
IBM i

Programming
Socket programming
7.1

IBM

IBM i

Programming
Socket programming
7.1

IBM

Note
Before using this information and the product it supports, read the information in “Notices,” on
page 193.

This edition applies to IBM i 7.1 (product number 5770-SS1) and to all subsequent releases and modifications until
otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC)
models nor does it run on CISC models.

© Copyright IBM Corporation 2001, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Socket programming 1
What's new for IBM i 7.1 1
PDF files for Socket programming 1
Prerequisites for socket programming 3
How sockets work 3
Socket characteristics 6

Socket address structure 7
Socket address family 8

AF_INET address family 8
AF_INET6 address family 9
AF_UNIX address family 10
AF_UNIX_CCSID address family 11

Socket type 12
Socket protocols 13

Basic socket design 13
Creating a connection-oriented socket 13

Example: A connection-oriented server . . . 15
Example: A connection-oriented client . . . 19

Creating a connectionless socket 22
Example: A connectionless server 23
Example: A connectionless client 25

Designing applications with address families . . 27
Using AF_INET address family 27
Using AF_INET6 address family 28
Using AF_UNIX address family 29

Example: Server application that uses
AF_UNIX address family 31
Example: Client application that uses
AF_UNIX address family 34

Using AF_UNIX_CCSID address family . . . 36
Example: Server application that uses
AF_UNIX_CCSID address family 38
Example: Client application that uses
AF_UNIX_CCSID address family 41

Advanced socket concepts 43
Asynchronous I/O 43
Secure sockets 46

Global Security Kit (GSKit) APIs 47
SSL_ APIs 50
Secure socket API error code messages . . . 51

Client SOCKS support 53
Thread safety 58
Nonblocking I/O 58
Signals 60
IP multicasting 61
File data transfer—send_file() and
accept_and_recv() 62
Out-of-band data 63
I/O multiplexing—select() 64
Socket network functions 64
Domain Name System support 65

Environment variables. 66
Data caching 67

Berkeley Software Distribution compatibility . . 67
UNIX 98 compatibility. 70

Descriptor passing between processes: sendmsg()
and recvmsg() 73
Sockets-related User Exit Points 75

Example: User Exit Program for
QIBM_QSO_ACCEPT 76

Socket scenario: Creating an application to accept
IPv4 and IPv6 clients 78

Example: Accepting connections from both IPv6
and IPv4 clients 79
Example: IPv4 or IPv6 client. 84

Socket application design recommendations . . . 87
Examples: Socket application designs 90

Examples: Connection-oriented designs 90
Example: Writing an iterative server program 91
Example: Using the spawn() API to create
child processes 95

Example: Creating a server that uses
spawn() 97
Example: Enabling the worker job to
receive a data buffer 99

Example: Passing descriptors between
processes 100

Example: Server program used for
sendmsg() and recvmsg() 102
Example: Worker program used for
sendmsg() and recvmsg() 106

Examples: Using multiple accept() APIs to
handle incoming requests 107

Example: Server program to create a pool
of multiple accept() worker jobs 109
Example: Worker jobs for multiple accept() 111

Example: Generic client 112
Example: Using asynchronous I/O 115
Examples: Establishing secure connections. . . 122

Example: GSKit secure server with
asynchronous data receive 122
Example: GSKit secure server with
asynchronous handshake 132
Example: Establishing a secure client with
Global Security Kit APIs. 142

Example: Using gethostbyaddr_r() for threadsafe
network routines 148
Example: Nonblocking I/O and select() . . . 151
Using poll() instead of select() 157
Example: Using signals with blocking socket
APIs 163
Examples: Using multicasting with AF_INET 166

Example: Sending multicast datagrams . . . 168
Example: Receiving multicast datagrams . . 170

Example: Updating and querying DNS 171
Examples: Transferring file data using
send_file() and accept_and_recv() APIs 175

Example: Using accept_and_recv() and
send_file() APIs to send contents of a file . . 176
Example: Client request for a file 180

Xsockets tool 182

© Copyright IBM Corp. 2001, 2010 iii

||
|
||

Configuring Xsockets 182
What is created by integrated Xsocket setup 183

Configuring Xsockets to use a Web browser . . 185
Configuring an Integrated Web Application
Server 185
Updating configuration files 186
Configuring Xsockets Web application . . . 187
Testing Xsockets tool in a Web browser. . . 188

Using Xsockets 188
Using integrated Xsockets 189

Using Xsockets in a Web browser. 189
Deleting objects created by the Xsockets tool 190
Customizing Xsockets 191

Serviceability tools 191

Appendix. Notices 193
Programming interface information 194
Trademarks 195
Terms and conditions. 195

iv IBM i: Programming Socket programming

Socket programming

A socket is a communications connection point (endpoint) that you can name and address in a network.
Socket programming shows how to use socket APIs to establish communication links between remote
and local processes.

The processes that use a socket can reside on the same system or different systems on different networks.
Sockets are useful for both stand-alone and network applications. Sockets allow you to exchange
information between processes on the same machine or across a network, distribute work to the most
efficient machine, and they easily allow access to centralized data. Socket application program interfaces
(APIs) are the network standard for TCP/IP. A wide range of operating systems support socket APIs.
i5/OS sockets support multiple transport and networking protocols. Socket system functions and the
socket network functions are threadsafe.

Programmers who use Integrated Language Environment® (ILE) C can refer to this topic collection to
develop socket applications. You can also code to the sockets API from other ILE languages, such as RPG.

The Java™ language also supports a socket programming interface.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

What's new for IBM i 7.1
Read about new or significantly changed information for the Socket Programming Guide.

Functional enhancements to Socket Programming Guide

Three sockets-related user exit points were added to give a user-defined exit program the ability to
control connections based on specific runtime characteristics. User-defined exit programs registered with
the exit points defined in the user registry are able to limit incoming and outgoing connections.

The example socket application designs were converted to use IPv6 (Internet Protocol version 6) address
structures and AF_INET6 address families.

How to see what's new or changed

To help you see where technical changes have been made, the information center uses:
v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

In PDF files, you might see revision bars (|) in the left margin of new and changed information.

To find other information about what's new or changed this release, see the Memo to users.

PDF files for Socket programming
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select Socket programming (about 925 KB).

© Copyright IBM Corp. 2001, 2010 1

Other information

You can also view or print any of the following PDFs:

IBM® Redbooks®:

v Who Knew You Could Do That with RPG IV? A Sorcerer's Guide to System Access and More
(5630 KB)

v IBM eServer™ iSeries Wired Network Security: OS/400® V5R1 DCM and Cryptographic Enhancements

(10 035 KB)

You can view or download these related topics:
v IPv6

– RFC 3493: "Basic Socket Interface Extensions for IPv6"

– RFC 3513: "Internet Protocol Version 6 (IPv6) Addressing Architecture"

– RFC 3542: "Advanced Sockets Application Program Interface (API) for IPv6"
v Domain Name System

– RFC 1034: "Domain Names - Concepts and Facilities"

– RFC 1035: "Domain Names - Implementation and Specification"

– RFC 2136: "Dynamic Updates in the Domain Name System (DNS UPDATE)"

– RFC 2181: "Clarifications to the DNS Specification"

– RFC 2308: "Negative Caching of DNS Queries (DNS NCACHE)"

– RFC 2845: "Secret Key Transaction Authentication for DNS (TSIG)"
v Secure Sockets Layer/Transport Layer Security

– RFC 2246: "The TLS Protocol Version 1.0"
v Other Web Resources

– Technical Standard: Networking Services (XNS), Issue 5.2 Draft 2.0

Saving PDF files

To save a PDF on your workstation for viewing or printing:
1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) .

2 IBM i: Programming Socket programming

http://www.redbooks.ibm.com/abstracts/sg245402.html
http://www.redbooks.ibm.com/abstracts/sg246168.html
http://tools.ietf.org/html/rfc3493
http://tools.ietf.org/html/rfc3513
http://tools.ietf.org/html/rfc3542
http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc2136
http://tools.ietf.org/html/rfc2181
http://tools.ietf.org/html/rfc2308
http://tools.ietf.org/html/rfc2845
http://tools.ietf.org/html/rfc2246
http://www.opengroup.org/onlinepubs/009619199/index.htm
http://www.adobe.com/products/acrobat/readstep.html

Prerequisites for socket programming
Before writing socket applications, you must complete these steps to meet the requirements for compiler,
AF_INET and AF_INET6 address families, Secure Sockets Layer (SSL) APIs, and Global Secure Toolkit
(GSKit) APIs.

Compiler requirements
1. Install QSYSINC library. This library provides necessary header files that are needed when compiling

socket applications.
2. Install the ILE C licensed program (5761-WDS option 51).

Requirements for AF_INET and AF_INET6 address families

In addition to the compiler requirements, you must complete these tasks:
1. Plan TCP/IP setup.
2. Install TCP/IP.
3. Configure TCP/IP for the first time.
4. Configure IPv6 for TCP/IP if you plan to write applications that use the AF_INET6 address family.

Requirements for Secure Sockets Layer (SSL) APIs and Global Secure Toolkit
(GSKit) APIs

In addition to the requirements for compiler, AF_INET address families, and AF_INET6 address families,
you must complete the following tasks to work with secure sockets:
1. Install and configure Digital Certificate Manager licensed program (5761–SS1 Option 34). See Digital

Certificate Manager (DCM) in the information center for details.
2. If you want to use SSL with the cryptographic hardware, you need to install and configure the 2058

Cryptographic Accelerator, or the 4758 Cryptographic Coprocessor, or the 4764 Cryptographic
Coprocessor. The 2058 Cryptographic Accelerator allows you to offload SSL cryptographic processing
from the operating system to the card. The 4758 Cryptographic Coprocessor can be used for SSL
cryptographic processing; however, unlike the 2058, this card provides more cryptographic functions,
like encrypting and decrypting keys. The 4764 Cryptographic Coprocessor is a better version of the
4758 Cryptographic Coprocessor. See Cryptography for complete descriptions of the 2058
Cryptographic Accelerator, 4758 Cryptographic Coprocessor, and 4764 Cryptographic Coprocessor.

Related reference:
“Using AF_INET address family” on page 27
AF_INET address family sockets can be either connection-oriented (type SOCK_STREAM) or
connectionless (type SOCK_DGRAM). Connection-oriented AF_INET sockets use Transmission Control
Protocol (TCP) as the transport protocol. Connectionless AF_INET sockets use User Datagram Protocol
(UDP) as the transport protocol.
“Using AF_INET6 address family” on page 28
AF_INET6 sockets provide support for Internet Protocol version 6 (IPv6) 128 bit (16 byte) address
structures. Programmers can write applications using the AF_INET6 address family to accept client
requests from either IPv4 or IPv6 nodes, or from IPv6 nodes only.

How sockets work
Sockets are commonly used for client and server interaction. Typical system configuration places the
server on one machine, with the clients on other machines. The clients connect to the server, exchange
information, and then disconnect.

A socket has a typical flow of events. In a connection-oriented client-to-server model, the socket on the
server process waits for requests from a client. To do this, the server first establishes (binds) an address

Socket programming 3

that clients can use to find the server. When the address is established, the server waits for clients to
request a service. The client-to-server data exchange takes place when a client connects to the server
through a socket. The server performs the client's request and sends the reply back to the client.

Note: Currently, IBM supports two versions of most sockets APIs. The default i5/OS sockets use Berkeley
Socket Distribution (BSD) 4.3 structures and syntax. The other version of sockets uses syntax and
structures compatible with BSD 4.4 and the UNIX 98 programming interface specifications.
Programmers can specify _XOPEN_SOURCE macro to use the UNIX 98 compatible interface.

The following figure shows the typical flow of events (and the sequence of issued APIs) for a
connection-oriented socket session. An explanation of each event follows the figure.

This is a typical flow of events for a connection-oriented socket:
1. The socket() API creates an endpoint for communications and returns a socket descriptor that

represents the endpoint.
2. When an application has a socket descriptor, it can bind a unique name to the socket. Servers must

bind a name to be accessible from the network.
3. The listen() API indicates a willingness to accept client connection requests. When a listen() API is

issued for a socket, that socket cannot actively initiate connection requests. The listen() API is issued
after a socket is allocated with a socket() API and the bind() API binds a name to the socket. A listen()
API must be issued before an accept() API is issued.

4. The client application uses a connect() API on a stream socket to establish a connection to the server.
5. The server application uses the accept() API to accept a client connection request. The server must

issue the bind() and listen() APIs successfully before it can issue an accept() API.

4 IBM i: Programming Socket programming

6. When a connection is established between stream sockets (between client and server), you can use any
of the socket API data transfer APIs. Clients and servers have many data transfer APIs from which to
choose, such as send(), recv(), read(), write(), and others.

7. When a server or client wants to stop operations, it issues a close() API to release any system
resources acquired by the socket.

Note: The socket APIs are located in the communications model between the application layer and the
transport layer. The socket APIs are not a layer in the communication model. Socket APIs allow
applications to interact with the transport or networking layers of the typical communications
model. The arrows in the following figure show the position of a socket, and the communication
layer that the socket provides.

