemaPattern, String

procedureNamePattern)
v AS400JDBCDatabaseMetadata.getProcedureColumns(String catalog, String schemaPattern, String

procedureNamePattern, String columnNamePattern)
v AS400JDBCDatabaseMetadata.getTables(String catalog, String schemaPattern, String tableNamePattern,

String types[])
v AS400JDBCDatabaseMetadata.getSchemas()
v AS400JDBCDatabaseMetadata.getColumns(String catalog, String schemaPattern, String

tableNamePattern, String columnNamePattern)
v AS400JDBCDatabaseMetadata.getColumnPrivileges(String catalog, String schema, String table, String

columnNamePattern)
v AS400JDBCDatabaseMetadata.getTablePrivileges(String catalog, String schemaPattern, String

tableNamePattern)

IBM Toolbox for Java 317

|
|
|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|

|

|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

v AS400JDBCDatabaseMetadata.getBestRowIdentifier(String catalog, String schema, String table, int
scope, boolean nullable)

v AS400JDBCDatabaseMetadata.getVersionColumns(String catalog, String schema, String table)
v AS400JDBCDatabaseMetadata.getPrimaryKeys(String catalog, String schema, String table)
v AS400JDBCDatabaseMetadata.getImportedKeys(String catalog, String schema, String table)
v AS400JDBCDatabaseMetadata.getCrossReference(String parentCatalog, String parentSchema, String

parentTable, String foreignCatalog, String foreignSchema, String foreignTable)
v AS400JDBCDatabaseMetadata.getIndexInfo(String catalog, String schema, String table, boolean unique,

boolean approximate)
v AS400JDBCDatabaseMetadata.getUDTs(String catalog, String schemaPattern, String typeNamePattern,

int[] types)
v AS400JDBCDatabaseMetadata.getSuperTypes(String catalog, String schemaPattern, String

typeNamePattern)
v AS400JDBCDatabaseMetadata.getSuperTables(String catalog, String schemaPattern, String

tableNamePattern)
v AS400JDBCDatabaseMetadata.getAttributes(String catalog, String schemaPattern, String

typeNamePattern, String attributeNamePattern)
v AS400JDBCDatabaseMetadata.getSchemas(String catalog, String schemaPattern)
v AS400JDBCDatabaseMetadata.getFunctions(String catalog, String schemaPattern, String

functionNamePattern)
v AS400JDBCDatabaseMetadata.getFunctionColumns(String catalog, String schemaPattern, String

functionNamePattern, String columnNamePattern)

Enhancements to IBM Toolbox for Java JDBC support for IBM i 6.1
Many additions were made to JDBC support in IBM i 6.1.

The enhancements to IBM Toolbox for Java JDBC support are detailed in the following sections:
v “Support for JDBC 4.0”
v “Query storage limit”
v “Decimal float (DECFLOAT) data type” on page 319
v “Passing the client type and application name to the server” on page 320
v “Maximum length of cursor names extended” on page 321
v “Generated key support” on page 321
v “Improved default value support” on page 321
v “Increased maximum in GROUP BY clause” on page 321
v “Batch update support” on page 321

Support for JDBC 4.0

Support for the JDBC 4.0 API with Java SE Version 6 is available using one of the following JAR files:
v /QIBM/ProdData/HTTP/Public/jt400/lib/java6/jt400.jar

v /QIBM/ProdData/OS400/jt400/lib/java6/jt400Native.jar

Query storage limit

You can use the query storage limit property to limit the storage used by a query. This property compares
the storage limit you specify to the estimated storage usage of the query. If the estimated storage usage
exceeds the specified storage limit, the query is not allowed to run.

318 IBM i: Programming IBM Toolbox for Java

|
|

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|

|

|

|

Beginning in V6R1, the IBM Toolbox for Java JDBC driver will add the following methods to the
AS400JDBCDataSource class:

setQueryStorageLimit()
public void setQueryStorageLimit(int limit);

Specifies the query storage limit value to be used when statements in a connection are executed. Valid
values are -1 to 2 147 352 578. The default is value -1, indicating a special value of *NOMAX.

getQueryStorageLimit()
public int getQueryStorageLimit()

Returns the query storage limit value used when statements in a connection are executed. The default
value is -1, indicating a special value of *NOMAX.

Systems that run a release of IBM i prior to V6R1 will ignore the getQueryStorageLimit property.

Decimal float (DECFLOAT) data type

The decimal float (DECFLOAT) inherits favorable properties from both float and decimal data types. Data
values of DECFLOAT are stored such that trailing zeros are significant: for example, 2.0 and 2.00 are
different binary representations. In SQL comparisons, however, the values are treated as equal.

The IBM Toolbox for Java JDBC driver has added the following methods to the AS400JDBCDataSource
class:

setDecfloatRoundingMode()
public void setDecfloatRoundingMode(int String mode)

Specifies the rounding mode to be used for DECFLOAT numbers.

getDecfloatRoundingMode()
public intString getDecfloatRoundingMode()

Returns the rounding mode to be used for DECFLOAT numbers.

Valid values for these methods include:

half even (default value)
Round to nearest digit. If equidistant between two digits, round to the nearest even digit. The
numeric value of this constant is 0.

half up
Round to nearest digit. If equidistant between two digits, round up. The numeric value of this
constant is 1.

down Round to nearest lower digit. The numeric value of this constant is 2.

ceiling
Round towards positive infinity. The numeric value of this constant is 3.

floor Round towards negative infinity. The numeric value of this constant is 4.

half down
Round to the nearest digit. If equidistant between two digits, round down. The numeric value of
this constant is 5.

up Round to nearest higher digit. The numeric value of this constant is 6.

IBM Toolbox for Java 319

Passing the client type and application name to the server

Web applications need a way to pass end-user-client information to the database server so that more
detailed information may be logged. The IBM Toolbox for Java JDBC driver allows an application to
override this information by calling the following java.sql.Connection.setClientInfo() methods:

void AS400JDBCConnection.setClientInfo(java.lang.String name,java.lang.String value)

This method sets the value of the client info property specified by name to the value specified by value.
See the DatabaseMetadata.getClientInfoProperties method description for the client info properties
supported by the IBM Toolbox for Java JDBC driver.

void AS400JDBCConnection.setClientInfo(java.util.Properties properties)

This method sets the value of the connection's client info properties. The Properties object contains the
names and values of the client info properties to be set. The set of client info properties contained in the
properties list replaces the current set of client info properties on the connection. If a property that is
currently set on the connection is not present in the properties list, that property is cleared. Specifying an
empty properties list will clear all of the properties on the connection.

String AS400JDBCConnection.getClientInfo(java.lang.String name)

This method returns the value of the client info property specified by name. This method may return null
if the specified client info property has not been set and does not have a default value.

Properties AS400JDBCConnection.getClientInfo()

This method returns a list containing the name and current value of each client info property supported
by the driver. The value of a client info property may be null if the property has not been set and does
not have a default value.

ResultSet AS400JDBCDatabaseMetaData.getClientInfoProperties()

This method retrieves a list of the client info properties that the driver supports. The IBM Toolbox for
Java JDBC driver returns a result set with the following information:

Table 2. Result set for getClientInfoProperties

Name Maximum length Default value Description

ApplicationName 255 "" The name of the application
currently utilizing the
connection.

ClientAccounting 255 "" Accounting information.

ClientHostname 255 "" The hostname of the
computer the application
using the connection is
running on.

ClientProgramID 255 "" The client program
identification.

ClientUser 255 "" The name of the user that
the application using the
connection is performing
work for. This may not be
the same as the user name
that was used in
establishing the connection.

320 IBM i: Programming IBM Toolbox for Java

Maximum length of cursor names extended

Beginning in V6R1, the maximum length of cursors will be 128 characters. The previous maximum length
was 8 characters. An application can set the name of a cursor by calling the
java.sql.Statement.setCursorName() method.

Generated key support

In past releases, only one row of information could be returned from a multiple row insert operation.
Beginning in V6R1, you will be able to access more information about a multiple row insert operation.
This will allow you to retrieve generated column information such as ROWID, identity column, sequence,
or generated expressions. Generated key support will be implemented in the following IBM Toolbox for
Java JDBC methods:
v AS400JDBCStatement.getGeneratedKeys()
v AS400JDBCStatement.execute(String sql, int autoGeneratedKeys)
v AS400JDBCStatement.execute (String sql, int[] columnIndexes)
v AS400JDBCStatement.execute (String sql, String[] columnNames)
v AS400JDBCStatement.executeUpdate(String sql, int[] autoGeneratedKeys)
v AS400JDBCStatement.executeUpdate (String sql, int[] columnIndexes)
v AS400JDBCStatement.executeUpdate (String sql, String[] columnNames)
v AS400JDBCConnection.prepareStatement(String sql, int autoGeneratedKeys)
v AS400JDBCConnection.prepareStatement(String sql, int[] columnIndexes)
v AS400JDBCConnection.prepareStatement(String sql, String[] columnNames)

Improved default value support

Beginning in V6R1, The IBM Toolbox for Java JDBC driver will return a column's default value as a string
through the DatabaseMetaData.getColumns() method. If the default value is null, a string with the value
'NULL' will be returned.

Increased maximum in GROUP BY clause

The new value for DatabaseMetaData getMaxColumnsInGroupBy() is 8000.

Batch update support

The improved batch update support in V6R1 will provide better information to you when you are
running a multiple-row batched insert statement. There will be a field in the diagnostics area and SQLCA
that will contain the count of successful statements so that you can better determine the location of any
errors.

The IBM Toolbox for Java JDBC driver will use this information when creating a
java.sql.BatchUpdateException. AS400JDBCStatement and AS400JDBCPreparedStatement will also use this
information to return the correct information back from the executeBatch() method.

Enhancements to IBM Toolbox for Java JDBC support for IBM i 5.4
Several JDBC functions were enhanced for IBM i 5.4.

The enhancements to IBM Toolbox for Java JDBC support are detailed in the following sections:
v “2 MB statement size” on page 322
v “128 byte column name support” on page 322

IBM Toolbox for Java 321

v “Database host server trace support”
v “eWLM Correlator support”

For information about enhanced JDBC functions for previous releases, see “Enhancements to JDBC
support for Version 5 Release 3” on page 323 and “Enhanced JDBC functions for i5/OS Version 5 Release
2” on page 324.

2 MB statement size

Prior to V5R4, the limit on SQL statement size was 65 535 bytes. This corresponds to 65 535 characters
when the statement text is represented using a single-byte CCSID, and 32 767 characters when the
statement text is represented using a double-byte CCSID. Some customers, particularly those using
applications that automatically generate SQL statements, were affected by this limit.

In V5R4, the IBM i statement size limit has been increased to two megabytes, or 2 097 152 bytes. The
IBM Toolbox for Java JDBC driver always sends statement text in two byte Unicode. Therefore, the
maximum statement length in characters will be one megabyte or 1 048 576 characters.

128 byte column name support

Starting with V5R4, the database will support column names up to 128 bytes for SQL tables. Prior to
V5R4, column names up to 30 bytes were supported. The IBM Toolbox for Java JDBC driver will provide
these possibly longer names to its users.

There is one exception where 128 byte column names will not be returned. When local package caching is
used and column names exceed 30 characters, the server will return the column names as the system
column name.

Database host server trace support

A new option was added to the Toolbox for Java JDBC driver to turn on database host server tracing. To
support this feature, option "64" was added to the "server trace" connection property. For more details,
see “IBM Toolbox for Java JDBC properties” on page 326.

eWLM Correlator support

The IBM Toolbox for Java will accept an IBM Enterprise Workload Manager (eWLM) correlator and pass
it on to the host as a connection attribute correlator for use with the Application Response Measurement
(ARM) APIs. This correlator can be sent to the host at any time after a connection is made using the
following method in the AS400JDBCConnection class:

setDB2eWLMCorrelator
public void setDB2eWLMCorrelator(byte[] bytes)

throws SQLException

Sets the eWLM Correlator. It is assumed a valid correlator value is used. If the value is null, all
ARM/eWLM implementation will be turned off. eWLM correlators require i5/OS V5R3 or later servers.
This request is ignored when running to V5R2 or earlier servers.

Parameters:
v bytes: The eWLM correlator value

v SQLException: See the Class SQLException

information at the Sun Microsystems, Inc. Web site.

322 IBM i: Programming IBM Toolbox for Java

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLException.html

For information about enhanced JDBC functions for previous releases, see “Enhancements to JDBC
support for Version 5 Release 3” and “Enhanced JDBC functions for i5/OS Version 5 Release 2” on page
324.

Enhancements to JDBC support for Version 5 Release 3
Several JDBC functions were enhanced for IBM i Version 5 Release 3.

Enhanced JDBC functions for IBM i Version 5 Release 3 include:
v UTF-8 and UTF-16 support
v Binary and Varbinary support
v Increased Decimal Precision support
v 2 GB large object support:
v Insensitive cursor support
v Materialized Query Table support

For information about enhanced JDBC functions for previous releases, see V5R2 enhancements to IBM
Toolbox for Java JDBC support.

UTF-8 and UTF-16 support
UTF-8 data is stored in a character field with a CCSID of 1208. A UTF-8 character is a variable
number of bytes (one, two, three, or four) for a non-combining character, and any number of
bytes for a combining character. The length specified for a character field is the maximum
number of bytes the field can contain. You can tag the following data types with a UTF-8 1208
CCSID:
v Fixed length character (CHAR)
v Variable length character (VARCHAR)
v Character LOB (CLOB)

UTF-16 data is stored in a graphic field with a CCSID of 1200. A UTF-16 character can be either
two or four bytes (that is, Surrogate) in length for a non-combining character and any number of
bytes for a combining character. The length specified for a graphic data field is the maximum
number of two bytes characters the field can contain. You can tag the following data types with a
UTF-16 1200 CCSID:
v Fixed length graphic (GRAPHIC)
v Variable length graphic (VARGRAPHIC)
v Double-byte character LOB (DBCLOB)

Binary and Varbinary support
The BINARY and VARBINARY data types are similar to the CHAR and VARCHAR data types,
but contain binary data rather than character data. BINARY fields have a fixed length.
VARBINARY fields are of varying length. The BINARY and VARBINARY data types have the
following characteristics:
v The coded character set identifier (CCSID) for binary types is 65535
v In assignments and comparisons, binary data types are compatible only with other binary data

types (BINARY, VARBINARY, and BLOB)
v The pad character for binary data types is x'00' instead of the blank character
v In situations requiring trailing characters to be stripped to prevent truncation errors, x'00'

characters are stripped instead of trailing blanks
v When comparing binary data types, for two fields to be equal both the data and the lengths

must be the same. Trailing zeros are not ignored in comparisons

IBM Toolbox for Java 323

v When comparing binary data types, if two fields have different lengths, the shorter field is
considered less than the longer field if the fields are the same up to the length of the shorter
field

Increased Decimal Precision support
Decimal precision now supports up to 63 digits. Three properties were added, "minimum divide
scale", "maximum precision", and "maximum scale" and six methods added to
AS400JDBCDataSource, setMinimumDivideScale(int divideScale), getMinimumDivideScale(),
setMaximumPrecision(int precision), getMaximumPrecision(), setMaximumScale(int scale), and
getMaximumScale(). Minimum divide scale specifies the minimum scale value for the result of
decimal division and is set to any number between 0 and 9. Maximum precision specifies the
maximum decimal precision the database uses and is set to either 31 or 63. Maximum scale
specifies the maximum scale the database uses and is set to any number between 0 and 63.

2 GB large object (LOB) support
Enhancements for IBM Toolbox for Java JDBC now allow the use of up to 2 GB LOBs support.

Insensitive cursor support
Cursor support now supports insensitive cursors. When using a ResultSet with
TYPE_SCROLL_INSENSITIVE, an insensitive cursor is used. The ResultSet does not show
changes to the underlying database while it is open.

Materialized Query Table support
Returns "MATERIALIZED QUERY TABLE" as the TABLE_TYPE in a call to
DatabaseMetaData.getTables().

Enhanced JDBC functions for i5/OS Version 5 Release 2
Several JDBC functions were enhanced for i5/OS Version 5 Release 2.

Enhanced JDBC functions for i5/OS Version 5 Release 2 include:
v Removal of 'FOR UPDATE' restriction
v Change in data truncation
v Get and modify columns and parameters by name
v Retrieve auto-generated keys
v Improved performance when running SQL insert statements in a batch
v Enhanced support for ResultSet.getRow()
v Improved support for using mixed cases in column names
v Specify holdability for Statements, CallableStatements, and PreparedStatements
v Enhanced transaction isolation support

Removal of the 'FOR UPDATE' restriction
You no longer need to specify FOR UPDATE on your SELECT statements in order to guarantee
an updatable cursor. When connecting to V5R1 and later versions of i5/OS, IBM Toolbox for Java
honors whatever concurrency you pass in when you create statements. The default continues to
be a read-only cursor if you do not specify a concurrency.

Data truncation throws exceptions only when truncated character data is written to the database
Data truncation rules for IBM Toolbox for Java now are the same as those for the IBM Developer
Kit for Java JDBC driver. For more information, see IBM Toolbox for Java JDBC properties.

Get and modify columns and parameters by name
New methods allow you to get and update information by column name in ResultSet and to get
and set information by parameter name in CallableStatement. For example, in ResultSet, where
you previously used the following:

ResultSet rs = statement.executeQuery(SELECT * FROM MYCOLLECTION/MYTABLE);
rs.getString(1);

324 IBM i: Programming IBM Toolbox for Java

You can now use:
ResultSet rs = statement.executeQuery(SELECT * FROM MYCOLLECTION/MYTABLE);
rs.getString(’STUDENTS’);

Be aware that accessing parameters by their index results in better performance than accessing
them by their name. You can also specify parameter names to set in CallableStatement. Where
you might have used the following in CallableStatement:

CallableStatement cs = connection.prepareCall(CALL MYPGM (?));
cs.setString(1);

You can now use:
CallableStatement cs = connection.prepareCall(CALL MYPGM (?));
cs.setString(’PARAM_1’);

To use these new methods, you need JDBC 3.0 or later and the Java 2 Platform, version 1.4 (either
the Standard or the Enterprise Edition).

Retrieve auto-generated keys
The getGeneratedKeys() method on AS400JDBCStatement retrieves any auto-generated keys
created as a result of executing that Statement object. When the Statement object does not
generate any keys, an empty ResultSet object is returned. Currently the server supports returning
only one auto-generated key (the key for the last inserted row). The following example shows
how you might insert a value into a table then get the auto-generated key:

Statement s =
statement.executeQuery("INSERT INTO MYSCHOOL/MYSTUDENTS (FIRSTNAME) VALUES (’JOHN’");

ResultSet rs = s.getGeneratedKeys();
// Currently the server supports returning only one auto-generated
// key -- the key for the last inserted row.

rs.next();
String autoGeneratedKey = rs.getString(1);

// Use the auto-generated key, for example, as the primary key in another table

To retrieve auto-generated keys, you need JDBC 3.0 or later, and the Java 2 Platform, version 1.4
(either the Standard or the Enterprise Edition). Retrieving auto-generated keys also requires
connecting to a V5R2 or later version of i5/OS.

Improved performance when running SQL insert statements in a batch
Performance of running SQL insert statements in a batch has been improved. Run SQL statements
in a batch by using the different addBatch() methods available in AS400JDBCStatement,
AS400JDBCPreparedStatement, and AS400JDBCCallableStatement. Enhanced batch support affects
only insert requests. For example, using batch support to process several inserts involves only
one pass to the server. However, using batch support to process an insert, and update, and a
delete sends each request individually.

To use batch support, you need JDBC 2.0 or later and the Java 2 Platform, version 1.2 (either the
Standard or the Enterprise Edition).

Enhanced support for ResultSet.getRow()
Previously, the IBM Toolbox for Java JDBC driver was limited in its support for the getRow()
method in ResultSet. Specifically, using ResultSet.last(), ResultSet.afterLast(), and
ResultSet.absolute() with a negative value made the current row number not available. The
previous restrictions are lifted, making this method fully functional.

Using mixed case in column names
IBM Toolbox for Java methods must match either column names provided by the user or column
names provided by the application with the names that are on the database table. In either case,
when a column name is not enclosed in quotes, IBM Toolbox for Java changes the name to

IBM Toolbox for Java 325

javadoc/com/ibm/as400/access/AS400JDBCStatement.html
javadoc/com/ibm/as400/access/AS400JDBCStatement.html
javadoc/com/ibm/as400/access/AS400JDBCPreparedStatement.html
javadoc/com/ibm/as400/access/AS400JDBCCallableStatement.html

uppercase characters before matching it against the names on the server. When the column name
is enclosed in quotes, it must exactly match the name on the server or IBM Toolbox for Java
throws an exception.

Specify holdability in created Statements, CallableStatements, and PreparedStatements
New methods in AS400JDBCConnection allow you to specify the holdability for Statements,
CallableStatements, and PreparedStatements that you create. Holdability determines whether
cursors are held open or closed when committing the transaction. You can now have a statement
that has a different holdability than its connection object. Also, connection objects can have
multiple open statement objects, each with a different specified holdability. Calling commit causes
each statement to be handled according to the holdability specified for that statement.

Holdability is derived in the following order of precedence:
1. Holdability specified on statement creation by using the Connection class methods

createStatement(), prepareCall(), or prepareStatement().
2. Holdability specified by using Connection.setHoldability(int).
3. Holdability specified by the IBM Toolbox for Java JDBC cursor hold property (when methods

in 1. or 2. are not used)

To use these methods, you need JDBC 3.0 or later, and the Java 2 Platform, version 1.4 (either the
Standard or the Enterprise Edition). Also, servers running a V5R1 or earlier version of i5/OS are
able to use only the holdability specified by the JDBC cursor hold property.

Enhanced transaction isolation support
The IBM Toolbox for Java JDBC driver now features support for switching to a transaction
isolation level of *NONE after a connection is made. Before V5R2, the IBM Toolbox for Java JDBC
driver threw an exception when switching to *NONE after making a connection.

IBM Toolbox for Java JDBC properties
Many properties can be specified when connecting to a server database using JDBC. All properties are
optional and can be specified either as part of the URL or in a java.util.Properties object. If a property is
set in both the URL and a Properties object, the value in the URL will be used.

Note: The following list does not include DataSource properties.

The following tables list the different connection properties that are recognized by this driver. Some of
these properties affect performance and others are server job attributes. The tables organize the properties
into the following categories:
v “General properties”
v “Server properties” on page 327
v “Format properties” on page 331
v “Performance properties” on page 331
v “Sort properties” on page 336
v “Other properties” on page 336

General properties

General properties are system attributes that specify the user, password, and whether a prompt is
necessary to connect to the server.

Property Description Required Choices Default

"password" Specifies the password for connecting to the server. If
none is specified, then the user will be prompted,
unless the "prompt" property is set to "false", in
which case an attempt to connect will fail.

no system
password

(user will be
prompted)

326 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400JDBCConnection.html

Property Description Required Choices Default

"prompt" Specifies whether the user is prompted if a user
name or password is needed to connect to the server.
If a connection cannot be made without prompting
the user, and this property is set to "false", then an
attempt to connect will fail.

no "true"

"false"

"true"

"user" Specifies the user name for connecting to the server.
If none is specified, then the user will be prompted,
unless the "prompt" property is set to "false", in
which case an attempt to connect will fail.

no server user (user will be
prompted)

Server properties

Server properties specify attributes that govern transactions, libraries, and databases.

Property Description Required Choices Default

"auto commit" Specifies whether auto-commit mode is the
default connection mode for new
connections. Calling
AS400JDBCConnection.setAutoCommit()
will override this property on a
per-connection basis.
Note: In order to use transaction isolation
levels other than *NONE when using
auto-commit mode, the property "true
autocommit" needs to be set to true.

no "true"

"false"

"true"

"concurrent
access resolution"

Specifies whether "currently committed"
access is used on the connection. A value of
1 indicates that "currently committed" will
be used. A value of 2 indicates that "wait
for outcome" will be used. A value of 3
indicates that "skip locks" will be used.

no "1"

"2"

"3"

(system default)

"cursor hold" Specifies whether to hold the cursor across
transactions. If this property is set to "true",
cursors are not closed when a transaction is
committed or rolled back. All resources
acquired during the unit of work are held,
but locks on specific rows and objects
implicitly acquired during the unit of work
are released.

no "true"

"false"

"true"

"cursor
sensitivity"

Specifies the cursor sensitivity to request
from the database. The behavior depends
on the resultSetType:

v ResultSet.TYPE_FORWARD_ONLY or
ResultSet.TYPE_SCROLL_SENSITIVE
means that the value of this property
controls what cursor sensitivity the Java
program requests from the database.

v ResultSet.TYPE_SCROLL_INSENSITIVE
causes this property to be ignored.

no "asensitive"

"sensitive"

"insensitive"

"asensitive"

IBM Toolbox for Java 327

||
|
|
|
|
|
|
|
|
|

||

|

|

|
|
|
|
|
|
|
|

||

|

|

|

Property Description Required Choices Default

"database name" Specifies the database to use for the
connection to an independent auxiliary
storage pool (ASP). This property applies
only when connecting to an IBM i server.
When you specify a database name, the
name must exist in the relational database
directory on the server and correspond to
either an independent ASP or the system
default database. The following criteria
determine which database is accessed:

v When this property is used to specify a
database which corresponds to an
independent ASP, the connection is made
to the independent ASP. When the
specified database does not exist, the
connection fails.

v When this property is used to specify
*SYSBAS as the database name, the
system default database is used.

v When this property is omitted, the initial
ASP group specified in the job
description for the user profile is used.
When the job description does not
specify an initial ASP group, the system
default database is used.

no Database name
"*SYSBAS"

The database name
specified in the job
description for the
user profile is
used. When the job
description does
not specify a
database name, the
system default
database is used.

"decfloat
rounding mode"

Specifies the rounding mode to use when
working with the decfloat data type. This
property is ignored when connecting to
systems running IBM i 5.4 and earlier.

no "half even"

"half up"

"down"

"ceiling"

"floor"

"half down"

"up"

"half even"

328 IBM i: Programming IBM Toolbox for Java

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

Property Description Required Choices Default

"libraries" Specifies one or more libraries that you
want to add to or replace the library list of
the server job, and optionally sets the
default SQL schema (default library). Note
that libraries cannot be longer than 10
characters in length. You must use the SET
PATH SQL statement if you have libraries
longer than 10 characters.

Library list The server uses specified
libraries to resolve unqualified stored
procedure names, and stored procedures
use them to resolve unqualified names. To
specify multiple libraries, use commas or
spaces to separate individual entries. You
can use *LIBL as a placeholder for the
current library list of the server job
v When the first entry is *LIBL, the

specified libraries are added to the
current library list of the server job

v When you do not use *LIBL, the specified
libraries replace the current library list of
the server job

For more information about library list
properties, see JDBC LibraryList property.

Default SQL schema The server uses the
default SQL schema to resolve unqualified
names in SQL statements. For example, in
the statement "SELECT * FROM
MYTABLE", the server looks only in the
default SQL schema for MYTABLE. You can
specify the default SQL schema on the
connection URL. When you do not specify
the default SQL schema on the connection
URL, the following conditions apply,
depending on the SQL naming convention
that is used:
v If SQL Naming is being used:

– The first entry (unless it is *LIBL)
becomes the default SQL schema

– When the first entry is *LIBL, the
second entry becomes the default SQL
schema

– When you do not set this property or
when it contains only *LIBL, the user
profile becomes the default SQL
schema

v If System Naming is being used:
– No default SQL schema is set, and the

server uses the specified libraries to
search for unqualified names

– When you do not set this property or
when it contains only *LIBL, the server
uses the current library list of the
server job to search for unqualified
names

no List of server
libraries, separated
by commas or
spaces

"*LIBL"

IBM Toolbox for Java 329

|
|
|
|
|
|
|
|

Property Description Required Choices Default

"maximum
precision"

Specifies the maximum decimal precision
the database might use.

no "31"

"63"

"31"

"maximum scale" Specifies the maximum scale the database
might use.

no "0"-"63" "31"

"minimum divide
scale"

Specifies the minimum scale value for the
result of decimal division.

no "0"

"1"

"2"

"3"

"4"

"5"

"6"

"7"

"8"

"9"

"0"

"package ccsid" Specifies the character encoding to use for
the SQL package and any statements sent to
the server.

no "1200" (UCS-2)

"13488"
(UTF-16)

"13488"

"transaction
isolation"

Specifies the default transaction isolation. no "none"

"read
uncommitted"

"read committed"

"repeatable
read"

"serializable"

"read
uncommitted"

"translate hex" Specifies how hexadecimal literals are
interpreted.

no "character"
(Interpret
hexadecimal
literals as
character data)

"binary"
(Interpret
hexadecimal
literals as
binary data)

"character"

"true
autocommit"

Specifies whether the connection should use
true auto commit support. True autocommit
means that autocommit is on and is
running under a isolation level other than
*NONE. By default, the driver handles
autocommit by running under the server
isolation level of *NONE.

no "true" (Use true
autocommit.)

"false" (Do not
use true
autocommit.)

"false"

"xa loosely
coupled support"

Specifies whether lock sharing is allowed
for loosely coupled transaction branches.
Note: This setting is ignored when running
to IBM i 5.3 or earlier.

no "0" = Locks
cannot be
shared

"1" = Locks can
be shared

"0"

330 IBM i: Programming IBM Toolbox for Java

Format properties

Format properties specify date and time formats, date and decimal separators, and table naming
conventions used within SQL statements.

Property Description Required Choices Default

"date format" Specifies the date format used in date
literals within SQL statements.

no "mdy"

"dmy"

"ymd"

"usa"

"iso"

"eur"

"jis"

"julian"

(server job)

"date separator" Specifies the date separator used in
date literals within SQL statements.
This property has no effect unless the
"date format" property is set to "julian",
"mdy", "dmy" or "ymd".

no "/" (slash)

"-" (dash)

"." (period)

 "," (comma)

"b" (space)

(server job)

"decimal
separator"

Specifies the decimal separator used in
numeric literals within SQL statements.

no "." (period)

"," (comma)

(server job)

"naming" Specifies the naming convention used
when referring to tables.

no "sql" (as in
schema.table)
"system" (as in
schema/table)

"sql"

"time format" Specifies the time format used in time
literals within SQL statements.

no "hms"

"usa"

"iso"

"eur"

"jis"

(server job)

"time separator" Specifies the time separator used in
time literals within SQL statements.
This property has no effect unless the
"time format" property is set to "hms".

no ":" (colon)

"." (period)

"," (comma)

"b" (space)

(server job)

Performance properties

Performance properties are attributes that include caching, data conversion, data compression, and
prefetching that affect performance.

IBM Toolbox for Java 331

Property Description Required Choices Default

"big decimal" Specifies whether an intermediate
java.math.BigDecimal object is used for
packed and zoned decimal conversions.
If this property is set to "true", an
intermediate java.math.BigDecimal
object is used for packed and zoned
decimal conversions as described by the
JDBC specification. If this property is set
to "false", no intermediate objects are
used for packed and zoned decimal
conversions. Instead, such values are
converted directly to and from Java
double values. Such conversions will be
faster but may not follow all conversion
and data truncation rules documented
by the JDBC specification.

no "true"

"false"

"true"

"block criteria" Specifies the criteria for retrieving data
from the server in blocks of records.
Specifying a non-zero value for this
property will reduce the frequency of
communication to the server, and
therefore improve performance.

Ensure that record blocking is off if the
cursor is going to be used for
subsequent UPDATEs, or else the row
that is updated will not necessarily be
the current row.

no "0" (no record
blocking)

"1" (block if
FOR FETCH
ONLY is
specified)

"2" (block
unless FOR
UPDATE is
specified)

"2"

"block size" Specifies the block size (in kilobytes) to
retrieve from the server and cache on
the client. This property has no effect
unless the "block criteria" property is
non-zero. Larger block sizes reduce the
frequency of communication to the
server, and therefore may improve
performance.

no "0"

"8"

"16"

"32"

"64"

"128"

"256"

"512"

"32"

"data compression" Specifies whether result set data is
compressed. If this property is set to
"true", then result set data is
compressed. If this property is set to
"false", then result set data is not
compressed. Data compression may
improve performance when retrieving
large result sets.

no "true"

"false"

"true"

332 IBM i: Programming IBM Toolbox for Java

Property Description Required Choices Default

"extended dynamic" Specifies whether to use extended
dynamic support. Extended dynamic
support provides a mechanism for
caching dynamic SQL statements on the
server. The first time a particular SQL
statement is prepared, it is stored in a
SQL package on the server. If the
package does not exist, it is
automatically created. On subsequent
prepares of the same SQL statement, the
server can skip a significant part of the
processing by using information stored
in the SQL package. If this is set to
"true", then a package name must be set
using the "package" property.

no "true"

"false"

"false"

"lazy close" Specifies whether to delay closing
cursors until subsequent requests. This
will improve overall performance by
reducing the total number of requests.

no "true"

"false"

"false"

"lob threshold" Specifies the maximum LOB (large
object) size (in bytes) that can be
retrieved as part of a result set. LOBs
that are larger than this threshold will
be retrieved in pieces using extra
communication to the server. Larger
LOB thresholds will reduce the
frequency of communication to the
server, but will download more LOB
data, even if it is not used. Smaller LOB
thresholds may increase frequency of
communication to the server, but will
only download LOB data as it is
needed.

no "0" - "16777216" "32768"

"package" Specifies the base name of the SQL
package. Note that only the first seven
characters are used to generate the
name of the SQL package on the server.
This property has no effect unless the
"extended dynamic" property is set to
"true". In addition, this property must
be set if the "extended dynamic"
property is set to "true".

no SQL package ""

"package add" Specifies whether to add newly
prepared statements to the SQL package
specified on the "package" property.
This property has no effect unless the
"extended dynamic" property is set to
"true".

no "true"

"false"

"true"

"package cache" Specifies whether to cache a subset of
the SQL package information in client
memory. Caching SQL packages locally
reduces the amount of communication
to the server for prepares and describes.
This property has no effect unless the
"extended dynamic" property is set to
"true".

no "true"

"false"

"false"

IBM Toolbox for Java 333

Property Description Required Choices Default

"package criteria" Specifies the type of SQL statements to
be stored in the SQL package. This can
be useful to improve the performance of
complex join conditions. This property
has no effect unless the "extended
dynamic" property is set to "true".

no "default" (only
store SQL
statements
with
parameter
markers in
the package)

"select" (store
all SQL
SELECT
statements in
the package)

"default"

"package error" Specifies the action to take when SQL
package errors occur. When a SQL
package error occurs, the driver will
optionally throw a SQLException or
post a notice to the Connection, based
on the value of this property. This
property has no effect unless the
"extended dynamic" property is set to
"true".

no "exception"

"warning"

"none"

"warning"

"package library" Specifies the library for the SQL
package. This property has no effect
unless the "extended dynamic" property
is set to "true".

no Library for SQL
package

"QGPL"

"prefetch" Specifies whether to prefetch data upon
executing a SELECT statement. This will
improve performance when accessing
the initial rows in the ResultSet.

no "true"

"false"

"true"

"qaqqinilib" Specifies a QAQQINI library name.
Used to specify the library that contains
the qaqqini file to use. A qaqqini file
contains all of the attributes that can
potentially impact the performance of
the DB2 for i database engine.

no "QAQQINI
library name"

(server
default)

334 IBM i: Programming IBM Toolbox for Java

Property Description Required Choices Default

"query optimize goal" Specifies the goal the server should use
with optimization of queries. This
setting corresponds to the server's
QAQQINI option called
OPTIMIZATION_GOAL.
Note: This property is ignored when
connecting to systems running to IBM i
5.3 and earlier.

no "0" =
Optimize
query for first
block of data
(*FIRSTIO)
when
extended
dynamic
packages are
used;
Optimize
query for
entire result
set (*ALLIO)
when
packages are
not used

"1" =
Optimize
query for first
block of data
(*FIRSTIO)

"2" =
Optimize
query for
entire result
set (*ALLIO)

"0"

"query storage limit" Limits the storage used by a query. This
property compares the storage limit you
specify to the estimated storage usage of
the query. If the estimated storage usage
exceeds the specified storage limit, the
query is not allowed to execute.

no -1 (*NOMAX) to
2 147 352 578

-1, which
indicates a
special value
of *NOMAX

"receive buffer size" Specifies the buffer size used to receive
data through the socket connection
between the front-end driver and the
system.
Note: This does not specify the actual
receive buffer size. It is only used as a
hint by the underlying socket code.

no "1" - max size (platform
dependent)

"send buffer size" Specifies the buffer size used to send
data through the socket connection
between the front-end driver and the
system.
Note: This does not specify the actual
send buffer size. It is only used as a hint
by the underlying socket code.

no "1" - max size (platform
dependent)

"variable field
compression"

Specifies whether variable-length fields
should be compressed.

no "true"

"false"

"true"

IBM Toolbox for Java 335

Sort properties

Sort properties specify how the server performs stores and performs sorts.

Sort property Description Required Choices Default

"sort" Specifies how the server sorts records
before sending them to the client.

no "hex" (base the sort
on hexadecimal
values)

"language" (base
the sort on the
language set in the
"sort language"
property)

"table" (base the
sort on the sort
sequence table set
in the "sort table"
property)

"hex"

"sort language" Specifies a 3-character language id to use
for selection of a sort sequence. This
property has no effect unless the "sort"
property is set to "language".

no Language id ENU

"sort table" Specifies the library and file name of a
sort sequence table stored on the server.
This property has no effect unless the
"sort" property is set to "table".

no Qualified sort table
name

""

"sort weight" Specifies how the server treats case while
sorting records. This property has no
effect unless the "sort" property is set to
"language."

no "shared" (upper-
and lowercase
characters sort as
the same character)

"unique" (upper-
and lowercase
characters sort as
different characters)

"shared"

Other properties

Other properties are those properties not easily categorized. These properties determine which JDBC
driver is used, and specify options related to level of database access, bidirectional string type, data
truncation and so on.

Other
property Description Required Choices Default

"access" Specifies the level of database access for the
connection.

no "all" (all SQL
statements allowed)

"read call" (SELECT
and CALL
statements allowed)

"read only" (SELECT
statements only)

"all"

"autocommit
exception"

Specifies whether to throw an SQLException
when Connection.commit() or
Connection.rollback() is called if autocommit is
enabled.

no "true"

"false"

"false"

336 IBM i: Programming IBM Toolbox for Java

|
|
|
|

Other
property Description Required Choices Default

"bidi string
type"

Specifies the output string type of bidirectional
data. See BidiStringType for more information.

no "" (use the CCSID to
determine
bidirectional string
type)

"0" (the default
string type for
nonbidirectional
data (LTR))

"4"

"5"

"6"

"7"

"8"

"9"

"10"

"11"

""

"bidi
implicit
reordering"

Specifies if bidi implicit LTR-RTL reordering
should be used.

no "true"

"false"

"true"

"bidi
numeric
ordering"

Specifies if the numeric ordering round trip
feature should be used.

no "true"

"false"

"false"

"data
truncation"

Specifies whether truncation of character data
generates attention notices and exceptions.
When this property is "true", the following
apply:

v Writing truncated character data to the
database throws an exception

v Using truncated character data in a query
posts an attention notice.

When this property is "false", writing truncated
data to the database or using such data in a
query generates no exception or attention
notice.

The default value is "true".

This property does not affect numeric data.
Writing truncated numeric data to the database
always throws an error and using truncated
numeric data in a query always posts attention
notices.

no "true"

"false"

"true"

IBM Toolbox for Java 337

javadoc/com/ibm/as400/access/BidiStringType.html#NAVBAR_TOP

Other
property Description Required Choices Default

"driver" Specifies the JDBC driver implementation. The
IBM Toolbox for Java JDBC driver can use
different JDBC driver implementations based
on the environment. If the environment is an
IBM i JVM on the same server as the database
to which the program is connecting, the native
IBM Developer Kit for Java JDBC driver can be
used. In any other environment, the IBM
Toolbox for Java JDBC driver is used. This
property has no effect if the "secondary URL"
property is set.

no "toolbox" (use only
the IBM Toolbox for
Java JDBC driver)

"native" (use the
IBM Developer Kit
for Java JDBC driver
if running on the
server, otherwise
use the IBM Toolbox
for Java JDBC
driver)

"toolbox"

"errors" Specifies the amount of detail to be returned in
the message for errors that occur on the server.

no "basic"

"full"

"basic"

"extended
metadata"

Specifies whether the driver requests extended
metadata from the server. Setting this property
to true increases the accuracy of the
information returned from the following
ResultSetMetaData methods:

v getColumnLabel(int)

v isReadOnly(int)

v isSearchable(int)

v isWriteable(int)

Additionally, setting this property to true
enables support for the
ResultSetMetaData.getSchemaName(int) and
ResultSetMetaData.isAutoIncrement(int)
methods.
Note: Setting this property to true may
degrade performance because it requires
retrieving more information from the server.
Leave the property as the default (false) unless
you need more specific information from the
listed methods. For example, when this
property is off (false),
ResultSetMetaData.isSearchable(int) always
returns "true" because the driver does not have
enough information from the server to make a
judgment. Turning on this property (true)
forces the driver to get the correct data from
the server.

no "true"

"false"

"false"

"full open" Specifies whether the server fully opens a file
for each query. By default the server optimizes
open requests. This optimization improves
performance but may fail if a database monitor
is active when a query is run more than once.
Set the property to true only when identical
queries are issued when monitors are active.

no "true"

 "false"

"false"

"hold input
locators"

Specifies whether input locators should be
allocated as type hold locators or not hold
locators. If the locators are of type hold, they
will not be released when a commit is done.

no "true" (type hold)

"false"

"true"

338 IBM i: Programming IBM Toolbox for Java

|
|
|
|
|

Other
property Description Required Choices Default

"hold
statements"

Specifies if statements should remain open until
a transaction boundary when autocommit is off
and they are associated with a LOB locator. By
default, all the resources associated with a
statement are released when the statement is
closed. Set this property to true only when
access to a LOB locator is needed after a
statement has been closed.

no "true"

"false"

"false"

"ignore
warnings"

Specifies a list of SQL states for which the
driver should not create warning objects. By
default, the IBM Toolbox for Java JDBC driver
will internally create a java.sql.SQLWarning
object for each warning returned by the
database. For example, a warning with the
SQLSTATE 0100C is created every time a result
set is returned from a stored procedure. This
warning can be safely ignored to improve the
performance of applications that call stored
procedures.

no A comma separated list
of SQL states that
should be ignored.

""

"keep alive" Specifies whether socket connection is to be
periodically checked for operational status.

no "true"

"false"

(platform
dependent)

"key ring
name"

Specifies the key ring class name used for SSL
connections with the server. This property has
no effect unless "secure" is set to true and a key
ring password is set using the "key ring
password" property.

no "key ring name" ""

"key ring
password"

Specifies the password for the key ring class
used for SSL communications with the server.
This property has no effect unless "secure" is
set to true and a key ring name is set using the
"key ring name" property.

no "key ring password" ""

"metadata
source"

Specifies how to retrieve DatabaseMetaData. If
set to "0," database metadata will be retrieved
through the Retrieve Object Information (ROI)
data flow.

If set to "1," database metadata will be retrieved
by calling system stored procedures.

no "0" (ROI access)

"1" (SQL stored
procedures)

"0" for IBM
i 6.1 and
older
releases, "1"
for all other
releases

"proxy
server"

Specifies the host name and port of the
middle-tier machine where the proxy server is
running. The format for this is hostname[:port],
where the port is optional. If this is not set,
then the hostname and port are retrieved from
the com.ibm.as400.access.AS400.proxyServer
property. The default port is 3470 (if the
connection uses SSL, the default port is 3471).
The ProxyServer must be running on the
middle-tier machine.

The name of the middle-tier machine is ignored
in a two-tier environment.

no Proxy server host name
and port

(value of
the
proxyServer
property, or
none if not
set)

IBM Toolbox for Java 339

|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|

|

|
|
|
|
|
|

Other
property Description Required Choices Default

"remarks" Specifies the source of the text for REMARKS
columns in ResultSets returned by
DatabaseMetaData methods. This property is
only used if the "metadata source" property is
set to "0".

no "sql" (SQL object
comment)

"system" (IBM i
object description)

"system"

"secondary
URL"

Specifies the URL to be used for a connection
on the middle-tier's DriverManager in a
multiple tier environment, if it is different than
already specified. This property allows you to
use this driver to connect to other databases.
Use a backslash as an escape character before
backslashes and semicolons in the URL.

no JDBC URL (current
JDBC URL)

"secure" Specifies whether a Secure Sockets Layer (SSL)
connection is used to communicate with the
server.

no "true" (encrypt all
client/server
communication)

"false" (encrypt only
the password)

"false"

"server
trace"

Specifies the level of tracing of the JDBC server
job. When tracing is enabled, tracing starts
when the client connects to the server and ends
when the connection is disconnected. You must
start tracing before connecting to the server,
because the client enables server tracing only at
connect time.

no "0" (trace is not
active)

"2" (start the
database monitor on
the JDBC server job)

"4" (start debug on
the JDBC server job)

"8" (save the job log
when the JDBC
server job ends)

"16" (start job trace
on the JDBC server
job)

"32" (save SQL
information)

"64" (supports the
activation of
database host server
tracing)

Multiple types of trace
can be started by
adding these values
together. For example,
"6" starts the database
monitor and starts
debug.

"0"

"thread
used"

Specifies whether threads are used in
communication with the host servers.

no "true"

"false"

"true"

340 IBM i: Programming IBM Toolbox for Java

Other
property Description Required Choices Default

"toolbox
trace"

Specifies what category of an IBM Toolbox for
Java trace to log. Trace messages are useful for
debugging programs that call JDBC. However,
there is a performance penalty associated with
logging trace messages, so this property is only
set for debugging. Trace messages are logged to
System.out.

no ""

"none"

"datastream" (log
data flow between
the local host and
the remote system)

"diagnostic" (log
object state
information)

"error" (log errors
that cause an
exception)

"information" (used
to track the flow of
control through the
code)

"warning" (log
errors that are
recoverable)

"conversion" (log
character set
conversions between
Unicode and native
code pages)

"proxy" (log data
flow between the
client and the proxy
server)

"pcml" (used to
determine how
PCML interprets the
data that is sent to
and from the server)

"jdbc" (log jdbc
information)

"all" (log all
categories)

"thread" (log thread
information)

""

"trace" Specifies whether trace messages are logged.
Trace messages are useful for debugging
programs that call JDBC. However, there is a
performance penalty associated with logging
trace messages, so this property only set to
"true" for debugging. Trace messages are
logged to System.out.

no "true"

"false"

"false"

"translate
binary"

Specifies whether binary data is translated. If
this property is set to "true", then BINARY and
VARBINARY fields are treated as CHAR and
VARCHAR fields.

no "true"

"false"

"false"

IBM Toolbox for Java 341

Other
property Description Required Choices Default

"translate
boolean"

Specifies how Boolean objects are interpreted
when setting the value for a character
field/parameter using the
PreparedStatement.setObject(),
CallableStatement.setObject() or
ResultSet.updateObject() methods. Setting the
property to "true" would store the Boolean
object in the character field as either "true" or
"false." Setting the property to "false" would
store the Boolean object in the character field as
either "1" or "0."

no "true"

"false"

"true"

Related reference:
“Registering the JDBC driver” on page 78
Before using JDBC to access data in a server database file, you need to register the IBM Toolbox for Java
JDBC driver with the DriverManager.

JDBC Librarylist property
The JDBC LibraryList property specifies one or more libraries that you want to add to or replace the
library list of the server job, and optionally sets the default library (default SQL schema).

The examples in the following table make these assumptions:
v A library called MYLIBDAW contains MYFILE_DAW
v You are running this SQL statment:

"SELECT * FROM MYFILE_DAW"

Scenario SQL Naming System Naming

Basic Rules Only one library is searched.

v If a default SQL schema is specified on the
URL, it is used. It becomes the default library.

v If no default SQL schema is specified on the
URL, the first library in the "libraries"
property is used. It becomes the default
library.

v If no default SQL schema is specified on URL
and if no "libraries" property is specified, the
library with the same name as the signed-on
user profile is used.

The job's library list is updated with the
libraries in the libraries property. This may
affect the behavior of some triggers and stored
procedures. It does not affect unqualified names
in statements.

The job's library list is updated with the
libraries on the libraries property. If a
default SQL schema is specified on the
URL then that becomes the default
library.

1. No default SQL
schema specified on
URL and "libraries"
property is not specified

Default SQL schema is the user profile name. No default SQL schema. Job's library
list is searched.

2. Default SQL schema
specified on URL and
"libraries" property not
specified

Default SQL schema is what is specified in the
URL.

Default SQL schema is what is specified
in the URL. Library list is not searched
to resolve unqualified name in SQL
statements.

342 IBM i: Programming IBM Toolbox for Java

Scenario SQL Naming System Naming

3. Default SQL schema
not specified on URL
and "libraries" property
is specified

Default SQL schema is first library specified in
property.

No default SQL schema. All libraries
specified in property are searched.

4. Default SQL schema
specified on URL and
"libraries" property
specified

Default SQL schema is what is specified in the
URL. Property is ignored.

Default SQL schema is what is specified
in the URL. Library list is not searched
to resolve unqualified name in SQL
statements.

5. No default SQL
schema specified on
URL, the "libraries"
property is specified
and a library in the list
is not valid

Default SQL schema is first library specified in
property.

No default SQL schema. The library list
can not be changed because one of the
libraries in the list is not found so the
job's library list is used.

6. No default SQL
schema specified on
URL, "libraries"
property specified, file
found in second library
in list

Default SQL schema is first library specified in
property, rest of libraries ignored.

If all libraries exist , then no default
SQL schema, all libraries on list
searched, list replaces job's library list.

If one of the libraries on the list does
not exist, the job's library list is not
changed.

7. No default SQL
schema specified on
URL, the "libraries"
property is specified,
list starts with a comma

Default SQL schema is user profile. No default SQL schema, all libraries on
list searched, list replaces job's library
list.

8. No default SQL
schema specified on
URL, "libraries"
property specified, list
starts with a *LIBL

Default SQL schema is user profile. No default SQL schema, all libraries on
list searched, libraries specified added
to end of list

9. No default SQL
schema specified on
URL, "libraries"
property specified, list
ends with a *LIBL

Default SQL schema is first library specified in
property, rest of libraries ignored.

No default SQL schema, all libraries on
list searched, libraries specified added
to beginning of job's library list

10. Default SQL schema
specified on URL not
valid

No default SQL schema, user profile used. No default SQL schema, job's library list
is used

Note: When a default SQL schema is specified on the URL and the libraries property is not used, the
default SQL schema is appended before the current library list

JDBC SQL Types
Not all of the SQL types described by the JDBC specification are supported by DB2 for IBM i.

Unsupported SQL Types

In the cases where a SQL type is not supported, the JDBC driver substitutes a similar SQL type.

The following table lists the SQL types that are not supported and the SQL type that JDBC driver
substitutes for each.

IBM Toolbox for Java 343

Unsupported SQL type Substituted SQL type

BIT SMALLINT

TINYINT SMALLINT

LONGVARCHAR VARCHAR

LONGVARBINARY VARBINARY

Proxy Support
IBM Toolbox for Java includes proxy support for some classes. Proxy support is the processing that IBM
Toolbox for Java needs to carry out a task on a Java virtual machine (JVM) when the application is on a
different JVM.

The proxy classes reside in jt400Proxy.jar, which ships with the rest of the IBM Toolbox for Java. The
proxy classes, like the other classes in the IBM Toolbox for Java, comprise a set of platform independent
Java classes that can run on any computer with a Java virtual machine. The proxy classes dispatch all
method calls to a server application, or proxy server. The full IBM Toolbox for Java classes are on the
proxy server. When a client uses a proxy class, the request is transferred to the proxy server which
creates and administers the real IBM Toolbox for Java objects.

Figure 1 shows how the standard and proxy client connect to the server. The proxy server can be the IBM
i server that contains the data.

Figure 1: How a standard client and a proxy client connect to a server

An application that uses proxy support performs more slowly than if it uses standard IBM Toolbox for
Java classes due to the extra communication needed to support the smaller proxy classes. Applications
that make fewer method calls have less performance degradation.

Before proxy support, the classes containing the public interface, all the classes needed to process a
request, and the application itself ran on the same JVM. When using proxy support, the public interface
must be with the application, but classes for processing requests can run on a different JVM. Proxy
support does not change the public interface. The same program can run with either the proxy version of
IBM Toolbox for Java or the standard version.

344 IBM i: Programming IBM Toolbox for Java

Using the jt400Proxy.jar file

The goal of the multiple-tier, proxy scenario is to make the public interface JAR file as small as possible,
so that downloading it from an applet takes less time. When you use the proxy classes, you don't need to
install the entire IBM Toolbox for Java on the client. Instead, use AS400JarMaker on the jt400Proxy.jar file
to include only the required components, which makes the JAR file as small as possible.

Figure 2 compares the size of the proxy JAR files with the standard JAR files:

Figure 2: Size comparison of proxy JAR files and standard JAR files

An additional benefit is that proxy support requires you to have fewer ports open through a firewall.
With standard IBM Toolbox for Java, you must have multiple ports open. This is because each IBM
Toolbox for Java service uses a different port to communicate with the server. For example, Command
call uses a different port than JDBC, which uses a different port than print, and so on. You must allow
each of these ports through the firewall. However, when using proxy support, all the data flows through
the same port.

Standard proxy and HTTP tunneling

Two options are available for running via a proxy: standard proxy and HTTP tunneling:

IBM Toolbox for Java 345

v Standard proxy is where the proxy client and proxy server communicate by using a socket over a port.
The default port is 3470. Change the default port by using the setPort() method on the ProxyServer
class, or by using the -port option when starting the proxy server. For example:

java com.ibm.as400.access.ProxyServer -port 1234

v HTTP tunneling is where the proxy client and proxy server communicate by way of the HTTP server.
The IBM Toolbox for Java provides a servlet that handles the proxy request. The proxy client calls the
servlet by way of the HTTP server. The advantage of tunneling is that you are not required to open an
additional port through the firewalls, because communication is by way of the HTTP port. The
disadvantage of tunneling is that it is slower than standard proxy.

IBM Toolbox for Java uses the proxy server name to determine if standard proxy or tunneling proxy is
being used:
v For standard proxy, just use the server name. For example:

com.ibm.as400.access.AS400.proxyServer=myServer

v For tunneling, use a URL to force the proxy client to use tunneling. For example:
com.ibm.as400.access.AS400.proxyServer=http://myServer

When running standard proxy, a socket connection exists between the client and server. If that connection
fails, the server cleans up resources associated with that client.

When using HTTP tunneling, using the HTTP protocol makes proxy connectionless. That is, a new
connection is made for each data flow. Because the protocol is connectionless, the server does not know if
the client application is no longer active. Consequently, the server does not know when to clean up
resources. The tunneling server solves this problem by using a thread to clean up resources at a
predetermined interval (which is based on a timeout value).

At the end of the predetermined interval, the thread runs and cleans up resources that have not been
used lately. Two system properties govern the thread:
v com.ibm.as400.access.TunnelProxyServer. clientCleanupInterval is how often, in seconds, the cleanup

thread runs. The default is every two hours.
v com.ibm.as400.access.TunnelProxyServer. clientLifetime is how long, in seconds, a resource can be idle

before it is cleaned up. The default is 30 minutes.

Using proxy server

To use the proxy server implementation of the IBM Toolbox for Java classes, complete the following steps:
1. Run AS400ToolboxJarMaker on jt400Proxy.jar to discard classes that you do not need. This step is

optional but recommended.
2. Deliver jt400Proxy.jar to the client. For Java applets, you may be able to download the JAR file from

the HTML server.
3. Determine what server you will use for the proxy server.
v For Java applications, the proxy server can be any computer.
v For Java applets, the proxy server must be running on the same computer as the HTTP server.

4. Ensure that you have put jt400.jar in the CLASSPATH on the server.
5. Start the proxy server or use the proxy servlet:
v For standard proxy, start the proxy server by using the following command:

java com.ibm.as400.access.ProxyServer

v For tunneling proxy, configure your HTTP server to use the proxy servlet. The servlet class name is
com.ibm.as400.access.TunnelProxyServer and it is contained in jt400.jar.

6. On the client, set a system property to identify the proxy server. IBM Toolbox for Java uses this
system property to determine if standard proxy or tunneling proxy is being used.

346 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/ProxyServer.html#SETPORT(INT)

v For standard proxy, the property value is the name of the machine that runs the proxy server. For
example:

com.ibm.as400.access.AS400.proxyServer=myServer

v For tunneling proxy, use a URL to force the proxy client to use tunneling. For example:
com.ibm.as400.access.AS400.proxyServer=http://myServer

7. Run the client program.

When you want to work with both the proxy classes and classes not in jt400Proxy.jar, you can refer to
jt400.jar instead of jt400Proxy.jar. jt400Proxy.jar is a subset of the jt400.jar and, therefore, all of the proxy
classes are contained in the jt400.jar file.

Examples: Using proxy servers

The following are three specific examples for using a proxy server with the steps listed above.
v Running a Java application using proxy support
v Running a Java applet using proxy support
v Running a Java application using tunneling proxy support.

Classes enabled to work with proxy server

Some IBM Toolbox for Java classes are enabled to work with the proxy server application. These include
the following:
v JDBC
v Record-level access
v Integrated file system
v Print
v Data Queues
v Command Call
v Program Call
v Service Program Call
v User space
v Data area
v AS400 class
v SecureAS400 class

Other classes are not supported at this time by jt400Proxy. Also, integrated file system permissions are
not functional using only the proxy JAR file. However, you can use the JarMaker class to include these
classes from the jt400.jar file.

Example: Running a Java application using Proxy Support
The following example shows you the steps to run a Java application using proxy support.
1. Choose a machine to act as the proxy server. The Java environment and CLASSPATH on the proxy

server machine includes the jt400.jar file. This machine must be able to connect to the system.
2. Start the proxy server on this machine by typing: java com.ibm.as400.access.ProxyServer -verbose

Specifying verbose allows you to monitor when the client connects and disconnects.
3. Choose a machine to act as the client. The Java environment and CLASSPATH on the client machine

includes the jt400Proxy.jar file and your application classes. This machine must be able to connect to
the proxy server but does not need a connection to the system.

IBM Toolbox for Java 347

4. Set the value of the com.ibm.as400.access.AS400.proxyServer system property to be the name of
your proxy server, and run the application. An easy way to do this is by using the -D option on most
Java Virtual Machine invocations: java -Dcom.ibm.as400.access.AS400.proxyServer=psMachineName
YourApplication

5. As your application runs, you see (if you set verbose in step 2) the application make at least one
connection to the proxy server.

Example: Running a Java applet using proxy support
The following example shows you the steps to run a Java applet using proxy support.
1. Choose a machine to act as the proxy server. Applets can initiate network connections only to the

machine from which they were originally downloaded; therefore, it works best to run the proxy
server on the same machine as the HTTP server. The Java environment and CLASSPATH on the proxy
server machine includes the jt400.jar file.

2. Start the proxy server on this machine by typing: java com.ibm.as400.access.ProxyServer -verbose
Specifying verbose will allow you to monitor when the client connects and disconnects.

3. Applet code needs to be downloaded before it runs so it is best to reduce the size of the code as
much as possible. The AS400ToolboxJarMaker can reduce the jt400Proxy.jar significantly by including
only the code for the components that your applet uses. For instance, if an applet uses only JDBC,
reduce the jt400Proxy.jar file to include the minimal amount of code by running the following
command:

java utilities.AS400ToolboxJarMaker -source jt400Proxy.jar -destination jt400ProxySmall.jar
-component JDBC

4. The applet must set the value of the com.ibm.as400.access.AS400.proxyServer system property to be
the name of your proxy server. A convenient way to do this for applets is using a compiled Properties
class (Example). Compile this class and place the generated Properties.class file in the
com/ibm/as400/access directory (the same path your html file is coming from). For example, if the
html file is /mystuff/HelloWorld.html, then Properties.class is in /mystuff/com/ibm/as400/access.

5. Put the jt400ProxySmall.jar in the same directory as the html file (/mystuff/ in step 4).
6. Refer to the applet like this in your HTML file:

<APPLET archive="jt400Proxy.jar, Properties.class" code="YourApplet.class"
width=300 height=100> </APPLET>

Example: Running a Java application using Tunneling Proxy Support
The following example shows you the steps to run a Java application using tunneling proxy support.
1. Choose the HTTP server that you want to run the proxy server, then configure it to run servlet

com.ibm.as400.access.TunnelProxyServer (in jt400.jar). Note: Ensure that the HTTP server has a
connection to the system that contains the data or resource that the application uses because the
servlet connects to that system to carry out requests.

2. Choose a machine to act as the client and ensure that the CLASSPATH on the client machine includes
the jt400Proxy.jar file and your application classes. The client must be able to connect to the HTTP
server but does not need a connection to the system.

3. Set the value of the com.ibm.as400.access.AS400.proxyServer property to be the name of your HTTP
server in URL format.

4. Run the application, setting the value of the com.ibm.as400.access.AS400.proxyServer property to be
the name of your HTTP server in URL format. An easy way to do this is by using the -D option
found on most JVMs:

java -Dcom.ibm.as400.access.AS400.proxyServer=http://psMachineName YourApplication

Note: The proxy client code creates the correct servlet URL by concatenating "servlet" and the servlet
name to the server name. In this example, it converts http://psMachineName to
http://psMachineName/servlet/TunnelProxyServer

348 IBM i: Programming IBM Toolbox for Java

Secure Sockets Layer and Java Secure Socket Extension
IBM Toolbox for Java supports using Java Secure Socket Extension (JSSE) for Java Secure Sockets Layer
(SSL) connections. JSSE is integrated into J2SE, version 1.4 and subsequent versions.

For more information about JSSE, see the Sun JSSE Web site .

JSSE provides the ability to perform server authentication, enable secure communications, and encrypt
data. Using JSSE, you can provide for secure data exchange between clients and servers that run any
application protocol (for example, HTTP and FTP) over TCP/IP.

If you have previously used sslight, you should migrate to JSSE. As of IBM i 5.4, JSSE is the only package
supported, and sslight is no longer shipped.

IBM Toolbox for Java 2 Micro Edition
The IBM Toolbox for Java 2 Micro Edition package (com.ibm.as400.micro) enables you to write Java
programs that allow a variety of Tier0 wireless devices, like personal digital assistants (PDAs) and cell
phones, to directly access IBM i data and resources.

ToolboxME requirements
Your workstation, wireless device, and server must meet certain requirements (listed below) for
developing and running IBM Toolbox for Java 2 Micro Edition applications.

Although Toolbox ME is considered a part of IBM Toolbox for Java, it is not included in the licensed
product. ToolboxME (jt400Micro.jar) is included in the open source version of Toolbox for Java, called
JTOpen. You must separately download and set up ToolboxME, which is contained in JTOpen.

Requirements

To use ToolboxME, your workstation, Tier0 wireless device, and server must meet the following
requirements.

Workstation requirements

Workstation requirements for developing ToolboxME applications:
v A supported version of Java Standard Edition
v Java virtual machine for wireless devices
v Wireless device simulator or emulator

Wireless device requirements

The only requirement for running ToolboxME applications on your Tier0 device is using a Java virtual
machine for wireless devices.

Server requirements

Server requirements for using ToolboxME applications:
v MEServer class, which is included in IBM Toolbox for Java or the latest version of JTOpen
v IBM i requirements for IBM Toolbox for Java

IBM Toolbox for Java 349

http://java.sun.com/products/jsse/

Downloading and setting up ToolboxME
You must separately download IBM Toolbox for Java 2 Micro Edition (jt400Micro.jar), which is contained
in JTOpen.

You can download ToolboxME from the IBM Toolbox for Java/JTOpen Web site

that also offers
additional information about setting up ToolboxME.

How you set up ToolboxME is different for the Tier0 device, the development workstation, and the
server:
v Build an application for your wireless device (using jt400Micro.jar) and install the application as

documented by the device manufacturer.
v Make sure that the IBM i Host Servers are started on the server that contains the target data.
v Make sure that the system that you want to run the MEServer has access to jt400.jar.

For more information, see the following pages:

“Installing IBM Toolbox for Java on your workstation” on page 9

“Installing IBM Toolbox for Java on your system” on page 8

Concepts important for using ToolboxME
Before you begin developing IBM Toolbox for Java 2 Micro Edition Java applications, you need to
understand the following concepts and standards that govern such development.

Java 2 Platform, Micro Edition (J2ME)

The J2ME is the implementation of the Java 2 standard that provides Java runtime environments for Tier0
wireless devices, like personal digital assistants (PDAs) and cell phones. IBM Toolbox for Java 2 Micro
Edition adheres to this standard.

Tier0 devices

Wireless devices, such as PDAs and cell phones, that use wireless technology to connect to computers
and networks are referred to as Tier0 devices. This name is based on the common 3-tier application
model. The 3-tier model describes a distributed program that is organized into three major parts, each of
which resides on a different computer or network:
v The third tier is the database and related programs that reside on a server, often a different server than

the second tier. This tier provides the information and the access to that information that the other tiers
use to perform work.

v The second tier is the business logic, which typically resides on a different computer, typically a server,
shared on a network.

v The first tier is generally the part of the application that resides on a workstation, including the user
interface.

Tier0 devices are often small, portable, resource-constrained devices, like PDAs and cell phones. Tier0
devices substitute for or complement the functionality of devices on the first tier.

Connected Limited Device Configuration (CLDC)

A configuration defines a minimal set of APIs and the necessary capabilities of a Java virtual machine to
provide the functions expected for a large set of devices. The CLDC targets the broad set of
resource-constrained devices that include Tier0 devices.

350 IBM i: Programming IBM Toolbox for Java

http://www.ibm.com/servers/eserver/iseries/toolbox/

For more information, see CLDC .

Mobile Information Device Profile (MIDP)

A profile represents a set of APIs built on an existing configuration that target a specific type of device or
operating system. The MIDP, built on the CLDC, provides a standard runtime environment that enables
you to dynamically deploy applications and services to Tier0 devices.

For more information, see Mobile Information Device Profile (MIDP) .

Java virtual machine for wireless devices

In order to run Java application, your Tier0 device requires a Java virtual machine that is specially
designed for the limited resources of a wireless device. Some of the possible JVMs that you can use
include the following:

v IBM J9 virtual machine, part of the IBM WebSphere® Everyplace Micro Environment

v Sun K Virtual Machine (KVM), part of CLDC

v MIDP

Related information

You can use any one of a number of development tools created to help you build wireless Java
applications. For a brief list of such tools, see Related information for IBM Toolbox for Java.

To learn more about and to download wireless device simulators and emulators, consult the Web site for
the device or operating system on which you want your application to run.

ToolboxME classes
The com.ibm.as400.micro package provides the classes necessary to write applications that enable your
Tier0 devices to access server data and resources.

Note: To use IBM Toolbox for Java 2 Micro Edition classes, you must separately download and set up the
ToolboxME component.

ToolboxME provides the following classes:
com.ibm.as400.micro package
“Tier0 devices” on page 350

MEServer class
Use the IBM Toolbox for Java MEServer class to fulfill requests from your Tier0 client application that
uses the IBM Toolbox for Java 2 Micro Edition JAR file. The MEServer creates IBM Toolbox for Java
objects and invokes methods on them on behalf of the client application.

Note: To use ToolboxMe classes, you must separately download and set up the ToolboxME component.
For more information, see Downloading and setting up ToolboxME.

Use the following command to start an MEServer:
java com.ibm.as400.micro.MEServer [options]

where [options] is one or more of the following:

IBM Toolbox for Java 351

http://java.sun.com/products/cldc/
http://java.sun.com/products/midp/
http://www.ibm.com/software/wireless/weme/
http://java.sun.com/products/cldc/
http://java.sun.com/products/midp/
javadoc/com/ibm/as400/micro/package-summary.html

-pcml pcml_doc1 [;pcml_doc2;...]
Specifies the PCML document to preload and parse. You can abbreviate this option by using -pc.

For important information about using this option, see the MEServer Javadoc.

-port port
Specifies the port to use for accepting connections from clients. The default port is 3470. You can
abbreviate this option by using -po.

-verbose [true|false]
Specifies whether to print status and connection information to System.out. You can abbreviate
this option by using -v.

-help Prints usage information to System.out. You can abbreviate this option by using -h or -?. The
default is not to print usage information.

MEServer will not start if another server is already active on the specified port.
Related information:
MEServer Javadoc
“Tier0 devices” on page 350

AS400 class
The AS400 class in the micro package (com.ibm.as400.micro.AS400) provides a modified subset of the
functions available in the AS400 class in the access package (com.ibm.as400.access.AS400). Use the IBM
Toolbox for Java 2 Micro Edition AS400 class to sign on the system from a Tier0 device.

Note: To use ToolboxME classes, you must separately download and set up the ToolboxME component.
For more information, see Downloading and setting up ToolboxME.

The AS400 class provides the following functions:
v Connect to the MEServer
v Disconnect from the MEServer

The connection to the MEServer is made implicitly. For example, after you create an AS400 object, you
can use the run() method in CommandCall to automatically perform connect(). In other words, you do
not explicitly call the connect() method unless you want to control when the connection is established.

Example: Using the AS400 class

The following example shows how to use the AS400 class to sign on to on the system:
AS400 system = new AS400("mySystem", "myUserid", "myPwd", "myMEServer");
try
{

system.connect();
}
catch (Exception e)
{

// Handle the exception
}
// Done with the system object.
system.disconnect();

AS400 Javadoc
“AS400 class” on page 22
The IBM Toolbox for Java AS400 class manages a set of socket connections to the server jobs on server
and sign-on behavior for the server, including prompting the user for sign-on information, password
caching, and default user management.
“Tier0 devices” on page 350

352 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/micro/MEServer.html
javadoc/com/ibm/as400/micro/AS400.html

“CommandCall class - Micro package”
The CommandCall class in the micro package (com.ibm.as400.micro.CommandCall) provides a
modified subset of the functions available in the CommandCall class in the access package
(com.ibm.as400.access.CommandCall). Use the CommandCall class to call an IBM i command from a
Tier0 device.

CommandCall class - Micro package
The CommandCall class in the micro package (com.ibm.as400.micro.CommandCall) provides a modified
subset of the functions available in the CommandCall class in the access package
(com.ibm.as400.access.CommandCall). Use the CommandCall class to call an IBM i command from a
Tier0 device.

Note: To use IBM Toolbox for Java 2 Micro Edition classes, you must separately download and set up the
ToolboxME component.

The CommandCall run() method requires a String (the command you want to run) and returns any
messages resulting from running the command as a String. If the command completes but does not
generate any messages, the run() method returns an empty String array.

Example: Using CommandCall

The following example demonstrates how you can use CommandCall:
// Work with commands.
AS400 system = new AS400("mySystem", "myUserid", "myPwd", "myMEServer");
try
{

// Run the command "CRTLIB FRED."
String[] messages = CommandCall.run(system, "CRTLIB FRED");
if (messages != null)
{

// Note that there was an error.
System.out.println("Command failed:");
for (int i = 0; i < messages.length; ++i)
{

System.out.println(messages[i]);
}

}
else
{

System.out.println("Command succeeded!");
}

}
catch (Exception e)
{

// Handle the exception
}
// Done with the system object.
system.disconnect();

Related reference:
“CommandCall class” on page 29
The CommandCall class allows a Java program to call a non-interactive IBM i command.
Related information:
Micro package CommandCall Javadoc
“Tier0 devices” on page 350

DataQueue class - Micro package
Use the DataQueue class to have your Tier0 device read from or write to an IBM i data queue. The
DataQueue class in the micro package (com.ibm.as400.micro.DataQueue]) provides a modified subset of
the functions available in the DataQueue class in the access package (com.ibm.as400.access.DataQueue).

IBM Toolbox for Java 353

javadoc/com/ibm/as400/micro/CommandCall.html

Note: To use IBM Toolbox for Java 2 Micro Edition classes, you must separately download and set up the
ToolboxME component.

The DataQueue class includes the following methods:
v Read or write an entry as a String
v Read or write an entry as an array of bytes

To read or write entries, you need to supply the name of the server where the data queue resides and the
fully qualified integrated file system path name of the data queue. When no entries are available, reading
an entry returns a null value.

Example: Using DataQueue to read from and write to a data queue

The following example demonstrates how to use the DataQueue class to read entries from and write
entries to an IBM i data queue:

AS400 system = new AS400("mySystem", "myUserid", "myPwd", "myMEServer");
try
{

// Write to the Data Queue.
DataQueue.write(system, "/QSYS.LIB/FRED.LIB/MYDTAQ.DTAQ", "some text");

// Read from the Data Queue.
String txt = DataQueue.read(system, "/QSYS.LIB/FRED.LIB/MYDTAQ.DTAQ");

}
catch (Exception e)
{

// Handle the exception
}
// Done with the system object.
system.disconnect();

Related reference:
“Data queues” on page 42
The DataQueue classes allow the Java program to interact with server data queues.
“Concepts important for using ToolboxME” on page 350
Before you begin developing IBM Toolbox for Java 2 Micro Edition Java applications, you need to
understand the following concepts and standards that govern such development.
Related information:
DataQueue Javadoc
“Tier0 devices” on page 350

Micro package - ProgramCall class
Use the ProgramCall class to enable a Tier0 device to call an IBM i program and access the data that is
returned after the program runs. The ProgramCall class in the micro package
(com.ibm.as400.micro.ProgramCall) provides a modified subset of the functions available in the
ProgramCall class in the access package (com.ibm.as400.access.ProgramCall).

Note: To use IBM Toolbox for Java 2 Micro Edition classes, you must separately download and set up the
ToolboxME component. For more information, see “ToolboxME requirements” on page 6.

To use the ProgramCall.run() method, you must provide the following parameters:
v The server on which you want to run the program
v The name of the “Program Call Markup Language” on page 377 document
v The name of the program that you want to run
v The hashtable that contains the name of one or more program parameters that you want to set and the

associated values

354 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/micro/DataQueue.html

v The string array that contains the name of any parameters to be returned after the program executes

ProgramCall uses PCML to describe the input and output parameters for the program. The PCML file
must be on the same machine as the MEServer, and you must have an entry for the directory that
contains the PCML file in the CLASSPATH of that machine.

You must register each PCML document with the MEServer. Registering a PCML document is telling the
MEServer which PCML-defined program you want to run. Register the PCML document either during
runtime or when you start the MEServer.

For more information about the hashtable that contains program parameters or how to register a PCML
document, see the ToolboxME ProgramCall Javadoc. For more information about PCML, see “Program
Call Markup Language” on page 377.

Example: Using ProgramCall

The following example shows how to use the ProgramCall class to use your Tier 0 device to run a
program on a server:

// Call programs.
AS400 system = new AS400("mySystem", "myUserid", "myPwd", "myMEServer");

String pcmlName = "qsyrusri.pcml"; // The PCML document describing the program we want to use.
String apiName = "qsyrusri";

Hashtable parametersToSet = new Hashtable();
parametersToSet.put("qsyrusri.receiverLength", "2048");
parametersToSet.put("qsyrusri.profileName", "JOHNDOE" };

String[] parametersToGet = { "qsyrusri.receiver.userProfile",
"qsyrusri.receiver.previousSignonDate",
"qsyrusri.receiver.previousSignonTime",
"qsyrusri.receiver.displaySignonInfo" };

String[] valuesToGet = null;

try
{

valuesToGet = ProgramCall.run(system, pcmlName, apiName,
parametersToSet, parametersToGet);

// Get and display the user profile.
System.out.println("User profile: " + valuesToGet[0]);

// Get and display the date in a readable format.
char[] c = valuesToGet[1].toCharArray();
System.out.println("Last Signon Date: " + c[3]+c[4]+"/"+c[5]+c[6]+"/"+c[1]+c[2]);

// Get and display the time in a readable format.
char[] d = valuesToGet[2].toCharArray();
System.out.println("Last Signon Time: " + d[0]+d[1]+":"+d[2]+d[3]);

// Get and display the signon info.
System.out.println("Signon Info: " + valuesToGet[3]);

}
catch (MEException te)
{

// Handle the exception.
}
catch (IOException ioe)
{

// Handle the exception

IBM Toolbox for Java 355

}

// Done with the system object.
system.disconnect();

ProgramCall Javadoc (micro package)
“ProgramCall class” on page 155
The IBM Toolbox for Java ProgramCall class allows the Java program to call a IBM i program. You can
use the ProgramParameter class to specify input, output, and input/output parameters. If the program
runs, the output and input/output parameters contain the data that is returned by the IBM i program.
If the IBM i program fails to run successfully, the Java program can retrieve any resulting IBM i
messages as a list of AS400Message objects.
“Tier0 devices” on page 350

JdbcMe classes
The IBM Toolbox for Java 2 Micro Edition classes provide JDBC support, including support for the
java.sql package. The classes are meant to be used in a program that runs on a Tier 0 device.

The following sections discuss accessing and using data and describe what is in JdbcMe.

Accessing and using data

When using a Tier0 device to access and update data, you want it to work exactly like if you were sitting
at a system in your office. However, much of the development in Tier0 devices focuses on data
synchronization. Using data synchronization, each Tier0 device has a copy of specific data from the main
database. Periodically, users synchronize the data on each device with the main database.

Data synchronization does not work well with data that is dynamic. Working with dynamic data requires
quick access to up-to-date data. Having to wait to access synchronized data is not an option for many
businesses. Plus, the software and hardware demands for the servers and devices to main synchronous
data can be significant.

To help solve the problems inherent in the data synchronization model, the JdbcMe classes in ToolboxME
enable you to perform live updates and access the main database, but still allow offline data storage.
Your application can have access to valuable offline data without sacrificing the ability for to have live
updates immediately become part of the main database. This middle ground approach provides the
benefits of both the synchronous data model and the live data model.

What is in JdbcMe

By definition, a driver of any kind for a Tier0 device must be very small. The JDBC API, however, is very
large. The JdbcMe classes had to be extremely small but still support enough of the JDBC interfaces so
that Tier0 devices might use it to perform meaningful work.

JdbcMe classes offer the following JDBC functionality:
v The ability to insert or update data
v Transaction control and the ability to modify transaction isolation levels
v Result sets that are both scrollable and updatable
v SQL support for calls to stored procedures and drive triggers

In addition, JdbcMe classes include some unique features:
v A universal driver that enables the majority of the configuration details to be consolidated at a single

point on the server side
v A standard mechanism for persisting data to offline storage

356 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/micro/ProgramCall.html#

ToolboxME provides a java.sql package that follows the JDBC specification but contains only the smallest
set of useful classes and methods. Providing a minimal set of sql function allows the JdbcMe classes to be
small in size yet useful enough to perform common JDBC tasks.

“Tier0 devices” on page 350

Using ToolboxME to connect to a database on the host server:

The JdbcMeConnection class provides a subset of functions available in the IBM Toolbox for Java
AS400JDBCConnection class. Use JdbcMeConnection to enable your Tier0 device to access DB2 Universal
Database™ (UDB) databases on the host server.

Note: To use IBM Toolbox for Java 2 Micro Edition classes, you must separately download and set up the
ToolboxME component. For more information, see ToolboxME requirements and installation.

Use JdbcMeDriver.getConnection() to connect to the server database. The getConnection() method takes a
uniform resource locator (URL) string as an argument, the user ID, and password. The JDBC driver
manager on the host server attempts to locate a driver that can connect to the database that is
represented by the URL. JdbcMeDriver uses the following syntax for the URL:

jdbc:as400://server-name/default-schema;meserver=<server>[:port];[other properties];

Note: The previous syntax example is on two lines so you can easily see and print it. Normally, the URL
appears on one line with no breaks or extra spaces.

You must specify a server name, or JdbcMeDriver throws an exception. The default SQL schema is
optional. If you do not specify a port, the JdbcMeDriver uses port 3470. Also, you can set a variety of
JDBC properties within the URL. To set properties, use the following syntax:

name1=value1;name2=value2;...

See JDBC properties for a complete list of properties supported by JdbcMeDriver.

Examples: Using the JdbcMeDriver to connect to a server

Example: Connecting to the server database without specifying a default SQL schema, a port, or JDBC
properties

The examples specifies user ID and password as parameters on the method:
// Connect to system ’mysystem’. No default SQL schema, port or
// properties are specified.
Connection c = JdbcMeDriver.getConnection("jdbc:as400://mysystem.helloworld.com;meserver=myMeServer;"

"auser",
"apassword");

Example: Connecting to the server database when specifying the default SQL schema and JDBC
properties

The example specifies user ID and password as parameters on the method:
// Connect to system ’mysystem’. Specify a default SQL schema and
// two JDBC properties. Do not specify a port.
Connection c2 = JdbcMeDriver.getConnection(

"jdbc:as400://mysystem.helloworld.com/mySchema;meserver=myMeServer;naming=system;errors=full;"
"auser",
"apassword");

Example: Connecting to the server database

The example specifies properties (including user ID and password) by using a uniform resource locator
(URL):

IBM Toolbox for Java 357

// Connect using properties. The properties are set on the URL
// instead of through a properties object.
Connection c = DriverManager.getConnection(

"jdbc:as400://mySystem;meserver=myMeServer;naming=sql;errors=full;user=auser;password=apassword");

Example: Disconnecting from the database

The example uses the close() method on the connecting object to disconnect from the server:
c.close();

JdbcMeConnection Javadoc
AS400JDBCConnection Javadoc
“Tier0 devices” on page 350

JdbcMeDriver class:

Use JdbcMeDriver in your Tier0 client application to run simple SQL statements that have no parameters
and obtain ResultSets that the statements produce. The JdbcMeDriver class provides a subset of functions
available in the IBM Toolbox for Java AS400JDBCStatement class.

Note: To use IBM Toolbox for Java 2 Micro Edition classes, you must separately download and set up the
ToolboxME component. For more information, see “Downloading and setting up ToolboxME” on
page 350.

You don't explicitly register the JdbcMeDriver; instead the driver property you specify on the URL in the
JdbcMeConnection.getConnection() method determines the driver. For example, to load the IBM
Developer Kit for Java JDBC driver (called the 'native' driver), use code similar to the following:

Connection c = JdbcMeDriver.getConnection(
"jdbc:as400://mysystem.myworld.com;meserver=myMeSrvr;driver=native;user=auser;password=apassword");

The IBM Toolbox for Java JDBC driver does not require an AS400 object as an input parameter like the
other IBM Toolbox for Java classes that get data from a server. However, an AS400 object is used
internally and you must explicitly provide a user ID and password. Provide the user ID and password
either in the URL or by way of the parameters on the getConnection() method.

For examples of using getConnection(), see JDBCMeConnection.
Related reference:
“Result sets”
The IBM Toolbox for Java 2 Micro Edition result set classes are JdbcMeLiveResultSet,
JdbcMeOfflineResultSet, JdbcMeResultSetMetaData.
Related information:
JdbcMeDriver Javadoc
“Tier0 devices” on page 350

Result sets:

The IBM Toolbox for Java 2 Micro Edition result set classes are JdbcMeLiveResultSet,
JdbcMeOfflineResultSet, JdbcMeResultSetMetaData.

JdbcMeLiveResultSet and JdbcMeOfflineResultSet contain the same functionality, except that:
v JdbcMeLiveResultSet retrieves data by making a call to the database on the server
v JdbcMeOfflineResultSet retrieves data from the database on the local device

Note: To use ToolboxME classes, you must separately download and set up the ToolboxME component.
For more information, see Downloading and setting up ToolboxME.

358 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/micro/JdbcMeConnection.html
javadoc/com/ibm/as400/access/AS400JDBCConnection.html
javadoc/com/ibm/as400/micro/JdbcMeDriver.html

JdbcMeLiveResultSet

The JdbcMeLiveResultSet class provides a subset of functions available in the IBM Toolbox for Java
AS400JDBCResultSet class. Use JdbcMeLiveResultSet in your Tier0 client application to access a table of
data that is generated by running a query.

JdbcMeLiveResultSet retrieves the table rows in sequence. Within a row, you can access column values in
any order. JdbcMeLiveResultSet includes methods that enable you to perform the following actions:
v Retrieve data of various types that are stored in the result set
v Move the cursor to the row you specify (previous row, current row, next row, and so on)
v Insert, update, and delete rows
v Update columns (using String and int values)
v Retrieve the ResultSetMetaData object that describes the columns in the result set

A cursor, which is an internal pointer, is used by a result set to point the row in the result set that is
being accessed by the Java program. JDBC 2.0 provides additional methods for accessing specific
positions within a database. These are the available scrollable cursor positions:
v absolute
v first
v last
v moveToCurrentRow
v moveToInsertRow
v previous
v relative

Scrolling capabilities

If a result set is created by executing a statement, you can move (scroll) backward (last-to-first) or
forward (first-to-last) through the rows in a table.

A result set that supports this movement is called a scrollable result set. Scrollable result sets also support
relative and absolute positioning. Relative positioning allows you to move to a row in the result set by
specifying a position that is relative to the current row. Absolute positioning allows you to move directly
to a row by specifying its position in the result set.

With JDBC 2.0, you have two additional scrolling capabilities available to use when working with the
ResultSet class: scroll-insensitive and scroll-sensitive result sets.

A scroll-insensitive result set is not typically sensitive to changes that are made while it is open, while the
scroll-sensitive result set is sensitive to changes. The IBM Toolbox for Java JDBC driver does not support
scroll-insensitive result sets.

Updatable result sets

In your application, you can use result sets that use either read-only concurrency (no updates can be
made to the data) or updatable concurrency (allows updates to the data and may use database write
locks to control access to the same data item by different transactions). In an updatable result set, rows
can be updated, inserted, and deleted.

See the method summary in the Javadoc for a complete listing of the update methods available in
JdbcMeResultSet.

Example: Updatable result sets

IBM Toolbox for Java 359

The following example shows how to use a result set that allows updates to the data (update
concurrency) and allows changes to be made to the result set while it is open (scroll sensitive).

// Connect to the server.
Connection c = JdbcMeDriver.getConnection(

"jdbc:as400://mySystem;meserver=myMeServer;user=auser;password=apassword");

// Create a Statement object. Set the result set
// concurrency to updatable.

Statement s = c.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

// Run a query. The result is placed
// in a ResultSet object.

ResultSet rs = s.executeQuery ("SELECT NAME,ID FROM MYLIBRARY.MYTABLE FOR UPDATE");

// Iterate through the rows of the ResultSet. As we read
// the row, we will update it with a new ID.

int newId = 0;
while (rs.next ())
{

// Get the values from the ResultSet. The first value
// is a string, and the second value is an integer.

String name = rs.getString("NAME");
int id = rs.getInt("ID");

System.out.println("Name = " + name);
System.out.println("Old id = " + id);

// Update the id with a new integer.
rs.updateInt("ID", ++newId);

// Send the updates to the server.
rs.updateRow ();

System.out.println("New id = " + newId);
}

// Close the Statement and the Connection.
s.close();
c.close();

JdbcMeOfflineResultSet class

The JdbcMeOfflineResultSet class provides a subset of functions available in the IBM Toolbox for Java
AS400JDBCResultSet class. Use JdbcMeOfflineResultSet in in your Tier0 client application to access a table
of data that is generated by running a query.

Use the JdbcMeOfflineResultSet class to work with data that resides on your Tier0 device. The data that
resides on the device might already reside there or you might have put it there by calling
JdbcMeStatement.executeToOfflineData() method. the executeToOfflineData() method downloads and
stores to the device all of the data that satisfies the query. You can then use JdbcMeOfflineResultSet class
to access the stored data.

JdbcMeOfflineResultSet includes methods that enable you to perform the following actions:
v Retrieve data of various types that are stored in the result set
v Move the cursor to the row you specify (previous row, current row, next row, and so on)
v Insert, update, and delete rows
v Update columns (using String and int values)
v Retrieve the ResultSetMetaData object that describes the columns in the result set

360 IBM i: Programming IBM Toolbox for Java

You can provide the ability to synchronize the local device database with the database on the server by
using the functions present in the JdbcMe classes.

JdbcMeResultSetMetaData class

The JdbcMeResultSetMetaData class provides a subset of functions available in the IBM Toolbox for Java
AS400JDBCResultSetMetaData class. Use JdbcMeResultSetMetaData in your Tier0 client application to
determine the types and properties of the columns in a JdbcMeLiveResultSet or JdbcMeOfflineResultSet.

The following example shows how to use the JdbcMeResultSetMetaData class:
// Connect to the server.

Connection c = JdbcMeDriver.getConnection(
"jdbc:as400://mySystem;meserver=myMeServer;user=auser;password=apassword");

// Create a Statement object.
Statement s = c.createStatement();

// Run a query. The result is placed in a ResultSet object.
JdbcMeLiveResultSet rs = s.executeQuery ("SELECT NAME,ID FROM MYLIBRARY.MYTABLE");

// Iterate through the rows of the ResultSet.
while (rs.next ())
{

// Get the values from the ResultSet. The first value is
// a string, and the second value is an integer.

String name = rs.getString("NAME");
int id = rs.getInt("ID");

System.out.println("Name = " + name);
System.out.println("ID = " + id);

}

// Close the Statement and the Connection.
s.close();
c.close();

Related information:
JDBCMeLiveResultSet Javadoc
AS400JDBCResultSet Javadoc
JDBCMeResultSetMetaData Javadoc
AS400JDBCResultSetMetaData Javadoc
JDBCMeOfflineResultSet Javadoc

JdbcMeOfflineData class:

The JdbcMeOfflineData class is an offline data repository meant to be used on a Tier0 device. The
repository is generic, regardless of the profile and Java virtual machine that you are using.

Note: To use IBM Toolbox for Java 2 Micro Edition classes, you must separately download and set up the
ToolboxME component. For more information, see Downloading and setting up ToolboxME.

The JdbcMeOfflineData class provides methods that enable you to perform the following functions:
v Create an offline data repository
v Open an existing repository
v Get the number of records in the repository
v Get and delete individual records
v Update records

IBM Toolbox for Java 361

javadoc/com/ibm/as400/micro/JdbcMeLiveResultSet.html
javadoc/com/ibm/as400/access/AS400JDBCResultSet.html
javadoc/com/ibm/as400/micro/JdbcMeResultSetMetaData.html
javadoc/com/ibm/as400/access/AS400JDBCResultSetMetaData.html
javadoc/com/ibm/as400/micro/JdbcMeOfflineResultSet.html

v Add a record to the end of the repository
v Close the repository

For an example of using the JdbcMeOfflineData class, see the following example:

“Example: Using ToolboxME, MIDP, and IBM Toolbox for Java” on page 704
Related reference:
“Concepts important for using ToolboxME” on page 350
Before you begin developing IBM Toolbox for Java 2 Micro Edition Java applications, you need to
understand the following concepts and standards that govern such development.
Related information:
JdbcMeOfflineData Javadoc

JdbcMeStatement class:

Use JdbcMeStatement in your Tier0 client application to run simple SQL statements that have no
parameters and obtain ResultSets that the statements produce. The JdbcMeStatement class provides a
subset of functions available in the IBM Toolbox for Java AS400JDBCStatement class.

Note: To use IBM Toolbox for Java 2 Micro Edition classes, you must separately download and set up the
ToolboxME component. For more information, see Downloading and setting up ToolboxME.

Use JdbcMeConnection.createStatement() to create new Statement objects.

The following example shows how to use a JdbcMeStatement object:
// Connect to the server.

JdbcMeConnection c = JdbcMeDriver.getConnection(
"jdbc:as400://mysystem.helloworld.com/mylibrary;naming=system;errors=full;meserver=myMeServer;" +
"user=auser;password=apassword");

// Create a Statement object.
JdbcMeStatement s = c.createStatement();

// Run an SQL statement that creates a table in the database.
s.executeUpdate("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID INTEGER)");

// Run an SQL statement that inserts a record into the table.
s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (’DAVE’, 123)");

// Run an SQL statement that inserts a record into the table.
s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (’CINDY’, 456)");

// Run an SQL query on the table.
JdbcMeLiveResultSet rs = s.executeQuery("SELECT * FROM MYLIBRARY.MYTABLE");

// Close the Statement and the Connection.
s.close();
c.close();

Related information:
JdbcMeStatement Javadoc
AS400JDBCStatement Javadoc

Creating and running a ToolboxME program
This information will enable you to edit, compile, and run the example IBM Toolbox for Java 2 Micro
Edition program.

362 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/micro/JdbcMeOfflineData.html
javadoc/com/ibm/as400/micro/JdbcMeStatement.html
javadoc/com/ibm/as400/access/AS400JDBCStatement.html

You can also use this information as a general guide for creating, testing, and running the ToolboxME
working examples and your own ToolboxME applications.

The example program uses the K Virtual Machine (KVM) and allows the user to perform any JDBC
query. The user can then perform JDBC actions (next, previous, close, commit, and rollback) against the
result of the query.

Before you begin creating any of the ToolboxME examples, make sure that your environment meets the
ToolboxME requirements.

Creating the ToolboxME example

To create the ToolboxME example program for your Tier0 device, complete the following steps:
1. Copy the Java code for the ToolboxME example, called JdbcDemo.java.
2. In your chosen text or Java editor, change the portions of the code as indicated in the program

comments and save the file with the name JdbcDemo.java.

Note: Consider using a wireless application development tool, which makes it easier to complete the
remaining steps. Some wireless application development tools may compile, preverify, and
build your program in a single step, then automatically run it in an emulator.

3. Compile JdbcDemo.java, making sure you point to the JAR file that contains the KVM classes.
4. Preverify the executable file, either by using your wireless application development tool or by using

the Java preverify command.
5. Build the appropriate type of executable file for the operating system of your Tier0 device. For

example, for the Palm OS, you build a file called JdbcDemo.prc.
6. Test the program. If you have installed an emulator, you can test the program and see what it will

look like by running it in the emulator.

Note: If you test the program on your wireless device and you do not use a wireless application
development tool, make sure that you preinstall your chosen Java virtual machine or MIDP on
the device.

See ToolboxME concepts for related information about concepts, wireless application development tools,
and emulators.

Running the ToolboxME example

To run the ToolboxME example program on your Tier0 device, complete the following tasks:
v Load the executable file to the device, using the instructions provided by your Tier0 device

manufacturer.
v Start the MEServer
v Run the JdbcDemo program on your Tier0 device by clicking the JdbcDemo icon.

ToolboxME example: JdbcDemo.java
To create this example as a working IBM Toolbox for Java 2 Micro Edition program, you need to copy the
following .java file into a text or Java editor, make a few changes, then compile it.

To copy the source code, simply use your mouse to select all the Java code below, then right-click and
select Copy. To paste the code into your editor, create a blank document in the editor, right-click the
blank document and select Paste. Make sure to save the new document with the name JdbcDemo.java.

After you create the .java file, return to the instructions for creating and running the example program.

Note: Read the Code example disclaimer for important legal information.

IBM Toolbox for Java 363

//
//
// ToolboxME example. This program demonstrates how your wireless
// device can connect to the server and use JDBC to perform work on a
// remote database.
//
//

import java.sql.*; // SQL Interfaces provided by JdbcMe
import com.ibm.as400.micro.*; // JdbcMe implementation
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.microedition.io.*; // Part of the CLDC specification
import de.kawt.*; // Part of the CLDC specification

class DemoConstants
{

// These constants are actually used mainly by the demo
// for the JDBC driver. The Jdbc and JDBC application
// creator IDs (http://www.palmos.com/dev)
// are reserved at palm computing.
public static final int demoAppID = 0x4a444243; // JDBC
// Make the dbCreator something else so that the
// user can actually see the Palm DB seperately from
// the JdbcDemo application.
public static final int dbCreator = 0x4a444231; // JDB1
public static final int dbType = 0x4a444231; // JDB1

}

/**
* Little configuration dialog box to display the
* current connections/statements, the
* URL being used, user id and password
*/
class ConfigurationDialog extends Dialog implements ActionListener
{

TextField data;
ConfigurationDialog(Frame w)
{

super(w, "Configuration");

// Show/Modify current URL connection
data = new TextField(JdbcDemo.mainFrame.jdbcPanel.url);
add("Center", data);

// Ok button.
Panel panel = new Panel();
Button button = new Button("Ok");
button.addActionListener(this);
panel.add(button);
add("South", panel);
pack();

}

public void actionPerformed(ActionEvent e)
{

JdbcDemo.mainFrame.jdbcPanel.url = data.getText();
data = null;
setVisible(false);

}
}

/**
* Little configuration dialog box to display the
* current connections/statements, the
* URL being used, user id and password

364 IBM i: Programming IBM Toolbox for Java

*/
class MultiChoiceDialog extends Dialog implements ActionListener
{

Choice task;
ActionListener theListener;
MultiChoiceDialog(Frame w, String title, String prompt, String choices[], ActionListener it)
{

super(w, title);
theListener = it;

// Show/Modify current URL connection
Label txt = new Label(prompt);
add("West", txt);
task = new Choice();
for (int i=0; i<choices.length; ++i)
{

task.add(choices[i]);
}
task.select(0);
add("Center", task);

// Ok button.
Panel panel = new Panel();
Button button = new Button("Ok");
button.addActionListener(this);
panel.add(button);
button = new Button("Cancel");
button.addActionListener(this);
panel.add(button);
add("South", panel);
pack();

}

/**
* Determine the action performed.
**/

public void actionPerformed(ActionEvent e)
{

int choice = task.getSelectedIndex();
setVisible(false);
if (e.getActionCommand().equals("Ok"))
{

if (theListener != null)
{

ActionEvent ev = new ActionEvent(this,
ActionEvent.ACTION_PERFORMED,
task.getItem(choice));

theListener.actionPerformed(ev);
}
task = null;

}
else
{

// No-op
}

}
}

/**
* The JdbcPanel is the main panel of the application.
* It displays the current connection and statement
* at the top.
* A text field for entering SQL statements next.
* A Results field for displaying each column of data
* or results.
* An task list and a ’go’ button so that different
* tasks can be tried.

IBM Toolbox for Java 365

*/
class JdbcPanel extends Panel implements ActionListener
{

public final static int TASK_EXIT = 0;
public final static int TASK_NEW = 1;
public final static int TASK_CLOSE = 2;
public final static int TASK_EXECUTE = 3;
public final static int TASK_PREV = 4;
public final static int TASK_NEXT = 5;
public final static int TASK_CONFIG = 6;
public final static int TASK_TOPALMDB = 7;
public final static int TASK_FROMPALMDB = 8;
public final static int TASK_SETAUTOCOMMIT= 9;
public final static int TASK_SETISOLATION = 10;
public final static int TASK_COMMIT = 11;
public final static int TASK_ROLLBACK = 12;

// JDBC objects.
java.sql.Connection connObject = null;
Statement stmtObject = null;
ResultSet rs = null;
ResultSetMetaData rsmd = null;

String lastErr = null;
String url = null;
Label connection = null;
Label statement = null;
TextField sql = null;
List data = null;
final Choice task;

/**
* Build the GUI.
*/

public JdbcPanel()
{

// The JDBC URL
// Make sure to edit the following line so that it correctly specifies the
// the MEServer and the server to which you want to connect.
url = "jdbc:as400://mySystem;user=myUidl;password=myPwd;meserver=myMEServer;";

Panel p1left = new Panel();
p1left.setLayout(new BorderLayout());
connection = new Label("None");
p1left.add("West", new Label("Conn:"));
p1left.add("Center", connection);

Panel p1right = new Panel();
p1right.setLayout(new BorderLayout());
statement = new Label("None");
p1right.add("West", new Label("Stmt:"));
p1right.add("Center", statement);

Panel p1 = new Panel();
p1.setLayout(new GridLayout(1,2));
p1.add(p1left);
p1.add(p1right);

Panel p2 = new Panel();
p2.setLayout(new BorderLayout());
p2.add("North", new Label("Sql:"));
sql = new TextField(25);
sql.setText("select * from QIWS.QCUSTCDT"); // Default query
p2.add("Center", sql);

Panel p3 = new Panel();

366 IBM i: Programming IBM Toolbox for Java

p3.setLayout(new BorderLayout());
data = new List();
data.add("No Results");
p3.add("North", new Label("Results:"));
p3.add("Center", data);

Panel p4 = new Panel();

task = new Choice();
task.add("Exit"); // TASK_EXIT
task.add("New"); // TASK_NEW
task.add("Close"); // TASK_CLOSE
task.add("Execute"); // TASK_EXECUTE
task.add("Prev"); // TASK_PREV
task.add("Next"); // TASK_NEXT
task.add("Config"); // TASK_CONFIGURE
task.add("RS to PalmDB"); // TASK_TOPALMDB
task.add("Query PalmDB"); // TASK_FROMPALMDB
task.add("Set AutoCommit"); // TASK_SETAUTOCOMMIT
task.add("Set Isolation"); // TASK_SETISOLATION
task.add("Commit"); // TASK_COMMIT
task.add("Rollback"); // TASK_ROLLBACK
task.select(TASK_EXECUTE); // Start off here.
p4.add("West", task);

Button b = new Button("Go");
b.addActionListener(this);
p4.add("East", b);

Panel prest = new Panel();
prest.setLayout(new BorderLayout());
prest.add("North", p2);
prest.add("Center", p3);
Panel pall = new Panel();
pall.setLayout(new BorderLayout());
pall.add("North", p1);
pall.add("Center", prest);

setLayout(new BorderLayout());
add("Center", pall);
add("South", p4);

}

/**
* Do a task based on whichever task is
* currently selected in the task list.
*/

public void actionPerformed(ActionEvent e)
{

if (e.getSource() instanceof MultiChoiceDialog)
{

String cmd = e.getActionCommand();
processExtendedCommand(cmd);
return;

}

switch (task.getSelectedIndex())
{
case TASK_EXIT:

System.exit(0);
break;

case TASK_NEW:
JdbcPanel.this.goNewItems();
break;

case TASK_PREV:
JdbcPanel.this.goPrevRow();
break;

IBM Toolbox for Java 367

case TASK_NEXT:
JdbcPanel.this.goNextRow();
break;

case TASK_EXECUTE:
if (connObject == null || stmtObject == null)

JdbcPanel.this.goNewItems();

JdbcPanel.this.goExecute();
break;

case TASK_CONFIG:
JdbcPanel.this.goConfigure();
break;

case TASK_CLOSE:
JdbcPanel.this.goClose();
break;

case TASK_TOPALMDB:
if (connObject == null || stmtObject == null)

JdbcPanel.this.goNewItems();

JdbcPanel.this.goResultsToPalmDB();
break;

case TASK_FROMPALMDB:
JdbcPanel.this.goQueryFromPalmDB();
break;

case TASK_SETAUTOCOMMIT:
JdbcPanel.this.goSetAutocommit();
break;

case TASK_SETISOLATION:
JdbcPanel.this.goSetIsolation();
break;

case TASK_COMMIT:
JdbcPanel.this.goTransact(true);
break;

case TASK_ROLLBACK:
JdbcPanel.this.goTransact(false);
break;

default :
{

Dialog dialog = new FeedbackDialog(JdbcDemo.mainFrame, "Error", "Task not implemented");
dialog.show();
dialog = null;

}
}

}

public void processExtendedCommand(String cmd)
{

try
{

if (cmd.equals("true"))
{

connObject.setAutoCommit(true);
return;

}
if (cmd.equals("false"))
{

connObject.setAutoCommit(false);
return;

}
if (cmd.equals("read uncommitted"))
{

connObject.setTransactionIsolation(java.sql.Connection.TRANSACTION_READ_UNCOMMITTED);
return;

}
if (cmd.equals("read committed"))
{

368 IBM i: Programming IBM Toolbox for Java

connObject.setTransactionIsolation(java.sql.Connection.TRANSACTION_READ_COMMITTED);
return;

}
if (cmd.equals("repeatable read"))
{

connObject.setTransactionIsolation(java.sql.Connection.TRANSACTION_REPEATABLE_READ);
return;

}
if (cmd.equals("serializable"))
{

connObject.setTransactionIsolation(java.sql.Connection.TRANSACTION_SERIALIZABLE);
return;

}
throw new IllegalArgumentException("Invalid command: " + cmd);

}
catch (Exception e)
{

JdbcDemo.mainFrame.exceptionFeedback(e);
return;

}
}

/**
* Perform commit or rollback processing.
*/

public void goTransact(boolean commit)
{

if (connObject == null)
{

FeedbackDialog dialog = new FeedbackDialog(JdbcDemo.mainFrame,
"Skip",
"Connection not allocated");

dialog.show();
dialog = null;
return;

}
try
{

if (commit)
connObject.commit();

else
connObject.rollback();

}
catch (Exception e)
{

JdbcDemo.mainFrame.exceptionFeedback(e);
}

}

/**
* Prompt the user for setting the autocommit value
* Real work handled by the actionPerformed method
* calling processExtendedCommand().
*/

public void goSetAutocommit()
{

if (connObject == null)
{

FeedbackDialog dialog = new FeedbackDialog(JdbcDemo.mainFrame,
"Skip",
"Connection not allocated");

dialog.show();
dialog = null;
return;

}
try
{

IBM Toolbox for Java 369

String currentValue;
if (connObject.getAutoCommit())

currentValue = "Now: true";
else

currentValue = "Now: false";

Dialog dialog = new MultiChoiceDialog(JdbcDemo.mainFrame,
"Set Autocommit",
currentValue,
new String[]{ "true", "false"},
this);

dialog.show();
dialog = null;

}
catch (Exception e)
{

JdbcDemo.mainFrame.exceptionFeedback(e);
}

}

/**
* Prompt the user for setting the isolation level,
* real work handled by the actionPerformed() method
* calling processExtendedCommand().
*/

public void goSetIsolation()
{

if (connObject == null)
{

FeedbackDialog dialog = new FeedbackDialog(JdbcDemo.mainFrame,
"Skip",
"Connection not allocated");

dialog.show();
dialog = null;
return;

}
try
{

int level = connObject.getTransactionIsolation();
String currentLevel;
switch (level)
{
case java.sql.Connection.TRANSACTION_READ_UNCOMMITTED:

currentLevel = "Now: read uncommitted";
break;

case java.sql.Connection.TRANSACTION_READ_COMMITTED:
currentLevel = "Now: read committed";
break;

case java.sql.Connection.TRANSACTION_REPEATABLE_READ:
currentLevel = "Now: repeatable read";
break;

case java.sql.Connection.TRANSACTION_SERIALIZABLE:
currentLevel = "Now: serializable";
break;

default : {
currentLevel = "error";

}
}
Dialog dialog = new MultiChoiceDialog(JdbcDemo.mainFrame,

"Set Isolation Level",
currentLevel,
new String[]{ "read uncommitted",

"read committed",
"repeatable read",
"serializable"},

this);
dialog.show();

370 IBM i: Programming IBM Toolbox for Java

dialog = null;
}
catch (Exception e)
{

JdbcDemo.mainFrame.exceptionFeedback(e);
}

}

/**
* Create a new connection or statement.
* Only one connection and statement is currently
* supported.
*/

public void goNewItems()
{

if (connObject != null || stmtObject != null)
{

FeedbackDialog dialog = new FeedbackDialog(JdbcDemo.mainFrame,
"Skip",
"Conn/Stmt already allocated");

dialog.show();
dialog = null;

}
if (connObject == null)
{

try
{

connObject = DriverManager.getConnection(url);
//connection.setText(Integer.toString(((JdbcMeConnection)connObject).getId()));
connection.repaint();

}
catch (Exception e)
{

JdbcDemo.mainFrame.exceptionFeedback(e);
return;

}
}
if (stmtObject == null)
{

try
{

try
{

stmtObject = connObject.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY);

}
catch (Exception e)
{

// Try again... DB2 NT version 6.1 doesn’t support
// Scollable result sets, so we’ll assume other
// JDBC 2.0 databases don’t either. We’ll attempt
// to create another.
try
{

stmtObject = connObject.createStatement();
}
catch (Exception ex)
{

// If the second try failed, rethrow the
// first exception. Its probably
// a more meaninful error.
throw e;

}
FeedbackDialog dialog = new FeedbackDialog(JdbcDemo.mainFrame,

"2nd try worked",
"Non-scrollable result set");

dialog.show();

IBM Toolbox for Java 371

dialog = null;
}

statement.repaint();
}
catch (Exception e)
{

JdbcDemo.mainFrame.exceptionFeedback(e);
return;

}
}

}

/**
* Close the statement and connection.
**/

public void goClose()
{

// Close the statement.
if (stmtObject != null)
{

if (rs != null)
{

try
{

rs.close();
}
catch (Exception e)
{
}
rs = null;
rsmd = null;

}
try
{

stmtObject.close();
}
catch (Exception e)
{
}
stmtObject = null;
statement.setText("None");
statement.repaint();

}

// Clost the connection.
if (connObject != null)
{

try
{

connObject.close();
}
catch (Exception e)
{
}
connObject = null;
connection.setText("None");
connection.repaint();

}
data.removeAll();
data.add("No Results");
data.repaint();
sql.repaint();
return;

}

372 IBM i: Programming IBM Toolbox for Java

/**
* display the configuration dialog.
**/

public void goConfigure()
{

// Note there is no model dialog support in KAWT, this only
// works because the data to be changed (url) is set before
// this dialog is used, and the user cannot access the
// main frame while this is up on the palm (i.e. all dialogs
// in Kawt are modal).
ConfigurationDialog dialog = new ConfigurationDialog(JdbcDemo.mainFrame);
dialog.show();
dialog = null;

}

/**
* Execute the specified query.
**/

public void goExecute()
{

// Get the currently selected statement.
try
{

if (rs != null)
rs.close();

rs = null;
rsmd = null;
boolean results = stmtObject.execute(sql.getText());
if (results)
{

rs = stmtObject.getResultSet();
rsmd = rs.getMetaData();
// Show the first row
goNextRow();

}
else
{

data.removeAll();
data.add(stmtObject.getUpdateCount() + " rows updated");
data.repaint();

}
}
catch (Exception e)
{

JdbcDemo.mainFrame.exceptionFeedback(e);
}

}

/**
* Move to the next row in the result set.
**/

public void goNextRow()
{

try
{

if (rs == null || rsmd == null)
return;

int count = rsmd.getColumnCount();
int i;
data.removeAll();
if (!rs.next())

data.add("End of data");
else
{

IBM Toolbox for Java 373

for (i=1; i>=count; ++i)
{

data.add(rs.getString(i));
}

}
data.repaint();

}
catch (Exception e)
{

JdbcDemo.mainFrame.exceptionFeedback(e);
}

}

/**
* Move to the previous row in the result set.
**/

public void goPrevRow()
{

try
{

if (rs == null || rsmd == null)
return;

int count = rsmd.getColumnCount();
int i;
data.removeAll();
if (!rs.previous())

data.add("Start of data");
else
{

for (i=1; i<=count; ++i)
{

data.add(rs.getString(i));
}

}
data.repaint();

}
catch (Exception e)
{

JdbcDemo.mainFrame.exceptionFeedback(e);
}

}

/**
* Perform a query and store the results in the local devices database
**/

public void goResultsToPalmDB()
{

try
{

if (stmtObject == null)
{

FeedbackDialog dialog = new FeedbackDialog(JdbcDemo.mainFrame, "Skip", "No Statement");
dialog.show();
dialog = null;
return;

}

boolean results =
((JdbcMeStatement)stmtObject).executeToOfflineData(sql.getText(),

"JdbcResultSet",
DemoConstants.dbCreator,
DemoConstants.dbType);

if (!results)
{

FeedbackDialog dialog = new FeedbackDialog(JdbcDemo.mainFrame, "No Data", "Not a query");

374 IBM i: Programming IBM Toolbox for Java

dialog.show();
dialog = null;
return;

}
data.removeAll();
data.add("Updated Palm DB ’JdbcResultSet’");
data.repaint();

}
catch (Exception e)
{

JdbcDemo.mainFrame.exceptionFeedback(e);
}

}

/**
* Perform a query from the database that resides on the palm device.
**/

public void goQueryFromPalmDB()
{

try
{

if (rs != null)
{

rs.close();
rs = null;

}
rs = new JdbcMeOfflineResultSet ("JdbcResultSet",

DemoConstants.dbCreator,
DemoConstants.dbType);

rsmd = rs.getMetaData();
// If we want to debug some output, this
// method can be used to dump the contents
// of the PalmDB represented by the result set
// (Uses System.out so its mostly useful in
// the Palm emulator when debugging your
// applications.
// ((JdbcMeOfflineResultSet)rs).dumpDB(true);

// show the first row.
goNextRow();

}
catch (SQLException e)
{

JdbcDemo.mainFrame.exceptionFeedback(e);
}

}
}

public class JdbcDemo extends Frame
{

/** An ActionListener that ends the application. Only
* one is required, and can be reused
*/

private static ActionListener exitActionListener = null;
/**
* The main application in this process.
*/

static JdbcDemo mainFrame = null;

JdbcPanel jdbcPanel = null;

public static ActionListener getExitActionListener()
{

if (exitActionListener == null)
{

exitActionListener = new ActionListener()

IBM Toolbox for Java 375

{
public void actionPerformed(ActionEvent e)
{

System.exit(0);
}

};
}
return exitActionListener;

}

/**
* Demo Constructor
**/

public JdbcDemo()
{

super("Jdbc Demo");
setLayout(new BorderLayout());

jdbcPanel = new JdbcPanel();
add("Center", jdbcPanel);

addWindowListener(new WindowAdapter()
{

public void windowClosing(WindowEvent e)
{

System.exit(0);
}

});
setSize(200,300);
pack();

}

public void exceptionFeedback(Exception e)
{

Dialog dialog = new FeedbackDialog(JdbcDemo.mainFrame, e);
dialog.show();
dialog = null;

}

/**
* Main method.
**/

public static void main(String args[])
{

try
{

mainFrame = new JdbcDemo();
mainFrame.show();
mainFrame.jdbcPanel.goConfigure();

}
catch (Exception e)
{

System.exit(1);
}

}
}

ToolboxME working examples
The following IBM Toolbox for Java 2 Micro Edition working examples illustrate ways to use ToolboxME
with the Mobile Information Device Profile (MIDP).

Use the following links to view selected example source files or to download all the example source files
required to build the working example wireless applications:

“Example: Using ToolboxME, MIDP, and JDBC” on page 696

376 IBM i: Programming IBM Toolbox for Java

“Example: Using ToolboxME, MIDP, and IBM Toolbox for Java” on page 704

“Downloading the ToolboxME examples”

For more information about how to build a ToolboxME application, see “Creating and running a
ToolboxME program” on page 362.

For more information about MIDP, see “Mobile Information Device Profile (MIDP)” on page 351.

Downloading the ToolboxME examples
To build the IBM Toolbox for Java 2 Micro Edition examples into working wireless applications, you need
all the source files and additional instructions.

To download and build the examples, complete the following steps:
1. Download the source files (microsamples.zip).
2. Unzip microsamples.zip into a directory you create for that purpose.
3. Use the instructions provided in “Creating and running a ToolboxME program” on page 362 to help

you build the example wireless applications.

Before you begin compiling the source and building the executable files for your Tier0 device, see the
following for more information:
v “ToolboxME requirements” on page 6
v “Downloading and setting up ToolboxME” on page 350

Extensible Markup Language components
IBM Toolbox for Java includes several Extensible Markup Language (XML) components, including an
XML parser.

The XML components make it easier to perform a variety of tasks:
v Creating graphical user interfaces
v Calling programs on your system and retrieving the results
v Specifying data formats on your system

Program Call Markup Language
Program Call Markup Language (PCML) is a tag language that helps you call server programs with less
Java code.

PCML is based upon the Extensible Markup Language (XML), a tag syntax you use to describe the input
and output parameters for server programs. PCML enables you to define tags that fully describe server
programs called by your Java application.

Note: If you are interested in or are already using PCML, consider using Extensible Program Call
Markup Language (XPCML). XPCML enhances the functionality and usability of PCML by offering
support for XML schemas. For more information about IBM Toolbox for Java XML components,
including XPCML, see Extensible Markup Language components.

A huge benefit of PCML is that it allows you to write less code. Ordinarily, extra code is needed to
connect, retrieve, and translate data between a server and IBM Toolbox for Java objects. However, by
using PCML, your calls to the server with the IBM Toolbox for Java classes are automatically handled.
PCML class objects are generated from the PCML tags and help minimize the amount of code you need
to write in order to call server programs from your application.

IBM Toolbox for Java 377

microsamples.zip

Although PCML was designed to support distributed program calls to server program objects from a
client Java platform, you can also use PCML to make calls to a server program from within the server
environment.

Requirements for using PCML
The PCML component has the same workstation Java virtual machine requirements as the rest of the IBM
Toolbox for Java.

In addition, in order to parse PCML at run-time, the CLASSPATH for the application must include an
XML parser. The XML parser must extend class org.apache.xerces.parsers.SAXParser.

Note: If you preserialize the PCML file, you do not need to include an XML parser in the application
CLASSPATH to run the application.

Related reference:
“Workstation requirements for IBM Toolbox for Java” on page 7
Ensure that your workstation meets the following requirements.
“XML parser and XSLT processor” on page 417
Some IBM Toolbox for Java packages or functions require that, at run-time, you have an Extensible
Markup Language (XML) parser or Extensible Stylesheet Language Transformations (XSLT) processor in
your CLASSPATH environment variable.

Building IBM i program calls with PCML
To build IBM i program calls with PCML, you must start by creating a Java application and a PCML
source file.

Depending on your design process, you must write one or more PCML source files where you describe
the interfaces to the IBM i programs that will be called by your Java application. Refer to PCML syntax
for a detailed description of the language.

Then your Java application interacts with the PCML classes (in this case, the ProgramCallDocument
class). The ProgramCallDocument class uses your PCML source file to pass information between your
Java application and the IBM i programs. Figure 1 illustrates how Java applications interact with the
PCML classes.

Figure 1. Making program calls to the server using PCML.

378 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/data/ProgramCallDocument.html

When your application constructs the ProgramCallDocument object, the XML parser reads and parses the
PCML source file. For more information about using an XML parser with IBM Toolbox for Java, see XML
parser and XSLT processor.

After the ProgramCallDocument class has been created, the application program uses the
ProgramCallDocument class's methods to retrieve the necessary information from the server through the
IBM i distributed program call (DPC) server.

To improve run-time performance, the ProgramCallDocument class can be serialized during your product
build time. The ProgramCallDocument is then constructed using the serialized file. In this case, the XML
parser is not used at run-time. Refer to Using serialized PCML files.

Using PCML source files

Your Java application uses PCML by constructing a ProgramCallDocument object with a reference to the
PCML source file. The ProgramCallDocument object considers the PCML source file to be a Java resource.
The java application finds the PCML source file by using the Java CLASSPATH

The following Java code constructs a ProgramCallDocument object:
AS400 as400 = new AS400();
ProgramCallDocument pcmlDoc = new ProgramCallDocument(as400, "myPcmlDoc");

The ProgramCallDocument object will look for your PCML source in a file called myPcmlDoc.pcml.
Notice that the .pcml extension is not specified on the constructor.

If you are developing a Java application in a Java package, you can package-qualify the name of the
PCML resource:

IBM Toolbox for Java 379

AS400 as400 = new AS400();
ProgramCallDocument pcmlDoc = new ProgramCallDocument(as400, "com.company.package.myPcmlDoc");

Using serialized PCML files

To improve run-time performance, you can use a serialized PCML file. A serialized PCML file contains
serialized Java objects representing the PCML. The objects that are serialized are the same objects that are
created when you construct the ProgramCallDocument from a source file as described above.

Using serialized PCML files improves performance because the XML parser is not needed at run-time to
process the PCML tags.

The PCML can be serialized using either of the following methods:
v From the command line:

java com.ibm.as400.data.ProgramCallDocument -serialize mypcml

This method is helpful for having batch processes to build your application.
v From within a Java program:

ProgramCallDocument pcmlDoc; // Initialized elsewhere
pcmlDoc.serialize();

If your PCML is in a source file named myDoc.pcml, the result of serialization is a file named
myDoc.pcml.ser.

PCML source files vs. serialized PCML files

Consider the following code to construct a ProgramCallDocument:
AS400 as400 = new AS400();
ProgramCallDocument pcmlDoc = new ProgramCallDocument(as400, "com.mycompany.mypackage.myPcmlDoc");

The ProgramCallDocument constructor will first try to find a serialized PCML file named
myPcmlDoc.pcml.ser in the com.mycompany.mypackage package in the Java CLASSPATH. If a serialized
PCML file does not exist, the constructor will then try to find a PCML source file named
myPcmlDoc.pcml in the com.mycompany.mypackage package in the Java CLASSPATH. If a PCML source
file does not exist, an exception is thrown.

Qualified names

Your Java application uses ProgramCallDocument.setValue() to set input values for the IBM i program
being called. Likewise, your application uses ProgramCallDocument.getValue() to retrieve output values
from the IBM i program.

When accessing values from the ProgramCallDocument class, you must specify the fully qualified name
of the document element or <data> tag. The qualified name is a concatenation of the names of all the
containing tags with each name separated by a period.

For example, given the following PCML source, the qualified name for the "nbrPolygons" item is
"polytest.parm1.nbrPolygons". The qualified name for accessing the "x" value for one of the points in one
of the polygons is "polytest.parm1.polygon.point.x".

If any one of the elements needed to make the qualified name is unnamed, all descendants of that
element do not have a qualified name. Any elements that do not have a qualified name cannot be
accessed from your Java program.
<pcml version="1.0">

<program name="polytest" path="/QSYS.lib/MYLIB.lib/POLYTEST.pgm">
<!-- Parameter 1 contains a count of polygons along with an array of polygons -->
<struct name="parm1" usage="inputoutput">

380 IBM i: Programming IBM Toolbox for Java

<data name="nbrPolygons" type="int" length="4" init="5" />
<!-- Each polygon contains a count of the number of points along with an array of points -->
<struct name="polygon" count="nbrPolygons">

<data name="nbrPoints" type="int" length="4" init="3" />
<struct name="point" count="nbrPoints" >

<data name="x" type="int" length="4" init="100" />
<data name="y" type="int" length="4" init="200" />

</struct>
</struct>

</struct>
</program>

</pcml>

Accessing data in arrays

Any <data> or <struct> element can be defined as an array using the count attribute. Or, a <data> or
<struct> element can be contained within another <struct> element that is defined as an array.

Furthermore, a <data> or <struct> element can be in a multidimensional array if more than one
containing element has a count attribute specified.

In order for your application to set or get values defined as an array or defined within an array, you
must specify the array index for each dimension of the array. The array indices are passed as an array of
int values. Given the source for the array of polygons shown above, the following Java code can be used
to retrieve the information about the polygons:

ProgramCallDocument polytest; // Initialized elsewhere
Integer nbrPolygons, nbrPoints, pointX, pointY;
nbrPolygons = (Integer) polytest.getValue("polytest.parm1.nbrPolygons");
System.out.println("Number of polygons:" + nbrPolygons);
indices = new int[2];
for (int polygon = 0; polygon < nbrPolygons.intValue(); polygon++)
{

indices[0] = polygon;
nbrPoints = (Integer) polytest.getValue("polytest.parm1.polygon.nbrPoints", indices);
System.out.println(" Number of points:" + nbrPoints);

for (int point = 0; point < nbrPoints.intValue(); point++)
{

indices[1] = point;
pointX = (Integer) polytest.getValue("polytest.parm1.polygon.point.x", indices);
pointY = (Integer) polytest.getValue("polytest.parm1.polygon.point.y", indices);
System.out.println(" X:" + pointX + " Y:" + pointY);

}
}

Debugging

When you use PCML to call programs with complex data structures, it is easy to have errors in your
PCML that result in exceptions from the ProgramCallDocument class. If the errors are related to
incorrectly describing offsets and lengths of data, the exceptions can be difficult to debug.

Use the following method from the Trace class to turn on PCML tracing:
Trace.setTraceOn(true); // Turn on tracing function.
Trace.setTracePCMLOn(true); // Turn on PCML tracing.

Note: All public methods in the PcmlMessageLog class, including tracing, were deprecated in V5R2.

The Trace setFileName() method enables you to send the following types of information to specific log
files or, by default, to System.out:

IBM Toolbox for Java 381

javadoc/com/ibm/as400/data/PcmlMessageLog.html
javadoc/com/ibm/as400/access/Trace.html

v A dump of the hexadecimal data being transferred between the Java application and the IBM i
program. This shows the program input parameters after character data is converted to EBCDIC and
integers are converted to big-endian. It also shows the output parameters before they are converted to
the Java environment.
The data is shown in a typical hexadecimal dump format with hexadecimal digits on the left and a
character interpretation on the right. The following is an example of this dump format. (The following
example was altered to allow for width restrictions)
qgyolobj[6]
Offset : 0....... 4....... 8....... C....... 0....... 4....... 8....... C.......

0...4...8...C...0...4...8...C...
0 : 5CE4E2D9 D7D9C640 4040

**USRPRF *

In the above example, the dump shows the seventh parameter has 10 bytes of data set to "*USRPRF ".
v For output parameters, following the hexadecimal dump is a description of how the data has been

interpreted for the document. (The following example was altered to allow for width restrictions)
/QSYS.lib/QGY.lib/QGYOLOBJ.pgm[2]
Offset : 0....... 4....... 8....... C....... 0....... 4....... 8....... C.......

0...4...8...C...0...4...8...C...
0 : 0000000A 0000000A 00000001 00000068 D7F0F9F9 F0F1F1F5 F1F4F2F6 F2F5F400

................P09901151426254.
20 : 00000410 00000001 00000000 00000000 00000000 00000000 00000000 00000000

................................
40 : 00000000 00000000 00000000 00000000

*................ *
Reading data -- Offset: 0 Length: 4 Name: "qgyolobj.listInfo.totalRcds"
Byte data: 0000000A
Reading data -- Offset: 4 Length: 4 Name: "qgyolobj.listInfo.rcdsReturned"
Byte data: 0000000A
Reading data -- Offset: 8 Length: 4 Name: "qgyolobj.listInfo.rqsHandle"
Byte data: 00000001
Reading data -- Offset: c Length: 4 Name: "qgyolobj.listInfo.rcdLength"
Byte data: 00000068
Reading data -- Offset: 10 Length: 1 Name: "qgyolobj.listInfo.infoComplete"
Byte data: D7
Reading data -- Offset: 11 Length: 7 Name: "qgyolobj.listInfo.dateCreated"
Byte data: F0F9F9F0F1F1F5
Reading data -- Offset: 18 Length: 6 Name: "qgyolobj.listInfo.timeCreated"
Byte data: F1F4F2F6F2F5
Reading data -- Offset: 1e Length: 1 Name: "qgyolobj.listInfo.listStatus"
Byte data: F4
Reading data -- Offset: 1f Length: 1 Name: "qgyolobj.listInfo.[8]"
Byte data: 00
Reading data -- Offset: 20 Length: 4 Name: "qgyolobj.listInfo.lengthOfInfo"
Byte data: 00000410
Reading data -- Offset: 24 Length: 4 Name: "qgyolobj.listInfo.firstRecord"
Byte data: 00000001
Reading data -- Offset: 28 Length: 40 Name: "qgyolobj.listInfo.[11]"
Byte data: 00

The above messages can be very helpful in diagnosing cases where the output data coming from the IBM
i program does not match the PCML source. This can easily occur when you are using dynamic lengths
and offsets.

PCML syntax
PCML consists of the following tags, each of which has its own attribute tags.
v The program tag begins and ends code that describes one program
v The struct tag defines a named structure which can be specified as an argument to a program or as a

field within another named structure. A structure tag contains a data or a structure tag for each field in
the structure.

382 IBM i: Programming IBM Toolbox for Java

v The data tag defines a field within a program or structure.

In the following example the PCML syntax describes one program with one category of data and some
isolated data.
<program>

<struct>
<data> </data>

</struct>

<data> </data>

</program>

PCML program tag:

The PCML program tag can be expanded with the following elements.
<program name="name"

[entrypoint="entry-point-name"]
[epccsid="ccsid"]
[path="path-name"]
[parseorder="name-list"]
[returnvalue="{ void | integer }"]
[threadsafe="{ true | false }"]>

</program>

The following table lists the program tag attributes. Each entry includes the attribute name, the possible
valid values, and a description of the attribute.

Attribute Value Description

entrypoint= entry-point-name Specifies the name of the entry point
within a service program object that
is the target of this program call.
Note: This attribute is only allowed
when the PCML version is 2.0 or
higher. (For example <pcml
version="2.0">)

epccsid= ccsid Specifies the CCSID of the entry
point within a service program. For
more information, see the service
program entry notes in the
ServiceProgramCall javadoc.
Note: This attribute is only allowed
when the PCML version is 4.0 or
higher. (For example <pcml
version="4.0">)

name= name Specifies the name of the program.

IBM Toolbox for Java 383

javadoc/com/ibm/as400/access/ServiceProgramCall.html

Attribute Value Description

path= path-name Specifies the path to the program
object. The default value is to assume
the program is in the QSYS library.

The path must be a valid integrated
file system path name to a *PGM or
*SRVPGM object. If a *SRVPGM
object is called, the entrypoint
attribute must be specified to indicate
the name of the entrypoint to be
called.

If the entrypoint attribute is not
specified, the default value for this
attribute is assumed to be a *PGM
object from the QSYS library. If the
entrypoint attribute is specified, the
default value for this attribute is
assumed to be a *SRVPGM object in
the QSYS library.

The path name must be specified as
all uppercase characters.

Do not use the path attribute when
the application needs to set the path
at run time, for example, when a user
specifies what library is used for the
install. In this case, use the
ProgramCallDocument.setPath()
method.

parseorder= name-list Specifies the order in which output
parameters will be processed. The
value specified is a blank separated
list of parameter names in the order
in which the parameters are to be
processed. The names in the list must
be identical to the names specified on
the name attribute of tags belonging
to the <program>. The default value
is to process output parameters in the
order the tags appear in the
document.

Some programs return information in
one parameter that describes
information in a previous parameter.
For example, assume a program
returns an array of structures in the
first parameter and the number of
entries in the array in the second
parameter. In this case, the second
parameter must be processed in
order for the ProgramCallDocument
to determine the number of
structures to process in the first
parameter.

384 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/data/ProgramCallDocument.html#SETPATH(JAVA.LANG.STRING, JAVA.LANG.STRING)
javadoc/com/ibm/as400/data/ProgramCallDocument.html#SETPATH(JAVA.LANG.STRING, JAVA.LANG.STRING)

Attribute Value Description

returnvalue= void The program does not return a
value.

integer The program returns a 4-byte
signed integer.

Specifies the type of value, if any,
that is returned from a service
program call. This attribute is not
allowed for *PGM object calls.
Note: This attribute is only allowed
when the PCML version is 2.0 or
higher. (For example <pcml
version="2.0">)

threadsafe= true The program is considered to be
thread-safe.

false The program is not thread-safe.

When you call a Java program and
an IBM i program that are on the
same server, use this property to
specify whether you want to call the
IBM i program in the same job and
on the same thread as the Java
program. If you know your program
is thread-safe, setting the property to
true results in better performance.

To keep the environment safe, the
default is to call programs in separate
server jobs. The default value is false.
Note: This attribute is only allowed
when the PCML version is 3.0 or
higher. (For example <pcml
version="3.0">)

PCML struct tag:

The PCML struct tag can be expanded with the following elements.
<struct name="name"

[count="{number | data-name }"]
[maxvrm="version-string"]
[minvrm="version-string"]
[offset="{number | data-name }"]
[offsetfrom="{number | data-name | struct-name }"]
[outputsize="{number | data-name }"]
[usage="{ inherit | input | output | inputoutput }"]>

</struct>

The following table lists the struct tag attributes. Each entry includes the attribute name, the possible
valid values, and a description of the attribute.

Attribute Value Description

name= name Specifies the name of the <struct>
element

IBM Toolbox for Java 385

Attribute Value Description

count= number where number defines a fixed,
never-changing sized array.

data-name where data-name defines the
name of a <data> element within the
PCML document that will contain, at
runtime, the number of elements in
the array. The data-name specified can
be a fully qualified name or a name
that is relative to the current element.
In either case, the name must
reference a <data> element that is
defined with type="int". See
Resolving Relative Names for more
information about how relative
names are resolved.

Specifies that the element is an array
and identifies the number of entries
in the array.

If this attribute is omitted, the
element is not defined as an array,
although it may be contained within
another element that is defined as an
array.

maxvrm= version-string Specifies the highest version of IBM i
on which the element exists. If the
version of IBM i is greater than the
version specified on the attribute, the
element and its children, if any exist,
will not be processed during a call to
a program. The maxvrm element is
helpful for defining program
interfaces which differ between
releases ofIBM i.

The syntax of the version string must
be "VvRrMm," where the capitals
letters "V," "R," and "M" are literal
characters and "v," "r," and "m" are
one or more digits representing the
version, release and modification
level. The value for "v" must be from
1 to 255 inclusively. The value for "r"
and "m" must be from 0 to 255,
inclusively.

minvrm= version-string Specifies the lowest version of IBM i
on which this element exists. If the
version of IBM i is less than the
version specified on this attribute,
this element and its children, if any
exist, will not be processed during a
call to a program. This attribute is
helpful for defining program
interfaces which differ between
releases of IBM i.

The syntax of the version string must
be "VvRrMm," where the capitals
letters "V," "R," and "M" are literal
characters and "v," "r," and "m" are
one or more digits representing the
version, release and modification
level. The value for "v" must be from
1 to 255, inclusively. The value for "r"
and "m" must be from 0 to 255,
inclusively.

386 IBM i: Programming IBM Toolbox for Java

Attribute Value Description

offset= number where number defines a fixed,
never-changing offset.

data-name where data-name defines the
name of a <data> element within the
PCML document that will contain, at
runtime, the offset to the element.
The data-name specified can be a
fully qualified name or a name that is
relative to the current element. In
either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative
Names for more information about
how relative names are resolved.

Specifies the offset to the <struct>
element within an output parameter.

Some programs return information
with a fixed structure followed by
one or more variable length fields or
structures. In this case, the location
of a variable length element is
typically specified as an offset or
displacement within the parameter.
The offset attribute is used to
describe the offset to this <struct>
element.

Offset is used in conjunction with
the offsetfrom attribute. If the
offsetfrom attribute is not specified,
the base location for the offset
specified on the offset attribute is the
parent of the element. See Specifying
Offsets for more information about
how to use the offset and offsetfrom
attributes.

The offset and offsetfrom attributes
are only used to process output data
from a program. These attributes do
not control the offset or displacement
of input data.

If the attribute is omitted, the
location of the data for the element is
immediately following the preceding
element in the parameter, if any.

IBM Toolbox for Java 387

Attribute Value Description

offsetfrom= number where number defines a fixed,
never-changing base location. A
number attribute is most typically
used to specify number="0"
indicating that the offset is an
absolute offset from the beginning of
the parameter.

data-name where data-name defines the
name of a <data> element to be used
as a base location for the offset. The
element name specified must be the
parent or an ancestor of this element.
The value from the offset attribute
will be relative to the location of the
element specified on this attribute.
The data-name specified can be a fully
qualified name or a name that is
relative to the current element. In
either case, the name must reference
an ancestor of this element. See
Resolving Relative Names for more
information about how relative
names are resolved.

struct-name where struct-name defines
the name of a <struct> element to be
used as a base location for the offset.
The element name specified must be
the parent or an ancestor of this
element. The value from the offset
attribute will be relative to the
location of the element specified on
this attribute. The struct-name
specified can be a fully qualified
name or a name that is relative to the
current element. In either case, the
name must reference an ancestor of
this element. See Resolving Relative
Names for more information about
how relative names are resolved.

Specifies the base location from
which the offset attribute is relative.

If the offsetfrom attribute is not
specified, the base location for the
offset specified on the offset attribute
is the parent of this element. See
Specifying Offsets for more
information about how to use the
offset and offsetfrom attributes.

The offset and offsetfrom attributes
are only used to process output data
from a program. These attributes do
not control the offset or displacement
of input data.

388 IBM i: Programming IBM Toolbox for Java

Attribute Value Description

outputsize= number where number defines a
fixed,never-changing number of bytes
to reserve.

data-name where data-name defines the
name of a <data> element within the
PCML document that will contain, at
runtime, the number of bytes to
reserve for output data. The
data-name specified can be a fully
qualified name or a name that is
relative to the current element. In
either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative
Names for more information about
how relative names are resolved.

Specifies the number of bytes to
reserve for output data for the
element. For output parameters
which are variable in length, the
outputsize attribute is needed to
specify how many bytes must be
reserved for data to be returned from
the server program. Outputsize can
be specified on all variable length
fields and variable sized arrays, or it
can be specified for an entire
parameter that contains one or more
variable length fields.

Outputsize is not necessary and
must not be specified for fixed-size
output parameters.

The value specified on the attribute
is used as the total size for the
element including all children of the
element. Therefore, the outputsize
attribute is ignored on any children
or descendants of the element.

If the attribute is omitted, the
number of bytes to reserve for
output data is determined at runtime
by adding the number of bytes to
reserve for all of the children of the
<struct> element.

usage= inherit Usage is inherited from the parent
element. If the structure does not
have a parent, usage is assumed to
be inputoutput.

input The structure is an input value to the
host program. For character and
numeric types, the appropriate
conversion is performed.

output The structure is an output value from
the host program. For character and
numeric types, the appropriate
conversion is performed.

inputoutput The structure is both and input and
an output value.

Specifying offsets

Some programs return information with a fixed structure followed by one or more variable length fields
or structures. In this case, the location of a variable length element is typically specified as an offset or
displacement within the parameter.

An offset is the distance in bytes from a the beginning of the parameters to the beginning of a field or
structure. A displacement is the distance in bytes from the beginning of one structure to the beginning of
another structure.

IBM Toolbox for Java 389

For offsets, since the distance is from the beginning of the parameter, specify offsetfrom="0". The
following is an example of an offset from the beginning of the parameter:
<pcml version="1.0">

<program name="myprog" path="/QSYS.lib/MYLIB.lib/MYPROG.pgm">
<!-- receiver variable contains a path -->
<struct name="receiver" usage="output" outputsize="2048">

<data name="pathType" type="int" length="4" />
<data name="offsetToPathName" type="int" length="4" />
<data name="lengthOfPathName" type="int" length="4" />
<data name="pathName" type="char" length="lengthOfPathName"

offset="offsetToPathName" offsetfrom="0"/>
</struct>

</program>
</pcml>

For displacements, since the distance is from the beginning of another structure, you specify the name of
the structure to which the offset is relative. The following is an example of an displacement from the
beginning of a named structure:
<pcml ="1.0">

<program name="myprog" path="/QSYS.lib/MYLIB.lib/MYPROG.pgm">
<!-- receiver variable contains an object -->
<struct name="receiver" usage="output" >

<data name="objectName" type="char" length="10" />
<data name="libraryName" type="char" length="10" />
<data name="objectType" type="char" length="10" />
<struct name="pathInfo" usage="output" outputsize="2048" >

<data name="pathType" type="int" length="4" />
<data name="offsetToPathName" type="int" length="4" />
<data name="lengthOfPathName" type="int" length="4" />
<data name="pathName" type="char" length="lengthOfPathName"

offset="offsetToPathName" offsetfrom="pathInfo"/>
</struct>

</struct>
</program>

</pcml>

PCML data tag:

The PCML data tag can have the following attributes.

Attributes enclosed in brackets, [], indicate that the attribute is optional. If you specify an optional
attribute, do not include the brackets in your source. Some attribute values are shown as a list of choices
enclosed in braces, {}, with possible choices separated by vertical bars, |. When you specify one of these
attributes, do not include the braces in your source and only specify one of the choices shown.
<data type="{ char | int | packed | zoned | float | byte | struct | date | time | timestamp }"

[bidistringtype="{ ST4 | ST5 | ST6 | ST7 | ST8 | ST9 | ST10 | ST11 | DEFAULT }"]
[ccsid="{ number | data-name }"]
[chartype="{ onebyte | twobyte }"]
[count="{ number | data-name }"]
[init="string"]
[length="{ number | data-name }"]
[maxvrm="version-string"]
[minvrm="version-string"]
[name="name"]
[offset="{ number | data-name }"]
[offsetfrom="{ number | data-name | struct-name }"]
[outputsize="{ number | data-name | struct-name }"]
[passby= "{ reference | value }"]
[precision="number"]
[struct="struct-name"]
[trim="{ right | left | both | none }"]
[usage="{ inherit | input | output | inputoutput }"]>
[dateformat="{ MDY | DMY | YMD | JUL | ISO | USA | EUR| JIS | CYMD | CMDY | CDMY | LONGJUL | MY | YM | MYY | YMM }"]>

390 IBM i: Programming IBM Toolbox for Java

[dateseparator="{ ampersand, blank | colon | comma | hyphen | period | slash }"]>
[timeformat="{ HMS | ISO | USA | EUR | JIS | USA | EUR| JIS }"]>
[timeseparator="{ ampersand, blank | colon | comma | hyphen | period | slash }"]>

</data>

The following table lists the data tag attributes. Each entry includes the attribute name, the possible valid
values, and a description of the attribute.

IBM Toolbox for Java 391

Attribute Value Description

type= char where char indicates a character
value. A char data value is returned
as a java.lang.String. For more
information, see the char values for
length.

int where int is an integer value. An
int data value is returned as a
java.lang.Long. For more information,
see the int values for length and
precision.

packed where packed is a packed
decimal value. A packed data value is
returned as a java.math.BigDecimal.
For more information, see the packed
values for length and precision.

zoned where zoned is a zoned decimal
value. A zoned data value is returned
as a java.math.BigDecimal. For more
information, see the zoned values for
length and precision.

float where float is a floating point
value. The length attribute specifies
the number of bytes, "4" or "8". A
4-byte integer is returned as a
java.lang.Float. An 8-byte integer is
returned as a java.lang.Double. For
more information, see the float values
for length.

byte where byte is a byte value. No
conversion is performed on the data.
A byte data value is returned as an
array of byte values (byte[]). For more
information, see the byte values for
length.

struct where struct specifies the name
of the <struct> element. A struct
allows you to define a structure once
and reuse it multiple times within the
document. When you type="struct",
it is as if the structure specified
appeared at this location in the
document. A struct does not allow for
a length value and has no value for
precision.

date where date is a date value.

time where time is a time value.

timestamp where timestamp is a
timestamp value. 26 bytes value is
support with format
yyyy-MM-ddTHH:mm:ss.SSSSSSSSS

Indicates the type of data being used
(character, integer, packed, zoned,
floating point, byte, struct, date, time,
or timestamp).
Note: Types date, time and
timestamp are only allowed when the
PCML version is 6.0 or higher. (For
example <pcml version="6.0">)

Values for the length and precision
attributes are different for different
data types. For more information, see
the Values for length and precision.

392 IBM i: Programming IBM Toolbox for Java

Attribute Value Description

bidistringtype= DEFAULT where DEFAULT is the
default string type for
non-bidirectional data (LTR).

ST4 where ST4 is String Type 4.

ST5 where ST5 is String Type 5.

ST6 where ST6 is String Type 6.

ST7 where ST7 is String Type 7.

ST8 where ST8 is String Type 8.

ST9 where ST9 is String Type 9.

ST10 where ST10 is String Type 10.

ST11 where ST11 is String Type 11.

Specifies the bidirectional string type
for <data> elements with
type="char". If this attribute is
omitted, string type for this element
is implied by the CCSID (whether
explicitly specified or the default
CCSID of the host environment).

String types are defined in the
javadoc for the BidiStringType class.

ccsid= number where number defines a fixed,
never-changing CCSID.

data-name where data-name defines the
name that will contain, at runtime,
the CCSID of the character data. The
data-name specified can be a fully
qualified name or a name that is
relative to the current element. In
either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative
Names for more information about
how relative names are resolved.

Specifies the host Coded Character
Set ID (CCSID) for character data for
the <data> element. The ccsid
attribute can be specified only for
<data> elements with type="char".

If this attribute is omitted, character
data for this element is assumed to
be in the default CCSID of the host
environment.

chartype= onebyte where onebyte specifies the
size of each character.

twobyte where twobyte specifies the
size of each character.

When using chartype, the
length="number" attribute specifies
the number of characters, not the
number of bytes.

Specifies the size of each character.

count= number where number defines a fixed,
never-changing number of elements
in a sized array.

data-name where data-name defines the
name of a <data> element within the
PCML document that will contain, at
runtime, the number of elements in
the array. The data-name specified can
be a fully qualified name or a name
that is relative to the current element.
In either case, the name must
reference a <data> element that is
defined with type="int". See
Resolving Relative Names for more
information about how relative
names are resolved.

Specifies that the element is an array
and identifies the number of entries
in the array.

If the count attribute is omitted, the
element is not defined as an array,
although it may be contained within
another element that is defined as an
array.

IBM Toolbox for Java 393

javadoc/com/ibm/as400/access/BidiStringType.html#DEFAULT
javadoc/com/ibm/as400/access/BidiStringType.html#ST4
javadoc/com/ibm/as400/access/BidiStringType.html#ST5
javadoc/com/ibm/as400/access/BidiStringType.html#ST6
javadoc/com/ibm/as400/access/BidiStringType.html#ST7
javadoc/com/ibm/as400/access/BidiStringType.html#ST8
javadoc/com/ibm/as400/access/BidiStringType.html#ST9
javadoc/com/ibm/as400/access/BidiStringType.html#ST10
javadoc/com/ibm/as400/access/BidiStringType.html#ST11
javadoc/com/ibm/as400/access/BidiStringType.html#NAVBAR_TOP

Attribute Value Description

init= string Specifies an initial value for the
<data> element. The init value is
used if an initial value is not
explicitly set by the application
program when <data> elements with
usage="input" or
usage="inputoutput" are used.

The initial value specified is used to
initialize scalar values. If the element
is defined as an array or is contained
within a structure defined as an
array, the initial value specified is
used as an initial value for all entries
in the array.

length= number where number defines the
number of bytes that the data
requires. However, when using the
chartype attribute, number specifies the
number of characters, not the number
of bytes.

data-name where data-name defines the
name of a <data> element within the
PCML document that will contain, at
runtime, the length. A data-name can
be specified only for <data> elements
with type="char" or type="byte". The
data-name specified can be a fully
qualified name or a name that is
relative to the current element. In
either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative
Names for more information about
how relative names are resolved.

Specifies the length of the data
element. Usage of this attribute varies
depending on the data type. For
more information, see the Values for
length and precision.

maxvrm= version-string Specifies the highest version of IBM i
on which this element exists. If the
IBM i version is greater than the
version specified on this attribute,
this element and its children, if any
exist, will not be processed during a
call to a program. This attribute is
helpful for defining program
interfaces which differ between
releases of IBM i.

The syntax of the version string must
be "VvRrMm", where the capitals
letters "V," "R," and "M" are literal
characters and "v," "r," and "m" are
one or more digits representing the
version, release and modification
level. The value for "v" must be from
1 to 255 inclusively. The value for "r"
and "m" must be from 0 to 255,
inclusively.

394 IBM i: Programming IBM Toolbox for Java

Attribute Value Description

minvrm= version-string Specifies the lowest version of IBM
ion which this element exists. If the
IBM i version is less than the version
specified on this attribute, this
element and its children, if any exist,
will not be processed during a call to
a program. This attribute is helpful
for defining program interfaces
which differ between releases of IBM
i.

The syntax of the version string must
be "VvRrMm," where the capitals
letters "V," "R," and "M" are literal
characters and "v," "r," and "m" are
one or more digits representing the
version, release and modification
level. The value for "v" must be from
1 to 255 inclusively. The value for "r"
and "m" must be from 0 to 255,
inclusively.

name= name Specifies the name of the <data>
element.

offset= number where number defines a fixed,
never-changing offset.

data-name where data-name defines the
name of a <data> element within the
PCML document that will contain, at
runtime, the offset to this element.
The data-name specified can be a fully
qualified name or a name that is
relative to the current element. In
either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative
Names for more information about
how relative names are resolved.

Specifies the offset to the <data>
element within an output parameter.

Some programs return information
with a fixed structure followed by
one or more variable length fields or
structures. In this case, the location of
a variable length element is typically
specified as an offset or displacement
within the parameter.

An offset attribute is used in
conjunction with the offsetfrom
attribute. If the offsetfrom attribute is
not specified, the base location for
the offset specified on the offset
attribute is the parent of this element.
See Specifying Offsets for more
information on how to use the offset
and offsetfrom attributes.

The offset and offsetfrom attributes
are only used to process output data
from a program. These attributes do
not control the offset or displacement
of input data.

If this attribute is omitted, the
location of the data for this element
is immediately following the
preceding element in the parameter,
if any.

IBM Toolbox for Java 395

Attribute Value Description

offsetfrom= number where number defines a fixed,
never-changing base location. Number
is most typically used to specify
number="0" indicating that the offset
is an absolute offset from the
beginning of the parameter.

data-name where data-name defines the
name of a <data> element used as a
base location for the offset. The
element name specified must be the
parent or an ancestor of this element.
The value from the offset attribute
will be relative to the location of the
element specified on this attribute.
The data-name specified can be a fully
qualified name or a name that is
relative to the current element. In
either case, the name must reference
an ancestor of this element. See
Resolving Relative Names for more
information about how relative
names are resolved.

struct-name where struct-name defines
the name of a <struct> element used
as a base location for the offset. The
element name specified must be the
parent or an ancestor of this element.
The value from the offset attribute
will be relative to the location of the
element specified on this attribute.
The struct-name specified can be a
fully qualified name or a name that is
relative to the current element. In
either case, the name must reference
an ancestor of this element. See
Resolving Relative Names for more
information about how relative
names are resolved.

Specifies the base location from
which the offset attribute is relative.

If the offsetfrom attribute is not
specified, the base location for the
offset specified on the offset attribute
is the parent of this element. See
Specifying Offsets for more
information about how to use the
offset and offsetfrom attributes.

The offset and offsetfrom attributes
are only used to process output data
from a program. These attributes do
not control the offset or displacement
of input data.

396 IBM i: Programming IBM Toolbox for Java

Attribute Value Description

outputsize= number where a number defines a
fixed, never-changing number of
bytes to reserve.

data-name where data-name defines the
name of a <data> element within the
PCML document that will contain, at
runtime, the number of bytes to
reserve for output data. The
data-name specified can be a fully
qualified name or a name that is
relative to the current element. In
either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative
Names for more information about
how relative names are resolved.

Specifies the number of bytes to
reserve for output data for the
element. For output parameters
which are variable in length, the
outputsize attribute is needed to
specify how many bytes must be
reserved for data to be returned from
the IBM i program. An outputsize
attribute can be specified on all
variable length fields and variable
sized arrays, or it can be specified for
an entire parameter that contains one
or more variable length fields.

Outputsize is not necessary and
must not be specified for fixed-size
output parameters.

The value specified on this attribute
is used as the total size for the
element including all the children of
the element. Therefore, the
outputsize attribute is ignored on
any children or descendants of the
element.

If outputsize is omitted, the number
of bytes to reserve for output data is
determined at runtime by adding the
number of bytes to reserve for all of
the children of the <struct> element.

passby= reference where reference indicates that
the parameter will be passed by
reference. When the program is
called, the program will be passed a
pointer to the parameter value.

value where value indicates an integer
value. This value is allowed only
when type= "int" and length="4" is
specified.

Specifies whether the parameter is
passed by reference or passed by
value. This attribute is allowed only
when this element is a child of a
<program> element defining a
service program call.

precision= number Specifies the number of bytes of
precision for some numeric data
types. For more information, see the
Values for length and precision.

struct= name Specifies the name of a <struct>
element for the <data> element. A
struct attribute can be specified only
for <data> elements with
type="struct".

IBM Toolbox for Java 397

Attribute Value Description

trim= right where right is the default
behavior that means to trim trailing
white spaces.

left where left means to trim
preceding white spaces.

both where both means to trim both
preceding and trailing white spaces.

none where none means that white
spaces are not trimmed.

Specifies how to trim white space
from character data.

usage= inherit Usage is inherited from the parent
element. If the structure does not
have a parent, usage is assumed to
be inputoutput.

input Defines an input value to the host
program. For character and numeric
types, the appropriate conversion is
performed.

output Defines an output value from the
host program. For character and
numeric types, the appropriate
conversion is performed.

inputoutput Defines both and input and an
output value.

398 IBM i: Programming IBM Toolbox for Java

Attribute Value Description

dateformat MDY (mm/dd/yy), Default
separator: '/'

DMY (dd/mm/yy), Default
separator: '/'

YMD (yy/mm/dd), Default
separator: '/'

JUL (yy/ddd), Default separator: '/'

ISO (yyyy-mm-dd), Default
separator: '-'

USA (mm/dd/yyyy), Default
separator: '/'

EUR (dd.mm.yyyy), Default
separator: '.'

JIS (yyyy-mm-dd), Default separator:
'-'

CYMD (cyy/mm/dd), Default
separator: '/'

CMDY (cmm/dd/yy), Default
separator: '/'

CDMY (cdd/mm/yy), Default
separator: '/'

LONGJUL (yyyy/ddd), Default
separator: '/'

MY (mm/yy), Default separator: '/'

YM (yy/mm), Default separator: '/'

MYY (mm/yyyy), Default separator:
'/'

YMM (yyyy/mm), Default separator:
'/'

Specify the date format for <data>
elements with type="date" .

If this attribute is omitted, date
format ISO is used by default.
Note: Note: This attribute is only
allowed when the PCML version is
6.0 or higher. (For example <pcml
version="6.0">)

dateseparator ampersand separate with '&'

blank separate with ''

colon separate with ':'

comma separate with ','

hyphen separate with '-'

period separate with '.'

slash separate with '/'

Specify the date separator for <data>
elements with type="date".

If this attribute is omitted, the default
date separate for each dateFormat is
used.
Note: This attribute is only allowed
when the PCML version is 6.0 or
higher. (For example <pcml
version="6.0">)

IBM Toolbox for Java 399

Attribute Value Description

timeformat HMS (hh:mm:ss), Default separator:
':'

ISO (hh.mm.ss), Default separator: '.'

USA (hh:mm AM), Default separator:
':'

EUR (hh.mm.ss), Default separator: '.'

JIS (hh:mm:ss), Default separator: ':'

Specify the time format for <data>
elements with type="time".

If this attribute is omitted, time
format ISO is used by default.
Note: This attribute is only allowed
when the PCML version is 6.0 or
higher. (For example <pcml
version="6.0">)

timeseparator ampersand separate with '&'

blank separate with ' '

colon separate with ':'

comma separate with ','

hyphen separate with '-'

period separate with '.'

slash separate with '/'

Specify the time format for <data>
elements with type="time".

If this attribute is omitted, the default
time separate for each timeFormat is
used.
Note: This attribute is only allowed
when the PCML version is 6.0 or
higher. (For example <pcml
version="6.0">)

Specifying offsets

Some programs return information with a fixed structure followed by one or more variable length fields
or structures. In this case, the location of a variable length element is typically specified as an offset or
displacement within the parameter.

An offset is the distance in bytes from the beginning of the parameters to the beginnings of a field or
structure. A displacement is the distance in bytes from the beginning of one structure to the beginning of
another structure.

For offsets, since the distance is from the beginning of the parameter, you must specify offsetfrom="0".
The following is an example of an offset from the beginning of the parameter:
<pcml version="1.0">

<program name="myprog" path="/QSYS.lib/MYLIB.lib/MYPROG.pgm">
<!-- receiver variable contains a path -->
<struct name="receiver" usage="output" outputsize="2048">

<data name="pathType" type="int" length="4" />
<data name="offsetToPathName" type="int" length="4" />
<data name="lengthOfPathName" type="int" length="4" />
<data name="pathName" type="char" length="lengthOfPathName"

offset="offsetToPathName" offsetfrom="0"/>
</struct>

</program>
</pcml>

For displacements, since the distance is from the beginning of another structure, you specify the name of
the structure to which the offset is relative. The following is an example of an displacement from the
beginning of a named structure:
<pcml version="1.0">

<program name="myprog" path="/QSYS.lib/MYLIB.lib/MYPROG.pgm">
<!-- receiver variable contains an object -->
<struct name="receiver" usage="output" >

<data name="objectName" type="char" length="10" />
<data name="libraryName" type="char" length="10" />

400 IBM i: Programming IBM Toolbox for Java

<data name="objectType" type="char" length="10" />
<struct name="pathInfo" usage="output" outputsize="2048" >

<data name="pathType" type="int" length="4" />
<data name="offsetToPathName" type="int" length="4" />
<data name="lengthOfPathName" type="int" length="4" />
<data name="pathName" type="char" length="lengthOfPathName"

offset="offsetToPathName" offsetfrom="pathInfo"/>
</struct>

</struct>
</program>

</pcml>

Values for length and precision:

Values for the length and precision attributes are different for different data types.

The following table lists each data type with a description of the possible values for length and precision.

Data type Length Precision

type="char" The number of bytes of data for this
element, which is not necessarily the
number of characters. You must
specify either a literal number or a
data-name.

Not applicable

type="int" The number of bytes of data for this
element: 2, 4, or 8. You must specify
a literal number.

Indicates the number of bits of
precision and whether the integer is
signed or unsigned:

v For length="2"

– Use precision="15" for a signed
2-byte integer. This is the
default value

– Use precision="16" for an
unsigned 2-byte integer

v For length="4"

– Use precision="31" for a signed
4-byte integer

– Use precision="32" for an
unsigned 4-byte integer

v For length="8"

– Use precision="63" for a signed
8-byte integer

– Use precision="64" for an
unsigned 8-byte integer

type="packed" or "zoned" The number of numeric digits of data
for this element. You must specify a
literal number.

The number of decimal digits for the
element. This number must be
greater than or equal to zero and less
than or equal to the total number of
digits specified on the length
attribute.

type="float" The number of bytes, 4 or 8, of data
for this element. You must specify a
literal number.

Not applicable

type="byte" The number of bytes of data for this
element. You must specify either a
literal number or data-name.

Not applicable

IBM Toolbox for Java 401

Data type Length Precision

type="struct" or "date" or "time" or
"timestamp"

Not allowed. Not applicable

Resolving relative names

Several attributes allow you to specify the name of another element, or tag, within the document as the
attribute value. The name specified can be a name that is relative to the current tag.

Names are resolved by seeing if the name can be resolved as a child or descendent of the tag containing
the current tag. If the name cannot be resolved at this level, the search continues with the next highest
containing tag. This resolution must eventually result in a match of a tag that is contained by either the
<pcml> tag or the <rfml> tag, in which case the name is considered to be an absolute name, not a
relative name.

Here is an example using PCML:
<pcml version="1.0">

<program name="polytest" path="/QSYS.lib/MYLIB.lib/POLYTEST.pgm">
<!-- Parameter 1 contains a count of polygons along with an array of polygons -->
<struct name="parm1" usage="inputoutput">

<data name="nbrPolygons" type="int" length="4" init="5" />
<!-- Each polygon contains a count of the number of points along with an array of points -->
<struct name="polygon" count="nbrPolygons">

<data name="nbrPoints" type="int" length="4" init="3" />
<struct name="point" count="nbrPoints" >

<data name="x" type="int" length="4" init="100" />
<data name="y" type="int" length="4" init="200" />

</struct>
</struct>

</struct>
</program>

</pcml>

Here is an example using RFML:
<rfml version="4.0">

<struct name="polygon">
<!-- Each polygon contains a count of the number of points along with an array of points. -->
<data name="nbrPoints" type="int" length="4" init="3" />
<data name="point" type="struct" struct="point" count="nbrPoints" />

</struct>
<struct name="point" >

<data name="x" type="int" length="4" init="100" />
<data name="y" type="int" length="4" init="200" />

</struct>
<recordformat name="polytest">

<!-- This format contains a count of polygons along with an array of polygons -->
<data name="nbrPolygons" type="int" length="4" init="5" />
<data name="polygon" type="struct" struct="polygon" count="nbrPolygons" />

</recordformat>
</rfml>

Graphical Toolbox and PDML
The Graphical Toolbox, a set of UI tools, enables you to create custom user interface panels in Java.

You can incorporate the panels into your Java applications, applets, or System i Navigator plug-ins. The
panels may contain data obtained from the system, or data obtained from another source such as a file in
the local file system or a program on the network.

402 IBM i: Programming IBM Toolbox for Java

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/rzakx/rzakxkickoff.htm

The GUI Builder is a WYSIWYG visual editor for creating Java dialogs, property sheets and wizards.
With the GUI Builder you can add, arrange, or edit user interface controls on a panel, and then preview
the panel to verify the layout behaves the way you expected. The panel definitions you create can be
used in dialogs, inserted within property sheets and wizards, or arranged into splitter, deck, and tabbed
panes. The GUI Builder also allows you to build menu bars, toolbars, and context menu definitions. You
can also incorporate JavaHelp in your panels, including context sensitive help.

The Resource Script Converter converts Windows resource scripts into an XML representation that is
usable by Java programs. With the Resource Script Converter you can process Windows resource scripts
(RC files) from your existing Windows dialogs and menus. These converted files can then be edited with
the GUI Builder. Property sheets and wizards can be made from RC files using the resource script
converter along with the GUI Builder.

Underlying these two tools is a new technology called the Panel Definition Markup Language, or
PDML. PDML is based on the Extensible Markup Language (XML) and defines a platform-independent
language for describing the layout of user interface elements. Once your panels are defined in PDML,
you can use the runtime API provided by the Graphical Toolbox to display them. The API displays your
panels by interpreting the PDML and rendering your user interface using the Java Foundation Classes.

Note: Using PDML requires that you run version 1.4 or later of the Java Runtime Environment.

Benefits of the Graphical Toolbox

Write Less Code and Save Time
With the Graphical Toolbox you have the ability to create Java-based user interfaces quickly and
easily. The GUI Builder lets you have precise control over the layout of UI elements on your
panels. Because the layout is described in PDML, you are not required to develop any Java code
to define the user interface, and you do not need to recompile code in order to make changes. As
a result, significantly less time is required to create and maintain your Java applications. The
Resource Script Converter lets you migrate large numbers of Windows panels to Java quickly and
easily.

Custom Help
Defining user interfaces in PDML creates some additional benefits. Because all of a panel's
information is consolidated in a formal markup language, the tools can be enhanced to perform
additional services on behalf of the developer. For example, both the GUI Builder and the
Resource Script Converter are capable of generating HTML skeletons for the panel's online help.
You decide which help topics are required and the help topics are automatically built based on
your requirements. Anchor tags for the help topics are built right into the help skeleton, which
frees the help writer to focus on developing appropriate content. The Graphical Toolbox runtime
environment automatically displays the correct help topic in response to a user's request.

Automatic Panel to Code Integration
In addition, PDML provides tags that associate each control on a panel with an attribute on a
JavaBean. Once you have identified the bean classes that will supply data to the panel and have
associated a attribute with each of the appropriate controls, you can request that the tools
generate Java source code skeletons for the bean objects. At runtime, the Graphical Toolbox
automatically transfers data between the beans and the controls on the panel that you identified.

Platform Independent
The Graphical Toolbox runtime environment provides support for event handling, user data
validation, and common types of interaction among the elements of a panel. The correct platform
look and feel for your user interface is automatically set based on the underlying operating
system, and the GUI Builder lets you toggle the look and feel so that you can evaluate how your
panels will look on different platforms.

The Graphical Toolbox provides you with two tools and, therefore, two ways of automating the creation
of your user interfaces. You can use the GUI Builder to quickly and easily create new panels from scratch,

IBM Toolbox for Java 403

or you can use the Resource Script Converter to convert existing Windows-based panels to Java. The
converted files can then be edited with GUI Builder. Both tools support internationalization.

GUI Builder

Two windows are displayed when you invoke the GUI Builder for the first time, as shown in Figure 1:

Figure 1: GUI Builder windows

Use the File Builder window to create and edit your PDML files.

Figure 2: File Builder window

Use the Properties window to view or change the properties of the currently selected control.

Figure 3: Properties window

404 IBM i: Programming IBM Toolbox for Java

Use the Panel Builder window to create and edit your graphical user interface components. Select the
desired component from the toolbar and click on the panel to place it where ever you want. The toolbar
also facilities for aligning groups of controls, for previewing the panel, and for requesting online help for
a GUI Builder function. See GUI Builder Panel Builder toolbar for a description of what each icon does.

Figure 4: Panel Builder window

The panel being edited is displayed in the Panel Builder window. Figure 5 shows how the windows work
together:

Figure 5: Example of how GUI Builder windows work together

IBM Toolbox for Java 405

Resource Script Converter

The Resource Script Converter consists of a two-paned tabbed dialog. On the Convert pane you specify
the name of the Microsoft or VisualAge for Windows RC file that is to be converted to PDML. You can
specify the name of the target PDML file and associated Java resource bundle that will contain the
translated strings for the panels. In addition, you can request that online help skeletons be generated for
the panels, generate Java source code skeletons for the objects that supply data to the panels, and
serialize the panel definitions for improved performance at runtime. The Converter's online help provides
a detailed description of each input field on the Convert pane.

Figure 6: Resource Script Converter Convert pane

406 IBM i: Programming IBM Toolbox for Java

After the conversion has run successfully, you can use the View pane to view the contents of your
newly-created PDML file, and preview your new Java panels. You can use the GUI Builder to make
minor adjustments to a panel if needed. The Converter always checks for an existing PDML file before
performing a conversion, and attempts to preserve any changes in case you need to run the conversion
again later.

Figure 7: Resource Script Converter View pane

IBM Toolbox for Java 407

Record Format Markup Language
The Record Format Markup Language (RFML) is an XML extension for specifying record formats.

The IBM Toolbox for Java RFML component enables your Java applications to use RFML documents to
specify and manipulate fields within certain kinds of records.

RFML documents, called RFML source files, represent a useful subset of the data description specification
(DDS) data types defined for IBM i physical and logical files. You can use RFML documents to manage
the information in the following:
v File records
v Data queue entries
v User spaces
v Arbitrary data buffers

Note: For more information about using DDS to describe data attributes, see the DDS Reference.

RFML closely resembles Program Call Markup Language (PCML), another XML extension that is
supported by IBM Toolbox for Java. RFML is neither a subset nor a superset of PCML, but rather a kind
of sibling language that adds a few new elements and attributes and omits others.

PCML provides an XML-oriented alternative to using the ProgramCall and ProgramParameter classes.
Similarly, RFML provides a user-friendly, easily maintainable alternative to the Record, RecordFormat,
and FieldDescription classes.
Related information:
Data description specifications

408 IBM i: Programming IBM Toolbox for Java

Requirements for using RFML
The RFML component has the same workstation Java virtual machine requirements as the rest of the IBM
Toolbox for Java.

In addition, in order to parse RFML at run time, the CLASSPATH for the application must include an
XML parser. The XML parser must extend class org.apache.xerces.parsers.SAXParser. For more
information, see “XML parser and XSLT processor” on page 417.

Note: RFML has the same parser requirements as PCML. As with PCML, if you preserialize the RFML
file, you do not need to include an XML parser in the application CLASSPATH to run the
application.

Related reference:
“Workstation requirements for IBM Toolbox for Java” on page 7
Ensure that your workstation meets the following requirements.

Example: Using RFML compared to using IBM Toolbox for Java Record classes
This example illustrates the differences between using RFML and using the IBM Toolbox for Java Record
classes.

Using the traditional Record classes, you interweave the data format specifications with the business logic
of your application. Adding, changing, or deleting a field means that you must edit and recompile your
Java code. However, using RFML isolates the data format specifications into RFML source files that are
entirely separate from the business logic. Accommodating field changes means modifying the RFML file,
often without having to change or recompile your Java application.

The example assumes that your application deals with customer records, which you have defined in an
RFML source file and named qcustcdt.rfml. The source file represents the fields that compose each
customer record.

The listing below shows how a Java application might interpret a customer record using the IBM Toolbox
for Java Record, RecordFormat, and FieldDescription classes:
// Buffer containing the binary representation of one record of information.

byte[] bytes;

// ... Read the record data into the buffer ...

// Set up a RecordFormat object to represent one customer record.
RecordFormat recFmt1 = new RecordFormat("cusrec");
recFmt1.addFieldDescription(new ZonedDecimalFieldDescription(new AS400ZonedDecimal(6, 0), "cusnum"));
recFmt1.addFieldDescription(new CharacterFieldDescription(new AS400Text(8, 37), "lstnam"));
recFmt1.addFieldDescription(new CharacterFieldDescription(new AS400Text(3, 37), "init"));
recFmt1.addFieldDescription(new CharacterFieldDescription(new AS400Text(13, 37), "street"));
recFmt1.addFieldDescription(new CharacterFieldDescription(new AS400Text(6, 37), "city"));
recFmt1.addFieldDescription(new CharacterFieldDescription(new AS400Text(2, 37), "state"));
recFmt1.addFieldDescription(new ZonedDecimalFieldDescription(new AS400ZonedDecimal(5, 0), "zipcod"));
recFmt1.addFieldDescription(new ZonedDecimalFieldDescription(new AS400ZonedDecimal(4, 0), "cdtlmt"));
recFmt1.addFieldDescription(new ZonedDecimalFieldDescription(new AS400ZonedDecimal(1, 0), "chgcod"));
recFmt1.addFieldDescription(new ZonedDecimalFieldDescription(new AS400ZonedDecimal(6, 2), "baldue"));
recFmt1.addFieldDescription(new ZonedDecimalFieldDescription(new AS400ZonedDecimal(6, 2), "cdtdue"));

// Read the byte buffer into the RecordFormatDocument object.
Record rec1 = new Record(recFmt1, bytes);

// Get the field values.
System.out.println("cusnum: " + rec1.getField("cusnum"));
System.out.println("lstnam: " + rec1.getField("lstnam"));
System.out.println("init: " + rec1.getField("init"));
System.out.println("street: " + rec1.getField("street"));
System.out.println("city: " + rec1.getField("city"));
System.out.println("state: " + rec1.getField("state"));

IBM Toolbox for Java 409

System.out.println("zipcod: " + rec1.getField("zipcod"));
System.out.println("cdtlmt: " + rec1.getField("cdtlmt"));
System.out.println("chgcod: " + rec1.getField("chgcod"));
System.out.println("baldue: " + rec1.getField("baldue"));
System.out.println("cdtdue: " + rec1.getField("cdtdue"));

By comparison, here is how the same record might be interpreted using RFML.

The Java code to interpret the contents of the customer data record using RFML might look like this:

// Buffer containing the binary representation of one record of information.
byte[] bytes;

// ... Read the record data into the buffer ...

// Parse the RFML file into a RecordFormatDocument object.
// The RFML source file is called qcustcdt.rfml.
RecordFormatDocument rfml1 = new RecordFormatDocument("qcustcdt");

// Read the byte buffer into the RecordFormatDocument object.
rfml1.setValues("cusrec", bytes);

// Get the field values.
System.out.println("cusnum: " + rfml1.getValue("cusrec.cusnum"));
System.out.println("lstnam: " + rfml1.getValue("cusrec.lstnam"));
System.out.println("init: " + rfml1.getValue("cusrec.init"));
System.out.println("street: " + rfml1.getValue("cusrec.street"));
System.out.println("city: " + rfml1.getValue("cusrec.city"));
System.out.println("state: " + rfml1.getValue("cusrec.state"));
System.out.println("zipcod: " + rfml1.getValue("cusrec.zipcod"));
System.out.println("cdtlmt: " + rfml1.getValue("cusrec.cdtlmt"));
System.out.println("chgcod: " + rfml1.getValue("cusrec.chgcod"));
System.out.println("baldue: " + rfml1.getValue("cusrec.baldue"));
System.out.println("cdtdue: " + rfml1.getValue("cusrec.cdtdue"));

RecordFormatDocument class
The RecordFormatDocument class enables your Java programs to convert between RFML representations
of data and Record and RecordFormat objects for use with other IBM Toolbox for Java components.

RecordFormatDocument class

The RecordFormatDocument class represents an RFML source file, and it provides methods that allow
your Java program to perform the following actions:
v Compose RFML source files from Record objects, RecordFormat objects, and byte arrays
v Generate Record objects, RecordFormat objects, and byte arrays that represent the information that the

RecordFormatDocument object contains
v Get and set the values of different objects and data types
v Generate XML (RFML) that represents the data that the RecordFormatDocument object contains
v Serialize the RFML source file that the RecordFormatDocument object represents

For more information about the available methods, see the Javadoc method summary for the
RecordFormatDocument class.

Using the RecordFormatDocument class with other IBM Toolbox for Java classes

Use the RecordFormatDocument class with the following IBM Toolbox for Java classes:

410 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/data/RecordFormatDocument.html

v Record-oriented classes, which include the record-level access file classes (AS400File, SequentialFile,
and KeyedFile) that read, manipulate, and write Record objects. This category also includes the
LineDataRecordWriter class.

v Byte-oriented classes, which include certain DataQueue, UserSpace, and IFSFile classes that read and
write a byte-array of data at a time.

Do not use RecordFormatDocument class with the following IBM Toolbox for Java classes, which read
and write data in forms that RecordFormatDocument does not handle:
v The DataArea classes because the read and write methods deal only with String, boolean, and

BigDecimal data types.
v IFSTextFileInputStream and IFSTextFileOutputStream because these read and write methods deal only

with String.
v JDBC classes because RFML focuses only on data described by the IBM i data description specification

(DDS).
Related information:
RecordFormatDocument Javadoc

Record format documents and RFML syntax
RFML documents, called RFML source files, contain tags that define the specification for a particular data
format.

Because RFML is based on PCML, the syntax is familiar to PCML users. Because RFML is an XML
extension, RFML source files are easy to read and simple to create. For example, you can create an RFML
source file by using a simple text editor. Also, RFML source files reveal the structure of the data in a way
that is easier to understand than in a programming language like Java.

The RFML example Using RFML compared to using IBM Toolbox for Java Record classes includes an
example RFML source file.

RFML DTD

The RFML document type definition (DTD) defines valid RFML elements and syntax. To ensure that an
XML parser can validate your RFML source file at runtime, declare the RFML DTD in the source file:
<!DOCTYPE rfml SYSTEM "rfml.dtd">

The RFML DTD resides in the jt400.jar file (com/ibm/as400/data/rfml.dtd).

RFML syntax

The RFML DTD defines tags, each of which has its own attribute tags. You use the RFML tags to declare
and define the elements in your RFML files.

In the following example, RFML syntax describes one record format and one structure:
<rfml>

<recordformat>
<data> </data>

</recordformat>

<struct>
<data> </data>

</struct>

</rfml>

IBM Toolbox for Java 411

javadoc/com/ibm/as400/data/RecordFormatDocument.html

RFML document type definition (DTD):

This is the RFML DTD. Note that the version is 4.0. The RFML DTD resides in the jt400.jar file
(com/ibm/as400/data/rfml.dtd).
<!--
Record Format Markup Language (RFML) Document Type Definition.

RFML is an XML language. Typical usage:
<?xml version="1.0"?>
<!DOCTYPE rfml SYSTEM "rfml.dtd">
<rfml version="4.0">
...
</rfml>

(C) Copyright IBM Corporation, 2001,2002
All rights reserved. Licensed Materials Property of IBM
US Government Users Restricted Rights
Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.
-->

<!-- Convenience entities -->
<!ENTITY % string "CDATA"> <!-- a string of length 0 or greater -->
<!ENTITY % nonNegativeInteger "CDATA"> <!-- a non-negative integer -->
<!ENTITY % binary2 "CDATA"> <!-- an integer in range 0-65535 -->
<!ENTITY % boolean "(true|false)">
<!ENTITY % datatype "(char | int | packed | zoned | float | byte | struct)">
<!ENTITY % biditype "(ST4 | ST5 | ST6 | ST7 | ST8 | ST9 | ST10 | ST11 | DEFAULT)">

<!-- The document root element -->
<!ELEMENT rfml (struct | recordformat)+>
<!ATTLIST rfml

version %string; #FIXED "4.0"
ccsid %binary2; #IMPLIED

>
<!-- Note: The ccsid is the default value that will be used for -->

<!-- any contained <data type="char"> elements that do not specify a ccsid. -->

<!-- Note: RFML does not support nested struct declarations. -->
<!-- All struct elements are direct children of the root node. -->
<!ELEMENT struct (data)+>
<!ATTLIST struct

name ID #REQUIRED
>

<!-- <!ELEMENT recordformat (data | struct)*> -->
<!ELEMENT recordformat (data)*>
<!ATTLIST recordformat

name ID #REQUIRED
description %string; #IMPLIED

>
<!-- Note: On the server, the Record "text description" field is limited to 50 bytes. -->

<!ELEMENT data EMPTY>
<!ATTLIST data

name %string; #REQUIRED

count %nonNegativeInteger; #IMPLIED

type %datatype; #REQUIRED
length %nonNegativeInteger; #IMPLIED
precision %nonNegativeInteger; #IMPLIED

412 IBM i: Programming IBM Toolbox for Java

ccsid %binary2; #IMPLIED
init CDATA #IMPLIED
struct IDREF #IMPLIED

bidistringtype %biditype; #IMPLIED
>
<!-- Note: The ’name’ attribute must be unique within a given recordformat. -->
<!-- Note: On the server, the length of Record field names is limited to 10 bytes. -->
<!-- Note: The ’length’ attribute is required, except when type="struct". -->
<!-- Note: If type="struct", then the ’struct’ attribute is required. -->
<!-- Note: The ’ccsid’ and ’bidistringtype’ attributes are valid only when type="char". -->
<!-- Note: The ’precision’ attribute is valid only for types "int", "packed", and "zoned". -->

<!-- The standard predefined character entities -->
<!ENTITY quot """> <!-- quotation mark -->
<!ENTITY amp "&#38;"> <!-- ampersand -->
<!ENTITY apos "'"> <!-- apostrophe -->
<!ENTITY lt "&#60;"> <!-- less than -->
<!ENTITY gt ">"> <!-- greater than -->
<!ENTITY nbsp " "> <!-- non-breaking space -->
<!ENTITY shy "­"> <!-- soft hyphen (discretionary hyphen) -->
<!ENTITY mdash "&#x2014;">
<!ENTITY ldquo "&#x201C;">
<!ENTITY rdquo "&#x201D;">

The RFML data tag:

The RFML data tag defines a field within a record format or structure.

Listed below are the attributes for the data tag. Attributes enclosed in brackets, [], indicate that the
attribute is optional. If you specify an optional attribute, do not include the brackets in your source. Some
attribute values are shown as a list of choices enclosed in braces, {}, with possible choices separated by
vertical bars, |. When you specify one of these attributes, do not include the braces in your source and
only specify one of the choices shown.
<data type="{ char | int | packed | zoned | float | byte | struct }"]

[bidistringtype="{ ST4 | ST5 | ST6 | ST7 | ST8 | ST9 | ST10 | ST11 | DEFAULT }"]
[ccsid="{ number | data-name }"]
[count="{ number | data-name }"]
[init="string"]
[length="{ number | data-name }"]
[name="name"]
[precision="number"]
[struct="struct-name"]>

</data>

The following table lists the data tag attributes. Each entry includes the attribute name, the possible valid
values, and a description of the attribute.

IBM Toolbox for Java 413

Attribute Value Description

type= char A character value. A char data
value is returned as a
java.lang.String. For more
information, see the char values for
length.

int An integer value. An int data
value is returned as a
java.lang.Long. For more
information, see the int values for
length and precision.

packed A packed decimal value. A
packed data value is returned as a
java.math.BigDecimal. For more
information, see the packed values
for length and precision.

zoned A zoned decimal value. A
zoned data value is returned as a
java.math.BigDecimal. For more
information, see the zoned values
for length and precision.

float A floating point value. The
length attribute specifies the
number of bytes: either 4 or 8. A
4-byte integer is returned as a
java.lang.Float. An 8-byte integer is
returned as a java.lang.Double. For
more information, see the float
values for length.

byte A byte value. No conversion
is performed on the data. A byte
data value is returned as an array
of byte values (byte[]). For more
information, see the byte values for
length.

struct The name of the <struct>
element. A struct allows you to
define a structure once and reuse
it multiple times within the
document. When you use
type="struct", it is as if the
structure specified appears at this
location in the document. A struct
does not allow for a length value
and has no value for precision.

Indicates the type of data being used
(character, integer, packed, zoned, floating
point, byte, or struct).

Values for the length and precision
attributes are different for different data
types. For more information, see the Values
for length and precision.

414 IBM i: Programming IBM Toolbox for Java

Attribute Value Description

bidistringtype= DEFAULT where DEFAULT is the
default string type for
non-bidirectional data (LTR).

ST4 where ST4 is String Type 4.

ST5 where ST5 is String Type 5.

ST6 where ST6 is String Type 6.

ST7 where ST7 is String Type 7.

ST8 where ST8 is String Type 8.

ST9 where ST9 is String Type 9.

ST10 where ST10 is String Type
10.

ST11 where ST11 is String Type 11.

Specifies the bidirectional string type for
<data> elements with type="char". If this
attribute is omitted, string type for this
element is implied by the CCSID (whether
explicitly specified or the default CCSID of
the host environment).

String types are defined in the Javadoc for
the BidiStringType class.

ccsid= number where number defines a
fixed, never-changing CCSID.

data-name where data-name defines
the name that will contain, at
runtime, the CCSID of the
character data. The data-name
specified can be a fully qualified
name or a name that is relative to
the current element. In either case,
the name must reference a <data>
element that is defined with
type="int". See Resolving
Relative Names for more
information about how relative
names are resolved.

Specifies the host coded character set
identifier (CCSID) for character data for the
<data> element. The ccsid attribute can be
specified only for <data> elements with
type="char".

If this attribute is omitted, character data
for this element is assumed to be in the
default CCSID of the host environment.

count= number where number defines a
fixed, never-changing number of
elements in a sized array.

data-name where data-name defines
the name of a <data> element
within the RFML document that
will contain, at runtime, the
number of elements in the array.
The data-name specified can be a
fully qualified name or a name
that is relative to the current
element. In either case, the name
must reference a <data> element
that is defined with type="int".
See Resolving Relative Names for
more information about how
relative names are resolved.

Specifies that the element is an array and
identifies the number of entries in the
array.

If the count attribute is omitted, the
element is not defined as an array,
although it may be contained within
another element that is defined as an array.

IBM Toolbox for Java 415

Attribute Value Description

init= string Specifies an initial value for the <data>
element.

The initial value specified is used to
initialize scalar values. If the element is
defined as an array or is contained within
a structure defined as an array, the initial
value specified is used as an initial value
for all entries in the array.

length= number where number defines a
fixed, never-changing length.

data-name where data-name defines
the name of a <data> element
within the RFML document that
will contain, at runtime, the
length. A data-name can be
specified only for <data> elements
with type="char" or type="byte".
The data-name specified can be a
fully qualified name or a name
that is relative to the current
element. In either case, the name
must reference a <data> element
that is defined with type="int".
See Resolving Relative Names for
more information about how
relative names are resolved.

Specifies the length of the data element.
Usage of this attribute varies depending on
the data type. For more information, see
the Values for length and precision.

name= name Specifies the name of the <data> element.

precision= number Specifies the number of bytes of precision
for some numeric data types. For more
information, see the Values for length and
precision.

struct= name Specifies the name of a <struct> element
for the <data> element. A struct attribute
can be specified only for <data> elements
with type="struct".

Related information:
BidiStringType Javadoc

The RFML rfml tag:

The rfml tag begins and ends the RFML source file that describes the data format.

Listed below are the attributes for the rfml tag. Attributes enclosed in brackets, [], indicate that the
attribute is optional. If you specify an optional attribute, do not include the brackets in your source.
<rfml version="version-string"

[ccsid="number"]>
</rfml>

The following table lists the rfml tag attributes. Each entry includes the attribute name, the possible valid
values, and a description of the attribute.

416 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/BidiStringType.html

Attribute Value Description

version= version-string A fixed version of the
RFML DTD. For V5R3, 4.0 is the
only valid value.

Specifies the version of the RFML
DTD, which you can use to verify the
correct value.

ccsid= number A fixed, never-changing
coded character set identifier
(CCSID).

Specifies the host CCSID, which
applies to all enclosed <data
type="char"> elements that do not
specify a CCSID. For more
information, see the RFML <data>
tag. When you omit this attribute, the
default CCSID of the host
environment is used.

The RFML recordformat tag:

The RFML recordformat tag defines a record format, which contains either data elements or references to
structure elements.

Listed below are the attributes for the recordformat tag. Attributes enclosed in brackets, [], indicate that
the attribute is optional. If you specify an optional attribute, do not include the brackets in your source.
<recordformat name="name"

[description="description"]>
</recordformat>

The following table lists the recordformat tag attributes. Each entry includes the attribute name, the
possible valid values, and a description of the attribute.

Attribute Value Description

name= name Specifies the name of the recordformat.

description= description Specifies the description of the recordformat.

The RFML struct tag:

The RFML struct tag defines a named structure that you can reuse within the RFML source file. The
structure contains a data tag for each field in the structure.

Listed below are the attributes for the struct tag. Attributes enclosed in brackets, [], indicate that the
attribute is optional. If you specify an optional attribute, do not include the brackets in your source.
<struct name="name">
</struct>

The following table lists the struct tag attributes. Each entry includes the attribute name, the possible
valid values, and a description of the attribute.

Attribute Value Description

name= name Specifies the name of the <struct> element.

XML parser and XSLT processor
Some IBM Toolbox for Java packages or functions require that, at run-time, you have an Extensible
Markup Language (XML) parser or Extensible Stylesheet Language Transformations (XSLT) processor in
your CLASSPATH environment variable.

IBM Toolbox for Java 417

Refer to the following information to determine which parser and processor you want to use.

For more information about which IBM Toolbox for Java packages and functions require an XML parser
or XSLT processor, see the following page:

“JAR files” on page 10

XML parser

If the package or function requires an XML parser, you must include an XML parser in the CLASSPATH
at run-time. The XML parser must meet the following requirements:
v Be JAXP-compliant
v Extend class org.apache.xerces.parsers.SAXParser
v Support full schema validation

Note: The parser only needs to support full schema validation if use intend to use XPCML. If you are
only using PCML, full schema validation is not necessary.

The Java 2 Software Developer Kit (J2SDK), version 1.4, includes a suitable XML parser. If you use a
previous version of J2SDK, use any of the following methods to access a suitable XML parser:
v Use x4j400.jar (an IBM version of the Xerces XML parser from Apache)

v Download the Xerces XML parser from the Apache Web site
v Use any compatible XML parser in the /QIBM/ProdData/OS400/xml/lib directory on your system

Note: Consider using the latest versions of the parsers that reside in /QIBM/ProdData/OS400/xml/lib. For
example, xmlapis11.jar and xerces411.jar are both fully validating parsers.

You can use these parsers on your server or copy them to a workstation.

Note: Any XML parser that meets the requirements for running XPCML can run PCML and RFML. Keep
in mind that XPCML does not support serialization.

XSLT processor

If the package or function requires an XSLT processor, you must include an XSLT processor in the
CLASSPATH at run-time. The XSLT processor must meet the following requirements:
v Be JAXP-compliant
v Contain the class javax.xml.transform.Transformer

The Java 2 Software Developer Kit (J2SDK), version 1.4, includes a suitable XSLT processor. If you use a
previous version of J2SDK, use any of the following methods to access a suitable XSLT processor:
v Use xslparser.jar (an IBM version of the Xalan XSLT processor from Apache)

v Download the Xalan XSLT processor from the Apache Web site
v Use any compatible XSLT processor in the /QIBM/ProdData/OS400/xml/lib directory on your system

You can use these processors on your system or copy them to a workstation.

Extensible Program Call Markup Language
Extensible Program Call Markup Language (XPCML) enhances the functionality and usability of the
Program Call Markup Language (PCML) by offering support for XML schemas. XPCML does not support
serialization, so unlike PCML, you cannot serialize an XPCML document.

418 IBM i: Programming IBM Toolbox for Java

http://xml.apache.org/
http://xml.apache.org/

However, XPCML offers several valuable enhancements when compared to PCML:
v Specify and pass values for program parameters
v Retrieve the results of a program call to your server in XPCML
v Transform an existing PCML document into the equivalent XPCML document
v Extend and customize the XPCML schema to define new simple and complex elements and attributes

For more information about XPCML, see the following pages:
Related reference:
“Extensible Markup Language components” on page 377
IBM Toolbox for Java includes several Extensible Markup Language (XML) components, including an
XML parser.
Related information:
XML Toolkit

W3C Architecture domain: XML Schema

Advantages of XPCML over PCML
Extensible Program Call Markup Language (XPCML) offers several valuable enhancements over PCML.
v Specify and pass values for program parameters
v Retrieve the results of a program call to your IBM i server in XPCML
v Transform an existing PCML document into the equivalent XPCML document
v Extend and customize the XPCML schema to define new simple and complex elements and attributes

Specify and pass values for program parameters

XPCML uses an XML schema to define program parameter types; PCML uses a data type definition
(DTD). At parse time, the XML parser validates data values entered as parameters against the appropriate
parameters as defined in the schema. Data types exist for parameters of many types: strings, integers,
longs, and so on. This ability to specify and pass values for program parameters is a significant
improvement over PCML. In PCML, you can verify values for parameters only after parsing the PCML
document. Additionally, verifying parameter values in PCML often requires coding your application to
perform the validation.

Retrieve results of a program call in XPCML

XPCML also provides the capability to retrieve program call results as XPCML. In PCML, you obtain
program call results by calling one of the getValue methods of the ProgramCallDocument class after you
make the call to the program. In XPCML, you can use the getValue methods, but you can also have your
XPCML call a generateXPCML method, which returns the results of a program call as XPCML.

Transform existing PCML documents into XPCML

A new method of the ProgramCallDocument class, transformPCMLToXPCML, enables you to transform
existing PCML documents to equivalent XPCML documents. This allows you to take advantage of new
XPCML function without writing XPCML source for your existing IBM i program call documents.

Extend and customize the XPCML schema

XPCML is extensible which means you can define new parameter types that extend those specified by the
XPCML schema. Condensing XPCML extends the XPCML schema to create new data type definitions that
simplify and improve the readability and usability of your XPCML documents.

IBM Toolbox for Java 419

http://www.w3.org/XML/Schema

Requirements for using XPCML
The Extensible Program Call Markup Language (XPCML) has the same workstation Java virtual machine
requirements as the rest of the IBM Toolbox for Java.