Typically, a network configuration does not allow connections between a secure internal network and a
less secure external network. However, you can enable sockets to communicate with server programs that
run on a system outside a firewall (a very secure host).

Sockets are also a part of IBM's AnyNet® implementation for the Multiprotocol Transport Networking
(MPTN) architecture. MPTN architecture provides the ability to operate a transport network over
additional transport networks and to connect application programs across transport networks of different
types.
Related reference:
“Berkeley Software Distribution compatibility” on page 67
Sockets is a Berkeley Software Distribution (BSD) interface.
“UNIX 98 compatibility” on page 70
Created by The Open Group, a consortium of developers and venders, UNIX 98 improved the
inter-operability of the UNIX operating system while incorporating much of the Internet-related function
for which UNIX had become known.
Related information:
socket()--Create Socket API
listen()--Invite Incoming Connections Requests API
bind()--Set Local Address for Socket API

Socket programming 5

accept()--Wait for Connection Request and Make Connection API
send()--Send Data API
recv()--Receive Data API
close()--Close File or Socket Descriptor API
Sockets APIs
API finder

Socket characteristics
Sockets share some common characteristics.
v A socket is represented by an integer. That integer is called a socket descriptor.
v A socket exists as long as the process maintains an open link to the socket.
v You can name a socket and use it to communicate with other sockets in a communication domain.
v Sockets perform the communication when the server accepts connections from them, or when it

exchanges messages with them.
v You can create sockets in pairs (only for sockets in the AF_UNIX address family).

The connection that a socket provides can be connection-oriented or connectionless. Connection-oriented
communication implies that a connection is established, and a dialog between the programs follows. The
program that provides the service (the server program) establishes the available socket that is enabled to
accept incoming connection requests. Optionally, the server can assign a name to the service that it
supplies, which allows clients to identify where to obtain and how to connect to that service. The client of
the service (the client program) must request the service of the server program. The client does this by
connecting to the distinct name or to the attributes associated with the distinct name that the server
program has designated. It is similar to dialing a telephone number (an identifier) and making a
connection with another party that is offering a service (for example, a plumber). When the receiver of
the call (the server, in this example, a plumber) answers the telephone, the connection is established. The
plumber verifies that you have reached the correct party, and the connection remains active as long as
both parties require it.

Connectionless communication implies that no connection is established, over which a dialog or data
transfer can take place. Instead, the server program designates a name that identifies where to reach it
(much like a post-office box). If you send a letter to a post office box, you cannot be absolutely sure that
the receiver got the letter. You might need to wait for a response to your letter. There is no active,
real-time connection, in which data is exchanged.

How socket characteristics are determined

When an application creates a socket with the socket() API, it must identify the socket by specifying these
parameters:
v The socket address family determines the format of the address structure for the socket. This topic

contains examples of each address family's address structure.
v The socket type determines the form of communication for the socket.
v The socket protocol determines the supported protocols that the socket uses.

These parameters or characteristics define the socket application and how it interoperates with other
socket applications. Depending on the address family of a socket, you have different choices for the
socket type and protocol. The following table shows the corresponding address family and its associated
socket type and protocols:

6 IBM i: Programming Socket programming

Table 1. Summary of socket characteristics

Address family Socket type Socket protocol

AF_UNIX SOCK_STREAM N/A

SOCK_DGRAM N/A

AF_INET SOCK_STREAM TCP

SOCK_DGRAM UDP

SOCK_RAW IP, ICMP

AF_INET6 SOCK_STREAM TCP

SOCK_DGRAM UDP

SOCK_RAW IP6, ICMP6

AF_UNIX_CCSID SOCK_STREAM N/A

SOCK_DGRAM N/A

In addition to these socket characteristics or parameters, constant values are defined in network routines
and header files that are shipped with the QSYSINC library. For descriptions of header files, see the
individual APIs. Each API lists its appropriate header file in the usage section of the API description.

Socket network routines allow socket applications to obtain information from the Domain Name System
(DNS), host, protocol, service, and network files.
Related reference:
“Socket network functions” on page 64
Socket network functions allow application programs to obtain information from the host, protocol,
service, and network files.
Related information:
Sockets APIs

Socket address structure
Sockets use the sockaddr address structure to pass and receive addresses. This structure does not require
the socket API to recognize the addressing format.

Currently, the i5/OS operating system supports Berkeley Software Distribution (BSD) 4.3 and X/Open
Single UNIX Specification (UNIX 98). The base i5/OS API uses BSD 4.3 structures and syntax. You can
select the UNIX 98 compatible interface by defining the _XOPEN_SOURCE macro to a value of 520 or
greater. Each socket address structure for BSD 4.3 that is used has an equivalent UNIX 98 structure.

Table 2. Comparison of BSD 4.3 and BSD 4.4/ UNIX 98 socket address structure

BSD 4.3 structure BSD 4.4/ UNIX 98 compatible structure

struct sockaddr{
u_short sa_family;
char sa_data [14];

};

struct sockaddr_storage{
sa_family_t ss_family;
char _ss_pad1[_SS_PAD1SIZE];
char* _ss_align;
char _ss_pad2[_SS_PAD2SIZE];

};

struct sockaddr {
uint8_t sa_len;
sa_family_t sa_family
char sa_data[14]

};

struct sockaddr_storage {
uint8_t ss_len;
sa_family_t ss_family;
char _ss_pad1[_SS_PAD1SIZE];
char* _ss_align;
char _ss_pad2[_SS_PAD2SIZE];

};

Socket programming 7

Table 3. Address structure

Address structure field Definition

sa_len This field contains the length of the address for UNIX 98
specifications.
Note: The sa_len field is provided only for BSD 4.4
compatibility. It is not necessary to use this field even for
BSD 4.4/UNIX 98 compatibility. The field is ignored on
input addresses.

sa_family This field defines the address family. This value is
specified for the address family on the socket() call.

sa_data This field contains 14 bytes that are reserved to hold the
address itself.
Note: The sa_data length of 14 bytes is a placeholder for
the address. The address can exceed this length. The
structure is generic because it does not define the format
of the address. The format of the address is defined by
the type of transport, which a socket is created for. Each
of the transport providers define the exact format for its
specific addressing requirements in a similar address
structure. The transport is identified by the protocol
parameter values on the socket() API.

sockaddr_storage This field declares storage for any address family
address. This structure is large enough and aligned for
any protocol-specific structure. It can then be cast as
sockaddr structure for use on the APIs. The ss_family
field of the sockaddr_storage always aligns with the
family field of any protocol-specific structure.

Socket address family
The address family parameter (address_family) on a socket() API determines the format of the address
structure to be used on socket APIs.

Address family protocols provide the network transportation of application data from one application to
another (or from one process to another within the same system). The application specifies the network
transport provider on the protocol parameter of the socket.

AF_INET address family
This address family provides interprocess communication between processes that run on the same system
or on different systems.

Addresses for AF_INET sockets are IP addresses and port numbers. You can specify an IP address for an
AF_INET socket either as an IP address (such as 130.99.128.1) or in its 32–bit form (X'82638001').

For a socket application that uses the Internet Protocol version 4 (IPv4), the AF_INET address family uses
the sockaddr_in address structure. When you use _XOPEN_SOURCE macro, the AF_INET address
structure changes to be compatible with BSD 4.4/ UNIX 98 specifications. For the sockaddr_in address
structure, these differences are summarized in the table:

8 IBM i: Programming Socket programming

Table 4. Differences between BSD 4.3 and BSD 4.4/ UNIX 98 for sockaddr_in address structure

BSD 4.3 sockaddr_in address structure BSD 4.4/ UNIX 98 sockaddr_in address structure

struct sockaddr_in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

struct sockaddr_in {
uint8_t sin_len;
sa_family_t sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

Table 5. AF_INET address structure

Address structure field Definition

sin_len This field contains the length of the address for UNIX 98
specifications.
Note: The sin_len field is provided only for BSD 4.4
compatibility. It is not necessary to use this field even for
BSD 4.4/ UNIX 98 compatibility. The field is ignored on
input addresses.

sin_family This field contains the address family, which is always
AF_INET when TCP or User Datagram Protocol (UDP) is
used.

sin_port This field contains the port number.

sin_addr This field contains the IP address.

sin_zero This field is reserved. Set this field to hexadecimal zeros.

Related reference:
“Using AF_INET address family” on page 27
AF_INET address family sockets can be either connection-oriented (type SOCK_STREAM) or
connectionless (type SOCK_DGRAM). Connection-oriented AF_INET sockets use Transmission Control
Protocol (TCP) as the transport protocol. Connectionless AF_INET sockets use User Datagram Protocol
(UDP) as the transport protocol.

AF_INET6 address family
This address family provides support for the Internet Protocol version 6 (IPv6). AF_INET6 address family
uses a 128 bit (16 byte) address.

The basic architecture of these addresses includes 64 bits for a network number and another 64 bits for
the host number. You can specify AF_INET6 addresses as x:x:x:x:x:x:x:x, where the x's are the hexadecimal
values of eight 16-bit pieces of the address. For example, a valid address looks like this:
FEDC:BA98:7654:3210:FEDC:BA98:7654:3210.

For a socket application that uses TCP, User Datagram Protocol (UDP) or RAW, the AF_INET6 address
family uses the sockaddr_in6 address structure. This address structure changes if you use
_XOPEN_SOURCE macro to implement BSD 4.4/ UNIX 98 specifications. For the sockaddr_in6 address
structure, these differences are summarized in this table:

Socket programming 9

Table 6. Differences between BSD 4.3 and BSD 4.4/ UNIX 98 for sockaddr_in6 address structure

BSD 4.3 sockaddr_in6 address structure BSD 4.4/ UNIX 98 sockaddr_in6 address structure

struct sockaddr_in6 {
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;
};

struct sockaddr_in6 {
uint8_t sin6_len;
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;
};

Table 7. AF_INET6 address structure

Address structure field Definition

sin6_len This field contains the length of the address for UNIX 98
specifications.
Note: The sin6_len field is provided only for BSD 4.4
compatibility. It is not necessary to use this field even for
BSD 4.4/ UNIX 98 compatibility. The field is ignored on
input addresses.

sin6_family This field specifies the AF_INET6 address family.

sin6_port This field contains the transport layer port.

sin6_flowinfo This field contains two pieces of information: the traffic
class and the flow label.
Note: Currently, this field is not supported and should
be set to zero to be compatible with later versions.

sin6_addr This field specifies the IPv6 address.

sin6_scope_id This field identifies a set of interfaces as appropriate for
the scope of the address carried in the sin6_addr field.

AF_UNIX address family
This address family provides interprocess communication on the same system that uses the socket APIs.
The address is actually a path name to an entry in the file system.

You can create sockets in the root directory or any open file system but file systems such as QSYS or
QDOC. The program must bind an AF_UNIX, SOCK_DGRAM socket to a name to receive any datagrams
back. In addition, the program must explicitly remove the file system object with the unlink() API when
the socket is closed.

Sockets with the address family AF_UNIX use the sockaddr_un address structure. This address structure
changes if you use _XOPEN_SOURCE macro to implement BSD 4.4/ UNIX 98 specifications. For the
sockaddr_un address structure, these differences are summarized in the table:

Table 8. Differences between BSD 4.3 and BSD 4.4/ UNIX 98 for sockaddr_un address structure

BSD 4.3 sockaddr_un address structure BSD 4.4/ UNIX 98 sockaddr_un address structure

struct sockaddr_un {
short sun_family;
char sun_path[126];

};

struct sockaddr_un {
uint8_t sun_len;
sa_family_t sun_family;
char sun_path[126];

};

10 IBM i: Programming Socket programming

Table 9. AF_UNIX address structure

Address structure field Definition

sun_len This field contains the length of the address for UNIX 98
specifications.
Note: The sun_len field is provided only for BSD 4.4
compatibility. It is not necessary to use this field even for
BSD 4.4/ UNIX 98 compatibility. The field is ignored on
input addresses.

sun_family This field contains the address family.

sun_path This field contains the path name to an entry in the file
system.

For the AF_UNIX address family, protocol specifications do not apply because protocol standards are not
involved. The communications mechanism that the two processes use is specific to the system.
Related reference:
“Using AF_UNIX address family” on page 29
Sockets that use the AF_UNIX or AF_UNIX_CCSID address family can be connection-oriented (type
SOCK_STREAM) or connectionless (type SOCK_DGRAM).
“AF_UNIX_CCSID address family”
The AF_UNIX_CCSID family is compatible with the AF_UNIX address family and has the same
limitations.
Related information:
unlink()--Remove Link to File API

AF_UNIX_CCSID address family
The AF_UNIX_CCSID family is compatible with the AF_UNIX address family and has the same
limitations.

They both can be either connectionless or connection-oriented, and no external communication functions
connect the two processes. The difference is that sockets with the address family AF_UNIX_CCSID use
the sockaddr_unc address structure. This address structure is similar to sockaddr_un, but it allows path
names in UNICODE or any CCSID by using the Qlg_Path_Name_T format.

However, because an AF_UNIX socket might return the path name from an AF_UNIX_CCSID socket in
an AF_UNIX address structure, path size is limited. AF_UNIX supports only 126 characters, so
AF_UNIX_CCSID is also limited to 126 characters.

A user cannot exchange AF_UNIX and AF_UNIX_CCSID addresses on a single socket. When
AF_UNIX_CCSID is specified on the socket() call, all addresses must be sockaddr_unc on later API calls.
struct sockaddr_unc {

short sunc_family;
short sunc_format;
char sunc_zero[12];
Qlg_Path_Name_T sunc_qlg;
union {
char unix[126];
wchar_t wide[126];
char* p_unix;
wchar_t* p_wide;

} sunc_path;
} ;

Socket programming 11

Table 10. AF_UNIX_CCSID address structure

Address structure field Definition

sunc_family This field contains the address family, which is always
AF_UNIX_CCSID.

sunc_format This field contains two defined values for the format of
the path name:

v SO_UNC_DEFAULT indicates a wide path name using
the current default CCSID for integrated file system
path names. The sunc_qlg field is ignored.

v SO_UNC_USE_QLG indicates that the sunc_qlg field
defines the format and CCSID of the path name.

sunc_zero This field is reserved. Set this field to hexadecimal zeros.

sunc_qlg This field specifies the path name format.

sunc_path This field contains the path name. It is a maximum of
126 characters and can be single byte or double byte. It
can be contained within the sunc_path field or allocated
separately and pointed to by sunc_path. The format is
determined by sunc_format and sunc_qlg.

Related reference:
“Using AF_UNIX_CCSID address family” on page 36
AF_UNIX_CCSID address family sockets have the same specifications as AF_UNIX address family
sockets. AF_UNIX_CCSID address family sockets can be connection-oriented or connectionless. They can
provide communication on the same system.
“AF_UNIX address family” on page 10
This address family provides interprocess communication on the same system that uses the socket APIs.
The address is actually a path name to an entry in the file system.
Related information:
Path name format

Socket type
The second parameter on a socket call determines the socket type. Socket type provides the type
identification and characteristics of the connection that are enabled for data transportation from one
machine or process to another.

The system supports the following socket types:

Stream (SOCK_STREAM)

This type of socket is connection-oriented. Establish an end-to-end connection by using the bind(),
listen(), accept(), and connect() APIs. SOCK_STREAM sends data without errors or duplication, and
receives the data in the sending order. SOCK_STREAM builds flow control to avoid data overruns. It
does not impose record boundaries on the data. SOCK_STREAM considers the data to be a stream of
bytes. In the i5/OS implementation, you can use stream sockets over Transmission Control Protocol
(TCP), AF_UNIX, and AF_UNIX_CCSID. You can also use stream sockets to communicate with systems
outside a secure host (firewall).

Datagram (SOCK_DGRAM)

In Internet Protocol terminology, the basic unit of data transfer is a datagram. This is basically a header
followed by some data. The datagram socket is connectionless. It establishes no end-to-end connection
with the transport provider (protocol). The socket sends datagrams as independent packets with no
guarantee of delivery. You might lose or duplicate data. Datagrams might arrive out of order. The size of

12 IBM i: Programming Socket programming

the datagram is limited to the data size that you can send in a single transaction. For some transport
providers, each datagram can use a different route through the network. You can issue a connect() API on
this type of socket. However, on the connect() API, you must specify the destination address that the
program sends to and receives from. In the i5/OS implementation, you can use datagram sockets over
User Datagram Protocol (UDP), AF_UNIX, and AF_UNIX_CCSID.

Raw (SOCK_RAW)

This type of socket allows direct access to lower-layer protocols, such as Internet Protocol (IPv4 or IPv6)
and Internet Control Message Protocol (ICMP or ICMP6). SOCK_RAW requires more programming
expertise because you manage the protocol header information used by the transport provider. At this
level, the transport provider can dictate the format of the data and the semantics that are
transport-provider specific.

Socket protocols
Socket protocols provide the network transportation of application data from one machine to another (or
from one process to another within the same machine).

The application specifies the transport provider on the protocol parameter of the socket() API.

For the AF_INET address family, more than one transport provider is allowed. The protocols of Systems
Network Architecture (SNA) and TCP/IP can be active on the same listening socket at the same time. The
ALWANYNET (Allow ANYNET support) network attribute allows a customer to select whether a
transport other than TCP/IP can be used for AF_INET socket applications. This network attribute can be
either *YES or *NO. The default value is *NO.

For example, if the current status (the default status) is *NO, the use of AF_INET over an SNA transport
is not active. If AF_INET sockets are to be used over a TCP/IP transport only, the ALWANYNET status
should be set to *NO to improve CPU utilization.

Note: The ALWANYNET network attribute also affects APPC over TCP/IP.

The AF_INET and AF_INET6 sockets over TCP/IP can also specify a SOCK_RAW type, which means that
the socket communicates directly with the network layer known as Internet Protocol (IP). The TCP or
UDP transport providers normally communicate with this layer. When you use SOCK_RAW sockets, the
application program specifies any protocol between 0 and 255 (except the TCP and UDP protocols). This
protocol number then flows in the IP headers when machines are communicating on the network. In fact,
the application program is the transport provider, because it must provide for all the transport services
that UDP or TCP transports normally provide.

For the AF_UNIX and AF_UNIX_CCSID address families, a protocol specification is not really meaningful
because there are no protocol standards involved. The communications mechanism between two
processes on the same machine is specific to the machine.
Related information:
Configuring APPC, APPN, and HPR

Basic socket design
These examples illustrate the most common types of socket programs that use the most basic design,
which can be a basis for more complex socket designs.

Creating a connection-oriented socket
These server and client examples illustrate the socket APIs written for a connection-oriented protocol
such as Transmission Control Protocol (TCP).

Socket programming 13

The following figure illustrates the client/server relationship of the sockets API for a connection-oriented
protocol.

Socket flow of events: Connection-oriented server

The following sequence of the socket calls provides a description of the figure. It also describes the
relationship between the server and client application in a connection-oriented design. Each set of flows
contains links to usage notes on specific APIs.
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the Internet Protocol version 6 address family (AF_INET6) with the TCP transport
(SOCK_STREAM) is used for this socket.

2. The setsockopt() API allows the local address to be reused when the server is restarted before the
required wait time expires.

3. After the socket descriptor is created, the bind() API gets a unique name for the socket. In this
example, the user sets the s6_addr to zero, which allows connections to be established from any IPv4
or IPv6 client that specifies port 3005.

14 IBM i: Programming Socket programming

|
|
|

|
|
|

4. The listen() API allows the server to accept incoming client connections. In this example, the backlog
is set to 10. This means that the system queues 10 incoming connection requests before the system
starts rejecting the incoming requests.

5. The server uses the accept() API to accept an incoming connection request. The accept() call blocks
indefinitely, waiting for the incoming connection to arrive.

6. The select() API allows the process to wait for an event to occur and to wake up the process when the
event occurs. In this example, the system notifies the process only when data is available to be read.
A 30-second timeout is used on this select() call.

7. The recv() API receives data from the client application. In this example, the client sends 250 bytes of
data. Thus, the SO_RCVLOWAT socket option can be used, which specifies that recv() does not wake
up until all 250 bytes of data have arrived.

8. The send() API echoes the data back to the client.
9. The close() API closes any open socket descriptors.

Socket flow of events: Connection-oriented client

The following sequence of APIs calls describes the relationship between the server and client application
in a connection-oriented design.
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the Internet Protocol version 6 address family (AF_INET6) with the TCP transport
(SOCK_STREAM) is used for this socket.

2. In the client example program, if the server string that was passed into the inet_pton() API was not a
valid IPv6 address string, then it is assumed to be the host name of the server. In that case, use the
getaddrinfo() API to retrieve the IP address of the server.

3. After the socket descriptor is received, the connect() API is used to establish a connection to the
server.

4. The send() API sends 250 bytes of data to the server.
5. The recv() API waits for the server to echo the 250 bytes of data back. In this example, the server

responds with the same 250 bytes that was just sent. In the client example, the 250 bytes of the data
might arrive in separate packets, so the recv() API can be used over and over until all 250 bytes have
arrived.

6. The close() API closes any open socket descriptors.
Related information:
listen()--Invite Incoming Connections Requests API
bind()--Set Local Address for Socket API
accept()--Wait for Connection Request and Make Connection API
send()--Send Data API
recv()--Receive Data API
close()--Close File or Socket Descriptor API
socket()--Create Socket API
setsockopt()--Set Socket Options API
select()--Wait for Events on Multiple Sockets API
gethostbyname()--Get Host Information for Host Name API
connect()--Establish Connection or Destination Address API

Example: A connection-oriented server
This example shows how a connection-oriented server can be created.

Socket programming 15

|
|
|

You can use this example to create your own socket server application. A connection-oriented server
design is one of the most common models for socket applications. In a connection-oriented design, the
server application creates a socket to accept client requests.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* This sample program provides a code for a connection-oriented server. */
/**/

/**/
/* Header files needed for this sample program . */
/**/
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/poll.h>

/**/
/* Constants used by this program */
/**/
#define SERVER_PORT 12345
#define BUFFER_LENGTH 250
#define FALSE 0

void main()
{

/***/
/* Variable and structure definitions. */
/***/
int sd=-1, sd2=-1;
int rc, length, on=1;
char buffer[BUFFER_LENGTH];
struct pollfd fds;
nfds_t nfds = 1;
int timeout;
struct sockaddr_in6 serveraddr;

/***/
/* A do/while(FALSE) loop is used to make error cleanup easier. The */
/* close() of each of the socket descriptors is only done once at the */
/* very end of the program. */
/***/
do
{

/**/
/* The socket() function returns a socket descriptor, representing */
/* an endpoint. The statement also identifies that the INET6 */
/* (Internet Protocol version 6) address family with the TCP */
/* transport (SOCK_STREAM) will be used for this socket. */
/**/
sd = socket(AF_INET6, SOCK_STREAM, 0);
if (sd < 0)
{

perror("socket() failed");
break;

}

/**/
/* The setsockopt() function is used to allow the local address to */
/* be reused when the server is restarted before the required wait */
/* time expires. */
/**/
rc = setsockopt(sd, SOL_SOCKET, SO_REUSEADDR, (char *)&on, sizeof(on));

16 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if (rc < 0)
{

perror("setsockopt(SO_REUSEADDR) failed");
break;

}

/**/
/* After the socket descriptor is created, a bind() function gets a */
/* unique name for the socket. In this example, the user sets the */
/* s6_addr to zero, which allows connections to be established from */
/* any client that specifies port 12345. */
/**/
memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sin6_family = AF_INET6;
serveraddr.sin6_port = htons(SERVER_PORT);
memcpy(&serveraddr.sin6_addr, &in6addr_any, sizeof(in6addr_any));

rc = bind(sd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
if (rc < 0)
{

perror("bind() failed");
break;

}

/**/
/* The listen() function allows the server to accept incoming */
/* client connections. In this example, the backlog is set to 10. */
/* This means that the system will queue 10 incoming connection */
/* requests before the system starts rejecting the incoming */
/* requests. */
/**/
rc = listen(sd, 10);
if (rc< 0)
{

perror("listen() failed");
break;

}

printf("Ready for client connect().\n");

/**/
/* The server uses the accept() function to accept an incoming */
/* connection request. The accept() call will block indefinitely */
/* waiting for the incoming connection to arrive. */
/**/
sd2 = accept(sd, NULL, NULL);
if (sd2 < 0)
{

perror("accept() failed");
break;

}

/**/
/* The poll() function allows the process to wait for an event to */
/* occur and to wake up the process when the event occurs. In this */
/* example, the system notifies the process only when data is */
/* available to read. A 30 second timeout is used on this poll */
/* call. */
/**/
timeout = 30000;

memset(&fds, 0, sizeof(fds));
fds.fd = ds2;
fds.events = POLLIN;
fds.revents = 0;

rc = poll(&fds, nfds, timeout);

Socket programming 17

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if (rc < 0)
{

perror("poll() failed");
break;

}

if (rc == 0)
{

printf("poll() timed out.\n");
break;

}

/**/
/* In this example we know that the client will send 250 bytes of */
/* data over. Knowing this, we can use the SO_RCVLOWAT socket */
/* option and specify that we don’t want our recv() to wake up until*/
/* all 250 bytes of data have arrived. */
/**/
length = BUFFER_LENGTH;
rc = setsockopt(sd2, SOL_SOCKET, SO_RCVLOWAT,

(char *)&length, sizeof(length));
if (rc < 0)
{

perror("setsockopt(SO_RCVLOWAT) failed");
break;

}

/**/
/* Receive that 250 bytes data from the client */
/**/
rc = recv(sd2, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("recv() failed");
break;

}

printf("%d bytes of data were received\n", rc);
if (rc == 0 ||

rc < sizeof(buffer))
{

printf("The client closed the connection before all of the\n");
printf("data was sent\n");
break;

}

/**/
/* Echo the data back to the client */
/**/
rc = send(sd2, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("send() failed");
break;

}

/**/
/* Program complete */
/**/

} while (FALSE);

/***/
/* Close down any open socket descriptors */
/***/
if (sd != -1)

18 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

close(sd);
if (sd2 != -1)

close(sd2);
}

Related reference:
“Using AF_INET address family” on page 27
AF_INET address family sockets can be either connection-oriented (type SOCK_STREAM) or
connectionless (type SOCK_DGRAM). Connection-oriented AF_INET sockets use Transmission Control
Protocol (TCP) as the transport protocol. Connectionless AF_INET sockets use User Datagram Protocol
(UDP) as the transport protocol.
“Example: A connection-oriented client”
This example shows how to create a socket client program to connect to a connection-oriented server in a
connection-oriented design.