For more information, see the following page:

“Workstation requirements for running IBM Toolbox for Java applications” on page 7

In addition, using XPCML includes requirements for the XML schema file, XML parser, and Extensible
Stylesheet Language Transformation (XSLT) processor:

XML schema file

Your XPCML documents must know the location of the file that contains the schema. The default schema
for IBM Toolbox for Java is xpcml.xsd, which resides within the jt400.jar file.

To use the default schema, extract xpcml.xsd from jt400.jar, then place the file in a suitable location. The
following procedure shows one way that you can extract the .xsd file on a workstation.

Extract the xpcml.xsd schema file

v Start a command line session in the directory that contains jt400.jar
v Use the following command to extract the .xsd file:

jar xvf jt400.jar com/ibm/as400/data/xpcml.xsd

Note: If you do not run the previous command from the directory that contains jt400.jar, you can specify
a fully qualified path to jt400.jar.

You can place the default schema file (or any schema file) in any directory. The only requirement is that
you specify the location of the schema file by using the xsi:noNamespaceSchemaLocation attribute in the
<xpcml> tag.

You can specify the location of the schema as a file path or as a URL.

Note: Although the following examples use xpcml.xsd as the schema file, you can specify any schema
that extends xpcml.xsd.

v To specify the same directory as the XPCML file, use xsi:noNamespaceSchemaLocation='xpcml.xsd'
v To specify a fully qualified path: xsi:noNamespaceSchemaLocation='c:\myDir\xpcml.xsd'
v To specify a URL: xsi:noNamespaceSchemaLocation='http://myServer/xpcml.xsd'

To see an HTML version of the xpcml.xsd file, see the following page:

“Schema xpcml.xsd file” on page 422

XML parser and XSLT processor

At run-time, you must include an XML parser and an XSLT processor in your CLASSPATH environment
variable. For more information, see the following page:

“XML parser and XSLT processor” on page 417

XPCML schema and syntax
XPCML documents, called XPCML source files, contain tags and data that fully define calls to programs
on your system.

420 IBM i: Programming IBM Toolbox for Java

Because XPCML uses XML schemas instead of a document type definition (DTD), you can use XPCML in
ways that you cannot use PCML:
v Pass values for input parameters to your program as XML elements
v Receive values for output parameters from your program as XML elements
v Have the XML parser automatically validate the values passed to your program
v Extend the schema to define new simple and complex elements

For more information about the XPCML schema and syntax, see the following pages:

Comparison of XPCML source to PCML source:

XPCML differs from PCML in several ways, but one major difference is that XPCML allows you to
specify the values of input parameters within the XPCML source file.

PCML allows you to use the init attribute of the <data> tag to specify the initial value for a data element
in the PCML source. However, using PCML to specify values has the following limitations:
v You cannot use the init attribute to set array values
v Validation of the init value occurs only after parsing the PCML document

To specify array values in PCML, you must first read in and parse the PCML document, then perform a
series of calls to ProgramCallDocument.setValue().

Using XPCML makes it easier to specify values of single elements and arrays:
v Specify values for both scalar and array elements in the XPCML source file
v Validate the specified array values at parse time

The following simple comparisons indicate ways in which XPCML differs from PCML. Each example
defines a program call for an IBM i program.

Example: Calling an IBM i program

The following examples call an IBM i program called prog1.

XPCML source code
<?xml version="1.0" encoding="UTF-8"?>
<xpcml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’xpcml.xsd’ version="4.0">
<program name="prog1" path="/QSYS.LIB/W95LIB.LIB/PROG1.PGM">

<parameterList>
<stringParm name="parm1" passDirection="in" length="10">Parm1</stringParm>
<intParm name="parm2" passDirection="in">5</intParm>
<shortParm name="parm3" passDirection="in">3</shortParm>

</parameterList>
</program>

</xpcml>

PCML source code
<pcml version="4.0">

<program name="prog1" path="QSYS.LIB/MYLIB.LIB/PROG1.PGM">
<data name="parm1" type="char" usage="input" length="10" init="Parm1"/>
<data name="parm2" type="int" usage="input" length="4" init="5"/>
<data name="parm3" type="int" usage="input" length="2" precision="16" init="3"/>

</program>
</pcml>

IBM Toolbox for Java 421

Example: Calling an IBM i program using an array of string parameters

The following examples call an IBM i program called prog2 and define parm1 as an array of string
parameters. Note the functionality of XPCML:
v Initializes the value of each element in the array
v Specifies the input values as element content that a fully validating XML parser can verify

You can take advantage of this XPCML functionality without writing any Java code.

PCML cannot match the XPCML performance. PCML cannot initialize the value of each element in the
array. PCML cannot validate the init values at parse time. To match the functionality of XPCML, you
would have to read in and parse the PCML document, then code your Java application to set the value
for each array element. You would also have to write code to validate the parameters.

XPCML source code
<?xml version="1.0" encoding="UTF-8"?>
<xpcml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="xpcml.xsd" version="4.0">

<program name="prog2" path="/QSYS.LIB/W95LIB.LIB/PROG2.PGM">
<parameterList>

<arrayOfStringParm name="parm1" passDirection="in"
length="10" count="3">
<i>Parm1-First value</i>
<i>Parm1-Second value</i>
<i>Parm1-Third value</i>

</arrayOfStringParm>
<longParm name="parm2" passDirection="in">5</longParm>
<zonedDecimalParm name="parm3" passDirection="in"

totalDigits="5" fractionDigits="2">32.56</zonedDecimalParm>
</parameterList>

</program>
</xpcml>

PCML source code
<pcml version="4.0">

<program name="prog2" path="QSYS.LIB/MYLIB.LIB/PROG2.PGM">
<data name="parm1" type="char" usage="input" length="20" count="3"/>
<data name="parm2" type="int" usage="input" length="8" init="5"/>
<data name="parm3" type="zoned" usage="input" length="5" precision="2" init="32.56"/>

</program>
</pcml>

Schema xpcml.xsd file:

To make it easier to display and print, some lines of this HTML version of xpcml.xsd wrap to a second
line. The same lines in the source xsd file appear on a single line.

For more information about using the xpcml.xsd file, see Requirements for using XPCML.

Note: Read the Code example disclaimer for important legal information.
<?xml version="1.0" encoding="UTF-8"?>

<!--///
//
// JTOpen (IBM Toolbox for Java - OSS version)
//
// Filename: xpcml.xsd
//
// The source code contained herein is licensed under the IBM Public License

422 IBM i: Programming IBM Toolbox for Java

// Version 1.0, which has been approved by the Open Source Initiative.
// Copyright (C) 1997-2008 International Business Machines Corporation and
// others. All rights reserved.
//
//-->

<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’>

<xs:annotation>
<xs:documentation>
Schema for xpcml (eXtended Program Call Markup Language).
</xs:documentation>

</xs:annotation>

<xs:element name="xpcml">
<xs:complexType>

<xs:sequence>
<xs:element ref="structOrProgram" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="version" use="required">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="4.0"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

<!-- Define key/keyref link between the name of a struct -->
<!-- and the struct attribute of a parameter field. -->
<xs:key name="StructKey">

<xs:selector xpath="struct"/>
<xs:field xpath="@name"/>

</xs:key>
<xs:keyref name="spRef" refer="StructKey">

<xs:selector xpath="structParm" />
<xs:field xpath="@struct" />

</xs:keyref>
</xs:element>

<!-- Program tag and attributes -->
<xs:element name="program" substitutionGroup="structOrProgram">

<xs:complexType>
<xs:sequence>

<xs:element ref="parameterList" minOccurs="1" maxOccurs="1"/>
<!-- Used as a wrapper tag around the parameter list for the program. -->

</xs:sequence>
<!-- Name of the program to call. -->
<xs:attribute name="name" type="string50" use="required" />
<!-- Path to the program object. Default is to assume in library QSYS. -->
<xs:attribute name="path" type="xs:string"/>
<!-- Specifies the order in which parameters should be parsed. -->
<!-- Value is a blank-separated list of parameter names. -->
<xs:attribute name="parseOrder" type="xs:string"/>
<!-- The entry point name within a service program. -->
<xs:attribute name="entryPoint" type="xs:string"/>
<!-- The type of value, if any, returned from a service program call. -->
<xs:attribute name="returnValue" type="returnValueType"/>
<!-- When calling a Java program and System i -->
<!-- program is on same server -->
<!-- and is thread-safe, set to true to call the
<!-- System i program in same job -->
<!-- and on same thread as the Java program. -->
<xs:attribute name="threadSafe" type="xs:boolean" />
<!-- The CCSID of the entry point name within a service program. -->
<xs:attribute name="epccsid" type="ccsidType"/>

</xs:complexType>

IBM Toolbox for Java 423

</xs:element>

<!-- A parameter list is made up of one or more parameters. -->
<xs:element name="parameterList">

<xs:complexType>
<xs:group ref="programParameter" minOccurs="1" maxOccurs="unbounded"/>

</xs:complexType>
</xs:element>

<!-- All the different kinds of program parameters that we understand. -->
<xs:group name="programParameter">

<xs:choice>
<xs:element ref="stringParmGroup"/>
<xs:element ref="stringParmArrayGroup"/>
<xs:element ref="intParmGroup"/>
<xs:element ref="intParmArrayGroup"/>

<xs:element ref="unsignedIntParmGroup"/>
<xs:element ref="unsignedIntParmArrayGroup"/>

<xs:element ref="shortParmGroup"/>
<xs:element ref="shortParmArrayGroup"/>
<xs:element ref="unsignedShortParmGroup"/>
<xs:element ref="unsignedShortParmArrayGroup"/>
<xs:element ref="longParmGroup"/>
<xs:element ref="longParmArrayGroup"/>
<xs:element ref="zonedDecimalParmGroup"/>
<xs:element ref="zonedDecimalParmArrayGroup"/>
<xs:element ref="packedDecimalParmGroup"/>

<xs:element ref="packedDecimalParmArrayGroup"/>
<xs:element ref="floatParmGroup"/>
<xs:element ref="floatParmArrayGroup"/>
<xs:element ref="doubleParmGroup"/>
<xs:element ref="doubleParmArrayGroup"/>
<xs:element ref="hexBinaryParmGroup"/>
<xs:element ref="hexBinaryParmArrayGroup"/>

<xs:element ref="structParmGroup"/>
<xs:element ref="structParmArrayGroup"/>
<xs:element ref="structArrayGroup"/>
<xs:element ref="struct"/>

</xs:choice>

</xs:group>

<!-- Abstract type for all data parameter types. -->
<xs:element name="stringParmGroup" type="stringParmType" abstract="true" />
<xs:element name="stringParmArrayGroup" type="stringParmArrayType" abstract="true" />
<xs:element name="intParmGroup" type="intParmType" abstract="true" />
<xs:element name="intParmArrayGroup" type="intParmArrayType" abstract="true" />
<xs:element name="unsignedIntParmGroup" type="unsignedIntParmType" abstract="true" />
<xs:element name="unsignedIntParmArrayGroup" type="unsignedIntParmArrayType" abstract="true" />
<xs:element name="shortParmGroup" type="shortParmType" abstract="true" />
<xs:element name="shortParmArrayGroup" type="shortParmArrayType" abstract="true" />
<xs:element name="unsignedShortParmGroup" type="unsignedShortParmType" abstract="true" />
<xs:element name="unsignedShortParmArrayGroup" type="unsignedShortParmArrayType" abstract="true" />
<xs:element name="longParmGroup" type="longParmType" abstract="true" />
<xs:element name="longParmArrayGroup" type="longParmArrayType" abstract="true" />
<xs:element name="zonedDecimalParmGroup" type="zonedDecimalParmType" abstract="true" />
<xs:element name="zonedDecimalParmArrayGroup" type="zonedDecimalParmArrayType" abstract="true" />
<xs:element name="packedDecimalParmGroup" type="packedDecimalParmType" abstract="true" />
<xs:element name="packedDecimalParmArrayGroup" type="packedDecimalParmArrayType" abstract="true" />
<xs:element name="floatParmGroup" type="floatParmType" abstract="true" />
<xs:element name="floatParmArrayGroup" type="floatParmArrayType" abstract="true" />
<xs:element name="doubleParmGroup" type="doubleParmType" abstract="true" />
<xs:element name="doubleParmArrayGroup" type="doubleParmArrayType" abstract="true" />
<xs:element name="hexBinaryParmGroup" type="hexBinaryParmType" abstract="true" />
<xs:element name="hexBinaryParmArrayGroup" type="hexBinaryParmArrayType" abstract="true" />
<xs:element name="structParmGroup" type="structParmType" abstract="true" />
<xs:element name="structParmArrayGroup" type="structParmArrayType" abstract="true" />

424 IBM i: Programming IBM Toolbox for Java

<xs:element name="structArrayGroup" type="structArrayType" abstract="true"
substitutionGroup="structOrProgram" />

<!-- String parameter -->
<xs:element name="stringParm" type="stringParmType" substitutionGroup="stringParmGroup"

nillable="true"/>
<xs:complexType name="stringParmType">

<xs:simpleContent>
<xs:extension base="stringFieldType">

<xs:attributeGroup ref="commonParmAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- Array of string parameters -->
<xs:element name="arrayOfStringParm" type="stringParmArrayType"

substitutionGroup="stringParmArrayGroup" nillable="true" />
<xs:complexType name="stringParmArrayType">

<xs:sequence>
<xs:element name="i" type="stringElementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attributeGroup ref="commonParmAttrs"/>
<xs:attributeGroup ref="commonFieldAttrs"/>
<!-- The number of elements in the array. -->
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string" />
<!-- The number of characters in each string. -->
<xs:attribute name="length" type="xs:string"/>
<!-- The host CCSID for each string. -->
<xs:attribute name="ccsid" type="xs:string"/>
<!-- Specifies how to trim whitespace (left, right, both, none). -->
<xs:attribute name="trim" type="trimType" />
<!-- The size of each character (’chartype’ in PCML). -->
<xs:attribute name="bytesPerChar" type="charType" />

<!-- The bidirectional string type. -->
<xs:attribute name="bidiStringType" type="bidiStringTypeType" />

</xs:complexType>

<xs:complexType name="stringElementType">
<xs:simpleContent>

<xs:extension base="xs:string">
<!-- The index into the array. -->
<xs:attribute name="index" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>
</xs:complexType>

<!-- Integer parameter (4 bytes on server) -->
<xs:element name="intParm" type="intParmType" nillable="true" substitutionGroup="intParmGroup" />

<xs:complexType name="intParmType" >
<xs:simpleContent>

<xs:extension base="intFieldType">
<xs:attributeGroup ref="commonParmAttrs"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- intParm array type -->
<xs:element name="arrayOfIntParm" type="intParmArrayType" substitutionGroup="intParmArrayGroup"

nillable="true" />
<xs:complexType name="intParmArrayType">

<xs:sequence>
<!-- ’i’ is the tag used for non-struct array elements. -->
<xs:element name="i" type="intElementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->

IBM Toolbox for Java 425

<xs:attribute name="count" type="xs:string" />
<xs:attributeGroup ref="commonParmAttrs"/>
<xs:attributeGroup ref="commonFieldAttrs"/>

</xs:complexType>

<xs:complexType name="intElementType">
<xs:simpleContent>

<xs:extension base="xs:int">
<xs:attribute name="index" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- Unsigned Integer parameter (4 bytes on server) -->
<xs:element name="unsignedIntParm" type="unsignedIntParmType" nillable="true"

substitutionGroup="unsignedIntParmGroup" />
<xs:complexType name="unsignedIntParmType">

<xs:simpleContent>
<xs:extension base="unsignedIntFieldType">

<xs:attributeGroup ref="commonParmAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- unsigned intParm array type -->
<xs:element name="arrayOfUnsignedIntParm" type="unsignedIntParmArrayType"

substitutionGroup="unsignedIntParmArrayGroup" nillable="true" />
<xs:complexType name="unsignedIntParmArrayType">

<xs:sequence>
<xs:element name="i" type="unsignedIntElementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string" />
<xs:attributeGroup ref="commonParmAttrs"/>
<xs:attributeGroup ref="commonFieldAttrs"/>

</xs:complexType>

<xs:complexType name="unsignedIntElementType">
<xs:simpleContent>

<xs:extension base="xs:unsignedInt">
<xs:attribute name="index" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- Short integer parameter (2 bytes on server) -->
<xs:element name="shortParm" type="shortParmType" nillable="true" substitutionGroup="shortParmGroup"/>

<xs:complexType name="shortParmType">
<xs:simpleContent>

<xs:extension base="shortFieldType">
<xs:attributeGroup ref="commonParmAttrs"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- shortParm array type -->
<xs:element name="arrayOfShortParm" type="shortParmArrayType" substitutionGroup="shortParmArrayGroup"

nillable="true" />
<xs:complexType name="shortParmArrayType">

<xs:sequence>
<xs:element name="i" type="shortElementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string" />
<xs:attributeGroup ref="commonParmAttrs"/>

426 IBM i: Programming IBM Toolbox for Java

<xs:attributeGroup ref="commonFieldAttrs"/>
</xs:complexType>

<xs:complexType name="shortElementType">
<xs:simpleContent>

<xs:extension base="xs:short">
<xs:attribute name="index" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- Unsigned Short integer parameter (2 bytes on server) -->
<xs:element name="unsignedShortParm" type="unsignedShortParmType" nillable="true"

substitutionGroup="unsignedShortParmGroup" />
<xs:complexType name="unsignedShortParmType">

<xs:simpleContent>
<xs:extension base="unsignedShortFieldType">

<xs:attributeGroup ref="commonParmAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- unsignedShortParm array type -->
<xs:element name="arrayOfUnsignedShortParm" type="unsignedShortParmArrayType"

substitutionGroup="unsignedShortParmArrayGroup" nillable="true" />
<xs:complexType name="unsignedShortParmArrayType">

<xs:sequence>
<xs:element name="i" type="unsignedShortElementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string" />
<xs:attributeGroup ref="commonParmAttrs"/>
<xs:attributeGroup ref="commonFieldAttrs"/>

</xs:complexType>

<xs:complexType name="unsignedShortElementType">
<xs:simpleContent>

<xs:extension base="xs:unsignedShort">
<xs:attribute name="index" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- Long integer parameter (8 bytes on server) -->
<xs:element name="longParm" type="longParmType" nillable="true" substitutionGroup="longParmGroup" />

<xs:complexType name="longParmType">
<xs:simpleContent>

<xs:extension base="longFieldType">
<xs:attributeGroup ref="commonParmAttrs"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- longParm array type -->
<xs:element name="arrayOfLongParm" type="longParmArrayType" substitutionGroup="longParmArrayGroup"

nillable="true" />
<xs:complexType name="longParmArrayType">

<xs:sequence>
<xs:element name="i" type="longElementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string" />
<xs:attributeGroup ref="commonParmAttrs"/>
<xs:attributeGroup ref="commonFieldAttrs"/>

</xs:complexType>

IBM Toolbox for Java 427

<xs:complexType name="longElementType">
<xs:simpleContent>

<xs:extension base="xs:long">
<xs:attribute name="index" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- ZonedDecimal parameter -->
<xs:element name="zonedDecimalParm" type="zonedDecimalParmType" nillable="true"

substitutionGroup="zonedDecimalParmGroup" />
<xs:complexType name="zonedDecimalParmType">

<xs:simpleContent>
<xs:extension base="zonedDecimalFieldType">

<xs:attributeGroup ref="commonParmAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- zonedDecimalParm array type -->
<xs:element name="arrayOfZonedDecimalParm" type="zonedDecimalParmArrayType"

substitutionGroup="zonedDecimalParmArrayGroup" nillable="true" />
<xs:complexType name="zonedDecimalParmArrayType">

<xs:sequence>
<xs:element name="i" type="zonedDecimalElementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attributeGroup ref="commonParmAttrs"/>
<xs:attributeGroup ref="commonFieldAttrs"/>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string" />
<!-- The total number of digits in the field (’length’ in PCML). -->
<xs:attribute name="totalDigits" type="xs:positiveInteger"/>
<!-- The number of fractional digits (’precision’ in PCML). -->
<xs:attribute name="fractionDigits" type="xs:nonNegativeInteger"/>

</xs:complexType>

<xs:complexType name="zonedDecimalElementType">
<xs:simpleContent>

<xs:extension base="xs:decimal">
<xs:attribute name="index" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- packedDecimal parameter -->
<xs:element name="packedDecimalParm" type="packedDecimalParmType" nillable="true"

substitutionGroup="packedDecimalParmGroup" />
<xs:complexType name="packedDecimalParmType">

<xs:simpleContent>
<xs:extension base="packedDecimalFieldType">

<xs:attributeGroup ref="commonParmAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- packedDecimalParm array type -->
<xs:element name="arrayOfPackedDecimalParm" type="packedDecimalParmArrayType"

substitutionGroup="packedDecimalParmArrayGroup" nillable="true" />
<xs:complexType name="packedDecimalParmArrayType">

<xs:sequence>
<xs:element name="i" type="packedDecimalElementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attributeGroup ref="commonParmAttrs"/>
<xs:attributeGroup ref="commonFieldAttrs"/>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->

428 IBM i: Programming IBM Toolbox for Java

<xs:attribute name="count" type="xs:string" />
<xs:attribute name="totalDigits" type="xs:positiveInteger"/>
<xs:attribute name="fractionDigits" type="xs:nonNegativeInteger"/>

</xs:complexType>

<xs:complexType name="packedDecimalElementType">
<xs:simpleContent>

<xs:extension base="xs:decimal">
<xs:attribute name="index" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- Float parameter (4 bytes on server) -->
<xs:element name="floatParm" type="floatParmType" nillable="true" substitutionGroup="floatParmGroup"/>

<xs:complexType name="floatParmType">
<xs:simpleContent>

<xs:extension base="floatFieldType">
<xs:attributeGroup ref="commonParmAttrs"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- floatParm array type -->
<xs:element name="arrayOfFloatParm" type="floatParmArrayType" substitutionGroup="floatParmArrayGroup"

nillable="true" />
<xs:complexType name="floatParmArrayType">

<xs:sequence>
<xs:element name="i" type="floatElementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string" />
<xs:attributeGroup ref="commonParmAttrs"/>
<xs:attributeGroup ref="commonFieldAttrs"/>

</xs:complexType>

<xs:complexType name="floatElementType">
<xs:simpleContent>

<xs:extension base="xs:float">
<xs:attribute name="index" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- Double parameter (8 bytes on server) -->
<xs:element name="doubleParm" type="doubleParmType" nillable="true"

substitutionGroup="doubleParmGroup" />
<xs:complexType name="doubleParmType">

<xs:simpleContent>
<xs:extension base="doubleFieldType">

<xs:attributeGroup ref="commonParmAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- doubleParm array type -->
<xs:element name="arrayOfDoubleParm" type="doubleParmArrayType"

substitutionGroup="doubleParmArrayGroup" nillable="true" />
<xs:complexType name="doubleParmArrayType">

<xs:sequence>
<xs:element name="i" type="doubleElementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string" />
<xs:attributeGroup ref="commonParmAttrs"/>
<xs:attributeGroup ref="commonFieldAttrs"/>

IBM Toolbox for Java 429

</xs:complexType>

<xs:complexType name="doubleElementType">
<xs:simpleContent>

<xs:extension base="xs:double">
<xs:attribute name="index" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- Hex binary parameter (any number of bytes; unsigned) -->
<xs:element name="hexBinaryParm" type="hexBinaryParmType" substitutionGroup="hexBinaryParmGroup" />

<xs:complexType name="hexBinaryParmType">
<xs:simpleContent>

<xs:extension base="hexBinaryFieldType">
<!-- The field length in bytes (’length’ in PCML). -->
<xs:attribute name="totalBytes" type="xs:string"/>
<xs:attributeGroup ref="commonParmAttrs"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- hexBinaryParm array type -->
<xs:element name="arrayOfHexBinaryParm" type="hexBinaryParmArrayType"

substitutionGroup="hexBinaryParmArrayGroup" nillable="true" />
<xs:complexType name="hexBinaryParmArrayType">

<xs:sequence>
<xs:element name="i" type="hexBinaryElementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="totalBytes" type="xs:string"/>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string" />
<xs:attributeGroup ref="commonParmAttrs"/>
<xs:attributeGroup ref="commonFieldAttrs"/>

</xs:complexType>

<xs:complexType name="hexBinaryElementType">
<xs:simpleContent>

<xs:extension base="xs:hexBinary">
<xs:attribute name="index" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- Structure parm type -->
<xs:element name="structParm" type="structParmType" substitutionGroup="structParmGroup" />

<xs:complexType name="structParmType">
<xs:complexContent>

<xs:extension base="structureParmArray">
<xs:attribute name="struct" type="string50"/>
<!-- Specifies whether the parameter is passed by value or reference (’passby’ in PCML).-->
<!-- Value only allowed for integer parameters. -->
<xs:attribute name="passMode" type="passModeType"/>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<!-- Structure parm array type -->
<xs:element name="arrayOfStructParm" type="structParmArrayType"

substitutionGroup="structParmArrayGroup" nillable="true" />
<xs:complexType name="structParmArrayType">

<xs:sequence>
<!-- struct_i tag represents struct or struct parm array elements. -->
<xs:element name="struct_i" type="structElementType" minOccurs="0" maxOccurs="unbounded"/>

430 IBM i: Programming IBM Toolbox for Java

</xs:sequence>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string" />
<xs:attributeGroup ref="commonParmAttrs"/>
<xs:attributeGroup ref="commonFieldAttrs"/>
<xs:attribute name="struct" type="string50"/>

</xs:complexType>

<xs:complexType name="structElementType">
<xs:complexContent>

<xs:extension base="structureParmArray">
<xs:attribute name="index" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:complexContent>

</xs:complexType>

<!-- Struct element -->
<xs:element name="struct" type="structureParmArray" substitutionGroup="structOrProgram" />

<!-- Struct array type -->
<xs:element name="arrayOfStruct" type="structArrayType" substitutionGroup="structArrayGroup"

nillable="true" />
<xs:complexType name="structArrayType">

<xs:sequence>
<!-- struct_i tag represents struct elements in an array. -->
<xs:element name="struct_i" type="structElementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<!-- The name of the struct. -->
<xs:attribute name="name" type="string50"/>
<!-- Number of elements in the array. -->
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string" />
<!-- Specifies whether this is an input, output, or input-output struct (’usage’ in PCML). -->
<xs:attribute name="passDirection" type="passDirectionType"/>
<!-- The offset to the struct within an output parameter. -->
<xs:attribute name="offset" type="xs:string" />
<!-- The base location from which the ’offset’ attribute is relative. -->
<xs:attribute name="offsetFrom" type="xs:string" />
<!-- The number of bytes to reserve for output data for the element. -->
<xs:attribute name="outputSize" type="xs:string" />
<!-- The lowest version of IBM i on which this element exists. -->
<xs:attribute name="minvrm" type="string10" />
<!-- The highest version of IBM i on which this element exists. -->
<xs:attribute name="maxvrm" type="string10" />

</xs:complexType>

<!-- Attributes that are common to all data field types. -->
<xs:attributeGroup name="commonParmAttrs">

<!-- Specifies whether this is an input, output, or input-output parameter (’usage’ in PCML). -->
<!-- The default value if none is specified is ’inherit’. -->
<xs:attribute name="passDirection" type="passDirectionType"/>
<!-- Specifies whether the parameter is passed by reference or value (’passby’ in PCML). -->
<!-- The default value if none is specified is ’reference’. -->
<xs:attribute name="passMode" type="passModeType" />
<!-- The offset to the element within an output parameter. -->
<!-- The default value if none is specified is 0. -->
<xs:attribute name="offset" type="xs:string" />
<!-- The base location from which the ’offset’ attribute is relative. -->
<xs:attribute name="offsetFrom" type="xs:string" />
<!-- The number of bytes to reserve for output data for the element. -->
<xs:attribute name="outputSize" type="xs:string" />
<!-- The lowest version of IBM i to which this field applies. -->
<!-- If not specified, we assume this field applies to all versions. -->
<xs:attribute name="minvrm" type="string10" />
<!-- The highest version of IBM i to which this field applies. -->

IBM Toolbox for Java 431

<!-- If not specified, we assume this field applies to all versions. -->
<xs:attribute name="maxvrm" type="string10" />

</xs:attributeGroup>

<xs:simpleType name="passDirectionType">
<xs:restriction base="xs:string">

<xs:enumeration value="in"/>
<xs:enumeration value="inout"/>
<xs:enumeration value="out"/>
<xs:enumeration value="inherit"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="passModeType">
<xs:restriction base="xs:string">

<xs:enumeration value="value"/>
<xs:enumeration value="reference"/>

</xs:restriction>
</xs:simpleType>

<!-- Following types are to maintain compatibility with PCML -->
<xs:simpleType name="bidiStringTypeType">

<xs:restriction base="xs:string">
<xs:enumeration value="ST4"/>
<xs:enumeration value="ST5"/>
<xs:enumeration value="ST6"/>
<xs:enumeration value="ST7"/>
<xs:enumeration value="ST8"/>
<xs:enumeration value="ST9"/>
<xs:enumeration value="ST10"/>
<xs:enumeration value="ST11"/>
<xs:enumeration value="DEFAULT"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="charType">
<xs:restriction base="xs:string">

<xs:enumeration value="onebyte"/>
<xs:enumeration value="twobyte"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="trimType">
<xs:restriction base="xs:string">

<xs:enumeration value="none"/>
<xs:enumeration value="left"/>
<xs:enumeration value="right"/>
<xs:enumeration value="both"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="returnValueType">
<xs:restriction base="xs:string">

<xs:enumeration value="void"/>
<xs:enumeration value="integer"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name="structureParmArray">
<xs:sequence>

<xs:group ref="structureParm" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="string50"/>
<xs:attribute name="passDirection" type="passDirectionType"/>
<xs:attribute name="offset" type="xs:string" />
<xs:attribute name="offsetFrom" type="xs:string" />

432 IBM i: Programming IBM Toolbox for Java

<xs:attribute name="outputSize" type="xs:string" />
<xs:attribute name="minvrm" type="string10" />
<xs:attribute name="maxvrm" type="string10" />

</xs:complexType>

<!-- A structureParm is exactly one of the following: stringParm, intParm,
shortParm, longParm, zonedDecimalParm, packedDecimalParm, floatParm,
doubleParm, or hexBinaryParm. -->
<xs:group name="structureParm">

<xs:choice>
<xs:element ref="stringParmGroup" />
<xs:element ref="stringParmArrayGroup" />
<xs:element ref="intParmGroup" />
<xs:element ref="intParmArrayGroup" />
<xs:element ref="unsignedIntParmGroup" />
<xs:element ref="unsignedIntParmArrayGroup" />
<xs:element ref="shortParmGroup" />
<xs:element ref="shortParmArrayGroup" />
<xs:element ref="unsignedShortParmGroup" />
<xs:element ref="unsignedShortParmArrayGroup" />
<xs:element ref="longParmGroup" />
<xs:element ref="longParmArrayGroup" />
<xs:element ref="zonedDecimalParmGroup" />
<xs:element ref="zonedDecimalParmArrayGroup" />
<xs:element ref="packedDecimalParmGroup" />
<xs:element ref="packedDecimalParmArrayGroup" />
<xs:element ref="floatParmGroup" />
<xs:element ref="floatParmArrayGroup" />
<xs:element ref="doubleParmGroup" />
<xs:element ref="doubleParmArrayGroup" />
<xs:element ref="hexBinaryParmGroup" />
<xs:element ref="hexBinaryParmArrayGroup" />
<xs:element ref="structParmGroup" />
<xs:element ref="structParmArrayGroup"/>
<xs:element ref="structArrayGroup"/>
<xs:element ref="struct"/>

</xs:choice>
</xs:group>

<!-- Field Definition schema. -->

<!-- Define basic System
i native data types. -->

<xs:complexType name="zonedDecimal">
<xs:simpleContent>

<xs:extension base="xs:decimal">
<xs:attribute name="totalDigits" type="xs:positiveInteger" />
<xs:attribute name="fractionDigits" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<xs:complexType name="packedDecimal">
<xs:simpleContent>

<xs:extension base="xs:decimal">
<xs:attribute name="totalDigits" type="xs:positiveInteger" />
<xs:attribute name="fractionDigits" type="xs:nonNegativeInteger" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<xs:complexType name="structureFieldArray">

IBM Toolbox for Java 433

<xs:sequence>
<xs:group ref="structureField" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="string50"/>
<!-- ’count’ is required if you want to input and/or output array data as XPCML. -->
<xs:attribute name="count" type="xs:string"/>

</xs:complexType>

<!-- Abstract type for "struct or program". -->
<xs:element name="structOrProgram" abstract="true" />

<!-- Abstract type for all data field types. -->
<xs:element name="stringFieldGroup" type="stringFieldType" abstract="true" />
<xs:element name="intFieldGroup" type="intFieldType" abstract="true" />
<xs:element name="unsignedIntFieldGroup" type="unsignedIntFieldType" abstract="true" />
<xs:element name="shortFieldGroup" type="shortFieldType" abstract="true" />
<xs:element name="unsignedShortFieldGroup" type="unsignedShortFieldType" abstract="true" />
<xs:element name="longFieldGroup" type="longFieldType" abstract="true" />
<xs:element name="zonedDecimalFieldGroup" type="zonedDecimalFieldType" abstract="true" />
<xs:element name="packedDecimalFieldGroup" type="packedDecimalFieldType" abstract="true" />
<xs:element name="floatFieldGroup" type="floatFieldType" abstract="true" />
<xs:element name="doubleFieldGroup" type="doubleFieldType" abstract="true" />
<xs:element name="hexBinaryFieldGroup" type="hexBinaryFieldType" abstract="true" />
<xs:element name="structFieldGroup" type="structFieldType" abstract="true" />

<!-- Declare each field element to be a specific field type. -->
<xs:element name="stringField" type="stringFieldType" substitutionGroup="stringFieldGroup"

nillable="true"/>
<xs:element name="intField" type="intFieldType" nillable="true"

substitutionGroup="intFieldGroup" />
<xs:element name="unsignedIntField" type="unsignedIntFieldType"

substitutionGroup="unsignedIntFieldGroup" nillable="true"/>
<xs:element name="shortField" type="shortFieldType" nillable="true"

substitutionGroup="shortFieldGroup" />
<xs:element name="unsignedShortField" type="unsignedShortFieldType" nillable="true"

substitutionGroup="unsignedShortFieldGroup" />
<xs:element name="longField" type="longFieldType" nillable="true"

substitutionGroup="longFieldGroup" />
<xs:element name="hexBinaryField" type="hexBinaryFieldType" nillable="true"

substitutionGroup="hexBinaryFieldGroup" />
<xs:element name="zonedDecimalField" type="zonedDecimalFieldType" nillable="true"

substitutionGroup="zonedDecimalFieldGroup" />
<xs:element name="packedDecimalField" type="packedDecimalFieldType" nillable="true"

substitutionGroup="packedDecimalFieldGroup" />
<xs:element name="doubleField" type="doubleFieldType" nillable="true"

substitutionGroup="doubleFieldGroup" />
<xs:element name="floatField" type="floatFieldType" nillable="true"

substitutionGroup="floatFieldGroup" />

<xs:element name="structField" type="structFieldType" nillable="true"
substitutionGroup="structFieldGroup" />

<!-- A StructureField is exactly one of the following: stringField, intField,
shortField, longField, zonedDecimalField, packedDecimalField, floatField,
doubleField, or hexBinaryField. -->
<xs:group name="structureField">

<xs:choice>
<xs:element ref="stringFieldGroup"/>
<xs:element ref="intFieldGroup"/>
<xs:element ref="unsignedIntFieldGroup"/>
<xs:element ref="shortFieldGroup"/>

434 IBM i: Programming IBM Toolbox for Java

<xs:element ref="unsignedShortFieldGroup"/>
<xs:element ref="longFieldGroup"/>
<xs:element ref="zonedDecimalFieldGroup"/>
<xs:element ref="packedDecimalFieldGroup"/>
<xs:element ref="floatFieldGroup"/>
<xs:element ref="doubleFieldGroup"/>
<xs:element ref="hexBinaryFieldGroup"/>
<xs:element ref="structParmGroup"/>
<xs:element ref="struct"/>

</xs:choice>
</xs:group>

<!-- Character field -->
<!-- Maps to AS400Text. -->
<xs:complexType name="stringFieldType">

<xs:simpleContent>
<xs:extension base="xs:string">

<!-- Number of characters. -->
<xs:attribute name="length" type="xs:string"/>
<!-- Indicates the field’s encoding (CCSID) on the server. -->
<xs:attribute name="ccsid" type="xs:string"/>
<xs:attribute name="trim" type="trimType" />
<xs:attribute name="bytesPerChar" type="charType" />
<xs:attribute name="bidiStringType" type="bidiStringTypeType" />
<xs:attributeGroup ref="commonFieldAttrs"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- hexBinary field -->
<!-- Maps to AS400ByteArray. -->
<xs:complexType name="hexBinaryFieldType">

<xs:simpleContent>
<xs:extension base="xs:hexBinary">

<xs:attributeGroup ref="commonFieldAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- Float field -->
<!-- Maps to AS400Float4. -->
<xs:complexType name="floatFieldType">

<xs:simpleContent>
<xs:extension base="xs:float">

<xs:attributeGroup ref="commonFieldAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- zonedDecimal field -->
<!-- Maps to AS400ZonedDecimal. -->
<xs:complexType name="zonedDecimalFieldType">

<xs:simpleContent>
<xs:extension base="zonedDecimal">

<xs:attributeGroup ref="commonFieldAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- packedDecimal field -->
<!-- Maps to AS400PackedDecimal. -->
<xs:complexType name="packedDecimalFieldType">

<xs:simpleContent>
<!-- In DDS, "binary" values are 1-18 digits; if field length is

greater than 9, then decimal positions value must be 0. -->

IBM Toolbox for Java 435

<xs:extension base="packedDecimal">
<xs:attributeGroup ref="commonFieldAttrs"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- int field -->
<!-- Maps to AS400Bin4. -->
<xs:complexType name="intFieldType">

<xs:simpleContent>
<xs:extension base="xs:int">

<xs:attributeGroup ref="commonFieldAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- unsigned int field -->
<!-- Maps to AS400Bin4. -->
<xs:complexType name="unsignedIntFieldType">

<xs:simpleContent>
<xs:extension base="xs:unsignedInt">

<xs:attributeGroup ref="commonFieldAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- short field -->
<!-- Maps to AS400Bin2. -->
<xs:complexType name="shortFieldType">

<xs:simpleContent>
<xs:extension base="xs:short">

<xs:attributeGroup ref="commonFieldAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- unsigned short field -->
<!-- Maps to AS400Bin2. -->
<xs:complexType name="unsignedShortFieldType">

<xs:simpleContent>
<xs:extension base="xs:unsignedShort">

<xs:attributeGroup ref="commonFieldAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- long field -->
<!-- Maps to AS400Bin8. -->
<xs:complexType name="longFieldType">

<xs:simpleContent>
<xs:extension base="xs:long">

<xs:attributeGroup ref="commonFieldAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<!-- double field -->
<!-- Maps to AS400Float8. -->
<xs:complexType name="doubleFieldType">

<xs:simpleContent>
<xs:extension base="xs:double">

<xs:attributeGroup ref="commonFieldAttrs"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

436 IBM i: Programming IBM Toolbox for Java

<!-- struct Field -->
<xs:complexType name="structFieldType">

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="struct" type="string50"/>
<xs:attributeGroup ref="commonFieldAttrs"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<!-- Attributes that are common to all data field types. -->
<xs:attributeGroup name="commonFieldAttrs">

<xs:attribute name="name" type="string50"/>
<xs:attribute name="columnHeading1" type="string20"/>
<xs:attribute name="columnHeading2" type="string20"/>
<xs:attribute name="columnHeading3" type="string20"/>
<xs:attribute name="description" type="string50"/>
<xs:attribute name="defaultValue" type="xs:string"/><!-- Max length of string is 65535 characters. -->
<xs:attribute name="nullable" type="xs:boolean"/>
<xs:attribute name="isEmptyString" type="xs:boolean"/><!-- Indicate this is an empty string. -->

</xs:attributeGroup>

<!-- Utility types. -->

<xs:simpleType name="ccsidType">
<xs:restriction base="xs:nonNegativeInteger">
<xs:maxInclusive value="65535"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="string10">
<xs:restriction base="xs:string">
<xs:maxLength value="10"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="string20">
<xs:restriction base="xs:string">
<xs:maxLength value="20"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="string50">
<xs:restriction base="xs:string">
<xs:maxLength value="50"/>
</xs:restriction>

</xs:simpleType>
</xs:schema>

XPCML syntax:

The XPCML schema defines several element tags, and each element tag contains attribute tags.

The following table lists the different elements that you can declare and define in your XPCML source
files. Each entry in the first column links to the appropriate section of the XPCML schema.

XPCML tag Description Equivalent PCML tag

doubleParm Defines a double parameter data (type=float, length=8)

arrayOfDoubleParm Defines a parameter that is an array
of doubles

IBM Toolbox for Java 437

XPCML tag Description Equivalent PCML tag

floatParm Defines a float parameter data (type=float, length=4)

arrayOfFloatParm Defines a parameter that is an array
of floats

hexBinaryParm Defines a byte parameter represented
in hex

byte (rough equivalent, represented
in hex)

arrayOfHexBinaryParm Defines a parameter that is an array
of hexBinaries

intParm Defines an integer parameter data (type=int, length=4)

arrayOfIntParm Defines a parameter that is an array
of integers

longParm Defines a long parameter data (type=int, length=8)

arrayOfLongParm Defines a parameter that is an array
of longs

packedDecimalParm Defines a packed decimal parameter data (type=packed)

arrayOfPackedDecimalParm Defines a parameter that is an array
of packed decimals

parameterList Signals that the enclosing tag
represents all of the parameter
definitions for the program

program Begins and ends the XML that
describes one program call

program

shortParm Defines a short parameter data (type int, length 2)

arrayOfShortParm Defines a parameter that is an array
of shorts

stringParm Defines a string parameter

arrayOfStringParm Defines a parameter that is an array
of strings

struct Defines a named structure that you
can specify as an argument to a
program or as a field within another
named structure

struct

arrayOfStruct Defines an array of structs

structParm Represents a reference to a struct tag
found elsewhere in the XPCML
document that you want to included
at a specific location in the document

data (type=struct)

arrayOfStructParm Defines a parameter that is an array
of struct parameters

unsignedIntParm Defines an unsigned integer
parameter

data (type=int, length=4,
precision=32)

arrayOfUnsignedIntParm Defines a parameter that is an array
of unsigned integers

unsignedShortParm Defines an unsigned short parameter data (type=int, length=2,
precision=16)

arrayOfUnsignedShortParm Defines a parameter that is an array
of unsigned shorts

438 IBM i: Programming IBM Toolbox for Java

XPCML tag Description Equivalent PCML tag

xpcml Begins and ends the XPCML source
file that describes the program call
format

zonedDecimalParm Defines a zoned decimal parameter data (type zoned)

arrayOfZonedDecimalParm Defines a parameter that is an array
of zoned decimals

XPCML tag attributes:

The XPCML schema defines several element tags, and each element tag contains attribute tags. The
following table lists and describes the different attributes for each element.

For more specific and detailed information about XPCML tags and their attributes, see XPCML schema.

XPCML tag Attribute Description

hexBinaryParm fill last 2 columns with data and
decide format

arrayOfHexBinaryParm

doubleParm Defines a double parameter float (length 8)

arrayOfDoubleParm Defines a parameter that is an array
of doubles

floatParm Defines a float parameter data (type float, length 4)

arrayOfFloatParm Defines a parameter that is an array
of floats

intParm Defines an integer parameter data (type int, length 4)

arrayOfIntParm Defines a parameter that is an array
of integers

longParm Defines a long parameter data (type int, length 8)

arrayOfLongParm Defines a parameter that is an array
of longs

packedDecimalParm Defines a packed decimal parameter data (type packed)

arrayOfPackedDecimalParm Defines a parameter that is an array
of packed decimals

parameterList Signals that the enclosing tag
represents all of the parameter
definitions for the program

program Begins and ends the XML that
describes one program call

shortParm Defines a short parameter data (type int, length 2)

arrayOfShortParm Defines a parameter that is an array
of shorts

stringParm Defines a string parameter

arrayOfStringParm Defines a parameter that is an array
of strings

struct Defines a named structure that you
can specify as an argument to a
program or as a field within another
named structure

IBM Toolbox for Java 439

XPCML tag Attribute Description

arrayOfStruct Defines an array of structs

structParm Represents a reference to a struct tag
found elsewhere in the XPCML
document that you want to included
at a specific location in the document

data (type struct)

arrayOfStructParm Defines a parameter that is an array
of struct parms

unsignedIntParm Defines an unsigned integer
parameter

data (type int, length 4, precision 32)

arrayOfUnsignedIntParm Defines a parameter that is an array
of unsigned integers

unsignedShortParm Defines an unsigned short parameter data (type int, length 2, precision 16)

arrayOfUnsignedShortParm Defines a parameter that is an array
of unsigned shorts

xpcml Begins and ends the XPCML source
file that describes the program call
format

zonedDecimalParm Defines a zoned decimal parameter data (type zoned)

arrayOfZonedDecimalParm Defines a parameter that is an array
of zoned decimals

Using XPCML
Using XPCML is similar to using PCML. The following steps serve as a general outline for the actions
that you need to perform to use XPCML.
1. Use XPCML to describe the specification for the program call
2. Create a ProgramCallDocument object
3. Use ProgramCallDocument.callProgram() to run the program

Despite the similarities to using PCML, using XPCML offers enhanced functionality:
v Have the parser automatically validate parameter values
v Specify and pass values for program parameters
v Retrieve the results of a program call to your server in XPCML
v Transform an existing PCML document into the equivalent XPCML document
v Extend the XPCML schema to define new simple and complex elements and attributes

For example, IBM Toolbox for Java enables you to extend the XPCML schema to create new parameter
and data types. You can use this XPCML capability to condense your XPCML source files, which makes
the files easier to read and code easier to use.

For more information about using XPCML, see the following pages:

Converting existing PCML to XPCML:

The ProgramCallDocument class contains the transformPCMLToXPCML method that enables you to
transform existing PCML documents to equivalent XPCML documents.

XPCML has comparable definitions for all of the elements and attributes that you can define in PCML.
Using transformPCMLToXPCML() converts the PCML representation of the elements and attributes to the
equivalent XPCML.

440 IBM i: Programming IBM Toolbox for Java

Note that in some cases, equivalent XPCML attributes have a different name than in PCML. For example,
the attribute "usage" in PCML is the attribute "passDirection" in XPCML. For more information about
how to use XPCML compared to PCML, see XPCML schema and syntax.

The method takes the existing PCML document, which you pass to it as an InputStream object, and
generates the equivalent XPCML as an OutputStream object. Because transformPCMLToXPCML() is a
static method, you can call it without first creating a ProgramCallDocument object.

Example: Converting a PCML document to an XPCML document

The following example shows how to convert a PCML document (named myPCML.pcml) to an XPCML
document (named myXPCML.xpcml).

Note: You must specify .xpcml as the file extension for XPCML files. Using .xpcml as the file extension
ensures that the ProgramCallDocument class recognizes the file as XPCML. If you do not specify
an extension, ProgramCallDocument assumes that the file is PCML.

PCML document myPCML.pcml
<!-- myPCML.pcml -->
<pcml version="4.0">

<program name="prog1" path="/QSYS.LIB/W95LIB.LIB/PROG1.PGM">
<data type="char" name="parm1" usage="in" passby="reference"

minvrm="V5R2M0" ccsid="37" length="10" init="Value 1"/>
</program>

</pcml>

Java code to convert myPCML.pcml to myPCML.xpcml
try {

InputStream pcmlStream = new FileInputStream("myPCML.pcml");
OutputStream xpcmlStream = new FileOutputStream("myXPCML.xpcml");
ProgramCallDocument.transformPCMLToXPCML(pcmlStream, xpcmlStream);

}
catch (Exception e) {

System.out.println("error: - "+e.getMessage());
e.printStackTrace();

}

Resulting XPCML document myXPCML.xpcml
<?xml version="1.0" encoding="UTF-8"?>

<!-- myXPCML.xpcml -->
<xpcml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="xpcml.xsd" version="4.0">
<program name="prog1" path="/QSYS.LIB/W95LIB.LIB/PROG1.PGM">

<parameterList>
<stringParm name="parm1" passDirection="in" passMode="reference"

minvrm="V5R2M0" ccsid="37" length="10">Value 1
</stringParm>

</parameterList>
</program>

</xpcml>

For more information about transformPCMLToXPCML() and the ProgramCallDocument class, see the
following page:

ProgramCallDocument javadoc information

Using XPCML to call a program on your server:

After you create your XPCML file, you need to create a ProgramCallDocument object that can use the
XPCML specifications and data values to call a program on your IBM i server.

IBM Toolbox for Java 441

Create an XPCML ProgramCallDocument by passing in the name of your XPCML file on the
ProgramCallDocument constructor. Creating an XPCML ProgramCallDocument in this way first parses
and validates your XPCML document, then creates the ProgramCallDocument object.

In order to parse and validate the XPCML document, make sure that your CLASSPATH includes a fully
validating XML parser. For more information about requirements to run XPCML, see the following page:

“Requirements for using XPCML” on page 420

The following example shows how to create a ProgramCallDocument object for the XPCML file,
myXPCML.xpcml.

system = new AS400();
// Create a ProgramCallDocument into which to parse the file.
ProgramCallDocument xpcmlDoc =

new ProgramCallDocument(system, "myXPCML.xpcml");

The only difference between creating an XPCML ProgramCallDocument and a PCML
ProgramCallDocument is that you pass the constructor an XPCML document instead of a PCML
document.

Note: You must specify .xpcml as the file extension for XPCML files. Using .xpcml as the file extension
ensures that the ProgramCallDocument class recognizes the file as XPCML. If you do not specify
an extension, ProgramCallDocument assumes that the file is PCML.

Using XPCML to call a program on your server

After you create the ProgramCallDocument object, use any of the methods of the ProgramCallDocument
class to work with your XPCML document. For example, call an IBM i program by using
ProgramCallDocument.callProgram() or change the value for an XPCML input parameter before calling
the server program by using the appropriate ProgramCallDocument.setValue method.

The following example shows how to create a ProgramCallDocument object for an XPCML file (named
myXPCML.xpcml). After creating the ProgramCallDocument object, the example calls a program (PROG1)
that is specified in the XPCML document. In this case, the only difference between using XPCML and
PCML is that the example passes an XPCML file to the ProgramCallDocument constructor.

After your application reads and parses an XPCML document, the XPCML document functions just like a
PCML document. At this point, XPCML can use any of the existing methods that PCML uses.

system = new AS400();

// Create a ProgramCallDocument into which to parse the file.
ProgramCallDocument xpcmlDoc = new ProgramCallDocument(system, "myXPCML.xpcml");

// Call PROG1
boolean rc = xpcmlDoc.callProgram("PROG1");

Obtaining program call results as XPCML:

After you call a server program, you can use ProgramCallDocument.getValue methods to retrieve the
Java objects that represent program parameter values.

Additionally, the following generateXPCML methods enable ProgramCallDocument to return the results
of a program call as XPCML:
v generateXPCML(String fileName): Generates results in XPCML for the entire XPCML source file that

you used to construct the ProgramCallDocument object. Stores the XPCML in a file with the specified
file name.

442 IBM i: Programming IBM Toolbox for Java

v generateXPCML(String pgmName, String fileName): Generates results in XPCML for only the specified
program and its parameters. Stores the XPCML in a file with the specified file name.

v generateXPCML(java.io.OutputStream outputStream): Generates results in XPCML for the entire
XPCML source file. Stores the XPCML in the specified OutputStream object.

v generateXPCML(String pgmName, java.io.OutputStream outputStream): Generates results in XPCML
for only the specified program and its parameters. Stores the XPCML in the specified OutputStream
object.

For more information about the ProgramCallDocument class, see the ProgramCallDocument Javadoc
information.

The following example shows how you can construct an XPCML ProgramCallDocument, call an IBM i
program, and retrieve the results of the program call as XPCML.

“Example: Retrieving program call results as XPCML” on page 747
Related information:
ProgramCallDocument Javadoc

Passing in parameter values as XPCML:

You can set the values for program parameters in the XPCML source file and pass in the parameter
values as XPCML.

When the ProgramCallDocument object reads in and parses the XPCML document, it automatically calls
the appropriate setValue method for each parameter specified in the XPCML.

Using XPCML to pass in parameter values relieves you from writing Java code that sets the values of
complicated structures and arrays.

The following examples show different ways to construct arrays and pass in parameter values as XPCML:

“Example: Passing in parameter values as XPCML” on page 750

“Examples: Passing in arrays of parameter values as XPCML” on page 751

Using condensed XPCML:

Because XPCML is extensible, you can define new parameter types that extend those specified by the
XPCML schema. Condensing XPCML extends the XPCML schema to create new data type definitions that
simplify and improve the readability and usability of your XPCML documents.

The following discussion assumes that you understand the XPCML schema. For more information about
the XPCML schema, see the following page:

“XPCML schema and syntax” on page 420

To condense existing XPCML source, you use the ProgramCallDocument.condenseXPCML method, which
generates the following:
v An extended schema that contains new type definitions for each parameter in the existing XPCML

source
v New XPCML source that uses the type definitions provided in the extended schema

For more information about condensing your XPCML, see the following pages:

“Condensing existing XPCML documents” on page 444

IBM Toolbox for Java 443

javadoc\com\ibm\as400\data\ProgramCallDocument.html

“Example: Using condensed XPCML to create a ProgramCallDocument object” on page 756

“Example: Obtaining program call results as condensed XPCML” on page 756

Condensing existing XPCML documents:

Condensing existing XPCML documents results in more readable and usable XPCML source. To create
condensed XPCML, use the ProgramCallDocument.condenseXPCML method.

To call condenseXPCML(), provide the following parameters to the method:
v An input stream that represents the existing XPCML
v An ouput stream that repesents the condensed XPCML
v An output stream that represents the new, extended schema
v A name for the new schema in the appropriate format (for example, mySchema.xsd)

For more information about condenseXPCML() and the ProgramCallDocument class, see the
ProgramCallDocument Javadoc information.

ProgramCallDocument.condenseXPCML() is a static method, which means that you do not have to
instantiate a ProgramCallDocument object in order to call the method.

Examples

The following examples illustrate how to condense an existing XPCML document.

The first example is simple and includes original XPCML source, the resulting condensed XPCML, and
the extended schema. The second example is longer and more complex, so it includes the Java code that
calls condenseXPCML() and only a few of the newly generated type definitions in the extended schema:

“Example: Condensing an existing XPCML document” on page 753

“Example: Condensing an existing XPCML document, including Java code” on page 753
Related information:
ProgramCallDocument Javadoc

Identifying parse errors in XPCML:

When validating XPCML schema documents, a fully validating XML parser may generate warnings,
non-fatal parse errors, and fatal parse errors.

Warnings and non-fatal parse errors do not cause the parse to fail. You might want to examine warnings
and non-fatal errors to help you determine problems with your XPCML source. Fatal parse errors cause
the parse to terminate with an exception.

To display warnings and non-fatal parser errors when parsing an XPCML document, turn tracing on in
your application and set the trace category to PCML.

Example

A fully validating XML parser generates an error for any numeric parameter type that does not have a
value. The following example shows sample XPCML source and the resulting non-fatal parse error:

XPCML source

444 IBM i: Programming IBM Toolbox for Java

javadoc\com\ibm\as400\data\ProgramCallDocument.html

<program name="prog1"/>
<parameterList>

<intParm name="parm1"/>
</parameterList>

</program>

Resulting error
Tue Mar 25 15:21:44 CST 2003 [Error]: cvc-complex-type.2.2: Element
’intParm’ must have no element [children], and the value must be valid.

To prevent logging this kind of error, add the nil=true attribute to the intParm element. The nil=true
atttribute signals to the parser that you have deliberately left the element empty.. Here is the previous
XPCML source with the nil=true atttribute added:

<program name="prog1"/>
<parameterList>

<intParm xsi:nil="true" name="parm1"/>
</parameterList>

</program>

Frequently asked questions (FAQ)
IBM Toolbox for Java frequently asked questions (FAQs) provide answers to questions about optimizing
your IBM Toolbox for Java performance, performing troubleshooting, using JDBC, and more.

v IBM Toolbox for Java FAQ : Find answers to many types of questions, including improving
performance, using IBM i, performing troubleshooting, and more.

v IBM Toolbox for Java JDBC FAQ : Find answers to questions about using JDBC with IBM Toolbox
for Java.

Tips for programming
This section features a variety of tips that can help you use IBM Toolbox for Java.

Shutting down your Java program
To ensure that your program shuts down properly, issue System.exit(0) as the last instruction before your
Java program ends.

Note: Avoid using System.exit(0) with servlets because doing so shuts down the entire Java virtual
machine.

IBM Toolbox for Java connects to the server with user threads. Because of this, a failure to issue
System.exit(0) may keep your Java program from properly shutting down.

Using System.exit(0) is not a requirement, but a precaution. There are times that you must use this
command to exit a Java program and it is not problematic to use System.exit(0) when it is not necessary.

Integrated file system path names for server objects
Your Java program must use integrated file system names to refer to server objects, such as programs,
libraries, commands, or spooled files. The integrated file system name is the name of a server object as it
might be accessed in the library file system of the IBM i integrated file system.

The path name may consist of the following components:

IBM Toolbox for Java 445

http://www.ibm.com/servers/eserver/iseries/toolbox/faq.html
http://www.ibm.com/servers/eserver/iseries/toolbox/faqjdbc.html

Path name component Description

library The library in which the object resides. The library is a
required portion of an integrated file system path name.
The library name must be 10 or fewer characters and be
followed by .lib.

object The name of the object that the integrated file system
path name represents. The object is a required portion of
an integrated file system path name. The object name
must be 10 or fewer characters and be followed by .type,
where type is the type of the object. Types can be found
by prompting for the OBJTYPE parameter on control
language (CL) commands, such as the Work with Objects
(WRKOBJ) command.

type The type of the object. The type of the object must be
specified when specifying the object. (See object above.)
The type name must be 6 or fewer characters.

member The name of the member that this integrated file system
path name represents. The member is an optional
portion of an integrated file system path name. It can be
specified only when the object type is FILE. The member
name must be 10 or fewer characters and followed by
.mbr.

Follow these conditions when determining and specifying the integrated file system name:
v The forward slash (/) is the path separator character.
v The root-level directory, called QSYS.LIB, contains the server library structure.
v Objects that reside in the server library QSYS have the following format:

/QSYS.LIB/object.type

v Objects that reside in other libraries have the following format:
/QSYS.LIB/library.LIB/object.type

v The object type extension is the server abbreviation used for that type of object.

To see a list of these types, enter a CL command that has object type as a parameter and press F4
(Prompt) for the type. For example, the Work with Objects (WRKOBJ) command has an object type
parameter.

The following table is a list of some commonly used object types and the abbreviation for each type:

Object type Abbreviation

command .CMD

data queue .DTAQ

file .FILE

font resource .FNTRSC

form definition .FORMDF

library .LIB

member .MBR

overlay .OVL

page definition .PAGDFN

page segment .PAGSET

446 IBM i: Programming IBM Toolbox for Java

Object type Abbreviation

program .PGM

output queue .OUTQ

spooled file .SPLF

Use the following descriptions to help you determine how to specify integrated file system path names:

Integrated file system name Description

/QSYS.LIB/MY_LIB.LIB/MY_PROG.PGM Program MY_PROG in library MY_LIB on the server

/QSYS.LIB/MY_LIB.LIB/MY_QUEUE.DTAQ Data queue MY_QUEUE in library MY_LIB on the server

/QSYS.LIB/YEAR1998.LIB/MONTH.FILE/JULY.MBR Member JULY in file MONTH in library YEAR1998 on
the server

Integrated file system special values

Various IBM Toolbox for Java classes recognize special values in integrated file system path names. The
traditional format for these special values (as used on an IBM i command line) begins with an asterisk
(*ALL). However, in a Java program that uses IBM Toolbox for Java classes, the format for these special
values begins and ends with percent signs (%ALL%).

Note: In the integrated file system, an asterisk is a wildcard character.

The following table shows which of these special values the IBM Toolbox for Java classes recognize for
particular path name components. The table also shows how the traditional format for these special
values differ from the format used in IBM Toolbox for Java classes.

Path name component Traditional format IBM Toolbox for Java format

Library name *ALL %ALL%

*ALLUSR %ALLUSR%

*CURLIB %CURLIB%

*LIBL %LIBL%

*USRLIBL %USRLIBL%

Object name *ALL %ALL%

Member name *ALL %ALL%

*FILE %FILE%

*FIRST %FIRST%

*LAST %LAST%

See the QSYSObjectPathName class for information about building and parsing integrated file system
names.

For more information about integrated file system concepts, see Integrated file system concepts.

Managing connections in Java programs
It is important to be able to create, start, and end connections to your server. The following discussion
explains concepts central to managing connections to your server and also offers some code examples.

IBM Toolbox for Java 447

To connect to an IBM i server, your Java program must create an AS400 object. The AS400 object contains
up to one socket connection for each IBM i server type. A service corresponds to a job on the server and
is the interface to the data on the server.

Note: When you create Enterprise JavaBeans (EJB), comply with the EJB specification that does not allow
threads during your connection. Although turning off IBM Toolbox for Java thread support may
slow your application, it is required to comply with the EJB specification.

Every connection to each server has its own job on the system. A different server supports each of the
following:
v JDBC
v Program call and command call
v Integrated file system
v Print
v Data queue
v Record-level access

Note:

v The print classes use one socket connection per AS400 object if the application does not try to do
two things that require the network print server at the same time.

v A print class creates additional socket connections to the network print server if needed. The
extra conversations are disconnected if they are not used for 5 minutes.

The Java program can control the number of connections to the system. To optimize communications
performance, a Java program can create multiple AS400 objects for the same server as shown in Figure 1.
This creates multiple socket connections to the system.

Figure 1: Java program creating multiple AS400 objects and socket connections for the same system

To conserve server resources, create only one AS400 object as shown in Figure 2. This approach reduces
the number of connections, which reduces the amount of resource used on the server.

Figure 2: Java program creating a single AS400 object and socket connection for the same system

448 IBM i: Programming IBM Toolbox for Java

Note: Although creating more connections increases the amount of resource used on the server, creating
more connections can have a benefit. Having more connections enables your Java program to
process things in parallel, which can give better throughput (transactions-per-second) and speed
up your application.

You can also choose to use a connection pool to manage connections as shown in Figure 3. This approach
reduces the amount of time it takes to connect by reusing a connection previously established for the
user.

Figure 3: Java program getting a connection from an AS400ConnectionPool to a server

The following examples show how to create and use AS400 objects:

Example 1: In the following example, two CommandCall objects are created that send commands to the
same server. Because the CommandCall objects use the same AS400 object, only one connection to the
server is created.

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create two command call objects that use
// the same AS400 object.
CommandCall cmd1 = new CommandCall(sys,"myCommand1");
CommandCall cmd2 = new CommandCall(sys,"myCommand2");

// Run the commands. A connection is made when the

IBM Toolbox for Java 449

// first command is run. Since they use the same
// AS400 object the second command object will use
// the connection established by the first command.
cmd1.run();
cmd2.run();

Example 2: In the following example, two CommandCall objects are created that send commands to the
same system. Because the CommandCall objects use different AS400 objects, two connections to the server
are created.

// Create two AS400 objects to the same server.
AS400 sys1 = new AS400("mySystem.myCompany.com");
AS400 sys2 = new AS400("mySystem.myCompany.com");

// Create two command call objects. They use
// different AS400 objects.
CommandCall cmd1 = new CommandCall(sys1,"myCommand1");
CommandCall cmd2 = new CommandCall(sys2,"myCommand2");

// Run the commands. A connection is made when the
// first command is run. Since the second command
// object uses a different AS400 object, a second
// connection is made when the second command is run.
cmd1.run();
cmd2.run();

Example 3: In the following example, a CommandCall object and an IFSFileInputStream object are
created using the same AS400 object. Because the CommandCall object and the IFSFileInput Stream object
use different services on the server, two connections are created.

// Create an AS400 object.
AS400 newConn1 = new AS400("mySystem.myCompany.com");

// Create a command call object.
CommandCall cmd = new CommandCall(newConn1,"myCommand1");

// Create the file object. Creating it causes the
// AS400 object to connect to the file service.
IFSFileInputStream file = new IFSFileInputStream(newConn1,"/myfile");

// Run the command. A connection is made to the
// command service when the command is run.
cmd.run();

Example 4: In the following example, an AS400ConnectionPool is used to get an IBM i connection. This
example (like Example 3 above) does not specify a service, so the connection to the command service is
made when the command is run.

// Create an AS400ConnectionPool.
AS400ConnectionPool testPool1 = new AS400ConnectionPool();

// Create a connection.
AS400 newConn1 = testPool1.getConnection("myAS400", "myUserID", "myPassword");

// Create a command call object that uses the AS400 object.
CommandCall cmd = new CommandCall(newConn1,"myCommand1");

// Run the command. A connection is made to the
// command service when the command is run.
cmd.run();

// Return connection to pool.
testPool1.returnConnectionToPool(newConn1);

Example 5: The following example uses AS400ConnectionPool to connect to a particular service when
requesting the connection from the pool. This eliminates the time required to connect to the service when

450 IBM i: Programming IBM Toolbox for Java

the command is run (see Example 4 above). If the connection is returned to the pool, the next call to get a
connection can return the same connection object. This means that no extra connection time is needed,
either on creation or use.

// Create an AS400ConnectionPool.
AS400ConnectionPool testPool1 = new AS400ConnectionPool();

// Create a connection to the AS400.COMMAND service. (Use the service number constants
// defined in the AS400 class (FILE, PRINT, COMMAND, DATAQUEUE, and so on.))
AS400 newConn1 = testPool1.getConnection("myAS400", "myUserID", "myPassword", AS400.COMMAND);

// Create a command call object that uses the AS400 object.
CommandCall cmd = new CommandCall(newConn1,"myCommand1");

// Run the command. A connection has already been made
// to the command service.
cmd.run();

// Return connection to pool.
testPool1.returnConnectionToPool(newConn1);

// Get another connection to command service. In this case, it will return the same
// connection as above, meaning no extra connection time will be needed either now or
// when the command service is used.
AS400 newConn2 = testPool1.getConnection("myAS400", "myUserID", "myPassword", AS400.COMMAND);

Starting and ending connections

The Java program can control when a connection is started and ended. By default, a connection is started
when information is needed from the server. You can control exactly when the connection is made by
calling the connectService() method on the AS400 object to preconnect to the server.

Using an AS400ConnectionPool, you can create a connection preconnected to a service without calling the
connectService() method, as in Example 5 above.

The following examples show Java programs connecting to and disconnecting from the system.

Example 1: This example shows how to preconnect to the system:
// Create an AS400 object.
AS400 system1 = new AS400("mySystem.myCompany.com");

// Connect to the command service. Do it now
// instead of when data is first sent to the
// command service. This is optional since the
// AS400 object will connect when necessary.
system1.connectService(AS400.COMMAND);

Example 2: Once a connection is started, the Java program is responsible for disconnecting, which is done
either implicitly by the AS400 object, or explicitly by the Java program. A Java program disconnects by
calling the disconnectService() method on the AS400 object. To improve performance, the Java program
must disconnect only when the program is finished with a service. If the Java program disconnects before
it is finished with a service, the AS400 object reconnects, if it is possible to reconnect, when data is
needed from the service.

Figure 4 shows how disconnecting the connection for the first integrated file system object connection
ends only that single instance of the AS400 object connection, not all of the integrated file system object
connections.

Figure 4: Single object using its own service for an instance of an AS400 object is disconnected

IBM Toolbox for Java 451

javadoc/com/ibm/as400/access/AS400.html#CONNECTSERVICE(INT)
javadoc/com/ibm/as400/access/AS400ConnectionPool.html#NAVBAR_TOP
javadoc/com/ibm/as400/access/AS400.html

This example shows how the Java program disconnects a connection:
// Create an AS400 object.
AS400 system1 = new AS400("mySystem.myCompany.com");

// ... use command call to send several commands
// to the server. Since connectService() was not
// called, the AS400 object automatically
// connects when the first command is run.

// All done sending commands so disconnect the
// connection.
system1.disconnectService(AS400.COMMAND);

Example 3: Multiple objects that use the same service and share the same AS400 object share a
connection. Disconnecting ends the connection for all objects that are using the same service for each
instance of an AS400 object as is shown in Figure 5.

Figure 5: All objects using the same service for an instance of an AS400 object are disconnected

For example, two CommandCall objects use the same AS400 object. When disconnectService() is called,
the connection is ended for both CommandCall objects. When the run() method for the second
CommandCall object is called, the AS400 object must reconnect to the service:

452 IBM i: Programming IBM Toolbox for Java

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create two command call objects.
CommandCall cmd1 = new CommandCall(sys,"myCommand1");
CommandCall cmd2 = new CommandCall(sys,"myCommand2");

// Run the first command
cmd1.run();

// Disconnect from the command service.
sys.disconnectService(AS400.COMMAND);

// Run the second command. The AS400 object
// must reconnect to the server.
cmd2.run();

// Disconnect from the command service. This
// is the correct place to disconnect.
sys.disconnectService(AS400.COMMAND);

Example 4: Not all IBM Toolbox for Java classes automatically reconnect. Some method calls in the
integrated file system classes do not reconnect because the file may have changed. While the file was
disconnected, some other process may have deleted the file or changed its contents. In the following
example, two file objects use the same AS400 object. When disconnectService() is called, the connection is
ended for both file objects. The read() for the second IFSFileInputStream object fails because it no longer
has a connection to the server.

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create two file objects. A connection to the
// server is created when the first object is
// created. The second object uses the connection
// created by the first object.
IFSFileInputStream file1 = new IFSFileInputStream(sys,"/file1");
IFSFileInputStream file2 = new IFSFileInputStream(sys,"/file2");

// Read from the first file, then close it.
int i1 = file1.read();
file1.close();

// Disconnect from the file service.
sys.disconnectService(AS400.FILE);

// Attempt to read from the second file. This
// fails because the connection to the file service
// no longer exists. The program must either
// disconnect later or have the second file use a
// different AS400 object (which causes it to
// have its own connection).
int i2 = file2.read();

// Close the second file.
file2.close();

// Disconnect from the file service. This
// is the correct place to disconnect.
sys.disconnectService(AS400.FILE);

IBM i Java virtual machine
The IBM Toolbox for Java classes run on the IBM Developer Kit for Java (IBM i) Java virtual machine
(JVM).

IBM Toolbox for Java 453

In fact, the classes run on any platform that supports the Java 2 Software Development Kit (J2SDK)
specifications.

For more information about IBM i support for different Java platforms, see Support for multiple JDKs.

Comparing the IBM i Java virtual machine and the IBM Toolbox for Java classes
You always have at least two ways to access a server resource when your Java program is running on the
IBM Developer Kit for Java (IBM i) Java virtual machine (JVM).

You can use either of the following interfaces:
v Facilities built into Java
v An IBM Toolbox for Java class

When deciding which interface to use, consider the following factors:
v Location - Where a program runs is the most important factor in deciding which interface set to use.

Does the program do the following:
– Run only on the client?
– Run only on the server?
– Run on both client and server, but in both cases the resource is an IBM i resource?
– Run on one IBM i JVM and access resources on another IBM i server?
– Run on different kinds of servers?
If the program runs on both client and server (including an IBM i server as a client to a second IBM i
server) and accesses only IBM i resources, it may be best to use the IBM Toolbox for Java interfaces.
If the program must access data on many types of servers, it may be best to use Java native interfaces.

v Consistency / Portability - The ability to run IBM Toolbox for Java classes on the IBM i server means
that the same interfaces can be used for both client programs and server programs. When you have
only one interface to learn for both client programs and server programs, you can be more productive.
Writing to IBM Toolbox for Java interfaces makes your program less server portable, however.
If your program must connect to an IBM i server as well as other servers, you may find it better to use
the facilities that are built into Java.

v Complexity - The IBM Toolbox for Java interface is built especially for easy access to an IBM i
resource. Often, the only alternative to using the IBM Toolbox for Java interface is to write a program
that accesses the resource and communicates with that program through Java Native Interface (JNI).
You must decide whether it is more important to have better Java neutrality and write a program to
access the resource, or to use the IBM Toolbox for Java interface, which is less portable.

v Function - The IBM Toolbox for Java interface often provides more function than the Java interface. For
example, the IBM Toolbox for Java IFSFileOutputStream class has more function than the
FileOutputStream class of java.io. However, you lose server portability by using the IBM Toolbox for
Java class.
You must decide whether portability is more important or whether you want to take advantage of the
additional function.

v Resource - When running on the IBM i JVM, many of the IBM Toolbox for Java classes still make
requests through the host servers. Therefore, a second job (the server job) carries out the request to
access a resource.
This request may take more resource than a Java native interface that runs under the job of the Java
program.

v IBM i server as a client - If your program runs on one IBM i server and accesses data on a second
IBM i server, your best choice may be to use IBM Toolbox for Java classes. These classes provide easy
access to the resource on the second IBM i server.
An example of this is Data Queue access. The IBM Toolbox for Java Data Queue interfaces provide
easy access to the data queue resource.

454 IBM i: Programming IBM Toolbox for Java

Running IBM Toolbox for Java classes on the IBM i Java virtual machine
There are some special considerations for running the IBM Toolbox for Java classes on the IBM Developer
Kit for Java (IBM i) Java virtual machine (JVM).

Command call

Two common ways to call a command are to use one of the following:
v The IBM Toolbox for Java CommandCall class
v The java.lang.Runtime.exec method

The CommandCall class generates a list of messages that are available to the Java program once the
command completes. This list of messages is not available through java.lang.Runtime.exec().

The java.lang.Runtime.exec method is portable across many platforms, so if your program must access
files on different types of servers, java.lang.Runtime.exec() is a better solution.

Integrated file system

Common ways to access a file in the IBM i integrated file system:
v The IBM Toolbox for Java IFSFile classes
v The file classes that are a part of java.io

The IBM Toolbox for Java integrated file system classes have the advantage of providing more function
than the java.io classes. The IBM Toolbox for Java classes also work in applets, and they do not need a
method of redirection (such as IBM i Access for Windows) to get from a workstation to the server.

The java.io classes are portable across many platforms, which is an advantage. If your program must
access files on different types of servers, java.io is a better solution.

If you use java.io classes on a client, you need a method of redirection (such as the IBM i Access for
Windows) to get to the server file system.

JDBC

Two IBM-supplied JDBC drivers are available to programs running on the IBM i JVM:
v The IBM Toolbox for Java JDBC driver
v The IBM Developer Kit for Java JDBC driver

The IBM Toolbox for Java JDBC driver is best to use when the program is running in a client/server
environment.

The IBM Developer Kit for Java JDBC driver is best to use when the program is running on the server.

If the same program runs on both the workstation and the server, you should load the correct driver
through a system property instead of coding the driver name into your program.

Program call

Two common ways to call a program are as follows:
v The ProgramCall class of the IBM Toolbox for Java
v Through a Java Native Interface (JNI) call

The IBM Toolbox for Java ProgramCall class has the advantage that it can call any server program.

IBM Toolbox for Java 455

You may not be able to call your server program through JNI. An advantage of JNI is that it is more
portable across server platforms.

Setting system name, user ID, and password with an AS400 object in the IBM i
Java virtual machine
The AS400 object allows special values for system name, user ID, and password when the Java program
is running on the IBM Toolbox for Java (IBM i) Java virtual machine (JVM).

When you run a program on the IBM i JVM, be aware of some special values and other considerations:
v User ID and password prompting is disabled when the program runs on the server. For more

information about user ID and password values in the server environment, see Summary of user ID
and password values on an AS400 object.

v If system name, user ID, or password is not set on the AS400 object, the AS400 object connects to the
current server by using the user ID and password of the job that started the Java program. When
connecting to a v4r4 or later machine, it can extend the signed-on user's password like the rest of the
IBM Toolbox for Java components.

v The special value, localhost, can be used as the system name. In this case, the AS400 object connects to
the current server.

v The special value, *current, can be used as the user ID or password on the AS400 object. In this case,
the user ID or password (or both) of the job that started the Java program is used.

v The special value, *current, can be used as the user ID or password on the AS400 object when the Java
program is running on the IBM i JVM of one server, and the program is accessing resources on another
IBM i server. In this case, the user ID and password of the job that started the Java program on the
source system are used when connecting to the target system.

Examples

The following examples show how to use the AS400 object with the IBM i JVM.

Example: Creating an AS400 object when the IBM i JVM is running a Java program

When a Java program is running in the IBM i JVM, the program does not need to supply a system name,
user ID, or password.

Note: You must supply a password when using record-level access.

If these values are not supplied, the AS400 object connects to the local system by using the user ID and
password of the job that started the Java program.

When the program is running on the IBM i JVM, setting the system name to localhost is the same as not
setting the system name. The following example shows how to connect to the current server:

// Create two AS400 objects. If the Java program is running in the
// IBM i JVM, the behavior of the two objects is the same.
// They will connect to the current server using the user ID and
// password of the job that started the Java program.
AS400 sys = new AS400()
AS400 sys2 = new AS400("localhost")

Example: Connecting to the current server with a different user ID and password from the program
that started the job The Java program can set a user ID and password even when the program is running
on the IBM i JVM. These values override the user ID and password of the job that started the Java
program.

In the following example, the Java program connects to the current server, but the program uses a user
ID and password that differs from those of the job that started the Java program.

456 IBM i: Programming IBM Toolbox for Java

// Create an AS400 object. Connect to the current server but do
// not use the user ID and password of the job that started the
// program. The supplied values are used.
AS400 sys = new AS400("localhost", "USR2", "PSWRD2")

Example: Connecting to a different server by using the user ID and password of the job that started
the Java program

A Java program that is running on one server can connect to and use the resources of other systems.

If *current is used for user ID and password, the user ID and password of the job that started the Java
program is used when the Java program connects to the target server.

In the following example, the Java program is running on one server, but uses resources from another
server. The user ID and password of the job that started the Java program are used when the program
connects to the second server.

// Create an AS400 object. This program will run on one server
// but will connect to a second server (called "target").
// Because *current is used for user ID and password, the user
// ID and password of the job that started the program will be
// used when connecting to the second server.
AS400 target = new AS400("target", "*current", "*current")

Summary of user ID and password values on an AS400 object:

The following table summarizes how the user ID and password values on an AS400 object are handled
by a Java program running on a server compared to a Java program running on a client.

Values on AS400 object Java program running on a server Java program running on a client

System name, user ID, and password
not set

Connect to the current server using
the user ID and password of the job
that started the program

Prompt for system, user ID, and
password

System name = localhost

Connect to the current server using
the user ID and password of the job
that started the program

Error: localhost is not valid when the
Java program is running on a client

System name = localhost User ID =
*current

System name = localhost User ID =
*current Password ID = *current

System name = "sys" Connect to server "sys" using the
user ID and password of the job that
started the program. "sys" can be the
current server or another server

Prompt for user ID and password

System name = localhost User ID =
"UID" Password ID = "PWD"

Connect to the current server using
the user ID and password specified
by the Java program instead of the
user ID and password of the job that
started the program

Error: localhost is not valid when the
Java program is not running on a
client

Independent auxiliary storage pool (ASP)
An independent auxiliary storage pool (ASP) is a collection of disk units that you can bring online or
take offline independent of the rest of the storage on a system.

Independent ASPs contain any of the following:
v one or more user-defined file systems
v one or more external libraries

IBM Toolbox for Java 457

Each Independent ASP contains all of the necessary system information associated with the data it
contains. So, while the system is active, you can take the Independent ASP offline, bring it online, or
switch between systems.

For more information, see Independent ASPs and User ASPs.

You can use the "database name" JDBC property or the setDatabaseName() method from the
AS400JDBCDataSource class to specify the ASP to which you want to connect.

All other IBM Toolbox for Java classes (IFSFile, Print, DataQueues, and so on) use the Independent ASP
specified by the job description of the user profile that connects to the server.

Exceptions
The IBM Toolbox for Java access classes throw exceptions when device errors, physical limitations,
programming errors, or user input errors occur. The exception classes are based upon the type of error
that occurs instead of the location where the error originates.

Most exceptions contain the following information:
v Error type: The exception object that is thrown indicates the type of error that occurred. Errors of the

same type are grouped together in an exception class.
v Error details: The exception contains a return code to further identify the cause of the error that

occurred. The return code values are constants within the exception class.
v Error text: The exception contains a text string that describes the error that occurred. The string is

translated in the locale of the client Java virtual machine.

Example: Catching a thrown exception

The following example shows how to catch a thrown exception, retrieve the return code, and display the
exception text:

Note: Read the Code example disclaimer for important legal information.
// All the setup work to delete a file on the server through the
// IFSFile class is done. Now try deleting the file.
try
{

aFile.delete();

}

// The delete failed.
catch (ExtendedIOException e)
{

// Display the translated string containing the reason that the
// delete failed.
System.out.println(e);

// Get the return code out of the exception and display additional
// information based on the return code.
int rc = e.getReturnCode()

switch (rc)
{

case ExtendedIOException.FILE_IN_USE:
System.out.println("Delete failed, file is in use "):
break;

case ExtendedIOException.PATH_NOT_FOUND:
System.out.println("Delete failed, path not found ");
break;

458 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/AS400JDBCDataSource.html

// For every specific error that you want to track...

default:
System.out.println("Delete failed, rc = ");
System.out.println(rc);

}
}

Error events
In most cases, the IBM Toolbox for Java GUI components fire error events instead of throw exceptions.

An error event is a wrapper around an exception that is thrown by an internal component.

You can provide an error listener that handles all error events that are fired by a particular graphical user
interface component. Whenever an exception is thrown, the listener is called, and it can provide
appropriate error reporting. By default, no action takes place when error events are fired.

The IBM Toolbox for Java provides a graphical user interface component called ErrorDialogAdapter,
which automatically displays a dialog to the user whenever an error event is fired.

Examples

The following examples show how you can handle errors and define a simple error listener.

Example: Handling error events by displaying a dialog

The following example shows how you can handle error events by displaying a dialog:
// All the setup work to lay out a graphical user interface component
// is done. Now add an ErrorDialogAdapter as a listener to the component.
// This will report all error events fired by that component through
// displaying a dialog.

ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (parentFrame);
component.addErrorListener (errorHandler);

Example: Defining an error listener

You can write a custom error listener to handle errors in a different way. Use the ErrorListener interface
to accomplish this.

The following example shows how to define an simple error listener that only prints errors to System.out:
class MyErrorHandler
implements ErrorListener
{

// This method is invoked whenever an error event is fired.
public void errorOccurred(ErrorEvent event)
{

Exception e = event.getException ();
System.out.println ("Error: " + e.getMessage ());

}
}

Example: Handling error events by using an error listener

The following example shows how to handle error events for a graphical user interface component using
this customized handler:

MyErrorHandler errorHandler = new MyErrorHandler ();
component.addErrorListener (errorHandler);

IBM Toolbox for Java 459

javadoc/com/ibm/as400/vaccess/ErrorListener.html#NAVBAR_TOP

Related reference:
“Vaccess classes” on page 248
The Vaccess package and its classes have been deprecated. You are advised to use the Access package in
combination with Java Swing instead.
“Exceptions” on page 47
The IBM Toolbox for Java access classes throw exceptions when device errors, physical limitations,
programming errors, or user input errors occur. The exception classes are based upon the type of error
that occurs instead of the location where the error originates.
Related information:
ErrorDialogAdapter Javadoc

Trace class
The Trace class allows the Java program to log trace points and diagnostic messages. This information
helps reproduce and diagnose problems.

Note: You can also set tracing by using the trace system properties.

The Trace class logs the following categories of information:

Information category Description

Conversion Logs character set conversions between Unicode and
code pages. This category is used only by the IBM
Toolbox for Java classes.

Datastream Logs the data that flows between the system and the
Java program. This category is used only by the IBM
Toolbox for Java classes.

Diagnostic Logs state information.

Error Logs additional errors that cause an exception.

Information Traces the flow through a program.

PCML This category is used to determine how PCML interprets
the data that is sent to and from the server.

Proxy This category is used by IBM Toolbox for Java classes to
log data flow between the client and the proxy server.

Warning Logs information about errors the program was able to
recover from.

All This category is used to enable or disable tracing for all
of the above categories at once. Trace information cannot
be directly logged to this category.

The IBM Toolbox for Java classes also use the trace categories. When a Java program enables logging,
IBM Toolbox for Java information is included with the information that is recorded by the application.

You can enable the trace for a single category or a set of categories. Once the categories are selected, use
the setTraceOn method to turn tracing on and off. Data is written to the log using the log method.

You can send trace data for different components to separate logs. Trace data, by default, is written to
the default log. Use component tracing to write application-specific trace data to a separate log or
standard output. By using component tracing, you can easily separate trace data for a specific application
from other data.

460 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/ErrorDialogAdapter.html

Excessive logging can impact performance. Use the isTraceOn method to query the current state of the
trace. Your Java program can use this method to determine whether it builds the trace record before it
calls the log method. Calling the log method when logging is off is not an error, but it takes more time.

The default is to write log information to standard out. To redirect the log to a file, call the
setFileName() method from your Java application. In general, this works only for Java applications
because most browsers do not give applets access to write to the local file system.

Logging is off by default. Java programs provide a way for the user to turn on logging so that it is easy
to enable logging. For example, the application can parse for a command line parameter that indicates
which category of data is logged. The user can set this parameter when log information is needed.

Examples

Note: Read the Code example disclaimer for important legal information.

The following examples show how to use the Trace class.

Example Using setTraceOn() and writing data to a log by using the log method
// Enable diagnostic, information, and warning logging.
Trace.setTraceDiagnosticOn(true);
Trace.setTraceInformationOn(true);
Trace.setTraceWarningOn(true);

// Turn tracing on.
Trace.setTraceOn(true);

// ... At this point in the Java program, write to the log.
Trace.log(Trace.INFORMATION, "Just entered class xxx, method xxx");

// Turning tracing off.
Trace.setTraceOn(false);

Example: Using Trace

In the following code, Method 2 is the preferable way to use Trace.
// Method 1 - build a trace record
// then call the log method and let the trace class determine if the
// data should be logged. This will work but will be slower than the
// following code.
String traceData = new String("Just entered class xxx, data = ");
traceData = traceData + data + "state = " + state;
Trace.log(Trace.INFORMATION, traceData);

// Method 2 - check the log status before building the information to
// log. This is faster when tracing is not active.
if (Trace.isTraceOn() && Trace.isTraceInformationOn())
{

String traceData = new String("just entered class xxx, data = ");
traceData = traceData + data + "state = " + state;
Trace.log(Trace.INFORMATION, traceData);

}

Example: Using component tracing
// Create a component string. It is more efficient to create an
// object than many String literals.
String myComponent1 = "com.myCompany.xyzComponent";
String myComponent2 = "com.myCompany.abcComponent";

// Send IBM Toolbox for Java and the component trace data each to separate files.
// The trace will contain all trace information, while each

IBM Toolbox for Java 461

// component log file will only contain trace information specific to
// that component. If a Trace file is not specified, all trace data
// will go to standard out with the component specified in front of
// each trace message.

// Trace.setFileName("c:\\bit.bucket");
// Trace.setFileName(myComponent1, "c:\\Component1.log");
// Trace.setFileName(myComponent2, "c:\\Component2.log");

Trace.setTraceOn(true); // Turn trace on.
Trace.setTraceInformationOn(true); // Enable information messages.

// Log component specific trace data or general IBM Toolbox for Java
// trace data.

Trace.setFileName("c:\\bit.bucket");
Trace.setFileName(myComponent1, "c:\\Component1.log");

Related information:
Trace Javadoc

IBM i optimization
There exists two versions of the IBM Toolbox for Java software, one that is optimized when running on
the IBM i JVM, and another that runs the same way no matter where the IBM Toolbox for Java is run.

Sign-on behavior and performance are improved when using the optimized version of the IBM Toolbox
for Java software and running on the IBM i JVM and connecting to the same server.

Enabling the optimizations

IBM Toolbox for Java is shipped as part of Licensed Program 5770-SS1 (option 3) in two directories:
v The /QIBM/ProdData/http/public/jt400/lib contains the version of the IBM Toolbox for Java that does

not include IBM i optimizations. Use these files if you want behavior consistent with running the IBM
Toolbox for Java on a client.

v The /QIBM/ProdData/OS400/jt400/lib contains the version of the IBM Toolbox for Java that does
include IBM i optimizations when running on the IBM i JVM.

Note: As of IBM i 7.1, directory /QIBM/ProdData/http/public/jt400 is actually a symbolic link to
/QIBM/ProdData/OS400/jt400. The /QIBM/ProdData/http/public/jt400 link is retained in order to
maintain compatibility with earlier versions of IBM i.

For more information see Note 1 in the information about JAR files.

Sign-on considerations

The version of the IBM Toolbox for Java that contains optimizations adds additional options for
providing server (system) name, user ID and password information to the IBM Toolbox for Java.

When accessing an IBM i resource, the IBM Toolbox for Java classes must have a system name, user ID
and password.
v When running on a client, the system name, user ID and password are provided by the Java program,

or the IBM Toolbox for Java retrieves these values from the user through a sign-on dialog.
v When running within the IBM i Java virtual machine, the IBM Toolbox for Java has one more option.

It can send requests to the current (local) server using the user ID and password of the job that started
the Java program.

462 IBM i: Programming IBM Toolbox for Java

|

|
|
|

|
|

|
|
|

|

javadoc/com/ibm/as400/access/Trace.html

With the IBM Toolbox for Java that contains optimizations, the user ID and password of the current job
also can be used when a Java program that is running on one IBM i server accesses the resources on
another IBM i server. In this case, the Java program sets the system name, then uses the special value
"*current" for the user ID and password.

The Java program can only set the password to "*current" if you are using record-level access V4R4 or
later. Otherwise, when you use record-level access, "localhost" is valid for system name and "*current" is
valid for user ID; however, the Java program must supply the password.

A Java program sets system name, user ID, and password values in the AS400 object.

To use the user ID and password of the job, the Java program can use "*current" as user ID and
password, or it can use the constructor that does not have user ID and password parameters.

To use the current server, the Java program can use "localhost" as the system name or use the default
constructor. That is,

AS400 system = new AS400();

is the same as
AS400 system = new AS400("localhost", "*current", "*current");

Examples

The following examples show how to sign on to a server by using optimized classes.

Example: Signing on when using different AS400 constructors

Two AS400 objects are created in the following example. The two objects have the same behavior: they
both run a command to the current server using the user ID and password of the job. One object uses the
special value for the user ID and password, while the other uses the default constructor and does not set
user ID or password.

// Create an AS400 object. Since the default
// constructor is used and system, user ID and
// password are never set, the AS400 object sends
// requests to the local server using the job’s
// user ID and password. If this program were run
// on a client, the user would be prompted for
// system, user ID and password.
AS400 sys1 = new AS400();

// Create an AS400 object. This object sends
// requests to the local system using the job’s
// user ID and password. This object will not work on a client.
AS400 sys2 = new AS400("localhost", "*current", "*current");

// Create two command call objects that use the AS400 objects.
CommandCall cmd1 = new CommandCall(sys1,"myCommand1");
CommandCall cmd2 = new CommandCall(sys2,"myCommand2");

// Run the commands.
cmd1.run();
cmd2.run();

Example: Signing on by using the user ID and password of the current job

In the following example an AS400 object is created that represents a second IBM i server. Since "*current"
is used, the job's user ID and password from the server running the Java program are used on the second
(target) server.

IBM Toolbox for Java 463

javadoc/com/ibm/as400/access/AS400.html#NAVBAR_TOP

// Create an AS400 object. This object sends
// requests to a second system using the user ID
// and password from the job on the current server.
AS400 sys = new AS400("mySystem.myCompany.com", "*current", "*current");

// Create a command call object to run a command
// on the target server.
CommandCall cmd = new CommandCall(sys,"myCommand1");

// Run the command.
cmd.run();

Performance improvements
With the additional classes provided by IBM i, Java programs running on the Java virtual machine for
IBM i experience improved performance. Performance is improved in some cases because less
communication function is used, and in other cases, an API is used instead of calling the server program.

Shorter download time

In order to download the minimum number of IBM Toolbox for Java class files, use the proxy server in
combination with the AS400ToolboxJarMaker tool.

Faster communication

For all IBM Toolbox for Java functions except JDBC and integrated file system access, Java programs
running on the Java virtual machine for IBM i will run faster. The programs run faster because less
communication code is used when communicating between the Java program and the server program on
the server that does the request.

JDBC and integrated file system access were not optimized because facilities already exist that make these
functions run faster. When running on the IBM i server, you can use the JDBC driver for IBM i instead of
the JDBC driver that comes with the IBM Toolbox for Java. To access files on the server, you can use
java.io instead of the integrated file system access classes that come with the IBM Toolbox for Java.

Directly calling IBM i APIs

Performance of the following classes of the IBM Toolbox for Java is improved because these classes
directly call IBM i APIs instead of calling a server program to carry out the request:
v AS400Certificate classes
v CommandCall
v DataQueue
v ProgramCall
v Record-level database access classes
v ServiceProgramCall
v UserSpace

APIs are directly called only if the user ID and password match the user ID and password of the job
running the Java program. To get the performance improvement, the user ID and password must match
the user ID and password of the job that starts the Java program. For best results, use "localhost" for
system name, "*current" for user ID, and "*current" for password.

Port mapping changes

The port mapping system has been changed, which makes accessing a port faster. Before this change, a
request for a port would be sent to the port mapper. From there, the server would determine which port

464 IBM i: Programming IBM Toolbox for Java

was available and return that port to the user to be accepted. Now, you can either tell the server which
port to use or specify that the default ports be used. This option eliminates the wasted time of the server
determining the port for you. Use the WRKSRVTBLE command to view or change the list of ports for the
server.

For the port mapping improvement, a few methods have been added to AS400 class:
v getServicePort
v setServicePort
v setServicePortsToDefault

Language specific strings changes

Language-specific string files are now shipped within the IBM Toolbox for Java program as class files
instead of property files. The server finds messages in class files faster than in property files.
ResourceBundle.getString() now runs faster because the files are stored in the first place that the
computer searches. Another advantage of changing to class files is that the server can find the translated
version of a string faster.

Converters

Two classes allow faster, more efficient conversion between Java and the system:
v Binary Converter: Converts between Java byte arrays and Java simple types.
v Character Converter: Converts between Java String objects and IBM i code pages.

Also, the IBM Toolbox for Java now incorporates its own conversion tables for over 100 commonly used
CCSIDs. Previously, the IBM Toolbox for Java either deferred to Java for nearly all text conversion. If Java
did not possess the correct conversion table, IBM Toolbox for Java downloaded the conversion table from
the server.

The IBM Toolbox for Java performs all text conversion for any CCSID of which it is aware. When it
encounters an unknown CCSID, it attempts to let Java handle the conversion. At no point does the IBM
Toolbox for Java attempt to download a conversion table from the server. This technique greatly reduces
the amount of time it takes for an IBM Toolbox for Java application to perform text conversion. No action
is required by the user to take advantage of this new text conversion; the performance gains all occur in
the underlying converter tables.
Related information:
AS400 Javadoc
BinaryConverter Javadoc
Character Converter Javadoc

Client installation and update classes
For most installation and update purposes, the IBM Toolbox for Java classes can be referenced at their
location in the integrated file system on the server.