Example: A connection-oriented client
This example shows how to create a socket client program to connect to a connection-oriented server in a
connection-oriented design.

The client of the service (the client program) must request the service of the server program. You can use
this example to write your own client application.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* This sample program provides a code for a connection-oriented client. */
/**/

/**/
/* Header files needed for this sample program */
/**/
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

/**/
/* Constants used by this program */
/**/
#define SERVER_PORT 3005
#define BUFFER_LENGTH 250
#define FALSE 0
#define SERVER_NAME "ServerHostName"

/* Pass in 1 parameter which is either the */
/* address or host name of the server, or */
/* set the server name in the #define */
/* SERVER_NAME. */
void main(int argc, char *argv[])
{

/***/
/* Variable and structure definitions. */
/***/
int sd=-1, rc, bytesReceived;
char buffer[BUFFER_LENGTH];
char server[NETDB_MAX_HOST_NAME_LENGTH];
struct sockaddr_in6 serveraddr;
struct addrinfo hints, *res;

/***/

Socket programming 19

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* A do/while(FALSE) loop is used to make error cleanup easier. The */
/* close() of the socket descriptor is only done once at the very end */
/* of the program. */
/***/
do
{

/**/
/* The socket() function returns a socket descriptor, representing */
/* an endpoint. The statement also identifies that the INET6 */
/* (Internet Protocol version 6) address family with the TCP */
/* transport (SOCK_STREAM) will be used for this socket. */
/**/
sd = socket(AF_INET6, SOCK_STREAM, 0);
if (sd < 0)
{

perror("socket() failed");
break;

}

/**/
/* If an argument was passed in, use this as the server, otherwise */
/* use the #define that is located at the top of this program. */
/**/
if (argc > 1)

strcpy(server, argv[1]);
else

strcpy(server, SERVER_NAME);

memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sin6_family = AF_INET6;
serveraddr.sin6_port = htons(SERVER_PORT);
rc = inet_pton(AF_INET6, server, &serveraddr.sin6_addr.s6_addr);

if (rc != 1)
{

/***/
/* The server string that was passed into the inet_pton() */
/* function was not a hexidecimal colon IP address. It must */
/* therefore be the hostname of the server. Use the */
/* getaddrinfo() function to retrieve the IP address of the */
/* server. */
/***/
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET6;
hints.ai_flags = AI_V4MAPPED;
rc = getaddrinfo(server, NULL, &hints, &res);
if (rc != 0)
{

printf("Host not found! (%s)\n", server);
perror("getaddrinfo() failed\n");
break;

}

memcpy(&serveraddr.sin6_addr,
(&((struct sockaddr_in6 *)(res->ai_addr))->sin6_addr),
sizeof(serveraddr.sin6_addr));

freeaddrinfo(res);
}

/**/
/* Use the connect() function to establish a connection to the */
/* server. */
/**/
rc = connect(sd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
if (rc < 0)
{

20 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

perror("connect() failed");
break;

}

/**/
/* Send 250 bytes of a’s to the server */
/**/
memset(buffer, ’a’, sizeof(buffer));
rc = send(sd, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("send() failed");
break;

}

/**/
/* In this example we know that the server is going to respond with */
/* the same 250 bytes that we just sent. Since we know that 250 */
/* bytes are going to be sent back to us, we can use the */
/* SO_RCVLOWAT socket option and then issue a single recv() and */
/* retrieve all of the data. */
/* */
/* The use of SO_RCVLOWAT is already illustrated in the server */
/* side of this example, so we will do something different here. */
/* The 250 bytes of the data may arrive in separate packets, */
/* therefore we will issue recv() over and over again until all */
/* 250 bytes have arrived. */
/**/
bytesReceived = 0;
while (bytesReceived < BUFFER_LENGTH)
{

rc = recv(sd, & buffer[bytesReceived],
BUFFER_LENGTH - bytesReceived, 0);

if (rc < 0)
{

perror("recv() failed");
break;

}
else if (rc == 0)
{

printf("The server closed the connection\n");
break;

}

/***/
/* Increment the number of bytes that have been received so far */
/***/
bytesReceived += rc;

}

} while (FALSE);

/***/
/* Close down any open socket descriptors */
/***/
if (sd != -1)

close(sd);
}

Related reference:
“Using AF_INET address family” on page 27
AF_INET address family sockets can be either connection-oriented (type SOCK_STREAM) or
connectionless (type SOCK_DGRAM). Connection-oriented AF_INET sockets use Transmission Control
Protocol (TCP) as the transport protocol. Connectionless AF_INET sockets use User Datagram Protocol
(UDP) as the transport protocol.

Socket programming 21

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

“Example: A connection-oriented server” on page 15
This example shows how a connection-oriented server can be created.

Creating a connectionless socket
Connectionless sockets do not establish a connection over which data is transferred. Instead, the server
application specifies its name where a client can send requests.

Connectionless sockets use User Datagram Protocol (UDP) instead of TCP/IP.

The following figure illustrates the client/server relationship of the socket APIs used in the examples for
a connectionless socket design.

Socket flow of events: Connectionless server

The following sequence of the socket calls provides a description of the figure and the following example
programs. It also describes the relationship between the server and client application in a connectionless
design. Each set of flows contains links to usage notes on specific APIs. If you need more details on the
use of a particular API, you can use these links. The first example of a connectionless server uses the
following sequence of API calls:
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the Internet Protocol version 6 address family (AF_INET6) with the UDP transport
(SOCK_DGRAM) is used for this socket.

2. After the socket descriptor is created, a bind() API gets a unique name for the socket. In this example,
the user sets the s6_addr to zero, which means that the UDP port of 3555 is bound to all IPv4 and
IPv6 addresses on the system.

3. The server uses the recvfrom() API to receive that data. The recvfrom() API waits indefinitely for data
to arrive.

22 IBM i: Programming Socket programming

|
|
|

|
|
|

4. The sendto() API echoes the data back to the client.
5. The close() API ends any open socket descriptors.

Socket flow of events: Connectionless client

The second example of a connectionless client uses the following sequence of API calls.
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the Internet Protocol version 6 address family (AF_INET6) with the UDP transport
(SOCK_DGRAM) is used for this socket.

2. In the client example program, if the server string that was passed into the inet_pton() API was not a
valid IPv6 address string, then it is assumed to be the host name of the server. In that case, use the
getaddrinfo() API to retrieve the IP address of the server.

3. Use the sendto() API to send the data to the server.
4. Use the recvfrom() API to receive the data from the server.
5. The close() API ends any open socket descriptors.
Related information:
close()--Close File or Socket Descriptor API
socket()--Create Socket API
bind()--Set Local Address for Socket API
recvfrom()--Receive Data API
sendto()--Send Data API
gethostbyname()--Get Host Information for Host Name API

Example: A connectionless server
This example illustrates how to create a connectionless socket server program by using User Datagram
Protocol (UDP).

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* This sample program provides a code for a connectionless server. */
/**/

/**/
/* Header files needed for this sample program */
/**/
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

/**/
/* Constants used by this program */
/**/
#define SERVER_PORT 3555
#define BUFFER_LENGTH 100
#define FALSE 0

void main()
{

/***/
/* Variable and structure definitions. */
/***/
int sd=-1, rc;
char buffer[BUFFER_LENGTH];
struct sockaddr_in6 serveraddr;

Socket programming 23

|
|
|

|
|
|

struct sockaddr_in6 clientaddr;
int clientaddrlen = sizeof(clientaddr);

/***/
/* A do/while(FALSE) loop is used to make error cleanup easier. The */
/* close() of each of the socket descriptors is only done once at the */
/* very end of the program. */
/***/
do
{

/**/
/* The socket() function returns a socket descriptor, representing */
/* an endpoint. The statement also identifies that the INET6 */
/* (Internet Protocol version 6) address family with the UDP */
/* transport (SOCK_DGRAM) will be used for this socket. */
/**/
sd = socket(AF_INET6, SOCK_DGRAM, 0);
if (sd < 0)
{

perror("socket() failed");
break;

}

/**/
/* After the socket descriptor is created, a bind() function gets a */
/* unique name for the socket. In this example, the user sets the */
/* s_addr to zero, which means that the UDP port of 3555 will be */
/* bound to all IP addresses on the system. */
/**/
memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sin6_family = AF_INET6;
serveraddr.sin6_port = htons(SERVER_PORT);
memcpy(&serveraddr.sin6_addr, &in6addr_any, sizeof(in6addr_any));

rc = bind(sd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
if (rc < 0)
{

perror("bind() failed");
break;

}

/**/
/* The server uses the recvfrom() function to receive that data. */
/* The recvfrom() function waits indefinitely for data to arrive. */
/**/
rc = recvfrom(sd, buffer, sizeof(buffer), 0,

(struct sockaddr *)&clientaddr,
&clientaddrlen);

if (rc < 0)
{

perror("recvfrom() failed");
break;

}

printf("server received the following: <%s>\n", buffer);
inet_ntop(AF_INET6, &clientaddr.sin6_addr.s6_addr,

buffer, sizeof(buffer));
printf("from port %d and address %s\n",

ntohs(clientaddr.sin6_port),
buffer);

/**/
/* Echo the data back to the client */
/**/
rc = sendto(sd, buffer, sizeof(buffer), 0,

(struct sockaddr *)&clientaddr,
sizeof(clientaddr));

24 IBM i: Programming Socket programming

if (rc < 0)
{

perror("sendto() failed");
break;

}

/**/
/* Program complete */
/**/

} while (FALSE);

/***/
/* Close down any open socket descriptors */
/***/
if (sd != -1)

close(sd);
}

Example: A connectionless client
This example shows how to use User Datagram Protocol (UDP) to connect a connectionless socket client
program to a server.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* This sample program provides a code for a connectionless client. */
/**/

/**/
/* Header files needed for this sample program */
/**/
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

/**/
/* Constants used by this program */
/**/
#define SERVER_PORT 3555
#define BUFFER_LENGTH 100
#define FALSE 0
#define SERVER_NAME "ServerHostName"

/* Pass in 1 parameter which is either the */
/* address or host name of the server, or */
/* set the server name in the #define */
/* SERVER_NAME */
void main(int argc, char *argv[])
{

/***/
/* Variable and structure definitions. */
/***/
int sd, rc;
char server[NETDB_MAX_HOST_NAME_LENGTH];
char buffer[BUFFER_LENGTH];
struct sockaddr_in6 serveraddr;
int serveraddrlen = sizeof(serveraddr);
struct addrinfo hints, *res;

/***/

Socket programming 25

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* A do/while(FALSE) loop is used to make error cleanup easier. The */
/* close() of the socket descriptor is only done once at the very end */
/* of the program. */
/***/
do
{

/**/
/* The socket() function returns a socket descriptor, representing */
/* an endpoint. The statement also identifies that the INET6 */
/* (Internet Protocol) address family with the UDP transport */
/* (SOCK_DGRAM) will be used for this socket. */
/**/
sd = socket(AF_INET6, SOCK_DGRAM, 0);
if (sd < 0)
{

perror("socket() failed");
break;

}

/**/
/* If an argument was passed in, use this as the server, otherwise */
/* use the #define that is located at the top of this program. */
/**/
if (argc > 1)

strcpy(server, argv[1]);
else

strcpy(server, SERVER_NAME);

memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sin6_family = AF_INET6;
serveraddr.sin6_port = htons(SERVER_PORT);
rc = inet_pton(AF_INET6, server, &serveraddr.sin6_addr.s6_addr);
if (rc != 1)
{

/***/
/* The server string that was passed into the inet_pton() */
/* function was not a hexidecimal colon IP address. It must */
/* therefore be the hostname of the server. Use the */
/* getaddrinfo() function to retrieve the IP address of the */
/* server. */
/***/
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET6;
hints.ai_flags = AI_V4MAPPED;
rc = getaddrinfo(server, NULL, &hints, &res);
if (rc != 0)
{

printf("Host not found! (%s)", server);
break;

}

memcpy(&serveraddr.sin6_addr,
(&((struct sockaddr_in6 *)(res->ai_addr))->sin6_addr),
sizeof(serveraddr.sin6_addr));

freeaddrinfo(res);
}

/**/
/* Initialize the data block that is going to be sent to the server */
/**/
memset(buffer, 0, sizeof(buffer));
strcpy(buffer, "A CLIENT REQUEST");

/**/
/* Use the sendto() function to send the data to the server. */
/**/

26 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

rc = sendto(sd, buffer, sizeof(buffer), 0,
(struct sockaddr *)&serveraddr,
sizeof(serveraddr));

if (rc < 0)
{

perror("sendto() failed");
break;

}

/**/
/* Use the recvfrom() function to receive the data back from the */
/* server. */
/**/
rc = recvfrom(sd, buffer, sizeof(buffer), 0,

(struct sockaddr *)&serveraddr,
& serveraddrlen);

if (rc < 0)
{

perror("recvfrom() failed");
break;

}

printf("client received the following: <%s>\n", buffer);
inet_ntop(AF_INET6, &serveraddr.sin6_addr.s6_addr,

buffer, sizeof(buffer));
printf("from port %d, from address %s\n",

ntohs(serveraddr_sin6_port), buffer);

/**/
/* Program complete */
/**/

} while (FALSE);

/***/
/* Close down any open socket descriptors */
/***/
if (sd != -1)

close(sd);
}

Designing applications with address families
These scenarios illustrate how to design applications with each of the socket address families, such as
AF_INET address family, AF_INET6 address family, AF_UNIX address family, and AF_UNIX_CCSID
address family.