Because program temporary fixes (PTFs) are applied to this location, Java programs that access these
classes directly on the server automatically receive these updates. But, accessing the classes from the
server does not always work, specifically for the following situations:
v If a low-speed communication link connects server and the client, the performance of loading the

classes from the server may be unacceptable.
v If Java applications use the CLASSPATH environment variable to access the classes on the client file

system, you need IBM i Access for Windows to redirect file system calls to the server. It may not be
possible for IBM i Access for Windows to reside on the client.

IBM Toolbox for Java 465

javadoc/com/ibm/as400/access/AS400.html
javadoc/com/ibm/as400/access/BinaryConverter.html
javadoc/com/ibm/as400/access/CharConverter.html

In these cases, installing the classes on the client is a better solution.

AS400ToolboxJarMaker
While the JAR file format was designed to speed up the downloading of Java program files, the
AS400ToolboxJarMaker generates an even faster loading IBM Toolbox for Java JAR file through its ability
to create a smaller JAR file from a larger one.

Also, the AS400ToolboxJarMaker class can unzip a JAR file for you to gain access to the individual
content files for basic use.

Flexibility of AS400ToolboxJarMaker

All of the AS400ToolboxJarMaker functions are performed with the JarMaker class and the
AS400ToolboxJarMaker subclass:
v The generic JarMaker tool operates on any JAR or Zip file; it splits a JAR file or reduces the size of a

JAR file by removing classes that are not used.
v The AS400ToolboxJarMaker customizes and extends JarMaker functions for easier use with IBM

Toolbox for Java JAR files.

According to your needs, you can invoke the AS400ToolboxJarMaker methods from within your own Java
program or from a command line. Call AS400ToolboxJarMaker from the command line by using the
following syntax:

java utilities.JarMaker [options]

where
v options = one or more of the available options

For a complete set of options available to run at a command line prompt, see the following in the
Javadoc:
v Options for the JarMaker base class
v Extended options for the AS00ToolboxJarMaker subclass

Using AS400ToolboxJarMaker

You can use AS400ToolboxJarMaker to work with JAR files in several ways:
v Uncompress one file bundled within a JAR file
v Split a large JAR file into smaller JAR files
v Exclude any IBM Toolbox for Java files that your application does not need to run

Uncompressing a JAR file

Suppose you wanted to uncompress just one file bundled within a JAR file. AS400ToolboxJarMaker
allows you to expand the file into one of the following:
v Current directory (extract(jarFile))
v Another directory (extract(jarFile, outputDirectory))

For example, with the following code, you are extracting AS400.class and all of its dependent classes from
jt400.jar:

java utilities.AS400ToolboxJarMaker -source jt400.jar
-extract outputDir
-requiredFile com/ibm/as400/access/AS400.class

Splitting up a single JAR file into multiple, smaller JAR files

466 IBM i: Programming IBM Toolbox for Java

javadoc/utilities/JarMaker.html
javadoc/utilities/AS400ToolboxJarMaker.html

Suppose you wanted to split up a large JAR file into smaller JAR files, according to your preference for
maximum JAR file size. AS400ToolboxJarMaker, accordingly, provides you with the split(jarFile, splitSize)
function.

In the following code, jt400.jar is split into a set of smaller JAR files, none larger than 300KB:
java utilities.AS400ToolboxJarMaker -split 300

Removing unused files from a JAR file

With AS400ToolboxJarMaker, you can exclude any IBM Toolbox for Java files not needed by your
application by selecting only the IBM Toolbox for Java components, languages, and CCSIDs that you
need to make your application run. AS400ToolboxJarMaker also provides you with the option of
including or excluding the JavaBean files associated with the components you select.

For example, the following command creates a JAR file that contains only those IBM Toolbox for Java
classes needed to make the CommandCall and ProgramCall components of the IBM Toolbox for Java
work:

java utilities.AS400ToolboxJarMaker -component CommandCall,ProgramCall

Additionally, if it is unnecessary to convert text strings between Unicode and the double byte character
set (DBCS) conversion tables, you can create a 400KB byte smaller JAR file by omitting the unneeded
conversion tables with the -ccsid option:

java utilities.AS400ToolboxJarMaker -component CommandCall,ProgramCall -ccsid 61952

Note: Conversion classes are not included with the program call classes. When including program call
classes, you must also explicitly include the conversion classes used by your program by using the
-ccsid option.

JarMaker Javadoc
AS400ToolboxJarMaker Javadoc

Java national language support
Java supports a set of national languages, but it is a subset of the languages that the server supports.

When a mismatch between languages occurs, for example, if you are running on a local workstation that
is using a language that is not supported by Java, the IBM Toolbox for Java licensed program may issue
some error messages in English.

Service and support for the IBM Toolbox for Java
Use the following resources for service and support.

IBM Toolbox for Java troubleshooting information Use this information to help you resolve
problems when using IBM Toolbox for Java.

JTOpen/IBM Toolbox for Java forum Join the community of Java programmers who use IBM
Toolbox for Java. This forum is an effective way to get assistance and advice from other Java
programmers and sometimes from the IBM Toolbox for Java developers themselves

Server support Use the IBM Server support Web site to find out about the tools and resources
that help you streamline the technical planning and support for your system.

Software support Use the IBM Software Support Services Web site to find out about the wide
array of software support services offered by IBM.

IBM Toolbox for Java 467

javadoc/utilities/JarMaker.html
javadoc/utilities/AS400ToolboxJarMaker.html
http://www.ibm.com/eserver/iseries/toolbox/troubleshooting.htm
http://www.ibm.com/eserver/iseries/support/j_dir/JTOpen.nsf/By+Date?OpenView
http://www.ibm.com/servers/support/
http://www.as.ibm.com/asus/swsupport.html

Support services for the IBM Toolbox for Java are provided under the usual terms and conditions for
software products. Support services include program services, voice support, and consulting services.
Contact your local IBM representative for more information.

Resolving IBM Toolbox for Java program defects is supported under program services and voice support,
while resolving application programming and debugging issues is supported under consulting services.

IBM Toolbox for Java application program interface (API) calls are supported under consulting services
unless any of the following are true:
v It is clearly a Java API defect, as demonstrated by re-creation in a relatively simple program.
v It is a question asking for documentation clarification.
v It is a question about the location of samples or documentation.

All programming assistance is supported under consulting services including those program samples
provided in the IBM Toolbox for Java licensed program. Additional samples may be made available on

the Internet at the IBM i home page

on an unsupported basis.

Problem solving information is provided with the IBM Toolbox for Java Licensed Program Product. If you
believe there is a potential defect in the IBM Toolbox for Java API, a simple program that demonstrates
the error will be required.

Code examples
The following list provides links to entry points for many of the examples used throughout the IBM
Toolbox for Java information.

Access classes Beans Commtrace classes
Graphical Toolbox HTML classes PCML
ReportWriter classes Resource classes RFML
Security classes Servlet classes Simple examples
Tips for programming “Examples:

ToolboxME” on page
696

Utility classes

Vaccess classes XPCML

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:
1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

468 IBM i: Programming IBM Toolbox for Java

http://www.ibm.com/servers/eserver/iseries/

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

Examples: Access classes
This section lists the code examples that are provided throughout the documentation of the IBM Toolbox
for Java access classes.

AS400JPing
v Example: Using AS400JPing within a Java program

BidiTransform
v Example: Using the AS400BidiTransform class to transform bidirectional text

CommandCall
v Example: Using CommandCall to run a command on the server
v Example: Using CommandCall to prompt for the name of the server, command to run, and print the

result

ConnectionPool
v Example: Using AS400ConnectionPool to create connections to the server

DataArea
v Example: Creating and writing to a decimal data area

Data conversion and description
v Examples: Using the FieldDescription, RecordFormat, and Record classes
v Example: Putting data on a queue
v Example: Reading data from a queue
v Example: Using AS400DataType classes with ProgramCall

DataQueue
v Example: How to create a DataQueue object, read data, and disconnect
v Example: Putting data on a queue
v Example: Reading data from a queue
v Example: Using KeyedDataQueue to put items on a queue
v Example: Using KeyedDataQueue to take items off a queue

Digital certificate
v Example: Listing digital certificates that belong to a user

EnvironmentVariable
v Example: Creating, setting, and getting environment variables

Exceptions
v Example: Catching a thrown exception, retrieving the return code, and displaying the exception text

FTP
v Example: Using the FTP class to Copy a set of files from a server directory
v Example: Using the AS400FTP class to copy a set of files from a directory

IBM Toolbox for Java 469

Integrated file system
v Examples: Using IFSFile
v Example: Using the IFSFile.listFiles() method to list the contents of a directory
v Example: Using IFSFile classes to copy files
v Example: Using IFSFile classes to list the contents of a directory
v Example: How to use IFSJavaFile instead of java.io.File
v Example: Using the IFSFile classes to list the contents of a directory on the server

JavaApplicationCall
v Example: Running a program on the server from the client that outputs "Hello World!"

JDBC
v Example: Using the JDBC driver to create and populate a table
v Example: Using the JDBC driver to query a table and output its contents

Jobs
v Example: Retrieving and changing job information using the cache
v Example: Listing all active jobs
v Example: Printing all of the messages in the job log for a specific user
v Example: Listing the job identification information for a specific user
v Example: Getting a list of jobs on the server and listing the job status and the job identifier
v Example: Displaying messages in the job log for a job that belongs to the current user

Message queue
v Example: How to use the message queue object
v Example: Printing the contents of the message queue
v Example: Retrieving and printing a message
v Example: Listing the contents of the message queue
v Example: Using AS400Message with CommandCall
v Example: Using AS400Message with ProgramCall

NetServer
v Example: Using a NetServer object to change the name of the NetServer

Print
v Example: Asynchronously listing all spooled files using the PrintObjectListListener interface
v Example: Asynchronously listing all spooled files without using the PrintObjectListListener interface
v Example: Copying a spooled file using SpooledFile.copy()
v Example: Creating a spooled file from an input stream
v Example: Generating an SCS data stream using the SCS3812Writer class
v Example: Reading an existing spooled file
v Example: Reading and transforming spooled files
v Example: Synchronously listing all spooled files

Permission
v Example: Set the authority of an AS400 object

470 IBM i: Programming IBM Toolbox for Java

Program call
v Example: Using ProgramCall
v Example: Using ProgramCall to retrieve system status
v Example: Passing parameter data with a Program parameter object

QSYSObjectPathName
v Example: Building an integrated file system name
v Example: Using QSYSObjectPathName.toPath() to build an AS400 object name
v Example: Using QSYSObjectPathName to parse the integrated file system path name

Record-level access
v Example: Sequentially accessing a file
v Example: Using the record-level access classes to read a file
v Example: Using the record-level access classes to read records by key
v Example: Using the LineDataRecordWriter class

Service program call
v Example: Using ServiceProgramCall to call a procedure

SystemStatus
v Example: Use caching with the SystemStatus class

SystemPool
v Example: Setting the maximum faults size for SystemPool

SystemValue
v Example: Using SystemValue and SystemValueList

Trace
v Example: Using the Trace.setTraceOn() method
v Example: Preferred way to use Trace
v Example: Using component tracing

UserGroup
v Example: Retrieving a list of users
v Example: Listing all the users of a group

UserSpace
v Example: How to create a user space

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

IBM Toolbox for Java 471

javadoc/com/ibm/as400/access/ServiceProgramCall.html

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Example: Using CommandCall
This IBM Toolbox for Java example program prompts the user for the name of the server and the
command to run, then prints the result of the command.

Note: Read the Code example disclaimer for important legal information.
//
//
// Command call example. This program prompts the user
// for the name of the server and the command to run, then
// prints the result of the command.
//
// This source is an example of "CommandCall"
//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class CommandCallExample extends Object
{

public static void main(String[] parmeters)
{

// Created a reader to get input from the user
BufferedReader inputStream = new BufferedReader(new InputStreamReader(System.in),1);

// Declare variables to hold the system name and the command to run
String systemString = null;
String commandString = null;

System.out.println(" ");

// Get the system name and the command to run from the user
try
{

System.out.print("System name: ");
systemString = inputStream.readLine();

System.out.print("Command: ");
commandString = inputStream.readLine();

}
catch (Exception e) {};

System.out.println(" ");

// Create an AS400 object. This is the system we send the command to
AS400 as400 = new AS400(systemString);

// Create a command call object specifying the server that will
// recieve the command.

472 IBM i: Programming IBM Toolbox for Java

CommandCall command = new CommandCall(as400);

try
{

// Run the command.
if (command.run(commandString))

System.out.print("Command successful");
else

System.out.print("Command failed");

// If messages were produced from the command, print them
AS400Message[] messagelist = command.getMessageList();

if (messagelist.length > 0)
{

System.out.println(", messages from the command:");
System.out.println(" ");

}

for (int i=0; i < messagelist.length; i++)
{

System.out.print (messagelist[i].getID());
System.out.print (": ");
System.out.println(messagelist[i].getText());

}
}
catch (Exception e)
{

System.out.println("Command " + command.getCommand() + " did not run");
}

System.exit(0);
}

}

Example: Using AS400ConnectionPool
This IBM Toolbox for Java example program uses an AS400ConnectionPool to create connections to a
system.

Note: Read the Code example disclaimer for important legal information.
//
//
// AS400ConnectionPooling example. This program uses an
// AS400ConnectionPool to create connections to an
// IBM i system.
// Command syntax:
// AS400ConnectionPooling system myUserId myPassword
//
// For example,
// AS400ConnectionPooling MySystem MyUserId MyPassword
//
//

import com.ibm.as400.access.*;

public class AS400ConnectionPooling
{

public static void main (String[] parameters)
{

// Check the input parameters.
if (parameters.length != 3)
{

IBM Toolbox for Java 473

System.out.println("");
System.out.println("Usage:");
System.out.println("");
System.out.println(" AS400ConnectionPooling system userId password");
System.out.println("");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println("");
System.out.println(" AS400ConnectionPooling MySystem MyUserId MyPassword");
System.out.println("");
return;

}

String system = parameters[0];
String userId = parameters[1];
String password = parameters[2];

try
{

// Create an AS400ConnectionPool.
AS400ConnectionPool testPool = new AS400ConnectionPool();

// Set a maximum of 128 connections to this pool.
testPool.setMaxConnections(128);

// Set a maximum lifetime for 30 minutes for connections.
testPool.setMaxLifetime(1000*60*30); // 30 min Max lifetime since created.

// Preconnect 5 connections to the AS400.COMMAND service.
testPool.fill(system, userId, password, AS400.COMMAND, 1);
System.out.println();
System.out.println("Preconnected 1 connection to the AS400.COMMAND service");

// Call getActiveConnectionCount and getAvailableConnectionCount to see how many
// connections are in use and available for a particular system.
System.out.println("Number of active connections: "

+ testPool.getActiveConnectionCount(system, userId));
System.out.println("Number of available connections for use: "

+ testPool.getAvailableConnectionCount(system, userId));

// Create a connection to the AS400.COMMAND service. (Use the service number
// constants defined in the AS400 class (FILE, PRINT, COMMAND, DATAQUEUE, and so on.))
// Since connections have already been filled, the usual time spent connecting
// to the command service is avoided.
AS400 newConn1 = testPool.getConnection(system, userId, password, AS400.COMMAND);

System.out.println();
System.out.println("getConnection gives out an existing connection to user");
System.out.println("Number of active connections: "

+ testPool.getActiveConnectionCount(system, userId));
System.out.println("Number of available connections for use: "

+ testPool.getAvailableConnectionCount(system, userId));

// Create a new command call object and run a command.
CommandCall cmd1 = new CommandCall(newConn1);
cmd1.run("CRTLIB FRED");

// Return the connection to the pool.
testPool.returnConnectionToPool(newConn1);

System.out.println();
System.out.println("Returned a connection to pool");
System.out.println("Number of active connections: "

+ testPool.getActiveConnectionCount(system, userId));
System.out.println("Number of available connections for reuse: "

+ testPool.getAvailableConnectionCount(system, userId));

474 IBM i: Programming IBM Toolbox for Java

// Create a connection to the AS400.COMMAND service. This will return the same
// object as above for reuse.
AS400 newConn2 = testPool.getConnection(system, userId, password, AS400.COMMAND);

System.out.println();
System.out.println("getConnection gives out an existing connection to user");
System.out.println("Number of active connections: "

+ testPool.getActiveConnectionCount(system, userId));
System.out.println("Number of available connections for reuse: "

+ testPool.getAvailableConnectionCount(system, userId));

// Create a connection to the AS400.COMMAND service. This will create a new
// connection as there are not any connections in the pool to reuse.
AS400 newConn3 = testPool.getConnection(system, userId, password, AS400.COMMAND);

System.out.println();
System.out.println("getConnection creates a new connection because there are no

connections available");
System.out.println("Number of active connections: "

+ testPool.getActiveConnectionCount(system, userId));
System.out.println("Number of available connections for reuse: "

+ testPool.getAvailableConnectionCount(system, userId));

// Close the test pool.
testPool.close();

}
catch (Exception e)
{

// If any of the above operations failed say the pool operations failed
// and output the exception.

System.out.println("Pool operations failed");
System.out.println(e);
e.printStackTrace();

}
}

}

Examples: Using AS400JDBCManagedConnectionPoolDataSource class
These examples demonstrate the use of the AS400JDBCManagedConnectionPoolDataSource class. The
AS400JDBCManagedConnectionPoolDataSource class simplifies connection pool maintenance by
eliminating the need for user applications to implement their own management code.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 760.

Example 1

This brief example shows the basic use of the AS400JDBCManagedConnectionPoolDataSource class.
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.sql.DataSource;

import com.ibm.as400.access.AS400JDBCManagedConnectionPoolDataSource;
import com.ibm.as400.access.AS400JDBCManagedDataSource;

public class TestJDBCConnPoolSnippet
{

void test()
{

AS400JDBCManagedConnectionPoolDataSource cpds0 = new AS400JDBCManagedConnectionPoolDataSource();

// Set general datasource properties. Note that both connection pool datasource (CPDS) and managed
// datasource (MDS) have these properties, and they might have different values.

cpds0.setServerName(host);

IBM Toolbox for Java 475

cpds0.setDatabaseName(host);//iasp can be here
cpds0.setUser(userid);
cpds0.setPassword(password);

cpds0.setSavePasswordWhenSerialized(true);

// Set connection pooling-specific properties.
cpds0.setInitialPoolSize(initialPoolSize_);
cpds0.setMinPoolSize(minPoolSize_);
cpds0.setMaxPoolSize(maxPoolSize_);
cpds0.setMaxLifetime((int)(maxLifetime_/1000)); // convert to seconds
cpds0.setMaxIdleTime((int)(maxIdleTime_/1000)); // convert to seconds
cpds0.setPropertyCycle((int)(propertyCycle_/1000)); // convert to seconds
//cpds0.setReuseConnections(false); // do not re-use connections

// Set the initial context factory to use.
System.setProperty(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.fscontext.RefFSContextFactory");

// Get the JNDI Initial Context.
Context ctx = new InitialContext();

// Note: The following is an alternative way to set context properties locally:
// Properties env = new Properties();
// env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.fscontext.RefFSContextFactory");
// Context ctx = new InitialContext(env);

ctx.rebind("mydatasource", cpds0); // We can now do lookups on cpds, by the name "mydatasource".

// Create a standard DataSource object that references it.

AS400JDBCManagedDataSource mds0 = new AS400JDBCManagedDataSource();
mds0.setDescription("DataSource supporting connection pooling");
mds0.setDataSourceName("mydatasource");
ctx.rebind("ConnectionPoolingDataSource", mds0);

DataSource dataSource_ = (DataSource)ctx.lookup("ConnectionPoolingDataSource");

AS400JDBCManagedDataSource mds_ = (AS400JDBCManagedDataSource)dataSource_;

boolean isHealthy = mds_.checkPoolHealth(false); //check pool health

Connection c = dataSource_.getConnection();

}

}

Example 2

This example shows more details about how to use the AS400JDBCManagedConnectionPoolDataSource
class.
import java.awt.TextArea;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.OutputStream;
import java.io.PrintStream;
import java.util.Vector;
import java.util.Properties;

import java.sql.Connection;
import javax.sql.DataSource;
import java.sql.ResultSet;
import java.sql.Statement;
import javax.naming.*;
import java.util.Date;
import java.util.ArrayList;
import java.util.Random;
import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400JDBCManagedConnectionPoolDataSource;
import com.ibm.as400.access.AS400JDBCManagedDataSource;
import com.ibm.as400.access.Trace;

476 IBM i: Programming IBM Toolbox for Java

public class TestJDBCConnPool
{

private static final boolean DEBUG = false;

// If you turn this flag on, be sure to also turn on the following flag:
// AS400JDBCConnection.TESTING_THREAD_SAFETY.
private static final boolean TESTING_THREAD_SAFETY = false;

private static String userid;
private static String password;
private static String host;

// Note: For consistency, all time values are stored units of milliseconds.
private int initialPoolSize_; // initial # of connections in pool
private int minPoolSize_; // max # of connections in pool
private int maxPoolSize_; // max # of connections in pool
private long maxLifetime_; // max lifetime (msecs) of connections in pool
private long maxIdleTime_; // max idle time (msecs) of available connections in pool
private long propertyCycle_; // pool maintenance frequency (msecs)

private int numDaemons_; // # of requester daemons to create
private static long timeToRunDaemons_; // total duration (msecs) to let the daemons run
private long daemonMaxSleepTime_; // max time (msecs) for requester daemons to sleep each cycle
private long daemonMinSleepTime_; // min time (msecs) for requester daemons to sleep each cycle
private long poolHealthCheckCycle_; // # of msecs between calls to checkPoolHealth()

private boolean keepDaemonsAlive_ = true; // When this is false, the daemons shut down.

private DataSource dataSource_;
private AS400JDBCManagedDataSource mds_;

private final Object daemonSleepLock_ = new Object();

private Random random_ = new Random();

static
{

try {
Class.forName("com.ibm.as400.access.AS400JDBCDriver");

}
catch(Exception e){

System.out.println("Unable to register JDBC driver.");
System.exit(0);

}
}

public static void main(String[] args)
{

host = args[0];
userid = args[1];
password = args[2];
timeToRunDaemons_ = (new Integer(args[3])).intValue() * 1000; //milliseconds
//args[3]=time to run in seconds
TestJDBCConnPool cptest = new TestJDBCConnPool();

cptest.setup();
cptest.runTest();

}

public void setup()
{

try
{

if (DEBUG)
System.out.println("TESTING_THREAD_SAFETY flag is "

+ (TESTING_THREAD_SAFETY ? "true" : "false"));

if (TESTING_THREAD_SAFETY)
{

// Adjust values for performing thread-intensive stress testing.
// NOTE: This assumes that the AS400JDBCConnection class has also been modified to

// not make actual connections to an actual server.
// To do this, edit AS400JDBCConnection.java, changing its TESTING_THREAD_SAFETY

// flag to ’false’, and recompile.
minPoolSize_ = 100;
maxPoolSize_ = 190;

IBM Toolbox for Java 477

initialPoolSize_ = 150; // this should get reset to maxPoolSize_
numDaemons_ = 75;
if (timeToRunDaemons_ == 0) {

timeToRunDaemons_ = 180*1000; // 180 seconds == 3 minutes
}

}
else
{ // Set more conservative values, as we’ll be making actual connections to an

// actual server, and we don’t want to monopolize the server.
minPoolSize_ = 5;
maxPoolSize_ = 15;
initialPoolSize_ = 9;
numDaemons_ = 4;
if (timeToRunDaemons_ == 0) {

timeToRunDaemons_ = 15*1000; // 15 seconds
}

}
maxLifetime_ = (int)timeToRunDaemons_ / 3;
maxIdleTime_ = (int)timeToRunDaemons_ / 4;
propertyCycle_ = timeToRunDaemons_ / 4;
poolHealthCheckCycle_ = Math.min(timeToRunDaemons_ / 4, 20*60*1000);
// at least once every 20 minutes (more frequently if shorter run-time)
daemonMaxSleepTime_ = Math.min(timeToRunDaemons_ / 3, 10*1000);
// at most 10 seconds (less if shorter run-time)
daemonMinSleepTime_ = 20; // milliseconds

if (DEBUG)
System.out.println("setup: Constructing "

+ "AS400JDBCManagedConnectionPoolDataSource (cpds0)");
AS400JDBCManagedConnectionPoolDataSource cpds0 =

new AS400JDBCManagedConnectionPoolDataSource();

// Set datasource properties. Note that both CPDS and MDS have these
// properties, and they might have different values.
cpds0.setServerName(host);
cpds0.setDatabaseName(host);//iasp can be here
cpds0.setUser(userid);
cpds0.setPassword(password);

cpds0.setSavePasswordWhenSerialized(true);

// Set connection pooling-specific properties.
cpds0.setInitialPoolSize(initialPoolSize_);
cpds0.setMinPoolSize(minPoolSize_);
cpds0.setMaxPoolSize(maxPoolSize_);
cpds0.setMaxLifetime((int)(maxLifetime_/1000)); // convert to seconds
cpds0.setMaxIdleTime((int)(maxIdleTime_/1000)); // convert to seconds
cpds0.setPropertyCycle((int)(propertyCycle_/1000)); // convert to seconds
//cpds0.setReuseConnections(false); // don’t re-use connections

// Set the initial context factory to use.
System.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");

// Get the JNDI Initial Context.
Context ctx = new InitialContext();

// Note: The following is an alternative way to set context properties locally:
// Properties env = new Properties();
// env.put(Context.INITIAL_CONTEXT_FACTORY,
// "com.sun.jndi.fscontext.RefFSContextFactory");
// Context ctx = new InitialContext(env);

ctx.rebind("mydatasource", cpds0);
// We can now do lookups on cpds, by the name"mydatasource".

if (DEBUG)
System.out.println("setup: lookup(\"mydatasource\"" + ")");

// AS400JDBCManagedConnectionPoolDataSource cpds1 =
// (AS400JDBCManagedConnectionPoolDataSource)ctx.lookup("mydatasource");
// if (DEBUG) System.out.println("setup: cpds1.getUser() == |" + cpds1.getUser() + "|");

// Create a standard DataSource object that references it.

if (DEBUG)
System.out.println("setup: Constructing AS400JDBCManagedDataSource (mds0)");

AS400JDBCManagedDataSource mds0 = new AS400JDBCManagedDataSource();
mds0.setDescription("DataSource supporting connection pooling");
mds0.setDataSourceName("mydatasource");

478 IBM i: Programming IBM Toolbox for Java

ctx.rebind("ConnectionPoolingDataSource", mds0);

if (DEBUG)
System.out.println("setup: lookup(\"ConnectionPoolingDataSource\"" + ")");

dataSource_ = (DataSource)ctx.lookup("ConnectionPoolingDataSource");
//dataSource_.setLogWriter(output_);
if (DEBUG)
System.out.println("setup: dataSource_.getUser() == |" +

((AS400JDBCManagedDataSource)dataSource_).getUser() + "|");

mds_ = (AS400JDBCManagedDataSource)dataSource_;
}
catch (Exception e)
{

e.printStackTrace();
System.out.println("Setup error during Trace file creation.");

}
}

void displayConnectionType(Connection conn, boolean specifiedDefaultId)
{

if (conn instanceof com.ibm.as400.access.AS400JDBCConnectionHandle)
System.out.print("("+ (specifiedDefaultId ? "+" : "-") + "P)");

else
System.out.print("("+ (specifiedDefaultId ? "+" : "-") + "NP)");

}

/**
* Gets and returns connections from and to a connection pool for a while.
**/
public void runTest()
{

boolean ok = true;
try
{

System.out.println("Started test run at " + new Date());

if (DEBUG)
System.out.println("Checking health just after datasource creation "

+ "(we expect that the pool does not exist yet) ...");
if (mds_.checkPoolHealth(true)) {

ok = false;
System.out.println("\nERROR: Pool exists prior to first getConnection().");

}

// Verify some setters/getters for JDBC properties.
System.out.println("Verifying setters/getters ...");

mds_.setAccess("read only");
if (!mds_.getAccess().equals("read only")) {

ok = false;
System.out.println("\nERROR: getAccess() returned unexpected value: "

+ "|" + mds_.getAccess()+"|");
}

boolean oldBool = mds_.isBigDecimal();
boolean newBool = (oldBool ? false : true);
mds_.setBigDecimal(newBool);
if (mds_.isBigDecimal() != newBool) {

ok = false;
System.out.println("\nERROR: isBigDecimal() returned unexpected value: "

+ "|"+mds_.isBigDecimal()+"|");
}
mds_.setBigDecimal(oldBool);

int oldInt = mds_.getBlockCriteria();
int newInt = (oldInt == 2 ? 1 : 2);
mds_.setBlockCriteria(newInt);
if (mds_.getBlockCriteria() != newInt) {

ok = false;
System.out.println("\nERROR: getBlockCriteria() returned unexpected value: "

+ "|"+mds_.getBlockCriteria()+"|");
}
mds_.setBlockCriteria(oldInt);

// Verify some setters and getters for socket properties.

oldBool = mds_.isKeepAlive();

IBM Toolbox for Java 479

newBool = (oldBool ? false : true);
mds_.setKeepAlive(newBool);
if (mds_.isKeepAlive() != newBool) {

ok = false;
System.out.println("\nERROR: isKeepAlive() returned unexpected value: "

+ "|"+mds_.isKeepAlive()+"|");
}
mds_.setKeepAlive(oldBool);

oldInt = mds_.getReceiveBufferSize();
newInt = (oldInt == 256 ? 512 : 256);
mds_.setReceiveBufferSize(newInt);
if (mds_.getReceiveBufferSize() != newInt) {

ok = false;
System.out.println("\nERROR: getReceiveBufferSize() returned unexpected value: "

+ "|"+mds_.getReceiveBufferSize()+"|");
}
mds_.setReceiveBufferSize(oldInt);

System.out.println("CONNECTION 1");
Object o = dataSource_.getConnection();
System.out.println(o.getClass());
System.out.println("******LOOK ABOVE*******");
Connection c1 = dataSource_.getConnection();

if (DEBUG)
displayConnectionType(c1, true);

if (DEBUG)
System.out.println("Checking health after first getConnection() ...");

if (!mds_.checkPoolHealth(true)) {
ok = false;
System.out.println("\nERROR: Pool is not healthy after first getConnection().");

}

if (!TESTING_THREAD_SAFETY)
{

try
{

c1.setAutoCommit(false);
if (DEBUG)
System.out.println("SELECT * FROM QIWS.QCUSTCDT");

Statement s = c1.createStatement();
ResultSet rs = s.executeQuery("SELECT * FROM QIWS.QCUSTCDT");
while(rs.next()){

if (DEBUG)
System.out.println(rs.getString(2));

}
rs.close();
s.close();

}
catch (Exception e) {

e.printStackTrace();
if (DEBUG)
System.out.println("Checking health after fatal connection error ...");

if (!mds_.checkPoolHealth(true)) {
ok = false;
System.out.println("\nERROR: Pool is not healthy after fatal connection "

+ "error.");
}

}
}

System.out.println("CONNECTION 2");
Connection c2 = dataSource_.getConnection(userid, password);
if (DEBUG)
displayConnectionType(c2, false);

System.out.println("CONNECTION 3");
Connection c3 = dataSource_.getConnection();
if (DEBUG)
displayConnectionType(c3, true);

c1.close();

if (DEBUG)
System.out.println("Checking health after first close() ...");

if (!mds_.checkPoolHealth(true)) {
ok = false;
System.out.println("\nERROR: Pool is not healthy after first close().");

480 IBM i: Programming IBM Toolbox for Java

}

System.out.println("CONNECTION 4");
Connection c4 = dataSource_.getConnection();
if (DEBUG) displayConnectionType(c4, true);

c1.close(); // close this one again
c2.close();
c3.close();
c4.close();

if (DEBUG) System.out.println("Checking health after last close() ...");
if (!mds_.checkPoolHealth(true)) {

ok = false;
System.out.println("\nERROR: Pool is not healthy after last close().");

}

// Start the test daemons.
System.out.println("Starting test daemons");
startThreads();

// Run the test daemons for a while; check pool health periodically.

long startTime = System.currentTimeMillis();
long endTime = startTime + timeToRunDaemons_;
while (System.currentTimeMillis() < endTime)
{

System.out.print("h");
// Let the daemons run for a while, then check pool health.
try {

Thread.sleep(poolHealthCheckCycle_);
}
catch (InterruptedException ie) {}
if (!mds_.checkPoolHealth(true)) {

ok = false;
System.out.println("\nERROR: Pool is not healthy after test daemons started.");

}
}

// Stop the test daemons.
System.out.println("\nStopping test daemons");
stopThreads();

if (DEBUG)
System.out.println("Checking health after connectionGetter daemons have run...");

if (!mds_.checkPoolHealth(true)) {
ok = false;
System.out.println("\nERROR: Pool is not healthy after test daemons stopped.");

}

if (!TESTING_THREAD_SAFETY)
{

System.out.println("CONNECTION 5");
Connection c = dataSource_.getConnection();
if (DEBUG) displayConnectionType(c, true);
c.setAutoCommit(false);
if (DEBUG) System.out.println("SELECT * FROM QIWS.QCUSTCDT");
Statement s = c.createStatement();
ResultSet rs = s.executeQuery("SELECT * FROM QIWS.QCUSTCDT");
while(rs.next()){

if (DEBUG) System.out.println(rs.getString(2));
}
rs.close();
s.close();
c.close();

}

System.out.println("\nClosing the pool...");
mds_.closePool();

if (DEBUG)
System.out.println("Checking health after pool closed ...");

Trace.setTraceJDBCOn(true); // make sure the final stats get printed out
Trace.setTraceOn(true);
if (!mds_.checkPoolHealth(true)) {

ok = false;
System.out.println("\nERROR: Pool is not healthy after pool closed.");

}

IBM Toolbox for Java 481

System.out.println();
if(ok==true)

System.out.println("test ran ok");
else

System.out.println("test failed");
}
catch (Exception e)
{

System.out.println(e);
e.printStackTrace();

}
finally {

System.out.println("Ended test at " + new Date());
}

}

void startThreads()
{

// Create a bunch of threads that call getConnection().
Thread[] threads = new Thread[numDaemons_];
for (int i=0; i<numDaemons_; i++)
{

ConnectionGetter getter;
// Flip a coin to see if this daemon will specify the default uid, or unique uid.
if (random_.nextBoolean())
{

getter = new ConnectionGetter(userid,password);
if (TESTING_THREAD_SAFETY) { // we can use fictional userid

getter = new ConnectionGetter("Thread"+i, "Pwd"+i);
}
else { // must use a real userid

getter = new ConnectionGetter(userid,password);
}

}
else

getter = new ConnectionGetter(null, null);

threads[i] = new Thread(getter, "["+i+"]");
threads[i].setDaemon(true);

}

// Start the threads.
for (int i=0; i<numDaemons_; i++)
{

threads[i].start();
}

}

void stopThreads()
{

// Tell the threads to stop.
keepDaemonsAlive_ = false;
synchronized (daemonSleepLock_) {

daemonSleepLock_.notifyAll();
}

// Wait for the daemons to stop.
try {

Thread.sleep(3000);
}
catch (InterruptedException ie) {}

}

// ConnectionGetter --

/**
Helper class. This daemon wakes up at random intervals and either
gets another connection from the connection pool or returns a
previously-gotten connection to the pool.

**/
private final class ConnectionGetter implements Runnable
{

private String uid_;
private String pwd_;
private boolean useDefaultUid_;
private long maxSleepTime_;
private String threadName_;
private boolean firstConnection_ = true;

482 IBM i: Programming IBM Toolbox for Java

ArrayList connections_ = new ArrayList();
// list of connections that this getter currently ’owns’.

ConnectionGetter(String uid, String pwd) {
uid_ = uid;
pwd_ = pwd;
if (uid_ == null) useDefaultUid_ = true;
else useDefaultUid_ = false;
maxSleepTime_ = daemonMaxSleepTime_; // our own copy that we can adjust

}

public void run()
{

threadName_ = Thread.currentThread().getName();
if (DEBUG) System.out.println("ConnectionGetter("+threadName_+") Starting up");

try
{

while (keepDaemonsAlive_)
{

try
{

// Pick a random sleep-time, between min and max values.
long sleepTime = Math.max((long)(maxSleepTime_ * random_.nextFloat()),

daemonMinSleepTime_);
// Note: Must never call wait(0), because that waits forever.
synchronized (daemonSleepLock_) {

try {
daemonSleepLock_.wait(sleepTime);
System.out.print(".");

}
catch (InterruptedException ie) {}

}
if (!keepDaemonsAlive_) break;

// Decide by chance whether to request another connection or return a
// previously-obtained connection.
Connection conn;
if (random_.nextBoolean()) // Leave the decision to chance.
{ // Request another connection.

if (useDefaultUid_)
{

if (DEBUG)
System.out.println("ConnectionGetter("+threadName_+") - get()");

conn = dataSource_.getConnection();
}
else
{

if (DEBUG)
System.out.println("ConnectionGetter("+threadName_+") - "

+ "get("+uid_+",***)");
conn = dataSource_.getConnection(uid_, pwd_);

}

if (conn == null) {
System.out.println("ConnectionGetter("+threadName_+") ERROR: "

+ "getConnection() returned null");
}
else
{

// Occasionally "forget" that we own a connection, and neglect to
// close it.
// Orphaned connections should eventually exceed their maximum
// lifetime and get "reaped" by the connection manager.
float val = random_.nextFloat();
if (firstConnection_ || val < 0.1) {

// ’orphan’ a few gotten connections
firstConnection_ = false;

}
else {

connections_.add(conn);
}
if (DEBUG) displayConnectionType(conn, useDefaultUid_);
if (conn instanceof com.ibm.as400.access.AS400JDBCConnectionHandle)
{ // We got a pooled connection. Try speeding up our cycle time.

if (maxSleepTime_ > 100)
maxSleepTime_--;

else
maxSleepTime_ = 100;

IBM Toolbox for Java 483

}
else
{ // We didn’t get a pooled connection. That means that the pool

// must be at capacity. Slow down our cycle time a bit.
maxSleepTime_ = maxSleepTime_ + 50;

}
}

}
else { // Close a connection that we currently own.

if (connections_.size() != 0) {
conn = (Connection)connections_.remove(0);
conn.close();

}
}

} // inner try
catch (Exception e)
{

e.printStackTrace();
}

} // outer while
} // outer try
finally
{

if (DEBUG)
System.out.println("ConnectionGetter("+threadName_+") Stopping");

// Return all the connections that I still have in my list.
for (int i=0; i<connections_.size(); i++) {

Connection conn = (Connection)connections_.remove(0);
try { conn.close(); } catch (Exception e) { e.printStackTrace(); }

}

}
}

} // internal class ’ConnectionGetter’
}

Examples: Using the FieldDescription, RecordFormat, and Record classes
The following examples show how you can use the IBM Toolbox for Java FieldDescription, RecordFormat
and Record classes with data queues.

Note: Read the Code example disclaimer for important legal information.

Example: Using the FieldDescription classes

You can use the FieldDescription classes can to describe the different types of data that make up an entry
on a data queue. These examples assume the following format for entries on the data queue:

Message number Sender Time sent Message text Reply required
| | | | |

bin(4) char(50) char(8) char(1024) char(1)

// Create field descriptions for the entry data
BinaryFieldDescription msgNumber = new BinaryFieldDescription(new AS400Bin4(),

"msgnum");
CharacterFieldDescription sender = new CharacterFieldDescription(new AS400Text(50),

"sender");
CharacterFieldDescription timeSent = new CharacterFieldDescription(new AS400Text(8),

"timesent");
CharacterFieldDescription msgText = new CharacterFieldDescription(new AS400Text(1024),

"msgtext");
CharacterFieldDescription replyRequired = new CharacterFieldDescription(new AS400Text(1),

"replyreq");

Using the RecordFormat class

You can use the RecordFormat class to describe the data that makes up the data queue entry.

Example: Defining RecordFormat and using it dynamically

484 IBM i: Programming IBM Toolbox for Java

The following example uses the RecordFormat class to describe the format of the data queue entry and
then dynamically uses it to retrieve a record:

RecordFormat entryFormat = new RecordFormat();
// Describe the fields in an entry on the data queue
entryFormat.addFieldDescription(msgNumber);
entryFormat.addFieldDescription(sender);
entryFormat.addFieldDescription(timeSent);
entryFormat.addFieldDescription(msgText);
entryFormat.addFieldDescription(replyRequired);

// Get a record based on the format of the entries on the data queue
Record rec = entryFormat.getNewRecord();

Example: Defining RecordFormat statically

The following example defines the record format statically, which allows many programs to use the
format without coding the record format multiple times.

public class MessageEntryFormat extends RecordFormat
{

// The field descriptions are contained in the class
static BinaryFieldDescription msgNumber = new BinaryFieldDescription(new AS400Bin4(),

"msgnum");
static CharacterFieldDescription sender = new CharacterFieldDescription(new AS400Text(50),

"sender");
static CharacterFieldDescription timeSent = new CharacterFieldDescription(new AS400Text(8),

"timesent");
static CharacterFieldDescription msgText = new CharacterFieldDescription(new AS400Text(1024),

"msgtext");
static CharacterFieldDescription replyRequired = new CharacterFieldDescription(new AS400Text(1),

"replyreq");

public MessageEntryFormat()
{

// We will name this format for posterity
super("MessageEntryFormat");
// Add the field descriptions
addFieldDescription(msgNumber);
addFieldDescription(sender);
addFieldDescription(timeSent);
addFieldDescription(msgText);
addFieldDescription(replyRequired);

}
}

Example: Using RecordFormat statically

The following example shows how a Java program can use a statically defined RecordFormat:
MessageEntryFormat entryFormat = new MessageEntryFormat();
// Get a record based on the format of the entries on the data queue
Record rec = entryFormat.getNewRecord();

Using the Record class

You can use the Record class to access individual fields of data queue entries.

Example: Using a generic Record object
// Instantiate our data queue object
DataQueue dq = new DataQueue(new AS400(), "/qsys.lib/mylib.lib/myq.dtaq");

// Read an entry
DataQueueEntry dqEntry = null;
try

IBM Toolbox for Java 485

{
dqEntry = dq.read();

}
catch(Exception e)
{

// Handle any exceptions
}

// Get a record object from our record format, initializing it with the data from the entry we
// just read.
Record rec = entryFormat.getNewRecord(dqEntry.getData());

// Output the complete entry as a String. The contents of the record are converted to Java Objects
// based on the record format of the entry.
System.out.println(rec.toString());
// Get the contents of the individual fields of the entry. Each field’s contents are converted to
// a Java Object.
Integer num = (Integer)rec.getField(0); // Retrieve contents by index
String s = (String)rec.getField("sender");// Retrieve contents by field name
String text = (String)rec.getField(3); // Retrieve the message text
// Output the data
System.out.println(num + " " + s + " " + text);

Example: Using a specific Record object

You can also statically define and use a Record specific to the format of this data queue, which allows
you to provide get() and set() methods for the fields that are more meaningfully named than getField()
and setField(). Also, by using the statically defined specific Record, you can return basic Java types
instead of objects, and you can identify the return type for your user.

Note that this example must explicitly cast the correct Java object.
public class MessageEntryRecord extends Record
{

static private RecordFormat format = new MessageEntryFormat();

public MessageEntryRecord()
{

super(format);
}

public int getMessageNumber()
{

// Return the message number as an int. Note: We know our record format and therefore
// know the names of our fields. It is safest to get the field by name in case a field
// has been inserted into the format unbeknownst to us.
return ((Integer)getField("msgnum")).intValue();

}

public String getMessageText()
{

// Return the text of the message
return (String)getField("msgtext");

}

public String getSender()
{

// Return the sender of the message
return (String)getField("sender");

}

public String getTimeSent()
{

// Return the sender of the message
return (String)getField("timesent");

486 IBM i: Programming IBM Toolbox for Java

}

// We could add setters here
}

Example: Returning a new MessageEntryRecord

We need to override the getNewRecord() method in the MessageEntryFormat class (in the example
above) in order to return a new MessageEntryRecord. To override the method, add the following to the
MessageEntryFormat class:

public Record getNewRecord(byte[] data)
{

Record r = new MessageEntryRecord();
r.setContents(data);
return r;

}

After adding the new getNewRecord() method, you can use the MessageEntryRecord to interpret the data
queue entry:

// Get a record object from our record format, initializing it with the data from the entry we
// just read. Note the use of the new overridden method getNewRecord().
MessageEntryRecord rec = (MessageEntryRecord)entryFormat.getNewRecord(dqEntry.getData());

// Output the complete entry as a String. The contents of the record are converted to Java Objects
// based on the record format of the entry.
System.out.println(rec.toString());
// Get the contents of the individual fields of the entry. Each field’s contents are converted to
// a Java Object.
int num = rec.getMessageNumber(); // Retrieve the message number as an int
String s = rec.getSender(); // Retrieve the sender
String text = rec.getMessageText(); // Retrieve the message text
// Output the data
System.out.println(num + " " + s + " " + text);

Example: Using DataQueue classes to put data on a queue
This example uses the Record and Record format classes to put data on the queue. String data is
converted from Unicode to ebcdic and numbers are converted from Java to the system format. Because
data is converted the data queue, entries can be read by a server program, an IBM i program, or another
Java program.

Note: Read the Code example disclaimer for important legal information.
///
//
// Data Queue example. This program uses the DataQueue class to put
// records on a data queue.
//
// This example uses the Record and Record format classes to put data
// on the queue. String data is converted from Unicode to ebcdic
// and numbers are converted from Java to the server format. Because data
// is converted, entries can be read by a server program,
// an Access for Windows program, or another Java program.
//
// This is the producer side of the producer/consumer example. It puts work
// items on the queue for the consumer to process.
//
// Command syntax:
// DQProducerExample system
//
///

import java.io.*;
import java.util.*;

IBM Toolbox for Java 487

import java.net.*;
import com.ibm.as400.access.*;

public class DQProducerExample extends Object
{

// Create a reader to get input from the user.
static BufferedReader inputStream =

new BufferedReader(new InputStreamReader(System.in),1);

public static void main(String[] parameters)
{

System.out.println(" ");

// if the system name was not specified, display help text and exit.
if (parameters.length >= 1)
{

try
{

// The first parameter is the system that contains the data queue.
String system = parameters[0];

// Create an AS400 object for the server that has the data queue.
AS400 as400 = new AS400(system);

// Build a record format for the format of the data queue entry.
// This format matches the format in the DQConsumer class. A
// record consists of:
// - a four byte number -- the customer number
// - a four byte number -- the part number
// - a 20 character string -- the part description
// - a four byte number -- the number of parts in this order
// First create the base data types.
BinaryFieldDescription customerNumber =

new BinaryFieldDescription(new AS400Bin4(), "CUSTOMER_NUMBER");

BinaryFieldDescription partNumber =
new BinaryFieldDescription(new AS400Bin4(), "PART_NUMBER");

CharacterFieldDescription partName =
new CharacterFieldDescription(new AS400Text(20, as400), "PART_NAME");

BinaryFieldDescription quantity =
new BinaryFieldDescription(new AS400Bin4(), "QUANTITY");

// Build a record format and fill it with the base data types.
RecordFormat dataFormat = new RecordFormat();
dataFormat.addFieldDescription(customerNumber);
dataFormat.addFieldDescription(partNumber);
dataFormat.addFieldDescription(partName);
dataFormat.addFieldDescription(quantity);

// Create the library that contains the data queue
// using CommandCall.
CommandCall crtlib = new CommandCall(as400);
crtlib.run("CRTLIB JAVADEMO");

// Create the data queue object.
DataQueue dq = new DataQueue(as400, "/QSYS.LIB/JAVADEMO.LIB/PRODCONS.DTAQ");

// Create the data queue just in case this is the first time this
// program has run. The queue already exists exception is caught
// and ignored.
try
{

dq.create(96);
}
catch (Exception e) {};

488 IBM i: Programming IBM Toolbox for Java

// Get the first field of data from the user.
System.out.print("Enter customer number (or 0 to quit): ");
int customer = getInt();

// While there is data to put on the queue.
while (customer > 0)
{

// Get the rest of the data for this order from the user.
System.out.print("Enter part number: ");
int part = getInt();

System.out.print("Enter quantity: ");
int quantityToOrder = getInt();

String description = "part " + part;

// Create a record based on the record format. The record
// is empty now but will eventually contain the data.
Record data = new Record(dataFormat);

// Set the values we received from the user into the record.
data.setField("CUSTOMER_NUMBER", new Integer(customer));
data.setField("PART_NUMBER", new Integer(part));
data.setField("QUANTITY", new Integer(quantityToOrder));
data.setField("PART_NAME", description);

// Convert the record into a byte array. The byte array is
// what is actually put to the data queue.
byte [] byteData = data.getContents();

System.out.println("");
System.out.println("Writing record to the server ...");
System.out.println("");

// Write the record to the data queue.
dq.write(byteData);

// Get the next value from the user.
System.out.print("Enter customer number (or 0 to quit): ");
customer = getInt();

}
}
catch (Exception e)
{

// If any of the above operations failed say the data queue
// operation failed and output the exception.

System.out.println("Data Queue operation failed");
System.out.println(e);

}
}

// Display help text when parameters are incorrect.
else
{

System.out.println("");
System.out.println("");
System.out.println("");
System.out.println("Parameters are not correct. Command syntax is:");
System.out.println("");
System.out.println(" DQProducter system");
System.out.println("");
System.out.println("Where");
System.out.println("");
System.out.println(" system = Server that has the data queue");
System.out.println("");

IBM Toolbox for Java 489

System.out.println("For example:");
System.out.println("");
System.out.println(" DQProducerExample mySystem");
System.out.println("");
System.out.println("");

}

System.exit(0);
}

// This is the subroutine that gets a character string from the user
// and converts it into an int.
static int getInt()
{

int i = 0;
boolean Continue = true;

while (Continue)
{

try
{

String s = inputStream.readLine();

i = (new Integer(s)).intValue();
Continue = false;

}
catch (Exception e)
{

System.out.println(e);
System.out.print("Please enter a number ==>");

}
}

return i;
}

}

Example: Using DataQueue classes to read entries off a data queue
This program uses the Data Queue classes to read entries off a data queue on the server. The entries were
put on the queue with the DQProducer example program.

Note: Read the Code example disclaimer for important legal information.
///
//
// Data Queue example. This program uses the Data Queue classes to read
// entries off a data queue on the server. The entries were put on the
// queue with the DQProducer example program.
//
// This is the consumer side of the producer/consumer example. It reads
// entries off the queue and process them.
//
// Command syntax:
// DQConsumerExample system
//
///

import java.io.*;
import java.util.*;
import java.net.*;
import com.ibm.as400.access.*;

public class DQConsumerExample extends Object
{

public static void main(String[] parameters)
{

490 IBM i: Programming IBM Toolbox for Java

System.out.println(" ");

// if a system name was not specified, display help text and exit.
if (parameters.length >= 1)
{

try
{

// The first parameter is the system that contains the data queue.
String system = parameters[0];

// Create an AS400 object for the server that has the data queue.
AS400 as400 = new AS400(system);

// Build a record format for the format of the data queue entry.
// This format matches the format in the DQProducer class. A
// record consists of:
// - a four byte number -- the customer number
// - a four byte number -- the part number
// - a 20 character string -- the part description
// - a four byte number -- the number of parts in this order

// First create the base data types.
BinaryFieldDescription customerNumber =

new BinaryFieldDescription(new AS400Bin4(), "CUSTOMER_NUMBER");

BinaryFieldDescription partNumber =
new BinaryFieldDescription(new AS400Bin4(), "PART_NUMBER");

CharacterFieldDescription partName =
new CharacterFieldDescription(new AS400Text(20, as400), "PART_NAME"

BinaryFieldDescription quantity =
new BinaryFieldDescription(new AS400Bin4(), "QUANTITY"

// Build a record format and fill it with the base data types.
RecordFormat dataFormat = new RecordFormat();

dataFormat.addFieldDescription(customerNumber);
dataFormat.addFieldDescription(partNumber);
dataFormat.addFieldDescription(partName);
dataFormat.addFieldDescription(quantity);

// Create the data queue object that represents the data queue on
// the server.
DataQueue dq = new DataQueue(as400, "/QSYS.LIB/JAVADEMO.LIB/PRODCONS.DTAQ");

boolean Continue = true;

// Read the first entry off the queue. The timeout value is
// set to -1 so this program will wait forever for an entry.
System.out.println("*** Waiting for an entry for process ***");

DataQueueEntry DQData = dq.read(-1);

while (Continue)
{

// We just read an entry off the queue. Put the data into
// a record object so the program can access the fields of
// the data by name. The Record object will also convert
// the data from server format to Java format.
Record data = dataFormat.getNewRecord(DQData.getData());

// Get two values out of the record and display them.
Integer amountOrdered = (Integer) data.getField("QUANTITY");

IBM Toolbox for Java 491

String partOrdered = (String) data.getField("PART_NAME");

System.out.println("Need " + amountOrdered + " of "
+ partOrdered);

System.out.println(" ");
System.out.println("*** Waiting for an entry for process ***");

// Wait for the next entry.
DQData = dq.read(-1);

}
}
catch (Exception e)
{

// If any of the above operations failed say the data queue
// operation failed and output the exception.
System.out.println("Data Queue operation failed");
System.out.println(e);

}
}

// Display help text when parameters are incorrect.
else
{

System.out.println("");
System.out.println("");
System.out.println("");
System.out.println("Parameters are not correct. Command syntax is:");
System.out.println("");
System.out.println(" DQConsumerExample system");
System.out.println("");
System.out.println("Where");
System.out.println("");
System.out.println(" system = Server that has the data queue");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println(" DQConsumerExample mySystem");
System.out.println("");
System.out.println("");

}

System.exit(0);
}

}

Data types example usage
You can use the IBM Toolbox for Java AS400DataType classes with ProgramCall to supply data for
program parameters and to interpret the data returned in program parameters.

Note: Read the Code example disclaimer for important legal information.

Example: Using AS400DataType classes with ProgramCall

The following example shows how to use AS400DataType classes by using ProgramCall to call the system
API, QUSRMBRD "Retrieve Member Description". The QUSRMBRD API retrieves the description of a
specific member in a database file. The tables following the example list the required QUSRMBRD
parameters and the types of information that the example retrieves.

// Create a ProgramCall object. We will set the program name and
// parameter list later.
ProgramCall qusrmbrd = new ProgramCall(new AS400());

// Create an empty program parameter list
ProgramParameter[] parms = new ProgramParameter[6];

492 IBM i: Programming IBM Toolbox for Java

// Create AS400DataTypes to convert our input parameters from Java types
// to server data
AS400Bin4 bin4 = new AS400Bin4();

// We need a separate AS400Text object for each parameter with a
// different length because the AS400Text class requires the length to
// be specified.
AS400Text char8Converter = new AS400Text(8)
AS400Text char20Converter = new AS400Text(20);
AS400Text char10Converter = new AS400Text(10);
AS400Text char1Converter = new AS400Text(1);

// Populate our parameter list; we use the AS400DataType objects to
// convert our Java values to byte arrays containing server data.

// For the output parameter we need only specify how many bytes will
// be returned
parms[0] = new ProgramParameter(135);
parms[1] = new ProgramParameter(bin4.toBytes(new Integer(135)));
parms[2] = new ProgramParameter(char8Converter.toBytes("MBRD0100"));
parms[3] = new ProgramParameter(char20Converter.toBytes("MYFILE MYLIB "));
parms[4] = new ProgramParameter(char10COnverter.toBytes("MYMEMBER "));
parms[5] = new ProgramParameter(char1Converter.toBytes("0"));

// Set the program name and parameter list
qusrmbrd.setProgram("/qsys.lib/qusrmbrd.pgm", parms);

// Call the program
try
{

qusrmbrd.run();
}
catch(Exception e)
{

// Handle any exceptions
}

// Get the information retrieved. Note that this is raw server data.
byte[] receiverVar = parms[0].getOutputData();

// We need this to convert the time and date data
AS400Text char13Converter = new AS400Text(13);

// We need this to convert the text description data
AS400Text char50Converter = new AS400Text(50);

// Create an AS400Structure to handle the returned information
AS400DataType[] dataTypeArray = new AS400DataType[11];
dataTypeArray[0] = bin4;
dataTypeArray[1] = bin4;
dataTypeArray[2] = char10Converter;
dataTypeArray[3] = char10Converter;
dataTypeArray[4] = char10Converter;
dataTypeArray[5] = char10Converter;
dataTypeArray[6] = char10Converter;
dataTypeArray[7] = char13Converter;
dataTypeArray[8] = char13Converter;
dataTypeArray[9] = char50Converter;
dataTypeArray[10] = char1Converter;
AS400Structure returnedDataConverter = new AS400Structure(dataTypeArray);

// Convert the data returned to an array of Java Objects using our
// returnedDataConverter
Object[] qusrmbrdInfo = dataConverter.toObject(receiverVar, 0);

IBM Toolbox for Java 493

// Get the number of bytes returned
Integer bytesReturned = (Integer)qusrmbrdInfo[0];
Integer bytesAvailable = (Integer)qusrmbrdInfo[1];
if (bytesReturned.intValue() != 135)
{

System.out.println("Wrong amount of information returned.");
System.exit(0);

}
String fileName = (String)qusrmbrdInfo[2];
String libName = (String)qusrmbrdInfo[3];
String mbrName = (String)qusrmbrdInfo[4];
String fileAttribute = (String)qusrmbrdInfo[5];
String sourceType = (String)qusrmbrdInfo[6];
String created = (String)qusrmbrdInfo[7];
String lastChanged = (String)qusrmbrdInfo[8];
String textDesc = (String)qusrmbrdInfo[9];
String isSourceFile = (String)qusrmbrdInfo[10];

// We will just output all the information to the screen
System.out.println(fileName + " " + libName + " " + mbrName + " " +

fileAttribute + sourceType + " " + created + " " +
lastChanged + " " + textDesc + " " + isSourceFile);

The following table lists the required parameters for the QUSRMBRD API as used in the preceding
example.

QUSRMBRD parameter Input or output Type Description

Receiver variable Output Char(*) Character buffer which will
contain the information
retrieved.

Length of receiver variable Input Bin(4) Length of the character
buffer provided for the
receiver variable.

Format name Input Char(8) Format specifying the type
of information to be
retrieved. Must be one of:

v MBRD0100

v MBRD0200

v MBRD0300

The following example
specifies MBRD0100.

Qualified database file
name

Input Char(20) The qualified file name.
This is the file name blank
padded to 10 characters
followed by the library
name blank padded to 10
characters. Special values of
*CURLIB and *LIBL are
allowed for the library
name.

Database member name Input Char(10) The name of the member
blank padded to 10
characters. Special values of
*FIRST and *LAST are
allowed.

494 IBM i: Programming IBM Toolbox for Java

QUSRMBRD parameter Input or output Type Description

Override processing Input Char(1) Whether overrides are to be
processed. 0 indicates that
overrides are not to be
processed. This is the value
we will specify.

The following table lists the type of information that the example retrieves (based on format MBRD0100,
as specified in the preceding example):

Information retrieved Type

Bytes returned Bin(4)

Bytes available Bin(4)

Database file name Char(10)

Database file library name Char(10)

Member name Char(10)

File attribute (type of file: PF, LF, DDMF) Char(10)

Source type (type of the source source member if this is a
source file)

Char(10)

Creation date and time Char(13)

Last source change date and time Char(13)

Member text description Char(50)

Source file (whether the file is a source file: 0=data file,
1=source file)

Char(1)

Example: Using KeyedDataQueue
This program uses the KeyedDataQueue class to put records on a data queue.

Note: Read the Code example disclaimer for important legal information.
///
//
// Data Queue example. This program uses the KeyedDataQueue class to put
// records on a data queue.
//
// The key is a number and the data is a Unicode string. This program
// shows one way to convert on int into a byte array and how to convert
// a Java string into a byte array so it can be written to the queue.
//
// This is the producer side of the producer/consumer example. It puts work
// items on the queue for the consumer to process.
//
// Command syntax:
// DQKeyedProducer system
//
///

import java.io.*;
import java.util.*;
import java.net.*;
import com.ibm.as400.access.*;

public class DQKeyedProducer extends Object
{

// Create a reader to get input from the user.

IBM Toolbox for Java 495

static BufferedReader inputStream =
new BufferedReader(new InputStreamReader(System.in),1);

public static void main(String[] parameters)
{

System.out.println(" ");

// if the system name was not specified, display help text and exit.

if (parameters.length >= 1)
{

// The first parameter is the system that contains the data queue.

String system = parameters[0];

System.out.println("Priority is a numeric value. The value ranges are:");
System.out.println(" 0 - 49 = low priority");
System.out.println(" 50 - 100 = medium priority");
System.out.println("100 + = high priority");
System.out.println(" ");

try
{

// Create an AS400 object for the server that has the data queue.

AS400 as400 = new AS400(system);

// Use CommandCall to create the library that contains the
// data queue.

CommandCall crtlib = new CommandCall(as400);
crtlib.run("CRTLIB JAVADEMO");

// Create the data queue object.

QSYSObjectPathName name = new QSYSObjectPathName("JAVADEMO", "PRODCON2", "DTAQ");

KeyedDataQueue dq = new KeyedDataQueue(as400, name.getPath());

// Create the data queue just in case this is the first time this
// program has run. The queue already exists exception is caught
// and ignored. The length of the key is four bytes, the length
// of an entry is 96 bytes.

try
{

dq.create(4, 96);
}
catch (Exception e) {};

496 IBM i: Programming IBM Toolbox for Java

// Get the data from the user.

System.out.print("Enter message: ");
String message = inputStream.readLine();

System.out.print("Enter priority: ");
int priority = getInt();

// While there is data to put on the queue.

while (priority > 0)
{

// We want to write a java string as the entry to the queue.
// Input the data queue is a byte array, however, so convert
// the string to a byte array.

byte [] byteData = message.getBytes("UnicodeBigUnmarked");

// The key is a number. Input to the data queue is a byte
// array, however, so convert the int to a byte array;

byte [] byteKey = new byte[4];
byteKey[0] = (byte) (priority >>> 24);
byteKey[1] = (byte) (priority >>> 16);
byteKey[2] = (byte) (priority >>> 8);
byteKey[3] = (byte) (priority);

System.out.println("");
System.out.println("Writing record to the server...");
System.out.println("");

// Write the record to the data queue.

dq.write(byteKey, byteData);

// Get the next value from the user.

System.out.print("Enter message: ");
message = inputStream.readLine();

System.out.print("Enter priority: ");
priority = getInt();

}
}
catch (Exception e)
{

// If any of the above operations failed say the data queue
// operation and output the exception.

System.out.println("Data Queue operation failed");
System.out.println(e);

}
}

IBM Toolbox for Java 497

// Display help text when parameters are incorrect.

else
{

System.out.println("");
System.out.println("");
System.out.println("");
System.out.println("Parameters are not correct. Command syntax is:");
System.out.println("");
System.out.println(" DQKeyedProducter system");
System.out.println("");
System.out.println("Where");
System.out.println("");
System.out.println(" system = server that has the data queue");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println(" DQKeyedProducer mySystem");
System.out.println("");
System.out.println("");

}

System.exit(0);
}

// This is the subroutine that gets a character string from the user
// and converts it into an int.

static int getInt()
{

int i = 0;
boolean Continue = true;

while (Continue)
{

try
{

String s = inputStream.readLine();

i = (new Integer(s)).intValue();
Continue = false;

}
catch (Exception e)
{

System.out.println(e);
System.out.print("Please enter a number ==>");

}
}

return i;
}

}

Example: Using KeyedDataQueue classes to read entries off a data queue
This program uses the KeyedDataQueue classes to read entries off a data queue on the server. The entries
were put on the queue with the DQKeyedProducer example program.

Note: Read the Code example disclaimer for important legal information.
///
//
// Keyed Data Queue example. This program uses the KeyedDataQueue classes to
// read entries off a data queue on the server. The entries were put on the

498 IBM i: Programming IBM Toolbox for Java

// queue with the DQKeyedProducer example program.
//
// The key is a number and the data is a unicode string. This program
// shows one way to convert the byte array to a Java int and to read
// a byte array and convert it into a Java string.
//
// This is the consumer side of the producer/consumer example. It reads
// entries off the queue and process them.
//
// Command syntax:
// DQKeyedConsumer system
//
///

import java.io.*;
import java.util.*;
import java.net.*;
import com.ibm.as400.access.*;

public class DQKeyedConsumer extends Object
{

public static void main(String[] parameters)
{

System.out.println(" ");

// if a system name was not specified, display help text and exit.
if (parameters.length >= 1)
{

// The first parameter is the system that contains the data queue.
String system = parameters[0];

// Create byte arrays for the priority boundries:
// 100 + = high priority
// 50 - 100 = medium priority
// 0 - 49 = low priority

byte [] key0 = new byte[4];
key0[0] = 0;
key0[1] = 0;
key0[2] = 0;
key0[3] = 0;

byte [] key50 = new byte[4];
key50[0] = (byte) (50 >>> 24);
key50[1] = (byte) (50 >>> 16);
key50[2] = (byte) (50 >>> 8);
key50[3] = (byte) (50);

byte [] key100 = new byte[4];
key100[0] = (byte) (100 >>> 24);
key100[1] = (byte) (100 >>> 16);
key100[2] = (byte) (100 >>> 8);
key100[3] = (byte) (100);

try
{

// Create an AS400 object for the server that has the data queue.
AS400 as400 = new AS400(system);

// Create the data queue object that represents the data queue
// on the server.

QSYSObjectPathName name = new QSYSObjectPathName("JAVADEMO",
"PRODCON2",
"DTAQ");

KeyedDataQueue dq = new KeyedDataQueue(as400, name.getPath());

IBM Toolbox for Java 499

KeyedDataQueueEntry DQData = null;

try
{

boolean Continue = true;

// Go until the user ends us.
while (Continue)
{

// Look for a high priority item on the queue. If one is
// found process that item. Note the peek method does not
// remove the item if one is found. Also note the timeout
// is 0. If an item is not found we get control back with
// a null data queue entry.
DQData = dq.read(key100, 0, "GE");

if (DQData != null)
{

processEntry(DQData);
}

// else no high priority item was found. Look for a medium
// priority item.
else
{

DQData = dq.read(key50, 0, "GE");

if (DQData != null)
{

processEntry(DQData);
}

// else no medium priority item was found, look for a low
// priority item.
else
{

DQData = dq.read(key0, 0, "GE");

if (DQData != null)
{

processEntry(DQData);
}

else
{
System.out.println("Nothing to process, will check again in 30 seconds");
Thread.sleep(30000);

}
}

}
}

}
catch (Exception e)
{

// If any of the above operations failed say the data queue
// operation failed and output the exception.
System.out.println("Could not read from the data queue.");
System.out.println(e);

};

}
catch (Exception e)
{

// If any of the above operations failed say the data queue
// operation failed and output the exception.

System.out.println("Data Queue operation failed");

500 IBM i: Programming IBM Toolbox for Java

System.out.println(e);
}

}

// Display help text when parameters are incorrect.
else
{

System.out.println("");
System.out.println("");
System.out.println("");
System.out.println("Parameters are not correct. Command syntax is:");
System.out.println("");
System.out.println(" DQKeyedConsumer system");
System.out.println("");
System.out.println("Where");
System.out.println("");
System.out.println(" system = Server that has the data queue");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println("");
System.out.println(" DQKeyedConsumer mySystem");
System.out.println("");
System.out.println("");

}

System.exit(0);
}

static void processEntry(KeyedDataQueueEntry DQData)
{

try
{

// The data is a string. Get the string out of the data queue entry.
// In the data queue entry the data is a byte array so convert the
// entry from a byte array into a string.
String message = new String(DQData.getData(), "UnicodeBig");

// The key is a byte array. Get the key out of the data queue entry
// and convert it into a number.
byte [] keyData = DQData.getKey();

int keyValue = ((keyData[0] & 0xFF) << 24) +
((keyData[1] & 0xFF) << 16) +
((keyData[2] & 0xFF) << 8) +
(keyData[3] & 0xFF);

// Output the entry.
System.out.println("Priority: " + keyValue + " message: " + message);

}
catch (Exception e)
{

// If any of the above operations failed say the data queue operation
// failed and output the exception.

System.out.println("Could not read from the data queue");
System.out.println(e);

}
}

}

Examples: Using IFSFile
The following examples show how to use the IBM Toolbox for Java IFSFile class.

Note: Read the Code example disclaimer for important legal information.

IBM Toolbox for Java 501

v Example: Creating a directory
v Example: Using IFSFile exceptions to track errors
v Example: Listing files with a .txt extension
v “Example: Using the IFSFile listFiles() method to list the contents of a directory” on page 503

Example: Creating a directory
// Create an AS400 object. This new directory will
// be created on this system.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a file object that represents the directory.
IFSFile aDirectory = new IFSFile(sys, "/mydir1/mydir2/newdir");

// Create the directory.
if (aDirectory.mkdir())

System.out.println("Create directory was successful");
else
{

// The create directory failed.
// If the object already exists, find out if it is a
// directory or file, then display a message.
if (aDirectory.exists())
{

if (aDirectory.isDirectory())
System.out.println("Directory already exists");

else
System.out.println("File with this name already exists");

}
else

System.out.println("Create directory failed");
}

// Disconnect since I am done accessing files.
sys.disconnectService(AS400.FILE);

Example: Using IFSFile exceptions to track errors

When an error occurs, the IFSFile class throws the ExtendedIOException exception. This exception
contains a return code that indicates the cause of the failure. The IFSFile class throws the exception even
when the java.io class that IFSFile duplicates does not. For example, the delete method from java.io.File
returns a boolean to indicate success or failure. The delete method in IFSFile returns a boolean, but if the
delete fails, an ExtendedIOException is thrown. The ExtendedIOException provides the Java program
with detailed information about why the delete failed.

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create a file object that represents the file.
IFSFile aFile = new IFSFile(sys, "/mydir1/mydir2/myfile");

// Delete the file.
try
{

aFile.delete();

System.out.println("Delete successful ");
}
catch (ExtendedIOException e)
{

// The delete failed. Get the return code out of
// the exception and display why the delete failed.
int rc = e.getReturnCode();

switch (rc)

502 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/access/ExtendedIOException.html#NAVBAR_TOP

{
case ExtendedIOException.FILE_IN_USE:

System.out.println("Delete failed, file is in use ");
break;

case ExtendedIOException.PATH_NOT_FOUND:
System.out.println("Delete failed, path not found ");
break;

// ... for every specific error you want to track.

default:
System.out.println("Delete failed, rc = ");
System.out.println(rc);

}
}

Example: Listing files with a .txt extension

The Java program can optionally specify match criteria when listing files in the directory. Match criteria
reduce the number of files that are returned by the server to the IFSFile object, which improves
performance. The following example shows how to list files with extension .txt:

// Create the AS400 object.
AS400 system = new AS400("mySystem.myCompany.com");

// Create the file object.
IFSFile directory = new IFSFile(system, "/");

// Generate a list of all files with extension .txt
String[] names = directory.list("*.txt");

// Display the names.
if (names != null)

for (int i = 0; i < names.length; i++)
System.out.println(names[i]);

else
System.out.println("No .txt files");

Example: Using the IFSFile listFiles() method to list the contents of a directory
This example program uses the IBM Toolbox for Java IFS classes to list the contents of a directory on the
server.

Note: Read the Code example disclaimer for important legal information.
//
//
// IFSListFiles example. This program uses the integrated file system
// classes to list the contents of a directory on the server.
//
// Command syntax:
// IFSListFiles system directory
//
// For example,
// IFSListFiles MySystem /path1
//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class IFSListFiles extends Object
{

public static void main(String[] parameters)
{

IBM Toolbox for Java 503

System.out.println(" ");

String directoryName = "";
String system = "";

// if both parameters were not specified, display help text and exit.

if (parameters.length >= 2)
{

// Assume the first parameter is the system name and
// the second parameter is the directory name

system = parameters[0];
directoryName = parameters[1];

try
{

// Create an AS400 object for the server that holds the files.

AS400 as400 = new AS400(system);

// Create the IFSFile object for the directory.

IFSFile directory = new IFSFile(as400, directoryName);

// Generate a list of IFSFiles. Pass the listFiles method
// the directory filter object and the search match
// criteria. This method caches attribute information. For
// instance, when isDirectory() is called on an IFSFile
// object in the file array returned in the following code,
// no call to the server is required.
//
// However, with the user of the listFiles method, attribute
// information will not be refreshed automatically from the
// server. This means attribute information can become
// inconsistent with information about the server.

IFSFile[] directoryFiles = directory.listFiles(new MyDirectoryFilter(),"*");

// Tell the user if the directory doesn’t exist or is empty

if (directoryFiles == null)
{

System.out.println("The directory does not exist");
return;

}

else if (directoryFiles.length == 0)
{

System.out.println("The directory is empty");
return;

}

for (int i=0; i< directoryFiles.length; i++)
{

// Print out information about list.
// Print the name of the current file

System.out.print(directoryFiles[i].getName());

// Pad the output so the columns line up

504 IBM i: Programming IBM Toolbox for Java

for (int j = directoryFiles[i].getName().length(); j <18; j++)
System.out.print(" ");

// Print the date the file was last changed.

long changeDate = directoryFiles[i].lastModified();
Date d = new Date(changeDate);
System.out.print(d);
System.out.print(" ");

// Print if the entry is a file or directory

System.out.print(" ");

if (directoryFiles[i].isDirectory())
System.out.println("");

else
System.out.println(directoryFiles[i].length());

}
}

catch (Exception e)
{

// If any of the above operations failed say the list failed
// and output the exception.

System.out.println("List failed");
System.out.println(e);

}
}

// Display help text when parameters are incorrect.

else
{

System.out.println("");
System.out.println("");
System.out.println("");
System.out.println("Parameters are not correct. Command syntax is:");
System.out.println("");
System.out.println(" IFSListFiles as400 directory");
System.out.println("");
System.out.println("Where");
System.out.println("");
System.out.println(" as400 = system that contains the files");
System.out.println(" directory = directory to be listed");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println(" IFSListFiles mySystem /dir1/dir2");
System.out.println("");
System.out.println("");

}

System.exit(0);
}

}

//
//
// The directory filter class prints information from the file object.
//

IBM Toolbox for Java 505

// Another way to use the filter is to simply return true or false
// based on information in the file object. This lets the mainline
// function decide what to do with the list of files that meet the
// search criteria.
//
//

class MyDirectoryFilter implements IFSFileFilter
{

public boolean accept(IFSFile file)
{

try
{

// Keep this entry. Returning true tells the IFSList object
// to return this file in the list of entries returned to the
// .list() method.

return true;
}

catch (Exception e)
{

return false;
}

}
}

Example: Using IFS classes to copy a file from one directory to another
This program uses the installable file system classes to copy a file from one directory to another on the
server.

Note: Read the Code example disclaimer for important legal information.
//
//
// IFSCopyFile example. This program uses the installable file system classes
// to copy a file from one directory to another on the server.
//
// Command syntax:
// IFSCopyFile system sourceName TargetName
//
// For example,
// IFSCopyFile MySystem /path1/path2/file.ext /path3/path4/path5/file.ext
//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class IFSCopyFile extends Object
{

public static void main(String[] parameters)
{

System.out.println(" ");

String sourceName = "";
String targetName = "";
String system = "";
byte[] buffer = new byte[1024 * 64];

IFSFileInputStream source = null;
IFSFileOutputStream target = null;

506 IBM i: Programming IBM Toolbox for Java

// if all three parameters were not specified, display help text and exit.

if (parameters.length > 2)
{

// Assume the first parameter is the system name,
// the second parameter is the source name and
// the third parameter is the target name.

system = parameters[0];
sourceName = parameters[1];
targetName = parameters[2];

try
{

// Create an AS400 object for the server that holds the files.

AS400 as400 = new AS400(system);

// Open the source file for exclusive access.

source = new IFSFileInputStream(as400, sourceName, IFSFileInputStream.SHARE_NONE);

System.out.println("Source file successfully opened");

// Open the target file for exclusive access.

target = new IFSFileOutputStream(as400, targetName, IFSFileOutputStream.SHARE_NONE, false);

System.out.println("Target file successfully opened");

// Read the first 64K bytes from the source file.

int bytesRead = source.read(buffer);

// While there is data in the source file copy the data from
// the source file to the target file.

while (bytesRead > 0)
{

target.write(buffer, 0, bytesRead);
bytesRead = source.read(buffer);

}

System.out.println("Data successfully copied");

// Clean up by closing the source and target files.

source.close();
target.close();

// Get the last changed date/time from the source file and
// set it on the target file.

IBM Toolbox for Java 507

IFSFile src = new IFSFile(as400, sourceName);
long dateTime = src.lastModified();

IFSFile tgt = new IFSFile(as400, targetName);
tgt.setLastModified(dateTime);

System.out.println("Date/Time successfully set on target file");
System.out.println("Copy Successful");

}
catch (Exception e)
{

// If any of the above operations failed say the copy failed
// and output the exception.

System.out.println("Copy failed");
System.out.println(e);

}
}

// Display help text when parameters are incorrect.

else
{

System.out.println("");
System.out.println("");
System.out.println("");
System.out.println("Parameters are not correct. Command syntax is:");
System.out.println("");
System.out.println(" IFSCopyFile as400 source target");
System.out.println("");
System.out.println("Where");
System.out.println("");
System.out.println(" as400 = system that contains the files");
System.out.println(" source = source file in /path/path/name format");
System.out.println(" target = target file in /path/path/name format");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println(" IFSCopyFile myAS400 /dir1/dir2/a.txt /dir3/b.txt");
System.out.println("");
System.out.println("");

}

System.exit(0);
}

}

Example: Using the IFS classes to list the contents of a directory
This program uses the integrated file system classes to list the contents of a directory on the server.

Note: Read the Code example disclaimer for important legal information.
//
//
// IFSListFile example. This program uses the integrated file system classes
// to list the contents of a directory on the server.
//
// Command syntax:
// IFSList system directory
//
// For example,
// IFSList MySystem /path1
//
//

import java.io.*;

508 IBM i: Programming IBM Toolbox for Java

import java.util.*;
import com.ibm.as400.access.*;

public class IFSList extends Object
{

public static void main(String[] parameters)
{

System.out.println(" ");

String directoryName = "";
String system = "";

// if both parameters were not specified, display help text and exit.

if (parameters.length >= 2)
{

// Assume the first parameter is the system name and
// the second parameter is the directory name

system = parameters[0];
directoryName = parameters[1];

try
{

// Create an AS400 object for the server that holds the files.

AS400 as400 = new AS400(system);

// Create the IFSFile object for the directory.

IFSFile directory = new IFSFile(as400, directoryName);

// Generate the list of name. Pass the list method the
// directory filter object and the search match criteria.
//
// Note - this example does the processing in the filter
// object. An alternative is to process the list after
// it is returned from the list method call.

String[] directoryNames = directory.list(new MyDirectoryFilter(),"*");

// Tell the user if the directory doesn’t exist or is empty

if (directoryNames == null)
System.out.println("The directory does not exist");

else if (directoryNames.length == 0)
System.out.println("The directory is empty");

}

catch (Exception e)
{

// If any of the above operations failed say the list failed
// and output the exception.

System.out.println("List failed");
System.out.println(e);

}
}

IBM Toolbox for Java 509

// Display help text when parameters are incorrect.

else
{

System.out.println("");
System.out.println("");
System.out.println("");
System.out.println("Parameters are not correct. Command syntax is:");
System.out.println("");
System.out.println(" IFSList as400 directory");
System.out.println("");
System.out.println("Where");
System.out.println("");
System.out.println(" as400 = system that contains the files");
System.out.println(" directory = directory to be listed");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println(" IFSCopyFile mySystem /dir1/dir2");
System.out.println("");
System.out.println("");

}

System.exit(0);
}

}

//
//
// The directory filter class prints information from the file object.
//
// Another way to use the filter is to simply return true or false
// based on information in the file object. This lets the mainline
// function decide what to do with the list of files that meet the
// search criteria.
//
//

class MyDirectoryFilter implements IFSFileFilter
{

public boolean accept(IFSFile file)
{

try
{

// Print the name of the current file

System.out.print(file.getName());

// Pad the output so the columns line up

for (int i = file.getName().length(); i < 18; i++)
System.out.print(" ");

// Print the date the file was last changed.

long changeDate = file.lastModified();
Date d = new Date(changeDate);
System.out.print(d);
System.out.print(" ");

510 IBM i: Programming IBM Toolbox for Java

// Print if the entry is a file or directory

System.out.print(" ");

if (file.isDirectory())
System.out.println("<DIR>");

else
System.out.println(file.length());

// Keep this entry. Returning true tells the IFSList object
// to return this file in the list of entries returned to the
// .list() method.

return true;
}

catch (Exception e)
{

return false;
}

}
}

Example: Using JDBCPopulate to create and populate a table
This program uses the IBM Toolbox for Java JDBC driver to create and populate a table.

Note: Read the Code example disclaimer for important legal information.
//
//
// JDBCPopulate example. This program uses the IBM Toolbox for Java JDBC driver to
// create and populate a table.
//
// Command syntax:
// JDBCPopulate system collectionName tableName
//
// For example,
// JDBCPopulate MySystem MyLibrary MyTable
//
//

import java.sql.*;

public class JDBCPopulate
{

// Strings to be added in the WORD column of the table.
private static final String words[]

= { "One", "Two", "Three", "Four", "Five",
"Six", "Seven", "Eight", "Nine", "Ten",
"Eleven", "Twelve", "Thirteen", "Fourteen", "Fifteen",
"Sixteen", "Seventeen","Eighteen", "Nineteen", "Twenty" };

public static void main (String[] parameters)
{

// Check the input parameters.
if (parameters.length != 3) {

System.out.println("");

IBM Toolbox for Java 511

System.out.println("Usage:");
System.out.println("");
System.out.println(" JDBCPopulate system collectionName tableName");
System.out.println("");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println("");
System.out.println(" JDBCPopulate MySystem MyLibrary MyTable");
System.out.println("");
return;

}

String system = parameters[0];
String collectionName = parameters[1];
String tableName = parameters[2];

Connection connection = null;

try {

// Load the IBM Toolbox for Java JDBC driver.
DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver());

// Get a connection to the database. Since we do not
// provide a user id or password, a prompt will appear.
//
// Note that we provide a default SQL schema here so
// that we do not need to qualify the table name in
// SQL statements.
//
connection = DriverManager.getConnection ("jdbc:as400://" + system + "/" + collectionName);

// Drop the table if it already exists.
try {

Statement dropTable = connection.createStatement ();
dropTable.executeUpdate ("DROP TABLE " + tableName);

}
catch (SQLException e) {

// Ignore.
}

// Create the table.
Statement createTable = connection.createStatement ();
createTable.executeUpdate ("CREATE TABLE " + tableName

+ " (I INTEGER, WORD VARCHAR(20), SQUARE INTEGER, "
+ " SQUAREROOT DOUBLE)");

// Prepare a statement for inserting rows. Since we
// execute this multiple times, it is best to use a
// PreparedStatement and parameter markers.
PreparedStatement insert = connection.prepareStatement ("INSERT INTO "

+ tableName + " (I, WORD, SQUARE, SQUAREROOT) " + " VALUES (?, ?, ?, ?)");

// Populate the table.
for (int i = 1; i <= words.length; ++i) {

insert.setInt (1, i);
insert.setString (2, words[i-1]);
insert.setInt (3, i*i);
insert.setDouble (4, Math.sqrt(i));
insert.executeUpdate ();

}

// Output a completion message.
System.out.println ("Table " + collectionName + "." + tableName + " has been populated.");

}

512 IBM i: Programming IBM Toolbox for Java

catch (Exception e) {
System.out.println ();
System.out.println ("ERROR: " + e.getMessage());

}

finally {

// Clean up.
try {

if (connection != null)
connection.close ();

}
catch (SQLException e) {

// Ignore.
}

}

System.exit (0);
}

}

Examples: Using AS400JDBCManagedConnectionPoolDataSource class
These examples demonstrate the use of the AS400JDBCManagedConnectionPoolDataSource class. The
AS400JDBCManagedConnectionPoolDataSource class simplifies connection pool maintenance by
eliminating the need for user applications to implement their own management code.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 760.

Example 1

This brief example shows the basic use of the AS400JDBCManagedConnectionPoolDataSource class.
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.sql.DataSource;

import com.ibm.as400.access.AS400JDBCManagedConnectionPoolDataSource;
import com.ibm.as400.access.AS400JDBCManagedDataSource;

public class TestJDBCConnPoolSnippet
{

void test()
{

AS400JDBCManagedConnectionPoolDataSource cpds0 = new AS400JDBCManagedConnectionPoolDataSource();

// Set general datasource properties. Note that both connection pool datasource (CPDS) and managed
// datasource (MDS) have these properties, and they might have different values.

cpds0.setServerName(host);
cpds0.setDatabaseName(host);//iasp can be here
cpds0.setUser(userid);
cpds0.setPassword(password);

cpds0.setSavePasswordWhenSerialized(true);

// Set connection pooling-specific properties.
cpds0.setInitialPoolSize(initialPoolSize_);
cpds0.setMinPoolSize(minPoolSize_);
cpds0.setMaxPoolSize(maxPoolSize_);
cpds0.setMaxLifetime((int)(maxLifetime_/1000)); // convert to seconds
cpds0.setMaxIdleTime((int)(maxIdleTime_/1000)); // convert to seconds
cpds0.setPropertyCycle((int)(propertyCycle_/1000)); // convert to seconds
//cpds0.setReuseConnections(false); // do not re-use connections

// Set the initial context factory to use.

IBM Toolbox for Java 513

System.setProperty(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.fscontext.RefFSContextFactory");

// Get the JNDI Initial Context.
Context ctx = new InitialContext();

// Note: The following is an alternative way to set context properties locally:
// Properties env = new Properties();
// env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.fscontext.RefFSContextFactory");
// Context ctx = new InitialContext(env);

ctx.rebind("mydatasource", cpds0); // We can now do lookups on cpds, by the name "mydatasource".

// Create a standard DataSource object that references it.

AS400JDBCManagedDataSource mds0 = new AS400JDBCManagedDataSource();
mds0.setDescription("DataSource supporting connection pooling");
mds0.setDataSourceName("mydatasource");
ctx.rebind("ConnectionPoolingDataSource", mds0);

DataSource dataSource_ = (DataSource)ctx.lookup("ConnectionPoolingDataSource");

AS400JDBCManagedDataSource mds_ = (AS400JDBCManagedDataSource)dataSource_;

boolean isHealthy = mds_.checkPoolHealth(false); //check pool health

Connection c = dataSource_.getConnection();

}

}

Example 2

This example shows more details about how to use the AS400JDBCManagedConnectionPoolDataSource
class.
import java.awt.TextArea;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.OutputStream;
import java.io.PrintStream;
import java.util.Vector;
import java.util.Properties;

import java.sql.Connection;
import javax.sql.DataSource;
import java.sql.ResultSet;
import java.sql.Statement;
import javax.naming.*;
import java.util.Date;
import java.util.ArrayList;
import java.util.Random;
import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400JDBCManagedConnectionPoolDataSource;
import com.ibm.as400.access.AS400JDBCManagedDataSource;
import com.ibm.as400.access.Trace;

public class TestJDBCConnPool
{

private static final boolean DEBUG = false;

// If you turn this flag on, be sure to also turn on the following flag:
// AS400JDBCConnection.TESTING_THREAD_SAFETY.
private static final boolean TESTING_THREAD_SAFETY = false;

private static String userid;
private static String password;
private static String host;

// Note: For consistency, all time values are stored units of milliseconds.
private int initialPoolSize_; // initial # of connections in pool

514 IBM i: Programming IBM Toolbox for Java

private int minPoolSize_; // max # of connections in pool
private int maxPoolSize_; // max # of connections in pool
private long maxLifetime_; // max lifetime (msecs) of connections in pool
private long maxIdleTime_; // max idle time (msecs) of available connections in pool
private long propertyCycle_; // pool maintenance frequency (msecs)

private int numDaemons_; // # of requester daemons to create
private static long timeToRunDaemons_; // total duration (msecs) to let the daemons run
private long daemonMaxSleepTime_; // max time (msecs) for requester daemons to sleep each cycle
private long daemonMinSleepTime_; // min time (msecs) for requester daemons to sleep each cycle
private long poolHealthCheckCycle_; // # of msecs between calls to checkPoolHealth()

private boolean keepDaemonsAlive_ = true; // When this is false, the daemons shut down.

private DataSource dataSource_;
private AS400JDBCManagedDataSource mds_;

private final Object daemonSleepLock_ = new Object();

private Random random_ = new Random();

static
{

try {
Class.forName("com.ibm.as400.access.AS400JDBCDriver");

}
catch(Exception e){

System.out.println("Unable to register JDBC driver.");
System.exit(0);

}
}

public static void main(String[] args)
{

host = args[0];
userid = args[1];
password = args[2];
timeToRunDaemons_ = (new Integer(args[3])).intValue() * 1000; //milliseconds
//args[3]=time to run in seconds
TestJDBCConnPool cptest = new TestJDBCConnPool();

cptest.setup();
cptest.runTest();

}

public void setup()
{

try
{

if (DEBUG)
System.out.println("TESTING_THREAD_SAFETY flag is "

+ (TESTING_THREAD_SAFETY ? "true" : "false"));

if (TESTING_THREAD_SAFETY)
{

// Adjust values for performing thread-intensive stress testing.
// NOTE: This assumes that the AS400JDBCConnection class has also been modified to

// not make actual connections to an actual server.
// To do this, edit AS400JDBCConnection.java, changing its TESTING_THREAD_SAFETY

// flag to ’false’, and recompile.
minPoolSize_ = 100;
maxPoolSize_ = 190;
initialPoolSize_ = 150; // this should get reset to maxPoolSize_
numDaemons_ = 75;
if (timeToRunDaemons_ == 0) {

timeToRunDaemons_ = 180*1000; // 180 seconds == 3 minutes
}

}
else
{ // Set more conservative values, as we’ll be making actual connections to an

// actual server, and we don’t want to monopolize the server.
minPoolSize_ = 5;
maxPoolSize_ = 15;
initialPoolSize_ = 9;
numDaemons_ = 4;
if (timeToRunDaemons_ == 0) {

timeToRunDaemons_ = 15*1000; // 15 seconds
}

}

IBM Toolbox for Java 515

maxLifetime_ = (int)timeToRunDaemons_ / 3;
maxIdleTime_ = (int)timeToRunDaemons_ / 4;
propertyCycle_ = timeToRunDaemons_ / 4;
poolHealthCheckCycle_ = Math.min(timeToRunDaemons_ / 4, 20*60*1000);
// at least once every 20 minutes (more frequently if shorter run-time)
daemonMaxSleepTime_ = Math.min(timeToRunDaemons_ / 3, 10*1000);
// at most 10 seconds (less if shorter run-time)
daemonMinSleepTime_ = 20; // milliseconds

if (DEBUG)
System.out.println("setup: Constructing "

+ "AS400JDBCManagedConnectionPoolDataSource (cpds0)");
AS400JDBCManagedConnectionPoolDataSource cpds0 =

new AS400JDBCManagedConnectionPoolDataSource();

// Set datasource properties. Note that both CPDS and MDS have these
// properties, and they might have different values.
cpds0.setServerName(host);
cpds0.setDatabaseName(host);//iasp can be here
cpds0.setUser(userid);
cpds0.setPassword(password);

cpds0.setSavePasswordWhenSerialized(true);

// Set connection pooling-specific properties.
cpds0.setInitialPoolSize(initialPoolSize_);
cpds0.setMinPoolSize(minPoolSize_);
cpds0.setMaxPoolSize(maxPoolSize_);
cpds0.setMaxLifetime((int)(maxLifetime_/1000)); // convert to seconds
cpds0.setMaxIdleTime((int)(maxIdleTime_/1000)); // convert to seconds
cpds0.setPropertyCycle((int)(propertyCycle_/1000)); // convert to seconds
//cpds0.setReuseConnections(false); // don’t re-use connections

// Set the initial context factory to use.
System.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");

// Get the JNDI Initial Context.
Context ctx = new InitialContext();

// Note: The following is an alternative way to set context properties locally:
// Properties env = new Properties();
// env.put(Context.INITIAL_CONTEXT_FACTORY,
// "com.sun.jndi.fscontext.RefFSContextFactory");
// Context ctx = new InitialContext(env);

ctx.rebind("mydatasource", cpds0);
// We can now do lookups on cpds, by the name"mydatasource".

if (DEBUG)
System.out.println("setup: lookup(\"mydatasource\"" + ")");

// AS400JDBCManagedConnectionPoolDataSource cpds1 =
// (AS400JDBCManagedConnectionPoolDataSource)ctx.lookup("mydatasource");
// if (DEBUG) System.out.println("setup: cpds1.getUser() == |" + cpds1.getUser() + "|");

// Create a standard DataSource object that references it.

if (DEBUG)
System.out.println("setup: Constructing AS400JDBCManagedDataSource (mds0)");

AS400JDBCManagedDataSource mds0 = new AS400JDBCManagedDataSource();
mds0.setDescription("DataSource supporting connection pooling");
mds0.setDataSourceName("mydatasource");
ctx.rebind("ConnectionPoolingDataSource", mds0);

if (DEBUG)
System.out.println("setup: lookup(\"ConnectionPoolingDataSource\"" + ")");

dataSource_ = (DataSource)ctx.lookup("ConnectionPoolingDataSource");
//dataSource_.setLogWriter(output_);
if (DEBUG)
System.out.println("setup: dataSource_.getUser() == |" +

((AS400JDBCManagedDataSource)dataSource_).getUser() + "|");

mds_ = (AS400JDBCManagedDataSource)dataSource_;
}
catch (Exception e)
{

e.printStackTrace();
System.out.println("Setup error during Trace file creation.");

}

516 IBM i: Programming IBM Toolbox for Java

}

void displayConnectionType(Connection conn, boolean specifiedDefaultId)
{

if (conn instanceof com.ibm.as400.access.AS400JDBCConnectionHandle)
System.out.print("("+ (specifiedDefaultId ? "+" : "-") + "P)");

else
System.out.print("("+ (specifiedDefaultId ? "+" : "-") + "NP)");

}

/**
* Gets and returns connections from and to a connection pool for a while.
**/
public void runTest()
{

boolean ok = true;
try
{

System.out.println("Started test run at " + new Date());

if (DEBUG)
System.out.println("Checking health just after datasource creation "

+ "(we expect that the pool does not exist yet) ...");
if (mds_.checkPoolHealth(true)) {

ok = false;
System.out.println("\nERROR: Pool exists prior to first getConnection().");

}

// Verify some setters/getters for JDBC properties.
System.out.println("Verifying setters/getters ...");

mds_.setAccess("read only");
if (!mds_.getAccess().equals("read only")) {

ok = false;
System.out.println("\nERROR: getAccess() returned unexpected value: "

+ "|" + mds_.getAccess()+"|");
}

boolean oldBool = mds_.isBigDecimal();
boolean newBool = (oldBool ? false : true);
mds_.setBigDecimal(newBool);
if (mds_.isBigDecimal() != newBool) {

ok = false;
System.out.println("\nERROR: isBigDecimal() returned unexpected value: "

+ "|"+mds_.isBigDecimal()+"|");
}
mds_.setBigDecimal(oldBool);

int oldInt = mds_.getBlockCriteria();
int newInt = (oldInt == 2 ? 1 : 2);
mds_.setBlockCriteria(newInt);
if (mds_.getBlockCriteria() != newInt) {

ok = false;
System.out.println("\nERROR: getBlockCriteria() returned unexpected value: "

+ "|"+mds_.getBlockCriteria()+"|");
}
mds_.setBlockCriteria(oldInt);

// Verify some setters and getters for socket properties.

oldBool = mds_.isKeepAlive();
newBool = (oldBool ? false : true);
mds_.setKeepAlive(newBool);
if (mds_.isKeepAlive() != newBool) {

ok = false;
System.out.println("\nERROR: isKeepAlive() returned unexpected value: "

+ "|"+mds_.isKeepAlive()+"|");
}
mds_.setKeepAlive(oldBool);

oldInt = mds_.getReceiveBufferSize();
newInt = (oldInt == 256 ? 512 : 256);
mds_.setReceiveBufferSize(newInt);
if (mds_.getReceiveBufferSize() != newInt) {

ok = false;
System.out.println("\nERROR: getReceiveBufferSize() returned unexpected value: "

+ "|"+mds_.getReceiveBufferSize()+"|");
}

IBM Toolbox for Java 517

mds_.setReceiveBufferSize(oldInt);

System.out.println("CONNECTION 1");
Object o = dataSource_.getConnection();
System.out.println(o.getClass());
System.out.println("******LOOK ABOVE*******");
Connection c1 = dataSource_.getConnection();

if (DEBUG)
displayConnectionType(c1, true);

if (DEBUG)
System.out.println("Checking health after first getConnection() ...");

if (!mds_.checkPoolHealth(true)) {
ok = false;
System.out.println("\nERROR: Pool is not healthy after first getConnection().");

}

if (!TESTING_THREAD_SAFETY)
{

try
{

c1.setAutoCommit(false);
if (DEBUG)
System.out.println("SELECT * FROM QIWS.QCUSTCDT");

Statement s = c1.createStatement();
ResultSet rs = s.executeQuery("SELECT * FROM QIWS.QCUSTCDT");
while(rs.next()){

if (DEBUG)
System.out.println(rs.getString(2));

}
rs.close();
s.close();

}
catch (Exception e) {

e.printStackTrace();
if (DEBUG)
System.out.println("Checking health after fatal connection error ...");

if (!mds_.checkPoolHealth(true)) {
ok = false;
System.out.println("\nERROR: Pool is not healthy after fatal connection "

+ "error.");
}

}
}

System.out.println("CONNECTION 2");
Connection c2 = dataSource_.getConnection(userid, password);
if (DEBUG)
displayConnectionType(c2, false);

System.out.println("CONNECTION 3");
Connection c3 = dataSource_.getConnection();
if (DEBUG)
displayConnectionType(c3, true);

c1.close();

if (DEBUG)
System.out.println("Checking health after first close() ...");

if (!mds_.checkPoolHealth(true)) {
ok = false;
System.out.println("\nERROR: Pool is not healthy after first close().");

}

System.out.println("CONNECTION 4");
Connection c4 = dataSource_.getConnection();
if (DEBUG) displayConnectionType(c4, true);

c1.close(); // close this one again
c2.close();
c3.close();
c4.close();

if (DEBUG) System.out.println("Checking health after last close() ...");
if (!mds_.checkPoolHealth(true)) {

ok = false;
System.out.println("\nERROR: Pool is not healthy after last close().");

}

518 IBM i: Programming IBM Toolbox for Java

// Start the test daemons.
System.out.println("Starting test daemons");
startThreads();

// Run the test daemons for a while; check pool health periodically.

long startTime = System.currentTimeMillis();
long endTime = startTime + timeToRunDaemons_;
while (System.currentTimeMillis() < endTime)
{

System.out.print("h");
// Let the daemons run for a while, then check pool health.
try {

Thread.sleep(poolHealthCheckCycle_);
}
catch (InterruptedException ie) {}
if (!mds_.checkPoolHealth(true)) {

ok = false;
System.out.println("\nERROR: Pool is not healthy after test daemons started.");

}
}

// Stop the test daemons.
System.out.println("\nStopping test daemons");
stopThreads();

if (DEBUG)
System.out.println("Checking health after connectionGetter daemons have run...");

if (!mds_.checkPoolHealth(true)) {
ok = false;
System.out.println("\nERROR: Pool is not healthy after test daemons stopped.");

}

if (!TESTING_THREAD_SAFETY)
{

System.out.println("CONNECTION 5");
Connection c = dataSource_.getConnection();
if (DEBUG) displayConnectionType(c, true);
c.setAutoCommit(false);
if (DEBUG) System.out.println("SELECT * FROM QIWS.QCUSTCDT");
Statement s = c.createStatement();
ResultSet rs = s.executeQuery("SELECT * FROM QIWS.QCUSTCDT");
while(rs.next()){

if (DEBUG) System.out.println(rs.getString(2));
}
rs.close();
s.close();
c.close();

}

System.out.println("\nClosing the pool...");
mds_.closePool();

if (DEBUG)
System.out.println("Checking health after pool closed ...");

Trace.setTraceJDBCOn(true); // make sure the final stats get printed out
Trace.setTraceOn(true);
if (!mds_.checkPoolHealth(true)) {

ok = false;
System.out.println("\nERROR: Pool is not healthy after pool closed.");

}

System.out.println();
if(ok==true)

System.out.println("test ran ok");
else

System.out.println("test failed");
}
catch (Exception e)
{

System.out.println(e);
e.printStackTrace();

}
finally {

System.out.println("Ended test at " + new Date());
}

}

void startThreads()

IBM Toolbox for Java 519

{
// Create a bunch of threads that call getConnection().
Thread[] threads = new Thread[numDaemons_];
for (int i=0; i<numDaemons_; i++)
{

ConnectionGetter getter;
// Flip a coin to see if this daemon will specify the default uid, or unique uid.
if (random_.nextBoolean())
{

getter = new ConnectionGetter(userid,password);
if (TESTING_THREAD_SAFETY) { // we can use fictional userid

getter = new ConnectionGetter("Thread"+i, "Pwd"+i);
}
else { // must use a real userid

getter = new ConnectionGetter(userid,password);
}

}
else

getter = new ConnectionGetter(null, null);

threads[i] = new Thread(getter, "["+i+"]");
threads[i].setDaemon(true);

}

// Start the threads.
for (int i=0; i<numDaemons_; i++)
{

threads[i].start();
}

}

void stopThreads()
{

// Tell the threads to stop.
keepDaemonsAlive_ = false;
synchronized (daemonSleepLock_) {

daemonSleepLock_.notifyAll();
}

// Wait for the daemons to stop.
try {

Thread.sleep(3000);
}
catch (InterruptedException ie) {}

}

// ConnectionGetter --

/**
Helper class. This daemon wakes up at random intervals and either
gets another connection from the connection pool or returns a
previously-gotten connection to the pool.

**/
private final class ConnectionGetter implements Runnable
{

private String uid_;
private String pwd_;
private boolean useDefaultUid_;
private long maxSleepTime_;
private String threadName_;
private boolean firstConnection_ = true;
ArrayList connections_ = new ArrayList();
// list of connections that this getter currently ’owns’.

ConnectionGetter(String uid, String pwd) {
uid_ = uid;
pwd_ = pwd;
if (uid_ == null) useDefaultUid_ = true;
else useDefaultUid_ = false;
maxSleepTime_ = daemonMaxSleepTime_; // our own copy that we can adjust

}

public void run()
{

threadName_ = Thread.currentThread().getName();
if (DEBUG) System.out.println("ConnectionGetter("+threadName_+") Starting up");

try

520 IBM i: Programming IBM Toolbox for Java

{
while (keepDaemonsAlive_)
{

try
{

// Pick a random sleep-time, between min and max values.
long sleepTime = Math.max((long)(maxSleepTime_ * random_.nextFloat()),

daemonMinSleepTime_);
// Note: Must never call wait(0), because that waits forever.
synchronized (daemonSleepLock_) {

try {
daemonSleepLock_.wait(sleepTime);
System.out.print(".");

}
catch (InterruptedException ie) {}

}
if (!keepDaemonsAlive_) break;

// Decide by chance whether to request another connection or return a
// previously-obtained connection.
Connection conn;
if (random_.nextBoolean()) // Leave the decision to chance.
{ // Request another connection.

if (useDefaultUid_)
{

if (DEBUG)
System.out.println("ConnectionGetter("+threadName_+") - get()");

conn = dataSource_.getConnection();
}
else
{

if (DEBUG)
System.out.println("ConnectionGetter("+threadName_+") - "

+ "get("+uid_+",***)");
conn = dataSource_.getConnection(uid_, pwd_);

}

if (conn == null) {
System.out.println("ConnectionGetter("+threadName_+") ERROR: "

+ "getConnection() returned null");
}
else
{

// Occasionally "forget" that we own a connection, and neglect to
// close it.
// Orphaned connections should eventually exceed their maximum
// lifetime and get "reaped" by the connection manager.
float val = random_.nextFloat();
if (firstConnection_ || val < 0.1) {

// ’orphan’ a few gotten connections
firstConnection_ = false;

}
else {

connections_.add(conn);
}
if (DEBUG) displayConnectionType(conn, useDefaultUid_);
if (conn instanceof com.ibm.as400.access.AS400JDBCConnectionHandle)
{ // We got a pooled connection. Try speeding up our cycle time.

if (maxSleepTime_ > 100)
maxSleepTime_--;

else
maxSleepTime_ = 100;

}
else
{ // We didn’t get a pooled connection. That means that the pool

// must be at capacity. Slow down our cycle time a bit.
maxSleepTime_ = maxSleepTime_ + 50;

}
}

}
else { // Close a connection that we currently own.

if (connections_.size() != 0) {
conn = (Connection)connections_.remove(0);
conn.close();

}
}

} // inner try
catch (Exception e)
{

IBM Toolbox for Java 521

e.printStackTrace();
}

} // outer while
} // outer try
finally
{

if (DEBUG)
System.out.println("ConnectionGetter("+threadName_+") Stopping");

// Return all the connections that I still have in my list.
for (int i=0; i<connections_.size(); i++) {

Connection conn = (Connection)connections_.remove(0);
try { conn.close(); } catch (Exception e) { e.printStackTrace(); }

}

}
}

} // internal class ’ConnectionGetter’
}

Example: Using JDBCQuery to query a table
This program uses the IBM Toolbox for Java JDBC driver to query a table and output its contents.

Note: Read the Code example disclaimer for important legal information.
//
//
// JDBCQuery example. This program uses the IBM Toolbox for Java JDBC driver to
// query a table and output its contents.
//
// Command syntax:
// JDBCQuery system collectionName tableName
//
// For example,
// JDBCQuery MySystem qiws qcustcdt
//
//

import java.sql.*;

public class JDBCQuery
{

// Format a string so that it has the specified width.
private static String format (String s, int width)
{

String formattedString;

// The string is shorter than specified width,
// so we need to pad with blanks.
if (s.length() < width) {

StringBuffer buffer = new StringBuffer (s);
for (int i = s.length(); i < width; ++i)

buffer.append (" ");
formattedString = buffer.toString();

}

// Otherwise, we need to truncate the string.
else

formattedString = s.substring (0, width);

return formattedString;
}

public static void main (String[] parameters)
{

522 IBM i: Programming IBM Toolbox for Java

// Check the input parameters.
if (parameters.length != 3) {

System.out.println("");
System.out.println("Usage:");
System.out.println("");
System.out.println(" JDBCQuery system collectionName tableName");
System.out.println("");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println("");
System.out.println(" JDBCQuery mySystem qiws qcustcdt");
System.out.println("");
return;

}

String system = parameters[0];
String collectionName = parameters[1];
String tableName = parameters[2];

Connection connection = null;

try {

// Load the IBM Toolbox for Java JDBC driver.
DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver());

// Get a connection to the database. Since we do not
// provide a user id or password, a prompt will appear.
connection = DriverManager.getConnection ("jdbc:as400://" + system);
DatabaseMetaData dmd = connection.getMetaData ();

// Execute the query.
Statement select = connection.createStatement ();
ResultSet rs = select.executeQuery (

"SELECT * FROM " + collectionName + dmd.getCatalogSeparator() + tableName);

// Get information about the result set. Set the column
// width to whichever is longer: the length of the label
// or the length of the data.
ResultSetMetaData rsmd = rs.getMetaData ();
int columnCount = rsmd.getColumnCount ();
String[] columnLabels = new String[columnCount];
int[] columnWidths = new int[columnCount];
for (int i = 1; i <= columnCount; ++i) {

columnLabels[i-1] = rsmd.getColumnLabel (i);
columnWidths[i-1] = Math.max (columnLabels[i-1].length(), rsmd.getColumnDisplaySize (i));

}

// Output the column headings.
for (int i = 1; i <= columnCount; ++i) {

System.out.print (format (rsmd.getColumnLabel(i), columnWidths[i-1]));
System.out.print (" ");

}
System.out.println ();

// Output a dashed line.
StringBuffer dashedLine;
for (int i = 1; i <= columnCount; ++i) {

for (int j = 1; j <= columnWidths[i-1]; ++j)
System.out.print ("-");

System.out.print (" ");
}
System.out.println ();

// Iterate throught the rows in the result set and output
// the columns for each row.

IBM Toolbox for Java 523

while (rs.next ()) {
for (int i = 1; i <= columnCount; ++i) {

String value = rs.getString (i);
if (rs.wasNull ())

value = "<null>";
System.out.print (format (value, columnWidths[i-1]));
System.out.print (" ");

}
System.out.println ();

}

}

catch (Exception e) {
System.out.println ();
System.out.println ("ERROR: " + e.getMessage());

}

finally {

// Clean up.
try {

if (connection != null)
connection.close ();

}
catch (SQLException e) {

// Ignore.
}

}

System.exit (0);
}

}

Example: Using JobList to list job identification information
This program is an example of the Job support in the IBM Toolbox for Java. It lists job identification
information for a specific user on the system.

Note: Read the Code example disclaimer for important legal information.
///
//
// This program is an example of the Job support in the IBM Toolbox
// for Java. It lists job identification information for a specific
// user on the system.
//
// Command syntax:
// listJobs2 system userID password
//
///

import java.io.*;
import java.lang.*;
import java.util.*;
import com.ibm.as400.access.*;

public class listJobs2 extends Object
{

// Create an object in case we want to call
// any non-staic methods.

public static void main(String[] parameters)
{

listJobs2 me = new listJobs2();

524 IBM i: Programming IBM Toolbox for Java

me.Main(parameters);

System.exit(0);
}

void Main(String[] parameters)
{

// If a system was not specified, display help text and exit.
if (parameters.length == 0)
{

showHelp();
return;

}

// Assign the parameters to variables. The
// first parameter is assumed to be the system
// name the second is a userID and the third
// is a password.

String systemName = parameters[0];
String userID = null;
String password = null;

if (parameters.length > 1)
userID = parameters[1].toUpperCase();

if (parameters.length >= 2)
password = parameters[2].toUpperCase();

System.out.println(" ");

try
{

// Create an AS400 object using the system name
// specified by the user. Set the userid and
// password if specified by the user.

AS400 as400 = new AS400(parameters[0]);

if (userID != null)
as400.setUserId(userID);

if (password != null)
as400.setPassword(password);

System.out.println("retrieving list ... ");

// Create a jobList object. This object is used
// to retrieve the list of active jobs on the server.

JobList jobList = new JobList(as400);

// Get the list of active jobs.
Enumeration list = jobList.getJobs();

// For each job in the list ...
while (list.hasMoreElements())
{

IBM Toolbox for Java 525

// Get a job off the list. If a userID was
// specified then print identification information
// only if the job’s user matches the userID. If
// no userID was specified then print information
// for every job on the system.

Job j = (Job) list.nextElement();

if (userID != null)
{

if (j.getUser().trim().equalsIgnoreCase(userID))
{

System.out.println(j.getName().trim() + "." +
j.getUser().trim() + "." +
j.getNumber());

}
}
else

System.out.println(j.getName().trim() + "." +
j.getUser().trim() + "." +
j.getNumber());

}

}
catch (Exception e)
{

System.out.println("Unexpected error");
e.printStackTrace();

}
}

// Display help text when parameters are incorrect.
void showHelp()
{

System.out.println("");
System.out.println("");
System.out.println("");
System.out.println("Parameters are not correct. Command syntax is:");
System.out.println("");
System.out.println(" listJobs2 System UserID Password");
System.out.println("");
System.out.println("Where");
System.out.println("");
System.out.println(" System = server to connect to");
System.out.println(" UserID = valid userID on that system ");
System.out.println(" Password = password for the UserID (optional)");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println(" listJobs2 MYAS400 JavaUser pwd1");
System.out.println("");
System.out.println("");

}
}

Example: Using JobList to get a list of jobs
This example gets a list of jobs on the server and outputs the job status followed by job identifier using
the IBM Toolbox for Java Job classes.

Note: Read the Code example disclaimer for important legal information.
///
//
// This program is an example of the "job" classes in the
// IBM Toolbox for Java. It gets a list of jobs on the server
// and outputs the job’s status followed by job identifier.

526 IBM i: Programming IBM Toolbox for Java

//
//
// Command syntax:
// listJobs system userID password
//
// (UserID and password are optional)
//
///

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class listJobs extends Object
{

public static void main(String[] parameters)
{

listJobs me = new listJobs();
me.Main(parameters);

System.exit(0);
}

void Main(String[] parameters)
{

// If a system was not specified, display help text and exit.
if (parameters.length == 0)
{

showHelp();
return;

}

// Set up AS400 object parms. The first is the system name and must
// be specified by the user. The second and third are optional. They
// are the userid and password. Convert the userid and password
// to uppercase before setting them on the AS400 object.
String userID = null;
String password = null;

if (parameters.length > 1)
userID = parameters[1].toUpperCase();

if (parameters.length >= 2)
password = parameters[2].toUpperCase();

System.out.println(" ");

try
{

// Create an AS400 object using the system name specified by the user.
AS400 as400 = new AS400(parameters[0]);

// If a userid and/or password was specified, set them on the
// AS400 object.
if (userID != null)

as400.setUserId(userID);

if (password != null)
as400.setPassword(password);

// Create a job list object. Input parm is the AS400 we want job
// information from.
JobList jobList = new JobList(as400);

IBM Toolbox for Java 527

// Get a list of jobs running on the server.
Enumeration listOfJobs = jobList.getJobs();

// For each job in the list print information about the job.
while (listOfJobs.hasMoreElements())
{

printJobInfo((Job) listOfJobs.nextElement(), as400);
}

}
catch (Exception e)
{

System.out.println("Unexpected error");
System.out.println(e);

}
}

void printJobInfo(Job job, AS400 as400)
{

// Create the various converters we need
AS400Bin4 bin4Converter = new AS400Bin4();
AS400Text text26Converter = new AS400Text(26, as400);
AS400Text text16Converter = new AS400Text(16, as400);
AS400Text text10Converter = new AS400Text(10, as400);
AS400Text text8Converter = new AS400Text(8, as400);
AS400Text text6Converter = new AS400Text(6, as400);
AS400Text text4Converter = new AS400Text(4, as400);

// We have the job name/number/etc. from the list request. Now
// make a server API call to get the status of the job.
try
{

// Create a program call object
ProgramCall pgm = new ProgramCall(as400);

// The server program we call has five parameters
ProgramParameter[] parmlist = new ProgramParameter[5];

// The first parm is a byte array that holds the output
// data. We will allocate a 1k buffer for output data.
parmlist[0] = new ProgramParameter(1024);

// The second parm is the size of our output data buffer (1K).
Integer iStatusLength = new Integer(1024);
byte[] statusLength = bin4Converter.toBytes(iStatusLength);
parmlist[1] = new ProgramParameter(statusLength);

// The third parm is the name of the format of the data.
// We will use format JOBI0200 because it has job status.
byte[] statusFormat = text8Converter.toBytes("JOBI0200");
parmlist[2] = new ProgramParameter(statusFormat);

// The fourth parm is the job name is format "name user number".
// Name must be 10 characters, user must be 10 characters and
// number must be 6 characters. We will use a text converter
// to do the conversion and padding.
byte[] jobName = text26Converter.toBytes(job.getName());

int i = text10Converter.toBytes(job.getUser(),
jobName,
10);

528 IBM i: Programming IBM Toolbox for Java

i = text6Converter.toBytes(job.getNumber(),
jobName,
20);

parmlist[3] = new ProgramParameter(jobName);

// The last paramter is job identifier. We will leave this blank.
byte[] jobID = text16Converter.toBytes(" ");
parmlist[4] = new ProgramParameter(jobID);

// Run the program.
if (pgm.run("/QSYS.LIB/QUSRJOBI.PGM", parmlist)==false)
{

// if the program failed display the error message.
AS400Message[] msgList = pgm.getMessageList();
System.out.println(msgList[0].getText());

}
else
{

// else the program worked. Output the status followed by
// the jobName.user.jobID
byte[] as400Data = parmlist[0].getOutputData();
System.out.print(" " + text4Converter.toObject(as400Data, 107) + " ");

System.out.println(job.getName().trim() + "." +
job.getUser().trim() + "." +
job.getNumber() + " ");

}

}
catch (Exception e)
{

System.out.println(e);
}

}

// Display help text when parameters are incorrect.
void showHelp()
{

System.out.println("");
System.out.println("");
System.out.println("");
System.out.println("Parameters are not correct. Command syntax is:");
System.out.println("");
System.out.println(" listJobs System UserID Password");
System.out.println("");
System.out.println("Where");
System.out.println("");
System.out.println(" System = server to connect to");
System.out.println(" UserID = valid userID on that system (optional)");
System.out.println(" Password = password for the UserID (optional)");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println(" listJobs MYAS400 JavaUser pwd1");
System.out.println("");
System.out.println("");

}
}

IBM Toolbox for Java 529

Example: Using JobLog to display messages in the job log
This program is an example of the job log function of the IBM Toolbox for Java. It will display the
messages in the job log for a job that belongs to the current user.

Note: Read the Code example disclaimer for important legal information.
///
//
// This program is an example of the job log fuction of the
// IBM Toolbox for Java. It will display the messages in the job
// log for a job that belongs to the current user.
//
// Command syntax:
// jobLogExample system userID password
//
// (Password is optional)
//
///

import java.lang.*;
import java.util.*;
import com.ibm.as400.access.*;

public class jobLogExample
{

public static void main (String[] args)
{

// If a system and user were not specified, display help text and exit.
if (args.length < 2)
{

System.out.println("Usage: jobLogExample system userid <password>");
return;

}

String userID = null;

try
{

// Create an AS400 object. The system name was passed
// as the first command line argument. If a userid
// and password were passed on the command line,
// set those as well.
AS400 system = new AS400 (args[0]);

if (args.length > 1)
{

userID = args[1];
system.setUserId(userID);

}

if (args.length > 2)
system.setPassword(args[2]);

// Create a job list object. This object will be used to get
// the list of active jobs on the system. Once the list of
// jobs is retrieved, the program will find a job for the
// current user.
JobList jobList = new JobList(system);

// Get the list of active jobs on the AS/400
Enumeration list = jobList.getJobs();

boolean Continue = true;

530 IBM i: Programming IBM Toolbox for Java

// Look through the list to find a job for the current user.
while (list.hasMoreElements() && Continue)
{

Job j = (Job) list.nextElement();

if (j.getUser().trim().equalsIgnoreCase(userID))
{

// A job matching the current user was found. Create
// a job log object for this job.
JobLog jlog = new JobLog(system, j.getName(), j.getUser(), j.getNumber());

// Enumerate the messages in the job log then print them.
Enumeration messageList = jlog.getMessages();

while (messageList.hasMoreElements())
{

AS400Message message = (AS400Message) messageList.nextElement();
System.out.println(message.getText());

}

// We found one job matching the current user so exit.
Continue = false;

}
}

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
}

System.exit(0);
}

}

Example: Creating spooled files
This example shows how to create a spooled file on a server from an input stream.

Note: Read the Code example disclaimer for important legal information.
///
//
// Example that shows creating a spooled file on a server from an input stream.
//
///

import java.io.*;
import java.util.*;

import com.ibm.as400.access.*;

class NPExampleCreateSplf
{

// method to create the spooled file on the specified server, in the specified
// output queue from the given input stream.
public SpooledFile createSpooledFile(AS400 system, OutputQueue outputQueue, InputStream in)
{

SpooledFile spooledFile = null;
try
{

byte[] buf = new byte[2048];
int bytesRead;
SpooledFileOutputStream out;
PrintParameterList parms = new PrintParameterList();

// create a PrintParameterList with the values that we want

IBM Toolbox for Java 531

// to override from the default printer file...we will override
// the output queue and the copies value.
parms.setParameter(PrintObject.ATTR_COPIES, 4);
if (outputQueue != null)
{

parms.setParameter(PrintObject.ATTR_OUTPUT_QUEUE, outputQueue.getPath());
}
out = new SpooledFileOutputStream(system,

parms,
null,
null);

// read from the inputstream in until end of stream, passing all data
// to the spooled file output stream.
do
{

bytesRead = in.read(buf);
if (bytesRead != -1)
{

out.write(buf, 0, bytesRead);
}

} while (bytesRead != -1);

out.close(); // close the spooled file

spooledFile = out.getSpooledFile(); // get a reference to the new spooled file

}
catch (Exception e)
{

//...handle exception...
}
return spooledFile;

}

}

Example: Creating SCS spooled files
This example uses the SCS3812Writer class to generate an SCS data stream and write it to a spooled file
on the server.

This application can take the following arguments, or it can use the defined defaults:
v Name of the server to receive the spooled file.
v Name of the outqueue on the server to receive the spooled file.

Note: Read the Code example disclaimer for important legal information.
///
//
// This source is an example of IBM Toolbox for Java "SCS3812Writer".
//
///

import com.ibm.as400.access.*;

class NPExampleCreateSCSSplf
{

private static final String DEFAULT_SYSTEM = new String("RCHAS1");
private static final String DEFAULT_OUTQ = new String("/QSYS.LIB/QUSRSYS.LIB/PRT01.OUTQ");

public static void main(String [] args)
{

try
{

AS400 system;

532 IBM i: Programming IBM Toolbox for Java

SpooledFileOutputStream out;
PrintParameterList parms = new PrintParameterList();
SCS3812Writer scsWtr;

// Process the arguments.
if (args.length >= 1)
{

system = new AS400(args[0]); // Create an AS400 object
} else {

system = new AS400(DEFAULT_SYSTEM);
}

if (args.length >= 2) // Set the outq
{

parms.setParameter(PrintObject.ATTR_OUTPUT_QUEUE, args[1]);
} else {

parms.setParameter(PrintObject.ATTR_OUTPUT_QUEUE, DEFAULT_OUTQ);
}

out = new SpooledFileOutputStream(system, parms, null, null);

scsWtr = new SCS3812Writer(out, 37);

// Write the contents of the spool file.
scsWtr.setLeftMargin(1.0);
scsWtr.absoluteVerticalPosition(6);
scsWtr.setFont(scsWtr.FONT_COURIER_BOLD_5);
scsWtr.write(" Java Printing");
scsWtr.newLine();
scsWtr.newLine();
scsWtr.setCPI(10);
scsWtr.write("This document was created using the IBM Toolbox for Java.");
scsWtr.newLine();
scsWtr.write("The rest of this document shows some of the things that");
scsWtr.newLine();
scsWtr.write("can be done with the SCS3812Writer class.");
scsWtr.newLine();
scsWtr.newLine();
scsWtr.setUnderline(true); scsWtr.write("Setting fonts:"); scsWtr.setUnderline(false);
scsWtr.newLine();
scsWtr.setFont(scsWtr.FONT_COURIER_10); scsWtr.write("Courier font ");
scsWtr.setFont(scsWtr.FONT_COURIER_BOLD_10); scsWtr.write(" Courier bold font ");
scsWtr.setFont(scsWtr.FONT_COURIER_ITALIC_10); scsWtr.write(" Courier italic font ");
scsWtr.newLine();
scsWtr.setBold(true); scsWtr.write("Courier bold italic font ");
scsWtr.setBold(false);
scsWtr.setCPI(10);
scsWtr.newLine();
scsWtr.newLine();
scsWtr.setUnderline(true); scsWtr.write("Lines per inch:"); scsWtr.setUnderline(false);
scsWtr.newLine();
scsWtr.write("The following lines should print at 8 lines per inch.");
scsWtr.newLine();
scsWtr.newLine();
scsWtr.setLPI(8);
scsWtr.write("Line one"); scsWtr.newLine();
scsWtr.write("Line two"); scsWtr.newLine();
scsWtr.write("Line three"); scsWtr.newLine();
scsWtr.write("Line four"); scsWtr.newLine();
scsWtr.write("Line five"); scsWtr.newLine();
scsWtr.write("Line six"); scsWtr.newLine();
scsWtr.write("Line seven"); scsWtr.newLine();
scsWtr.write("Line eight"); scsWtr.newLine();
scsWtr.endPage();
scsWtr.setLPI(6);
scsWtr.setSourceDrawer(1);
scsWtr.setTextOrientation(0);

IBM Toolbox for Java 533

scsWtr.absoluteVerticalPosition(6);
scsWtr.write("This page should print in portrait orientation from drawer 1.");
scsWtr.endPage();
scsWtr.setSourceDrawer(2);
scsWtr.setTextOrientation(90);
scsWtr.absoluteVerticalPosition(6);
scsWtr.write("This page should print in landscape orientation from drawer 2.");
scsWtr.endPage();
scsWtr.close();
System.out.println("Sample spool file created.");
System.exit(0);

}
catch (Exception e)
{

// Handle error.
System.out.println("Exception occured while creating spooled file. " + e);
System.exit(0);

}
}

}

Example: Reading spooled files
This example shows the use of the PrintObjectInputStream class to read an existing spooled file.

Note: Read the Code example disclaimer for important legal information.
///
//
// Example that reads an existing server spooled file.
//
// This source is an example of IBM Toolbox for Java "PrintObjectInputStream".
//
///

try{
byte[] buf = new byte[2048];
int bytesRead;
AS400 sys = new AS400();
SpooledFile splf = new SpooledFile(sys, // AS400

"MICR", // splf name
17, // splf number
"QPRTJOB", // job name
"QUSER", // job user
"020791"); // job number

// open the spooled file for reading and get the input stream to
// read from it.
InputStream in = splf.getInputStream(null);

do
{

// read up to buf.length bytes of raw spool data into
// our buffer. The actual bytes read will be returned.
// The data will be a binary printer data stream that is the
// contents of the spooled file.
bytesRead = in.read(buf);
if(bytesRead != -1)
{

// process the spooled file data.
System.out.println("Read " + bytesRead + " bytes");

}
} while(bytesRead != -1);

in.close();
}

534 IBM i: Programming IBM Toolbox for Java

catch(Exception e)
{

// exception
}

Example: Reading and transforming spooled files
The following examples demonstrate how to set up a PrintParameterList to obtain different
transformations when reading spooled file data. In the code segments that follow, assume a spooled file
already exists on a server, and the createSpooledFile() method creates an instance of the SpooledFile class
representing the spooled file.

Example of PrintObjectPageInputStream

Note: Read the Code example disclaimer for important legal information.

The following example shows how to create a PrintObjectPageInputStream object for reading pages of
data formatted as GIF images. In this case, each page from the spooled file will be transformed into a GIF
image. A GIF workstation customization object is used to specify the data transform.
// Create a spooled file
SpooledFile splF = createSpooledFile();

// Set up print parameter list
PrintParameterList printParms = new PrintParameterList();
printParms.setParameter(PrintObject.ATTR_WORKSTATION_CUST_OBJECT, "/QSYS.LIB/QWPGIF.WSCST");
printParms.setParameter(PrintObject.ATTR_MFGTYPE, "*WSCST");

// Create a page input stream from the spooled file
PrintObjectPageInputStream is = splF.getPageInputStream(printParms);

Example of PrintObjectTransformedInputStream

Note: Read the Code example disclaimer for important legal information.

The following example shows how to create a PrintObjectTransformedInputStream object for reading data
formatted as TIFF. A TIFF (G4 compression) workstation customization object is used to specify the data
transform.
// Create a spooled file
SpooledFile splF = createSpooledFile();

// Set up print parameter list
PrintParameterList printParms = new PrintParameterList();
printParms.setParameter(PrintObject.ATTR_WORKSTATION_CUST_OBJECT, "/QSYS.LIB/QWPTIFFG4.WSCST");
printParms.setParameter(PrintObject.ATTR_MFGTYPE, "*WSCST");

// Create a transformed input stream from the spooled file
PrintObjectTransformedInputStream is = splF.getTransformedInputStream(printParms);

Example of PrintObjectTransformedInputStream using manufacturer type and model

Note: Read the Code example disclaimer for important legal information.

The following example shows how to create a PrintObjectTransformedInputStream object for reading data
formatted for output to an ASCII printer. A manufacturer type and model of *HP4 is used to specify the
data transform.
// Create a spooled file
SpooledFile splF = createSpooledFile();

// Set up print parameter list
PrintParameterList printParms = new PrintParameterList();
printParms.setParameter(PrintObject.ATTR_MFGTYPE, "*HP4");

IBM Toolbox for Java 535

// Create a transformed input stream from the spooled file
PrintObjectTransformedInputStream is = splF.getTransformedInputStream(printParms);

Example: Listing spooled files asynchronously (using listeners)
This example demonstrates listing all spooled files on a server asynchronously using the
PrintObjectListListener interface to get feedback as the list is being built. Listing asynchronously allows
the caller to start processing the list objects before the entire list is built for a faster perceived response
time for the user.

Note: Read the Code example disclaimer for important legal information.
///
//
// Example that shows listing all spooled files on a server asynchronously using
// the PrintObjectListListener interface to get feedback as the list is being built.
// Listing asynchronously allows the caller to start processing the list objects
// before the entire list is built for a faster perceived response time
// for the user.
//
///

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.SpooledFileList;
import com.ibm.as400.access.SpooledFile;
import com.ibm.as400.access.ExtendedIllegalStateException;
import com.ibm.as400.access.PrintObjectListListener;
import com.ibm.as400.access.PrintObjectListEvent;

public class NPExampleListSplfAsynch extends Object implements PrintObjectListListener
{

private AS400 system_;
private boolean fListError;
private boolean fListClosed;
private boolean fListCompleted;
private Exception listException;
private int listObjectCount;

public NPExampleListSplfAsynch(AS400 system)
{

system_ = system;
}

// list all spooled files on the server asynchronously using a listener
public void listSpooledFiles()
{

fListError = false;
fListClosed = false;
fListCompleted = false;
listException = null;
listObjectCount = 0;

try
{

String strSpooledFileName;
boolean fCompleted = false;
int listed = 0, size;

if(system_ == null)
{

system_ = new AS400();
}

System.out.println(" Now receiving all spooled files Asynchronously using a listener");

SpooledFileList splfList = new SpooledFileList(system_);

536 IBM i: Programming IBM Toolbox for Java

// set filters, all users, on all queues
splfList.setUserFilter("*ALL");
splfList.setQueueFilter("/QSYS.LIB/%ALL%.LIB/%ALL%.OUTQ");

// add the listener.
splfList.addPrintObjectListListener(this);

// open the list, openAsynchronously returns immediately
splfList.openAsynchronously();

do
{

// wait for the list to have at least 25 objects or to be done
waitForWakeUp();

fCompleted = splfList.isCompleted();
size = splfList.size();

// output the names of all objects added to the list
// since we last woke up
while (listed < size)
{

if (fListError)
{

System.out.println(" Exception on list - " + listException);
break;

}

if (fListClosed)
{

System.out.println(" The list was closed before it completed!");
break;

}

SpooledFile splf = (SpooledFile)splfList.getObject(listed++);
if (splf != null)
{

// output this spooled file name
strSpooledFileName = splf.getStringAttribute(SpooledFile.ATTR_SPOOLFILE);
System.out.println(" spooled file = " + strSpooledFileName);

}
}

} while (!fCompleted);

// clean up after we are done with the list
splfList.close();
splfList.removePrintObjectListListener(this);

}

catch(ExtendedIllegalStateException e)
{

System.out.println(" The list was closed before it completed!");
}

catch(Exception e)
{

// ...handle any other exceptions...
e.printStackTrace();

}

}

// This is where the foreground thread waits to be awaken by the
// the background thread when the list is updated or it ends.
private synchronized void waitForWakeUp() throws InterruptedException

IBM Toolbox for Java 537

{
// don’’t go back to sleep if the listener says the list is done
if (!fListCompleted)
{

wait();
}

}

// The following methods implement the PrintObjectListListener interface

// This method is invoked when the list is closed.
public void listClosed(PrintObjectListEvent event)
{

System.out.println("*****The list was closed*****");
fListClosed = true;
synchronized(this)
{

// Set flag to indicate that the list has
// completed and wake up foreground thread.
fListCompleted = true;
notifyAll();

}
}

// This method is invoked when the list is completed.
public void listCompleted(PrintObjectListEvent event)
{

System.out.println("*****The list has completed*****");
synchronized (this)
{

// Set flag to indicate that the list has
// completed and wake up foreground thread.
fListCompleted = true;
notifyAll();

}
}

// This method is invoked if an error occurs while retrieving
// the list.
public void listErrorOccurred(PrintObjectListEvent event)
{

System.out.println("*****The list had an error*****");
fListError = true;
listException = event.getException();
synchronized(this)
{

// Set flag to indicate that the list has
// completed and wake up foreground thread.
fListCompleted = true;
notifyAll();

}
}

// This method is invoked when the list is opened.
public void listOpened(PrintObjectListEvent event)
{

System.out.println("*****The list was opened*****");
listObjectCount = 0;

}

// This method is invoked when an object is added to the list.
public void listObjectAdded(PrintObjectListEvent event)
{

// every 25 objects we’ll wake up the foreground
// thread to get the latest objects...
if((++listObjectCount % 25) == 0)
{

538 IBM i: Programming IBM Toolbox for Java

System.out.println("*****25 more objects added to the list*****");
synchronized (this)
{

// wake up foreground thread
notifyAll();

}
}

}

public static void main(String args[])
{

NPExampleListSplfAsynch list = new NPExampleListSplfAsynch(new AS400());
try{

list.listSpooledFiles();
}
catch(Exception e)
{

e.printStackTrace();
}
System.exit(0);

}

}

Example: Listing spooled files asynchronously (without using listeners)
This example demonstrates how to list all the spooled files on the system asynchronously without using
the PrintObjectListListener interface.

Note: Read the Code example disclaimer for important legal information.
///
//
// This example lists all spooled files on a system asynchronously without
// using the PrintObjectListListener interface. After opening the list the caller
// can do some additional work before waiting for the list to complete.
//
///
//
// This source is an example of IBM Toolbox for Java "PrintObjectList".
//
///

import java.util.Enumeration;

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.SpooledFileList;
import com.ibm.as400.access.SpooledFile;

public class NPExampleListSplfAsynch2 extends Object
{

private AS400 system_;

public NPExampleListSplfAsynch2(AS400 system)
{

system_ = system;
}

// list all spooled files on the system asynchronously
public void listSpooledFiles()
{

try
{

String strSpooledFileName;
int listed, size;

if(system_ == null)
{

IBM Toolbox for Java 539

system_ = new AS400();
}

System.out.println(
"Now receiving all spooled files Asynchronously without using a listener");

SpooledFileList splfList = new SpooledFileList(system_);

// set filters, all users, on all queues
splfList.setUserFilter("*ALL");
splfList.setQueueFilter("/QSYS.LIB/%ALL%.LIB/%ALL%.OUTQ");

// open list, openAsynchronously() returns immediately
// we have not added any listeners...
splfList.openAsynchronously();

System.out.println(" Do some processing before waiting...");

// ... do some processing here while the list is being built....

System.out.println(" Now wait for list to complete.");

// wait for the list to complete
splfList.waitForListToComplete();

Enumeration enum = splfList.getObjects();

// output the name of all objects on the list
while(enum.hasMoreElements())
{

SpooledFile splf = (SpooledFile)enum.nextElement();
if (splf != null)
{

// output this spooled file’s name
strSpooledFileName = splf.getStringAttribute(SpooledFile.ATTR_SPOOLFILE);
System.out.println(" spooled file = " + strSpooledFileName);

}
}
// clean up after we are done with the list
splfList.close();

}

catch(Exception e)
{

// ...handle any exceptions...
e.printStackTrace();

}
}

public static void main(String args[])
{

NPExampleListSplfAsynch2 list = new NPExampleListSplfAsynch2(new AS400());
try{

list.listSpooledFiles();
}
catch(Exception e)
{

e.printStackTrace();
}
System.exit(0);

}
}

540 IBM i: Programming IBM Toolbox for Java

Example: Listing spooled files synchronously
This example demonstrates listing all spooled files on a server synchronously. Listing synchronously does
not return to the caller until the complete list is built. The user perceives a slower response time as
compared to listing asynchronously.

Note: Read the Code example disclaimer for important legal information.
///
//
// Example that shows listing all spooled files on a server synchronously.
// Listing synchronously does not return to the caller until the complete list
// is built. The user perceives a slower response time then listing asynchronously.
//
///
//
// This source is an example of IBM Toolbox for Java "PrintObjectList".
//
///

import java.util.Enumeration;

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.SpooledFileList;
import com.ibm.as400.access.SpooledFile;

public class NPExampleListSplfSynch
{

private AS400 system_ = new AS400();

public NPExampleListSplfSynch(AS400 system)
{

system_ = system;
}

public void listSpooledFiles()
{

try{
String strSpooledFileName;

if(system_ == null)
{

system_ = new AS400();
}

System.out.println(" Now receiving all spooled files Synchronously");

SpooledFileList splfList = new SpooledFileList(system_);

// set filters, all users, on all queues
splfList.setUserFilter("*ALL");
splfList.setQueueFilter("/QSYS.LIB/%ALL%.LIB/%ALL%.OUTQ");

// open list, openSynchronously() returns when the list is completed.
splfList.openSynchronously();
Enumeration enum = splfList.getObjects();

while(enum.hasMoreElements())
{

SpooledFile splf = (SpooledFile)enum.nextElement();
if (splf != null)
{

// output this spooled file’s name
strSpooledFileName = splf.getStringAttribute(SpooledFile.ATTR_SPOOLFILE);
System.out.println(" spooled file = " + strSpooledFileName);

}
}

IBM Toolbox for Java 541

// clean up after we are done with the list
splfList.close();

}
catch(Exception e)
{

// ...handle any exceptions...
e.printStackTrace();

}
}

public static void main(String args[])
{

NPExampleListSplfSynch list = new NPExampleListSplfSynch(new AS400());
try{

list.listSpooledFiles();
}
catch(Exception e)
{

e.printStackTrace();
}
System.exit(0);

}
}

Example: Using ProgramCall
This program calls the QWCRSSTS server program to retrieve the status of the system.

Note: Read the Code example disclaimer for important legal information.
///
//
// Program call example. This program calls the QWCRSSTS server program
// to retrieve the status of the system.
//
// Command syntax:
// PCSystemStatusExample system
//
// This source is an example of IBM Toolbox for Java "ProgramCall".
//
///

import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.Thread.*;
import com.ibm.as400.access.*;

public class PCSystemStatusExample extends Object
{

public static void main(String[] parameters)
{

System.out.println(" ");

// if a system was not specified, display help text and exit.

if (parameters.length >= 1)
{

try
{

// Create an AS400 object for the server that contains the
// program. Assume the first parameter is the system name.

542 IBM i: Programming IBM Toolbox for Java

AS400 as400 = new AS400(parameters[0]);

// Create the path to the program.

QSYSObjectPathName programName = new QSYSObjectPathName("QSYS", "QWCRSSTS", "PGM");

// Create the program call object. Assocate the object with the
// AS400 object that represents the server we get status from.

ProgramCall getSystemStatus = new ProgramCall(as400);

// Create the program parameter list. This program has five
// parameters that will be added to this list.

ProgramParameter[] parmlist = new ProgramParameter[5];

// The server program returns data in parameter 1. It is an output
// parameter. Allocate 64 bytes for this parameter.

parmlist[0] = new ProgramParameter(64);

// Parameter 2 is the buffer size of parm 1. It is a numeric input
// parameter. Sets its value to 64, convert it to the server format,
// then add the parm to the parm list.

AS400Bin4 bin4 = new AS400Bin4();
Integer iStatusLength = new Integer(64);
byte[] statusLength = bin4.toBytes(iStatusLength);
parmlist[1] = new ProgramParameter(statusLength);

// Parameter 3 is the status-format parameter. It is a string input
// parameter. Set the string value, convert it to the server format,
// then add the parameter to the parm list.

AS400Text text1 = new AS400Text(8, as400);
byte[] statusFormat = text1.toBytes("SSTS0200");
parmlist[2] = new ProgramParameter(statusFormat);

// Parameter 4 is the reset-statistics parameter. It is a string input
// parameter. Set the string value, convert it to the server format,
// then add the parameter to the parm list.

AS400Text text3 = new AS400Text(10, as400);
byte[] resetStats = text3.toBytes("*NO ");
parmlist[3] = new ProgramParameter(resetStats);

// Parameter 5 is the error info parameter. It is an input/output
// parameter. Add it to the parm list.

byte[] errorInfo = new byte[32];

IBM Toolbox for Java 543

parmlist[4] = new ProgramParameter(errorInfo, 0);

// Set the program to call and the parameter list to the program
// call object.

getSystemStatus.setProgram(programName.getPath(), parmlist);

// Run the program then sleep. We run the program twice because
// the first set of results are inflated. If we discard the first
// set of results and run the command again five seconds later the
// number will be more accurate.

getSystemStatus.run();
Thread.sleep(5000);

// Run the program

if (getSystemStatus.run()!=true)
{

// If the program did not run get the list of error messages
// from the program object and display the messages. The error
// would be something like program-not-found or not-authorized
// to the program.

AS400Message[] msgList = getSystemStatus.getMessageList();

System.out.println("The program did not run. Server messages:");

for (int i=0; i<msgList.length; i++)
{

System.out.println(msgList[i].getText());
}

}

// Else the program did run.

else
{

// Create a server to Java numeric converter. This converter
// will be used in the following section to convert the numeric
// output from the server format to Java format.

AS400Bin4 as400Int = new AS400Bin4();

// Get the results of the program. Output data is in
// a byte array in the first parameter.

byte[] as400Data = parmlist[0].getOutputData();

// CPU utilization is a numeric field starting at byte
// 32 of the output buffer. Convert this number from the
// server format to Java format and output the number.

Integer cpuUtil = (Integer)as400Int.toObject(as400Data, 32);

544 IBM i: Programming IBM Toolbox for Java

cpuUtil = new Integer(cpuUtil.intValue()/10);
System.out.print("CPU Utilization: ");
System.out.print(cpuUtil);
System.out.println("%");

// DASD utilization is a numeric field starting at byte
// 52 of the output buffer. Convert this number from the
// server format to Java format and output the number.

Integer dasdUtil = (Integer)as400Int.toObject(as400Data, 52);
dasdUtil = new Integer(dasdUtil.intValue()/10000);
System.out.print("Dasd Utilization: ");
System.out.print(dasdUtil);
System.out.println("%");

// Number of jobs is a numeric field starting at byte
// 36 of the output buffer. Convert this number from the
// server format to Java format and output the number.

Integer nj = (Integer)as400Int.toObject(as400Data, 36);
System.out.print("Active jobs: ");
System.out.println(nj);

}

// This program is done running program so disconnect from
// the command server on the server. Program call and command
// call use the same server on the server.

as400.disconnectService(AS400.COMMAND);
}
catch (Exception e)
{

// If any of the above operations failed say the program failed
// and output the exception.

System.out.println("Program call failed");
System.out.println(e);

}
}

// Display help text when parameters are incorrect.

else
{

System.out.println("");
System.out.println("");
System.out.println("");
System.out.println("Parameters are not correct. Command syntax is:");
System.out.println("");
System.out.println(" PCSystemStatusExample myServer");
System.out.println("");
System.out.println("Where");
System.out.println("");
System.out.println(" myServer = get status of this server ");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println(" PCSystemStatusExample mySystem");
System.out.println("");
System.out.println("");

}

IBM Toolbox for Java 545

System.exit(0);
}

}

Example: Using record-level access classes
This IBM Toolbox for Java example program will prompt the user for the name of the server and the file
to display. The file must exist and contain records. Each record in the file will be displayed to System.out.

Note: Read the Code example disclaimer for important legal information.
//
//
// Record level access example. This program will prompt the user
// for the name of the server and the file to display. The file must exist
// and contain records. Each record in the file will be displayed
// to System.out.
//
// Calling syntax: java RLSequentialAccessExample
//
// This source is an example of IBM Toolbox for Java "RecordLevelAccess"
//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class RLSequentialAccessExample
{

public static void main(String[] parmeters)
{

// Created a reader to get input from the user
BufferedReader inputStream = new BufferedReader(new InputStreamReader(System.in),1);

// Declare variables to hold the system name, library, file and member names
String systemName = "";
String library = "";
String file = "";
String member = "";

// Get the system name and and file to display from the user
System.out.println();
try
{

System.out.print("System name: ");
systemName = inputStream.readLine();

System.out.print("Library in which the file exists: ");
library = inputStream.readLine();

System.out.print("File name: ");
file = inputStream.readLine();

System.out.print("Member name (press enter for first member): ");
member = inputStream.readLine();
if (member.equals(""))
{

member = "*FIRST";
}

System.out.println();
}
catch (Exception e)
{

546 IBM i: Programming IBM Toolbox for Java

System.out.println("Error obtaining user input.");
e.printStackTrace();
System.exit(0);

}

// Create AS400 object and connect for the record level access service.
AS400 system = new AS400(systemName);
try
{

system.connectService(AS400.RECORDACCESS);
}
catch(Exception e)
{

System.out.println("Unable to connect for record level access.");
System.out.println("Check the readme file for special instructions regarding record

level access");
e.printStackTrace();
System.exit(0);

}

// Create a QSYSObjectPathName object to obtain the integrated file system path name form
// of the file to be displayed.
QSYSObjectPathName filePathName = new QSYSObjectPathName(library, file, member, "MBR");

// Create a SequentialFile object representing the file to be displayed
SequentialFile theFile = new SequentialFile(system, filePathName.getPath());

// Retrieve the record format for the file
AS400FileRecordDescription recordDescription =

new AS400FileRecordDescription(system, filePathName.getPath());
try
{

RecordFormat[] format = recordDescription.retrieveRecordFormat();

// Set the record format for the file
theFile.setRecordFormat(format[0]);

// Open the file for reading. Read 100 records at a time if possible.
theFile.open(AS400File.READ_ONLY, 100, AS400File.COMMIT_LOCK_LEVEL_NONE);

// Display each record in the file
System.out.println("Displaying file " + library.toUpperCase() + "/"

+ file.toUpperCase() + "(" + theFile.getMemberName().trim() + "):");

Record record = theFile.readNext();
while (record != null)
{

System.out.println(record);
record = theFile.readNext();

}
System.out.println();

// Close the file
theFile.close();

// Disconnect from the record level access service
system.disconnectService(AS400.RECORDACCESS);

}
catch (Exception e)
{

System.out.println("Error occurred attempting to display the file.");
e.printStackTrace();

try
{

// Close the file
theFile.close();

IBM Toolbox for Java 547

}
catch(Exception x)
{
}

// Disconnect from the record level access service
system.disconnectService(AS400.RECORDACCESS);
System.exit(0);

}

// Make sure that the application ends; see readme for details
System.exit(0);

}
}

Example: Using record-level access classes to read records from a file
This program uses the record-level access classes to read records from a file on the server.

Note: Read the Code example disclaimer for important legal information.
///
//
// Record-Level Access example. This program uses the record-level
// access classes to read records from a file on the server.
//
// Command syntax:
// java RLReadFile system
//
// This program reads the records from CA/400’s sample database file
// (QCUSTCDT in library QIWS). If you change this example to update
// records, make a copy of QCUSTCDT and update the copy.
//
// This source is an example of IBM Toolbox for Java "Record-level access".
//
///

import java.io.*;
import java.util.*;
import java.math.*;
import com.ibm.as400.access.*;

public class RLReadFile extends Object
{

public static void main(String[] parameters)
{

String system = "";

// Continue only if a system name was specified.

if (parameters.length >= 1)
{

try
{

// Assume the first parameter is the system name.

system = parameters[0];

// Create an AS400 object for the server that has the file.

AS400 as400 = new AS400(system);

// Create a record description for the file. The file is QCUSTCDT

548 IBM i: Programming IBM Toolbox for Java

// in library QIWS.

ZonedDecimalFieldDescription customerNumber =
new ZonedDecimalFieldDescription(new AS400ZonedDecimal(6,0),

"CUSNUM");
CharacterFieldDescription lastName =

new CharacterFieldDescription(new AS400Text(8, as400), "LSTNAM");

CharacterFieldDescription initials =
new CharacterFieldDescription(new AS400Text(3, as400), "INIT");

CharacterFieldDescription street =
new CharacterFieldDescription(new AS400Text(13, as400), "STREET");

CharacterFieldDescription city =
new CharacterFieldDescription(new AS400Text(6, as400), "CITY");

CharacterFieldDescription state =
new CharacterFieldDescription(new AS400Text(2, as400), "STATE");

ZonedDecimalFieldDescription zipCode =
new ZonedDecimalFieldDescription(new AS400ZonedDecimal(5,0),

"ZIPCOD");
ZonedDecimalFieldDescription creditLimit =

new ZonedDecimalFieldDescription(new AS400ZonedDecimal(4,0),
"CDTLMT");

ZonedDecimalFieldDescription chargeCode =
new ZonedDecimalFieldDescription(new AS400ZonedDecimal(1,0),

"CHGCOD");
ZonedDecimalFieldDescription balanceDue =

new ZonedDecimalFieldDescription(new AS400ZonedDecimal(6,2),
"BALDUE");

ZonedDecimalFieldDescription creditDue =
new ZonedDecimalFieldDescription(new AS400ZonedDecimal(6,2),

"CDTDUE");

// The record format name must be specified for a DDM file.
// In the case of the QCUSTCDT file, its record format is called CUSREC.

RecordFormat qcustcdt = new RecordFormat("CUSREC");

qcustcdt.addFieldDescription(customerNumber);
qcustcdt.addFieldDescription(lastName);
qcustcdt.addFieldDescription(initials);
qcustcdt.addFieldDescription(street);
qcustcdt.addFieldDescription(city);
qcustcdt.addFieldDescription(state);
qcustcdt.addFieldDescription(zipCode);
qcustcdt.addFieldDescription(creditLimit);
qcustcdt.addFieldDescription(chargeCode);
qcustcdt.addFieldDescription(balanceDue);
qcustcdt.addFieldDescription(creditDue);

// Create the sequential file object that represents the
// file on the server. We use a QSYSObjectPathName object
// to get the name of the file into the correct format.

QSYSObjectPathName fileName = new QSYSObjectPathName("QIWS",
"QCUSTCDT",
"FILE");

SequentialFile file = new SequentialFile(as400, fileName.getPath());

// Let the file object know the format of the records.

IBM Toolbox for Java 549

file.setRecordFormat(qcustcdt);

// Open the file for read-only access. Specify a blocking
// factor of 10 (the file object will get 10 records when
// it accesses the server for data). Do not use commitment
// control.

file.open(SequentialFile.READ_ONLY,
10,
SequentialFile.COMMIT_LOCK_LEVEL_NONE);

// Read the first record of the file.

Record data = file.readNext();

// Loop while there are records in the file (while we have not
// reached end-of-file).

while (data != null)
{

// Display the record only if balance due is greater than
// zero. In that case display the customer name and
// the balance due. The following code pulls fields out
// of the record by field name. As the field is retrieved
// from the record it is converted from server format to
// Java format.

if (((BigDecimal)data.getField("BALDUE")).floatValue() > 0.0)
{

System.out.print((String) data.getField("INIT") + " ");
System.out.print((String) data.getField("LSTNAM") + " ");
System.out.println((BigDecimal) data.getField("BALDUE"));

}

// Read the next record in the file.

data = file.readNext();
}

// When there are no more records to read, disconnect from the server.

as400.disconnectAllServices();
}

catch (Exception e)
{

// If any of the above operations failed, print an error message
// and output the exception.

System.out.println("Could not read the file");
System.out.println(e);

}
}

// Display help text when parameters are incorrect.

else
{

System.out.println("");

550 IBM i: Programming IBM Toolbox for Java

System.out.println("");
System.out.println("");
System.out.println("Parameters are not correct. Command syntax is:");
System.out.println("");
System.out.println(" RLReadFile as400");
System.out.println("");
System.out.println("Where");
System.out.println("");
System.out.println(" as400 = system that contains the file");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println(" RLReadFile mySystem");
System.out.println("");
System.out.println("");
System.out.println("Note, this program reads data base file QIWS/QCUSTCDT. ");
System.out.println("");
System.out.println("");

}

System.exit(0);

}
}

Example: Using record-level access classes to read records by key
This program uses the record-level access classes to read records by key from a file on the server. The
user will be prompted for the server name to which to run and the library in which to create file
QCUSTCDTKY.

Note: Read the Code example disclaimer for important legal information.
///
//
// Record-Level Access example. This program uses the record-level
// access classes to read records by key from a file on the server.
// The user will be prompted for the server name to which to run and
// the library in which to create file QCUSTCDTKY.
//
// Command syntax:
// java RLKeyedFileExample
//
// This program will copy the records from the IBM i Access for Windows sample
// database file (QCUSTCDT in library QIWS) to file QCUSTCDTKY which has
// the same format as QIWS/QCUSTCDT but has set the CUSNUM field as the key
// for the file.
//
// This source is an example of IBM Toolbox for Java "Record-level access".
//
///

import java.io.*;
import java.util.*;
import java.math.*;
import com.ibm.as400.access.*;

public class RLKeyedFileExample
{

public static void main(String[] parameters)
{

// Created a reader to get input from the user
BufferedReader inputStream = new BufferedReader(new InputStreamReader(System.in),1);

// Declare variables to hold the system name, library, file and member names

IBM Toolbox for Java 551

String systemName = "";
String library = "";

// Get the system name from the user
System.out.println();
try
{

System.out.print("System name: ");
systemName = inputStream.readLine();

System.out.print("Library in which to create file QCUSTCDTKY: ");
library = inputStream.readLine();

}
catch(Exception e)
{

System.out.println("Error obtaining user input.");
e.printStackTrace();
System.exit(0);

}

// Create AS400 object and connect for the record level access service.
AS400 system = new AS400(systemName);
try
{

system.connectService(AS400.RECORDACCESS);
}
catch(Exception e)
{

System.out.println("Unable to connect for record level access.");
System.out.println("Check the readme file for special instructions regarding record

level access");
e.printStackTrace();
System.exit(0);

}

RecordFormat qcustcdtFormat = null;
try
{

// Create the RecordFormat object for creating the file. The record format for the new
// file will be the same as the record format for file QIWS/QCUSTCDT. However we will
// make the CUSNUM field a key field.
AS400FileRecordDescription recordDescription =

new AS400FileRecordDescription(system, "/QSYS.LIB/QIWS.LIB/QCUSTCDT.FILE");

// There is only one record format for the file, so take the first (and only) element
// of the RecordFormat array returned as the RecordFormat for the file.
System.out.println("Retrieving record format of QIWS/QCUSTCDT...");
qcustcdtFormat = recordDescription.retrieveRecordFormat()[0];
// Indicate that CUSNUM is a key field
qcustcdtFormat.addKeyFieldDescription("CUSNUM");

}
catch(Exception e)
{

System.out.println("Unable to retrieve record format from QIWS/QCUSTCDT");
e.printStackTrace();
System.exit(0);

}

// Create the keyed file object that represents the
// file we will create on the server. We use a QSYSObectPathName object
// to get the name of the file into the correct format.
QSYSObjectPathName fileName = new QSYSObjectPathName(library,

"QCUSTCDTKY",
"*FILE",
"MBR");

KeyedFile file = new KeyedFile(system, fileName.getPath());

552 IBM i: Programming IBM Toolbox for Java

try
{

System.out.println("Creating file " + library + "/QCUSTCDTKY...");
// Create the file using the qcustcdtFormat object
file.create(qcustcdtFormat, "Keyed QCUSTCDT file");

// Populate the file with the records contained in QIWS/QCUSTCDT
copyRecords(system, library);

// Open the file for read-only access. Because we will be randomly
// accessing the file, specify a blocking factor of 1. The
// commit lock level parameter will be ignored since commitment
// control has not been started.
file.open(AS400File.READ_ONLY,

1,
AS400File.COMMIT_LOCK_LEVEL_NONE);

// Assume that we want to display the information for customers
// 192837, 392859 and 938472
// The CUSNUM field is a zoned decimal field of length 6 with
// no decimal positions. Therefore, the key field value is
// represented with a BigDecimal.
BigDecimal[] keyValues = {new BigDecimal(192837),

new BigDecimal(392859),
new BigDecimal(938472)};

// Create the key for reading the records. The key for a KeyedFile
// is specified with an Object[]
Object[] key = new Object[1];

Record data = null;
for (int i = 0; i < keyValues.length; i++)
{

// Setup the key for reading
key[0] = keyValues[i];

// Read the record for customer number keyValues[i]
data = file.read(key);
if (data != null)
{

// Display the record only if balance due is greater than
// zero. In that case display the customer name and
// the balance due. The following code pulls fields out
// of the record by field name. As the field is retrieved
// from the record it is converted from the server format to
// Java format.
if (((BigDecimal)data.getField("BALDUE")).floatValue() > 0.0)
{

System.out.print((String) data.getField("INIT") + " ");
System.out.print((String) data.getField("LSTNAM") + " ");
System.out.println((BigDecimal) data.getField("BALDUE"));

}
}

}

// All done with the file
file.close();

// Get rid of the file from the user’s system
file.delete();

}
catch(Exception e)
{

System.out.println("Unable to create/read from QTEMP/QCUSTCDT");
e.printStackTrace();
try
{

IBM Toolbox for Java 553

file.close();
// Get rid of the file from the user’s system
file.delete();

}
catch(Exception x)
{
}

}

// All done with record level access; disconnect from the
// record-level access server.
system.disconnectService(AS400.RECORDACCESS);
System.exit(0);

}

public static void copyRecords(AS400 system, String library)
{

// Use the CommandCall class to run the CPYF command to copy the records
// in QIWS/QCUSTCDT to QTEMP/QCUSTCDT
CommandCall c = new CommandCall(system, "CPYF FROMFILE(QIWS/QCUSTCDT) TOFILE("

+ library + "/QCUSTCDTKY) MBROPT(*REPLACE)");
try
{

System.out.println("Copying records from QIWS/QCUSTCDT to "
+ library + "/QCUSTCDTKY...");

c.run();
AS400Message[] msgs = c.getMessageList();
if (!msgs[0].getID().equals("CPC2955"))
{

System.out.println("Unable to populate " + library + "/QCUSTCDTKY");
for (int i = 0; i < msgs.length; i++)
{

System.out.println(msgs[i]);
}
System.exit(0);

}
}
catch(Exception e)
{

System.out.println("Unable to populate " + library + "/QCUSTCDTKY");
System.exit(0);

}
}

}

Example: Using UserList to list all of the user in a given group
This source is an example of IBM Toolbox for Java UserList. This program lists all of the users in a given
group.

Note: Read the Code example disclaimer for important legal information.
///
//
// User list example. This program lists all of the users in a given
// group.
//
// Command syntax:
// UserListExample system group
//
// This source is an example of IBM Toolbox for Java "UserList".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import java.util.Enumeration;

554 IBM i: Programming IBM Toolbox for Java

public class UserListExample
{

public static void main (String[] args)
{

// If a system and group were not specified, then display
// help text and exit.
if (args.length != 2)
{

System.out.println("Usage: UserListExample system group");
return;

}

try
{

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// The group name was passed as the second command line
// argument.
String groupName = args[1];

// Create the user list object.
UserList userList = new UserList (system);

// Get a list of the users in the given group.
userList.setUserInfo (UserList.MEMBER);
userList.setGroupInfo (groupName);
Enumeration enum = userList.getUsers ();

// Iterate through the list and print out the
// users’ names and descriptions.
while (enum.hasMoreElements ())
{

User u = (User) enum.nextElement ();
System.out.println ("User name: " + u.getName ());
System.out.println ("Description: " + u.getDescription ());
System.out.println ("");

}

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
}

System.exit (0);
}

}

Examples: JavaBeans
This section lists the code examples that are provided throughout the IBM Toolbox for Java bean
information.

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

IBM Toolbox for Java 555

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Example: IBM Toolbox for Java bean code
The following example creates an AS400 object and a CommandCall object, and then registers listeners on
the objects. The listeners on the objects print a comment when the server connects or disconnects and
when the CommandCall object completes the running of a command.

Note: Read the Code example disclaimer for important legal information.
//
//
// Beans example. This program uses the JavaBeans support in the
// IBM Toolbox for Java classes.
//
// Command syntax:
// BeanExample
//
//

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.CommandCall;
import com.ibm.as400.access.ConnectionListener;
import com.ibm.as400.access.ConnectionEvent;
import com.ibm.as400.access.ActionCompletedListener;
import com.ibm.as400.access.ActionCompletedEvent;

class BeanExample
{

AS400 as400_ = new AS400();
CommandCall cmd_ = new CommandCall(as400_);

BeanExample()
{

// Whenever the system is connected or disconnected print a
// comment. Do this by adding a listener to the AS400 object.
// When a system is connected or disconnected, the AS400 object
// will call this code.

as400_.addConnectionListener
(new ConnectionListener()

{
public void connected(ConnectionEvent event)
{

System.out.println("System connected.");
}
public void disconnected(ConnectionEvent event)
{

System.out.println("System disconnected.");
}

}
);

// Whenever a command runs to completion print a comment. Do this
// by adding a listener to the commandCall object. The commandCall
// object will call this code when it runs a command.

cmd_.addActionCompletedListener(
new ActionCompletedListener()
{

556 IBM i: Programming IBM Toolbox for Java

public void actionCompleted(ActionCompletedEvent event)
{

System.out.println("Command completed.");
}

}
);

}

void runCommand()
{

try
{

// Run a command. The listeners will print comments when the
// system is connected and when the command has run to
// completion.
cmd_.run("TESTCMD PARMS");

}
catch (Exception ex)
{

System.out.println(ex);
}

}

public static void main(String[] parameters)
{

BeanExample be = new BeanExample();

be.runCommand();

System.exit(0);
}

}

Example: Creating beans with a visual bean builder
This example uses the IBM VisualAge for Java Enterprise Edition V2.0 Composition Editor, but other
visual bean builders are similar. This example creates an applet for a button that, when pressed, runs a
command on the server.
v Drag-and-drop a Button on the applet. (The Button can be found in the bean builder on the left side of

the Visual Composition tab in Figure 1.)
v Drop a CommandCall bean and an AS400 bean outside the applet. (The beans can be found in the

bean builder on the left side of the Visual Composition tab in Figure 1.)

Figure 1: VisualAge Visual Composition Editor window - gui.BeanExample

IBM Toolbox for Java 557

v Edit the bean properties. (To edit, select the bean and then right-click to display a window, which has
Properties as an option.)
– Change the label of the Button to Run command, as shown in Figure 2.

Figure 2: Changing the label of the button to Run command

– Change the system name of the AS400 bean to TestSys

– Change the user ID of the AS400 bean to TestUser, as shown in Figure 3.
Figure 3: Changing the name of the user ID to TestUser

558 IBM i: Programming IBM Toolbox for Java

– Change the command of the CommandCall bean to SNDMSG MSG('Testing')
TOUSR('TESTUSER'), as shown in Figure 4.
Figure 4: Changing the command of the CommandCall bean

v Connect the AS400 bean to the CommandCall bean. The method you use to do this varies between
bean builders. For this example, do the following:
– Select the CommandCall bean and then click the right mouse button

IBM Toolbox for Java 559

– Select Connect

– Select Connectable Features

– Select system from the list of features as shown in Figure 5.
– Select the AS400 bean
– Select this from the pop-up menu that appears over the AS400 bean

Figure 5: Connecting AS400 bean to CommandCall bean

v Connect the button to the CommandCall bean.
– Select the Button bean and then click the right mouse button
– Select Connect

– Select actionPerformed

– Select the CommandCall bean
– Select Connectable Features from the pop-up menu that appears
– Select run() from the list of methods as shown in Figure 6.

Figure 6: Connecting a method to a button

560 IBM i: Programming IBM Toolbox for Java

When you are finished, the VisualAge Visual Composition Editor window might look like Figure 7.

Figure 7: VisualAge Visual Composition Editor window - Finished bean example

IBM Toolbox for Java 561

Examples: Commtrace classes
This topic links to the code example provided in the documentation of IBM Toolbox for Java commtrace
classes.
v “Example: Using the commtrace classes” on page 189

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Graphical Toolbox examples
Use these examples to show you how to implement the tools within Graphical Toolbox for your own UI
programs.
v Construct and display a panel: Constructing a simple panel, which illustrates the basic features and

operation of the Graphical Toolbox environment as a whole
v Create and display a panel: Creating and diplaying a panel when the panel and properties file are in

the same directory
v Construct a fully-functional dialog: Constructing a fully-functioning dialog (after you have

implemented the DataBeans that supply data to the panel and identified the attributes in the PDML)

562 IBM i: Programming IBM Toolbox for Java

v Size a panel using the dynamic panel manager: How the dynamic panel manager dynamically sizes
the panel at runtime

v Editable combobox: Coding a data bean for an editable combobox

The following examples show you how the GUI Builder can help you to create a variety of GUI elements:
v Panels: Creating a sample panel and the data bean code that runs the panel
v Deckpanes: Creating a deckpane and what a final deckpane may look like
v Property sheets: Creating a property sheet and what a final property sheet may look like
v Split panes: Creating a split pane and what a final split pane may look like
v Tabbed panes: Creating a tabbed pane and what a final tabbed pane may look like
v Wizards: Creating a wizard and what the final product may look like
v Toolbars: Creating a tool bar and what a final tool bar may look like
v Menu bars: Creating a menu bar and what a final menu bar may look like
v Help: Generating a Help Document and split the Help Document into topic pages. Also, see Editing

Help Documents generated by GUI builder
v Sample: Shows what a whole PDML program may look like, including panels, a property sheet, a

wizard, select/deselect, and menu options.

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Example: Constructing a panel with the GUI Builder
This example demonstrates how to use the Graphical Toolbox by constructing a simple panel. It is an
overview that illustrates the basic features and operation of the Graphical Toolbox environment.

After showing you how to construct a panel, the example goes on to show you how to build a small Java
application that displays the panel. In this example, the user enters data in a text field and clicks on the
Close button. The application then echos the data to the Java console.

Constructing the panel

When you start the GUI Builder, the Properties and GUI Builder windows appear. Create a new file
named "MyGUI.pdml". For this example, insert a new panel. Click the "Insert Panel" icon in File Builder
window. Its name is "PANEL1". Change the title by modifying information in the Properties window;
type "Simple Example" in the "Title" field. Remove the three default buttons by selecting them with your
mouse and pressing "Delete". Using the buttons in the Panel Builder window, add the three elements
shown in Figure 1: a label, a text field, and a pushbutton.

Note: Read the Code example disclaimer for important legal information.

Figure 1: GUI Builder windows: Beginning to construct a panel

IBM Toolbox for Java 563

By selecting the label, you can change its text in the Properties window. In this example, the same has
been done for the pushbutton, changing its text to "Close".

Figure 2: GUI Builder windows: Changing text in the Properties window

Text field

The text field will contain data and, therefore, you can set several properties that will allow the GUI
Builder to perform some additional work. For this example, you set the Data Class property to the name
of a bean class named SampleBean. This databean will supply the data for this text field.

Figure 3: GUI Builder windows: Setting the Data Class property

564 IBM i: Programming IBM Toolbox for Java

Set the Attribute property to the name of the bean property that will contain the data. In this case, the
name is UserData.

Figure 4: GUI Builder windows: Setting the Attribute property

Following the above steps binds the UserData property to this text field. At run-time, the Graphical
Toolbox obtains the initial value for this field by calling SampleBean.getUserData. The modified value is
then sent back to the application when the panel closes by calling SampleBean.setUserData.

IBM Toolbox for Java 565

Specify that the user is required to supply some data, and that the data must be a string with a
maximum length of 15 characters.

Figure 5: GUI Builder windows: Setting the maximum length of the text field

Indicate that the context-sensitive help for the text field will be the help topic associated with the label
"Enter some data".

Figure 6: GUI Builder windows: Setting context-sensitive help for the text field

Button

Modify the style property to give the button default emphasis.

Figure 7: GUI Builder windows: Setting the Style property to give the button default emphasis

566 IBM i: Programming IBM Toolbox for Java

Set the ACTION property to COMMIT, which causes the setUserData method on the bean to be called
when the button is selected.

Figure 8: GUI Builder windows: Setting the Action property to COMMIT

Before you save the panel, set properties at the level of the PDML file to generate both the online help

skeleton and the Java bean. Then you save the file by clicking on the

icon in the GUI Builder
window. When prompted, specify a file name of MyGUI.pdml.

Figure 9: GUI Builder windows: Setting properties to generate the online help skeleton and the Java
bean

IBM Toolbox for Java 567

Generated files

After you save the panel definition, you can look at the files produced by the GUI Builder. PDML file
Here is the content of MyGUI.pdml to give you an idea of how the Panel Definition Markup Language
works. Because you use PDML only through the tools provided by the Graphical Toolbox, it is not
necessary to understand the format of this file in detail:
<!-- Generated by GUI Builder -->
<PDML version="2.0" source="JAVA" basescreensize="1280x1024">

<PANEL name="PANEL1">
<TITLE>PANEL1<TITLE>
<SIZE>351,162<</SIZE>
<LABEL name="LABEL1"">
<TITLE>PANEL1.LABEL1</TITLE>
<LOCATION>18,36</LOCATION>
<SIZE>94,18</SIZE>
<HELPLINK>PANEL1.LABEL1</HELPLINK>
</LABEL>
<TEXTFIELD name="TEXTFIELD1">
<TITLE>PANEL1.TEXTFIELD1</TITLE>
<LOCATION>125,31</LOCATION>
<SIZE>191,26</SIZE>
<DATACLASS>SampleBean</DATACLASS>
<ATTRIBUTE>UserData</ATTRIBUTE>
<STRING minlength="0" maxlength="15"/>
<HELPALIAS>LABEL1</HELPALIAS>
</TEXTFIELD>
<BUTTON name="BUTTON1">
<TITLE>PANEL1.BUTTON1</TITLE>
<LOCATION>125,100</LOCATION>
<SIZE>100,26</SIZE>
<STYLE>DEFAULT<</STYLE>
<ACTION>COMMIT</ACTION>
<HELPLINK>PANEL1.BUTTON1</HELPLINK>
</BUTTON>

</PANEL>

</PDML>

Resource bundle

Associated with every PDML file is a resource bundle. In this example, the translatable resources were
saved in a PROPERTIES file, which is called MyGUI.properties. Notice that the PROPERTIES file also
contains customization data for the GUI Builder.

##Generated by GUI Builder
BUTTON_1=Close
TEXT_1=
@GenerateHelp=1
@Serialize=0
@GenerateBeans=1
LABEL_1=Enter some data:
PANEL_1.Margins=18,18,18,18,18,18
PANEL_1=Simple Example

JavaBean

The example also generated a Java source code skeleton for the JavaBean object. Here is the content of
SampleBean.java:
import com.ibm.as400.ui.framework.java.*;

public class SampleBean extends Object
implements DataBean

{

568 IBM i: Programming IBM Toolbox for Java

private String m_sUserData;

public String getUserData()
{

return m_sUserData;
}

public void setUserData(String s)
{

m_sUserData = s;
}

public Capabilities getCapabilities()
{

return null;
}

public void verifyChanges()
{
}

public void save()
{
}

public void load()
{

m_sUserData ="";
}

}

Note that the skeleton already contains an implementation of the gettor and settor methods for the
UserData property. The other methods are defined by the DataBean interface and, therefore, are required.

The GUI Builder has already invoked the Java compiler for the skeleton and produced the corresponding
class file. For the purposes of this simple example, you do not need to modify the bean
implementation. In a real Java application you would typically modify the load and save methods to
transfer data from an external data source. The default implementation of the other two methods is
often sufficient. For more information, see the documentation on the DataBean interface in the Javadocs
for the PDML runtime framework.

Help file

The GUI Builder also creates an HTML framework called a Help Document. Help writers can easily
manage help information by editing this file. For more information, see the following topics:
v Creating the Help Document
v Editing Help Documents generated by GUI builder

Constructing the application

Once the panel definition and the generated files have been saved, you are ready to construct the
application. All you need is a new Java source file that will contain the main entry point for the
application. For this example, the file is called SampleApplication.java. It contains the following code:
import com.ibm.as400.ui.framework.java.*;
import java.awt.Frame;

public class SampleApplication
{

public static void main(String[] args)
{

// Instantiate the bean object that supplies data to the panel
SampleBean bean = new SampleBean();

IBM Toolbox for Java 569

// Initialize the object
bean.load();

// Set up to pass the bean to the panel manager
DataBean[] beans = { bean };

// Create the panel manager. Parameters:
// 1. PDML file as a resource name
// 2. Name of panel to display
// 3. List of data objects that supply panel data
// 4. An AWT Frame to make the panel modal

PanelManager pm = null;
try { pm = new PanelManager("MyGUI", "PANEL_1", beans, new Frame()); }
catch (DisplayManagerException e)
{

// Something didn’t work, so display a message and exit
e.displayUserMessage(null);
System.exit(1);

}

// Display the panel - we give up control here
pm.setVisible(true);

// Echo the saved user data
System.out.println("SAVED USER DATA: ’" + bean.getUserData() + "’");

// Exit the application
System.exit(0);

}
}

It is the responsibility of the calling program to initialize the bean object or objects by calling load. If the
data for a panel is supplied by multiple bean objects, then each of the objects must be initialized before
passing them to the Graphical Toolbox environment.

The class com.ibm.as400.ui.framework.java.PanelManager supplies the API for displaying standalone
windows and dialogs. The name of the PDML file as supplied on the constructor is treated as a resource
name by the Graphical Toolbox - the directory, ZIP file, or JAR file containing the PDML must be
identified in the classpath.

Because a Frame object is supplied on the constructor, the window will behave as a modal dialog. In a
real Java application, this object might be obtained from a suitable parent window for the dialog.
Because the window is modal, control does not return to the application until the user closes the
window. At that point, the application simply echoes the modified user data and exits.

Running the application

Here is what the window looks like when the application is compiled and run:

Figure 10: The Simple Example application window

570 IBM i: Programming IBM Toolbox for Java

If the user presses F1 while focus is on the text field, the Graphical Toolbox will display a help browser
containing the online help skeleton that the GUI Builder generated.

Figure 11: The Simple Example online help skeleton

You can edit the HTML and add actual help content for the help topics shown.

If the data in the text field is not valid (for example, if the user clicked on the Close button without
supplying a value), the Graphical Toolbox will display an error message and return focus to the field so
that data can be entered.

IBM Toolbox for Java 571

Figure 12: Data Error message

For information about how to run this sample as an applet, see Using the Graphical Toolbox in a
Browser.
Related information:
Package com.ibm.as400.ui.framework.java summary

Editable Comboboxes
When the bean generator creates a gettor and settor for an Editable ComboBox, by default it returns a
String on the settor and takes a string parameter on the gettor. It can be useful to change the settor to
take an Object class and the gettor to return an Object type. This allows you to determine the user
selection using ChoiceDescriptors.

If a type of Object is detected for the gettor and settor, the system will expect either a ChoiceDescriptor
or a type Object instead of a formatted string.

The following example assumes that Editable is an editable ComboBox that has either a Double value,
uses a system value, or is not set.
public Object getEditable()
{

if (m_setting == SYSTEMVALUE)
{

return new ChoiceDescriptor("choice1","System Value");
}
else if (m_setting == NOTSET)
{

return new ChoiceDescriptor("choice2","Value not set");
}
else
{

return m_doubleValue;
}

}

Similarly, when a type of Object is detected for the gettor and settor, the system will return an Object
which is either a ChoiceDescriptor containing the selected choice or a type Object.

public void setEditable(Object item)
{

if (ChoiceDescriptor.class.isAssignableForm(obj.getClass()))
{

if (((ChoiceDescriptor)obj).getName().equalsIgnoreCase("choice1"))
m_setting = SYSTEMVALUE;

else
m_setting = NOTSET;

572 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/ui/framework/java/package-summary.html

}
else if (Double.class.isAssignableFrom(obj.getClass()))
{

m_setting = VALUE;
m_doubleValue = (Double)obj;

}
else
{ /* error processing */ }

}

Example: Using RecordListFormPane
This example program presents a form that contains the contents of a file on the server.

Note: Read the Code example disclaimer for important legal information.
///
//
// RecordListFormPane example. This program presents a form that contains
// the contents of a file on the server.
//
// Command syntax:
// RecordListFormPaneExample system fileName
//
// This source is an example of IBM Toolbox for Java "RecordListFormPane".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class RecordListFormPaneExample
{

public static void main (String[] args)
{

// If a system and fileName was not specified, then display
// help text and exit.
if (args.length != 2)
{

System.out.println("Usage: RecordListFormPaneExample system fileName");
return;

}

try
{

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// Create a frame.
JFrame f = new JFrame ("RecordListFormPane example");

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create a record list form pane to present the contents
// of the database. Note we create the form pane, add
// the error listener, then set the system and file name.
// Creating the form pane and setting its parameters
// can be done in one step as follows:
// RecordListFormPane formPane = new RecordListFormPane (system, args[1]);
// The potential problem is there is no error listener yet

IBM Toolbox for Java 573

// so if the file name is not correct, there is no place
// to display the error.
RecordListFormPane formPane = new RecordListFormPane();
formPane.addErrorListener (errorHandler);
formPane.setSystem(system);
formPane.setFileName(args[1]);

// Retrieve the information from the system.
formPane.load ();

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame with the form pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", formPane);
f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

Creating a panel with GUI Builder
Follow these instructions to create a panel using GUI Builder.

To create a menu, from the menu bar on the main GUI Builder window, select File > New File.

From the menu bar on the GUI Builder File window, click the Insert New Panel icon

to display a
panel builder where you can insert the components for your panel. The toolbar buttons on the Panel
window represent various components that you can add to the panel. Select the component you want
and then click on the place you want to position it.

The following picture shows a panel that has been created with several of the options available to you.

574 IBM i: Programming IBM Toolbox for Java

Figure 1: Creating a sample Panel with GUI Builder

The sample panel in Figure 1 uses the following DataBean code to bring together the various
components:
import com.ibm.as400.ui.framework.java.*;

public class PanelSampleDataBean extends Object
implements DataBean

{
private String m_sName;
private Object m_oFavoriteFood;
private ChoiceDescriptor[] m_cdFavoriteFood;
private Object m_oAge;
private String m_sFavoriteMusic;

public String getName()
{

return m_sName;
}

public void setName(String s)
{

m_sName = s;
}

public Object getFavoriteFood()
{

return m_oFavoriteFood;
}

public void setFavoriteFood(Object o)
{

m_oFavoriteFood = o;
}

public ChoiceDescriptor[] getFavoriteFoodChoices()
{

return m_cdFavoriteFood;
}

public Object getAge()
{

IBM Toolbox for Java 575

return m_oAge;
}

public void setAge(Object o)
{

m_oAge = o;
}

public String getFavoriteMusic()
{

return m_sFavoriteMusic;
}

public void setFavoriteMusic(String s)
{

m_sFavoriteMusic = s;
}

public Capabilities getCapabilities()
{

return null;
}

public void verifyChanges()
{
}

public void save()
{

System.out.println("Name = " + m_sName);
System.out.println("Favorite Food = " + m_oFavoriteFood);
System.out.println("Age = " + m_oAge);
String sMusic = "";
if (m_sFavoriteMusic != null)
{

if (m_sFavoriteMusic.equals("RADIOBUTTON1"))
sMusic = "Rock";

else if (m_sFavoriteMusic.equals("RADIOBUTTON2"))
sMusic = "Jazz";

else if (m_sFavoriteMusic.equals("RADIOBUTTON3"))
sMusic = "Country";

}
System.out.println("Favorite Music = " + sMusic);

}

public void load()
{

m_sName = "Sample Name";
m_oFavoriteFood = null;
m_cdFavoriteFood = new ChoiceDescriptor[0];
m_oAge = new Integer(50);
m_sFavoriteMusic = "RADIOBUTTON1";

}
}

The panel is the most simple component available within the GUI Builder, but from a simple panel you
can build great UI applications.

Creating a deck pane with GUI Builder
GUI Builder makes creating a deck pane simple.

From the menu bar on the GUI Builder window, select File > New File.

576 IBM i: Programming IBM Toolbox for Java

From the menu bar on the GUI Builder File window, click the Insert Deck Pane tool button

to
display a panel builder where you can insert the components for your deck pane. In the following
example, three components are added.

Figure 1: Creating a Deck Pane with GUI Builder

After you create the deck pane, click the Preview tool button

to preview it. A deck pane looks plain
until you select the View menu.

Figure 2: Previewing the Deck Pane with GUI Builder

IBM Toolbox for Java 577

From the Deck Pane View menu, select the component you want to view. For this example, you can
choose to view the PanelSample, TABBEDPANE1, or the TablePanel. The following figures illustrate what
you see when you view these components.

Figure 3: Viewing the PanelSample with GUI Builder

Figure 4: Viewing TABBEDPANE1 with GUI Builder

Figure 5: Viewing the TablePanel with GUI Builder

578 IBM i: Programming IBM Toolbox for Java

Creating a property sheet with GUI Builder
Follow these steps to create a property sheet using GUI Builder.

GUI Builder makes creating a property sheet simple. From the menu bar on the main GUI Builder
window, select File --> New File.

From the menu bar on the GUI Builder File window, click the Insert Property Sheet icon

to display
a panel builder where you can insert the components for your property sheet.

Figure 1: Creating a Property Sheet with GUI Builder

After you create the property sheet, use the

icon to preview it. For this example, you can choose
from three tabs.

Figure 2: Previewing a Property Sheet with GUI Builder

IBM Toolbox for Java 579

Creating a split pane with GUI Builder
GUI Builder makes creating a split pane simple.

From the menu bar on the main GUI Builder window, select File --> New File.

From the menu bar on the GUI Builder File window, click the Insert Split Pane tool button

to
display a panel builder where you can insert the components you want in your split pane. In the
following example, two components are added.

Figure 1: Creating a Split Pane with GUI Builder

After you create the split pane, click the Preview tool button

icon to preview it, as shown in Figure
2.

Figure 2: Previewing the Split Pane with GUI Builder

580 IBM i: Programming IBM Toolbox for Java

Creating a tabbed pane with GUI Builder
Use these instruction to create a tabbed pane.

From the menu bar on the main GUI Builder window, select File > New File.

From the menu bar on the GUI Builder File window, click the Insert Tabbed Pane icon

to display a
panel builder where you can insert the components for your tabbed pane. In the following example, two
components are added.

Figure 1: Creating a Tabbed Pane in GUI Builder

After you create the tabbed pane, click the Preview tool button

to preview it.

Figure 2: Previewing the Tabbed Pane with GUI Builder

IBM Toolbox for Java 581

Creating a wizard with GUI Builder
Use these instructions to create a wizard.

GUI Builder makes creating a wizard interface simple. From the menu bar on the GUI Builder window,
select File --> New File.

From the menu bar on the GUI Builder File window, click the Insert Wizard toolbar button

to display a panel builder where you can add panels to the wizard.

Figure 1: Creating a Wizard with GUI Builder

After you have create the wizard, use the Preview tool button

to preview it. Figure 2 shows the panel that first displays for this example.

582 IBM i: Programming IBM Toolbox for Java

Figure 2: Previewing the first wizard panel with GUI Builder

Figure 2 shows the second panel that displays when the user selects Rock and clicks Next.

Figure 3: Previewing the second wizard panel with GUI Builder

Clicking Next on the second wizard panel displays the final wizard panel, as shown in Figure 4.

Figure 4: Previewing the final wizard panel with GUI Builder

IBM Toolbox for Java 583

Creating a toolbar with GUI Builder
Follow these instructions to create a toolbar with GUI Builder.

From the menu bar on the GUI Builder window, select File > New File.

From the menu bar on the GUI Builder File window, click the Insert Tool Bar tool button to display a
panel builder where you can insert the components for your toolbar.

Figure 1: Creating a Tool Bar with GUI Builder

After you create the toolbar, click the Preview tool button

to preview it. For this example, you can
use the toolbar to display either a property sheet or wizard.

Figure 2: Previewing the Tool Bar with GUI Builder

584 IBM i: Programming IBM Toolbox for Java

Creating a menu bar with GUI Builder
Use these instructions to create a menu bar.

GUI Builder makes creating a menu bar simple. From the menu bar on the GUI Builder window, select
File --> New File.

From the tool bar on the GUI Builder File window, click the Insert Menu tool button to create a panel
builder where you can insert the components for your menu.

Figure 1: GUI Builder: Creating a Menu

After you create the menu, use the Preview tool button

to preview it. For this example, from the
newly created Launch menu you can select either Property Sheet or Wizard. The following figures
illustrate what you see when you select these menu items.

Figure 2: GUI Builder: Viewing Property Sheet on the Launch menu

IBM Toolbox for Java 585

Figure 3: GUI Builder: Viewing Wizard on the Launch menu

586 IBM i: Programming IBM Toolbox for Java

Example: Creating the Help Document
This topic explains how to create help files with GUI Builder.

Creating help files with GUI Builder is simple. On the properties panel for the file you are working with,
set "Generate help" to true.

Figure 1: Setting the Generate Help property on the GUI Builder Properties panel

The GUI Builder creates an HTML framework called a Help Document, which you can edit.

In order to be used at runtime, the topics within the PDML file need to be separated into individual
HTML files. When you run Help Document to HTML Processing, the topics are broken into individual
files and put into a subdirectory named after the Help Document and PDML file. The runtime
environment expects the individual HTML files to be in a subdirectory with the same name as the Help
Document and PDML file. The Help Document to HTML Processing dialog gathers the information
needed and calls the HelpDocSplitter program to do the processing:

Figure 2: Help Document to HTML Processing dialog

The Help Document to HTML Processing is started from a command prompt by typing:
jre com.ibm.as400.ui.tools.hdoc2htmViewer

IBM Toolbox for Java 587

Running this command requires that your classpath be set up correctly.

To use the Help Document to HTML Processing, you first select the Help Document that has the same
name as the PDML file. Next, you specify a subdirectory with the same name as the Help Document and
PDML file for output. Select "Process" to complete the processing.

You can split up the help document from the command line with the following command:
jre com.ibm.as400.ui.tools.HelpDocSplitter "helpdocument.htm" [output directory]

This command runs the processing that breaks up the file. You provide the name of the Help Document
as input along with an optional output directory. By default, a subdirectory of the same name as the Help
Document is created and the resulting files are put in that directory.

This is an example of what a help file may look like:

Figure 3: GUI Builder help file example

Example: Using GUI Builder
When the examples contained in this section are put together with the correct data beans working behind
the scenes, you get a total GUI application.

Figure 1 shows the first panel that displays when you run this example.

588 IBM i: Programming IBM Toolbox for Java

When you use the dynamic panel manager, while the size of the panel and the panel controls changes,
the size of the text does not.

The panel allows you to perform the following actions:
v Launch a property sheet
v Launch a wizard
v Display the samples listed in the left pane

Launching the property sheet

You can launch the property sheet by clicking the Property Sheet toolbar button or by using the Launch
menu. Being able to choose between the toolbar and the menu illustrates linking menu items. Figure 4
shows Property Sheet being selected from Launch menu on the GUI Builder example main window.

Figure 4: Selecting Property Sheet from the Launch menu

Selecting Property Sheet displays the panel in Figure 5.

Figure 5: Property Sheet Sample dialog

IBM Toolbox for Java 589

When the Property Sheet Sample first appears, Tab 1 displays by default.

Launching the wizard

You can launch the wizard by clicking the Wizard toolbar button or by using the Launch menu. Being
able to choose between the toolbar and the menu illustrates linking menu items.

Figure 9 shows how the first wizard dialog gives you many options.

Figure 9: Selecting Rock in the first wizard dialog

In the first wizard dialog, select Rock and click Next to display the second wizard dialog as shown in
Figure 10.

Figure 10: The second wizard dialog (after selecting Rock)

590 IBM i: Programming IBM Toolbox for Java

On the second wizard dialog, click Next to display the final wizard dialog as shown in Figure 11.

Figure 11: The final wizard dialog

However, this example has been programmed to have a loop. Select Country in the first wizard dialog
(Figure 12), then click Next to display the second wizard dialog (Figure 13). Clicking Next in the second
wizard dialog loops back to display the first dialog again (Figure 14) instead of the final wizard dialog.

Figure 12: Selecting Country in the first wizard dialog

Figure 13: The second wizard dialog (after selecting Country)

IBM Toolbox for Java 591

Figure 14: Looping back to the first wizard dialog

In other words, the programmer has determined that nobody can select country as their favorite form of
music.

Displaying the samples

From the GUI Builder example main window, you can also select other functions from the left pane
below the toolbar. Figure 15 shows how selecting Panel in the left pane displays the Panel sample in the
right pane.

Figure 15: Selecting Panel in the left pane

592 IBM i: Programming IBM Toolbox for Java

The Panel sample has been programmed with an option to disable the image. Select Disable Image to
display the same screen with the image shaded, as shown in Figure 16.

Figure 16: Selecting Disable Image in the right pane

The Panel sample also illustrates the drop-down list box option, as shown in Figure 17.

Figure 17: Selecting an item from the Favorite Food list in the right pane

Figure 18 shows how selecting Tabbed Pane in the left pane of the GUI Builder example main window
displays the Tabbed Pane sample in the right pane.

Figure 18: Selecting Tabbed Pane in the left pane

IBM Toolbox for Java 593

Figure 19 shows the results of selecting the Panel Sample tab in the right pane.

Figure 19: Selecting the Panel Sample tab in the right pane

Select Tab 1 again (in the right pane), then click Disable Age Field on Tab 2 to deselect it.

Figure 20: Selecting Disable Age Field on Tab 2 in the right pane

594 IBM i: Programming IBM Toolbox for Java

Selecting the Disable Age Field on Tab 2 option deactivates and grays out the Age field in the Panel
Sample tab, as shown in Figure 21.

Figure 21: Result of disabling age in the Panel Sample tab

Selecting Table Pane in the left pane of the GUI Builder example main window illustrates the use of a
table panel with a custom renderer and a custom cell editor, as shown in Figure 22.