Using AF_INET address family
AF_INET address family sockets can be either connection-oriented (type SOCK_STREAM) or
connectionless (type SOCK_DGRAM). Connection-oriented AF_INET sockets use Transmission Control
Protocol (TCP) as the transport protocol. Connectionless AF_INET sockets use User Datagram Protocol
(UDP) as the transport protocol.

When you create an AF_INET domain socket, you specify AF_INET for the address family in the socket
program. AF_INET sockets can also use a type of SOCK_RAW. If this type is set, the application connects
directly to the IP layer and does not use either the TCP or UDP transport.
Related reference:
“AF_INET address family” on page 8
This address family provides interprocess communication between processes that run on the same system
or on different systems.

Socket programming 27

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

“Prerequisites for socket programming” on page 3
Before writing socket applications, you must complete these steps to meet the requirements for compiler,
AF_INET and AF_INET6 address families, Secure Sockets Layer (SSL) APIs, and Global Secure Toolkit
(GSKit) APIs.
“Example: A connection-oriented server” on page 15
This example shows how a connection-oriented server can be created.
“Example: A connection-oriented client” on page 19
This example shows how to create a socket client program to connect to a connection-oriented server in a
connection-oriented design.

Using AF_INET6 address family
AF_INET6 sockets provide support for Internet Protocol version 6 (IPv6) 128 bit (16 byte) address
structures. Programmers can write applications using the AF_INET6 address family to accept client
requests from either IPv4 or IPv6 nodes, or from IPv6 nodes only.

Like AF_INET sockets, AF_INET6 sockets can be either connection-oriented (type SOCK_STREAM) or
connectionless (type SOCK_DGRAM). Connection-oriented AF_INET6 sockets use TCP as the transport
protocol. Connectionless AF_INET6 sockets use User Datagram Protocol (UDP) as the transport protocol.
When you create an AF_INET6 domain socket, you specify AF_INET6 for the address family in the socket
program. AF_INET6 sockets can also use a type of SOCK_RAW. If this type is set, the application
connects directly to the IP layer and does not use either the TCP or UDP transport.

IPv6 applications compatibility with IPv4 applications

Socket applications written with AF_INET6 address family allow Internet Protocol version 6 (IPv6)
applications to work with Internet Protocol version 4 (IPv4) applications (those applications that use
AF_INET address family). This feature allows socket programmers to use an IPv4-mapped IPv6 address
format. This address format represents the IPv4 address of an IPv4 node to be represented as an IPv6
address. The IPv4 address is encoded into the low-order 32 bits of the IPv6 address, and the high-order
96 bits hold the fixed prefix 0:0:0:0:0:FFFF. For example, an IPv4-mapped address can look like this:
::FFFF:192.1.1.1

These addresses can be generated automatically by the getaddrinfo() API, when the specified host has
only IPv4 addresses.

You can create applications that use AF_INET6 sockets to open TCP connections to IPv4 nodes. To
accomplish this task, you can encode the destination's IPv4 address as an IPv4–mapped IPv6 address and
pass that address within a sockaddr_in6 structure in the connect() or sendto() call. When applications use
AF_INET6 sockets to accept TCP connections from IPv4 nodes, or receive UDP packets from IPv4 nodes,
the system returns the peer's address to the application in the accept(), recvfrom(), or getpeername() calls
using a sockaddr_in6 structure encoded this way.

While the bind() API allows applications to select the source IP address of UDP packets and TCP
connections, applications often want the system to select the source address for them. Applications use
in6addr_any similarly to the way they use the INADDR_ANY macro in IPv4 for this purpose. An
additional feature of binding in this way is that it allows an AF_INET6 socket to communicate with both
IPv4 and IPv6 nodes. For example, an application issuing an accept() on a listening socket bound to
in6addr_any accepts connections from either IPv4 or IPv6 nodes. This behavior can be modified through
the use of the IPPROTO_IPV6 level socket option IPV6_V6ONLY. Few applications need to know which
type of node with which they are interoperating. However, for those applications that do need to know,
the IN6_IS_ADDR_V4MAPPED() macro defined in <netinet/in.h> is provided.
Related reference:
“Prerequisites for socket programming” on page 3
Before writing socket applications, you must complete these steps to meet the requirements for compiler,
AF_INET and AF_INET6 address families, Secure Sockets Layer (SSL) APIs, and Global Secure Toolkit

28 IBM i: Programming Socket programming

(GSKit) APIs.
“Socket scenario: Creating an application to accept IPv4 and IPv6 clients” on page 78
This example shows a typical situation in which you might want to use the AF_INET6 address family.
Related information:
Comparison of IPv4 and IPv6
recvfrom()--Receive Data API
accept()--Wait for Connection Request and Make Connection API
getpeername()--Retrieve Destination Address of Socket API
sendto()--Send Data API
connect()--Establish Connection or Destination Address API
bind()--Set Local Address for Socket API
gethostbyname()--Get Host Information for Host Name API
getaddrinfo()--Get Address Information API
gethostbyaddr()--Get Host Information for IP Address API
getnameinfo()--Get Name Information for Socket Address API

Using AF_UNIX address family
Sockets that use the AF_UNIX or AF_UNIX_CCSID address family can be connection-oriented (type
SOCK_STREAM) or connectionless (type SOCK_DGRAM).

Both types are reliable because there are no external communication functions connecting the two
processes.

UNIX domain datagram sockets act differently from UDP datagram sockets. With UDP datagram sockets,
the client program does not need to call the bind() API because the system assigns an unused port
number automatically. The server can then send a datagram back to that port number. However, with
UNIX domain datagram sockets, the system does not automatically assign a path name for the client.
Thus, all client programs using UNIX domain datagrams must call the bind() API. The exact path name
specified on the client's bind() is what is passed to the server. Thus, if the client specifies a relative path
name (that is, a path name that is not fully qualified by starting with /), the server cannot send the client
a datagram unless it is running with the same current directory.

An example path name that an application might use for this address family is /tmp/myserver or
servers/thatserver. With servers/thatserver, you have a path name that is not fully qualified (no / was
specified). This means that the location of the entry in the file system hierarchy should be determined
relative to the current working directory.

Note: Path names in the file system are NLS-enabled.

The following figure illustrates the client/server relationship of the AF_UNIX address family.

Socket programming 29

Socket flow of events: Server application that uses AF_UNIX address family

The first example uses the following sequence of API calls:
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies the UNIX address family with the stream transport (SOCK_STREAM) being used for this
socket. You can also use the socketpair() API to initialize a UNIX socket.
AF_UNIX or AF_UNIX_CCSID are the only address families to support the socketpair() API. The
socketpair() API returns two socket descriptors that are unnamed and connected.

2. After the socket descriptor is created, the bind() API gets a unique name for the socket.
The name space for UNIX domain sockets consists of path names. When a sockets program calls the
bind() API, an entry is created in the file system directory. If the path name already exists, the bind()
fails. Thus, a UNIX domain socket program should always call an unlink() API to remove the
directory entry when it ends.

3. The listen() allows the server to accept incoming client connections. In this example, the backlog is set
to 10. This means that the system queues 10 incoming connection requests before the system starts
rejecting the incoming requests.

4. The recv() API receives data from the client application. In this example, the client sends 250 bytes of
data over. Thus, the SO_RCVLOWAT socket option can be used, which specifies that recv() is not
required to wake up until all 250 bytes of data have arrived.

5. The send() API echoes the data back to the client.
6. The close() API closes any open socket descriptors.
7. The unlink() API removes the UNIX path name from the file system.

30 IBM i: Programming Socket programming

Socket flow of events: Client application that uses AF_UNIX address family

The second example uses the following sequence of API calls:
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies the UNIX address family with the stream transport (SOCK_STREAM) being used for this
socket. You can also use the socketpair() API to initialize a UNIX socket.
AF_UNIX or AF_UNIX_CCSID are the only address families to support the socketpair() API. The
socketpair() API returns two socket descriptors that are unnamed and connected.

2. After the socket descriptor is received, the connect() API is used to establish a connection to the
server.

3. The send() API sends 250 bytes of data that are specified in the server application with the
SO_RCVLOWAT socket option.

4. The recv() API loops until all 250 bytes of the data have arrived.
5. The close() API closes any open socket descriptors.
Related reference:
“AF_UNIX address family” on page 10
This address family provides interprocess communication on the same system that uses the socket APIs.
The address is actually a path name to an entry in the file system.
“Prerequisites for socket programming” on page 3
Before writing socket applications, you must complete these steps to meet the requirements for compiler,
AF_INET and AF_INET6 address families, Secure Sockets Layer (SSL) APIs, and Global Secure Toolkit
(GSKit) APIs.
“Using AF_UNIX_CCSID address family” on page 36
AF_UNIX_CCSID address family sockets have the same specifications as AF_UNIX address family
sockets. AF_UNIX_CCSID address family sockets can be connection-oriented or connectionless. They can
provide communication on the same system.
Related information:
close()--Close File or Socket Descriptor API
socket()--Create Socket API
bind()--Set Local Address for Socket API
unlink()--Remove Link to File API
listen()--Invite Incoming Connections Requests API
send()--Send Data API
recv()--Receive Data API
socketpair()--Create a Pair of Sockets API
connect()--Establish Connection or Destination Address API

Example: Server application that uses AF_UNIX address family:

This example illustrates a sample server program that uses the AF_UNIX address family. The AF_UNIX
address family uses many of the same socket calls as other address families, except that it uses the path
name structure to identify the server application.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* This example program provides code for a server application that uses */
/* AF_UNIX address family */
/**/

/**/
/* Header files needed for this sample program */

Socket programming 31

/**/
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

/**/
/* Constants used by this program */
/**/
#define SERVER_PATH "/tmp/server"
#define BUFFER_LENGTH 250
#define FALSE 0

void main()
{

/***/
/* Variable and structure definitions. */
/***/
int sd=-1, sd2=-1;
int rc, length;
char buffer[BUFFER_LENGTH];
struct sockaddr_un serveraddr;

/***/
/* A do/while(FALSE) loop is used to make error cleanup easier. The */
/* close() of each of the socket descriptors is only done once at the */
/* very end of the program. */
/***/
do
{

/**/
/* The socket() function returns a socket descriptor, which represents */
/* an endpoint. The statement also identifies that the UNIX */
/* address family with the stream transport (SOCK_STREAM) will be */
/* used for this socket. */
/**/
sd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sd < 0)
{

perror("socket() failed");
break;

}

/**/
/* After the socket descriptor is created, a bind() function gets a */
/* unique name for the socket. */
/**/
memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sun_family = AF_UNIX;
strcpy(serveraddr.sun_path, SERVER_PATH);

rc = bind(sd, (struct sockaddr *)&serveraddr, SUN_LEN(&serveraddr));
if (rc < 0)
{

perror("bind() failed");
break;

}

/**/
/* The listen() function allows the server to accept incoming */
/* client connections. In this example, the backlog is set to 10. */
/* This means that the system will queue 10 incoming connection */
/* requests before the system starts rejecting the incoming */
/* requests. */
/**/
rc = listen(sd, 10);

32 IBM i: Programming Socket programming

if (rc< 0)
{

perror("listen() failed");
break;

}

printf("Ready for client connect().\n");

/**/
/* The server uses the accept() function to accept an incoming */
/* connection request. The accept() call will block indefinitely */
/* waiting for the incoming connection to arrive. */
/**/
sd2 = accept(sd, NULL, NULL);
if (sd2 < 0)
{

perror("accept() failed");
break;

}

/**/
/* In this example we know that the client will send 250 bytes of */
/* data over. Knowing this, we can use the SO_RCVLOWAT socket */
/* option and specify that we don’t want our recv() to wake up */
/* until all 250 bytes of data have arrived. */
/**/
length = BUFFER_LENGTH;
rc = setsockopt(sd2, SOL_SOCKET, SO_RCVLOWAT,

(char *)&length, sizeof(length));
if (rc < 0)
{

perror("setsockopt(SO_RCVLOWAT) failed");
break;

}
/**/
/* Receive that 250 bytes data from the client */
/**/
rc = recv(sd2, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("recv() failed");
break;