Figure 22: Selecting Table Panel in the left pane

IBM Toolbox for Java 595

Examples from the HTML classes
The following examples show you some of the ways that you can use the IBM Toolbox for Java HTML
classes.
v Example: Using the BidiOrdering class
v Example Creating HTMLAlign objects
v HTMLDocument class examples:

– Example: Using HTMLDocument to create HTML data
– Example: Using HTMLDocument to create XSL FO data

v Example: Using the HTML form classes
v Form input class examples:

– Example: Creating a ButtonFormInput object
– Example: Creating a FileFormInput object
– Example: Creating a HiddenFormInput object
– Example: Creating an ImageFormInput object
– Example: Creating a ResetFormInput object
– Example: Creating a SubmitFormInput object
– Example: Creating a TextFormInput object
– Example: Creating a PasswordFormInput object
– Example: Creating a RadioFormInput object
– Example: Creating a CheckboxFormInput object

v Example Creating HTMLHeading objects
v Example: Using the HTMLHyperlink class
v Example: Using the HTMLImage class
v HTMLList examples

– Example: Creating ordered lists
– Example: Creating unordered lists
– Example: Creating nested lists

v Example: Creating HTMLMeta tags
v Example: Creating HTMLParameter tags
v Example: Creating HTMLServlet tags

596 IBM i: Programming IBM Toolbox for Java

v Example: Using the HTMLText class
v HTMLTree examples

– Example: Using the HTMLTree class
– Example: Creating a traversable integrated file system tree

v Layout form classes:
– Example: Using the GridLayoutFormPanel class
– Example: Using the LineLayoutFormPanel class

v Example: Using the TextAreaFormElement class
v Example: Using the LabelFormOutput class
v Example: Using the SelectFormElement class
v Example: Using the SelectOption class
v Example: Using the RadioFormInputGroup class
v Example: Using the RadioFormInput class
v Example: Using the HTMLTable classes

– Example: Using the HTMLTableCell class
– Example: Using the HTMLTableRow class
– Example: Using the HTMLTableHeader class
– Example: Using the HTMLTableCaption class

You can also use the HTML and servlet classes together, like in this example.

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Example: Using the HTML form classes
The following IBM Toolbox for Java example shows you how to use the HTML form classes.

You can also view a sample output from running this code. The HTML classes used in the "showHTML"
method are bold.

Note: Read the Code example disclaimer for important legal information.
///
//
// This source is an example of using the HTML
// package classes, which allow you to easily build HTML Forms.
//
///

package customer;

import java.io.*;

IBM Toolbox for Java 597

import java.awt.Color;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.as400.access.*;
import com.ibm.as400.util.html.*;

public class HTMLExample extends HttpServlet
{

// Determines if user already exists in the list of registrants.
private static boolean found = false;

// Registration information will be stored here
String regPath = "c:\\registration.txt";

public void init(ServletConfig config)
{

try
{

super.init(config);

}
catch(Exception e)
{

e.printStackTrace();
}

}

/**
* Process the GET request.
* @param req The request.
* @param res The response.
**/
public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException
{

res.setContentType("text/html");
ServletOutputStream out = res.getOutputStream();

// Display the Web using the new HTML classes
out.println(showHTML());
out.close();

}

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
String nameStr = req.getParameter("name");
String emailStr = req.getParameter("email");
String errorText = "";

// Output stream to write to the servlet
ServletOutputStream out = res.getOutputStream();

res.setContentType("text/html");

// Check name & e-mail parameters for valid values
if (nameStr.length() == 0)

errorText += "Customer Name not entered. ";
if (emailStr.length() == 0)

errorText += "E-mail not entered. " ;

598 IBM i: Programming IBM Toolbox for Java

// If name & e-mail have both been provided, continue.
if (errorText.length() == 0)
{

try
{

//Create the registration.txt file
FileWriter f = new FileWriter(regPath, true);
BufferedWriter output = new BufferedWriter(f);

//buffered reader for searching the file
BufferedReader in = new BufferedReader(new FileReader(regPath));

String line = in.readLine();

// reset the found flag
found = false;

// Check to see if this customer has already registered
// or has already used the same e-mail address
while (!found)
{

// if file is empty or end of file reached.
if (line == null)

break;

// if customer already registered
if ((line.equals("Customer Name: " + nameStr)) ||

(line.equals("Email address: " + emailStr)))
{

// Output a message to the customer saying they have
// already registered
out.println ("<HTML> " +

"<TITLE> Toolbox Registration</TITLE> " +
"<META HTTP-EQUIV=\"pragma\" content=\"no-cache\"> " +
"<BODY BGCOLOR=\"blanchedalmond\" TEXT=\"black\"> ");

out.println ("<P><HR>" +
"<P>" + nameStr +
", you have already registered using that " +
"Name or E-mail address." +
"<P> Thank You!...<P><HR>");

// Create a HTMLHyperlink object and display it
out.println ("" +

new HTMLHyperlink("./customer.HTMLExample",
"Back to Registration Form") +

"</BODY></HTML>");
found = true;
break;

}
else // read the next line

line = in.readLine();

}

// String object to hold data submitted from the HTML Form
String data;

// If the users name or e-mail aren’t found in our
// text file, continue.
if (!found)
{

//--
// Insert the new customer info into a file
output.newLine();

IBM Toolbox for Java 599

output.write("Customer Name: " + nameStr);
output.newLine();
output.write("Email address: " + emailStr);
output.newLine();
//--

//--
//Getting "USE" checkbox from form
data = req.getParameter("use");
if(data != null)
{

output.write("Currently Using Toolbox: " + data);
output.newLine();

}
//--

//--
//Getting "More Information" checkbox from form
data = req.getParameter("contact");
if (data != null)
{

output.write("Requested More Information: " + data);
output.newLine();

}
//--

//--
//Getting "AS400 Version" from form
data = req.getParameter("version");
if (data != null)
{

if (data.equals("multiple versions"))
{

data = req.getParameter("MultiList");
output.write("Multiple Versions: " + data);

}
else

output.write("AS400 Version: " + data);

output.newLine();
}
//--

//--
//Getting "Current Projects" from form
data = req.getParameter("interest");
if (data != null)
{

output.write("Using Java or Interested In: " + data);
output.newLine();

}
//--

//--
//Getting "Platforms" from form
data = req.getParameter("platform");
if (data != null)
{

output.write("Platforms: " + data);
output.newLine();
if (data.indexOf("Other") >= 0)
{

600 IBM i: Programming IBM Toolbox for Java

output.write("Other Platforms: " + req.getParameter("OtherPlatforms"));
output.newLine();

}
}
//--

//--
//Getting "Number of IBM i servers" from form
data = req.getParameter("list1");
if (data != null)
{

output.write("Number of IBM i servers: " + data);
output.newLine();

}
//--

//--
//Getting "Comments" from form
data = req.getParameter("comments");
if (data != null && data.length() > 0)
{

output.write("Comments: " + data);
output.newLine();

}
//--

//--
//Getting "Attachment"
data = req.getParameter("myAttachment");
if (data != null && data.length() > 0)
{

output.write("Attachment File: " + data);
output.newLine();

}
//--

//--
//Getting Hidden "Copyright" infomation
data = req.getParameter("copyright");
if (data != null)
{

output.write(data);
output.newLine();

}
//--

output.flush();
output.close();

// Print a thanks to the customer
out.println("<HTML>");
out.println("<TITLE>Thank You!</TITLE>");
out.println("<META HTTP-EQUIV=\"pragma\" content=\"no-cache\"> ");
out.println("<BODY BGCOLOR=\"blanchedalmond\">");
out.println("<HR><P>Thank You for Registering, " + nameStr + "!<P><HR>");

// Create a HTMLHyperlink object and display it
out.println("" +

new HTMLHyperlink("./customer.HTMLExample", "Back to Registration Form"));
out.println("</BODY></HTML>");

}

IBM Toolbox for Java 601

}
catch (Exception e)
{

// Show error in browser
out.println("<HTML>");
out.println("<TITLE>ERROR!</TITLE>");
out.println("<META HTTP-EQUIV=\"pragma\" content=\"no-cache\"> ");
out.println("<BODY BGCOLOR=\"blanchedalmond\">");
out.println("
Error Message:<P>");
out.println(e + "<P>");

// Create a HTMLHyperlink object and display it
out.println("" +

new HTMLHyperlink("./customer.HTMLExample", "Back to Registration Form"));
out.println("</BODY></HTML>");

e.printStackTrace();
}

}
else
{

// Output a message to the customer saying customer name &
// e-mail not entered. Please try again
out.println ("<HTML> " +

"<TITLE>Invalid Registration Form</TITLE> " +
"<META HTTP-EQUIV=\"pragma\" content=\"no-cache\"> " +
"<BODY BGCOLOR=\"blanchedalmond\" TEXT=\"black\"> ");

out.println ("<HR>ERROR in customer data - <P>" +
errorText +
"<P>Please Try Again... <HR>");

// Create a HTMLHyperlink object and display it
out.println("" +

new HTMLHyperlink("./customer.HTMLExample", "Back to Registration Form") +
"</BODY></HTML>");

}
// Close the writer
out.close();

}

public void destroy(ServletConfig config)
{

// do nothing
}

public String getServletInfo()
{

return "My Product Registration";
}

private String showHTML()
{

// String Buffer to hold HTML Page
StringBuffer page = new StringBuffer();

// Create the HTML Form object
HTMLForm form = new HTMLForm("/servlet/customer.HTMLExample");;
HTMLText txt;

// Build the beginning of the HTML Page and add it to the String Buffer

602 IBM i: Programming IBM Toolbox for Java

page.append("<HTML>\n");
page.append("<TITLE> Welcome!!</TITLE>\n");
page.append("<HEAD><SCRIPT LANGUAGE=\"JavaScript\">

function test(){alert(\"This is a sample script executed with a
ButtonFormInput.\")}</SCRIPT></HEAD>");

page.append("<META HTTP-EQUIV=\"pragma\" content=\"no-cache\">\n");
page.append("<BODY BGCOLOR=\"blanchedalmond\" TEXT=\"black\">
\n");

try
{

//--
// Create page title using HTML Text
txt = new HTMLText("Product Registration");
txt.setSize(5);
txt.setBold(true);
txt.setColor(new Color(199, 21, 133));
txt.setAlignment(HTMLConstants.CENTER);

// Add HTML Text to the String Buffer
page.append(txt.getTag(true) + "<HR>
\n");
//--

//--
// Create a Line Layout
LineLayoutFormPanel line = new LineLayoutFormPanel();
txt = new HTMLText("Enter your name and e-mail address:");
txt.setSize(4);
line.addElement(txt);

// Add the Line Layout to String Buffer
page.append(line.toString());
page.append("
");
//--

//--
// Set the HTML Form METHOD
form.setMethod(HTMLForm.METHOD_POST);
//--

//--
// Create a Text input for the name.
TextFormInput user = new TextFormInput("name");
user.setSize(25);
user.setMaxLength(40);

// Create a Text input for the email address.
TextFormInput email = new TextFormInput("email");
email.setSize(30);
email.setMaxLength(40);

// Create a ImageFormInput
ImageFormInput img =

new ImageFormInput("Submit Form", "..\\images\\myPiimages/c.gif");
img.setAlignment(HTMLConstants.RIGHT);
//--

//--
// Create a LineLayoutFormPanel object for the name & e-mail address
LineLayoutFormPanel line2 = new LineLayoutFormPanel();

// Add elements to the line form
line2.addElement(new LabelFormElement("Name:"));
line2.addElement(user);
// Create and add a Label Element to the Line Layout
line2.addElement(new LabelFormElement("E-mail:"));
line2.addElement(email);
line2.addElement(img);

IBM Toolbox for Java 603

//--

//--
// Create Questions line layout
LineLayoutFormPanel line3 = new LineLayoutFormPanel();

// Add elements to the line layout
line3.addElement(new LineLayoutFormPanel());
line3.addElement(new

CheckboxFormInput("use",
"yes",
"Do you currently use the Toolbox?",
false));

line3.addElement(new LineLayoutFormPanel());
line3.addElement(new CheckboxFormInput(

"contact",
"yes",
"Would you like information about future Toolbox releases?",
true));

line3.addElement(new LineLayoutFormPanel());
//--

//--
// Create Version Radio Group
RadioFormInputGroup group = new RadioFormInputGroup("version");

// Add Radio Form Inputs to the Group
group.add(new RadioFormInput("version", "v3r2", "V3R2", false));
group.add(new RadioFormInput("version", "v4r1", "V4R1", false));
group.add(new RadioFormInput("version", "v4r2", "V4R2", false));
group.add(new RadioFormInput("version", "v4r3", "V4R3", false));
group.add(new RadioFormInput("version", "v4r4", "V4R4", false));
group.add(new

RadioFormInput("version",
"multiple versions",
"Multiple Versions? Which ones:",
false));

//Create a Select Form Element
SelectFormElement mlist = new SelectFormElement("MultiList");
mlist.setMultiple(true);
mlist.setSize(3);

//Create the Options for the Select Form Element
SelectOption option1 = mlist.addOption("V3R2", "v3r2");
SelectOption option2 = mlist.addOption("V4R1", "v4r1");
SelectOption option3 = mlist.addOption("V4R2", "v4r2");
SelectOption option4 = mlist.addOption("V4R3", "v4r3");
SelectOption option5 = mlist.addOption("V4R4", "v4r4");

// Create HTML text
txt = new HTMLText("Current Server Level:");
txt.setSize(4);

// Create Grid Layout
GridLayoutFormPanel grid1 = new GridLayoutFormPanel(3);

// Add radio group & select form element to the grid
grid1.addElement(txt);
grid1.addElement(group);
grid1.addElement(mlist);
//--

//--
// Create Grid Layout for interests
GridLayoutFormPanel grid2 = new GridLayoutFormPanel(1);
txt = new HTMLText("Current Projects or Area of Interest: " +

604 IBM i: Programming IBM Toolbox for Java

"(check all that apply)");
txt.setSize(4);

// Add elements to Grid Layout
grid2.addElement(new LineLayoutFormPanel());
grid2.addElement(txt);
// Create and add a Checkbox to the Grid Layout
grid2.addElement(new

CheckboxFormInput("interest", "applications", "Applications", true));
grid2.addElement(new

CheckboxFormInput("interest", "applets", "Applets", false));
grid2.addElement(new

CheckboxFormInput("interest", "servlets", "Servlets", false));
//--

//--
// Create Line Layout for platforms
LineLayoutFormPanel line4 = new LineLayoutFormPanel();
txt = new HTMLText("Client Platforms Used: " +

"(check all that apply)");
txt.setSize(4);

// Add elements to Line Layout
line4.addElement(new LineLayoutFormPanel());
line4.addElement(txt);
line4.addElement(new LineLayoutFormPanel());
line4.addElement(new CheckboxFormInput("platform",

"95",
"Windows95",
false));

line4.addElement(new CheckboxFormInput("platform",
"98",
"Windows98",
false));

line4.addElement(new CheckboxFormInput("platform",
"NT",
"WindowsNT",
false));

line4.addElement(new CheckboxFormInput("platform",
"OS2",
"OS/2",
false));

line4.addElement(new CheckboxFormInput("platform",
"AIX",
"AIX",
false));

line4.addElement(new CheckboxFormInput("platform",
"Linux",
"Linux",
false));

line4.addElement(new CheckboxFormInput("platform",
"AS400",
"System i",
false));

line4.addElement(new CheckboxFormInput("platform",
"Other",
"Other:",
false));

TextFormInput other = new TextFormInput("OtherPlatforms");
other.setSize(20);
other.setMaxLength(50);

line4.addElement(other);
//--

//--

IBM Toolbox for Java 605

// Create a Line Layout for number of servers
LineLayoutFormPanel grid3 = new LineLayoutFormPanel();

txt = new HTMLText(
"How many System i servers do you have?");

txt.setSize(4);

// Create a Select Form Element for number of servers owned
SelectFormElement list = new SelectFormElement("list1");
// Create and add the Select Options to the Select Form Element List
SelectOption opt0 = list.addOption("0", "zero");
SelectOption opt1 = list.addOption("1", "one", true);
SelectOption opt2 = list.addOption("2", "two");
SelectOption opt3 = list.addOption("3", "three");
SelectOption opt4 = list.addOption("4", "four");
SelectOption opt5 = new SelectOption("5+", "FiveOrMore", false);
list.addOption(opt5);

// Add Elements to the Grid Layout
grid3.addElement(new LineLayoutFormPanel());
grid3.addElement(txt);
grid3.addElement(list);
//--

//--
// Create a Grid Layout for Product Comments
GridLayoutFormPanel grid4 = new GridLayoutFormPanel(1);
txt = new HTMLText("Product Comments:");
txt.setSize(4);

// Add elements to the Grid Layout
grid4.addElement(new LineLayoutFormPanel());
grid4.addElement(txt);
// Create a Text Area Form
grid4.addElement(new TextAreaFormElement("comments", 5, 75));
grid4.addElement(new LineLayoutFormPanel());
//--

//--
// Create a Grid Layout
GridLayoutFormPanel grid5 = new GridLayoutFormPanel(2);
txt = new HTMLText("Would you like to sign on to a server?");
txt.setSize(4);

// Create a Text input and Label for the system name.
TextFormInput sys = new TextFormInput("system");
LabelFormElement sysLabel = new LabelFormElement("System:");

// Create a Text input and Label for the userid.
TextFormInput uid = new TextFormInput("uid");
LabelFormElement uidLabel = new LabelFormElement("UserID");

// Create a Password input and Label for the password.
PasswordFormInput pwd = new PasswordFormInput("pwd");
LabelFormElement pwdLabel = new LabelFormElement("Password");

// Add the Text inputs, password inputs, and Labels to the grid
grid5.addElement(sysLabel);
grid5.addElement(sys);
grid5.addElement(uidLabel);
grid5.addElement(uid);
grid5.addElement(pwdLabel);
grid5.addElement(pwd);
//--

//--
// Add the various panels created to the HTML Form

606 IBM i: Programming IBM Toolbox for Java

// in the order you wish them to appear
form.addElement(line2);
form.addElement(line3);
form.addElement(grid1);
form.addElement(grid2);
form.addElement(line4);
form.addElement(grid3);
form.addElement(grid4);
form.addElement(txt);
form.addElement(new LineLayoutFormPanel());
form.addElement(grid5);
form.addElement(new LineLayoutFormPanel());
form.addElement(

new HTMLText("Submit an attachment Here:
"));
// Add a File Input to the form
form.addElement(new FileFormInput("myAttachment"));
form.addElement(new ButtonFormInput("button",

"TRY ME!",
"test()"));

// Adds a empty Line Layout, which in turn
// adds a line break
 to the form
form.addElement(new LineLayoutFormPanel());
form.addElement(new LineLayoutFormPanel());
form.addElement(new SubmitFormInput("submit", "Register"));
form.addElement(new LineLayoutFormPanel());
form.addElement(new LineLayoutFormPanel());
form.addElement(new ResetFormInput("reset", "Reset"));
// Add a Hidden Input to the form
form.addElement(new

HiddenFormInput("copyright",
"(C) Copyright IBM Corp. 1999, 1999"));

//--

// Add the entire HTML Form to the String Buffer
page.append(form.toString());

}
catch(Exception e)
{

e.printStackTrace();
}

// Add the Ending HTML tags to the Buffer
page.append("</BODY>\n");
page.append("</HTML>\n");

// Return the entire HTML page string
return page.toString();

}
}

HTML class example output
These are some possible sample outputs you may get from running the HTML class example.
v Customer Name: Fred Flinstone

Email address: flinstone@bedrock.com
Currently Using Toolbox: yes
Requested More Information: yes
Multiple Versions: v4r2,v4r4
Using Java or Interested In: applications,servlets
Platforms: NT,Linux
Number of System
i servers: three
Comments: The Toolbox is being used by our entire Programming department

IBM Toolbox for Java 607

to build customer applications!
Attachment File: U:\wiedrich\servlet\temp.html
(C) Copyright IBM Corp. 1999, 1999

v Customer Name: Barney Rubble
Email address: rubble@bedrock.com
Currently Using Toolbox: yes
AS400 Version: v4r4
Using Java or Interested In: servlets
Platforms: OS2
Number of System
i servers: FiveOrMore
(C) Copyright IBM Corp. 1999, 1999

v Customer Name: George Jetson
Email address: jetson@sprocket.com
Requested More Information: yes
AS400 Version: v4r2
Using Java or Interested In: applications
Platforms: NT,Other
Other Platforms: Solaris
Number of System
i servers: one
Comments: This is my first time using this! Very Cool!
(C) Copyright IBM Corp. 1999, 1999

v Customer Name: Clark Kent
Email address: superman@krypton.com
AS400 Version: v4r2
Number of System
i servers: one
(C) Copyright IBM Corp. 1999, 1999

Related reference:
“Example: Using the HTML form classes” on page 597
The following IBM Toolbox for Java example shows you how to use the HTML form classes.

Example: Using HTMLTree classes
This example shows how to build HTML and file trees using the IBM Toolbox for Java HTML package
classes.

Note: Read the Code example disclaimer for important legal information.
///
//
// This source is an example of using the IBM Toolbox for Java HTML
// package classes, which allow you to easily build HTML and File Trees.
//
///

import java.io.File;
import java.io.PrintWriter;
import java.io.IOException;

import java.util.Vector;
import java.util.Properties;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.Trace;
import com.ibm.as400.access.IFSJavaFile;

608 IBM i: Programming IBM Toolbox for Java

import com.ibm.as400.util.html.HTMLMeta;
import com.ibm.as400.util.html.HTMLTree;
import com.ibm.as400.util.html.HTMLTreeElement;
import com.ibm.as400.util.html.URLParser;
import com.ibm.as400.util.html.DirFilter;
import com.ibm.as400.util.html.FileTreeElement;
import com.ibm.as400.util.servlet.ServletHyperlink;

/**
* An example of using the HTMLTree and FileTreeElement classes in a servlet.
**/

public class TreeNav extends HttpServlet
{

public void init(ServletConfig config)
throws ServletException

{
super.init(config);

// The Toolbox uses a set of default icons to represents expanded,
// collapsed, and documents within the HTMLTree. To enhance those icons,
// the Toolbox ships three gifs (expanded.gif, collapsed.gif, bullet.gif)
// in the jt400Servlet.jar file. Browsers do not have the ability to
// find gifs in a JAR or zip file, so those images need to be extracted
// from the JAR file and placed in the appropriate webserver directory
// (by default it is the /html directory). Then uncomment the following
// lines of code and specify the correct location in the these set
// methods. The location can be absolute or relative.

HTMLTreeElement.setExpandedGif("/images/expanded.gif");
HTMLTreeElement.setCollapsedGif("/images/collapsed.gif");
HTMLTreeElement.setDocGif("/images/bullet.gif");

}

/**
* Process the GET request.
* @param req The request.
* @param res The response.
**/

public void doGet (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

{
HttpSession session = req.getSession(true);
HTMLTree fileTree = (HTMLTree)session.getValue("filetree");

// If this session does not already have a file tree, then
// create the initial tree.
if (fileTree == null)

fileTree = createTree(req, resp, req.getRequestURI());

// Set the Http servlet request on the HTMLTree.
fileTree.setHttpServletRequest(req);

resp.setContentType("text/html");

PrintWriter out = resp.getWriter();
out.println("<html>\n");
out.println(new HTMLMeta("Expires", "Mon, 03 Jan 1990 13:00:00 GMT"));
out.println("<body>\n");

// Get the tag for the HTMLTree.
out.println(fileTree.getTag());

out.println("</body>\n");
out.println("</html>\n");
out.close();

// Set the session tree value, so when entering this servlet for

IBM Toolbox for Java 609

// the second time, the FileTree object will be reused.
session.putValue("filetree", fileTree);

}

/**
* Process the POST request.
* @param req The request.
* @param res The response.
**/

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
res.setContentType("text/html");
ServletOutputStream out = res.getOutputStream();

}

/**
* This method will create the initial HTMLTree.
**/

private HTMLTree createTree(HttpServletRequest req, HttpServletResponse resp, String uri)
{

// Create an HTMLTree object.
HTMLTree tree = new HTMLTree(req);

try
{

// Create a URLParser object.
URLParser urlParser = new URLParser(uri);

AS400 sys = new AS400(CPUStatus.systemName_, "javactl", "jteam1");

// Create a File object and set the root IFS directory.
IFSJavaFile root = new IFSJavaFile(sys, "/QIBM");

// Create a Filter and list all of the directories.
DirFilter filter = new DirFilter();
//File[] dirList = root.listFiles(filter);

// Get the list of files that satisfy the directory filter.
String[] list = root.list(filter);

File[] dirList = new File[list.length];

// We don’t want to require webservers to use JDK1.2 because
// most webserver JVM’s are slower to upgrade to the latest JDK level.
// The most efficient way to create these file objects is to use
// the listFiles(filter) method in JDK1.2 which would be done
// like the following, instead of using the list(filter) method
// and then converting the returned string arrary into the appropriate
// File array.
// File[] dirList = root.listFiles(filter);

for (int j=0; j<dirList.length; ++j)
{

if (root instanceof IFSJavaFile)
dirList[j] = new IFSJavaFile((IFSJavaFile)root, list[j]);

else
dirList[j] = new File(list[j]);

}

for (int i=0; i<dirList.length; i++)
{

// Create a FileTreeElement for each directory in the list.
FileTreeElement node = new FileTreeElement(dirList[i]);

// Create a ServletHyperlink for the expand/collapse icons.
ServletHyperlink sl = new ServletHyperlink(urlParser.getURI());

610 IBM i: Programming IBM Toolbox for Java

//sl.setHttpServletResponse(resp);
node.setIconUrl(sl);

// Create a ServletHyperlink to the TreeList servlet, which will
// display the contents of thie FileTreeElement (directory).
ServletHyperlink tl = new ServletHyperlink("/servlet/TreeList");
tl.setTarget("list");

// If the ServletHyperlink doesn’t have a name, then set it to the
// name of the directory.
if (tl.getText() == null)

tl.setText(dirList[i].getName());

// Set the TextUrl for the FileTreeElement.
node.setTextUrl(tl);

// Add the FileTreeElement to the HTMLTree.
tree.addElement(node);

}
}
catch (Exception e)
{

e.printStackTrace();
}

return tree;
}

public void destroy(ServletConfig config)
{

// do nothing
}

public String getServletInfo()
{

return "FileTree Navigation";
}

}

Example: Creating a traversable integrated file system tree (File one of three)
This IBM Toolbox for Java example code, in conjunction with the code in the other two example files,
displays an HTMLTree and FileListElement in a servlet.

The three files in the example are:
v FileTreeExample.java - this file, which generates the HTML frames and starts the servlet
v TreeNav.java - builds and manages the tree
v TreeList.java - displays the contents of selections made in the TreeNav.java class

Note: Read the Code example disclaimer for important legal information.
///
//
// This source is an example of using the HTML package
// classes, which allow you to easily build HTML and File Trees.
//
///

import java.io.PrintWriter;
import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.as400.util.html.HTMLMeta;

IBM Toolbox for Java 611

//
// An example of using frames to display an HTMLTree and FileListElement
// in a servlet.
//

public class FileTreeExample extends HttpServlet
{

public void init(ServletConfig config)
throws ServletException

{
super.init(config);

}

/**
* Process the GET request.
* @param req The request.
* @param res The response.
**/

public void doGet (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

{
resp.setContentType("text/html");

// Set up two frames. The first, a navigation frame, will display
// the HTMLTree, which will contain FileTreeElements and allow
// navigation of the File system. The second frame will display/list
// the contents of a selected directory from the navigation frame.
PrintWriter out = resp.getWriter();
out.println("<html>\n");
out.println(new HTMLMeta("Expires","Mon, 04 Jan 1990 13:00:00 GMT"));
out.println("<frameset cols=\"25%,*\">");
out.println("<frame frameborder=\"5\" src=\"/servlet/TreeNav\" name=\"nav\">");
out.println("<frame frameborder=\"3\" src=\"/servlet/TreeList\" name=\"list\">");
out.println("</frameset>");
out.println("</html>\n");
out.close();

}

/**
* Process the POST request.
* @param req The request.
* @param res The response.
**/

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
res.setContentType("text/html");
ServletOutputStream out = res.getOutputStream();

}

public void destroy(ServletConfig config)
{

// do nothing
}

public String getServletInfo()
{

return "FileTree Servlet";
}

}

612 IBM i: Programming IBM Toolbox for Java

Example: Creating a traversable integrated file system tree (File two of three)
This example code, in conjunction with the code in the other two example files, displays an HTMLTree
and FileListElement in a servlet.

The three files in the example are:
v FileTreeExample.java - generates the HTML frames and starts the servlet
v TreeNav.java - this file, which builds and manages the tree
v TreeList.java - displays the contents of selections made in the TreeNav.java class

Note: Read the Code example disclaimer for important legal information.
//
//
// This source is an example of using the IBM Toolbox for Java HTML
// package classes, which allow you to easily build HTML and File Trees.
//
//

import java.io.File;
import java.io.PrintWriter;
import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.IFSJavaFile;
import com.ibm.as400.util.html.HTMLMeta;
import com.ibm.as400.util.html.HTMLTree;
import com.ibm.as400.util.html.HTMLTreeElement;
import com.ibm.as400.util.html.URLParser;
import com.ibm.as400.util.html.DirFilter;
import com.ibm.as400.util.html.FileTreeElement;
import com.ibm.as400.util.servlet.ServletHyperlink;

//
// An example of using the HTMLTree and FileTreeElement classes
// in a servlet.
//

public class TreeNav extends HttpServlet
{

private AS400 sys_;

public void init(ServletConfig config)
throws ServletException

{
super.init(config);

// Create an AS400 object.
sys_ = new AS400("mySystem", "myUserID", "myPassword");

// IBM Toolbox for Java uses a set of default icons to represents expanded,
// collapsed, and documents within the HTMLTree. To enhance those icons,
// IBM Toolbox for Java ships three gifs (expanded.gif, collapsed.gif, bullet.gif)
// in the jt400Servlet.jar file. Browsers do not have the ability to find
// gifs in a JAR or zip file, so you need to extract those images from the
// JAR file and place them in the appropriate webserver directory (by default
// it is the /html directory). Then change the following lines of code to
// specify the correct location in the set methods. The location can be
// absolute or relative.

HTMLTreeElement.setExpandedGif("http://myServer/expanded.gif");
HTMLTreeElement.setCollapsedGif("http://myServer/collapsed.gif");
HTMLTreeElement.setDocGif("http://myServer/bullet.gif");

IBM Toolbox for Java 613

}

/**
* Process the GET request.
* @param req The request.
* @param res The response.
**/

public void doGet (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

{
// Use session data to remember the state of the tree.
HttpSession session = req.getSession(true);
HTMLTree fileTree = (HTMLTree)session.getValue("filetree");

// If this session does not already have a file tree, then
// create the initial tree.
if (fileTree == null)

fileTree = createTree(req, resp, req.getRequestURI());

// Set the Http servlet request on the HTMLTree.
fileTree.setHttpServletRequest(req);

resp.setContentType("text/html");

PrintWriter out = resp.getWriter();
out.println("<html>\n");
out.println(new HTMLMeta("Expires","Mon, 03 Jan 1990 13:00:00 GMT"));
out.println("<body>\n");

// Get the tag for the HTMLTree.
out.println(fileTree.getTag());

out.println("</body>\n");
out.println("</html>\n");
out.close();

// Set the session tree value, so when entering this servlet for
// the second time, the FileTree object will be reused.
session.putValue("filetree", fileTree);

}

/**
* Process the POST request.
* @param req The request.
* @param res The response.
**/

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
res.setContentType("text/html");
ServletOutputStream out = res.getOutputStream();

}

/**
* This method will create the initial HTMLTree.
**/

private HTMLTree createTree(HttpServletRequest req,
HttpServletResponse resp, String uri)

{
// Create an HTMLTree object.
HTMLTree tree = new HTMLTree(req);

try
{

614 IBM i: Programming IBM Toolbox for Java

// Create a URLParser object.
URLParser urlParser = new URLParser(uri);

// Create a File object and set the root IFS directory.
IFSJavaFile root = new IFSJavaFile(sys_, "/QIBM");

// Create a Filter.
DirFilter filter = new DirFilter();

// Get the list of files that satisfy the directory filter.
String[] list = root.list(filter);

File[] dirList = new File[list.length];

// We don’t want to require webservers to use JDK1.2 because
// most webserver JVM’s are slower to upgrade to the latest
// JDK level. The most efficient way to create these file objects
// is to use the listFiles(filter) method in JDK1.2 which would
// be done like the following, instead of using the list(filter)
// method and then converting the returned string arrary into the
// appropriate File array.
// File[] dirList = root.listFiles(filter);

for (int j=0; j<dirList.length; ++j)
{

if (root instanceof IFSJavaFile)
dirList[j] = new IFSJavaFile((IFSJavaFile)root, list[j]);

else
dirList[j] = new File(list[j]);

}

for (int i=0; i<dirList.length; i++)
{

// Create a FileTreeElement for each directory in the list.
FileTreeElement node = new FileTreeElement(dirList[i]);

// Create a ServletHyperlink for the expand/collapse icons.
ServletHyperlink sl = new ServletHyperlink(urlParser.getURI());
sl.setHttpServletResponse(resp);
node.setIconUrl(sl);

// Create a ServletHyperlink to the TreeList servlet, which will
// display the contents of thie FileTreeElement (directory).
ServletHyperlink tl = new ServletHyperlink("/servlet/TreeList");
tl.setTarget("list");

// If the ServletHyperlink doesn’t have a name, then set it to the
// name of the directory.
if (tl.getText() == null)

tl.setText(dirList[i].getName());

// Set the TextUrl for the FileTreeElement.
node.setTextUrl(tl);

// Add the FileTreeElement to the HTMLTree.
tree.addElement(node);

}

sys_.disconnectAllServices();
}

catch (Exception e)
{

e.printStackTrace();
}

return tree;

IBM Toolbox for Java 615

}

public void destroy(ServletConfig config)
{

// do nothing
}

public String getServletInfo()
{

return "FileTree Navigation";
}

}

Example: Creating a traversable integrated file system tree(File three of three)
This example code, in conjunction with the code in the other two example files, displays an HTMLTree
and FileListElement in a servlet.

The three files in the example are:
v FileTreeExample.java - generates the HTML frames and starts the servlet
v TreeNav.java - builds and manages the tree
v TreeList.java - this file, which displays the contents of selections made in the TreeNav.java class

Note: Read the Code example disclaimer for important legal information.
//
//
// This source is an example of using the IBM Toolbox for Java HTML
// package classes, which allow you to easily build HTML and File Lists.
//
//

import java.io.PrintWriter;
import java.io.IOException;
import java.io.File;

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.Trace;
import com.ibm.as400.access.IFSJavaFile;
import com.ibm.as400.util.html.HTMLMeta;
import com.ibm.as400.util.html.HTMLHeading;
import com.ibm.as400.util.html.HTMLConstants;
import com.ibm.as400.util.html.FileListElement;
import com.ibm.as400.util.html.*;

import javax.servlet.*;
import javax.servlet.http.*;

/**
* An example of using the FileListElement class in a servlet.
**/
public class TreeList extends HttpServlet
{

private AS400 sys_;

/**
* Process the GET request.
* @param req The request.
* @param res The response.
**/

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException
{

resp.setContentType("text/html");

616 IBM i: Programming IBM Toolbox for Java

try
{

PrintWriter out = resp.getWriter();
out.println("<html>\n");
out.println(new HTMLMeta("Expires",

"Mon, 02 Jan 1990 13:00:00 GMT"));
out.println("<body>\n");

// If the path parameter is not null, then the user has selected an
// element from the FileTreeElement list in the navigation frame.
if (req.getPathInfo() != null)
{

// Create a FileListElement passing in an AS400 system object and
// the Http servlet request. The request will contain the necessary
// path information to list out the contents of the FileTreeElement
// (directory) selected.
FileListElement fileList = new FileListElement(sys_, req);

// Alternately, create a FileListElement from a NetServer share name
// and share path.
// FileListElement fileList =

new FileListElement(sys_, req, "TreeShare",
"/QIBM/ProdData/HTTP/Public/jt400");

// Display the FileListElement contents.
out.println(fileList.list());

}
// Display this HTMLHeading if no FileTreeElement has been selected.
else
{

HTMLHeading heading = new
HTMLHeading(1,"An HTML File List Example");

heading.setAlign(HTMLConstants.CENTER);

out.println(heading.getTag());
}

out.println("</body>\n");
out.println("</html>\n");
out.close();

}
catch (Exception e)
{

e.printStackTrace();
}

}

/**
* Process the POST request.
* @param req The request.
* @param res The response.

**/
public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
{

res.setContentType("text/html");
ServletOutputStream out = res.getOutputStream();

}

public void init(ServletConfig config)
throws ServletException
{

super.init(config);

IBM Toolbox for Java 617

// Create an AS400 object.
sys_ = new AS400("mySystem", "myUID", "myPWD");

}
}

Example: Using HTMLTable classes
The following example shows you how the HTMLTable classes work.

// Create a default HTMLTable object.
HTMLTable table = new HTMLTable();

// Set the table attributes.
table.setAlignment(HTMLTable.CENTER);
table.setBorderWidth(1);

// Create a default HTMLTableCaption object and set the caption text.
HTMLTableCaption caption = new HTMLTableCaption();
caption.setElement("Customer Account Balances - January 1, 2000");

// Set the caption.
table.setCaption(caption);

// Create the table headers and add to the table.
HTMLTableHeader account_header = new HTMLTableHeader(new HTMLText("ACCOUNT"));
HTMLTableHeader name_header = new HTMLTableHeader(new HTMLText("NAME"));
HTMLTableHeader balance_header = new HTMLTableHeader(new HTMLText("BALANCE"));

table.addColumnHeader(account_header);
table.addColumnHeader(name_header);
table.addColumnHeader(balance_header);

// Add rows to the table. Each customer record represents a row in the table.
int numCols = 3;
for (int rowIndex=0; rowIndex< numCustomers; rowIndex++)
{

HTMLTableRow row = new HTMLTableRow();
row.setHorizontalAlignment(HTMLTableRow.CENTER);

HTMLText account = new HTMLText(customers[rowIndex].getAccount());
HTMLText name = new HTMLText(customers[rowIndex].getName());
HTMLText balance = new HTMLText(customers[rowIndex].getBalance());

row.addColumn(new HTMLTableCell(account));
row.addColumn(new HTMLTableCell(name));
row.addColumn(new HTMLTableCell(balance));

// Add the row to the table.
table.addRow(row);

}
System.out.println(table.getTag());

The Java code example above generates the following HTML code:
<table align="center" border="1">
<caption>Customer Account Balances - January 1, 2000</caption>
<tr>
<th>ACCOUNT</th>
<th>NAME</th>
<th>BALANCE</th>
</tr>
<tr align="center">
<td>0000001</td>
<td>Customer1</td>
<td>100.00</td>
</tr>
<tr align="center">

618 IBM i: Programming IBM Toolbox for Java

<td>0000002</td>
<td>Customer2</td>
<td>200.00</td>
</tr>
<tr align="center">
<td>0000003</td>
<td>Customer3</td>
<td>550.00</td>
</tr>
</table>

The following table shows how the HTML code above displays in a Web browser.

Table 3. Customer Account Balances - January 1, 2000

ACCOUNT NAME BALANCE

0000001 Customer1 100.00

0000002 Customer2 200.00

0000003 Customer3 550.00

Examples: Program Call Markup Language (PCML)
The following examples use Program Call Markup Language to call IBM i APIs, and each one links to a
page that shows the PCML source followed by a Java program.

Note: The proper authority for each example varies but may include specific object authorities and
special authorities. In order to run these examples, you must sign on with a user profile that has
authority to perform the following actions:
v Call the IBM i API in the example
v Access the information being requested

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Example: Simple example of retrieving data
This example the PCML source and Java program needed to retrieve information about a user profile on
the server. The API being called is the Retrieve User Information (QSYRUSRI) API.

Note: Read the Code example disclaimer for important legal information.

This simple example has two parts:
v PCML source for calling QSYRUSRI
v Java program source for calling QSYRUSRI

IBM Toolbox for Java 619

PCML source for calling QSYRUSRI
<pcml version="1.0">

<!-- PCML source for calling "Retrieve user Information" (QSYRUSRI) API -->

<!-- Format USRI0150 - Other formats are available -->
<struct name="usri0100">

<data name="bytesReturned" type="int" length="4" usage="output"/>
<data name="bytesAvailable" type="int" length="4" usage="output"/>
<data name="userProfile" type="char" length="10" usage="output"/>
<data name="previousSignonDate" type="char" length="7" usage="output"/>
<data name="previousSignonTime" type="char" length="6" usage="output"/>
<data type="byte" length="1" usage="output"/>
<data name="badSignonAttempts" type="int" length="4" usage="output"/>
<data name="status" type="char" length="10" usage="output"/>
<data name="passwordChangeDate" type="byte" length="8" usage="output"/>
<data name="noPassword" type="char" length="1" usage="output"/>
<data type="byte" length="1" usage="output"/>
<data name="passwordExpirationInterval" type="int" length="4" usage="output"/>
<data name="datePasswordExpires" type="byte" length="8" usage="output"/>
<data name="daysUntilPasswordExpires" type="int" length="4" usage="output"/>
<data name="setPasswordToExpire" type="char" length="1" usage="output"/>
<data name="displaySignonInfo" type="char" length="10" usage="output"/>

</struct>

<!-- Program QSYRUSRI and its parameter list for retrieving USRI0100 format -->
<program name="qsyrusri" path="/QSYS.lib/QSYRUSRI.pgm">

<data name="receiver" type="struct" struct="usri0100" usage="output"/>
<data name="receiverLength" type="int" length="4" usage="input" />
<data name="format" type="char" length="8" usage="input" init="USRI0100"/>
<data name="profileName" type="char" length="10" usage="input" init="*CURRENT"/>
<data name="errorCode" type="int" length="4" usage="input" init="0"/>

</program>

</pcml>

Java program source for calling QSYRUSRI
import com.ibm.as400.data.ProgramCallDocument;
import com.ibm.as400.data.PcmlException;
import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400Message;

// Example program to call "Retrieve User Information" (QSYRUSRI) API
public class qsyrusri {

public qsyrusri() {
}

public static void main(String[] argv)
{

AS400 as400System; // com.ibm.as400.access.AS400
ProgramCallDocument pcml; // com.ibm.as400.data.ProgramCallDocument
boolean rc = false; // Return code from ProgramCallDocument.callProgram()
String msgId, msgText; // Messages returned from the server
Object value; // Return value from ProgramCallDocument.getValue()

System.setErr(System.out);

// Construct AS400 without parameters, user will be prompted
as400System = new AS400();

try
{

// Uncomment the following to get debugging information
//com.ibm.as400.data.PcmlMessageLog.setTraceEnabled(true);

620 IBM i: Programming IBM Toolbox for Java

System.out.println("Beginning PCML Example..");
System.out.println(" Constructing ProgramCallDocument for QSYRUSRI API...");

// Construct ProgramCallDocument
// First parameter is system to connect to
// Second parameter is pcml resource name. In this example,
// serialized PCML file "qsyrusri.pcml.ser" or
// PCML source file "qsyrusri.pcml" must be found in the classpath.
pcml = new ProgramCallDocument(as400System, "qsyrusri");

// Set input parameters. Several parameters have default values
// specified in the PCML source. Do not need to set them using Java code.
System.out.println(" Setting input parameters...");
pcml.setValue("qsyrusri.receiverLength",

new Integer((pcml.getOutputsize("qsyrusri.receiver"))));

// Request to call the API
// User will be prompted to sign on to the system
System.out.println(" Calling QSYRUSRI API requesting information for the sign-on user.");
rc = pcml.callProgram("qsyrusri");

// If return code is false, we received messages from the server
if(rc == false)
{

// Retrieve list of server messages
AS400Message[] msgs = pcml.getMessageList("qsyrusri");

// Iterate through messages and write them to standard output
for (int m = 0; m < msgs.length; m++)
{

msgId = msgs[m].getID();
msgText = msgs[m].getText();
System.out.println(" " + msgId + " - " + msgText);

}
System.out.println("** Call to QSYRUSRI failed. See messages above **");
System.exit(0);

}
// Return code was true, call to QSYRUSRI succeeded
// Write some of the results to standard output
else
{

value = pcml.getValue("qsyrusri.receiver.bytesReturned");
System.out.println(" Bytes returned: " + value);
value = pcml.getValue("qsyrusri.receiver.bytesAvailable");
System.out.println(" Bytes available: " + value);
value = pcml.getValue("qsyrusri.receiver.userProfile");
System.out.println(" Profile name: " + value);
value = pcml.getValue("qsyrusri.receiver.previousSignonDate");
System.out.println(" Previous signon date:" + value);
value = pcml.getValue("qsyrusri.receiver.previousSignonTime");
System.out.println(" Previous signon time:" + value);

}
}
catch (PcmlException e)
{

System.out.println(e.getLocalizedMessage());
e.printStackTrace();
System.out.println("*** Call to QSYRUSRI failed. ***");
System.exit(0);

}

System.exit(0);
} // End main()

}

IBM Toolbox for Java 621

Example: Retrieving a list of information
This example shows the PCML source and Java program needed to retrieve a list of authorized users on a
server. The API being called is the Open List of Authorized Users (QGYOLAUS) API. This example
illustrates how to access an array of structures returned by a server program.

This example has two parts:
v PCML source for calling QGYOLAUS
v Java program source for calling QGYOLAUS

PCML source for calling QGYOLAUS
<pcml version="1.0">

<!-- PCML source for calling "Open List of Authorized Users" (QGYOLAUS) API -->

<!-- Format AUTU0150 - Other formats are available -->
<struct name="autu0150">

<data name="name" type="char" length="10" />
<data name="userOrGroup" type="char" length="1" />
<data name="groupMembers" type="char" length="1" />
<data name="description" type="char" length="50" />

</struct>

<!-- List information structure (common for "Open List" type APIs) -->
<struct name="listInfo">

<data name="totalRcds" type="int" length="4" />
<data name="rcdsReturned" type="int" length="4" />
<data name="rqsHandle" type="byte" length="4" />
<data name="rcdLength" type="int" length="4" />
<data name="infoComplete" type="char" length="1" />
<data name="dateCreated" type="char" length="7" />
<data name="timeCreated" type="char" length="6" />
<data name="listStatus" type="char" length="1" />
<data type="byte" length="1" />
<data name="lengthOfInfo" type="int" length="4" />
<data name="firstRecord" type="int" length="4" />
<data type="byte" length="40" />

</struct>

<!-- Program QGYOLAUS and its parameter list for retrieving AUTU0150 format -->
<program name="qgyolaus" path="/QSYS.lib/QGY.lib/QGYOLAUS.pgm" parseorder="listInfo receiver">

<data name="receiver" type="struct" struct="autu0150" usage="output"
count="listInfo.rcdsReturned" outputsize="receiverLength" />

<data name="receiverLength" type="int" length="4" usage="input" init="16384" />
<data name="listInfo" type="struct" struct="listInfo" usage="output" />
<data name="rcdsToReturn" type="int" length="4" usage="input" init="264" />
<data name="format" type="char" length="10" usage="input" init="AUTU0150" />
<data name="selection" type="char" length="10" usage="input" init="*USER" />
<data name="member" type="char" length="10" usage="input" init="*NONE" />
<data name="errorCode" type="int" length="4" usage="input" init="0" />

</program>

<!-- Program QGYGTLE returned additional "records" from the list
created by QGYOLAUS. -->

<program name="qgygtle" path="/QSYS.lib/QGY.lib/QGYGTLE.pgm" parseorder="listInfo receiver">
<data name="receiver" type="struct" struct="autu0150" usage="output"

count="listInfo.rcdsReturned" outputsize="receiverLength" />
<data name="receiverLength" type="int" length="4" usage="input" init="16384" />
<data name="requestHandle" type="byte" length="4" usage="input" />
<data name="listInfo" type="struct" struct="listInfo" usage="output" />
<data name="rcdsToReturn" type="int" length="4" usage="input" init="264" />
<data name="startingRcd" type="int" length="4" usage="input" />
<data name="errorCode" type="int" length="4" usage="input" init="0" />

</program>

622 IBM i: Programming IBM Toolbox for Java

<!-- Program QGYCLST closes the list, freeing resources on the server -->
<program name="qgyclst" path="/QSYS.lib/QGY.lib/QGYCLST.pgm" >

<data name="requestHandle" type="byte" length="4" usage="input" />
<data name="errorCode" type="int" length="4" usage="input" init="0" />

</program>
</pcml>

Java program source for calling QGYOLAUS
import com.ibm.as400.data.ProgramCallDocument;
import com.ibm.as400.data.PcmlException;
import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400Message;

// Example program to call "Retrieve List of Authorized Users" (QGYOLAUS) API
public class qgyolaus
{

public static void main(String[] argv)
{

AS400 as400System; // com.ibm.as400.access.AS400
ProgramCallDocument pcml; // com.ibm.as400.data.ProgramCallDocument
boolean rc = false; // Return code from ProgramCallDocument.callProgram()
String msgId, msgText; // Messages returned from the server
Object value; // Return value from ProgramCallDocument.getValue()

int[] indices = new int[1]; // Indices for access array value
int nbrRcds, // Number of records returned from QGYOLAUS and QGYGTLE

nbrUsers; // Total number of users retrieved
String listStatus; // Status of list on the server
byte[] requestHandle = new byte[4];

System.setErr(System.out);

// Construct AS400 without parameters, user will be prompted
as400System = new AS400();

try
{

// Uncomment the following to get debugging information
//com.ibm.as400.data.PcmlMessageLog.setTraceEnabled(true);

System.out.println("Beginning PCML Example..");
System.out.println(" Constructing ProgramCallDocument for QGYOLAUS API...");

// Construct ProgramCallDocument
// First parameter is system to connect to
// Second parameter is pcml resource name. In this example,
// serialized PCML file "qgyolaus.pcml.ser" or
// PCML source file "qgyolaus.pcml" must be found in the classpath.
pcml = new ProgramCallDocument(as400System, "qgyolaus");

// All input parameters have default values specified in the PCML source.
// Do not need to set them using Java code.

// Request to call the API
// User will be prompted to sign on to the system
System.out.println(" Calling QGYOLAUS API requesting information for the sign-on user.");
rc = pcml.callProgram("qgyolaus");

// If return code is false, we received messages from the server
if(rc == false)
{

// Retrieve list of server messages
AS400Message[] msgs = pcml.getMessageList("qgyolaus");

IBM Toolbox for Java 623

// Iterate through messages and write them to standard output
for (int m = 0; m < msgs.length; m++)
{

msgId = msgs[m].getID();
msgText = msgs[m].getText();
System.out.println(" " + msgId + " - " + msgText);

}
System.out.println("** Call to QGYOLAUS failed. See messages above **");
System.exit(0);

}
// Return code was true, call to QGYOLAUS succeeded
// Write some of the results to standard output
else
{

boolean doneProcessingList = false;
String programName = "qgyolaus";
nbrUsers = 0;
while (!doneProcessingList)
{

nbrRcds = pcml.getIntValue(programName + ".listInfo.rcdsReturned");
requestHandle = (byte[]) pcml.getValue(programName + ".listInfo.rqsHandle");

// Iterate through list of users
for (indices[0] = 0; indices[0] < nbrRcds; indices[0]++)
{

value = pcml.getValue(programName + ".receiver.name", indices);
System.out.println("User: " + value);

value = pcml.getValue(programName + ".receiver.description", indices);
System.out.println("\t\t" + value);

}

nbrUsers += nbrRcds;

// See if we retrieved all the users.
// If not, subsequent calls to "Get List Entries" (QGYGTLE)
// would need to be made to retrieve the remaining users in the list.
listStatus = (String) pcml.getValue(programName + ".listInfo.listStatus");
if (listStatus.equals("2") // List is marked as "Complete"

|| listStatus.equals("3")) // Or list is marked "Error building"
{

doneProcessingList = true;
}
else
{

programName = "qgygtle";

// Set input parameters for QGYGTLE
pcml.setValue("qgygtle.requestHandle", requestHandle);
pcml.setIntValue("qgygtle.startingRcd", nbrUsers + 1);

// Call "Get List Entries" (QGYGTLE) to get more users from list
rc = pcml.callProgram("qgygtle");

// If return code is false, we received messages from the server
if(rc == false)
{

// Retrieve list of server messages
AS400Message[] msgs = pcml.getMessageList("qgygtle");

// Iterate through messages and write them to standard output
for (int m = 0; m < msgs.length; m++)
{

msgId = msgs[m].getID();
msgText = msgs[m].getText();
System.out.println(" " + msgId + " - " + msgText);

}

624 IBM i: Programming IBM Toolbox for Java

System.out.println("** Call to QGYGTLE failed. See messages above **");
System.exit(0);

}
// Return code was true, call to QGYGTLE succeeded

}
}
System.out.println("Number of users returned: " + nbrUsers);

// Call the "Close List" (QGYCLST) API
pcml.setValue("qgyclst.requestHandle", requestHandle);
rc = pcml.callProgram("qgyclst");

}
}
catch(PcmlException e)
{

System.out.println(e.getLocalizedMessage());
e.printStackTrace();
System.out.println("*** Call to QGYOLAUS failed. ***");
System.exit(0);

}

System.exit(0);
}

}

Example: Retrieving multidimensional data
This example show the PCML source and Java program needed to retrieve a list Network File System
(NFS) exports from a server. The API being called is the Retrieve NFS Exports (QZNFRTVE) API. This
example illustrates how to access arrays of structures within an array of structures.

This example has two parts:
v PCML source for calling QZNFRTVE
v Java program source for calling QZNFRTVE

PCML source for calling QZNFRTVE
<pcml version="1.0">

<struct name="receiver">
<data name="lengthOfEntry" type="int" length="4" />
<data name="dispToObjectPathName" type="int" length="4" />
<data name="lengthOfObjectPathName" type="int" length="4" />
<data name="ccsidOfObjectPathName" type="int" length="4" />
<data name="readOnlyFlag" type="int" length="4" />
<data name="nosuidFlag" type="int" length="4" />
<data name="dispToReadWriteHostNames" type="int" length="4" />
<data name="nbrOfReadWriteHostNames" type="int" length="4" />
<data name="dispToRootHostNames" type="int" length="4" />
<data name="nbrOfRootHostNames" type="int" length="4" />
<data name="dispToAccessHostNames" type="int" length="4" />
<data name="nbrOfAccessHostNames" type="int" length="4" />
<data name="dispToHostOptions" type="int" length="4" />
<data name="nbrOfHostOptions" type="int" length="4" />
<data name="anonUserID" type="int" length="4" />
<data name="anonUsrPrf" type="char" length="10" />
<data name="pathName" type="char" length="lengthOfObjectPathName"

offset="dispToObjectPathName" offsetfrom="receiver" />

<struct name="rwAccessList" count="nbrOfReadWriteHostNames"
offset="dispToReadWriteHostNames" offsetfrom="receiver">

<data name="lengthOfEntry" type="int" length="4" />
<data name="lengthOfHostName" type="int" length="4" />
<data name="hostName" type="char" length="lengthOfHostName" />
<data type="byte" length="0"

IBM Toolbox for Java 625

offset="lengthOfEntry" />
</struct>

<struct name="rootAccessList" count="nbrOfRootHostNames"
offset="dispToRootHostNames" offsetfrom="receiver">

<data name="lengthOfEntry" type="int" length="4" />
<data name="lengthOfHostName" type="int" length="4" />
<data name="hostName" type="char" length="lengthOfHostName" />
<data type="byte" length="0"

offset="lengthOfEntry" />
</struct>

<struct name="accessHostNames" count="nbrOfAccessHostNames"
offset="dispToAccessHostNames" offsetfrom="receiver" >

<data name="lengthOfEntry" type="int" length="4" />
<data name="lengthOfHostName" type="int" length="4" />
<data name="hostName" type="char" length="lengthOfHostName" />
<data type="byte" length="0"

offset="lengthOfEntry" />
</struct>

<struct name="hostOptions" offset="dispToHostOptions" offsetfrom="receiver" count="nbrOfHostOptions">
<data name="lengthOfEntry" type="int" length="4" />
<data name="dataFileCodepage" type="int" length="4" />
<data name="pathNameCodepage" type="int" length="4" />
<data name="writeModeFlag" type="int" length="4" />
<data name="lengthOfHostName" type="int" length="4" />
<data name="hostName" type="char" length="lengthOfHostName" />
<data type="byte" length="0" offset="lengthOfEntry" />

</struct>

<data type="byte" length="0" offset="lengthOfEntry" />
</struct>

<struct name="returnedRcdsFdbkInfo">
<data name="bytesReturned" type="int" length="4" />
<data name="bytesAvailable" type="int" length="4" />
<data name="nbrOfNFSExportEntries" type="int" length="4" />
<data name="handle" type="int" length="4" />

</struct>

<program name="qznfrtve" path="/QSYS.lib/QZNFRTVE.pgm" parseorder="returnedRcdsFdbkInfo receiver" >
<data name="receiver" type="struct" struct="receiver" usage="output"

count="returnedRcdsFdbkInfo.nbrOfNFSExportEntries" outputsize="receiverLength"/>
<data name="receiverLength" type="int" length="4" usage="input" init="4096" />
<data name="returnedRcdsFdbkInfo" type="struct" struct="returnedRcdsFdbkInfo" usage="output" />
<data name="formatName" type="char" length="8" usage="input" init="EXPE0100" />
<data name="objectPathName" type="char" length="lengthObjPathName" usage="input" init="*FIRST" />
<data name="lengthObjPathName" type="int" length="4" usage="input" init="6" />
<data name="ccsidObjectPathName" type="int" length="4" usage="input" init="0" />
<data name="desiredCCSID" type="int" length="4" usage="input" init="0" />
<data name="handle" type="int" length="4" usage="input" init="0" />
<data name="errorCode" type="int" length="4" usage="input" init="0" />

</program>

</pcml>

Java program source for calling QZNFRTVE
import com.ibm.as400.data.ProgramCallDocument;
import com.ibm.as400.data.PcmlException;
import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400Message;

// Example program to call "Retrieve NFS Exports" (QZNFRTVE) API
public class qznfrtve
{

626 IBM i: Programming IBM Toolbox for Java

public static void main(String[] argv)
{

AS400 as400System; // com.ibm.as400.access.AS400
ProgramCallDocument pcml; // com.ibm.as400.data.ProgramCallDocument
boolean rc = false; // Return code from ProgramCallDocument.callProgram()
String msgId, msgText; // Messages returned from the server
Object value; // Return value from ProgramCallDocument.getValue()

System.setErr(System.out);

// Construct AS400 without parameters, user will be prompted
as400System = new AS400();

int[] indices = new int[2]; // Indices for access array value
int nbrExports; // Number of exports returned
int nbrOfReadWriteHostNames, nbrOfRWHostNames, nbrOfRootHostNames,

nbrOfAccessHostnames, nbrOfHostOpts;

try
{

// Uncomment the following to get debugging information
// com.ibm.as400.data.PcmlMessageLog.setTraceEnabled(true);

System.out.println("Beginning PCML Example..");
System.out.println(" Constructing ProgramCallDocument for QZNFRTVE API...");

// Construct ProgramCallDocument
// First parameter is system to connect to
// Second parameter is pcml resource name. In this example,
// serialized PCML file "qznfrtve.pcml.ser" or
// PCML source file "qznfrtve.pcml" must be found in the classpath.
pcml = new ProgramCallDocument(as400System, "qznfrtve");

// Set input parameters. Several parameters have default values
// specified in the PCML source. Do not need to set them using Java code.
System.out.println(" Setting input parameters...");
pcml.setValue("qznfrtve.receiverLength", new Integer((pcml.getOutputsize("qznfrtve.receiver"))));

// Request to call the API
// User will be prompted to sign on to the system
System.out.println(" Calling QZNFRTVE API requesting NFS exports.");
rc = pcml.callProgram("qznfrtve");

if (rc == false)
{

// Retrieve list of server messages
AS400Message[] msgs = pcml.getMessageList("qznfrtve");

// Iterate through messages and write them to standard output
for (int m = 0; m < msgs.length; m++)
{

msgId = msgs[m].getID();
msgText = msgs[m].getText();
System.out.println(" " + msgId + " - " + msgText);

}
System.out.println("** Call to QZNFRTVE failed. See messages above **");
System.exit(0);

}
// Return code was true, call to QZNFRTVE succeeded
// Write some of the results to standard output
else
{

nbrExports = pcml.getIntValue("qznfrtve.returnedRcdsFdbkInfo.nbrOfNFSExportEntries");
// Iterate through list of exports
for (indices[0] = 0; indices[0] < nbrExports; indices[0]++)
{

value = pcml.getValue("qznfrtve.receiver.pathName", indices);

IBM Toolbox for Java 627

System.out.println("Path name = " + value);

// Iterate and write out Read Write Host Names for this export
nbrOfReadWriteHostNames = pcml.getIntValue("qznfrtve.receiver.nbrOfReadWriteHostNames",

indices);
for(indices[1] = 0; indices[1] < nbrOfReadWriteHostNames; indices[1]++)
{

value = pcml.getValue("qznfrtve.receiver.rwAccessList.hostName", indices);
System.out.println(" Read/write access host name = " + value);

}

// Iterate and write out Root Host Names for this export
nbrOfRootHostNames = pcml.getIntValue("qznfrtve.receiver.nbrOfRootHostNames", indices);
for(indices[1] = 0; indices[1] < nbrOfRootHostNames; indices[1]++)
{

value = pcml.getValue("qznfrtve.receiver.rootAccessList.hostName", indices);
System.out.println(" Root access host name = " + value);

}

// Iterate and write out Access Host Names for this export
nbrOfAccessHostnames = pcml.getIntValue("qznfrtve.receiver.nbrOfAccessHostNames",

indices);
for(indices[1] = 0; indices[1] < nbrOfAccessHostnames; indices[1]++)
{

value = pcml.getValue("qznfrtve.receiver.accessHostNames.hostName", indices);
System.out.println(" Access host name = " + value);

}

// Iterate and write out Host Options for this export
nbrOfHostOpts = pcml.getIntValue("qznfrtve.receiver.nbrOfHostOptions", indices);
for(indices[1] = 0; indices[1] < nbrOfHostOpts; indices[1]++)
{

System.out.println(" Host options:");
value = pcml.getValue("qznfrtve.receiver.hostOptions.dataFileCodepage", indices);
System.out.println(" Data file code page = " + value);
value = pcml.getValue("qznfrtve.receiver.hostOptions.pathNameCodepage", indices);
System.out.println(" Path name code page = " + value);
value = pcml.getValue("qznfrtve.receiver.hostOptions.writeModeFlag", indices);
System.out.println(" Write mode flag = " + value);
value = pcml.getValue("qznfrtve.receiver.hostOptions.hostName", indices);
System.out.println(" Host name = " + value);

}
} // end for loop iterating list of exports

} // end call to QZNFRTVE succeeded
}
catch(PcmlException e)
{

System.out.println(e.getLocalizedMessage());
e.printStackTrace();
System.exit(-1);

}

System.exit(0);
} // end main()

}

Examples: ReportWriter classes
This section lists the code examples that are provided throughout the documentation of the IBM Toolbox
for Java ReportWriter classes.

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

628 IBM i: Programming IBM Toolbox for Java

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Example: Using JSPReportProcessor with PDFContext
This example uses the JSPReportProcessor and the PDFContext classes to obtain data from a specified
URL and convert the data to the PDF format. The data is then streamed to a file as a PDF document.

Note: Read the Code example disclaimer for important legal information.

To view the contents of an example JSP source file that you can use with JSPRunReport, see
JSPcust_table.jsp. You can also download a ZIP file that contains the JSP example file. The zipped file also
contains XML and XSL example files that you can use with the XSLReportProcessor example
(PCLRunReport).
//
//
// The following example (JSPRunReport) uses the JSPReportProcessor and the
// PDFContext classes to obtain data from a specified URL and convert the data
// to the PDF format. The data is then streamed to a file as a PDF document.
//
// Command syntax:
// java JSPRunReport <jsp_Url> <output_filename>
//
//

import java.lang.*;
import java.awt.*;
import java.io.*;
import java.net.*;
import java.awt.print.*;
import java.awt.event.*;
import java.util.LinkedList;
import java.util.ListIterator;
import java.util.HashMap;

import com.ibm.xsl.composer.flo.*;
import com.ibm.xsl.composer.areas.*;
import com.ibm.xsl.composer.framework.*;
import com.ibm.xsl.composer.java2d.*;
import com.ibm.xsl.composer.prim.*;
import com.ibm.xsl.composer.properties.*;
import com.ibm.as400.util.reportwriter.processor.*;
import com.ibm.as400.util.reportwriter.pdfwriter.*;
import java.io.IOException;
import java.io.Serializable;
import org.xml.sax.SAXException;

public class JSPRunReport

{

public static void main(String args[])
{

FileOutputStream fileout = null;

IBM Toolbox for Java 629

xmlxsljspsamples.zip

/** specify the URL that contains the data you want to use in your report **/
String JSPurl = args[0];
URL jspurl = null;
try {

jspurl = new URL(JSPurl);
}
catch (MalformedURLException e)
{}

/** get output PDF file name **/
String filename = args[1];
try {
fileout = new FileOutputStream(filename);
}
catch (FileNotFoundException e)
{}

/** set up page format **/
Paper paper = new Paper();
paper.setSize(612,792);
paper.setImageableArea(18, 18, 576, 756);
PageFormat pf = new PageFormat();
pf.setPaper(paper);

/** create a PDFContext object and cast FileOutputStream as an OutputStream **/
PDFContext pdfcontext = new PDFContext((OutputStream)fileout, pf);

System.out.println(Ready to parse XSL document);

/** create the JSPReportProcessor object and set the template to the specified JSP **/
JSPReportProcessor jspprocessor = new JSPReportProcessor(pdfcontext);
try {
jspprocessor.setTemplate(jspurl);
}

catch (NullPointerException np){
String mes = np.getMessage();
System.out.println(mes);
System.exit(0);
}

/** process the report **/
try {
jspprocessor.processReport();
}
catch (IOException e) {

String mes = e.getMessage();
System.out.println(mes);
System.exit(0);
}

catch (SAXException se) {
String mes = se.getMessage();
System.out.println(mes);
System.exit(0);
}

System.exit(0);
}

}

Example: JSPReportProcessor sample JSP file
Use this sample file with the Example: Using JSPReportProcessor with PDFContext topic.

Note: Read the Code example disclaimer for important legal information.

630 IBM i: Programming IBM Toolbox for Java

<?xml version="1.0"?>

<!--
Copyright (c) 1999 The Apache Software Foundation. All rights reserved.

-->

<%@ page session="false"%>
<%@ page language="java" contentType="text/html" %>
<%@ page import="java.lang.*" %>
<%@ page import="java.util.*" %>

<%-- <jsp:useBean id=’cust_table’ scope=’page’ class=’table.JSPcust_table’/> --%>

<%!
String[][] cust_data = new String [4][5];

public void jspInit()
{

//cust_record_field [][] cust_data;
// cust_record holds customer name, customer address, customer city, customer state,
// customer zip

String [] cust_record_1 = {"IBM","3602 4th St","Rochester","Mn","55901"};
String [] cust_record_2 = {"HP","400 2nd","Springfield","Mo","33559"};
String [] cust_record_3 = {"Wolzack","34 Hwy 52N","Lansing","Or","67895"};
String [] cust_record_4 = {"Siems","343 60th","Salem","Tx","12345"};

cust_data[0] = cust_record_1;
cust_data[1] = cust_record_2;
cust_data[2] = cust_record_3;
cust_data[3] = cust_record_4;

}
%>

<!-- First test of parse and compose. -->
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>
<fo:simple-page-master master-name="theMaster" >
<fo:region-body region-name="theRegion" margin-left=".2in"/>
</fo:simple-page-master>
<fo:page-sequence-master master-name="theMaster">
<fo:single-page-master-reference master-name="thePage"/>
</fo:page-sequence-master>

</fo:layout-master-set>
<fo:page-sequence master-name="theMaster">
<fo:flow flow-name="theRegion">

<fo:block>
<fo:block text-align="center"> NORCAP </fo:block>
<fo:block space-before=".2in" text-align="center">PAN PACIFIC HOTEL IN SAN FRANCISCO </fo:block>
<fo:block text-align="center"> FRIDAY, DECEMBER 8-9, 2000 </fo:block>

</fo:block>
<fo:block space-before=".5in" font-size="8pt">
<fo:table table-layout="fixed">

<fo:table-column column-width="3in"/>
<fo:table-column column-width="3in"/>
<fo:table-column column-width="3in"/>
<fo:table-column column-width="3in"/>
<fo:table-column column-width="3in"/>
<fo:table-body>

<fo:table-row>
<fo:table-cell column-number="1">

<fo:block border-bottom-style="solid">NAME</fo:block>
</fo:table-cell>
<fo:table-cell column-number="2">

<fo:block border-bottom-style="solid">ADDRESS</fo:block>

IBM Toolbox for Java 631

</fo:table-cell>
<fo:table-cell column-number="3">

<fo:block border-bottom-style="solid">CITY</fo:block>
</fo:table-cell>
<fo:table-cell column-number="4">

<fo:block border-bottom-style="solid">STATE</fo:block>
</fo:table-cell>
<fo:table-cell column-number="5">

<fo:block border-bottom-style="solid">ZIP CODE</fo:block>
</fo:table-cell>

</fo:table-row>

<%
// add row to table
for(int i = 0; i <= 3; i++)
{

String[] _array = cust_data[i];
%>

<fo:table-row>
<fo:table-cell column-number="1">

<fo:block space-before=".1in">
<% if(_array[0].equals("IBM")) { %>

<fo:inline background-color="blue">
<% out.print(_array[0]); %>
</fo:inline>

<% } else { %>
<% out.print(_array[0]); %>

<% } %>
</fo:block>

</fo:table-cell>
<fo:table-cell column-number="2">

<fo:block space-before=".1in">
<% out.print(_array[1]); %>

</fo:block>
</fo:table-cell>
<fo:table-cell column-number="3">

<fo:block space-before=".1in">
<% out.print(_array[2]); %>

</fo:block>
</fo:table-cell>
<fo:table-cell column-number="4">

<fo:block space-before=".1in">
<% out.print(_array[3]); %>

</fo:block>
</fo:table-cell>
<fo:table-cell column-number="5">
<fo:block space-before=".1in">

<% out.print(_array[4]); %>
</fo:block>

</fo:table-cell>
</fo:table-row>

<%
} // end row while
%>

</fo:table-body>
</fo:table>
</fo:block>

</fo:flow>
</fo:page-sequence>

</fo:root>

632 IBM i: Programming IBM Toolbox for Java

Example: Using XSLReportProcessor with PCLContext
This example should not be used as the XSLReportProcessor class is no longer supported.

Note: Read the Code example disclaimer for important legal information.
//
//
// The following example (PCLRunReport) uses the XSLPReportProcessor and the
// PCLContext classes to obtain XML data and convert the data to the PCL format.
// The data is then streamed to a printer OutputQueue.
//
// To view the contents of example XML and XSL source files that you can use
// with PCLRunReport, see realestate.xml and realestate.xsl. You can also
// download a zip file that contains the XML and XSL example files. The zip
// file also contains a JSP example file that you can use with the
// JSPReportProcessor example (JSPRunReport).
//
// Command syntax:
// java PCLRunReport <xml_file> <xsl_file>
//
//

import java.lang.*;
import java.awt.*;
import java.io.*;
import java.awt.print.*;
import java.awt.event.*;
import java.util.LinkedList;
import java.util.ListIterator;
import java.util.HashMap;

import com.ibm.xsl.composer.flo.*;
import com.ibm.xsl.composer.areas.*;
import com.ibm.xsl.composer.framework.*;
import com.ibm.xsl.composer.java2d.*;
import com.ibm.xsl.composer.prim.*;
import com.ibm.xsl.composer.properties.*;
import com.ibm.as400.util.reportwriter.processor.*;
import com.ibm.as400.util.reportwriter.pclwriter.*;
import java.io.IOException;
import java.io.Serializable;
import org.xml.sax.SAXException;
import com.ibm.as400.access.*;

public class PCLRunReport

{

public static void main(String args[])
{

SpooledFileOutputStream fileout = null;
String xmldocumentName = args[0];
String xsldocumentName = args[1];

String sys = "<system>"; /* Insert server name */
String user = "<user>"; /* Insert user profile name */
String pass = "<password>"; /* Insert password */

AS400 system = new AS400(sys, user, pass);

/* Insert output queue */
String outqname = "/QSYS.LIB/qusrsys.LIB/<outq>.OUTQ";
OutputQueue outq = new OutputQueue(system, outqname);
PrintParameterList parms = new PrintParameterList();
parms.setParameter(PrintObject.ATTR_OUTPUT_QUEUE, outq.getPath());

try{

IBM Toolbox for Java 633

xmlxsljspsamples.zip

fileout = new SpooledFileOutputStream(system, parms, null, null);
}
catch (Exception e)
{}

/** set up page format **/
Paper paper = new Paper();
paper.setSize(612,792);
paper.setImageableArea(18, 36, 576, 720);
PageFormat pf = new PageFormat();
pf.setPaper(paper);

/** create a PCLContext object and case FileOutputStream
as an OutputStream **/

PCLContext pclcontext = new PCLContext((OutputStream)fileout, pf);

System.out.println("Ready to parse XSL document");

/** create the XSLReportProcessor object **/
XSLReportProcessor xslprocessor = new XSLReportProcessor(pclcontext);
try {
xslprocessor.setXMLDataSource(xmldocumentName);
}
catch (SAXException se) {

String mes = se.getMessage();
System.out.println(mes);
System.exit(0);
}

catch (IOException ioe) {
String mes = ioe.getMessage();
System.out.println(mes);
System.exit(0);
}

catch (NullPointerException np){
String mes = np.getMessage();
System.out.println(mes);
System.exit(0);
}

/** set the template to the specified XML data source **/
try {
xslprocessor.setTemplate(xsldocumentName);
}
catch (NullPointerException np){

String mes = np.getMessage();
System.out.println(mes);
System.exit(0);
}

catch (IOException e) {
String mes = e.getMessage();
System.out.println(mes);
System.exit(0);
}

catch (SAXException se) {
String mes = se.getMessage();
System.out.println(mes);
System.exit(0);
}

/** process the report **/
try {
xslprocessor.processReport();
}
catch (IOException e) {

String mes = e.getMessage();
System.out.println(mes);
System.exit(0);
}

634 IBM i: Programming IBM Toolbox for Java

catch (SAXException se) {
String mes = se.getMessage();
System.out.println(mes);
System.exit(0);
}

System.exit(0);
}

}

Example: XSLReportProcessor sample XML file
This example should not be used as the XSLReportProcessor class is no longer supported.

Note: Read the Code example disclaimer for important legal information.
<?xml version="1.0"?>

<RESIDENTIAL-LISTINGS VERSION="061698">

<RESIDENTIAL-LISTING ID="ID1287" VERSION="061698">
<GENERAL>
<TYPE>Apartment</TYPE>
<PRICE>$110,000</PRICE>
<STRUCTURE><NUM-BEDS>3</NUM-BEDS><NUM-BATHS>1</NUM-BATHS></STRUCTURE>
<AGE UNITS="YEARS">15</AGE>
<LOCATION COUNTRY="USA" STATE="MA" COUNTY="MIDDLESEX" SECURITY="Public">
<ADDRESS>13 Some Avenue</ADDRESS>
<CITY>Dorchester</CITY><ZIP>02121</ZIP>

</LOCATION>
<IMAGE FORMAT="JPG" WIDTH="300" HEIGHT="150" SRC="house1.jpg"/>
<MLS>

<MLS-CODE SECURITY="Restricted">
30224877
</MLS-CODE>

<MLS-SOURCE SECURITY="Public">
<NAME>Bob the Realtor</NAME>
<PHONE>1-617-555-1212</PHONE>
<FAX>1-617-555-1313</FAX>
<WEB>
<EMAIL>Bob@bigbucks.com</EMAIL>
<SITE>www.bigbucks.com</SITE>

</WEB>
</MLS-SOURCE>
</MLS>
<DATES><LISTING-DATE>3/5/98</LISTING-DATE></DATES>
<LAND-AREA UNITS="ACRES">0.01</LAND-AREA>

</GENERAL>

<FEATURES>
<DISCLOSURES>

In your dreams.
</DISCLOSURES>

<UTILITIES>
Yes

</UTILITIES>
<EXTRAS>

Pest control included.
</EXTRAS>
<CONSTRUCTION>

Wallboard and glue
</CONSTRUCTION>
<ACCESS>

Front door.
</ACCESS>
</FEATURES>

IBM Toolbox for Java 635

<FINANCIAL>
<ASSUMABLE>

I assume so.
</ASSUMABLE>
<OWNER-CARRY>

Too heavy.
</OWNER-CARRY>
<ASSESMENTS>

$150,000
</ASSESMENTS>
<DUES>

$100
</DUES>
<TAXES>

$2,000
</TAXES>
<LENDER>

Fly by nite mortgage co.
</LENDER>
<EARNEST>

Burt
</EARNEST>
<DIRECTIONS>

North, south, east, west
</DIRECTIONS>
</FINANCIAL>

<REMARKS>
</REMARKS>

<CONTACTS>
<COMPANY>
<NAME>

Noplace Realty
</NAME>
<ADDRESS>

12 Main Street
</ADDRESS>
<CITY>

Lowell, MA
</CITY>
<ZIP>

34567
</ZIP>

</COMPANY>
<AGENT>
<NAME>

Mary Jones
</NAME>
<ADDRESS>
</ADDRESS>
<CITY>
</CITY>
<ZIP>
</ZIP>

</AGENT>
<OWNER>
<NAME>
</NAME>
<ADDRESS>
</ADDRESS>
<CITY>
</CITY>
<ZIP>
</ZIP>

</OWNER>

636 IBM i: Programming IBM Toolbox for Java

<TENANT>
Yes.

</TENANT>
<COMMISION>
15%

</COMMISION>
</CONTACTS>

</RESIDENTIAL-LISTING>

<RESIDENTIAL-LISTING VERSION="061698" ID="ID1289">
<GENERAL>

<IMAGE FORMAT="JPG" WIDTH="300" HEIGHT="150" SRC="house2.jpg">
</IMAGE>

<MLS>
<MLS-CODE SECURITY="Restricted">

30298877
</MLS-CODE>

<MLS-SOURCE SECURITY="Public">
<NAME>
Mary the Realtor

</NAME>
<PHONE>
1-617-555-3333

</PHONE>
<FAX>
1-617-555-4444

</FAX>
<WEB>
<EMAIL>

Mary@somebucks.com
</EMAIL>
<SITE>

www.bigbucks.com
</SITE>

</WEB>
</MLS-SOURCE>
</MLS>

<TYPE>
Home
</TYPE>

<PRICE>
$200,000
</PRICE>

<AGE UNITS="MONTHS">
3
</AGE>

<LOCATION COUNTRY="USA" STATE="CO" COUNTY="MIDDLESEX" SECURITY="Public">
<ADDRESS>
1 Main Street
</ADDRESS>
<CITY>

Boulder
</CITY>
<ZIP>
11111
</ZIP>
</LOCATION>

<STRUCTURE>
<NUM-BEDS>

IBM Toolbox for Java 637

2
</NUM-BEDS>

<NUM-BATHS>
2

</NUM-BATHS>
</STRUCTURE>

<DATES>
<LISTING-DATE>

4/3/98
</LISTING-DATE>

</DATES>

<LAND-AREA UNITS="ACRES">
0.01

</LAND-AREA>

</GENERAL>

<FEATURES>
<DISCLOSURES>

In your dreams.
</DISCLOSURES>

<UTILITIES>
Yes

</UTILITIES>
<EXTRAS>

Pest control included.
</EXTRAS>
<CONSTRUCTION>

Wallboard and glue
</CONSTRUCTION>
<ACCESS>

Front door.
</ACCESS>
</FEATURES>

<FINANCIAL>
<ASSUMABLE>

I assume so.
</ASSUMABLE>
<OWNER-CARRY>

Too heavy.
</OWNER-CARRY>
<ASSESMENTS>

$150,000
</ASSESMENTS>
<DUES>

$100
</DUES>
<TAXES>

$2,000
</TAXES>
<LENDER>

Fly by nite mortgage co.
</LENDER>
<EARNEST>

Burt
</EARNEST>
<DIRECTIONS>

North, south, east, west
</DIRECTIONS>
</FINANCIAL>

<REMARKS>
</REMARKS>

638 IBM i: Programming IBM Toolbox for Java

<CONTACTS>
<COMPANY>
<NAME>

Noplace Realty
</NAME>
<ADDRESS>

12 Main Street
</ADDRESS>
<CITY>

Lowell, MA
</CITY>
<ZIP>

34567
</ZIP>
</COMPANY>
<AGENT>
<NAME>

Mary Jones
</NAME>
<ADDRESS>
</ADDRESS>
<CITY>
</CITY>
<ZIP>
</ZIP>
</AGENT>
<OWNER>
<NAME>
</NAME>
<ADDRESS>
</ADDRESS>
<CITY>
</CITY>
<ZIP>
</ZIP>
</OWNER>

<TENANT>
Yes.

</TENANT>
<COMMISION>
15%

</COMMISION>
</CONTACTS>

</RESIDENTIAL-LISTING>
<RESIDENTIAL-LISTING VERSION="061698" ID="ID1290">

<GENERAL>

<IMAGE FORMAT="JPG" WIDTH="300" HEIGHT="150" SRC="house3.jpg">
</IMAGE>

<MLS>
<MLS-CODE SECURITY="Restricted">

20079877
</MLS-CODE>

<MLS-SOURCE SECURITY="Public">
<NAME>
Bob the Realtor

</NAME>
<PHONE>
1-617-555-1212

</PHONE>
<FAX>
1-617-555-1313

</FAX>
<WEB>
<EMAIL>

IBM Toolbox for Java 639

Bob@bigbucks.com
</EMAIL>
<SITE>

www.bigbucks.com
</SITE>

</WEB>
</MLS-SOURCE>

</MLS>

<TYPE>
Apartment

</TYPE>

<PRICE>
$65,000

</PRICE>

<AGE UNITS="YEARS">
30

</AGE>

<LOCATION COUNTRY="USA" STATE="MA" COUNTY="MIDDLESEX" SECURITY="Public">
<ADDRESS>
25 Which Ave.
</ADDRESS>
<CITY>

Cambridge
</CITY>
<ZIP>
02139
</ZIP>

</LOCATION>

<STRUCTURE>
<NUM-BEDS>

3
</NUM-BEDS>

<NUM-BATHS>
1

</NUM-BATHS>
</STRUCTURE>

<DATES>
<LISTING-DATE>

3/5/97
</LISTING-DATE>

</DATES>

<LAND-AREA UNITS="ACRES">
0.05

</LAND-AREA>

</GENERAL>

<FEATURES>
<DISCLOSURES>

In your dreams.
</DISCLOSURES>

<UTILITIES>
Yes

</UTILITIES>
<EXTRAS>

Pest control included.
</EXTRAS>
<CONSTRUCTION>

Wallboard and glue
</CONSTRUCTION>

640 IBM i: Programming IBM Toolbox for Java

<ACCESS>
Front door.

</ACCESS>
</FEATURES>

<FINANCIAL>
<ASSUMABLE>

I assume so.
</ASSUMABLE>
<OWNER-CARRY>

Too heavy.
</OWNER-CARRY>
<ASSESMENTS>

$150,000
</ASSESMENTS>
<DUES>

$100
</DUES>
<TAXES>

$2,000
</TAXES>
<LENDER>

Fly by nite mortgage co.
</LENDER>
<EARNEST>

Burt
</EARNEST>
<DIRECTIONS>

North, south, east, west
</DIRECTIONS>
</FINANCIAL>

<REMARKS>
</REMARKS>

<CONTACTS>
<COMPANY>
<NAME>

Noplace Realty
</NAME>
<ADDRESS>

12 Main Street
</ADDRESS>
<CITY>

Lowell, MA
</CITY>
<ZIP>

34567
</ZIP>
</COMPANY>
<AGENT>
<NAME>

Mary Jones
</NAME>
<ADDRESS>
</ADDRESS>
<CITY>
</CITY>
<ZIP>
</ZIP>
</AGENT>
<OWNER>
<NAME>
</NAME>
<ADDRESS>
</ADDRESS>
<CITY>

IBM Toolbox for Java 641

</CITY>
<ZIP>
</ZIP>

</OWNER>
<TENANT>
Yes.

</TENANT>
<COMMISION>
15%

</COMMISION>
</CONTACTS>

</RESIDENTIAL-LISTING>
<RESIDENTIAL-LISTING VERSION="061698" ID="ID1291">

<GENERAL>

<IMAGE FORMAT="JPG" WIDTH="300" HEIGHT="150" SRC="house4.jpg">
</IMAGE>

<MLS>
<MLS-CODE SECURITY="Restricted">

29389877
</MLS-CODE>

<MLS-SOURCE SECURITY="Public">
<NAME>
Mary the Realtor

</NAME>
<PHONE>
1-617-555-3333

</PHONE>
<FAX>
1-617-555-4444

</FAX>
<WEB>
<EMAIL>

Mary@somebucks.com
</EMAIL>
<SITE>

www.bigbucks.com
</SITE>

</WEB>
</MLS-SOURCE>

</MLS>

<TYPE>
Home

</TYPE>

<PRICE>
$449,000

</PRICE>

<AGE UNITS="YEARS">
7

</AGE>

<LOCATION COUNTRY="USA" STATE="MA" COUNTY="MIDDLESEX" SECURITY="Public">
<ADDRESS>
100 Any Road
</ADDRESS>
<CITY>

Lexington
</CITY>
<ZIP>
02421
</ZIP>

</LOCATION>

642 IBM i: Programming IBM Toolbox for Java

<STRUCTURE>
<NUM-BEDS>

7
</NUM-BEDS>

<NUM-BATHS>
3

</NUM-BATHS>
</STRUCTURE>

<DATES>
<LISTING-DATE>

6/8/98
</LISTING-DATE>

</DATES>

<LAND-AREA UNITS="ACRES">
2.0
</LAND-AREA>

</GENERAL>

<FEATURES>
<DISCLOSURES>

In your dreams.
</DISCLOSURES>

<UTILITIES>
Yes

</UTILITIES>
<EXTRAS>

Pest control included.
</EXTRAS>
<CONSTRUCTION>

Wallboard and glue
</CONSTRUCTION>
<ACCESS>

Front door.
</ACCESS>
</FEATURES>

<FINANCIAL>
<ASSUMABLE>

I assume so.
</ASSUMABLE>
<OWNER-CARRY>

Too heavy.
</OWNER-CARRY>
<ASSESMENTS>

$300,000
</ASSESMENTS>
<DUES>

$100
</DUES>
<TAXES>

$2,000
</TAXES>
<LENDER>

Fly by nite mortgage co.
</LENDER>
<EARNEST>

Burt
</EARNEST>
<DIRECTIONS>

North, south, east, west
</DIRECTIONS>
</FINANCIAL>

IBM Toolbox for Java 643

<REMARKS>
</REMARKS>

<CONTACTS>
<COMPANY>
<NAME>

Noplace Realty
</NAME>
<ADDRESS>

12 Main Street
</ADDRESS>
<CITY>

Lowell, MA
</CITY>
<ZIP>

34567
</ZIP>

</COMPANY>
<AGENT>
<NAME>

Mary Jones
</NAME>
<ADDRESS>
</ADDRESS>
<CITY>
</CITY>
<ZIP>
</ZIP>

</AGENT>
<OWNER>
<NAME>
</NAME>
<ADDRESS>
</ADDRESS>
<CITY>
</CITY>
<ZIP>
</ZIP>

</OWNER>
<TENANT>
Yes.

</TENANT>
<COMMISION>
15%

</COMMISION>
</CONTACTS>

</RESIDENTIAL-LISTING>

</RESIDENTIAL-LISTINGS>

Example: XSLReportProcessor sample XSL file
This example should not be used as the XSLReportProcessor class is no longer supported.

Note: Read the Code example disclaimer for important legal information.
<?xml version="1.0"?>

<!-- Sample of styling an imagined real estate document. -->
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format" >

<xsl:template match="RESIDENTIAL-LISTINGS">
<fo:root>
<fo:layout-master-set>

<fo:simple-page-master master-name="theMaster">
<fo:region-body region-name="theRegion"/>

644 IBM i: Programming IBM Toolbox for Java

</fo:simple-page-master>
<fo:page-sequence-master master-name="theMaster">

<fo:single-page-master-reference master-name="thePage" />
</fo:page-sequence-master>

</fo:layout-master-set>
<fo:page-sequence master-name="theMaster">
<fo:flow flow-name="theRegion">

<xsl:apply-templates/>
</fo:flow>
</fo:page-sequence>

</fo:root>
</xsl:template>
<xsl:template match="RESIDENTIAL-LISTING">

<fo:block font-family="Times New Roman" font-weight="normal" font-size="24pt"
background-color="silver" padding-before="5px" padding-after="5px"
padding-start="5px" padding-end="5px" border-before-style="solid"
border-before-color="blue" border-after-style="solid" border-after-color="blue"
border-start-style="solid" border-start-color="blue" border-end-style="solid"
border-end-color="blue">

<fo:character character="y" background-color="blue" border-before-style="solid"
border-before-color="yellow" border-after-style="solid" border-after-color="yellow"
border-start-style="solid" border-start-color="yellow" border-end-style="solid"
border-end-color="yellow" />

</fo:block>

</xsl:template>
</xsl:stylesheet>

Examples: Resource classes
This section lists the code examples that are provided throughout the documentation of the IBM Toolbox
for Java resource classes.

Resource and ChangeableResource
v Example: Retrieving an attribute value from RUser, a concrete subclass of Resource
v Example: Setting attribute values for RJob, a concrete subclass of ChangeableResource
v Example: Using generic code to access resources

ResourceList
v Example: Getting and printing the contents of a ResourceList
v Example: Using generic code to access a ResourceList
v Example: Presenting a resource list in a servlet

Presentation
v Example: Using Presentations

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

IBM Toolbox for Java 645

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Examples: Resource list
The following examples show various ways of working with resource lists.
v Example: Getting and printing the contents of a ResourceList
v Example: Using generic code to access a ResourceList
v Example: Presenting a resource list in a servlet

Example: Getting and printing the contents of a ResourceList

One example of a concrete subclass of ResourceList is com.ibm.as400.resource.RJobList, which represents
a list of system jobs. RJobList supports many selection IDs and sort IDs, each of which can be used to
filter or sort the list.This example prints the contents of an RJobList:

// Create an RJobList object to represent a list of jobs.
AS400 system = new AS400("MYSYSTEM", "MYUSERID", "MYPASSWORD");
RJobList jobList = new RJobList(system);

// Filter the list to include only interactive jobs.
jobList.setSelectionValue(RJobList.JOB_TYPE, RJob.JOB_TYPE_INTERACTIVE);

// Sort the list by user name, then job name.
Object[] sortValue = new Object[] { RJob.USER_NAME, RJob.JOB_NAME };
jobList.setSortValue(sortValue);

// Open the list and wait for it to complete.
jobList.open();
jobList.waitForComplete();

// Read and print the contents of the list.
long length = jobList.getListLength();
for(long i = 0; i < length; ++i)
{

System.out.println(jobList.resourceAt(i));
}

// Close the list.
jobList.close();

Code example disclaimer

The following disclaimer applies to all of the IBM Toolbox for Java examples:

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Related information:
RJobList Javadoc

646 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/resource/RJobList.html

Example: Presenting a resource list in a servlet
Use the ResourceListRowData class in conjunction with the HTMLFormConverter or
HTMLTableConverter class to present a resource list in a servlet.
v HTMLFormConverter displays the contents of the resource list as a series of forms, where each form

contains attribute values for a resource in the resource list.
v HTMLTableConverter displays the contents of the resource list as a table, with each row contains

information about a resource in the resource list.

The columns for a ResourceListRowData object are specified as an array of column attribute IDs while
each row represents a resource object.

// Create the resource list. This example creates
// a list of all messages in the current user’s message
// queue.
AS400 system = new AS400("MYSYSTEM", "MYUSERID", "MYPASSWORD");
RMessageQueue messageQueue = new RMessageQueue(system, RMessageQueue.CURRENT);

// Create the ResourceListRowData object. In this example,
// there are four columns in the table. The first column
// contains the icons and names for each message in the
// message queue. The remaining columns contain the text,
// severity, and type for each message.
ResourceListRowData rowdata = new ResourceListRowData(messageQueue,

new Object[] { null, RQueuedMessage.MESSAGE_TEXT, RQueuedMessage.MESSAGE_SEVERITY,
RQueuedMessage.MESSAGE_TYPE });

// Create HTMLTable and HTMLTableConverter objects to
// use for generating and customizing the HTML tables.
HTMLTable table = new HTMLTable();
table.setCellSpacing(6);
table.setBorderWidth(8);

HTMLTableConverter converter = new HTMLTableConverter();
converter.setTable(table);
converter.setUseMetaData(true);

// Generate the HTML table.
String[] html = converter.convert(rowdata);
System.out.println(html[0]);

Example: Retrieving an attribute value from a Resource
One concrete subclass of the IBM Toolbox for Java Resource class is com.ibm.as400.resource.RUser, which
represents an IBM i user. RUser supports many attribute IDs, each of which you can use to get attribute
values.

This example retrieves an attribute value from an RUser:
// Create an RUser object to refer to a specific user.
AS400 system = new AS400("MYSYSTEM", "MYUSERID", "MYPASSWORD");
RUser user = new RUser(system, "AUSERID");

// Get the text description attribute value.
String textDescription = (String)user.getAttributeValue(RUser.TEXT_DESCRIPTION);

Related information:
RUser Javadoc

Example: Setting attribute values for a ChangeableResource
One concrete subclass of ChangeableResource is com.ibm.as400.resource.RJob, which represents a system
job. RJob supports many attribute IDs, each of which you can use to access attribute values.

This example sets two attribute values for an RJob:

IBM Toolbox for Java 647

javadoc/com/ibm/as400/resource/RUser.html

// Create an RJob object to refer to a specific job.
AS400 system = new AS400("MYSYSTEM", "MYUSERID", "MYPASSWORD");
RJob job = new RJob(system, "AJOBNAME", "AUSERID", "AJOBNUMBER");

// Set the date format attribute value.
job.setAttributeValue(RJob.DATE_FORMAT, RJob.DATE_FORMAT_JULIAN);

// Set the country or region ID attribute value.
job.setAttributeValue(RJob.COUNTRY_ID, RJob.USER_PROFILE);

// Commit both attribute changes.
job.commitAttributeChanges();

RJob Javadoc

Example: Using generic code to access resources
You can write generic code to work with any Resource, ResourceList or ChangeableResource subclass.
Such code may improve reusability and maintainability and will work with future Resource, ResourceList
or ChangeableResource subclasses without modification.

Every attribute has an associated attribute meta data object (com.ibm.as400.resource.ResourceMetaData)
that describes various properties of the attribute. These properties include whether or not the attribute is
read only and what the default and possible values are.

Examples

Example: Printing the contents of a ResourceList

Here is an example of generic code that prints some of the contents of a ResourceList:
void printContents(ResourceList resourceList, long numberOfItems) throws ResourceException
{

// Open the list and wait for the requested number of items
// to become available.
resourceList.open();
resourceList.waitForResource(numberOfItems);

for(long i = 0; i < numberOfItems; ++i)
{

System.out.println(resourceList.resourceAt(i));
}

}

Example: Using ResourceMetaData to access every attribute supported by a resource

This is an example of generic code that prints the value of every attribute supported by a resource:
void printAllAttributeValues(Resource resource) throws ResourceException
{

// Get the attribute meta data.
ResourceMetaData[] attributeMetaData = resource.getAttributeMetaData();

// Loop through all attributes and print the values.
for(int i = 0; i < attributeMetaData.length; ++i)
{

Object attributeID = attributeMetaData[i].getID();
Object value = resource.getAttributeValue(attributeID);
System.out.println("Attribute " + attributeID + " = " + value);

}
}

Example: Using ResourceMetaData to reset every attribute of a ChangeableResource

648 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/resource/RJob.html

This is an example of generic code that resets all attributes of a ChangeableResource to their default
values:
void resetAttributeValues(ChangeableResource resource) throws ResourceException
{

// Get the attribute meta data.
ResourceMetaData[] attributeMetaData = resource.getAttributeMetaData();

// Loop through all attributes.
for(int i = 0; i < attributeMetaData.length; ++i)
{

// If the attribute is changeable (not read only), then
// reset its value to the default.
if (! attributeMetaData[i].isReadOnly())
{

Object attributeID = attributeMetaData[i].getID();
Object defaultValue = attributeMetaData[i].getDefaultValue();
resource.setAttributeValue(attributeID, defaultValue);

}
}

// Commit all of the attribute changes.
resource.commitAttributeChanges();

}

Related information:
ResourceMetaData Javadoc

Examples: RFML
This section lists the code examples that are provided throughout the documentation of the IBM Toolbox
for Java RFML component.
v Example: Using RFML compared to using IBM Toolbox for Java Record classes
v Example: RFML source file

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Example: RFML source file
This example RFML source file defines the format of customer records as used in the RFML example
Using RFML compared to using IBM Toolbox for Java Record classes.

This RFML source file might be a text file named qcustcdt.rfml.

Note: Read the Code example disclaimer for important legal information.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE rfml SYSTEM "rfml.dtd">

<rfml version="4.0" ccsid="819">

IBM Toolbox for Java 649

javadoc/com/ibm/as400/resource/ResourceMetaData.html

<recordformat name="cusrec">

<data name="cusnum" type="zoned" length="6" precision="0" init="0"/>
<data name="lstnam" type="char" length="8" ccsid="37" init="A"/>
<data name="init" type="char" length="3" ccsid="37" init="B"/>
<data name="street" type="char" length="13" ccsid="37" init="C"/>
<data name="city" type="char" length="6" ccsid="37" init="D"/>
<data name="state" type="char" length="2" ccsid="37" init="E"/>
<data name="zipcod" type="zoned" length="5" init="1"/>
<data name="cdtlmt" type="zoned" length="4" init="2"/>
<data name="chgcod" type="zoned" length="1" init="3"/>
<data name="baldue" type="zoned" length="6" precision="2" init="4"/>
<data name="cdtdue" type="zoned" length="6" precision="2" init="5"/>

</recordformat>

<recordformat name="cusrec1">

<data name="cusnum" type="zoned" length="6" precision="0" init="0"/>
<data name="lstnam" type="char" length="8" ccsid="37" init="A"/>
<data name="init" type="char" length="3" ccsid="37" init="B"/>
<data name="street" type="char" length="13" ccsid="37" init="C"/>
<data name="city" type="char" length="6" ccsid="37" init="D"/>
<data name="state" type="char" length="2" ccsid="37" init="E"/>
<data name="zipcod" type="zoned" length="5" init="1"/>
<data name="cdtlmt" type="zoned" length="4" init="2"/>
<data name="chgcod" type="zoned" length="1" init="3"/>
<data name="baldue" type="struct" struct="balance"/>
<data name="cdtdue" type="struct" struct="balance"/>

</recordformat>

<recordformat name="cusrecAscii">

<data name="cusnum" type="zoned" length="6" precision="0" init="0"/>
<data name="lstnam" type="char" length="8" init="A"/>
<data name="init" type="char" length="3" init="B"/>
<data name="street" type="char" length="13" init="C"/>
<data name="city" type="char" length="6" init="D"/>
<data name="state" type="char" length="2" init="E"/>
<data name="zipcod" type="zoned" length="5" init="1"/>
<data name="cdtlmt" type="zoned" length="4" init="2"/>
<data name="chgcod" type="zoned" length="1" init="3"/>
<data name="baldue" type="zoned" length="6" precision="2" init="4"/>
<data name="cdtdue" type="zoned" length="6" precision="2" init="5"/>

</recordformat>

<struct name="balance">
<data name="amount" type="zoned" length="6" precision="2" init="7"/>

</struct>

</rfml>

Related reference:
“Example: Using RFML compared to using IBM Toolbox for Java Record classes” on page 409
This example illustrates the differences between using RFML and using the IBM Toolbox for Java Record
classes.

Example: Using a profile token credential to swap the IBM i thread
identity
The following code example shows you how to use a profile token credential to swap the IBM i thread
identity and perform work on behalf of a specific user.

650 IBM i: Programming IBM Toolbox for Java

Note: Read the Code example disclaimer for important legal information.
// Create a single-use ProfileTokenCredential with a 60 second timeout.
AS400 system = new AS400();
ProfileTokenCredential pt = new ProfileTokenCredential();
pt.setSystem(system);
pt.setTimeoutInterval(60);
pt.setTokenType(ProfileTokenCredential.TYPE_SINGLE_USE);

// A valid user ID and password must be substituted.
pt.setTokenExtended("user", "password");

// Swap the OS/400 thread identity, retrieving a credential to
// Swap back to the original identity later.
AS400Credential cr = pt.swap(true);

// Create a second AS400 object
AS400 system2 = new AS400();
CommandCall cmd = new CommandCall(system);

// Perform work under the swapped identity at this point.

// Swap back to the original OS/400 thread identity.
cr.swap();

// Clean up the credentials.
cr.destroy();
pt.destroy();

system.disconnectAllServices();
system2.disconnectAllServices();

Examples from the servlet classes
The following examples show you some of the ways that you can use the servlet classes.
v Example: Using the ListRowData class
v Example: Using the RecordListRowData class
v Example: Using the SQLResultSetRowData class
v Example: Using the HTMLFormConverter class
v Example: Using the ListMetaData class
v Example: Using the SQLResultSetMetaData class
v Example: Presenting a resource list in a servlet

You can also use the servlet and HTML classes together, like in this example.

Code example disclaimer

The following disclaimer applies to all of the IBM Toolbox for Java examples:

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

IBM Toolbox for Java 651

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example: Using ListRowData
The three parts of this example illustrate using the ListRowData class to generate and display HTML.

This example has three parts:
v “Java source that shows how the ListRowData class works”
v “HTML source generated from the Java source by the using HTMLTableConverter”
v “How a browser displays the generated HTML” on page 653

Java source that shows how the ListRowData class works
// Access an existing non-empty data queue
KeyedDataQueue dq = new KeyedDataQueue(systemObject_, "/QSYS.LIB/MYLIB.LIB/MYDQ.DTAQ");

// Create a metadata object.
ListMetaData metaData = new ListMetaData(2);

// Set first column to be the customer ID.
metaData.setColumnName(0, "Customer ID");
metaData.setColumnLabel(0, "Customer ID");
metaData.setColumnType(0, RowMetaDataType.STRING_DATA_TYPE);

// Set second column to be the order to be processed.
metaData.setColumnName(1, "Order Number");
metaData.setColumnLabel(1, "Order Number");
metaData.setColumnType(1, RowMetaDataType.STRING_DATA_TYPE);

// Create a ListRowData object.
ListRowData rowData = new ListRowData();
rowData.setMetaData(metaData);

// Get the entries off the data queue.
KeyedDataQueueEntry data = dq.read(key, 0, "EQ");
while (data != null)
{

// Add queue entry to row data object.
Object[] row = new Object[2];
row[0] = new String(key);
row[1] = new String(data.getData());
rowData.addRow(row);

// Get another entry from the queue.
data = dq.read(key, 0, "EQ");

}

// Create an HTML converter object and convert the rowData to HTML.
HTMLTableConverter conv = new HTMLTableConverter();
conv.setUseMetaData(true);
HTMLTable[] html = conv.convertToTables(rowData);

// Display the output from the converter.
System.out.println(html[0]);

HTML source generated from the Java source by the using HTMLTableConverter

Using the “HTMLTableConverter class” on page 237 in the Java source example above generates the
following HTML code.

<table>
<tr>
<th>Customer ID</th>
<th>Order Number</th>
</tr>
<tr>
<td>777-53-4444</td>
<td>12345-XYZ</td>

652 IBM i: Programming IBM Toolbox for Java

</tr>
<tr>
<td>777-53-4444</td>
<td>56789-ABC</td>
</tr>
</table>

How a browser displays the generated HTML

The following table shows how the HTML source code looks when viewed in a browser.

Customer ID Order Number
777-53-4444 12345-XYZ
777-53-4444 56789-ABC

Example: Using RecordListRowData
This example shows how the RecordListRowData class works, shows HTML source generated by using
the HTMLTableConverted class, and also shows how a browser displays the generated HTML.

This example has three parts:
v Java source that shows how the RecordListRowData class works
v HTML source generated from the Java source by the using HTMLTableConverter
v How a browser displays the generated HTML

Java source that shows how the RecordListRowData class works
// Create a server object.
AS400 mySystem = new AS400 ("mySystem.myComp.com", "UserId", "Password");

// Get the path name for the file.
QSYSObjectPathName file = new QSYSObjectPathName(myLibrary, myFile, "%first%", "mbr");
String ifspath = file.getPath();

// Create a file object that represents the file.
SequentialFile sf = new SequentialFile(mySystem, ifspath);

// Retrieve the record format from the file.
AS400FileRecordDescription recordDescription = new AS400FileRecordDescription(mySystem, ifspath);
RecordFormat recordFormat = recordDescription.retrieveRecordFormat()[0];

// Set the record format for the file.
sf.setRecordFormat(recordFormat);

// Get the records in the file.
Record[] records = sf.readAll();

// Create a RecordListRowData object and add the records.
RecordListRowData rowData = new RecordListRowData(recordFormat);

for (int i=0; i < records.length; i++)
{

rowData.addRow(records[i]);
}

// Create an HTML converter object and convert the rowData to HTML.
HTMLTableConverter conv = new HTMLTableConverter();
conv.setMaximumTableSize(3);
HTMLTable[] html = conv.convertToTables(rowData);

// Display the first HTML table generated by the converter.
System.out.println(html[0]);

IBM Toolbox for Java 653

HTML source generated from the Java source by the using HTMLTableConverter

Using the HTMLTableConverter class in the Java source example above generates the following HTML
code.
<table>
<tr>
<th>CNUM</th>
<th>LNAM</th>
<th>INIT</th>
<th>STR</th>
<th>CTY</th>
<th>STATE</th>
<th>ZIP</th>
<th>CTLMT</th>
<th>CHGCOD</th>
<th>BDUE</th>
<th>CTDUE</th>
</tr>
<tr>
<td>938472</td>
<td>Henning </td>
<td>G K</td>
<td>4859 Elm Ave </td>
<td>Dallas</td>
<td>TX</td>
<td align="right">75217</td>
<td align="right">5000</td>
<td align="right">3</td>
<td align="right">37.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>839283</td>
<td>Jones </td>
<td>B D</td>
<td>21B NW 135 St</td>
<td>Clay </td>
<td>NY</td>
<td align="right">13041</td>
<td align="right">400</td>
<td align="right">1</td>
<td align="right">100.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>392859</td>
<td>Vine </td>
<td>S S</td>
<td>PO Box 79 </td>
<td>Broton</td>
<td>VT</td>
<td align="right">5046</td>
<td align="right">700</td>
<td align="right">1</td>
<td align="right">439.00</td>
<td align="right">0.00</td>
</tr>
</table>

How a browser displays the generated HTML

The following table shows how the HTML source code looks when viewed in a browser.

CNUM LNAM INIT STR CTY STATE ZIP CTLMT CHGCOD BDUE CTDUE

938472 Henning G K 4859 Elm Ave Dallas TX 75217 5000 3 37.00 0.00

654 IBM i: Programming IBM Toolbox for Java

CNUM LNAM INIT STR CTY STATE ZIP CTLMT CHGCOD BDUE CTDUE

839283 Jones B D 21B NW 135 St Clay NY 13041 400 1 100.00 0.00

392859 Vine S S PO Box 79 Broton VT 5046 700 1 439.00 0.00

Example: Using SQLResultSetRowData
This example shows how the SQLResultSetRowData class works, shows the generated HTML source, and
also shows how a browser displays the generated HTML.

This example has three parts:
v Java source that shows how the SQLResultSetRowData class works
v HTML source generated from the Java source by the using HTMLTableConverter
v How a browser displays the generated HTML

Java source that shows how the SQLResultSetRowData class works
// Create a server object.
AS400 mySystem = new AS400 ("mySystem.myComp.com", "UserId", "Password");

// Register and get a connection to the database.
DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver());
Connection connection = DriverManager.getConnection("jdbc:as400://" + mySystem.getSystemName());

// Execute an SQL statement and get the result set.
Statement statement = connection.createStatement();
statement.execute("select * from qiws.qcustcdt");
ResultSet resultSet = statement.getResultSet();

// Create the SQLResultSetRowData object and initialize to the result set.
SQLResultSetRowData rowData = new SQLResultSetRowData(resultSet);

// Create an HTML table object to be used by the converter.
HTMLTable table = new HTMLTable();

// Set descriptive column headers.
String[] headers = {"Customer Number", "Last Name", "Initials",

"Street Address", "City", "State", "Zip Code",
"Credit Limit", "Charge Code", "Balance Due",
"Credit Due"};

table.setHeader(headers);

// Set several formatting options within the table.
table.setBorderWidth(2);
table.setCellSpacing(1);
table.setCellPadding(1);

// Create an HTML converter object and convert the rowData to HTML.
HTMLTableConverter conv = new HTMLTableConverter();
conv.setTable(table);
HTMLTable[] html = conv.convertToTables(rowData);

// Display the HTML table generated by the converter.
System.out.println(html[0]);

HTML source generated from the Java source by the using HTMLTableConverter

Using the HTMLTableConverter class in the Java source example above generates the following HTML
code.
<table border="2" cellpadding="1" cellspacing="1">
<tr>
<th>Customer Number</th>
<th>Last Name</th>
<th>Initials</th>

IBM Toolbox for Java 655

<th>Street Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
<th>Credit Limit</th>
<th>Charge Code</th>
<th>Balance Due</th>
<th>Credit Due</th>
</tr>
<tr>
<td>938472</td>
<td>Henning </td>
<td>G K</td>
<td>4859 Elm Ave </td>
<td>Dallas</td>
<td>TX</td>
<td align="right">75217</td>
<td align="right">5000</td>
<td align="right">3</td>
<td align="right">37.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>839283</td>
<td>Jones </td>
<td
>B D</td>
<td>21B NW 135 St</td>
<td>Clay </td>
<td>NY</td>
<td align="right">13041</td>
<td align="right">400</td>
<td align="right">1</td>
<td align="right">100.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>392859</td>
<td>Vine </td>
<td>S S</td>
<td>PO Box 79 </td>
<td>Broton</td>
<td>VT</td>
<td align="right">5046</td>
<td align="right">700</td>
<td align="right">1</td>
<td align="right">439.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>938485</td>
<td>Johnson </td>
<td>J A</td>
<td>3 Alpine Way </td>
<td>Helen </td>
<td>GA</td>
<td align="right">30545</td>
<td align="right">9999</td>
<td align="right">2</td>
<td align="right">3987.50</td>
<td align="right">33.50</td>
</tr>
<tr>
<td>397267</td>
<td>Tyron </td>
<td>W E</td>
<td>13 Myrtle Dr </td>

656 IBM i: Programming IBM Toolbox for Java

<td>Hector</td>
<td>NY</td>
<td align="right">14841</td>
<td align="right">1000</td>
<td align="right">1</td>
<td align="right">0.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>389572</td>
<td>Stevens </td>
<td>K L</td>
<td>208 Snow Pass</td>
<td>Denver</td>
<td>CO</td>
<td align="right">80226</td>
<td align="right">400</td>
<td align="right">1</td>
<td align="right">58.75</td>
<td align="right">1.50</td>
</tr>
<tr>
<td>846283</td>
<td>Alison </td>
<td>J S</td>
<td>787 Lake Dr </td>
<td>Isle </td>
<td>MN</td>
<td align="right">56342</td>
<td align="right">5000</td>
<td align="right">3</td>
<td align="right">10.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>475938</td>
<td>Doe </td>
<td>J W</td>
<td>59 Archer Rd </td>
<td>Sutter</td>
<td>CA</td>
<td align="right">95685</td>
<td align="right">700</td>
<td align="right">2</td>
<td align="right">250.00</td>
<td align="right">100.00</td>
</tr>
<tr>
<td>693829</td>
<td>Thomas </td>
<td>A N</td>
<td>3 Dove Circle</td>
<td>Casper</td>
<td>WY</td>
<td align="right">82609</td>
<td align="right">9999</td>
<td align="right">2</td>
<td align="right">0.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>593029</td>
<td>Williams</td>
<td>E D</td>
<td>485 SE 2 Ave </td>
<td>Dallas</td>
<td>TX</td>

IBM Toolbox for Java 657

<td align="right">75218</td>
<td align="right">200</td>
<td align="right">1</td>
<td align="right">25.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>192837</td>
<td>Lee </td>
<td>F L</td>
<td>5963 Oak St </td>
<td>Hector</td>
<td>NY</td>
<td align="right">14841</td>
<td align="right">700</td>
<td align="right">2</td>
<td align="right">489.50</td>
<td align="right">0.50</td>
</tr>
<tr>
<td>583990</td>
<td>Abraham </td>
<td>M T</td>
<td>392 Mill St </td>
<td>Isle </td>
<td>MN</td>
<td align="right">56342</td>
<td align="right">9999</td>
<td align="right">3</td>
<td align="right">500.00</td>
<td align="right">0.00</td>
</tr>
</table>

How a browser displays the generated HTML

The following table shows how the HTML source code looks when viewed in a browser.

Customer
Number

Last
Name Initials

Street
Address City State

Zip
Code

Credit
Limit

Charge
Code

Balance
Due

Credit
Due

938472 Henning G K 4859 Elm
Ave

Dallas TX 75217 5000 3 37.00 0.00

839283 Jones B D 21B NW
135 St

Clay NY 13041 400 1 100.00 0.00

392859 Vine S S PO Box 79 Broton VT 5046 700 1 439.00 0.00

938485 Johnson J A 3 Alpine
Way

Helen GA 30545 9999 2 3987.50 33.50

397267 Tyron W E 13 Myrtle
Dr

Hector NY 14841 1000 1 0.00 0.00

389572 Stevens K L 208 Snow
Pass

Denver CO 80226 400 1 58.75 1.50

846283 Alison J S 787 Lake
Dr

Isle MN 56342 5000 3 10.00 0.00

475938 Doe J W 59 Archer
Rd

Sutter CA 95685 700 2 250.00 100.00

693829 Thomas A N 3 Dove
Circle

Casper WY 82609 9999 2 0.00 0.00

593029 Williams E D 485 SE 2
Ave

Dallas TX 75218 200 1 25.00 0.00

658 IBM i: Programming IBM Toolbox for Java

Customer
Number

Last
Name Initials

Street
Address City State

Zip
Code

Credit
Limit

Charge
Code

Balance
Due

Credit
Due

192837 Lee F L 5963 Oak
St

Hector NY 14841 700 2 489.50 0.50

583990 Abraham M T 392 Mill St Isle MN 56342 9999 3 500.00 0.00

Example: Using HTMLFormConverter
While running a web server with servlet support, compile and run the following example to see how the
HTMLFormConverter works.
import java.awt.Color;
import java.io.IOException;
import java.io.PrintWriter;
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.Statement;
import java.util.Enumeration;
import java.util.Hashtable;
import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.as400.util.html.GridLayoutFormPanel;
import com.ibm.as400.util.html.HTMLConstants;
import com.ibm.as400.util.html.HTMLForm;
import com.ibm.as400.util.html.HTMLTable;
import com.ibm.as400.util.html.HTMLTableCaption;
import com.ibm.as400.util.html.HTMLText;
import com.ibm.as400.util.html.LabelFormElement;
import com.ibm.as400.util.html.LineLayoutFormPanel;
import com.ibm.as400.util.html.SubmitFormInput;
import com.ibm.as400.util.html.TextFormInput;

import com.ibm.as400.util.servlet.HTMLFormConverter;
import com.ibm.as400.util.servlet.SQLResultSetRowData;

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400JDBCDriver;

/**
* An example of using the HTMLFormConverter class in a servlet.
*/

public class HTMLFormConverterExample extends HttpServlet

{
private String userId_ = "myUserId";
private String password_ = "myPwd";
private AS400 system_;

private Connection databaseConnection_;

// Perform cleanup before returning to the main HTML form.
public void cleanup()
{

try
{

// Close the database connection.
if (databaseConnection_ != null)
{

databaseConnection_.close();
databaseConnection_ = null;

}

IBM Toolbox for Java 659

}
catch (Exception e)
{

e.printStackTrace ();
}

}

// Convert the row data to formatted HTML.
private HTMLTable[] convertRowData(SQLResultSetRowData rowData)
{

try
{

// Create the converter, which will generate HTML from
// the result set that comes back from the database query.
HTMLFormConverter converter = new HTMLFormConverter();

// Set the form attributes.
converter.setBorderWidth(3);
converter.setCellPadding(2);
converter.setCellSpacing(4);

// Convert the row data to HTML.
HTMLTable[] htmlTable = converter.convertToForms(rowData);
return htmlTable;

}
catch (Exception e)
{

e.printStackTrace ();
return null;

}

}

// Return the response to the client.
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException
{

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.println(showHtmlMain());
out.close();

}

// Handle the data posted to the form.
public void doPost (HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{

SQLResultSetRowData rowData = new SQLResultSetRowData();
HTMLTable[] htmlTable = null;

// Get the current session object or create one if needed.
HttpSession session = request.getSession(true);

ServletOutputStream out = response.getOutputStream();

response.setContentType("text/html");

Hashtable parameters = getRequestParameters (request);

// Retrieve the row data and HTML table values for this session.
rowData = (SQLResultSetRowData) session.getValue("sessionRowData");
htmlTable = (HTMLTable[]) session.getValue("sessionHtmlTable");

660 IBM i: Programming IBM Toolbox for Java

// if this is the first time through, show first record
if (parameters.containsKey("getRecords"))
{

rowData = getAllRecords(parameters, out);

if (rowData != null)
{

// Set the row data value for this session.
session.putValue("sessionRowData", rowData);

// Position to the first record.
rowData.first();

// Convert the row data to formatted HTML.
htmlTable = convertRowData(rowData);

if (htmlTable != null)
{

rowData.first();
session.putValue("sessionHtmlTable", htmlTable);
out.println(showHtmlForRecord(htmlTable, 0));

}
}

}
// If the "Return To Main" button was pressed,
// go back to the main HTML form
else if (parameters.containsKey("returnToMain"))
{

session.invalidate();
cleanup();
out.println(showHtmlMain());

}
// if the "First" button was pressed, show the first record
else if (parameters.containsKey("getFirstRecord"))
{

rowData.first();
out.println(showHtmlForRecord(htmlTable, 0));

}
// if the "Previous" button was pressed, show the previous record
else if (parameters.containsKey("getPreviousRecord"))
{

if (!rowData.previous())
{

rowData.first();
}
out.println(showHtmlForRecord(htmlTable, rowData.getCurrentPosition()));

}
// if the "Next" button was pressed, show the next record
else if (parameters.containsKey("getNextRecord"))
{

if (!rowData.next())
{

rowData.last();
}
out.println(showHtmlForRecord(htmlTable, rowData.getCurrentPosition()));

}
// if the "Last" button was pressed, show the last record
else if (parameters.containsKey("getLastRecord"))
{

rowData.last();
out.println(showHtmlForRecord(htmlTable, rowData.getCurrentPosition()));

}
// if none of the above, there must have been an error
else
{

out.println(showHtmlForError("Internal error occurred. Unexpected parameters."));
}

IBM Toolbox for Java 661

// Save the row data value for this session so the current position
// is updated in the object associated with this session.
session.putValue("sessionRowData", rowData);

// Close the output stream
out.close();

}

// Get all the records from the file input by the user.
private SQLResultSetRowData getAllRecords(Hashtable parameters, ServletOutputStream out)

throws IOException
{

SQLResultSetRowData records = null;

try
{

// Get the system, library and file name from the parameter list.
String sys = ((String) parameters.get("System")).toUpperCase();
String lib = ((String) parameters.get("Library")).toUpperCase();
String file = ((String) parameters.get("File")).toUpperCase();
if ((sys == null || sys.equals("")) ||

(lib == null || lib.equals("")) ||
(file == null || file.equals("")))

{
out.println(showHtmlForError("Invalid system, file or library name."));

}
else
{

// Get the connection to the server.
getDatabaseConnection (sys, out);
if (databaseConnection_ != null)
{

Statement sqlStatement = databaseConnection_.createStatement();

// Query the database to get the result set.
String query = "SELECT * FROM " + lib + "." + file;
ResultSet rs = sqlStatement.executeQuery (query);

boolean rsHasRows = rs.next(); // position cursor to first row

// Show error message if the file contains no record;
// otherwise, set row data to result set data.
if (!rsHasRows)
{

out.println(showHtmlForError("No records in the file."));
}
else
{

records = new SQLResultSetRowData (rs);
}

// Don’t close the Statement before we’re done using
// the ResultSet or bad things may happen.
sqlStatement.close();

}
}

}
catch (Exception e)
{

e.printStackTrace ();
out.println(showHtmlForError(e.toString()));

}

return records;
}

662 IBM i: Programming IBM Toolbox for Java

// Establish a database connection.
private void getDatabaseConnection (String sysName, ServletOutputStream out)

throws IOException
{

if (databaseConnection_ == null)
{

try
{

databaseConnection_ =
DriverManager.getConnection("jdbc:as400://sysName,userId_,password_);

}
catch (Exception e)
{

e.printStackTrace ();
out.println(showHtmlForError(e.toString()));

}
}

}

// Gets the parameters from an HTTP servlet request.
private static Hashtable getRequestParameters (HttpServletRequest request)
{

Hashtable parameters = new Hashtable ();
Enumeration enum = request.getParameterNames();
while (enum.hasMoreElements())
{

String key = (String) enum.nextElement();
String value = request.getParameter (key);
parameters.put (key, value);

}
return parameters;

}

// Get the servlet information.
public String getServletInfo()
{

return "HTMLFormConverterExample";
}

// Perform initialization steps.
public void init(ServletConfig config)
{

try
{

super.init(config);

// Register the JDBC driver
try
{

DriverManager.registerDriver(new AS400JDBCDriver());
}
catch (Exception e)
{

System.out.println("JDBC Driver not found");
}

}
catch (Exception e)
{

e.printStackTrace();
}

}

IBM Toolbox for Java 663

// Set the page header info.
private String showHeader(String title)
{

StringBuffer page = new StringBuffer();
page.append("<html><head><title>" + title + "</title>");
page.append("</head><body bgcolor=\"blanchedalmond\">");
return page.toString ();

}

// Show the HTML page with the appropriate error information.
private String showHtmlForError(String message)
{

String title = "Error";
StringBuffer page = new StringBuffer();
page.append (showHeader (title));
try
{

// Create the HTML Form object
HTMLForm errorForm = new HTMLForm("HTMLFormConverterExample");

// Set up so that doPost() gets called when the form is submitted.
errorForm.setMethod(HTMLForm.METHOD_POST);

// Create a single-column panel to which the
// HTML elements will be added.
GridLayoutFormPanel grid = new GridLayoutFormPanel();

// Create the text element for the error and add it to the panel.
HTMLText text = new HTMLText(message);
text.setBold(true);
text.setColor(Color.red);
grid.addElement(text);

// Create the button to return to main and add it to the panel.
grid.addElement(new SubmitFormInput("returnToMain", "Return to Main"));

// Add the panel to the HTML form.
errorForm.addElement(grid);

page.append(errorForm.toString());
}
catch (Exception e)
{

e.printStackTrace ();
}
page.append("</body></html>");
return page.toString();

}

// Show the HTML form for an individual record.
private String showHtmlForRecord(HTMLTable[] htmlTable, int position)
{

String title = "HTMLFormConverter Example";
StringBuffer page = new StringBuffer();
page.append (showHeader (title));

page.append("<h1>" + title + "</h1>");

try
{

// Create the HTML Form object
HTMLForm recForm = new HTMLForm("HTMLFormConverterExample");

// Set up so that doPost() gets called when the form is submitted.

664 IBM i: Programming IBM Toolbox for Java

recForm.setMethod(HTMLForm.METHOD_POST);

// Set up a single-column panel layout, within which to arrange
// the generated HTML elements.
GridLayoutFormPanel grid = new GridLayoutFormPanel();

// Create and add a table caption that keeps track
// of the current record.
HTMLText recNumText = new HTMLText("Record number: " + (position + 1));
recNumText.setBold(true);
grid.addElement(recNumText);

// Set up a two-column panel layout, within which to arrange
// the table and text to comment on the converter output.
GridLayoutFormPanel tableGrid = new GridLayoutFormPanel(2);
tableGrid.addElement(htmlTable[position]);
HTMLText comment = new HTMLText(" <---- Output from the HTMLFormConverter class");
comment.setBold(true);
comment.setColor(Color.blue);
tableGrid.addElement(comment);

// Add the table line to the panel.
grid.addElement(tableGrid);

// Set up a single-row panel layout, within which to arrange
// the buttons for moving through the record list.
LineLayoutFormPanel buttonLine = new LineLayoutFormPanel();
buttonLine.addElement(new SubmitFormInput("getFirstRecord", "First"));
buttonLine.addElement(new SubmitFormInput("getPreviousRecord", "Previous"));
buttonLine.addElement(new SubmitFormInput("getNextRecord", "Next"));
buttonLine.addElement(new SubmitFormInput("getLastRecord", "Last"));

// Set up another single-row panel layout for the
// Return To Main button.
LineLayoutFormPanel returnToMainLine = new LineLayoutFormPanel();
returnToMainLine.addElement(new SubmitFormInput("returnToMain", "Return to Main"));

// Add the lines containing the buttons to the grid panel.
grid.addElement(buttonLine);
grid.addElement(returnToMainLine);

// Add the panel to the form.
recForm.addElement(grid);

// Add the form to the HTML page.
page.append(recForm.toString());

}
catch (Exception e)
{

e.printStackTrace ();
}

page.append("</body></html>");
return page.toString();

}

// Show the main HTML form (request input for system, file,
// and library name).
private String showHtmlMain()
{

String title = "HTMLFormConverter Example";
StringBuffer page = new StringBuffer();
page.append (showHeader (title));

page.append("<h1>" + title + "</h1>");

IBM Toolbox for Java 665

// Create the HTML Form object
HTMLForm mainForm = new HTMLForm("HTMLFormConverterExample");

try
{

// Set up so that doPost() gets called when the form is submitted.
mainForm.setMethod(HTMLForm.METHOD_POST);

// Add a brief description to the form.
HTMLText desc =

new HTMLText("<P>This example uses the HTMLFormConverter class " +
"to convert data retrieved from a server " +
"file. The converter produces an array of HTML " +
"tables. Each entry in the array is a record from " +
"the file. " +
"Records are displayed one at a time, " +
"giving you buttons to move forward or backward " +
"through the list of records.</P>");

mainForm.addElement(desc);

// Add instructions to the form.
HTMLText instr =

new HTMLText("<P>Please input the name of the server, " +
"and the file and library name for the file you " +
"wish to access. Then push the Show Records " +
"button to continue.</P>");

mainForm.addElement(instr);

// Create a grid layout panel and add the system, file
// and library input fields.
GridLayoutFormPanel panel = new GridLayoutFormPanel(2);

LabelFormElement sysPrompt = new LabelFormElement("Server: ");
TextFormInput system = new TextFormInput("System");
system.setSize(10);

LabelFormElement filePrompt = new LabelFormElement("File name: ");
TextFormInput file = new TextFormInput("File");
file.setSize(10);

LabelFormElement libPrompt = new LabelFormElement("Library name: ");
TextFormInput library = new TextFormInput("Library");
library.setSize(10);

panel.addElement(sysPrompt);
panel.addElement(system);
panel.addElement(filePrompt);
panel.addElement(file);
panel.addElement(libPrompt);
panel.addElement(library);

// Add the panel to the form.
mainForm.addElement(panel);

// Create the submit button and add it to the form.
mainForm.addElement(new SubmitFormInput("getRecords", "Show Records"));

}
catch (Exception e)
{

e.printStackTrace ();
}

page.append(mainForm.toString());
page.append("</body></html>");

666 IBM i: Programming IBM Toolbox for Java

return page.toString();
}

}

The HTML generated by the above example looks like this:
<table border="0">
<tr>
<td>Record number: 1</td>
</tr>
<tr>
<td><table border="0">
<tr>
<td><table border="3" cellpadding="2" cellspacing="4">
<tr>
<th>CUSNUM</th>
<td>839283</td>
</tr>
<tr>
<th>LSTNAM</th>
<td>Jones </td>
</tr>
<tr>
<th>INIT</th>
<td>B D</td>
</tr>
<tr>
<th>STREET</th>
<td>21B NW 135 St</td>
</tr>
<tr>
<th>CITY</th>
<td>Clay </td>
</tr>
<tr>
<th>STATE</th>
<td>NY</td>
</tr>
<tr>
<th>ZIPCOD</th>
<td>13041</td>
</tr>
<tr>
<th>CDTLMT</th>
<td>400</td>
</tr>
<tr>
<th>CHGCOD</th>
<td>1</td>
</tr>
<tr>
<th>BALDUE</th>
<td>100.00</td>
</tr>
<tr>
<th>CDTDUE</th>
<td>0.00</td>
</tr>
</table>
</td>
<td> <!-- Output from the HTMLFormConverter class-->
</td>
</tr>
</table>
</td>
</tr>

IBM Toolbox for Java 667

<tr>
<form>
<td><input type="submit" name="getFirstRecord" value="First" />
<input type="submit" name="getPreviousRecord" value="Previous" />
<input type="submit" name="getNextRecord" value="Next" />
<input type="submit" name="getLastRecord" value="Last" />

</td>
</tr>
<tr>
<td><input type="submit" name="returnToMain" value="Return to Main" />

</td>
</tr>
</table>
</form>

Lights On example for the HTML and servlet classes
This example shows you how the HTML and servlet classes work. It is a general overview. To view this
example, compile and run it with a webserver and browser running.
import java.io.IOException;
import java.io.CharArrayWriter;
import java.io.PrintWriter;
import java.sql.*;
import java.util.Enumeration;
import java.util.Hashtable;
import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.as400.util.html.*;
import com.ibm.as400.util.servlet.*;
import com.ibm.as400.access.*;

/*
An example of using IBM Toolbox for Java classes in a servlet.

Schemas of SQL databases on the server:

File LICENSES
Library . . . LIGHTSON

Field Type Length Nulls
LICENSE CHARACTER 10 NOT NULL
USER_ID CHARACTER 10 NOT NULL WITH DEFAULT
E_MAIL CHARACTER 20 NOT NULL
WHEN_ADDED DATE NOT NULL WITH DEFAULT
TIME_STAMP TIMESTAMP NOT NULL WITH DEFAULT

File REPORTS
Library . . . LIGHTSON

Field Type Length Nulls
LICENSE CHARACTER 10 NOT NULL
REPORTER CHARACTER 10 NOT NULL WITH DEFAULT
DATE_ADDED DATE NOT NULL WITH DEFAULT
TIME_ADDED TIME NOT NULL WITH DEFAULT
TIME_STAMP TIMESTAMP NOT NULL WITH DEFAULT
LOCATION CHARACTER 10 NOT NULL
COLOR CHARACTER 10 NOT NULL
CATEGORY CHARACTER 10 NOT NULL
*/

public class LightsOn extends javax.servlet.http.HttpServlet

{

668 IBM i: Programming IBM Toolbox for Java

private AS400 system_;
private String password_; // password for the server and for the SQL database
private java.sql.Connection databaseConnection_;

public void destroy (ServletConfig config)
{

try {
if (databaseConnection_ != null) {

databaseConnection_.close();
}

}
catch (Exception e) { e.printStackTrace (); }

}

public void doGet (HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{

HttpSession session = request.getSession();

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.println(showHtmlMain());

out.close();
}

public void doPost (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
HttpSession session = request.getSession(true);
ServletOutputStream out = response.getOutputStream();
response.setContentType("text/html");

Hashtable parameters = getRequestParameters (request);

if (parameters.containsKey("askingToReport"))
out.println (showHtmlForReporting ());

else if (parameters.containsKey("askingToRegister"))
out.println (showHtmlForRegistering ());

else if (parameters.containsKey("askingToUnregister"))
out.println(showHtmlForUnregistering());

else if (parameters.containsKey("askingToListRegistered"))
out.println (showHtmlForListingAllRegistered ());

else if (parameters.containsKey("askingToListReported"))
out.println (showHtmlForListingAllReported ());

else if (parameters.containsKey("returningToMain"))
out.println (showHtmlMain ());

else { // None of the above, so assume the user has filled out a form
// and is submitting information. Grab the incoming info
// and do the requested action.

if (parameters.containsKey("submittingReport")) {
String acknowledgement = reportLightsOn (parameters, out);
out.println (showAcknowledgement(acknowledgement));

}

else if (parameters.containsKey("submittingRegistration")) {
String acknowledgement = registerLicense (parameters, out);
out.println (showAcknowledgement(acknowledgement));

}

IBM Toolbox for Java 669

else if (parameters.containsKey("submittingUnregistration")) {
String acknowledgement = unregisterLicense (parameters, out);
out.println (showAcknowledgement(acknowledgement));

}

else {
out.println (showAcknowledgement("Error (internal): " +

"Neither Report, Register, " +
"Unregister, ListRegistered, or ListReported."));

}
}

out.close(); // Close the output stream.

}

// Gets the parameters from an HTTP servlet request, and packages them
// into a hashtable for convenience.
private static Hashtable getRequestParameters (HttpServletRequest request)
{

Hashtable parameters = new Hashtable ();
Enumeration enum = request.getParameterNames();
while (enum.hasMoreElements()) {

String key = (String) enum.nextElement();
String value = request.getParameter (key);
parameters.put (key, value);

}
return parameters;

}

// Removes blanks and hyphens from a String, and sets it to all uppercase.
private static String normalize (String oldString)
{

if (oldString == null || oldString.length() == 0) return null;
StringBuffer newString = new StringBuffer ();
for (int i=0; i<oldString.length(); i++) {

if (oldString.charAt(i) != ’ ’ && oldString.charAt(i) != ’-’)
newString.append (oldString.charAt(i));

}
return newString.toString().toUpperCase();

}

// Composes a list of single-quoted strings.
private static String quoteList (String[] inList)
{

StringBuffer outList = new StringBuffer();
for (int i=0; i<inList.length; i++)
{

outList.append ("’" + inList[i] + "’");
if (i<inList.length-1)

outList.append (",");
}
return outList.toString();

}

public String getServletInfo ()
{

return "Lights-On Servlet";
}

private AS400 getSystem ()
{

try
{

if (system_ == null)

670 IBM i: Programming IBM Toolbox for Java

{
system_ = new AS400();

// Note: It would be better to get these values
// from a properties file.
String sysName = "MYSYSTEM"; // TBD
String userId = "MYUSERID"; // TBD
String password = "MYPASSWD"; // TBD

system_.setSystemName(sysName);
system_.setUserId(userId);
system_.setPassword(password);
password_ = password;

system_.connectService(AS400.DATABASE);
system_.connectService(AS400.FILE);
system_.addPasswordCacheEntry(sysName, userId, password_);

}
}
catch (Exception e) { e.printStackTrace (); system_ = null; }

return system_;
}

public void init (ServletConfig config)
{

boolean rc;

try {
super.init(config);

// Register the JDBC driver.
try {

java.sql.DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver());
}
catch (Exception e)
{

System.out.println("JDBC Driver not found");
}

}
catch (Exception e) { e.printStackTrace(); }

}

private void getDatabaseConnection ()
{

if (databaseConnection_ == null) {
try {

databaseConnection_ = java.sql.DriverManager.getConnection(
"jdbc:as400://" + getSystem().getSystemName() + "/" +
"LIGHTSON", getSystem().getUserId(), password_);

}
catch (Exception e) { e.printStackTrace (); }

}
}

private String registerLicense (Hashtable parameters, ServletOutputStream out)
{

String licenseNum = normalize ((String)parameters.get("licenseNum"));
String eMailAddress = (String)parameters.get("eMailAddress");
StringBuffer acknowledgement = new StringBuffer();

if (licenseNum == null || licenseNum.length() == 0)

IBM Toolbox for Java 671

acknowledgement.append ("Error: License number not specified.\n");

if (eMailAddress == null || eMailAddress.length() == 0)
acknowledgement.append ("Error: Notification e-mail address not specified.\n");

if (acknowledgement.length() == 0)
{

try
{

// Insert the new license number and e-mail address into the database.
getDatabaseConnection ();
Statement sqlStatement = databaseConnection_.createStatement();

// Issue the request.
String cmd = "INSERT INTO LICENSES (LICENSE, E_MAIL) VALUES (" +

quoteList(new String[] {licenseNum, eMailAddress}) + ")";
sqlStatement.executeUpdate(cmd);
sqlStatement.close();

// Acknowledge the request.
acknowledgement.append ("License number " + licenseNum + " has been registered.");
acknowledgement.append ("Notification e-mail address is: " + eMailAddress);

}
catch (Exception e) { e.printStackTrace (); }

}
return acknowledgement.toString();

}

private String unregisterLicense (Hashtable parameters, ServletOutputStream out)
{

String licenseNum = normalize ((String)parameters.get("licenseNum"));
StringBuffer acknowledgement = new StringBuffer();

if (licenseNum == null || licenseNum.length() == 0)
acknowledgement.append ("Error: License number not specified.\n");

if (acknowledgement.length() == 0)
{

try
{

// Remove the specified license number and e-mail address from database.
getDatabaseConnection ();
Statement sqlStatement = databaseConnection_.createStatement();

// Delete the row(s) from the LICENSES database.
String cmd = "DELETE FROM LICENSES WHERE LICENSE = ’" + licenseNum + "’";
sqlStatement.executeUpdate(cmd);
sqlStatement.close();

// Acknowledge the request.
acknowledgement.append ("License number " + licenseNum + " has been unregistered.");

}
catch (Exception e) { e.printStackTrace (); }

}
return acknowledgement.toString();

}

private String reportLightsOn (Hashtable parameters, ServletOutputStream out)
{

String licenseNum = normalize ((String)parameters.get("licenseNum"));
String location = (String)parameters.get("location");
String color = (String)parameters.get("color");
String category = (String)parameters.get("category");
StringBuffer acknowledgement = new StringBuffer();
if (licenseNum == null || licenseNum.length() == 0)

672 IBM i: Programming IBM Toolbox for Java

acknowledgement.append ("Error: License number not specified.");

if (acknowledgement.length() == 0)
{

try
{

// Report "lights on" for a specified vehicle.
getDatabaseConnection ();
Statement sqlStatement = databaseConnection_.createStatement();

// Add an entry to the REPORTS database.
String cmd = "INSERT INTO REPORTS (LICENSE, LOCATION, COLOR, CATEGORY) VALUES (" +

quoteList(new String[] {licenseNum, location, color, category}) + ")";
sqlStatement.executeUpdate(cmd);
sqlStatement.close();

// Acknowledge the request.
acknowledgement.append ("License number " + licenseNum + " has been reported. Thanks!");

}
catch (Exception e) { e.printStackTrace (); }

}
return acknowledgement.toString();

}

private String showHeader (String title)
{

StringBuffer page = new StringBuffer();
page.append("<html><head><title>" + title + "</title>");
page.append("</head><body bgcolor=\"blanchedalmond\">");
return page.toString ();

}

private String showAcknowledgement (String acknowledgement)
{

String title = "Acknowledgement";
StringBuffer page = new StringBuffer();
page.append (showHeader (title));

try {
HTMLForm form = new HTMLForm("LightsOn");
GridLayoutFormPanel grid = new GridLayoutFormPanel();
HTMLText text = new HTMLText(acknowledgement);
if (acknowledgement.startsWith("Error"))

text.setBold(true);
grid.addElement(text);
grid.addElement(new SubmitFormInput("returningToMain", "Home"));
form.addElement(grid);
page.append(form.toString());

}
catch (Exception e) { e.printStackTrace (); }
page.append("</body></html>");
return page.toString();

}

private String showHtmlMain ()
{

String title = "Lights-On tool";
StringBuffer page = new StringBuffer();
page.append (showHeader (title));

page.append("<h1>" + title + "</h1>");

// Create the HTML Form object.

IBM Toolbox for Java 673

HTMLForm mainForm = new HTMLForm("LightsOn");
GridLayoutFormPanel grid = new GridLayoutFormPanel();

try {
// Set up so that doPost() gets called when the form is submitted.
mainForm.setMethod(HTMLForm.METHOD_POST);

// Create some buttons.
grid.addElement(new SubmitFormInput("askingToReport", "Report a vehicle with lights on"));
grid.addElement(new SubmitFormInput("askingToRegister", "Register my license number"));
grid.addElement(new SubmitFormInput("askingToUnregister", "Unregister my license number"));
grid.addElement(new SubmitFormInput("askingToListRegistered", "List all registered licenses"));
grid.addElement(new SubmitFormInput("askingToListReported", "List all vehicles with lights on"));

mainForm.addElement(grid);
}
catch (Exception e) { e.printStackTrace (); }

page.append(mainForm.toString());
page.append("</body></html>");

return page.toString();
}

private String showHtmlForReporting ()
{

String title = "Report a vehicle with lights on";
StringBuffer page = new StringBuffer();
page.append (showHeader (title));

page.append("<h1>" + title + "</h1>");

// Create the HTML Form object.
HTMLForm reportForm = new HTMLForm("LightsOn");
GridLayoutFormPanel grid = new GridLayoutFormPanel(2);

try {
// Set up so that doPost() gets called when the form is submitted.
reportForm.setMethod(HTMLForm.METHOD_POST);

TextFormInput licenseNum = new TextFormInput("licenseNum");
licenseNum.setSize(10);
licenseNum.setMaxLength(10);

// Add elements to the line form
grid.addElement(new LabelFormElement("Vehicle license number:"));
grid.addElement(licenseNum);

// Create a radio button group and add the radio buttons.
RadioFormInputGroup colorGroup = new RadioFormInputGroup("color");

colorGroup.add("color", "white", "white", true);
colorGroup.add("color", "black", "black", false);
colorGroup.add("color", "gray", "gray", false);
colorGroup.add("color", "red", "red", false);
colorGroup.add("color", "yellow", "yellow", false);
colorGroup.add("color", "green", "green", false);
colorGroup.add("color", "blue", "blue", false);
colorGroup.add("color", "brown", "brown", false);

// Create a selection list for category of vehicle.
SelectFormElement category = new SelectFormElement("category");
category.addOption("sedan", "sedan", true);
category.addOption("convertible", "convertibl"); // 10-char field in DB
category.addOption("truck", "truck");
category.addOption("van", "van");

674 IBM i: Programming IBM Toolbox for Java

category.addOption("SUV", "SUV");
category.addOption("motorcycle", "motorcycle");
category.addOption("other", "other");

// Create a selection list for vehicle location (building number).
SelectFormElement location = new SelectFormElement("location");
location.addOption("001", "001", true);
location.addOption("002", "002");
location.addOption("003", "003");
location.addOption("005", "005");
location.addOption("006", "006");
location.addOption("015", "015");

grid.addElement(new LabelFormElement("Color:"));
grid.addElement(colorGroup);

grid.addElement(new LabelFormElement("Vehicle type:"));
grid.addElement(category);

grid.addElement(new LabelFormElement("Building:"));
grid.addElement(location);

grid.addElement(new SubmitFormInput("submittingReport", "Submit report"));
grid.addElement(new SubmitFormInput("returningToMain", "Home"));

reportForm.addElement(grid);
}
catch (Exception e) { e.printStackTrace (); }

page.append(reportForm.toString());

page.append("</body></html>");

return page.toString();
}

private String showHtmlForRegistering ()
{

String title = "Register my license number";
StringBuffer page = new StringBuffer();
page.append (showHeader (title));

page.append("<h1>" + title + "</h1>");

// Create the HTML Form object.
HTMLForm registrationForm = new HTMLForm("LightsOn");

// Set up a two-column panel layout, within which to arrange
// the generated HTML elements.
GridLayoutFormPanel grid = new GridLayoutFormPanel(2);

try {
// Set up so that doPost() gets called when the form is submitted.
registrationForm.setMethod(HTMLForm.METHOD_POST);

TextFormInput licenseNum = new TextFormInput("licenseNum");
licenseNum.setSize(10);
licenseNum.setMaxLength(10);

TextFormInput eMailAddress = new TextFormInput("eMailAddress");
eMailAddress.setMaxLength(20);

grid.addElement(new LabelFormElement("License number:"));
grid.addElement(licenseNum);

grid.addElement(new LabelFormElement("E-mail notification address:"));

IBM Toolbox for Java 675

grid.addElement(eMailAddress);

grid.addElement(new SubmitFormInput("submittingRegistration", "Register"));
grid.addElement(new SubmitFormInput("returningToMain", "Home"));

registrationForm.addElement(grid);
}
catch (Exception e) { e.printStackTrace (); }

page.append(registrationForm.toString());

page.append("</body></html>");

return page.toString();
}

private String showHtmlForUnregistering ()
{

String title = "Unregister my license number";
StringBuffer page = new StringBuffer();
page.append (showHeader (title));

page.append("<h1>" + title + "</h1>");

// Create the HTML Form object.
HTMLForm unregistrationForm = new HTMLForm("LightsOn");
GridLayoutFormPanel grid = new GridLayoutFormPanel(2);

try {
// Set up so that doPost() gets called when the form is submitted.
unregistrationForm.setMethod(HTMLForm.METHOD_POST);

// Create the LineLayoutFormPanel object.
TextFormInput licenseNum = new TextFormInput("licenseNum");
licenseNum.setSize(10);
licenseNum.setMaxLength(10);

grid.addElement(new LabelFormElement("Vehicle license number:"));
grid.addElement(licenseNum);

grid.addElement(new SubmitFormInput("submittingUnregistration", "Unregister"));
grid.addElement(new SubmitFormInput("returningToMain", "Home"));

unregistrationForm.addElement(grid);
}
catch (Exception e) {

e.printStackTrace ();
CharArrayWriter cWriter = new CharArrayWriter();
PrintWriter pWriter = new PrintWriter (cWriter, true);
e.printStackTrace (pWriter);
page.append (cWriter.toString());

}

page.append(unregistrationForm.toString());

page.append("</body></html>");

return page.toString();
}

private String showHtmlForListingAllRegistered ()
{

String title = "All registered licenses";
StringBuffer page = new StringBuffer();
page.append (showHeader (title));

676 IBM i: Programming IBM Toolbox for Java

try
{

// Create the HTML Form object.
HTMLForm mainForm = new HTMLForm("LightsOn");

// Set up a single-column panel layout, within which to arrange
// the generated HTML elements.
GridLayoutFormPanel grid = new GridLayoutFormPanel();

// Specify the layout for the generated table.
HTMLTable table = new HTMLTable();
table.setAlignment(HTMLConstants.LEFT);
table.setBorderWidth(3);

// Create and add the table caption and header.
HTMLTableCaption caption = new HTMLTableCaption();
caption.setAlignment(HTMLConstants.TOP);
caption.setElement(title);
table.setCaption(caption);
table.setHeader(new String[] { "License", "Date added" });

// Create the converter, which will generate table HTML from
// the result set that comes back from the database query.
HTMLTableConverter converter = new HTMLTableConverter();
converter.setTable(table);

getDatabaseConnection ();
Statement sqlStatement = databaseConnection_.createStatement();

// First pre-query the database to verify that it’s not empty.
String query = "SELECT COUNT(*) FROM LICENSES";
ResultSet rs = sqlStatement.executeQuery (query);
rs.next(); // position cursor to first row
int rowCount = rs.getInt(1);

if (rowCount == 0) {
page.append ("No vehicles have been reported.");

}
else {

query = "SELECT LICENSE,WHEN_ADDED FROM LICENSES";
rs = sqlStatement.executeQuery (query);
SQLResultSetRowData rowData = new SQLResultSetRowData (rs);
HTMLTable[] generatedHtml = converter.convertToTables(rowData);
grid.addElement(generatedHtml[0]);

}
sqlStatement.close();
// Note: Mustn’t close statement before we’re done using result set.

grid.addElement(new SubmitFormInput("returningToMain", "Home"));

mainForm.addElement(grid);
page.append(mainForm.toString());

}
catch (Exception e) { e.printStackTrace (); }
page.append("</body></html>");
return page.toString();

}

private String showHtmlForListingAllReported ()
{

String title = "All vehicles with lights on";
StringBuffer page = new StringBuffer();
page.append (showHeader (title));

try

IBM Toolbox for Java 677

{
// Create the HTML Form object.
HTMLForm form = new HTMLForm("LightsOn");

// Set up a single-column panel layout, within which to arrange
// the generated HTML elements.
GridLayoutFormPanel grid = new GridLayoutFormPanel();

// Specify the layout for the generated table.
HTMLTable table = new HTMLTable();
table.setAlignment(HTMLConstants.LEFT);
table.setBorderWidth(3);

// Create and add the table caption and header.
HTMLTableCaption caption = new HTMLTableCaption();
caption.setAlignment(HTMLConstants.TOP);
caption.setElement(title);
table.setCaption(caption);
table.setHeader(new String[] { "License", "Color", "Category", "Date", "Time" });

// Create the converter, which will generate table HTML from
// the result set that comes back from the database query.
HTMLTableConverter converter = new HTMLTableConverter();
converter.setTable(table);

getDatabaseConnection ();
Statement sqlStatement = databaseConnection_.createStatement();

// First pre-query the database to verify that it’s not empty.
String query = "SELECT COUNT(*) FROM REPORTS";
ResultSet rs = sqlStatement.executeQuery (query);
rs.next(); // position cursor to first row
int rowCount = rs.getInt(1);

if (rowCount == 0) {
page.append ("No vehicles have been reported.");

}
else {

query = "SELECT LICENSE,COLOR,CATEGORY,DATE_ADDED,TIME_ADDED FROM REPORTS";
rs = sqlStatement.executeQuery (query);
SQLResultSetRowData rowData = new SQLResultSetRowData (rs);
HTMLTable[] generatedHtml = converter.convertToTables(rowData);
grid.addElement(generatedHtml[0]);

}
sqlStatement.close();
// Note: Mustn’t close statement before we’re done using result set.

grid.addElement(new SubmitFormInput("returningToMain", "Home"));
form.addElement(grid);
page.append(form.toString());

}
catch (Exception e) { e.printStackTrace (); }
page.append("</body></html>");
return page.toString();

}

}

Simple programming examples
These examples show some of the ways you can begin to code your own Java programs using the IBM
Toolbox for Java classes. Meant for programmers just beginning to use IBM Toolbox for Java classes, these
examples include detailed explanations about key lines in the code.

If you want some help getting started, see Writing your first IBM Toolbox for Java program.

678 IBM i: Programming IBM Toolbox for Java

For links to many of the other examples provided in the IBM Toolbox for Java information, see Code
examples.

Use the following list to view the simple programming examples:
v Calling commands
v Using message queues
v Using record-level access
v Using JDBC classes to create and populate a table
v Displaying a list of server jobs in a GUI

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Writing your first IBM Toolbox for Java program
To begin this simple exercise, you must have installed Java on your workstation.

You can decide which version you want to install by reviewing Requirements for running Java
applications.

After you have Java installed on your client, complete the following tasks:
1. Copy jt400.jar to the workstation.
2. Add jt400.jar to the CLASSPATH on your workstation by appending the full path of the JAR file to

the CLASSPATH. For example, when the jt400.jar file resides in the c:\lib directory on your
workstation (running Windows), add the following to the end of your CLASSPATH statement:

;c:\lib\jt400.jar

3. Open a text editor and type the first simple programming example

Note: Make sure to leave out the text that refers to the Notes (for example, Note 1, Note 2, and so
on). Save the new document with the name CmdCall.java.

4. Start a command session on your workstation and use the following command to compile the simple
programming example:

javac CmdCall.java

5. In the command session, type the following command to run the simple programming example:
java CmdCall

[Simple programming examples]

Example: Using CommandCall
This example uses the IBM Toolbox for Java access class CommandCall.

Use the following as an example for your program.

IBM Toolbox for Java 679

Note: Read the Code example disclaimer for important legal information.
//
//
// This source is an example of "Job List".
//
///
//
// The access classes are in the com.ibm.as400.access.package.
// Import this package to use the IBM Toolbox for Java classes.
//
///

import com.ibm.as400.access.*;

public class CmdCall
{

public static void main(String[] args)
{

// Like other Java classes, IBM Toolbox for Java classes
// throw exceptions when something goes wrong. These must
// be caught by programs that use IBM Toolbox for Java.
try Note 1
{

AS400 system = new AS400();

CommandCall cc = new CommandCall(system); Note 2

cc.run("CRTLIB MYLIB"); Note 3

AS400Message[] ml = cc.getMessageList(); Note 4

for (int i=0; i<ml.length; i++)
{

System.out.println(ml[i].getText()); Note 5
}

}
catch (Exception e)
{

e.printStackTrace();
}

System.exit(0);
}

}

1. IBM Toolbox for Java uses the "AS400" object to identify the target server. If you construct the AS400
object with no parameters, IBM Toolbox for Java prompts for the system name, userid and password.
The AS400 class also includes a constructor that takes the system name, userid and password.

2. Use the IBM Toolbox for Java CommandCall object to send commands to the server. When you create
the CommandCall object, you pass it an AS400 object so that it knows which server is the target of the
command.

3. Use the run() method on the command call object to run a command.
4. The result of running a command is a list of IBM i messages. IBM Toolbox for Java represents these

messages as AS400Message objects. When the command is complete, you get the resulting messages
from the CommandCall object.

5. Print the message text. Also available are the message ID, message severity, and other information.
This program prints only the message text.

Example: Using message queues (part 1 of 3)
This source is an example of IBM Toolbox for Java message queue.

[Next part]

680 IBM i: Programming IBM Toolbox for Java

Use the following as an example for your program.

Note: Read the Code example disclaimer for important legal information.
//
//
// Example using the Message Queue function of the IBM Toolbox for Java
//
// This source is an example of IBM Toolbox for Java "Message Queue".
//
//

package examples; Note 1

import java.io.*;
import java.util.*;

import com.ibm.as400.access.*; Note 2

public class displayMessages extends Object
{

public static void main(String[] parameters) Note 3
{

displayMessages me = new displayMessages();
me.Main(parameters); Note 4

System.exit(0); Note 5
}

void displayMessage()
{
}

void Main(String[] parms)
{

try Note 6
{

// IBM Toolbox for Java code goes here
}
catch (Exception e)
{

e.printStackTrace(); Note 7
}

}
}

1. This class is in the 'examples' package. Java uses packages to avoid name conflicts between Java class
files.

2. This line makes all of the IBM Toolbox for Java classes in the access package available to this
program. The classes in the access package have the common prefix com.ibm.as400. By using an
import statement, the program can refer to a class using just its name, not its fully-qualified name. For
example, you can reference the AS400 class by using AS400, instead of com.ibm.as400.AS400.

3. This class has a main method; therefore, it can be run as an application. To invoke the program, you
run java examples.displayMessages. Note that case must match when running the program. Because
an IBM Toolbox for Java class is used, jt400.zip must be in the classpath environment variable.

4. The main method mentioned in Note 3 is static. One of the restrictions of static methods is that static
methods can call only other static methods in their class. To avoid this restriction, many java
programs create an object, and then do initialization processing in a method called Main. The Main()
method can call any other method in the displayMessages object.

IBM Toolbox for Java 681

5. The IBM Toolbox for Java creates threads on behalf of the application to carry out IBM Toolbox for
Java activity. If the program does not issue System.exit(0) at termination time, the program may not
terminate normally. For example, suppose this program was run from a Windows 95 DOS prompt.
Without this line, the command prompt does not return when the program finished. The user has to
enter Ctrl-C to get a command prompt.

6. The IBM Toolbox for Java code throws exceptions that your program must catch.
7. This program displays the text of the exception while the program is performing error processing.

Exceptions thrown by the IBM Toolbox for Java are translated, so the text of the exception will be the
same as the language of the workstation.

[Next part]

Example: Using message queues (part 2 of 3)
This source is an example of IBM Toolbox for Java message queue.

[Previous part | Next part]

Use the following as an example for your program.

Note: Read the Code example disclaimer for important legal information.
//
//
// Example using the Message Queue function of the IBM Toolbox for Java
//
// This source is an example of IBM Toolbox for Java "Message Queue".
//
//

package examples;

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class displayMessages extends Object
{

public static void main(String[] parameters)
{

displayMessages me = new displayMessages();

me.Main(parameters);

System.exit(0);
}

void displayMessage()
{
}

void Main(String[] parms)
{

try
{

AS400 system = new AS400(); Note 1

if (parms.length > 0)
system.setSystemName(parms[0]); Note 2

}
catch (Exception e)

682 IBM i: Programming IBM Toolbox for Java

{
e.printStackTrace();

}
}

}

1. A program uses the AS400 object to designate which server to connect to. With one exception, all
programs that need resources from a server must have an AS400 object. The exception is JDBC. If
your program uses JDBC, then the IBM Toolbox for Java JDBC driver creates the AS400 object for the
program.

2. This program assumes the first command line parameter is the name of the server. If a parameter is
passed to the program, the setSystemName method of the AS400 object is used to set the system
name. The AS400 object also needs server sign-on information:
v If the program is running on a workstation, the IBM Toolbox for Java program prompts the user for

a user ID and password. Note: If a system name is not specified as a command line parameter, the
AS400 object also prompts for the system name.

v If the program is running on the IBM i JVM, then the user ID and password of the user running the
Java program is used. In this case, the user does not specify a system name, but lets the system
name default to the name of the system that the program is running on.

[Previous part | Next part]

Example: Using message queues (part 3 of 3)
This source is an example of IBM Toolbox for Java message queue.

[Previous part]

Use the following as an example for your program.

Note: Read the Code example disclaimer for important legal information.
//
//
// Example using the Message Queue function of the IBM Toolbox for Java
//
// This source is an example of IBM Toolbox for Java "Message Queue".
//
//

package examples;

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class displayMessages extends Object
{

public static void main(String[] parameters)
{

displayMessages me = new displayMessages();

me.Main(parameters);

System.exit(0);
}

void displayMessage()
{
}

IBM Toolbox for Java 683

void Main(String[] parms)
{

try
{

AS400 system = new AS400();

if (parms.length > 0)
system.setSystemName(parms[0]);

MessageQueue queue = new MessageQueue(system, MessageQueue.CURRENT); Note 1

Enumeration e = queue.getMessages(); Note 2

while (e.hasMoreElements())
{

QueuedMessage message = (QueuedMessage) e.nextElement(); Note 3
System.out.println(message.getText()); Note 4

}
}
catch (Exception e)
{

e.printStackTrace();
}

}
}

1. The purpose of this program is to display messages in a server message queue. The MessageQueue
object of the IBM Toolbox for Java is used for this task. When the message queue object is
constructed, the parameters are the AS400 object and the message queue name. The AS400 object
indicates which server contains the resource, and the message queue name identifies which message
queue on the server. In this case, a constant is used, which tells the message queue object to access the
queue of the signed-on user.

2. The message queue object gets a list of messages from the server. A connection to the server is made
at this point.

3. Remove a message from the list. The message is in the IBM Toolbox for Java program's
QueuedMessage object.

4. Print the text of the message.

[Previous part]

Example: Using record-level access (part 1 of 2)
This program will prompt the userfor the name of the server and the file to display. The file must exist
and contain records. Each record in the file will be displayed to System.out.

[Next part]

Use the following as an example for your program.

Note: Read the Code example disclaimer for important legal information.
//
//
// Record level access example. This program will prompt the user
// for the name of the server and the file to display. The file must exist
// and contain records. Each record in the file will be displayed
// to System.out.
//
// Calling syntax: java RLSequentialAccessExample
//
// This source is an example of IBM Toolbox for Java "RecordLevelAccess"

684 IBM i: Programming IBM Toolbox for Java

//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class RLSequentialAccessExample
{

public static void main(String[] parameters)
{

BufferedReader inputStream = new BufferedReader(new InputStreamReader(System.in),1);

String systemName = "";
String library = "";
String file = "";
String member = "";

System.out.println();
try
{

System.out.print("System name: ");
systemName = inputStream.readLine();

System.out.print("Library in which the file exists: ");
library = inputStream.readLine();

System.out.print("File name: ");
file = inputStream.readLine();

System.out.print("Member name (press enter for first member): ");
member = inputStream.readLine();
if (member.equals(""))
{

member = "*FIRST";
}

System.out.println();
}
catch (Exception e)
{

System.out.println("Error obtaining user input.");
e.printStackTrace();
System.exit(0);

}

AS400 system = new AS400(systemName); Note 1
try
{

system.connectService(AS400.RECORDACCESS);
}
catch(Exception e)
{

System.out.println("Unable to connect for record level access.");
System.out.println("Check the programmer’s guide setup file for

special instructions regarding record level access");
e.printStackTrace();
System.exit(0);

}

QSYSObjectPathName filePathName = new QSYSObjectPathName(library, file, member, "MBR"); Note 2

SequentialFile theFile = new SequentialFile(system, filePathName.getPath()); Note 3

IBM Toolbox for Java 685

AS400FileRecordDescription recordDescription =
new AS400FileRecordDescription(system, filePathName.getPath());

try
{

RecordFormat[] format = recordDescription.retrieveRecordFormat(); Note 4

theFile.setRecordFormat(format[0]); Note 5

theFile.open(AS400File.READ_ONLY, 100, AS400File.COMMIT_LOCK_LEVEL_NONE); Note 6

System.out.println("Displaying file " + library.toUpperCase() + "/" +
file.toUpperCase() + "(" + theFile.getMemberName().trim() + "):");

Record record = theFile.readNext(); Note 7
while (record != null)
{

System.out.println(record);
record = theFile.readNext();

}
System.out.println();

theFile.close(); Note 8

system.disconnectService(AS400.RECORDACCESS); Note 9
}
catch (Exception e)
{

System.out.println("Error occurred attempting to display the file.");
e.printStackTrace();

try
{

// Close the file
theFile.close();

}
catch(Exception x)
{
}

system.disconnectService(AS400.RECORDACCESS);
System.exit(0);

}

// Make sure that the application ends; see readme for details
System.exit(0);

}
}

1. This line of code creates an AS400 object and connects to the record-level access service.
2. This line creates a QSYSObjectPathName object that obtains the integrated file system path name form

of the object to be displayed.
3. This statement creates an object that represents an existing sequential file on the server you are

connected to. This sequential file is the file that will be displayed.
4. These lines retrieve the record format of the file.
5. This line sets the record format for the file.
6. This line opens the selected file for reading. It will read 100 records at a time, when it is possible.

686 IBM i: Programming IBM Toolbox for Java

7. This line of code reads each record in sequence.
8. This line closes the file.
9. This line disconnects from the record-level access service.

[Next part]

Example: Using record-level access (part 2 of 2)
This example demonstrates the use of record level access.

[Previous part]

Use the following as an example for your program.

Note: Read the Code example disclaimer for important legal information.
//
//
// Record level access example.
//
// Calling syntax: java RLACreateExample
//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class RLACreateExample
{

public static void main(String[] args)
{

AS400 system = new AS400(args[0]);
String filePathName = "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/MBR1.MBR"; Note 1

try
{

SequentialFile theFile = new SequentialFile(system, filePathName);

// Begin Note Two
CharacterFieldDescription lastNameField =

new CharacterFieldDescription(new AS400Text(20), "LNAME");
CharacterFieldDescription firstNameField =

new CharacterFieldDescription(new AS400Text(20), "FNAME");
BinaryFieldDescription yearsOld =

new BinaryFieldDescription(new AS400Bin4(), "AGE");

RecordFormat fileFormat = new RecordFormat("RF");
fileFormat.addFieldDescription(lastNameField);
fileFormat.addFieldDescription(firstNameField);
fileFormat.addFieldDescription(yearsOld);

theFile.create(fileFormat, "A file of names and ages"); Note 2
// End Note Two

theFile.open(AS400File.READ_WRITE, 1, AS400File.COMMIT_LOCK_LEVEL_NONE);

// Begin Note Three
Record newData = fileFormat.getNewRecord();
newData.setField("LNAME", "Doe");
newData.setField("FNAME", "John");
newData.setField("AGE", new Integer(63));

theFile.write(newData); Note 3
// End Note Three

IBM Toolbox for Java 687

theFile.close();
}
catch(Exception e)
{

System.out.println("An error has occurred: ");
e.printStackTrace();

}

system.disconnectService(AS400.RECORDACCESS);

System.exit(0);
}

}

1. (args[0]) in the previous line and MYFILE.FILE are pieces of code that are prerequisites for the rest of
the example to run. The program assumes that the library MYLIB exists on the server and that the
user has access to it.

2. The text within the Java comments labeled "Begin Note Two" and "End Note Two" shows how to
create a record format yourself instead of getting the record format from an existing file. The last line
in this block creates the file on the server.

3. The text within the Java comments labeled "Begin Note Three" and "End Note Three" shows a way to
create a record and then write it to a file.

[Previous part]

Example: Using JDBC classes to create and populate a table (part 1 of 2)
This program uses the IBM Toolbox for Java JDBC driver to create and populate a table.

[Next part]

Use the following as an example for your program.

Note: Read the Code example disclaimer for important legal information.
//
//
// JDBCPopulate example. This program uses the IBM Toolbox for Java JDBC driver
// to create and populate a table.
//
// Command syntax:
// JDBCPopulate system collectionName tableName
//
// For example,
// JDBCPopulate MySystem MyLibrary MyTable
//
// This source is an example of IBM Toolbox for Java JDBC driver.
//
//

import java.sql.*;

public class JDBCPopulate
{

private static final String words[]
= { "One", "Two", "Three", "Four", "Five",

"Six", "Seven", "Eight", "Nine", "Ten",
"Eleven", "Twelve", "Thirteen", "Fourteen", "Fifteen",
"Sixteen", "Seventeen","Eighteen", "Nineteen", "Twenty" };

public static void main (String[] parameters)
{

688 IBM i: Programming IBM Toolbox for Java

if (parameters.length != 3) {
System.out.println("");
System.out.println("Usage:");
System.out.println("");
System.out.println(" JDBCPopulate system collectionName tableName");
System.out.println("");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println("");
System.out.println(" JDBCPopulate MySystem MyLibrary MyTable");
System.out.println("");
return;

}

String system = parameters[0];
String collectionName = parameters[1];
String tableName = parameters[2];

Connection connection = null;

try {
DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver()); Note 1

connection = DriverManager.getConnection ("jdbc:as400://"
+ system + "/" + collectionName); Note 2

try {
Statement dropTable = connection.createStatement ();
dropTable.executeUpdate ("DROP TABLE " + tableName); Note 3

}
catch (SQLException e) {
}

Statement createTable = connection.createStatement ();
createTable.executeUpdate ("CREATE TABLE " + tableName

+ " (I INTEGER, WORD VARCHAR(20), SQUARE INTEGER, "
+ " SQUAREROOT DOUBLE)"); Note 4

PreparedStatement insert = connection.prepareStatement ("INSERT INTO "
+ tableName + " (I, WORD, SQUARE, SQUAREROOT) "
+ " VALUES (?, ?, ?, ?)"); Note 5

for (int i = 1; i <= words.length; ++i) {
insert.setInt (1, i);
insert.setString (2, words[i-1]);
insert.setInt (3, i*i);
insert.setDouble (4, Math.sqrt(i));
insert.executeUpdate (); Note 6

}

System.out.println ("Table " + collectionName + "." + tableName
+ " has been populated.");

}
catch (Exception e) {

System.out.println ();
System.out.println ("ERROR: " + e.getMessage());

}
finally {

try {
if (connection != null)

connection.close (); Note 7
}
catch (SQLException e) {

IBM Toolbox for Java 689

// Ignore.
}

}

System.exit (0);
}

}

1. This line loads the IBM Toolbox for Java JDBC driver. A JDBC driver is necessary to mediate between
JDBC and the database you are working with.

2. This statement connects to the database. A prompt will appear for the user ID and password. A
default SQL schema is provided so that you will not need to qualify the table name in SQL
statements.

3. These lines delete the table if it already exists.
4. These lines create the table.
5. This line prepares a statement that will insert rows into the table. Because you will be executing this

statement several times, you should use a PreparedStatement and parameter markers.
6. This block of code populates the table for you; every time the loop is executed, it inserts a row into

the table.
7. Now that the table has been created and filled in, this statement closes the connection to the database.

[Next part]

Example: Using JDBC classes to create and populate a table (part 2 of 2)
This program uses the IBM Toolbox for Java JDBC driver to query a table and output its contents.

[Previous part]

Use the following as an example for your program.

Note: Read the Code example disclaimer for important legal information.
//
//
// JDBCQuery example. This program uses the IBM Toolbox for Java JDBC driver to
// query a table and output its contents.
//
// Command syntax:
// JDBCQuery system collectionName tableName
//
// For example,
// JDBCQuery MySystem qiws qcustcdt
//
// This source is an example of IBM Toolbox for Java JDBC driver.
//
//

import java.sql.*;

public class JDBCQuery
{

// Format a string so that it has the specified width.
private static String format (String s, int width)
{

String formattedString;

// The string is shorter than specified width,
// so we need to pad with blanks.
if (s.length() < width) {

StringBuffer buffer = new StringBuffer (s);

690 IBM i: Programming IBM Toolbox for Java

for (int i = s.length(); i < width; ++i)
buffer.append (" ");

formattedString = buffer.toString();
}

// Otherwise, we need to truncate the string.
else

formattedString = s.substring (0, width);

return formattedString;
}

public static void main (String[] parameters)
{

// Check the input parameters.
if (parameters.length != 3) {

System.out.println("");
System.out.println("Usage:");
System.out.println("");
System.out.println(" JDBCQuery system collectionName tableName");
System.out.println("");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println("");
System.out.println(" JDBCQuery mySystem qiws qcustcdt");
System.out.println("");
return;

}

String system = parameters[0];
String collectionName = parameters[1];
String tableName = parameters[2];

Connection connection = null;

try {

DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver()); Note 1

// Get a connection to the database. Since we do not
// provide a user id or password, a prompt will appear.
connection = DriverManager.getConnection ("jdbc:as400://" + system);
DatabaseMetaData dmd = connection.getMetaData (); Note 2

// Execute the query.
Statement select = connection.createStatement ();
ResultSet rs = select.executeQuery ("SELECT * FROM "

+ collectionName + dmd.getCatalogSeparator() + tableName); Note 3

// Get information about the result set. Set the column
// width to whichever is longer: the length of the label
// or the length of the data.
ResultSetMetaData rsmd = rs.getMetaData ();
int columnCount = rsmd.getColumnCount (); Note 4
String[] columnLabels = new String[columnCount];
int[] columnWidths = new int[columnCount];
for (int i = 1; i <= columnCount; ++i) {

columnLabels[i-1] = rsmd.getColumnLabel (i);
columnWidths[i-1] = Math.max (columnLabels[i-1].length(),

rsmd.getColumnDisplaySize (i)); Note 5
}

// Output the column headings.
for (int i = 1; i <= columnCount; ++i) {

System.out.print (format (rsmd.getColumnLabel(i), columnWidths[i-1]));
System.out.print (" ");

IBM Toolbox for Java 691

}
System.out.println ();

// Output a dashed line.
StringBuffer dashedLine;
for (int i = 1; i <= columnCount; ++i) {

for (int j = 1; j <= columnWidths[i-1]; ++j)
System.out.print ("-");

System.out.print (" ");
}
System.out.println ();

// Iterate throught the rows in the result set and output
// the columns for each row.
while (rs.next ()) {

for (int i = 1; i <= columnCount; ++i) {
String value = rs.getString (i);
if (rs.wasNull ())

value = "<null>"; Note 6
System.out.print (format (value, columnWidths[i-1]));
System.out.print (" ");

}
System.out.println ();

}

}

catch (Exception e) {
System.out.println ();
System.out.println ("ERROR: " + e.getMessage());

}

finally {

// Clean up.
try {

if (connection != null)
connection.close ();

}
catch (SQLException e) {

// Ignore.
}

}

System.exit (0);
}

}

1. This line loads the IBM Toolbox for Java JDBC driver. A JDBC driver mediates between JDBC and the
database with which you are working.

2. This line retrieves the connection's meta data, an object that describes many of the characteristics of
the database.

3. This statement executes the query on the specified table.
4. These lines retrieve information about the table.
5. These lines set the column width to either the length of the label or the length of the data, whichever

is longer.
6. This block of code iterates through all of the rows in the table and displays the contents of each

column in each row.

[Previous part]

692 IBM i: Programming IBM Toolbox for Java

Example: Displaying a list of server jobs in a GUI
This example uses the IBM Toolbox for Java VJobList class.

Note: Read the Code example disclaimer for important legal information.
//
//
// Example using the vaccess class, VJobList.
//
// This source is an example of "Job List".
//
//

package examples; Note 1

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*; Note 2

import javax.swing.*; Note 3
import java.awt.*;
import java.awt.event.*;

public class GUIExample
{

public static void main(String[] parameters) Note 4
{

GUIExample example = new GUIExample(parameters);

}

public GUIExample(String[] parameters)
{

try Note 5
{

// Create an AS400 object.
//The system name was passed as the first command line argument.

AS400 system = new AS400 (parameters[0]); Note 6

VJobList jobList = new VJobList (system); Note 7

// Create a frame.
JFrame frame = new JFrame ("Job List Example"); Note 8

// Create an error dialog adapter. This will display any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (frame); Note 9

// Create an explorer pane to present the job list.
AS400ExplorerPane explorerPane = new AS400ExplorerPane (jobList); Note 10

explorerPane.addErrorListener (errorHandler); Note 11

// Use load to load the information from the system.
explorerPane.load(); Note 12

// When the frame closes, exit the program.
frame.addWindowListener (new WindowAdapter () Note 13
{

public void windowClosing (WindowEvent event)
{

System.exit(0);
}

});

// Layout the frame with the explorer pane.
frame.getContentPane().setLayout(new BorderLayout());
frame.getContentPane().add("Center", explorerPane); Note 14

IBM Toolbox for Java 693

frame.pack();
frame.show(); Note 15
}

catch (Exception e)
{

e.printStackTrace(); Note 16
}
System.exit(0); Note 17

}
}

1. This class is in the examples package. Java uses packages to avoid name conflicts between Java class
files.

2. This line makes all of the IBM Toolbox for Java classes in the vaccess package available to this
program. The classes in the vaccess package have the common prefix com.ibm.as400.vaccess. By
using an import statement, the program calls the name instead of the package plus name. For
example, you can reference the AS400ExplorerPane class by using AS400ExplorerPane, not
com.ibm.as400.AS400ExplorerPane.

3. This line makes all of the Java Foundation Classes (JFC) in the Swing package available to this
program. Java programs that use the IBM Toolbox for Java vaccess (GUI) classes need JDK 1.1.2 plus
Java Swing 1.0.3 from Sun Microsystems, Inc. Swing is available with Sun's JFC 1.1.

4. This class has a main method so it can be run as an application. To invoke the program, run "java
examples.GUIExample serverName", where serverName is the name of your server. Either the
jt400.zip or jt400.jar must be in your classpath for this to work.

5. The IBM Toolbox for Java code throws exceptions that your program must catch.
6. The AS400 class is used by IBM Toolbox for Java. This class manages sign-on information, creates

and maintains socket connections, and sends and receives data. In this example, the program will
pass the server name to the AS400 object.

7. The VJobList class is used by the IBM Toolbox for Java to represent a list of server jobs that can be
displayed in a vaccess (GUI) component. Notice that the AS400 object is used to specify the server
on which the list resides.

8. This line constructs a frame or a top-level window that will be used to display the job list.
9. ErrorDialogAdapter is an IBM Toolbox for Java graphical user interface (GUI) component that is

created to automatically display a dialog window whenever an error event occurs in the application.
10. This line creates an AS400ExplorerPane, a graphical user interface (GUI) that represents a hierarchy

of objects within a server resource. The AS400ExplorerPane presents a tree on the left side rooted at
the VJobList and the details of the resource in the right side. This only initializes the pane to a
default state and does not load the contents of the VJobList to the pane.

11. This line adds the error handler you created in step nine as a listener on the VJobList graphical user
interface (GUI) component.

12. This line loads the contents of the JobList into the ExplorerPane. This method must be called
explicitly to communicate to and load information from the server. This gives the application control
over when the communication with the server will occur. With this you can:
v Load the contents before adding the pane to a frame. The frame does not appear until all the

information is loaded, as in this example.
v Load the contents after adding the pane to a frame and displaying that frame. The frame appears

with a "wait cursor" and the information is filled in as it is loaded.
13. This line adds a window listener so that the application ends when the frame closes.
14. This line adds the job list graphical user interface GUI component to the center of the controlling

frame.
15. This line calls the show method to make the window visible to the user.

694 IBM i: Programming IBM Toolbox for Java

16. IBM Toolbox for Java exceptions are translated so the text will appear in the language of the
workstation. For example, this program displays the text of the exception as its error processing.

17. The IBM Toolbox for Java creates threads to carry out IBM Toolbox for Java activity. If the program
does not do System.exit(0) when it is terminated, the program may not exit normally. For example, if
the program was run from a Windows 95 DOS prompt without this line, the command prompt does
not return when the program finished.

Examples: Tips for programming
This topic lists the code examples that are provided throughout the documentation of IBM Toolbox for
Java tips for programming.

Managing connections
v Example: Making a connection to the system with a CommandCall object
v Example: Making two connections to the system with a CommandCall object
v Example: Creating CommandCall and IFSFileInputStream objects with an AS400 object
v Example: Using AS400ConnectionPool to preconnect to the system
v Example: Using AS400ConnectionPool to preconnect to a specific service on the system, then reuse the

connection

Starting and ending connections
v Example: How a Java program preconnects to the system
v Example: How a Java program disconnects from the system
v Example: How a Java program disconnects and reconnects to the system with disconnectService() and

run()
v Example: How a Java program disconnects from the system and fails to reconnect

Exceptions
v Example: Using exceptions

Error events
v Example: Handling error events
v Example: Defining an error listener
v Example: Using a customized handler to handle error events

Trace
v Example: Using trace
v Example: Using setTraceOn()
v Example: Using component trace

Optimization
v Example: Creating two AS400 objects
v Example: Using an AS400 object to represent a second server

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

IBM Toolbox for Java 695

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Examples: ToolboxME
This section lists the code examples that are provided throughout the IBM Toolbox for Java 2 Micro
Edition documentation.
v “ToolboxME example: JdbcDemo.java” on page 363
v “Example: Using ToolboxME, MIDP, and JDBC”
v “Example: Using ToolboxME, MIDP, and IBM Toolbox for Java” on page 704

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Example: Using ToolboxME, MIDP, and JDBC
The following source illustrates one way that your IBM Toolbox for Java 2 Micro Edition application can
use the Mobile Information Device Profile (MIDP) and JDBC to access a database and store information
offline.

This example demonstrates how a real estate agent might be able to view and bid on properties that are
currently for sale. The agent uses a Tier0 device to access information for the properties, which is stored
in the server database.

When built as a working program, the example code below connects to a database created for this
purpose.

To create a working version of the source code and to obtain the source for creating and populating the
required database, you must download the example. You also may want to review the instructions for
creating and running the example program.

Note: Read the Code example disclaimer for important legal information.
//
//
// ToolboxME example. This program is an example MIDlet that shows how
// you might code a JdbcMe application for the MIDP profile. Refer to the
// startApp, pauseApp, destroyApp and commandAction methods to see how it handles
// each requested transition.
//
//

696 IBM i: Programming IBM Toolbox for Java

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.sql.*;
import javax.microedition.rms.*;

import com.ibm.as400.micro.*;

public class JdbcMidpBid extends MIDlet implements CommandListener
{

private static int BID_PROPERTY = 0;
private Display display;

private TextField urlText = new TextField("urltext",
"jdbc:as400://mySystem;user=myUid;password=myPwd;",
65,
TextField.ANY);

private TextField jdbcmeText = new TextField("jdbcmetext", "meserver=myMEServer", 40, TextField.ANY);
private TextField jdbcmeTraceText = new TextField("jdbcmetracetext", "0", 10, TextField.ANY);
private final static String GETBIDS = "No bids are available, select here to download bids";
private List main = new List("JdbcMe Bid Demo", Choice.IMPLICIT);
private List listings = null;
private Form aboutBox;
private Form bidForm;
private Form settingsForm;
private int bidRow = 0;
private String bidTarget = null;
private String bidTargetKey = null;
private TextField bidText = new TextField("bidtext", "", 10, TextField.NUMERIC);
private Form errorForm = null;

private Command exitCommand = new Command("Exit", Command.SCREEN, 0);
private Command backCommand = new Command("Back", Command.SCREEN, 0);
private Command cancelCommand = new Command("Cancel", Command.SCREEN, 0);
private Command goCommand = new Command("Go", Command.SCREEN, 1);
private Displayable onErrorGoBackTo = null;

/*
* Construct a new JdbcMidpBid.
*/

public JdbcMidpBid()
{

display = Display.getDisplay(this);
}

/**
* Show the main screen
*/

public void startApp()
{

main.append("Show Bids", null);
main.append("Get New Bids", null);
main.append("Settings", null);
main.append("About", null);
main.addCommand(exitCommand);
main.setCommandListener(this);

display.setCurrent(main);
}

public void commandAction(Command c, Displayable s)
{

// All exitCommand processing is the same.
if (c == exitCommand)
{

destroyApp(false);
notifyDestroyed();

IBM Toolbox for Java 697

return;
}
if (s instanceof List)
{

List current = (List)s;

// An action occurred on the main page
if (current == main)
{

int idx = current.getSelectedIndex();
switch (idx)
{
case 0: // Show current bids

showBids();
break;

case 1: // Get New Bids
getNewBids();
break;

case 2: // Settings
doSettings();
break;

case 3: // About
aboutBox();
break;

default :
break;

}
return;

} // current == main

// An action occurred on the listings page
if (current == listings)
{

if (c == backCommand)
{

display.setCurrent(main);
return;

}
if (c == List.SELECT_COMMAND)
{

int idx = listings.getSelectedIndex();
String stext = listings.getString(idx);
if (stext.equals(GETBIDS))
{

getNewBids();
return;

}
int commaIdx = stext.indexOf(’,’);
bidTargetKey = stext.substring(0, commaIdx);
bidTarget = stext.substring(commaIdx+1) + "\n";
// Also keep track of which offline result set row
// This is. It happens to be the same as the index
// in the list.
bidRow = idx;

bidOnProperty();
}

} // current == listings
return;

} // instanceof List
if (s instanceof Form)
{

Form current = (Form)s;
if (current == errorForm)
{

if (c == backCommand)
display.setCurrent(onErrorGoBackTo);

698 IBM i: Programming IBM Toolbox for Java

return;
} // errorForm
if (current == settingsForm)
{

if (c == backCommand)
{

// Done with settings.
display.setCurrent(main);
settingsForm = null;
return;

}
} // settingsForm
if (current == aboutBox)
{

if (c == backCommand)
{

// Done with about box.
display.setCurrent(main);
aboutBox = null;
return;

}
}
if (current == bidForm)
{

if (c == cancelCommand)
{

display.setCurrent(listings);
bidForm = null;
return;

}
if (c == goCommand)
{

submitBid();
if (display.getCurrent() != bidForm)
{

// If we’re no longer positioned at the
// bidForm, we will get rid of it.
bidForm = null;

}
return;

}
return;

} // current == bidForm
} // instanceof Form

}

public void aboutBox()
{

aboutBox = new Form("aboutbox");
aboutBox.setTitle("About");
aboutBox.append(new StringItem("", "Midp RealEstate example for JdbcMe "));
aboutBox.addCommand(backCommand);
aboutBox.setCommandListener(this);
display.setCurrent(aboutBox);

}

/**
* The settings form.
*/

public void doSettings()
{

settingsForm = new Form("settingsform");
settingsForm.setTitle("Settings");
settingsForm.append(new StringItem("", "DB URL"));
settingsForm.append(urlText);
settingsForm.append(new StringItem("", "JdbcMe server"));

IBM Toolbox for Java 699

settingsForm.append(jdbcmeText);
settingsForm.append(new StringItem("", "Trace"));

settingsForm.addCommand(backCommand);
settingsForm.setCommandListener(this);
display.setCurrent(settingsForm);

}

/**
* Show the bid screen for the bid target
* that we selected.
*/

public void bidOnProperty()
{

StringItem item = new StringItem("", bidTarget);

bidText = new TextField("bidtext", "", 10, TextField.NUMERIC);
bidText.setString("");

bidForm = new Form("bidform");
bidForm.setTitle("Submit a bid for:");
BID_PROPERTY = 0;
bidForm.append(item);
bidForm.append(new StringItem("", "Your bid:"));
bidForm.append(bidText);
bidForm.addCommand(cancelCommand);
bidForm.addCommand(goCommand);
bidForm.setCommandListener(this);
display.setCurrent(bidForm);

}

/**
* Update the listings card with the
* current list of bids that we are interested in.
*/

public void getNewBids()
{

// Reset the old listing
listings = null;
listings = new List("JdbcMe Bids", Choice.IMPLICIT);
java.sql.Connection conn = null;
Statement stmt = null;
try
{

conn = DriverManager.getConnection(urlText.getString() + ";" + jdbcmeText.getString());

stmt = conn.createStatement();

// Since we do not want the prepared statement to persist,
// a normal statement is really better in this environemnt.
String sql = "select mls, address, currentbid from qjdbcme.realestate where currentbid <> 0";

boolean results =((JdbcMeStatement)stmt).executeToOfflineData(sql,
"JdbcMidpBidListings",
0,
0);

if (results)
{

setupListingsFromOfflineData();
}
else
{

listings.append("No bids found", null);
listings.addCommand(backCommand);
listings.setCommandListener(this);

}

700 IBM i: Programming IBM Toolbox for Java

}
catch (Exception e)
{

// Currently no valid listings retrieved, so lets
// reset it to empty.
listings = new List("JdbcMe Bids", Choice.IMPLICIT);
listings.append(GETBIDS, null);
listings.addCommand(backCommand);
listings.setCommandListener(this);

// Return to main after showing the error.
showError(main, e);
return;

}
finally
{

if (conn != null)
{

try
{

conn.close();
}
catch (Exception e)
{
}

}
conn = null;
stmt = null;

}
showBids();

}

public void setupListingsFromOfflineData()
{

// Skip the first four rows in the record store
// (eyecatcher, version, num columns, sql column
// types)
// and each subsequent row in the record store is
// a single column. Our query returns 3 columns which
// we will return concatenated as a single string.
ResultSet rs = null;
listings.addCommand(backCommand);
listings.setCommandListener(this);
try
{

int i = 5;
int max = 0;
StringBuffer buf = new StringBuffer(20);

// Creator and dbtype unused in MIDP
rs = new JdbcMeOfflineResultSet("JdbcMidpBidListings", 0, 0);
if (rs == null)
{

// New listings...
listings = new List("JdbcMe Bids", Choice.IMPLICIT);
listings.append(GETBIDS, null);
listings.addCommand(backCommand);
listings.setCommandListener(this);
return;

}

i = 0;
String s = null;
while (rs.next())
{

++i;

IBM Toolbox for Java 701

s = rs.getString(1);
buf.append(s);

buf.append(",");
s = rs.getString(2);
buf.append(s);

buf.append(", $");
s = rs.getString(3);
buf.append(s);

listings.append(buf.toString(), null);
buf.setLength(0);

}

if (i == 0)
{

listings.append("No bids found", null);
return;

}
}
catch (Exception e)
{

// Currently no valid listings retrieved, so lets
// reset it to empty.
listings = new List("JdbcMe Bids", Choice.IMPLICIT);
listings.append(GETBIDS, null);
listings.addCommand(backCommand);
listings.setCommandListener(this);

// Return to main after showing the error.
showError(main, e);
return;

}
finally
{

if (rs != null)
{

try
{

rs.close();
}
catch (Exception e)
{
}
rs = null;

}
System.gc();

}
}

/**
* Update the listings card with the
* current list of bids that we are interested in.
*/

public void submitBid()
{

java.sql.Connection conn = null;
Statement stmt = null;
try
{

conn = DriverManager.getConnection(urlText.getString() + ";" + jdbcmeText.getString());

stmt = conn.createStatement();

// Since we do not want the prepared statement to persist,
// a normal statement is really better in this environemnt.

702 IBM i: Programming IBM Toolbox for Java

StringBuffer buf = new StringBuffer(100);
buf.append("Update QJdbcMe.RealEstate Set CurrentBid = ");
buf.append(bidText.getString());
buf.append(" Where MLS = ’");
buf.append(bidTargetKey);
buf.append("’ and CurrentBid < ");
buf.append(bidText.getString());
String sql = buf.toString();

int updated = stmt.executeUpdate(sql);
if (updated == 1)
{

// BID Accepted.
String oldS = listings.getString(bidRow);
int commaIdx = bidTarget.indexOf(’,’);
String bidAddr = bidTarget.substring(0, commaIdx);

String newS = bidTargetKey + "," + bidAddr + ", $" + bidText.getString();

ResultSet rs = null;
try
{

// Creator and dbtype unused in MIDP
rs = new JdbcMeOfflineResultSet("JdbcMidpBidListings", 0, 0);
rs.absolute(bidRow+1);
rs.updateString(3, bidText.getString());
rs.close();

}
catch (Exception e)
{

if (rs != null)
rs.close();

}

// Also update our live list of that result set.
listings.set(bidRow, newS, null);
display.setCurrent(listings);
conn.commit();

}
else
{

conn.rollback();
throw new SQLException("Failed to bid, someone beat you to it");

}
}
catch (SQLException e)
{

// Return to the bid form after showing the error.
showError(bidForm, e);
return;

}
finally
{

if (conn != null)
{

try
{

conn.close();
}
catch (Exception e)
{
}

}
conn = null;
stmt = null;

}

IBM Toolbox for Java 703

// Exit without exception, then show the current bids
showBids();

}

/**
* Show an error condition.
*/

public void showError(Displayable d, Exception e)
{

String s = e.toString();

onErrorGoBackTo = d;
errorForm = new Form("Error");
errorForm.setTitle("SQL Error");
errorForm.append(new StringItem("", s));
errorForm.addCommand(backCommand);
errorForm.setCommandListener(this);
display.setCurrent(errorForm);

}

/**
* Show the current bids.
*/

public void showBids()
{

if (listings == null)
{

// If we have no current listings, lets set
// them up.
listings = new List("JdbcMe Bids", Choice.IMPLICIT);
setupListingsFromOfflineData();

}
display.setCurrent(listings);

}

/**
* Time to pause, free any space we do not need right now.
*/

public void pauseApp()
{

display.setCurrent(null);
}

/**
* Destroy must cleanup everything.
*/

public void destroyApp(boolean unconditional)
{
}

}

Related information:
“Mobile Information Device Profile (MIDP)” on page 351

Example: Using ToolboxME, MIDP, and IBM Toolbox for Java
The following source illustrates one way that your IBM Toolbox for Java 2 Micro Edition application can
use the Mobile Information Device Profile (MIDP) and IBM Toolbox for Java to access IBM i data and
services.