}
printf("%d bytes of data were received\n", rc);
if (rc == 0 ||

rc < sizeof(buffer))
{

printf("The client closed the connection before all of the\n");
printf("data was sent\n");
break;

}

/**/
/* Echo the data back to the client */
/**/
rc = send(sd2, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("send() failed");
break;

}

/**/
/* Program complete */
/**/

} while (FALSE);

Socket programming 33

/***/
/* Close down any open socket descriptors */
/***/
if (sd != -1)

close(sd);

if (sd2 != -1)
close(sd2);

/***/
/* Remove the UNIX path name from the file system */
/***/
unlink(SERVER_PATH);

}

Example: Client application that uses AF_UNIX address family:

This example shows a sample application that uses the AF_UNIX address family to create a client
connection to a server.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* This sample program provides code for a client application that uses */
/* AF_UNIX address family */
/**/
/**/
/* Header files needed for this sample program */
/**/
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

/**/
/* Constants used by this program */
/**/
#define SERVER_PATH "/tmp/server"
#define BUFFER_LENGTH 250
#define FALSE 0

/* Pass in 1 parameter which is either the */
/* path name of the server as a UNICODE */
/* string, or set the server path in the */
/* #define SERVER_PATH which is a CCSID */
/* 500 string. */
void main(int argc, char *argv[])
{

/***/
/* Variable and structure definitions. */
/***/
int sd=-1, rc, bytesReceived;
char buffer[BUFFER_LENGTH];
struct sockaddr_un serveraddr;

/***/
/* A do/while(FALSE) loop is used to make error cleanup easier. The */
/* close() of the socket descriptor is only done once at the very end */
/* of the program. */
/***/
do
{

/**/

34 IBM i: Programming Socket programming

/* The socket() function returns a socket descriptor, which represents */
/* an endpoint. The statement also identifies that the UNIX */
/* address family with the stream transport (SOCK_STREAM) will be */
/* used for this socket. */
/**/
sd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sd < 0)
{

perror("socket() failed");
break;

}

/**/
/* If an argument was passed in, use this as the server, otherwise */
/* use the #define that is located at the top of this program. */
/**/
memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sun_family = AF_UNIX;
if (argc > 1)

strcpy(serveraddr.sun_path, argv[1]);
else

strcpy(serveraddr.sun_path, SERVER_PATH);

/**/
/* Use the connect() function to establish a connection to the */
/* server. */
/**/
rc = connect(sd, (struct sockaddr *)&serveraddr, SUN_LEN(&serveraddr));
if (rc < 0)
{

perror("connect() failed");
break;

}

/**/
/* Send 250 bytes of a’s to the server */
/**/
memset(buffer, ’a’, sizeof(buffer));
rc = send(sd, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("send() failed");
break;

}

/**/
/* In this example we know that the server is going to respond with */
/* the same 250 bytes that we just sent. Since we know that 250 */
/* bytes are going to be sent back to us, we can use the */
/* SO_RCVLOWAT socket option and then issue a single recv() and */
/* retrieve all of the data. */
/* */
/* The use of SO_RCVLOWAT is already illustrated in the server */
/* side of this example, so we will do something different here. */
/* The 250 bytes of the data may arrive in separate packets, */
/* therefore we will issue recv() over and over again until all */
/* 250 bytes have arrived. */
/**/
bytesReceived = 0;
while (bytesReceived < BUFFER_LENGTH)
{

rc = recv(sd, & buffer[bytesReceived],
BUFFER_LENGTH - bytesReceived, 0);

if (rc < 0)
{

perror("recv() failed");
break;

Socket programming 35

}
else if (rc == 0)
{

printf("The server closed the connection\n");
break;

}

/***/
/* Increment the number of bytes that have been received so far */
/***/
bytesReceived += rc;

}

} while (FALSE);

/***/
/* Close down any open socket descriptors */
/***/
if (sd != -1)

close(sd);
}

Using AF_UNIX_CCSID address family
AF_UNIX_CCSID address family sockets have the same specifications as AF_UNIX address family
sockets. AF_UNIX_CCSID address family sockets can be connection-oriented or connectionless. They can
provide communication on the same system.

Before working with an AF_UNIX_CCSID socket application, you must be familiar with the
Qlg_Path_Name_T structure to determine the output format.

When working with an output address structure, such as one returned from accept(), getsockname(),
getpeername(), recvfrom(), and recvmsg(), the application must examine the socket address structure
(sockaddr_unc) to determine its format. The sunc_format and sunc_qlg fields determine the output
format of the path name. But sockets do not necessarily use the same values on output as the application
used on input addresses.

36 IBM i: Programming Socket programming

Socket flow of events: Server application that uses AF_UNIX_CCSID address family

The first example uses the following sequence of API calls:
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the UNIX_CCSID address family with the stream transport (SOCK_STREAM) is used
for this socket. You can also use the socketpair() API to initialize a UNIX socket.
AF_UNIX or AF_UNIX_CCSID are the only address families to support the socketpair() API. The
socketpair() API returns two socket descriptors that are unnamed and connected.

2. After the socket descriptor is created, the bind() API gets a unique name for the socket.
The name space for UNIX domain sockets consists of path names. When a sockets program calls the
bind() API, an entry is created in the file system directory. If the path name already exists, the bind()
fails. Thus, a UNIX domain socket program should always call an unlink() API to remove the
directory entry when it ends.

3. The listen() allows the server to accept incoming client connections. In this example, the backlog is set
to 10. This means that the system queues 10 incoming connection requests before the system starts
rejecting the incoming requests.

4. The server uses the accept() API to accept an incoming connection request. The accept() call blocks
indefinitely, waiting for the incoming connection to arrive.

5. The recv() API receives data from the client application. In this example, the client sends 250 bytes of
data over. Thus, the SO_RCVLOWAT socket option can be used, which specifies that recv() is not
required to wake up until all 250 bytes of data have arrived.

6. The send() API echoes the data back to the client.
7. The close() API closes any open socket descriptors.
8. The unlink() API removes the UNIX path name from the file system.

Socket programming 37

Socket flow of events: Client application that uses AF_UNIX_CCSID address family

The second example uses the following sequence of API calls:
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the UNIX address family with the stream transport (SOCK_STREAM) is used for this
socket. You can also use the socketpair() API to initialize a UNIX socket.
AF_UNIX or AF_UNIX_CCSID are the only address families to support the socketpair() API. The
socketpair() API returns two socket descriptors that are unnamed and connected.

2. After the socket descriptor is received, the connect() API is used to establish a connection to the
server.

3. The send() API sends 250 bytes of data that are specified in the server application with the
SO_RCVLOWAT socket option.

4. The recv() API loops until all 250 bytes of the data have arrived.
5. The close() API closes any open socket descriptors.
Related reference:
“AF_UNIX_CCSID address family” on page 11
The AF_UNIX_CCSID family is compatible with the AF_UNIX address family and has the same
limitations.
“Using AF_UNIX address family” on page 29
Sockets that use the AF_UNIX or AF_UNIX_CCSID address family can be connection-oriented (type
SOCK_STREAM) or connectionless (type SOCK_DGRAM).
Related information:
Path name format
recvfrom()--Receive Data API
accept()--Wait for Connection Request and Make Connection API
getpeername()--Retrieve Destination Address of Socket API
getsockname()--Retrieve Local Address of Socket API
recvmsg()--Receive a Message Over a Socket API
close()--Close File or Socket Descriptor API
socket()--Create Socket API
bind()--Set Local Address for Socket API
unlink()--Remove Link to File API
listen()--Invite Incoming Connections Requests API
send()--Send Data API
connect()--Establish Connection or Destination Address API
recv()--Receive Data API
socketpair()--Create a Pair of Sockets API

Example: Server application that uses AF_UNIX_CCSID address family:

This example program shows a server application that uses the AF_UNIX_CCSID address family.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* This example program provides code for a server application for */
/* AF_UNIX_CCSID address family. */
/**/

/**/
/* Header files needed for this sample program */

38 IBM i: Programming Socket programming

/**/
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/unc.h>

/**/
/* Constants used by this program */
/**/
#define SERVER_PATH "/tmp/server"
#define BUFFER_LENGTH 250
#define FALSE 0

void main()
{

/***/
/* Variable and structure definitions. */
/***/
int sd=-1, sd2=-1;
int rc, length;
char buffer[BUFFER_LENGTH];
struct sockaddr_unc serveraddr;

/***/
/* A do/while(FALSE) loop is used to make error cleanup easier. The */
/* close() of each of the socket descriptors is only done once at the */
/* very end of the program. */
/***/
do
{

/**/
/* The socket() function returns a socket descriptor, which represents */
/* an endpoint. The statement also identifies that the UNIX_CCSID */
/* address family with the stream transport (SOCK_STREAM) will be */
/* used for this socket. */
/**/
sd = socket(AF_UNIX_CCSID, SOCK_STREAM, 0);
if (sd < 0)
{

perror("socket() failed");
break;

}

/**/
/* After the socket descriptor is created, a bind() function gets a */
/* unique name for the socket. */
/**/
memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sunc_family = AF_UNIX_CCSID;
serveraddr.sunc_format = SO_UNC_USE_QLG;
serveraddr.sunc_qlg.CCSID = 500;
serveraddr.sunc_qlg.Path_Type = QLG_PTR_SINGLE;
serveraddr.sunc_qlg.Path_Length = strlen(SERVER_PATH);
serveraddr.sunc_path.p_unix = SERVER_PATH;

rc = bind(sd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
if (rc < 0)
{

perror("bind() failed");
break;

}

/**/
/* The listen() function allows the server to accept incoming */
/* client connections. In this example, the backlog is set to 10. */
/* This means that the system will queue 10 incoming connection */

Socket programming 39

/* requests before the system starts rejecting the incoming */
/* requests. */
/**/
rc = listen(sd, 10);
if (rc< 0)
{

perror("listen() failed");
break;

}

printf("Ready for client connect().\n");

/**/
/* The server uses the accept() function to accept an incoming */
/* connection request. The accept() call will block indefinitely */
/* waiting for the incoming connection to arrive. */
/**/
sd2 = accept(sd, NULL, NULL);
if (sd2 < 0)
{

perror("accept() failed");
break;

}

/**/
/* In this example we know that the client will send 250 bytes of */
/* data over. Knowing this, we can use the SO_RCVLOWAT socket */
/* option and specify that we don’t want our recv() to wake up */
/* until all 250 bytes of data have arrived. */
/**/
length = BUFFER_LENGTH;
rc = setsockopt(sd2, SOL_SOCKET, SO_RCVLOWAT,

(char *)&length, sizeof(length));
if (rc < 0)
{

perror("setsockopt(SO_RCVLOWAT) failed");
break;

}

/**/
/* Receive that 250 bytes data from the client */
/**/
rc = recv(sd2, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("recv() failed");
break;

}

printf("%d bytes of data were received\n", rc);
if (rc == 0 ||

rc < sizeof(buffer))
{

printf("The client closed the connection before all of the\n");
printf("data was sent\n");
break;

}

/**/
/* Echo the data back to the client */
/**/
rc = send(sd2, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("send() failed");
break;

40 IBM i: Programming Socket programming

}

/**/
/* Program complete */
/**/

} while (FALSE);

/***/
/* Close down any open socket descriptors */
/***/
if (sd != -1)

close(sd);

if (sd2 != -1)
close(sd2);

/***/
/* Remove the UNIX path name from the file system */
/***/
unlink(SERVER_PATH);

}

Example: Client application that uses AF_UNIX_CCSID address family:

This example program shows a client application that uses the AF_UNIX_CCSID address family.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* This example program provides code for a client application for */
/* AF_UNIX_CCSID address family. */
/**/

/**/
/* Header files needed for this sample program */
/**/
#include <stdio.h>
#include <string.h>
#include <wcstr.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/unc.h>

/**/
/* Constants used by this program */
/**/
#define SERVER_PATH "/tmp/server"
#define BUFFER_LENGTH 250
#define FALSE 0

/* Pass in 1 parameter which is either the */
/* path name of the server as a UNICODE */
/* string, or set the server path in the */
/* #define SERVER_PATH which is a CCSID */
/* 500 string. */
void main(int argc, char *argv[])
{

/***/
/* Variable and structure definitions. */
/***/
int sd=-1, rc, bytesReceived;
char buffer[BUFFER_LENGTH];
struct sockaddr_unc serveraddr;

Socket programming 41

/***/
/* A do/while(FALSE) loop is used to make error cleanup easier. The */
/* close() of the socket descriptor is only done once at the very end */
/* of the program. */
/***/
do
{

/**/
/* The socket() function returns a socket descriptor, which represents */
/* an endpoint. The statement also identifies that the UNIX_CCSID */
/* address family with the stream transport (SOCK_STREAM) will be */
/* used for this socket. */
/**/
sd = socket(AF_UNIX_CCSID, SOCK_STREAM, 0);
if (sd < 0)
{

perror("socket() failed");
break;

}

/**/
/* If an argument was passed in, use this as the server, otherwise */
/* use the #define that is located at the top of this program. */
/**/
memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sunc_family = AF_UNIX_CCSID;
if (argc > 1)
{