This example demonstrates each of the functions built into the IBM Toolbox for Java 2 Micro Edition
support. This application features different pages or screens that illustrate some of the many ways in
which your Tier0 device can use these functions.

When built as a working program, the example code below uses a Program Call Markup Language
(PCML) file to run commands on the server.

704 IBM i: Programming IBM Toolbox for Java

To create a working version of the source code and to obtain the required PCML source for running
server commands, you must download the example. You also may want to review the instructions for
creating and running the example program.

Note: Read the Code example disclaimer for important legal information.
//
//
// ToolboxME example. This program is an example that shows how
// ToolboxME can use PCML to access data and services.
//
// This application requires that the qsyrusri.pcml file is present in the
// CLASSPATH of the MEServer.
//
//

import java.io.*;
import java.sql.*;
import java.util.Hashtable;

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.rms.*;

import com.ibm.as400.micro.*;

public class ToolboxMidpDemo extends MIDlet implements CommandListener
{

private Display display_;

// A ToolboxME system object.
private AS400 system_;

private List main_ = new List("ToolboxME MIDP Demo", Choice.IMPLICIT);

// Create a form for each component.
private Form signonForm_;
private Form cmdcallForm_;
private Form pgmcallForm_;
private Form dataqueueForm_;
private Form aboutForm_;

// Visable Text for each component.
static final String SIGN_ON = "SignOn";
static final String COMMAND_CALL = "CommandCall";
static final String PROGRAM_CALL = "ProgramCall";
static final String DATA_QUEUE = "DataQueue";
static final String ABOUT = "About";

static final String NOT_SIGNED_ON = "Not signed on.";
static final String DQ_READ = "Read";
static final String DQ_WRITE = "Write";

// A ticker to display the signon status.
private Ticker ticker_ = new Ticker(NOT_SIGNED_ON);

// Commands that can be performed.
private static final Command actionExit_ = new Command("Exit", Command.SCREEN, 0);
private static final Command actionBack_ = new Command("Back", Command.SCREEN, 0);
private static final Command actionGo_ = new Command("Go", Command.SCREEN, 1);
private static final Command actionClear_ = new Command("Clear", Command.SCREEN, 1);
private static final Command actionRun_ = new Command("Run", Command.SCREEN, 1);
private static final Command actionSignon_ = new Command(SIGN_ON, Command.SCREEN, 1);
private static final Command actionSignoff_= new Command("SignOff", Command.SCREEN, 1);

private Displayable onErrorGoBackTo_; // the form to return to when done displaying the error form

IBM Toolbox for Java 705

// TextFields for the SignOn form.
private TextField signonSystemText_ = new TextField("System", "rchasdm3", 20, TextField.ANY);
private TextField signonUidText_ = new TextField("UserId", "JAVA", 10, TextField.ANY);
// TBD temporary
private TextField signonPwdText_ = new TextField("Password", "JTEAM1", 10, TextField.PASSWORD);
private TextField signonServerText_ = new TextField("MEServer", "localhost", 10, TextField.ANY);
private StringItem signonStatusText_ = new StringItem("Status", NOT_SIGNED_ON);

// TextFields for the CommandCall form.
// TBD: max size; TBD: TextBox???
private TextField cmdText_ = new TextField("Command", "CRTLIB FRED", 256, TextField.ANY);
private StringItem cmdMsgText_ = new StringItem("Messages", null);
private StringItem cmdStatusText_ = new StringItem("Status", null);

// TextFields for the ProgramCall form.
private StringItem pgmMsgDescription_ = new StringItem("Messages", null);
private StringItem pgmMsgText_ = new StringItem("Messages", null);

// TextFields for the DataQueue form.
private TextField dqInputText_ = new TextField("Data to write", "Hi there", 30, TextField.ANY);
private StringItem dqOutputText_ = new StringItem("DQ contents", null);
private ChoiceGroup dqReadOrWrite_ = new ChoiceGroup("Action",

Choice.EXCLUSIVE,
new String[] { DQ_WRITE, DQ_READ},
null);

private StringItem dqStatusText_ = new StringItem("Status", null);

/**
* Creates a new ToolboxMidpDemo.
**/

public ToolboxMidpDemo()
{

display_ = Display.getDisplay(this);
// Note: The KVM-based demo used TabbedPane for the main panel.
// MIDP has no similar class, so we use a List instead.

}

/**
* Show the main screen.
* Implements abstract method of class Midlet.
**/

protected void startApp()
{

main_.append(SIGN_ON, null);
main_.append(COMMAND_CALL, null);
main_.append(PROGRAM_CALL, null);
main_.append(DATA_QUEUE, null);
main_.append(ABOUT, null);

main_.addCommand(actionExit_);
main_.setCommandListener(this);

display_.setCurrent(main_);
}

// Implements method of interface CommandListener.
public void commandAction(Command action, Displayable dsp)
{

// All ’exit’ and ’back’ processing is the same.
if (action == actionExit_)
{

destroyApp(false);

notifyDestroyed();
}

706 IBM i: Programming IBM Toolbox for Java

else if (action == actionBack_)
{

// Return to main menu.
display_.setCurrent(main_);

}
else if (dsp instanceof List)
{

List current = (List)dsp;

// An action occurred on the main page
if (current == main_)
{

int idx = current.getSelectedIndex();

switch (idx)
{
case 0: // SignOn

showSignonForm();
break;

case 1: // CommandCall
showCmdForm();
break;

case 2: // ProgramCall
showPgmForm();
break;

case 3: // DataQueue
showDqForm();
break;

case 4: // About
showAboutForm();
break;

default: // None of the above
feedback("Internal error: Unhandled selected index in main: " + idx,

AlertType.ERROR);
break;

}
} // current == main
else

feedback("Internal error: The Displayable object is a List but is not main_.",
AlertType.ERROR);

} // instanceof List
else if (dsp instanceof Form)
{

Form current = (Form)dsp;

if (current == signonForm_)
{

if (action == actionSignon_)
{

// Create a ToolboxME system object.
system_ = new AS400(signonSystemText_.getString(),

signonUidText_.getString(),
signonPwdText_.getString(),
signonServerText_.getString());

try
{

// Connect to the server.
system_.connect();

// Set the signon status text.
signonStatusText_.setText("Signed on.");

// Display a confirmation dialog that the user is signed on.
feedback("Successfully signed on.", AlertType.INFO, main_);

// Replace the SignOn button with SignOff.

IBM Toolbox for Java 707

signonForm_.removeCommand(actionSignon_);
signonForm_.addCommand(actionSignoff_);

// Update the ticker.
ticker_.setString("... Signed on to ’" +

signonSystemText_.getString() + "’ as ’" +
signonUidText_.getString() + "’ via ’" +
signonServerText_.getString() + "’ ... ");

}
catch (Exception e)
{

e.printStackTrace();

// Set the signon status text.
signonStatusText_.setText(NOT_SIGNED_ON);

feedback("Signon failed. " + e.getMessage(), AlertType.ERROR);
}

}
else if (action == actionSignoff_)
{

if (system_ == null)
feedback("Internal error: System is null.", AlertType.ERROR);

else
{

try
{

// Disconnect from the server.
system_.disconnect();
system_ = null;

// Set the signon status text.
signonStatusText_.setText(NOT_SIGNED_ON);

// Display a confirmation dialog that the user is no longer signed on.
feedback("Successfully signed off.", AlertType.INFO, main_);

// Replace the SignOff button with SignOn.
signonForm_.removeCommand(actionSignoff_);
signonForm_.addCommand(actionSignon_);

// Update the ticker.
ticker_.setString(NOT_SIGNED_ON);

}
catch (Exception e)
{

feedback(e.toString(), AlertType.ERROR);

e.printStackTrace();

signonStatusText_.setText("Error.");

feedback("Error during signoff.", AlertType.ERROR);
}

}
}
else // None of the above.
{

feedback("Internal error: Action is not recognized.", AlertType.INFO);
}

} // signonForm_
else if (current == cmdcallForm_)
{

if (action == actionRun_)
{

// If the user has not signed on, display an alert.
if (system_ == null)

708 IBM i: Programming IBM Toolbox for Java

{
feedback(NOT_SIGNED_ON, AlertType.ERROR);
return;

}

// Get the command the user entered in the wireless device.
String cmdString = cmdText_.getString();

// If the command was not specified, display an alert.
if (cmdString == null || cmdString.length() == 0)

feedback("Specify command.", AlertType.ERROR);
else
{

try
{

// Run the command.
String[] messages = CommandCall.run(system_, cmdString);

StringBuffer status = new StringBuffer("Command completed with ");

// Check to see if their are any messages.
if (messages.length == 0)
{

status.append("no returned messages.");

cmdMsgText_.setText(null);

cmdStatusText_.setText("Command completed successfully.");
}
else
{

if (messages.length == 1)
status.append("1 returned message.");

else
status.append(messages.length + " returned messages.");

// If there are messages, display only the first message.
cmdMsgText_.setText(messages[0]);

cmdStatusText_.setText(status.toString());
}

repaint();
}
catch (Exception e)
{

feedback(e.toString(), AlertType.ERROR);

e.printStackTrace();

feedback("Error when running command.", AlertType.ERROR);
}

}
}
else if (action == actionClear_)
{

// Clear the command text and messages.
cmdText_.setString("");

cmdMsgText_.setText(null);

cmdStatusText_.setText(null);

repaint();
}
else // None of the above.
{

IBM Toolbox for Java 709

feedback("Internal error: Action is not recognized.", AlertType.INFO);
}

} // cmdcallForm_
else if (current == pgmcallForm_)
{

if (action == actionRun_)
{

// If the user is not signed on before doing a program call, display an alert.
if (system_ == null)
{

feedback(NOT_SIGNED_ON, AlertType.ERROR);
return;

}

pgmMsgText_.setText(null);

// See the PCML example in the IBM Toolbox for Java information.
String pcmlName = "qsyrusri.pcml"; // The PCML file we want to use.
String apiName = "qsyrusri";

// Create a hashtable that contains the input parameters for the program call.
Hashtable parmsToSet = new Hashtable(2);
parmsToSet.put("qsyrusri.receiverLength", "2048");
parmsToSet.put("qsyrusri.profileName", signonUidText_.getString().toUpperCase());

// Create a string array that contains the output parameters to retrieve.
String[] parmsToGet = { "qsyrusri.receiver.userProfile",

"qsyrusri.receiver.previousSignonDate",
"qsyrusri.receiver.previousSignonTime",
"qsyrusri.receiver.daysUntilPasswordExpires"};

// A string array containing the descriptions of the parameters to display.
String[] displayParm = { "Profile",

"Last signon Date",
"Last signon Time",
"Password Expired (days)"};

try
{

// Run the program.
String[] valuesToGet = ProgramCall.run(system_,

pcmlName,
apiName,
parmsToSet,
parmsToGet);

// Create a StringBuffer and add each of the parameters we retreived.
StringBuffer txt = new StringBuffer();
txt.append(displayParm[0] + ": " + valuesToGet[0] + "\n");

char[] c = valuesToGet[1].toCharArray();
txt.append(displayParm[1] + ": " + c[3] + c[4] + "/" +

c[5] + c[6] + "/" + c[1] + c[2] + "\n");

char[] d = valuesToGet[2].toCharArray();
txt.append(displayParm[2] + ": " + d[0] + d[1] + ":" + d[2] + d[3] + "\n");
txt.append(displayParm[3] + ": " + valuesToGet[3] + "\n");

// Set the displayable text of the program call results.
pgmMsgText_.setText(txt.toString());

StringBuffer status = new StringBuffer("Program completed with ");

if (valuesToGet.length == 0)
{

status.append("no returned values.");

710 IBM i: Programming IBM Toolbox for Java

feedback(status.toString(), AlertType.INFO);
}
else
{

if (valuesToGet.length == 1)
status.append("1 returned value.");

else
status.append(valuesToGet.length + " returned values.");

feedback(status.toString(), AlertType.INFO);
}

}
catch (Exception e)
{

feedback(e.toString(), AlertType.ERROR);

e.printStackTrace();

feedback("Error when running program.", AlertType.ERROR);
}

}
else if (action == actionClear_)
{

// Clear the program call results.
pgmMsgText_.setText(null);

repaint();
}

} // pgmcallForm_
else if (current == dataqueueForm_) // DataQueue
{

if (action == actionGo_)
{

// If the user has not signed on before performing Data Queue actions,
// display an alert.
if (system_ == null)
{

feedback(NOT_SIGNED_ON, AlertType.ERROR);

return;
}

// Create a library to create the data queue in.
try
{

CommandCall.run(system_, "CRTLIB FRED");
}
catch (Exception e)
{
}

// Run a command to create a data queue.
try
{

CommandCall.run(system_, "CRTDTAQ FRED/MYDTAQ MAXLEN(2000)");
}
catch (Exception e)
{

feedback("Error when creating data queue. " + e.getMessage(),
AlertType.WARNING);

}

try
{

// See which action was selected (Read or Write).
if (dqReadOrWrite_.getString(dqReadOrWrite_.getSelectedIndex()).equals(DQ_WRITE))
{

IBM Toolbox for Java 711

// Write
dqOutputText_.setText(null);

// Get the text from the wireless device input to be written to
// the data queue.
if (dqInputText_.getString().length() == 0)

dqStatusText_.setText("No data specified.");
else
{

// Write to the data queue.
DataQueue.write(system_,

"/QSYS.LIB/FRED.LIB/MYDTAQ.DTAQ",
dqInputText_.getString().getBytes());

dqInputText_.setString(null);

// Display the status.
dqStatusText_.setText("The ’write’ operation completed.");

}
}
else // Read
{

// Read from the data queue.
byte[] b = DataQueue.readBytes(system_, "/QSYS.LIB/FRED.LIB/MYDTAQ.DTAQ");

// Determine if the data queue contained entries or not
// and display the appropriate message.
if (b == null)
{

dqStatusText_.setText("No dataqueue entries are available.");

dqOutputText_.setText(null);
}
else if (b.length == 0)
{

dqStatusText_.setText("Dataqueue entry has no data.");

dqOutputText_.setText(null);
}
else
{

dqStatusText_.setText("The ’read’ operation completed.");

dqOutputText_.setText(new String(b));
}

}

repaint();
}
catch (Exception e)
{

e.printStackTrace();

feedback(e.toString(), AlertType.ERROR);

feedback("Error when running command. " + e.getMessage(), AlertType.ERROR);
}

} // actionGo_
else if (action == actionClear_)
{

// Clear the data queue form.
dqInputText_.setString("");

dqOutputText_.setText(null);

dqReadOrWrite_.setSelectedFlags(new boolean[] { true, false});

712 IBM i: Programming IBM Toolbox for Java

dqStatusText_.setText(null);

repaint();
}
else // None of the above.
{

feedback("Internal error: Action is not recognized.", AlertType.INFO);
}

} // dataqueueForm_
else if (current == aboutForm_) // "About".
{

// Should never reach here, since the only button is "Back".
} // None of the above.
else

feedback("Internal error: Form is not recognized.", AlertType.ERROR);
} // instanceof Form
else

feedback("Internal error: Displayable object not recognized.", AlertType.ERROR);
}

/**
* Displays the "About" form.
**/

private void showAboutForm()
{

// If the about form is null, create and append it.
if (aboutForm_ == null)
{

aboutForm_ = new Form(ABOUT);
aboutForm_.append(new StringItem(null,

"This is a MIDP example application that uses the " +
"IBM Toolbox for Java Micro Edition (ToolboxME)."));

aboutForm_.addCommand(actionBack_);
aboutForm_.setCommandListener(this);

}

display_.setCurrent(aboutForm_);
}

/**
* Displays the "SignOn" form.
**/

private void showSignonForm()
{

// Create the signon form.
if (signonForm_ == null)
{

signonForm_ = new Form(SIGN_ON);
signonForm_.append(signonSystemText_);
signonForm_.append(signonUidText_);
signonForm_.append(signonPwdText_);
signonForm_.append(signonServerText_);
signonForm_.append(signonStatusText_);
signonForm_.addCommand(actionBack_);
signonForm_.addCommand(actionSignon_);
signonForm_.setCommandListener(this);
signonForm_.setTicker(ticker_);

}

display_.setCurrent(signonForm_);
}

IBM Toolbox for Java 713

/**
* Displays the "CommandCall" form.
**/

private void showCmdForm()
{

// Create the command call form.
if (cmdcallForm_ == null)
{

cmdcallForm_ = new Form(COMMAND_CALL);
cmdcallForm_.append(cmdText_);
cmdcallForm_.append(cmdMsgText_);
cmdcallForm_.append(cmdStatusText_);
cmdcallForm_.addCommand(actionBack_);
cmdcallForm_.addCommand(actionClear_);
cmdcallForm_.addCommand(actionRun_);
cmdcallForm_.setCommandListener(this);
cmdcallForm_.setTicker(ticker_);

}

display_.setCurrent(cmdcallForm_);
}

/**
* Displays the "ProgramCall" form.
**/

private void showPgmForm()
{

// Create the program call form.
if (pgmcallForm_ == null)
{

pgmcallForm_ = new Form(PROGRAM_CALL);
pgmcallForm_.append(new StringItem(null,

"This calls the Retrieve User Information (QSYRUSRI) " +
"API, and returns information about the current " +
"user profile."));

pgmcallForm_.append(pgmMsgText_);
pgmcallForm_.addCommand(actionBack_);
pgmcallForm_.addCommand(actionClear_);
pgmcallForm_.addCommand(actionRun_);
pgmcallForm_.setCommandListener(this);
pgmcallForm_.setTicker(ticker_);

}

display_.setCurrent(pgmcallForm_);
}

/**
* Displays the "DataQueue" form.
**/

private void showDqForm()
{

// Create the data queue form.
if (dataqueueForm_ == null)
{

dataqueueForm_ = new Form(DATA_QUEUE);
dataqueueForm_.append(dqInputText_);
dataqueueForm_.append(dqOutputText_);
dataqueueForm_.append(dqReadOrWrite_);
dataqueueForm_.append(dqStatusText_);
dataqueueForm_.addCommand(actionBack_);
dataqueueForm_.addCommand(actionClear_);
dataqueueForm_.addCommand(actionGo_);

714 IBM i: Programming IBM Toolbox for Java

dataqueueForm_.setCommandListener(this);
dataqueueForm_.setTicker(ticker_);

}

display_.setCurrent(dataqueueForm_);
}

private void feedback(String text, AlertType type)
{

feedback(text, type, display_.getCurrent());
}

/**
* This method is used to create a dialog and display feedback
* information using an Alert to the user.
**/

private void feedback(String text, AlertType type, Displayable returnToForm)
{

System.err.flush();
System.out.flush();

Alert alert = new Alert("Alert", text, null, type);

if (type == AlertType.INFO)
alert.setTimeout(3000); // milliseconds

else
alert.setTimeout(Alert.FOREVER); // Require user to dismiss the alert.

display_.setCurrent(alert, returnToForm);
}

// Force a repaint of the current form.
private void repaint()
{

Alert alert = new Alert("Updating display ...", null, null, AlertType.INFO);
alert.setTimeout(1000); // milliseconds

display_.setCurrent(alert, display_.getCurrent());
}

/**
* Time to pause, free any space we don’t need right now.
* Implements abstract method of class Midlet.
**/

protected void pauseApp()
{

display_.setCurrent(null);
}

/**
* Destroy must cleanup everything.
* Implements abstract method of class Midlet.
**/

protected void destroyApp(boolean unconditional)
{

// Disconnect from the server if the Midlet is being destroyed or exited.
if (system_ != null)
{

try
{

system_.disconnect();

IBM Toolbox for Java 715

}
catch (Exception e)
{
}

}
}

}

Related information:
“Mobile Information Device Profile (MIDP)” on page 351

Examples: Utility classes
This topic lists the code examples that are provided throughout the documentation of the IBM Toolbox
for Java utility classes.

AS/400ToolboxJarMaker
v Example: Extracting AS400.class and all its dependent classes from jt400.jar
v Example: Splitting jt400.jar into a set of 300KB files
v Example: Removing unused files from a JAR file
v Example: Creating a 400KB smaller JAR file by omitting the conversion tables with the -ccsid

parameter

CommandPrompter
v Example: Using CommandPrompter to prompt for and run a command

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Example: Using CommandPrompter
This example program uses the CommandPrompter, CommandCall, and AS400Message classes to prompt
for a command, run the command, and display any messages returned if the command does not run.

Note: Read the Code example disclaimer for important legal information.
//
//
// CommandPrompter example. This program uses CommandPrompter, CommandCall, and
// AS400Message to prompt for a command, run the command, and display any
// messages returned if the command does not run.
//
// Command syntax:
// Prompter commandString
//
//

import com.ibm.as400.ui.util.CommandPrompter;
import com.ibm.as400.access.AS400;

716 IBM i: Programming IBM Toolbox for Java

import com.ibm.as400.access.AS400Message;
import com.ibm.as400.access.CommandCall;
import javax.swing.JFrame;
import java.awt.FlowLayout;
public class Prompter
{
public static void main (String args[]) throws Exception

{
JFrame frame = new JFrame();
frame.getContentPane().setLayout(new FlowLayout());
AS400 system = new AS400("mySystem", "myUserId", "myPasswd");
String cmdName = args[0];

// Launch the CommandPrompter
CommandPrompter cp = new CommandPrompter(frame, system, cmdName);
if (cp.showDialog() == CommandPrompter.OK)

{
String cmdString = cp.getCommandString();
System.out.println("Command string: " + cmdString);

// Run the command that was built in the prompter.
CommandCall cmd = new CommandCall(system, cmdString);
if (!cmd.run())

{
AS400Message[] msgList = cmd.getMessageList();
for (int i = 0; i < msgList.length; ++i)

{
System.out.println(msgList[i].getText());

}
}

}
System.exit(0);
}

}

Examples: Vaccess classes
This topic lists the code examples that are provided throughout the documentation of the IBM Toolbox
for Java vaccess classes.

AS400Panes
v Example: Creating an AS400DetailsPane to present the list of users defined on the

systemAS400DetailsPane
v Example: Loading the contents of a details pane before adding it to a frame
v Example: Using an AS400ListPane to present a list of users
v Example: Using an AS400DetailsPane to display messages returned from a command call
v Example: Using an AS400TreePane to display a tree view of a directory
v Example: Using an AS400ExplorerPane to present various print resources

Command call
v Example: Creating a CommandCallButton
v Example: Adding the ActionCompletedListener to process all IBM i messages that a command

generates
v Example: Using the CommandCallMenuItem

Data queues
v Example: Creating a DataQueueDocument
v Example: Using a DataQueueDocument

IBM Toolbox for Java 717

Error events
v Example: Handling error events
v Example: Defining an error listener
v Example: Using a customized handler to handle error events

Integrated file system
v Example: Using IFSFileDialog
v Example: Using IFSFileSystemView
v Example: Using IFSTextFileDocument

JDBC
v Example: Using the JDBC driver to create and populate a table
v Example: Using the JDBC driver to query a table and output its contents
v Example: Creating an AS400JDBCDataSourcePane

Jobs
v Example: Creating a VJobList and presenting the list in an AS400ExplorerPane
v Example: Presenting a list of jobs in an explorer pane

Messages
v Example: Using VMessageQueue

Program call
v Example: Creating a ProgramCallMenuItem
v Example: Processing all program generated IBM i messages
v Example: Adding two parameters
v Example: Using a ProgramCallButton in an application

Print
v Example: Using VPrinter
v Example: VPrinterOutput

Record-level access
v Example: Creating a RecordListTablePane object to display all records less than or equal to a key
v Example: Using RecordListFormPane

SpooledFileViewer
v Example: Creating a Spooled File Viewer to view a spooled file previously created on the system

SQL
v Example: Using SQLQueryBuilderPane
v Example: Using SQLResultSetTablePane

System values
v Example: Creating a system value GUI using the AS400Explorer pane

Users and groups
v Example: Creating a VUserList with the AS400DetailsPane
v Example: Using an AS400ListPane to create a list of users for selection

718 IBM i: Programming IBM Toolbox for Java

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Example: Using VUserList
This example program presents a list of users on a system in a list pane, and allows selection of one or
more users.

Note: Read the Code example disclaimer for important legal information.
///
//
// VUserList example. This program presents a list of users on
// a system in a list pane, and allows selection of one or more
// users.
//
// Command syntax:
// VUserListExample system
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VUserListExample
{

private static AS400ListPane listPane;

public static void main (String[] args)
{

// If a system is not specified, display help text and
// exit.
if (args.length != 1)
{

System.out.println("Usage: VUserListExample system");
return;

}

try
{

// Create an AS400 object. The system name is passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// Create a VUserList. This represents a list of users
// displayed in the list pane.
VUserList userList = new VUserList (system);

IBM Toolbox for Java 719

// Create a frame.
JFrame f = new JFrame ("VUserList example");

// Create an error dialog adapter. This displays
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create a list pane to display the user list.
// Use load to get the information from the server.
listPane = new AS400ListPane (userList);
listPane.addErrorListener (errorHandler);
listPane.load ();

// When the frame closes, report the selected
// users and exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

reportSelectedUsers ();
System.exit (0);

}
});

// Layout the frame with the list pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", listPane);
f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

private static void reportSelectedUsers ()
{

VObject[] selectedUsers = listPane.getSelectedObjects ();

if (selectedUsers.length == 0)
System.out.println ("No users were selected.");

else
{

System.out.println ("The selected users were:");
for (int i = 0; i < selectedUsers.length; ++i)

System.out.println (selectedUsers[i]);
}

}

}

Example: Using VMessageList
This program presents a detailed view of messages returned from a command call.

Note: Read the Code example disclaimer for important legal information.
///
//
// VMessageList example. This program presents a detailed
// view of messages returned from a command call.
//
// Command syntax:
// VMessageListExample system

720 IBM i: Programming IBM Toolbox for Java

//
// This source is an example of IBM Toolbox for Java "VMessageList".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VMessageListExample
{

public static void main (String[] args)
{

// If a system was not specified, then display help text and
// exit.
if (args.length != 1)
{

System.out.println("Usage: VMessageListExample system");
return;

}

try
{

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// Create a CommandCall object a run the command.
CommandCall command = new CommandCall (system);
command.run ("CRTLIB FRED");

// Create a VMessageList object with the messages
// returned from the command call.
VMessageList messageList = new VMessageList (command.getMessageList ());

// Create a frame.
JFrame f = new JFrame ("VMessageList example");

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create a details pane to display the message list.
// Use load to load the information.
AS400DetailsPane detailsPane = new AS400DetailsPane (messageList);
detailsPane.addErrorListener (errorHandler);
detailsPane.load ();

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame with the details pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", detailsPane);
f.pack ();
f.show ();

}
catch (Exception e)

IBM Toolbox for Java 721

{
System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

Example: Using VIFSDirectory
This example presents a tree view of some directories in the IFS.

Note: Read the Code example disclaimer for important legal information.
///
//
// VIFSDirectory example. This program presents a tree view of
// some directories in the integrated file system.
//
// Command syntax:
// VIFSDirectoryExample system
//
// This source is an example of IBM Toolbox for Java "VIFSDirectory".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VIFSDirectoryExample
{

public static void main (String[] args)
{

// If a system was not specified, then display help text and
// exit.
if (args.length != 1)
{

System.out.println("Usage: VIFSDirectoryExample system");
return;

}

try
{

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// Create a VIFSDirectory object which represents the root
// of the directory tree that we are going to show.
VIFSDirectory directory = new VIFSDirectory (system, "/QIBM/ProdData");

// Create a frame.
JFrame f = new JFrame ("VIFSDirectory example");

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create a tree pane to present the directories hierarchically.
// Load the information from the system.
AS400TreePane treePane = new AS400TreePane (directory);
treePane.addErrorListener (errorHandler);

722 IBM i: Programming IBM Toolbox for Java

treePane.load ();

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame with the tree pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", treePane);
f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

Example: Using VPrinters

Note: Read the Code example disclaimer for important legal information.
///
//
// VPrinters example. This program presents various network
// print resources with an explorer pane.
//
// Command syntax:
// VPrintersExample system
//
// This source is an example of IBM Toolbox for Java "VPrinters".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VPrintersExample
{

public static void main (String[] args)
{

// If a system was not specified, then display help text and
// exit.
if (args.length != 1)
{

System.out.println("Usage: VPrintersExample system");
return;

}

try
{

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

IBM Toolbox for Java 723

// Create a VPrinters object which represents the list
// of printers attached to the system.
VPrinters printers = new VPrinters (system);

// Create a frame.
JFrame f = new JFrame ("VPrinters example");

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create an explorer pane to present the network print resources.
// Use load to load the information from the system.
AS400ExplorerPane explorerPane = new AS400ExplorerPane (printers);
explorerPane.addErrorListener (errorHandler);

explorerPane.load ();

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame with the explorer pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", explorerPane);
f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

Example: Using CommandCallMenuItem
This IBM Toolbox for Java example program demonstrates how to use a menu item that calls a server
command. It will display any messages that are returned in a dialog.

Note: Read the Code example disclaimer for important legal information.
///
//
// Command call menu item example. This program demonstrates how to
// use a menu item that calls a server command. It will display
// any messages that are returned in a dialog.
//
// Command syntax:
// CommandCallMenuItemExample system
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class CommandCallMenuItemExample
{

724 IBM i: Programming IBM Toolbox for Java

private static JFrame f;

public static void main (String[] args)
{

// If a system was not specified, then display help text and
// exit.
if (args.length != 1)
{

System.out.println("Usage: CommandCallMenuItemExample system");
return;

}

try
{

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// Create a frame.
f = new JFrame ("Command call menu item example"

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create a CommandCallMenuItem object to run the command.
CommandCallMenuItem menuItem =

new CommandCallMenuItem ("Clear library FRED", null, system, "CLRLIB FRED");
menuItem.addErrorListener (errorHandler);

// Add an action completed listener to display any
// returned messages in a dialog.
menuItem.addActionCompletedListener (new ActionCompletedListener ()
{

public void actionCompleted (ActionCompletedEvent event)
{

// Get the message list from the event source.
CommandCallMenuItem item = (CommandCallMenuItem) event.getSource ();
AS400Message[] messageList = item.getMessageList ();

// Use an AS400DetailsPane to display the messages.
VMessageList vmessageList = new VMessageList (messageList);
AS400DetailsPane messageDetails = new AS400DetailsPane (vmessageList);
messageDetails.load ();

// Show the details in a dialog.
JDialog dialog = new JDialog(f);
dialog.getContentPane().setLayout(new BorderLayout());
dialog.getContentPane().add("Center"messageDetails);
dialog.pack();
dialog.setVisible(true);

}
});

// Create a menu with the item.
JMenu menu = new JMenu ("Server Command Calls");
menu.add (menuItem);

JMenuBar menuBar = new JMenuBar ();
menuBar.add (menu);

f.getRootPane ().setJMenuBar (menuBar);

IBM Toolbox for Java 725

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame with the details pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.setSize (300, 400);
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

Example: Using DataQueueDocument
This program demonstrates how to use a document that is associated with a server data queue.

Note: Read the Code example disclaimer for important legal information.
///
//
// Data queue document example. This program demonstrates how to
// use a document that is associated with a server data queue.
//
// Command syntax:
// DataQueueDocumentExample system read|write
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class DataQueueDocumentExample
{

private static DataQueueDocument dqDocument;
private static JTextField text;
private static boolean rw;

public static void main (String[] args)
{

// If a system or read|write was not specified, then display
// help text and exit.
if (args.length != 2)
{

System.out.println("Usage: DataQueueDocumentExample system read|write");
return;

}

rw = args[1].equalsIgnoreCase ("read");
String mode = rw ? "Read" : "Write";

try
{

// Create two frames.

726 IBM i: Programming IBM Toolbox for Java

JFrame f =
new JFrame ("Data queue document example - " + mode);

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create a working cursor adapter. This will adjust
// the cursor whenever a data queue is read or written.
WorkingCursorAdapter cursorAdapter = new WorkingCursorAdapter (f);

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// Create the data queue path name.
QSYSObjectPathName dqName = new QSYSObjectPathName ("QGPL", "JAVATALK", "DTAQ");

// Make sure the the data queue exists.
DataQueue dq = new DataQueue (system, dqName.getPath ());
try
{

dq.create (200);
}
catch (Exception e)
{

// Ignore exceptions. Most likely, the data queue
// already exists.

}

// Create a DataQueueDocument object.
dqDocument = new DataQueueDocument (system, dqName.getPath ());
dqDocument.addErrorListener (errorHandler);
dqDocument.addWorkingListener (cursorAdapter);

// Create a text field used to present the document.
text = new JTextField (dqDocument, "", 40);
text.setEditable (! rw);

// When the program runs, we need a way to control when
// the reads and writes take place. We will let the
// use control this with a button.
Button button = new Button (mode);
button.addActionListener (new ActionListener ()
{

public void actionPerformed (ActionEvent event)
{

if (rw)
dqDocument.read ();

else {
dqDocument.write ();
text.setText ("");

}
}

});

// When the the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame.
f.getContentPane ().setLayout (new FlowLayout ());
f.getContentPane ().add (text);

IBM Toolbox for Java 727

f.getContentPane ().add (button);
f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

Example: Using IFSFileDialog
This example illustrates the use of the IBM Toolbox for Java IFSFileDialog class.

Note: Read the Code example disclaimer for important legal information.
///
//
// File Dialog example.
//
///

import java.io.*;
import java.awt.*;
import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;

public class FileDialogExample extends Object
{

public static void main(String[] parameters)
{

System.out.println(" ");

// if a system name was not specified, display help text and exit.
if (parameters.length >= 1)
{

// The first parameter is the system that contains the files.
String system = parameters[0];

try
{

// Create an AS400 object for the server that contains the files.
// Connect to the file server on the server. Connect now so
// the sign-on screen is displayed now.
AS400 as400 = new AS400(system);
as400.connectService(AS400.FILE);

// Create a frame to hold the dialog.
Frame frame = new Frame();

// Create the file dialog object.
IFSFileDialog fileDialog = new IFSFileDialog(frame, "File Open", as400);

// Create the list of filters the user can choose then add the filters
// to the dialog.
FileFilter[] filterList = {

new FileFilter("All files (*.*)", "*.*"),
new FileFilter("Executables (*.exe)", "*.exe"),
new FileFilter("HTML files (*.html)", "*.html"),
new FileFilter("Images (*.gif)", "*.gif"),
new FileFilter("Text files (*.txt)", "*.txt")};

fileDialog.setFileFilter(filterList, 0);

// Set the text for the "OK" button on the dialog.

728 IBM i: Programming IBM Toolbox for Java

fileDialog.setOkButtonText("Open");

// Set the text for the "Cancel" button on the dialog.
fileDialog.setCancelButtonText("Cancel");

// Set the initial directory for the dialog.
fileDialog.setDirectory("/");

// Display the dialog and wait until the user presses OK or Cancel
int pressed = fileDialog.showDialog();

// If the user pressed OK, get the fully qualified path and name
// of the file they chose.
if (pressed == IFSFileDialog.OK)
{

System.out.println("User selected: " +
fileDialog.getAbsolutePath());

}

// Else if the user pressed cancel, display a message.

else if (pressed == IFSFileDialog.CANCEL)
{

System.out.println("User pressed cancel");
}

else
System.out.println("User didn’t press Open or Cancel");

}
catch(Exception e)
{

// If any of the above operations failed say the dialog operation
// failed and output the exception.

System.out.println("Dialog operation failed");
System.out.println(e);

}
}

// Display help text when parameters are incorrect.

else
{

System.out.println("");
System.out.println("");
System.out.println("");
System.out.println("Parameters are not correct. Command syntax is:");
System.out.println("");
System.out.println(" FileDialogExample system");
System.out.println("");
System.out.println("Where");
System.out.println("");
System.out.println(" system = IBM i");
System.out.println("");
System.out.println("For example:");
System.out.println("");
System.out.println("");
System.out.println(" FileDialogExample mySystem");
System.out.println("");
System.out.println("");

}

System.exit(0);
}

}

IBM Toolbox for Java 729

Example: Using IFSTextFileDocument
This program demonstrates how to use a document that is associated with a text file in the integrated file
system.

Note: Read the Code example disclaimer for important legal information.
///
//
// IFS text file document example. This program demonstrates how to
// use a document that is associated with a text file in the
// integrated file system.
//
// Command syntax:
// IFSTextFileDocumentExample system path
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class IFSTextFileDocumentExample
{

private static IFSTextFileDocument document;
private static JTextPane text;

public static void main (String[] args)
{

// If a system or path was not specified, then display
// help text and exit.
if (args.length != 2)
{

System.out.println("Usage: IFSTextFileDocumentExample system path");
return;

}

try
{

// Create two frames.
JFrame f = new JFrame ("IFS text file document example");

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create a working cursor adapter. This will adjust
// the cursor whenever the text file is read or written.
WorkingCursorAdapter cursorAdapter = new WorkingCursorAdapter (f);

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// Create and load the IFS text file document.
document = new IFSTextFileDocument (system, args[1]);
document.addErrorListener (errorHandler);
document.addWorkingListener (cursorAdapter);
document.load ();

// Create the text pane used to present the document.

730 IBM i: Programming IBM Toolbox for Java

text = new JTextPane (document);
text.setSize (new Dimension (500, 500));

// Set up a scroll pane to use with the text pane.
JScrollPane scroll = new JScrollPane (text);
scroll.setHorizontalScrollBarPolicy (JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED);
scroll.setVerticalScrollBarPolicy (JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED);

// Create a menu bar with a single menu.
MenuBar menuBar = new MenuBar ();
Menu menu = new Menu ("File");
menuBar.add (menu);

// Add menu items to load and save.
MenuItem load = new MenuItem ("Load");
load.addActionListener (new ActionListener ()
{

public void actionPerformed (ActionEvent event)
{

document.load ();
}

});
menu.add (load);

MenuItem save = new MenuItem ("Save");
save.addActionListener (new ActionListener ()
{

public void actionPerformed (ActionEvent event)
{

document.save ();
}

});
menu.add (save);

// When the the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", scroll);
f.setMenuBar (menuBar);
f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

AS400 JDBCDataSourcePane
The AS400JDBCDataSourcePane class presents the property values of an AS400JDBCDataSource object.
Optionally, changes can be made to the AS400JDBCDataSource object.

AS400JDBCDataSourcePane extends JComponent. To use an AS400JDBCDataSourcePane to display the
properties of a data source, the data source can either be specified on the AS400JDBCDataSourcePane

IBM Toolbox for Java 731

constructor or set after the AS400JDBCDataSourcePane has been created using setDataSource(). Changes
made to the graphical user interface (GUI) can be applied to the data source object using applyChanges().

Example: Using AS400JDBCDataSourcePane

The following example creates an AS400JDBCDataSourcePane and an OK button and adds them to a
frame. Changes made to the GUI are applied to the data source when you click OK.

// Create a data source.
myDataSource = new AS400JDBCDataSource();

// Create a window to hold the pane and an OK button.
JFrame frame = new JFrame ("JDBC Data Source Properties");

// Create a data source pane.
dataSourcePane = new AS400JDBCDataSourcePane(myDataSource);

// Create an OK button
JButton okButton = new JButton("OK");

// Add an ActionListener to the OK button. When OK is
// pressed, applyChanges() will be called to commit any
// changes to the data source.
okButton.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent ev)
{

// Apply all changes made on the data source pane
// to the data source. If all changes are applied
// successfully, get the data source from the pane.
if (dataSourcePane.applyChanges())
{

System.out.println("ok pressed");
myDataSource = dataSourcePane.getDataSource();
System.out.println(myDataSource.getServerName());

}
}

}
);

// Setup the frame to show the pane and OK button.
frame.getContentPane ().setLayout (new BorderLayout ());
frame.getContentPane ().add ("Center", dataSourcePane);
frame.getContentPane ().add ("South", okButton);

// Pack the frame.
frame.pack ();

//Display the pane and OK button.
frame.show ();

Related information:
AS400JDBCDataSourcePane Javadoc

Example: Using VJobList to present a list of jobs
This program presents a list of jobs in an explorer pane.

Note: Read the Code example disclaimer for important legal information.
///
//
// Job list example. This program presents a list of jobs in an
// explorer pane.
//
// Command syntax:
// VJobListExample system

732 IBM i: Programming IBM Toolbox for Java

javadoc/com/ibm/as400/vaccess/AS400JDBCDataSourcePane.html

//
// This source is an example of IBM Toolbox for Java "AS400ExplorerPane".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VJobListExample
{

public static void main (String[] args)
{

// If a system was not specified, then display help text and
// exit.
if (args.length != 1)
{

System.out.println("Usage: VJobListExample system");
return;

}

try
{

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// Create a VJobList object which represents the list
// of jobs named QZDASOINIT.
VJobList jobList = new VJobList (system);
jobList.setName ("QZDASOINIT");

// Create a frame.
JFrame f = new JFrame ("Job list example");

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create an explorer pane to present the job list.
// Use load to load the information from the system.
AS400ExplorerPane explorerPane = new AS400ExplorerPane (jobList);
explorerPane.addErrorListener (errorHandler);
explorerPane.load ();

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame with the explorer pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", explorerPane);
f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

IBM Toolbox for Java 733

}
}

}

Example: Using VMessageQueue
This program presents a message queue in an explorer pane.

Note: Read the Code example disclaimer for important legal information.
///
//
// Message queue example. This program presents a message queue in an
// explorer pane.
//
// Command syntax:
// VMessageQueueExample system
//
// This source is an example of IBM Toolbox for Java "VMessageQueue".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VMessageQueueExample
{

public static void main (String[] args)
{

// If a system was not specified, then display help text and
// exit.
if (args.length != 1)
{

System.out.println("Usage: VMessageQueueExample system");
return;

}

try
{

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// Force the user to sign on so that we know the user id.
system.connectService (AS400.COMMAND);

// Create a VMessageQueue object which represents the
// current user’s message queue.
VMessageQueue queue = new VMessageQueue (system,

QSYSObjectPathName.toPath ("QUSRSYS", system.getUserId (),
"MSGQ"));

// Create a frame.
JFrame f = new JFrame ("Message queue example");

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create an explorer pane to present the message queue.
// Use load to load the information from the system.

734 IBM i: Programming IBM Toolbox for Java

AS400ExplorerPane explorerPane = new AS400ExplorerPane (queue);
explorerPane.addErrorListener (errorHandler);
explorerPane.load ();

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame with the explorer pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", explorerPane);
f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

Example: Using a button to call a program on the server
This program demonstrates how to use a button that calls a program on the server. It will exchange data
with the server program via an input and output parameter.

Note: Read the Code example disclaimer for important legal information.
///
//
// Program call button example. This program demonstrates how to
// use a button that calls a program on the server. It will exchange data
// with the server program via an input and output parameter.
//
// Command syntax:
// ProgramCallButtonExample system
//
// This source is an example of IBM Toolbox for Java "ProgramCallButton".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class ProgramCallButtonExample
{

private ProgramParameter parm1, parm2, parm3, parm4, parm5;
private JTextField cpuField;
private JTextField dasdField;
private JTextField jobsField;

// Create a ProgramCallButtonExample object, then call the
// non-static version of main(). If we don’t to this then
// the class variables (parm1, parm2, ...) must be declared
// static. If they are static they cannot be used by the
// action completed listener in Java 1.1.7 or 1.1.8.

IBM Toolbox for Java 735

public static void main (String[] args)
{

ProgramCallButtonExample me = new ProgramCallButtonExample();
me.Main(args);

}

public void Main (String[] args)
{

// If a system was not specified, then display help text and
// exit.
if (args.length != 1)
{

System.out.println("Usage: ProgramCallButtonExample system");
return;

}

try
{

// Create a frame.
JFrame f = new JFrame ("Program call button example");

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// Create the program path name.
QSYSObjectPathName programName = new QSYSObjectPathName ("QSYS",

"QWCRSSTS", "PGM");

// Create a ProgramCallButton object. The button
// will have the text "Refresh" and no icon.
ProgramCallButton button = new ProgramCallButton ("Refresh", null);
button.setSystem (system);
button.setProgram (programName.getPath ());
button.addErrorListener (errorHandler);

// The first parameter is an 64 byte output parameter.
parm1 = new ProgramParameter (64);
button.addParameter (parm1);

// We use the second parameter to set the buffer size
// of the first parameter. We will always set this to
// 64. Remember that we need to convert the Java int
// value 64 to the format used on the server.
AS400Bin4 parm2Converter = new AS400Bin4 ();
byte[] parm2Bytes = parm2Converter.toBytes (64);
parm2 = new ProgramParameter (parm2Bytes);
button.addParameter (parm2);

// The third parameter is the status format. We will
// always use "SSTS0200". This is a String value, and
// again we need to convert it to the format used on the server.
AS400Text parm3Converter = new AS400Text (8, system);
byte[] parm3Bytes = parm3Converter.toBytes ("SSTS0200");
parm3 = new ProgramParameter (parm3Bytes);
button.addParameter (parm3);

// The fourth parameter is the reset statistics parameter.
// We will always pass "*NO" as a 10 character String.
AS400Text parm4Converter = new AS400Text (10, system);
byte[] parm4Bytes = parm4Converter.toBytes ("*NO ");
parm4 = new ProgramParameter (parm4Bytes);
button.addParameter (parm4);

736 IBM i: Programming IBM Toolbox for Java

// The fifth parameter is for error information. It
// is an input/output parameter. We will not use it
// for this example, but we need to set it to something,
// or else the number of parameters will not match
// what the server is expecting.
byte[] parm5Bytes = new byte[32];
parm5 = new ProgramParameter (parm5Bytes, 0);
button.addParameter (parm5);

// When the program runs, we will get a bunch of data.
// We need a way to display that data to the user.
// In this case, we will just use simple labels and text
// fields.
JLabel cpuLabel = new JLabel ("CPU Utilitization: ");
cpuField = new JTextField (10);
cpuField.setEditable (false);

JLabel dasdLabel = new JLabel ("DASD Utilitization: ");
dasdField = new JTextField (10);
dasdField.setEditable (false);

JLabel jobsLabel = new JLabel ("Number of active jobs: ");
jobsField = new JTextField (10);
jobsField.setEditable (false);

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter ()
{

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// When the program is called, we need to process the
// information that comes back in the first parameter.
// The format of the data in this parameter was documented
// by the program we are calling.
button.addActionCompletedListener (new ActionCompletedListener ()
{

public void actionCompleted (ActionCompletedEvent event)
{

try
{

// Get the data from the first parameter.
// It is in the server format.
byte[] parm1Bytes = parm1.getOutputData ();

// Each of the pieces of data that we need
// is an int. We can create one converter
// to do all of our conversions.
AS400Bin4 parm1Converter = new AS400Bin4 ();

// Get the CPU utilitization starting at byte 32.
// Set this value in the corresponding text field.
int cpu = parm1Converter.toInt (parm1Bytes, 32);
cpuField.setText (Integer.toString (cpu / 10) + "%");

// Get the DASD utilitization starting at byte 52.
// Set this value in the corresponding text field.
int dasd = parm1Converter.toInt (parm1Bytes, 52);
dasdField.setText (Integer.toString (dasd / 10000) + "%");

// Get the number of active jobs starting at byte 36.
// Set this value in the corresponding text field.
int jobs = parm1Converter.toInt (parm1Bytes, 36);

IBM Toolbox for Java 737

jobsField.setText (Integer.toString (jobs));
}
catch (Exception e) { e.printStackTrace(); }

}
});

// Layout the frame.
JPanel outputPanel = new JPanel ();
outputPanel.setLayout (new GridLayout (3, 2, 5, 5));
outputPanel.add (cpuLabel);
outputPanel.add (cpuField);
outputPanel.add (dasdLabel);
outputPanel.add (dasdField);
outputPanel.add (jobsLabel);
outputPanel.add (jobsField);

Panel buttonPanel = new Panel ();
buttonPanel.add (button);

f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", outputPanel);
f.getContentPane ().add ("South", buttonPanel);
f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

Example: Using VPrinter
This example program presents a printer and its spooled files in an explorer pane.

Note: Read the Code example disclaimer for important legal information.
//
//
// VPrinter example. This program presents a printer and its spooled
// files in an explorer pane.
//
// Command syntax:
// VPrinterExample system
//
//

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VPrinterExample
{

public static void main (String[] args)
{

// If the user does not supply a printer name then show printer information
// for a printer called OS2VPRT;
String printerName = "OS2VPRT";

738 IBM i: Programming IBM Toolbox for Java

// If a system was not specified, then display help text and
// exit.
if (args.length == 0)
{

System.out.println("Usage: VPrinterExample system printer");
return;

}

// If the user specified a name, use it instead of the default.
if (args.length > 1)

printerName = args[1];

try
{

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// Create a Printer object (from the Toolbox access package)
// which represents the printer, then create a VPrinter
// object to graphically show the spooled files on the printer.
Printer printer = new Printer(system, printerName);
VPrinter vprinter = new VPrinter(printer);

// Create a frame to hold our window.
JFrame f = new JFrame ("VPrinter Example");

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create an explorer pane to present the printer and its spooled
// files. Use load to load the information from the system.
AS400ExplorerPane explorerPane = new AS400ExplorerPane (vprinter);
explorerPane.addErrorListener (errorHandler);

explorerPane.load ();

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame with the explorer pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", explorerPane);
f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

Example: Using VPrinters

IBM Toolbox for Java 739

Note: Read the Code example disclaimer for important legal information.
///
//
// VPrinters example. This program presents various network
// print resources with an explorer pane.
//
// Command syntax:
// VPrintersExample system
//
// This source is an example of IBM Toolbox for Java "VPrinters".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VPrintersExample
{

public static void main (String[] args)
{

// If a system was not specified, then display help text and
// exit.
if (args.length != 1)
{

System.out.println("Usage: VPrintersExample system");
return;

}

try
{

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);

// Create a VPrinters object which represents the list
// of printers attached to the system.
VPrinters printers = new VPrinters (system);

// Create a frame.
JFrame f = new JFrame ("VPrinters example");

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create an explorer pane to present the network print resources.
// Use load to load the information from the system.
AS400ExplorerPane explorerPane = new AS400ExplorerPane (printers);
explorerPane.addErrorListener (errorHandler);

explorerPane.load ();

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame with the explorer pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", explorerPane);

740 IBM i: Programming IBM Toolbox for Java

f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

VPrinterOutput Example
This example program presents a list of spooled files on the server. All spooled files, or only spooled files
for a specific user, can be displayed.

Note: Read the Code example disclaimer for important legal information.
//
//
// VPrinterOutput example. This program presents a list of spooled
// files on the server. All spooled files, or spooled files for
// a specific user can be displayed.
//
// Command syntax:
// VPrinterOutputExample system <user>
//
// (User is optional, if not specified all spooled files on the system
// will be displayed. Caution - listing all spooled files on the system
// and take a long time)
//
//

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VPrinterOutputExample
{

public static void main (String[] args)
{

// If a system was not specified, display help text and exit.
if (args.length == 0)
{

System.out.println("Usage: VPrinterOutputExample system <user>");
return;

}

try
{

// Create an AS400 object. The system name was passed
// as the first command line argument.
AS400 system = new AS400 (args[0]);
system.connectService(AS400.PRINT);

// Create the VPrinterOutput object.
VPrinterOutput printerOutput = new VPrinterOutput(system);

// If a user was specified as a command line parameter, tell
// the printerObject to get spooled files only for that user.
if (args.length > 1)

IBM Toolbox for Java 741

printerOutput.setUserFilter(args[1]);

// Create a frame to hold our window.
JFrame f = new JFrame ("VPrinterOutput Example");

// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create an details pane to present the list of spooled files.
// Use load to load the information from the system.
AS400DetailsPane detailsPane = new AS400DetailsPane (printerOutput);
detailsPane.addErrorListener (errorHandler);
detailsPane.load ();

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame with the details pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", detailsPane);
f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

Example: Using SQLQueryBuilderPane
This program presents a query builder that allows the user to build a SQL query.

Note: Read the Code example disclaimer for important legal information.
///
//
// SQLQueryBuilderPane example. This program presents a query builder
// that allows the user to build a SQL query.
//
// Command syntax:
// SQLQueryBuilderPaneExample system
//
// This source is an example of IBM Toolbox for Java "SQLQueryBuilderPane",
// and "SQLResultSetFormPane".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.sql.*;

public class SQLQueryBuilderPaneExample
{

742 IBM i: Programming IBM Toolbox for Java

// This connection is shared by all components.
private SQLConnection connection;

// This error handler is shared by all components.
private ErrorDialogAdapter errorHandler;

// The query builder pane.
private SQLQueryBuilderPane queryBuilderPane;

// This is the main java calls. Here we create an instance of our
// class and call our own Main() method. We do this to avoid
// problems with static. Java has some restrictions with static
// methods using non-static data, especially when it comes to
// inner classes. The code is cleaner if we keep the amount of
// static data and methods to a minimum.
public static void main (String[] args)
{

SQLQueryBuilderPaneExample me = new SQLQueryBuilderPaneExample();
me.Main(args);

}

public void Main (String[] args)
{

// If a system was not specified, then display
// help text and exit.
if (args.length != 1)
{

System.out.println("Usage: SQLQueryBuilderPaneExample system");
return;

}

try
{

// Register the IBM Toolbox for Java JDBC driver.
DriverManager.registerDriver (new AS400JDBCDriver ());

// Create an SQLConnection object. The system name was passed
// as the first command line argument.
connection = new SQLConnection ("jdbc:as400://" + args[0]);

// Create a frame.
JFrame f = new JFrame ("SQLQueryBuilderPane example");

// Create an error dialog adapter. This will display
// any errors to the user.
errorHandler = new ErrorDialogAdapter (f);

// Create a SQL query builder pane to present the query
// builder. Load the data that is needed for the query
// builder from the system.
queryBuilderPane = new SQLQueryBuilderPane (connection);
queryBuilderPane.addErrorListener (errorHandler);
queryBuilderPane.load ();

// Create a button which will display the results of
// the generated query in a form pane in another frame.
JButton resultSetButton = new JButton ("Show result set");
resultSetButton.addActionListener (new ActionListener ()

IBM Toolbox for Java 743

{
public void actionPerformed (ActionEvent event)
{

showFormPane (queryBuilderPane.getQuery ());
}

});

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter ()
{

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame with the query builder pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", queryBuilderPane);
f.getContentPane ().add ("South", resultSetButton);
f.pack ();
f.show ();

}
catch (Exception e)
{

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

private void showFormPane (String query)
{

// Create a new frame for the results of the query.
JFrame f = new JFrame (query);

// Create a SQL result set form pane to present the results
// of the query. Load the results from the system.
SQLResultSetFormPane formPane = new SQLResultSetFormPane (connection, query);
formPane.addErrorListener (errorHandler);
formPane.load ();

// Layout the frame with the form pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center", formPane);
f.pack ();
f.show ();

}

}

Example: Using SQLResultSetTablePane
This program presents the contents of a table in a table pane. There is a SQLStatementDocument that
allows the user to type in any SQL statement. In addition, there is a button that allows the user to delete
all rows of the table.

Note: Read the Code example disclaimer for important legal information.
///
//
// SQLResultSetTablePane example. This program presents the contents of
// a table in a table pane. There is a SQLStatementDocument that allows
// the user to type in any SQL statement. In addition, there is a button
// that allows the user to delete all rows of the table.

744 IBM i: Programming IBM Toolbox for Java

//
// Command syntax:
// SQLResultSetTablePaneExample system table
//
// This source is an example of IBM Toolbox for Java "SQLQueryBuilderPane",
// "SQLResultSetFormPane", and "SQLStatementButton".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.sql.*;

public class SQLResultSetTablePaneExample
{

private static SQLStatementDocument document;
private static SQLResultSetTablePane tablePane;

public static void main (String[] args)
{

// If a system was not specified, then display
// help text and exit.
if (args.length != 2)
{

System.out.println("Usage: SQLResultSetTablePaneExample system table");
return;

}

try
{

// Register the IBM Toolbox for Java JDBC driver.
DriverManager.registerDriver (new AS400JDBCDriver ());

// Create an SQLConnection object. The system name was passed
// as the first command line argument. This connection is
// shared by all components.
SQLConnection connection = new SQLConnection ("jdbc:as400://" + args[0]);

// Create a frame.
JFrame f = new JFrame ("SQLResultSetTablePane example");

// Create an error dialog adapter. This will display
// any errors to the user. This error handler is shared
// by all components.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create a SQL statement document which allows the
// user to enter a query.
document = new SQLStatementDocument (connection, "");
document.addErrorListener (errorHandler);

// Create a text field for presenting the document.
JTextField textField = new JTextField (document,

"Enter a SQL statement here.", 50);

// Create a button that deletes all rows of the table.
SQLStatementButton deleteAllButton = new SQLStatementButton ("Delete all rows");
deleteAllButton.setConnection (connection);
deleteAllButton.setSQLStatement ("DELETE FROM " + args[1]);

IBM Toolbox for Java 745

deleteAllButton.addErrorListener (errorHandler);

// Create a SQL result set table pane to present the results
// of a query. Load the contents immediately.
tablePane = new SQLResultSetTablePane (connection, "SELECT * FROM " + args[1]);
tablePane.addErrorListener (errorHandler);
tablePane.load ();

// When enter is pressed in the text field,
// execute the SQL statement and update the table pane.
textField.addKeyListener (new KeyAdapter ()
{

public void keyPressed (KeyEvent event)
{

if (event.getKeyCode () == KeyEvent.VK_ENTER)
{

// If the SQL statement is a SELECT, then
// let the table pane execute it, otherwise,
// let the document execute it.
String sql = document.getSQLStatement ();
if (sql.toUpperCase ().startsWith ("SELECT"))
{

try
{

tablePane.setQuery (sql);
}
catch (Exception e)
{

// Ignore.
}
tablePane.load ();

}
else

document.execute ();
}

}
});

// When all rows are deleted using the button, then
// update the table pane.
deleteAllButton.addActionCompletedListener (new ActionCompletedListener ()
{

public void actionCompleted (ActionCompletedEvent event)
{

tablePane.load ();
}

});

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter ()
{

public void windowClosing (WindowEvent event)
{

System.exit (0);
}

});

// Layout the frame with the query builder pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("North", textField);
f.getContentPane ().add ("Center", tablePane);
f.getContentPane ().add ("South", deleteAllButton);
f.pack ();
f.show ();

}
catch (Exception e)
{

746 IBM i: Programming IBM Toolbox for Java

System.out.println ("Error: " + e.getMessage ());
System.exit (0);

}
}

}

Examples: XPCML
This section lists the code examples that are provided throughout the documentation of the IBM Toolbox
for Java XPCML component.
v “Example: Condensing an existing XPCML document” on page 753
v “Example: Condensing an existing XPCML document, including Java code” on page 753
v “Example: Using condensed XPCML to create a ProgramCallDocument object” on page 756
v “Example: Obtaining program call results as condensed XPCML” on page 756
v “Example: Retrieving program call results as XPCML”
v “Example: Passing in parameter values as XPCML” on page 750
v “Examples: Passing in arrays of parameter values as XPCML” on page 751
v “Example: Converting a PCML document to an XPCML document” on page 441

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

Example: Retrieving program call results as XPCML
The following example shows how you can construct an XPCML ProgramCallDocument, call an IBM i
program, and retrieve the results of the program call as XPCML.

The example supposes the following components:
v XPCML document qgyolaus.xpcml, which defines the program and parameter specifications with input

values
v Java code that constructs a ProgramCallDocument object, uses the XPCML file, and then calls program

QGYOLAUS
v Results of the program call, which the Java code generates as XPCML and stores in file

XPCMLOut.xpcml

Notice how array data is specified in the original and the generated XPCML. The element
qgyolaus.receiver, an output parameter, is an XPCML arrayOfStructParm with an attribute that sets the
count to listInfo.rcdsReturned. The following example code includes only part of the QGYOLAUS output.
If the example included all the output, the code might list 89 users under the <arrayOfStructParm>
XPCML tag.

IBM Toolbox for Java 747

For arrays of structs, XPCML uses the <struct_i> XPCML tag to delimit each structParm element. Each
<struct_i> tag indicates that the data enclosed within it is one element of type autu0150 struct. The index
attribute of the <struct_i> tag specifies the element of the array for the struct.

For arrays of simple types, such as arrayOfStringParm, arrayOfIntParm, and so on, the <i> XPCML tag
lists array elements.

XPCML document qgyolaus.xpcml
<xpcml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="xpcml.xsd" version="4.0">

<!-- XPCML source for calling "Open List of Authorized Users" -->
<!-- (QGYOLAUS) API -->

<!-- Format AUTU0150 - Other formats are available -->
<struct name="autu0150">

<stringParm name="name" length="10"/>
<stringParm name="userOrGroup" length="1"/>
<stringParm name="groupMembers" length="1"/>
<stringParm name="description" length="50"/>

</struct>

<!-- List information structure (common for "Open List" type APIs) -->
<struct name="listInfo">

<intParm name="totalRcds"/>
<intParm name="rcdsReturned">0</rcdsReturned>
<hexBinaryParm name="rqsHandle" totalBytes="4"/>
<intParm name="rcdLength"/>
<stringParm name="infoComplete" length="1"/>
<stringParm name="dateCreated" length="7"/>
<stringParm name="timeCreated" length="6"/>
<stringParm name="listStatus" length="1"/>
<hexBinaryParm totalBytes="1"/>
<unsignedIntParm name="lengthOfInfo"/>
<intParm name="firstRecord"/>
<hexBinaryParm totalBytes="40"/>

</struct>

<!-- Program QGYOLAUS and its parameter list for retrieving -->
<!-- AUTU0150 format -->

<program name="QGYOLAUS" path="/QSYS.lib/QGY.lib/QGYOLAUS.pgm"
parseOrder="listInfo receiver">

<parameterList>
// Output values --- array of the autu0150 struct
<arrayOfStructParm name="receiver" count="listInfo.rcdsReturned"

passDirection="out" outputSize="receiverLength" struct="autu0150"/>
// Input values
<intParm name="receiverLength" passDirection="in">16384</intParm>
<structParm name="listInfo" passDirection="out" struct="listInfo"/>
// Input values
<intParm name="rcdsToReturn" passDirection="in">264</intParm>
<stringParm name="format" passDirection="in" length="10">

AUTU0150</stringParm>
<stringParm name="selection" passDirection="in" length="10">

*USER</stringParm>
<stringParm name="member" passDirection="in" length="10">

*NONE</stringParm>
<intParm name="errorCode" passDirection="in">0</intParm>

</parameterList>
</program>

748 IBM i: Programming IBM Toolbox for Java

Java code that constructs the ProgramCallDocument object and uses the XPCML to call
program QGYOLAUS

system = new AS400();
// Create a ProgramCallDocument into which to parse the file.
ProgramCallDocument xpcmlDoc =

new ProgramCallDocument(system, "QGYOLAUS.xpcml");

// Call QGYOLAUS
boolean rc = xpcmlDoc.callProgram("QGYOLAUS");

// Obtain program call results as XPCML and store them
// in file XPCMLOut.xpcml
if (rc) // Program was successful

xpcmlDoc.generateXPCML("QGYOLAUS","XPCMLOut.xpcml");

Results of the program call, generated as XPCML and stored in file XPCMLOut.xpcml
<?xml version="1.0" ?>
<xpcml version="4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=’xpcml.xsd’ >

<program name="QGYOLAUS" path="/QSYS.lib/QGY.lib/QGYOLAUS.pgm"
parseOrder="listInfo receiver">

<parameterList>
<arrayOfStructParm name="receiver" passDirection="out"

count="listInfo.rcdsReturned" outputSize="receiverLength"
struct="autu0150">

<struct_i index="0">
<stringParm name="name" length="10">JANEDOW</stringParm>
<stringParm name="userOrGroup" length="1">0</stringParm>
<stringParm name="groupMembers" length="1">0</stringParm>
<stringParm name="description" length="50">

Jane Doe</stringParm>
</struct_i>
<struct_i index="1">

<stringParm name="name" length="10">BOBS</stringParm>
<stringParm name="userOrGroup" length="1">0</stringParm>
<stringParm name="groupMembers" length="1">0</stringParm>
<stringParm name="description" length="50">

Bob Smith</stringParm>
</struct_i>

<!-- More records here depending on how many users output. -->
<!-- In this case 89 user records are listed here. -->

</arrayOfStructParm> <!-- End of user array -->
<intParm name="receiverLength" passDirection="in">

16384</intParm>
<structParm name="listInfo" passDirection="out"

struct="listInfo">
<intParm name="totalRcds">89</intParm>
<intParm name="rcdsReturned">89</intParm>
<hexBinaryParm name="rqsHandle" totalBytes="4">

00000001==</hexBinaryParm>
<intParm name="rcdLength">62</intParm>
<stringParm name="infoComplete" length="1">C</stringParm>
<stringParm name="dateCreated" length="7">

1030321</stringParm>
<stringParm name="timeCreated" length="6">

120927</stringParm>
<stringParm name="listStatus" length="1">2</stringParm>
<hexBinaryParm totalBytes="1"></hexBinaryParm>
<unsignedIntParm name="lengthOfInfo">

5518</unsignedIntParm>
<intParm name="firstRecord">1</intParm>

</structParm>

IBM Toolbox for Java 749

<intParm name="rcdsToReturn" passDirection="in">264</intParm>
<stringParm name="format" passDirection="in" length="10">

AUTU0150</stringParm>
<stringParm name="selection" passDirection="in" length="10">

*USER</stringParm>
<stringParm name="member" passDirection="in" length="10">

*NONE</stringParm>
<intParm name="errorCode" passDirection="in">0</intParm>

</parameterList>
</program>

</xpcml>

Example: Passing in parameter values as XPCML
Program parameter values can be set in the XPCML source file. When the XPCML is read in and parsed,
the ProgramCallDocument setValue method is called automatically for each parameter whose value has
been passed in as XPCML. This relieves the user from having to write Java code to set the values of
complicated structures and arrays.

In the following examples, the XPCML calls two different programs, prog1 and prog2. Both programs use
the input parameter s1Ref. The first example sets different values for s1Ref for each program call. The
second example specifies the same value for s1Ref for each program call, which illustrates a useful way
to set constant data values for input parameters.

Example: Passing in different values for input paramters

In the following example, after the XML parser reads in and parses the document, the value of element
prog1.s1Ref.s2Ref.s2p1[0] is prog1Val_1 and the value of element prog1.s1Ref.s2Ref.s2p1[1] is prog1Val_2.

<xpcml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="xpcml.xsd" version="4.0">

<struct name="s1">
<stringParm name="s1p1"/>
<structParm name="s2Ref" struct="s2"/>

</struct>

<struct name="s2">
<stringParm name="s2p1" length="10"/>
<arrayOfStringParm name="parm1" count="2"/>

</struct>

<program name="prog1" path="/QSYS.LIB/W95LIB.LIB/PROG1.PGM">
<parameterList>

<structParm name="s1Ref" struct="s1" passDirection="in" >
<stringParm name="s1p1">prog1Val</stringParm>
<structParm name="s2Ref" struct="s2">

<stringParm name="s2p1" length="10">prog1Val</stringParm>
<arrayOfStringParm name="parm1" count="2">

<i>prog1Val_1</i>
<i>prog1Val_2</i>

</arrayOfStringParm>
</structParm>

</structParm>
</parameterList>

</program>

<program name="prog2" path="/QSYS.LIB/W95LIB.LIB/PROG1.PGM">
<parameterList>

<structParm name="s1Ref" struct="s1" passDirection="in" >
<stringParm name="s1p1">prog2Val</stringParm>
<structParm name="s2Ref" struct="s2">

<stringParm name="s2p1" length="10">prog2Val</stringParm>
<arrayOfStringParm name="parm1" count="2">

<i>prog2Val_1</i>
<i>prog2Val_2</i>

750 IBM i: Programming IBM Toolbox for Java

</arrayOfStringParm>
</structParm>

</structParm>
</parameterList>

</program>
</xpcml>

Example: Passing in constant values for input paramters

In the following example, after the XML parser reads in and parses the document, the value of element
prog1.s1Ref.s2Ref.s2p1[0] is constantVal_1 and the value of element prog1.s1Ref.s2Ref.s2p1[1] is
constantVal_2.

<xpcml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="xpcml.xsd" version="4.0">

<struct name="s1" >
<stringParm name="s1p1">constantVal</stringParm>
<structParm name="s2Ref" struct="s2"/>

</struct>

<struct name="s2">
<stringParm name="s2p1" length="10">constantVal</stringParm>
<arrayOfStringParm name="parm1" count="2">

<i>constantVal_1</i>
<i>constantVal_2</i>

</arrayOfStringParm>
</struct>

<program name="prog1" path="/QSYS.LIB/W95LIB.LIB/PROG1.PGM">
<parameterList>

<structParm name="s1Ref" struct="s1" passDirection="in" />
</parameterList>

</program>

<program name="prog2" path="/QSYS.LIB/W95LIB.LIB/PROG1.PGM">
<parameterList>

<structParm name="s1Ref" struct="s1" passDirection="in" />
</parameterList>

</program>
</xpcml>

Examples: Passing in arrays of parameter values as XPCML
The following example illustrates how to pass in arrays of parameter values by using structParm array
data and an array of structs.

When using XPCML to pass in array data, you must use the count attribute:
v Specify the count attribute on the array element
v Set the count attribute to the number of elements that the array contains at the time you parse the

document
<?xml version="1.0" encoding="UTF-8"?>
<xpcml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="xpcml.xsd" version="4.0">

<struct name="s1" >
<stringParm name="s1p1"/>
<struct name="s1Array">

<stringParm name="s1Ap1"/>
</struct>

</struct>

<struct name="s2">
<stringParm name="s2p1"/>

</struct>

IBM Toolbox for Java 751

<program name="prog1" path="/QSYS.LIB/W95LIB.LIB/PROG1.PGM">
<parameterList>

<structParm name="s1Ref" struct="s1" passDirection="in" >
<stringParm name="s1p1">Value 1</stringParm>
<arrayOfStruct name="s1Array" count="2">

<struct_i>
<stringParm name="s1Ap1">Value 1</stringParm>

</struct_i>
<struct_i>

<stringParm name="s1Ap1">Value 2</stringParm>
</struct_i>

</arrayOfStruct>
</structParm>
<arrayOfStructParm name="s2Ref" struct="s2" count="2" passDirection="in" >

<struct_i>
<stringParm name="s2p1">Value 1</stringParm>

</struct_i>
<struct_i>

<stringParm name="s2p1">Value 2</stringParm>
</struct_i>

</arrayOfStructParm>
</parameterList>

</program>
</xpcml>

For example, the following XPCML specifies an array of 3 intParms and sets the first element to 12, the
second to 100, and the third to 4:

<?xml version="1.0" ?>
<xpcml version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’xpcml.xsd’ >
<program name="prog1" path="/QSYS.lib/MYLIG.lib/PROG1.pgm">
<parameterList>

<arrayOfIntParm name="intArray" count="3">
<i>12</i>
<i>100</i>
<i>4</i>

</arrayOfIntParm>
</parameterList>
</program>

</xpcml>

Using the index attribute of the <i> and <struct_i> tags to set array values

You can use the index attribute of the <i> and <struct_i> tags to help you set array values. In the
following example, the XPCML sets the first element of the array to 4, the second to 100, and the third to
12.

<?xml version="1.0" ?>
<xpcml version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’xpcml.xsd’ >

<program name="prog1" path="/QSYS.lib/MYLIG.lib/PROG1.pgm">
<parameterList>

<arrayOfIntParm name="intArray" count="3">
<i index="2">12</i>
<i index="1">100</i>
<i index="0">4</i>

</arrayOfIntParm>
</parameterList>
</program>

</xpcml>

752 IBM i: Programming IBM Toolbox for Java

Example: Condensing an existing XPCML document
The following example illustrates how to condense an existing XPCML document. The example includes
original XPCML source, the resulting condensed XPCML, and the extended schema.

Original XPCML source
<?xml version="1.0" encoding="UTF-8"?>
<xpcml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="xpcml.xsd" version="4.0">
<program name="prog1" path="/QSYS.LIB/W95LIB.LIB/PROG1.PGM">

<parameterList>
<stringParm name="parm1" passDirection="in" passMode="value"

minvrm="V5R2M0" ccsid="37" length="10">Value 1</stringParm>
</parameterList>

</program>
</xpcml>

Condensed XPCML source
<?xml version="1.0" encoding="UTF-8"?>
<xpcml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="myXSD.xsd" version="4.0">
<program name="prog1" path="/QSYS.LIB/W95LIB.LIB/PROG1.PGM">

<parameterList>
<parm1_>Value 1</parm1_>

</parameterList>
</program>

</xpcml>

Generated schema
<!-- parm1’s XSD definition -->
<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’>
<!-- Link back to XPCML.xsd -->
<xs:include schemaLocation=’xpcml.xsd’/>
<xs:element name="parm1_" substitutionGroup="stringParmGroup" >
<xs:complexType>

<xs:simpleContent>
<xs:restriction base="stringParmType">

<!-- Attributes defined for parm1 -->
<xs:attribute name="name" type="string50" fixed="parm1" />
<xs:attribute name="length" type="xs:string" fixed="10" />
<xs:attribute name="passMode" type="xs:string" fixed="value" />
<xs:attribute name="ccsid" type="xs:string" fixed="37" />
<xs:attribute name="minvrm" type="xs:string" fixed="V5R2M0" />

</xs:restriction>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</schema>

Example: Condensing an existing XPCML document, including Java code
The following example illustrates how to condense an existing XPCML document. The example includes
original XPCML source, the resulting condensed XPCML, the Java code that calls condenseXPCML(), and
a few of the newly generated type definitions in the extended schema.

Original XPCML source
<!-- Fully specified XPCML source -->
<xpcml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="xpcml.xsd" version="4.0">

<struct name="qualifiedJobName">
<stringParm name="jobName" length="10">*</stringParm>
<stringParm name="userName" length="10"/>
<stringParm name="jobNumber" length="6"/>

IBM Toolbox for Java 753

</struct>

<struct name="jobi0100">
<intParm name="numberOfBytesReturned"/>
<intParm name="numberOfBytesAvailable"/>
<structParm name="qualifiedJobName" struct="qualifiedJobName"/>
<hexBinaryParm name="internalJobIdentifier" totalBytes="16"/>
<stringParm name="jobStatus" length="10"/>
<stringParm name="jobType" length="1"/>
<stringParm name="jobSubtype" length="1"/>
<stringParm length="2"/>
<intParm name="runPriority"/>
<intParm name="timeSlice"/>
<intParm name="defaultWait"/>
<stringParm name="purge" length="10"/>

</struct>

<program name="qusrjobi_jobi0100" path="/QSYS.LIB/QUSRJOBI.PGM">
<parameterList>

<structParm name="receiverVariable" passDirection="out"
outputSize="lengthOfReceiverVariable" struct="jobi0100"/>

<intParm name="lengthOfReceiverVariable" passDirection="in">86</intParm>
<stringParm name="formatName" passDirection="in" length="8">JOBI0100</stringParm>
<structParm name="qualifiedJobName" passDirection="in" struct="qualifiedJobName"/>
<hexBinaryParm name="internalJobIdentifier"

passDirection="in" totalBytes="16"> </hexBinaryParm>
<intParm name="errorCode" passDirection="in">0</intParm>

</parameterList>
</program>
</xpcml>

Java code to condense the original XPCML source
try {

FileInputStream fullStream = new FileInputStream("myXPCML.xpcml");
FileOutputStream condensedStream = new FileOutputStream("myCondensedXPCML.xpcml");
FileOutputStream xsdStream = new FileOutputStream("myXSD.xsd");
ProgramCallDocument.condenseXPCML(fullStream, xsdStream, condensedStream, "myXSD.xsd");

}
catch (Exception e) {

System.out.println("error: - "+e.getMessage());
e.printStackTrace();

}

Condensed XPCML source: myCondensedXPCML.xpcml
<xpcml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="myXSD.xsd" version="4.0">

<struct name="qualifiedJobName">
<jobName_>*</jobName_>
<userName_/>
<jobNumber_/>

</struct>

<struct name="jobi0100">
<numberOfBytesReturned_/>
<numberOfBytesAvailable_/>
<structParm name="qualifiedJobName" struct="qualifiedJobName"/>
<internalJobIdentifier_/>
<jobStatus_/>
<jobType_/>
<jobSubtype_/>
<stringParm length="2"/>
<runPriority_/>
<timeSlice_/>
<defaultWait_/>

754 IBM i: Programming IBM Toolbox for Java

<purge_/>
</struct>

<program name="qusrjobi_jobi0100" path="/QSYS.LIB/QUSRJOBI.PGM">
<parameterList>

<structParm name="receiverVariable" passDirection="out"
outputSize="lengthOfReceiverVariable" struct="jobi0100"/>

<lengthOfReceiverVariable_>86</lengthOfReceiverVariable_>
<formatName_>JOBI0100</formatName_>
<structParm name="qualifiedJobName" passDirection="in" struct="qualifiedJobName"/>
<internalJobIdentifier_> </internalJobIdentifier_>
<errorCode_>0</errorCode_>

</parameterList>
</program>
</xpcml>

Some type definitions from the generated schema: myXSD.xsd
<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’>
<xs:include schemaLocation=’xpcml.xsd’/>

<xs:element name="jobName_" substitutionGroup="stringParmGroup" >
<xs:complexType>

<xs:simpleContent>
<xs:restriction base="stringParmType">

<xs:attribute name="name" type="string50" fixed="jobName" />
<xs:attribute name="length" type="xs:string" fixed="10" />

</xs:restriction>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name="userName_" substitutionGroup="stringParmGroup" >
<xs:complexType>

<xs:simpleContent>
<xs:restriction base="stringParmType">

<xs:attribute name="name" type="string50" fixed="userName" />
<xs:attribute name="length" type="xs:string" fixed="10" />

</xs:restriction>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name="jobNumber_" substitutionGroup="stringParmGroup" >
<xs:complexType>

<xs:simpleContent>
<xs:restriction base="stringParmType">

<xs:attribute name="name" type="string50" fixed="jobNumber" />
<xs:attribute name="length" type="xs:string" fixed="6" />

</xs:restriction>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name="lengthOfReceiverVariable_" substitutionGroup="intParmGroup" >
<xs:complexType>

<xs:simpleContent>
<xs:restriction base="intParmType">

<xs:attribute name="name" type="string50" fixed="lengthOfReceiverVariable" />
<xs:attribute name="passDirection" type="passDirectionType" fixed="in" />

</xs:restriction>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name="formatName_" substitutionGroup="stringParmGroup" >
<xs:complexType>

IBM Toolbox for Java 755

<xs:simpleContent>
<xs:restriction base="stringParmType">

<xs:attribute name="name" type="string50" fixed="formatName" />
<xs:attribute name="length" type="xs:string" fixed="8" />
<xs:attribute name="passDirection" type="passDirectionType" fixed="in" />

</xs:restriction>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<!-- More type definitions for each newly defined type follow here -->
</xs:schema>

Example: Using condensed XPCML to create a ProgramCallDocument object
Some ProgramCallDocument constructors accept a condensedXPCML source file and corresponding
schema (.xsd file). This enables you to use condensed XPCML to create a ProgramCallDocument object.

The previously mentioned constructors require that you provide the following parameters:
v A String that specifies a condensed XPCML file
v An InputStream that contains the type definitions created by running condenseXPCML()

Using these constructors loads and parses a condensed XPCML file. Additionally, the process logs any
parse errors. After completing the parse, the constructor creates a ProgramCallDocument object.

The following Java code example uses condensed XPCML to create a ProgramCallDocument object. The
example code assumes the following
v The name of the condensed XPCML file is myCondensedXPCML.xpcml
v The name of the extended schema is myXSD.xsd

The code then uses the ProgramCallDocument object to run program qusrjobi_jobi0100.
AS400 system = new AS400();
// Create a ProgramCallDocument and parse the file.
ProgramCallDocument xpcmlDoc =

new ProgramCallDocument(system,
"myCondensedXPCML.xpcml",
new FileInputStream("myXSD.xsd"));

boolean rc = xpcmlDoc.callProgram("qusrjobi_jobi0100");

Note: The XPCML code that you use to call the program (after creating the ProgramCallDocument object)
is the same as the code you would use with PCML.

Example: Obtaining program call results as condensed XPCML
You use the same process to obtain the results of a program call as condensed XPCML or noncondensed
XPCML by calling ProgramCallDocument.generateXPCML().

Use setXsdName() to specify the name of the extended schema, which generateXPCML() uses to generate
the noNamespaceSchemaLocation attribute of the <xpcml> tag in the condensed XPCML.

Using setXsdName() is important when you want to use the program call results (in condensed XPCML)
as source for another ProgramCallDocument object. You must specify the name of the extended schema
so that the parser knows which schema file to use when parsing.

For example, the following code obtains the results from a program call and generates condensed
XPCML.

AS400 system = new AS400();

// Create a ProgramCallDocument and parse the file.
ProgramCallDocument xpcmlDoc =

756 IBM i: Programming IBM Toolbox for Java

new ProgramCallDocument(system, "myCondensedXPCML.xpcml", new FileInputStream("myXSD.xsd"));

boolean rc = xpcmlDoc.callProgram("qusrjobi_jobi0100");

if (rc) // Program was successful
{

xpcmlDoc.setXsdName("myXSD.xsd");
xpcmlDoc.generateXPCML("qusrjobi_jobi0100","XPCMLOut.xpcml");

}

The following code shows an example of obtaining program call results as condensed XPCML:
<xpcml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="myXSD.xsd" version="4.0">

<program name="qusrjobi_jobi0100" path="/QSYS.LIB/QUSRJOBI.PGM">
<parameterList>
<structParm name="receiverVariable" passDirection="out"

outputSize="lengthOfReceiverVariable" struct="jobi0100"/>
<numberOfBytesReturned_>100</numberOfBytesReturned_>
<numberOfBytesAvailable_>100</numberOfBytesAvailable_>
<structParm name="qualifiedJobName"

struct="qualifiedJobName">
<jobName_>*</jobName_>
<userName_/>
<jobNumber_/>

</structParm>
<internalJobIdentifier_/>
<jobStatus_>ACTIVE</jobStatus_>
<jobType_>PJ</jobType>
<jobSubtype_/>
<stringParm length="2"/>
<runPriority_>5</runPriority>
<timeSlice_/>
<defaultWait_>10</defaultWait_>
<purge_/>

</structParm>
<lengthOfReceiverVariable_>86</lengthOfReceiverVariable_>
<formatName_>JOBI0100</formatName_>
<structParm name="qualifiedJobName" passDirection="in" struct="qualifiedJobName"/>
<internalJobIdentifier_> </internalJobIdentifier_>
<errorCode_>0</errorCode_>

</parameterList>
</program>
</xpcml>

Related information for IBM Toolbox for Java
The following list includes Web sites and Information Center topics that relate to the IBM Toolbox for
Java information.

IBM Toolbox for Java resources

Use the following sites to learn more about the IBM Toolbox for Java:

v IBM Toolbox for Java and JTOpen : Offers information about service packs, performance tips,
examples, and much more. You can also download a zipped package of this information, including the
Javadocs.

v IBM Toolbox for Java Frequently Asked Questions (FAQ) : Provides answers to questions about
performance, troubleshooting, JDBC, and more.

IBM Toolbox for Java 757

http://www.ibm.com/systems/i/software/toolbox/
http://www.ibm.com/systems/i/software/toolbox/faq.html

v IBM Toolbox for Java and JTOpen forum : Offers an effective way to communicate with the
community of Java programmers who use IBM Toolbox for Java and the IBM Toolbox for Java
developers themselves.

IBM Toolbox for Java 2 Micro Edition resources

Use the following sites to learn more about ToolboxME and the Java implementation of wireless
technologies:

v IBM Toolbox for Java and JTOpen : Offers more information about ToolboxME.

v IBM alphaWorks® Wireless : Offers information about new wireless technologies, including
downloads and links to development resources.

v Sun Java 2 Platform, Micro Edition : Provides additional information about the Java wireless
technologies, including the following:
– K Virtual Machine (KVM)
– Connected Limited Device Configuration (CLDC)
– Mobile Information Device Profile (MIDP)

v Java Technology for Wireless, Mobile, and Embedded Devices : Offers a wide range of technical
information for Java wireless application developers.

v Wireless application development tools:

– WebSphere Everyplace Micro Environment

– Sun Java Wireless Toolkit for CLDC

Java

Java is a programming language that allows you to develop portable object-oriented applications and
applets. Use the following sites to learn more about Java:

v IBM developerWorks® Java technology zone : Offers information, education, and tool to help you
use Java, IBM products, and other technologies to create business solutions.

v IBM alphaWorks Java : Offers information about new Java technologies, including downloads and
links to development resources.

v The Source for Java Developers : Offers information about the various uses for Java, including new
technologies.

Java Naming and Directory Interface

v Java Naming and Directory Interface (JNDI) : Offers an overview of JNDI, technical information,
examples, and a list of available service providers.

v System i LDAP : Provides information about LDAP (Lightweight Directory Access Protocol) on
IBM i.

Java Secure Socket Extension

v Java SE Security : Offers a brief overview of JSSE and links to more information.

758 IBM i: Programming IBM Toolbox for Java

http://www-912.ibm.com/j_dir/JTOpen.nsf/
http://www.ibm.com/systems/i/software/toolbox/
http://www.alphaworks.ibm.com/wireless
http://java.sun.com/javame/
http://developers.sun.com/mobility/
http://www.ibm.com/software/wireless/weme/
http://java.sun.com/products/sjwtoolkit/
http://www.ibm.com/developerworks/java
http://www.alphaworks.ibm.com/java
http://java.sun.com/
http://java.sun.com/products/jndi/
http://www.ibm.com/systems/i/software/ldap/
http://java.sun.com/javase/technologies/security/

Servlets

Servlets are small Java programs that run on a server and mediate requests from one or many clients
(each of which runs in a browser) to one or more databases. Because servlets are programmed in Java,
they can execute requests as multiple threads within a single process, thereby saving system resources.
Use the following sites to learn more about servlets:

v Java Servlet technology : Provides technical information, instructions, and tools to help you
understand and use servlets.

XHTML

XHTML is touted as the successor to HTML 4.0. It is based on HTML 4.0, but incorporates the
extensibility of XML. Use following sites to learn more about XHTML:

v The Web Developer's Virtual Library : Offers an introduction to XHTML, including examples and
links to additional information.

v W3C : Provides technical information about XHTML standards and recommendations.

XML

Extensible Markup Language (XML) is a metalanguage that allows you to describe and organize
information in ways that are easily understandable by both humans and computers. A metalanguage
allows you to define a document markup language and its structure. Use the following sites to learn
more about XML:

v IBM developerWorks XML zone : Provides a site dedicated to the work IBM does with XML and
how it works to facilitate e-commerce

v IBM alphaWorks XML : Offers information about emerging XML standards and tools, including
downloads and links to development resources.

v W3C XML : Offers technical resources for XML developers.

v XML.com : Offers updated information about XML in the computer industry

v XML.org : Provides news and information about the XML community, including industry news,
calendars of events, and more.

v XML Cover Pages : Provides a comprehensive online reference work for XML, SGML, and related
XML standards, like XSL and XSLT.

Other references

v IBM HTTP Server for i : Provides information, resources, and tips about the IBM HTTP Server for
i.

v IBM i Access : Offers information about IBM i Access, including downloads, FAQs, and links to
additional sites.

v IBM WebSphere Host On-Demand : Provides information about the browser-based emulator that
offers support for S/390®, IBM i, and DEC/Unix emulation.

v IBM Support and downloads : Offers a portal to IBM hardware and software support.

IBM Toolbox for Java 759

http://java.sun.com/products/servlet/index.jsp
http://www.wdvl.com/Authoring/Languages/XML/XHTML/
http://www.w3.org/TR/xhtml1/
http://www.ibm.com/developerworks/xml/
http://www.alphaworks.ibm.com/xml
http://www.w3.org/XML/
http://www.xml.com/
http://www.xml.org/
http://xml.coverpages.org/
http://www.ibm.com/systems/i/software/http/
http://www.ibm.com/systems/i/software/access/
http://www.ibm.com/software/webservers/hostondemand/
http://www.ibm.com/support/

Code license and disclaimer information
IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:
1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE
PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

760 IBM i: Programming IBM Toolbox for Java

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1999, 2010 761

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

762 IBM i: Programming IBM Toolbox for Java

Programming interface information
This IBM Toolbox for Java publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of IBM Toolbox for Java.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE
PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 763

http://www.ibm.com/legal/copytrade.shtml

764 IBM i: Programming IBM Toolbox for Java

IBM®

Printed in USA

	Contents
	IBM Toolbox for Java
	What's new for IBM i 7.1
	PDF file for IBM Toolbox for Java
	Installing and managing IBM Toolbox for Java
	Managing your IBM Toolbox for Java installation
	Installing IBM Toolbox for Java
	IBM i requirements for IBM Toolbox for Java
	Workstation requirements for IBM Toolbox for Java
	Installing IBM Toolbox for Java on your system
	Installing IBM Toolbox for Java on your workstation

	System properties

	IBM Toolbox for Java classes
	Access classes
	Server access points
	AS400 class
	SecureAS400 class
	AS400JPing class
	BidiTransform class
	BidiConversionProperties class
	CallStackEntry class
	ClusteredHashTable classes
	CommandCall class
	Connection pooling
	Data area
	Data conversion and description
	Data queues
	Digital certificates
	EnvironmentVariable class
	Exceptions
	FileAttributes class
	FTP class
	Integrated file system classes
	ISeriesNetServer class
	JavaApplicationCall class
	JDBC classes
	Jobs classes
	Message classes
	NetServer class
	ObjectReferences class
	Permission classes
	Print classes
	ProductLicense class
	ProgramCall class
	QSYSObjectPathName class
	Record-level access
	SaveFile class
	ServiceProgramCall class
	Subsystem class
	SystemStatus classes
	System values
	Trace class
	User and group classes
	UserSpace class

	Commtrace classes
	Commtrace model
	Format and FormatProperties classes
	Prolog class
	Frame class
	LanHeader class
	IPPacket class
	Header class
	Example: Using the commtrace classes

	HTML Classes
	BidiOrdering class
	HTMLAlign class
	HTMLDocument class
	HTML form classes
	HTMLHead class
	HTMLHeading class
	HTMLHyperlink class
	HTMLImage class
	HTMLList classes
	HTMLMeta class
	HTMLParameter class
	HTMLServlet class
	HTML Table classes
	HTML Text class
	HTMLTree classes

	ReportWriter classes
	Context classes
	JSPReportProcessor class
	XSLReportProcessor class

	Resource classes
	Resource and ChangeableResource classes
	Resource lists
	Presentation class

	Security classes
	Secure Sockets Layer
	Authentication services

	Servlet classes
	Authentication classes
	RowData class
	RowMetaData classes
	Converter classes

	Utility classes
	Client installation and update classes
	AS400ToolboxJarMaker
	CommandHelpRetriever class
	CommandPrompter class
	RunJavaApplication
	JPing

	Vaccess classes
	Vaccess classes
	AS400Panes
	Command Call
	Data queues
	Error events
	IFS graphical user interface components
	VJavaApplicationCall class
	JDBC classes
	Jobs
	Vaccess message classes
	Permission classes
	Vaccess print classes
	Vaccess ProgramCall classes
	Vaccess record-level access classes
	ResourceListPane and ResourceListDetailsPane
	System status classes
	System values GUI
	Vaccess users and groups classes

	Graphical Toolbox and PDML
	Setting up the Graphical Toolbox
	Creating your user interface
	Displaying your panels at runtime
	Editing help documents generated by GUI Builder
	Using the Graphical Toolbox in a browser
	GUI Builder Panel Builder toolbar

	IBM Toolbox for Java beans
	JDBC
	Enhancements to IBM Toolbox for Java JDBC support for IBM i 7.1
	Enhancements to IBM Toolbox for Java JDBC support for IBM i 6.1
	Enhancements to IBM Toolbox for Java JDBC support for IBM i 5.4
	IBM Toolbox for Java JDBC properties
	JDBC Librarylist property

	JDBC SQL Types

	Proxy Support
	Secure Sockets Layer and Java Secure Socket Extension
	IBM Toolbox for Java 2 Micro Edition
	ToolboxME requirements
	Downloading and setting up ToolboxME
	Concepts important for using ToolboxME
	ToolboxME classes
	MEServer class
	AS400 class
	CommandCall class - Micro package
	DataQueue class - Micro package
	Micro package - ProgramCall class
	JdbcMe classes

	Creating and running a ToolboxME program
	ToolboxME working examples
	Downloading the ToolboxME examples

	Extensible Markup Language components
	Program Call Markup Language
	Requirements for using PCML
	Building IBM i program calls with PCML
	PCML syntax

	Graphical Toolbox and PDML
	Record Format Markup Language
	Requirements for using RFML
	Example: Using RFML compared to using IBM Toolbox for Java Record classes
	RecordFormatDocument class
	Record format documents and RFML syntax

	XML parser and XSLT processor
	Extensible Program Call Markup Language
	Advantages of XPCML over PCML
	Requirements for using XPCML
	XPCML schema and syntax
	Using XPCML

	Frequently asked questions (FAQ)
	Tips for programming
	Shutting down your Java program
	Integrated file system path names for server objects
	Managing connections in Java programs
	IBM i Java virtual machine
	Comparing the IBM i Java virtual machine and the IBM Toolbox for Java classes
	Running IBM Toolbox for Java classes on the IBM i Java virtual machine
	Setting system name, user ID, and password with an AS400 object in the IBM i Java virtual machine

	Independent auxiliary storage pool (ASP)
	Exceptions
	Error events
	Trace class
	IBM i optimization
	Performance improvements
	Client installation and update classes
	AS400ToolboxJarMaker
	Java national language support
	Service and support for the IBM Toolbox for Java

	Code examples
	Examples: Access classes
	Examples: JavaBeans
	Examples: Commtrace classes
	Graphical Toolbox examples
	Examples from the HTML classes
	Examples: Program Call Markup Language (PCML)
	Examples: ReportWriter classes
	Examples: Resource classes
	Examples: RFML
	Example: Using a profile token credential to swap the IBM i thread identity
	Examples from the servlet classes
	Simple programming examples
	Examples: Tips for programming
	Examples: ToolboxME
	Examples: Utility classes
	Examples: Vaccess classes
	Examples: XPCML

	Related information for IBM Toolbox for Java

	Appendix. Notices
	Programming interface information
	Trademarks
	Terms and conditions