/* The argument is a UNICODE path name. Use the default format */
serveraddr.sunc_format = SO_UNC_DEFAULT;
wcscpy(serveraddr.sunc_path.wide, (wchar_t *) argv[1]);

}
else
{

/* The local #define is CCSID 500. Set the Qlg_Path_Name to use */
/* the character format */
serveraddr.sunc_format = SO_UNC_USE_QLG;
serveraddr.sunc_qlg.CCSID = 500;
serveraddr.sunc_qlg.Path_Type = QLG_CHAR_SINGLE;
serveraddr.sunc_qlg.Path_Length = strlen(SERVER_PATH);
strcpy((char *)&serveraddr.sunc_path, SERVER_PATH);

}
/**/
/* Use the connect() function to establish a connection to the */
/* server. */
/**/
rc = connect(sd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
if (rc < 0)
{

perror("connect() failed");
break;

}

/**/
/* Send 250 bytes of a’s to the server */
/**/
memset(buffer, ’a’, sizeof(buffer));
rc = send(sd, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("send() failed");
break;

}

/**/
/* In this example we know that the server is going to respond with */
/* the same 250 bytes that we just sent. Since we know that 250 */

42 IBM i: Programming Socket programming

/* bytes are going to be sent back to us, we can use the */
/* SO_RCVLOWAT socket option and then issue a single recv() and */
/* retrieve all of the data. */
/* */
/* The use of SO_RCVLOWAT is already illustrated in the server */
/* side of this example, so we will do something different here. */
/* The 250 bytes of the data may arrive in separate packets, */
/* therefore we will issue recv() over and over again until all */
/* 250 bytes have arrived. */
/**/
bytesReceived = 0;
while (bytesReceived < BUFFER_LENGTH)
{

rc = recv(sd, & buffer[bytesReceived],
BUFFER_LENGTH - bytesReceived, 0);

if (rc < 0)
{

perror("recv() failed");
break;

}
else if (rc == 0)
{

printf("The server closed the connection\n");
break;

}

/***/
/* Increment the number of bytes that have been received so far */
/***/
bytesReceived += rc;

}

} while (FALSE);

/***/
/* Close down any open socket descriptors */
/***/
if (sd != -1)

close(sd);
}

Advanced socket concepts
Advanced socket concepts go beyond a general discussion of what sockets are and how they work. These
concepts provide ways to design socket applications for larger and more complex networks.

Asynchronous I/O
Asynchronous I/O APIs provide a method for threaded client/server models to perform highly
concurrent and memory-efficient I/O.

In previous threaded client/server models, typically two I/O models have prevailed. The first model
dedicates one thread per client connection. The first model consumes too many threads and might incur a
substantial sleep and wake-up cost. The second model minimizes the number of threads by issuing the
select() API on a large set of client connections and delegating a readied client connection or request to a
thread. In the second model, you must select or mark on each subsequent select, which might cause a
substantial amount of redundant work.

Asynchronous I/O and overlapped I/O resolve both these dilemmas by passing data to and from user
buffers after control has been returned to the user application. Asynchronous I/O notifies these worker
threads when data is available to be read or when a connection has become ready to transmit data.

Socket programming 43

Asynchronous I/O advantages
v Asynchronous I/O uses system resources more efficiently. Data copies from and to user buffers are

asynchronous to the application that initiates the request. This overlapped processing makes efficient
use of multiple processors and in many cases improves paging rates because system buffers are freed
for reuse when data arrives.

v Asynchronous I/O minimizes process/thread wait time.
v Asynchronous I/O provides immediate service to client requests.
v Asynchronous I/O decreases the sleep and wake-up cost on average.
v Asynchronous I/O handles bursty application efficiently.
v Asynchronous I/O provides better scalability.
v Asynchronous I/O provides the most efficient method of handling large data transfers. The fillBuffer

flag on the QsoStartRecv() API informs the operating system to acquire a large amount of data before
completing the Asynchronous I/O. Large amounts of data can also be sent with one asynchronous
operation.

v Asynchronous I/O minimizes the number of threads that are needed.
v Asynchronous I/O optionally can use timers to specify the maximum time allowed for this operation

to complete asynchronously. Servers close a client connection if it has been idle for a set amount of
time. The asynchronous timers allow the server to enforce this time limit.

v Asynchronous I/O initiates secure session asynchronously with the gsk_secure_soc_startInit() API.

Table 11. Asynchronous I/O APIs

API Description

gsk_secure_soc_startInit() Starts an asynchronous negotiation of a secure session,
using the attributes set for the SSL environment and the
secure session.
Note: This API supports only sockets with address
family AF_INET or AF_INET6 and type SOCK_STREAM.

gsk_secure_soc_startRecv() Starts an asynchronous receive operation on a secure
session.
Note: This API supports only sockets with address
family AF_INET or AF_INET6 and type SOCK_STREAM.

gsk_secure_soc_startSend() Starts an asynchronous send operation on a secure
session.
Note: This API supports only sockets with address
family AF_INET or AF_INET6 and type SOCK_STREAM.

QsoCreateIOCompletionPort() Creates a common wait point for completed
asynchronous overlapped I/O operations. The
QsoCreateIOCompletionPort() API returns a port handle
that represents the wait point. This handle is specified on
the QsoStartRecv(), QsoStartSend(), QsoStartAccept(),
gsk_secure_soc_startRecv(), or gsk_secure_soc_startSend()
APIs to initiate asynchronous overlapped I/O operations.
Also this handle can be used with
QsoPostIOCompletion() to post an event on the
associated I/O completion port.

QsoDestroyIOCompletionPort() Destroys an I/O completion port.

QsoWaitForIOCompletionPort() Waits for completed overlapped I/O operation. The I/O
completion port represents this wait point.

QsoStartAccept() Starts an asynchronous accept operation.
Note: This API supports only sockets with address
family AF_INET or AF_INET6 and type SOCK_STREAM.

44 IBM i: Programming Socket programming

Table 11. Asynchronous I/O APIs (continued)

API Description

QsoStartRecv() Starts an asynchronous receive operation.
Note: This API supports only sockets with address
family AF_INET or AF_INET6 and type SOCK_STREAM.

QsoStartSend() Starts an asynchronous send operation.
Note: This API supports only sockets with the AF_INET
or AF_INET6 address families with the SOCK_STREAM
socket type.

QsoPostIOCompletion() Allows an application to notify a completion port that
some API or activity has occurred.

QsoGenerateOperationId() Allows an application to associate an operation identifier
that is unique for a socket.

QsoIsOperationPending() Allows an application to check if one or more
asynchronous I/O operations are pending on the socket.

QsoCancelOperation() Allows an application to cancel one or more
asynchronous I/O operations that are pending on the
socket.

How asynchronous I/O works

An application creates an I/O completion port using the QsoCreateIOCompletionPort() API. This API
returns a handle that can be used to schedule and wait for completion of asynchronous I/O requests. The
application starts an input or an output function, specifying an I/O completion port handle. When the
I/O is completed, status information and an application-defined handle is posted to the specified I/O
completion port. The post to the I/O completion port wakes up exactly one of possibly many threads
that are waiting. The application receives the following items:
v A buffer that was supplied on the original request
v The length of data that was processed to or from that buffer
v An indication of what type of I/O operation has been completed
v Application-defined handle that was passed on the initial I/O request

This application handle can be the socket descriptor identifying the client connection, or a pointer to
storage that contains extensive information about the state of the client connection. Since the operation
was completed and the application handle was passed, the worker thread determines the next step to
complete the client connection. Worker threads that process these completed asynchronous operations can
handle many different client requests and are not tied to just one. Because copying to and from user
buffers occurs asynchronously to the server processes, the wait time for client request diminishes. This
can be beneficial on systems where there are multiple processors.

Asynchronous I/O structure

An application that uses asynchronous I/O has the structure demonstrated by the following code
fragment.
#include <qsoasync.h>
struct Qso_OverlappedIO_t
{

Qso_DescriptorHandle_t descriptorHandle;
void *buffer;
size_t bufferLength;
int postFlag : 1;
int fillBuffer : 1;
int postFlagResult : 1;
int reserved1 : 29;

Socket programming 45

|

|

|

int returnValue;
int errnoValue;
int operationCompleted;
int secureDataTransferSize;
unsigned int bytesAvailable;
struct timeval operationWaitTime;
int postedDescriptor;
char reserved2[40];

}

Related reference:
“Example: Using asynchronous I/O” on page 115
An application creates an I/O completion port using the QsoCreateIOCompletionPort() API. This API
returns a handle that can be used to schedule and wait for completion of asynchronous I/O requests.
“Socket application design recommendations” on page 87
Before working with a socket application, assess the functional requirements, goals, and needs of the
socket application. Also, consider the performance requirements and the system resource impacts of the
application.
“Examples: Connection-oriented designs” on page 90
You can design a connection-oriented socket server on the system in a number of ways. These example
programs can be used to create your own connection-oriented designs.
“Example: Using signals with blocking socket APIs” on page 163
When a process or an application becomes blocked, signals allow you to be notified. They also provide a
time limit for blocking processes.
Related information:
gsk_secure_soc_startInit()--Start asynchronous operation to negotiate a secure session API
gsk_secure_soc_startRecv()--Start asynchronous receive operation on a secure session API
gsk_secure_soc_startSend()--Start asynchronous send operation on a secure session API
QsoCreateIOCompletionPort()--Create I/O Completion Port API
QsoDestroyIOCompletionPort()--Destroy I/O Completion Port API
QsoWaitForIOCompletion()--Wait for I/O Operation API
QsoStartAccept()--Start asynchronous accept operation API
QsoStartSend()--Start Asynchronous Send Operation API
QsoStartRecv()--Start Asynchronous Receive Operation API
QsoPostIOCompletion()--Post I/O Completion Request API
QsoGenerateOperationId()--Get an I/O Operation ID
QsoIsOperationPending()--Check if an I/O Operation is Pending
QsoCancelOperation()--Cancel an I/O Operation

Secure sockets
Currently, you have two methods to create secure socket applications on the i5/OS operating system. The
SSL_ APIs and Global Secure Toolkit (GSKit) APIs provide communications privacy over an open
communications network, which in most cases is the Internet.

These APIs allow client/server applications to communicate in a way that prevents eavesdropping,
tampering, and message forgery. Both the SL_ APIs and Global Secure Toolkit (GSKit) APIs support
server and client authentication, and both allow an application to use the Secure Sockets Layer (SSL)
protocol. However, GSKit APIs are supported for all IBM systems, while the SSL_ APIs exist only in the
i5/OS operating system. To enhance portability across systems, it is suggested that you use GSKit APIs
when developing applications for secure socket connections.

46 IBM i: Programming Socket programming

Overview of secure sockets

Originally developed by Netscape, the Secure Sockets Layer (SSL) protocol is a layered protocol to be
used on top of a reliable transport, such as Transmission Control Protocol (TCP), to provide secure
communications for an application. A few of the many applications that require secure communications
are Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Simple Mail Transfer Protocol
(SMTP), and Telnet.

An SSL-enabled application typically needs to use a port different from an application that is not
SSL-enabled. For example, an SSL-enabled browser accesses an SSL-enabled HTTP Server with a
Universal Resource Locator (URL) that begins https rather than http. In most cases, a URL of https
attempts to open a connection to port 443 of the server system instead of to port 80 that the standard
HTTP Server uses.

There are multiple versions of the SSL protocol defined. The latest version, Transport Layer Security (TLS)
Version 1.0, provides an evolutionary upgrade from SSL Version 3.0. Both SSL_ APIs and the GSKit APIs
support TLS Version 1.0, TLS Version 1.0 with SSL Version 3.0 compatibility, SSL Version 3.0, SSL Version
2.0, and SSL Version 3.0 with 2.0 compatibility. For more details on TLS Version 1.0, see RFC 2246:

"Transport Layer Security" .

Global Security Kit (GSKit) APIs
Global Security Kit (GSKit) is a set of programmable interfaces that allow an application to be SSL
enabled.

Just like the SSL_ APIs, the GSKit APIs allow you to implement the SSL and Transport Layer Security
(TLS) protocols in your socket application program. However, GSKit APIs are supported across IBM
systems and are easier to program than SSL_ APIs. In addition, new GSKit APIs have been added to
provide asynchronous capabilities for negotiating a secure session, sending secure data, and receiving
secure data. These asynchronous APIs exist only in the IBM i operating system and cannot be ported to
other systems.

Note: The GSKit APIs only support sockets with an address family of AF_INET or AF_INET6 and type
SOCK_STREAM.

The following table describes the GSKit APIs.

Table 12. Global Security Kit APIs

API Description

gsk_attribute_get_buffer() Obtains specific character string information
about a secure session or an SSL environment,
such as certificate store file, certificate store
password, application ID, and ciphers.

gsk_attribute_get_cert_info() Obtains specific information about either the
server or client certificate for a secure session or
an SSL environment.

gsk_attribute_get_enum_value() Obtains values for specific enumerated data for a
secure session or an SSL environment.

gsk_attribute_get_numeric_value() Obtains specific numeric information about a
secure session or an SSL environment.

gsk_attribute_set_callback() Sets callback pointers to routines in the user
application. The application can then use these
routines for special purposes.

gsk_attribute_set_buffer() Sets a specified buffer attribute to a value inside
the specified secure session or an SSL
environment.

Socket programming 47

ftp://ftp.rfc-editor.org/in-notes/rfc2246.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2246.txt

Table 12. Global Security Kit APIs (continued)

API Description

gsk_attribute_set_enum() Sets a specified enumerated type attribute to an
enumerated value in the secure session or SSL
environment.

gsk_attribute_set_numeric_value() Sets specific numeric information for a secure
session or an SSL environment.

gsk_environment_close() Closes the SSL environment and releases all
storage associated with the environment.

gsk_environment_init() Initializes the SSL environment after any required
attributes are set.

gsk_environment_open() Returns an SSL environment handle that must be
saved and used on subsequent gsk calls.

gsk_secure_soc_close() Closes a secure session and free all the associated
resources for that secure session.

gsk_secure_soc_init() Negotiates a secure session, using the attributes
set for the SSL environment and the secure
session.

gsk_secure_soc_misc() Performs miscellaneous APIs for a secure session.

gsk_secure_soc_open() Obtains storage for a secure session, sets default
values for attributes, and returns a handle that
must be saved and used on secure session-related
API calls.

gsk_secure_soc_read() Receives data from a secure session.

gsk_secure_soc_startInit() Starts an asynchronous negotiation of a secure
session, using the attributes set for the SSL
environment and the secure session.

gsk_secure_soc_write() Writes data on a secure session.

gsk_secure_soc_startRecv() Initiates an asynchronous receive operation on a
secure session.

gsk_secure_soc_startSend() Initiates an asynchronous send operation on a
secure session.

gsk_strerror() Retrieves an error message and associated text
string that describes a return value that was
returned from calling a GSKit API.

An application that uses the sockets and GSKit APIs contains the following elements:
1. A call to socket() to obtain a socket descriptor.
2. A call to gsk_environment_open() to obtain a handle to an SSL environment.
3. One or more calls to gsk_attribute_set_xxxxx() to set attributes of the SSL environment. At a

minimum, either a call to gsk_attribute_set_buffer() to set the GSK_OS400_APPLICATION_ID value
or to set the GSK_KEYRING_FILE value. Only one of these should be set. It is preferred that you use
the GSK_OS400_APPLICATION_ID value. Also ensure that you set the type of application (client or
server), GSK_SESSION_TYPE, using gsk_attribute_set_enum().

4. A call to gsk_environment_init() to initialize this environment for SSL processing and to establish the
SSL security information for all SSL sessions that run using this environment.

5. Socket calls to activate a connection. It calls connect() to activate a connection for a client program,
or it calls bind(), listen(), and accept() to enable a server to accept incoming connection requests.

6. A call to gsk_secure_soc_open() to obtain a handle to a secure session.

48 IBM i: Programming Socket programming

7. One or more calls to gsk_attribute_set_xxxxx() to set attributes of the secure session. At a minimum,
a call to gsk_attribute_set_numeric_value() to associate a specific socket with this secure session.

8. A call to gsk_secure_soc_init() to initiate the SSL handshake negotiation of the cryptographic
parameters.

Note: Typically, a server program must provide a certificate for an SSL handshake to succeed. A
server must also have access to the private key that is associated with the server certificate
and the key database file where the certificate is stored. In some cases, a client must also
provide a certificate during the SSL handshake processing. This occurs if the server, which the
client is connecting to, has enabled client authentication. The
gsk_attribute_set_buffer(GSK_OS400_APPLICATION_ID) or
gsk_attribute_set_buffer(GSK_KEYRING_FILE) API calls identify (though in dissimilar ways)
the key database file, from which the certificate and private key that are used during the
handshake are obtained.

9. Calls to gsk_secure_soc_read() and gsk_secure_soc_write() to receive and send data.
10. A call to gsk_secure_soc_close() to end the secure session.
11. A call to gsk_environment_close() to close the SSL environment.
12. A call to close() to destroy the connected socket.
Related reference:
“Example: GSKit secure server with asynchronous data receive” on page 122
This example demonstrates how to establish a secure server using Global Security Kit (GSKit) APIs.
“Example: GSKit secure server with asynchronous handshake” on page 132
The gsk_secure_soc_startInit() API allows you to create secure server applications that can handle
requests asynchronously.
“Example: Establishing a secure client with Global Security Kit APIs” on page 142
This example demonstrates how to establish a client using the Global Security Kit (GSKit) APIs.
Related information:
gsk_attribute_get_buffer()--Get character information about a secure session or an SSL environment API
gsk_attribute_get_cert_info()--Get information about a local or partner certificate API
gsk_attribute_get_enum()--Get enumerated information about a secure session or an SSL environment API

gsk_attribute_get_numeric_value()--Get numeric information about a secure session or an SSL
environment API
gsk_attribute_set_callback()--Set callback pointers to routines in the user application API
gsk_attribute_set_buffer()--Set character information for a secure session or an SSL environment API
gsk_attribute_set_enum()--Set enumerated information for a secure session or an SSL environment API
gsk_attribute_set_numeric_value()--Set numeric information for a secure session or an SSL environment
API
gsk_environment_close()--Close an SSL environment API
gsk_environment_init()--Initialize an SSL environment API
gsk_environment_open()--Get a handle for an SSL environment API
gsk_secure_soc_close()--Close a secure session API
gsk_secure_soc_init()--Negotiate a secure session API
gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session API
gsk_secure_soc_open()--Get a handle for a secure session API
gsk_secure_soc_startInit()--Start asynchronous operation to negotiate a secure session API
gsk_secure_soc_read()--Receive data on a secure session API
gsk_secure_soc_write()--Send data on a secure session API
gsk_secure_soc_startRecv()--Start asynchronous receive operation on a secure session API

Socket programming 49

gsk_secure_soc_startSend()--Start asynchronous send operation on a secure session API
gsk_strerror()--Retrieve GSKit runtime error message API
socket()--Create Socket API
bind()--Set Local Address for Socket API
connect()--Establish Connection or Destination Address API
listen()--Invite Incoming Connections Requests API
accept()--Wait for Connection Request and Make Connection API
close()--Close File or Socket Descriptor API

SSL_ APIs
The SSL_ APIs allow programmers to create secure socket applications on the i5/OS operating system.

Unlike GSKit APIs, SSL_ APIs only exist in the i5/OS operating system. The following table describes the
SSL_ APIs that are supported in the i5/OS implementation.

Table 13. SSL_ APIs

API Description

SSL_Create() Enable SSL support for the specified socket descriptor.

SSL_Destroy() End SSL support for the specified SSL session and socket.

SSL_Handshake() Initiate the SSL handshake protocol.

SSL_Init() Initialize the current job for SSL and establish the SSL
security information for the current job.
Note: Either an SSL_Init() or SSL_Init_Application() API
must be processed before SSL can be used.

SSL_Init_Application() Initialize the current job for SSL and establish the SSL
security information for the current job.
Note: Either an SSL_Init() or SSL_Init_Application() API
must be processed before SSL can be used.

SSL_Read() Receive data from an SSL-enabled socket descriptor.

SSL_Write() Write data to an SSL-enabled socket descriptor.

SSL_Strerror() Retrieve SSL runtime error message.

SSL_Perror() Print SSL error message.

QlgSSL_Init() Initialize the current job for SSL and establish the SSL
security information for the current job using
NLS-enabled path name.

An application that uses the sockets and SSL_ APIs contains the following elements:
v A call to socket() to obtain a socket descriptor.
v Either call SSL_Init() or SSL_Init_Application() to initialize the job environment for SSL processing and

to establish the SSL security information for all SSL sessions that run in the current job. Only one of
these APIs should be used. It is preferred that you use the SSL_Init_Application() API.

v Socket calls to activate a connection. It calls connect() to activate a connection for a client program, or it
calls bind(), listen(), and accept() to enable a server to accept incoming connection requests.

v A call to SSL_Create() to enable SSL support for the connected socket.
v A call to SSL_Handshake() to initiate the SSL handshake negotiation of the cryptographic parameters.

Note: Typically, a server program must provide a certificate for an SSL handshake to succeed. A server
must also have access to the private key that is associated with the server certificate and the key
database file where the certificate is stored. In some cases, a client must also provide a certificate
during the SSL handshake processing. This occurs if the server, which the client is connecting to,

50 IBM i: Programming Socket programming

has enabled client authentication. The SSL_Init() or SSL_Init_Application() APIs identify (though
in dissimilar ways) the key database file, from which the certificate and private key that are
used during the handshake are obtained.

v Calls to SSL_Read() and SSL_Write() to receive and send data.
v A call to SSL_Destroy() to disable SSL support for the socket.
v A call to close() to destroy the connected sockets.
Related information:
socket()--Create Socket API
listen()--Invite Incoming Connections Requests API
bind()--Set Local Address for Socket API
connect()--Establish Connection or Destination Address API
accept()--Wait for Connection Request and Make Connection API
close()--Close File or Socket Descriptor API
SSL_Create()--Enable SSL Support for the Specified Socket Descriptor API
SSL_Destroy()--End SSL Support for the Specified SSL Session API
SSL_Handshake()--Initiate the SSL Handshake Protocol API
SSL_Init()--Initialize the Current Job for SSL API
SSL_Init_Application()--Initialize the Current Job for SSL Processing Based on the Application Identifier
API
SSL_Read()--Receive Data from an SSL-Enabled Socket Descriptor API
SSL_Write()--Write Data to an SSL-Enabled Socket Descriptor API
SSL_Strerror()--Retrieve SSL Runtime Error Message API
SSL_Perror()--Print SSL Error Message API

Secure socket API error code messages
To get the error code messages for the secure socket API, follow these steps.
1. From a command line, enter DSPMSGD RANGE(XXXXXXX), where XXXXXXX is the message ID for the

return code. For example, if the return code is 3, you can enter DSPMSGD RANGE(CPDBCB9).
2. Select 1 to display message text.

Table 14. Secure socket API error code messages

Return code Message ID Constant name

0 CPCBC80 GSK_OK

1 CPDBCA1 GSK_INVALID_HANDLE

2 CPDBCB3 GSK_API_NOT_AVAILABLE

3 CPDBCB9 GSK_INTERNAL_ERROR

4 CPC3460 GSK_INSUFFICIENT_STORAGE

5 CPDBC95 GSK_INVALID_STATE

8 CPDBCB2 GSK_ERROR_CERT_VALIDATION

107 CPDBC98 GSK_KEYFILE_CERT_EXPIRED

201 CPDBCA4 GSK_NO_KEYFILE_PASSWORD

202 CPDBCB5 GSK_KEYRING_OPEN_ERROR

301 CPDBCA5 GSK_CLOSE_FAILED

402 CPDBC81 GSK_ERROR_NO_CIPHERS

403 CPDBC82 GSK_ERROR_NO_CERTIFICATE

404 CPDBC84 GSK_ERROR_BAD_CERTIFICATE

Socket programming 51

Table 14. Secure socket API error code messages (continued)

Return code Message ID Constant name

405 CPDBC86 GSK_ERROR_UNSUPPORTED_CERTIFICATE_TYPE

406 CPDBC8A GSK_ERROR_IO

407 CPDBCA3 GSK_ERROR_BAD_KEYFILE_LABEL

408 CPDBCA7 GSK_ERROR_BAD_KEYFILE_PASSWORD

409 CPDBC9A GSK_ERROR_BAD_KEY_LEN_FOR_EXPORT

410 CPDBC8B GSK_ERROR_BAD_MESSAGE

411 CPDBC8C GSK_ERROR_BAD_MAC

412 CPDBC8D GSK_ERROR_UNSUPPORTED

414 CPDBC84 GSK_ERROR_BAD_CERT

415 CPDBC8B GSK_ERROR_BAD_PEER

417 CPDBC92 GSK_ERROR_SELF_SIGNED

420 CPDBC96 GSK_ERROR_SOCKET_CLOSED

421 CPDBCB7 GSK_ERROR_BAD_V2_CIPHER

422 CPDBCB7 GSK_ERROR_BAD_V3_CIPHER

428 CPDBC82 GSK_ERROR_NO_PRIVATE_KEY

501 CPDBCA8 GSK_INVALID_BUFFER_SIZE

502 CPE3406 GSK_WOULD_BLOCK

601 CPDBCAC GSK_ERROR_NOT_SSLV3

602 CPDBCA9 GSK_MISC_INVALID_ID

701 CPDBCA9 GSK_ATTRIBUTE_INVALID_ID

702 CPDBCA6 GSK_ATTRIBUTE_INVALID_LENGTH

703 CPDBCAA GSK_ATTRIBUTE_INVALID_ENUMERATION

705 CPDBCAB GSK_ATTRIBUTE_INVALID_NUMERIC

6000 CPDBC97 GSK_OS400_ERROR_NOT_TRUSTED_ROOT

6001 CPDBCB1 GSK_OS400_ERROR_PASSWORD_EXPIRED

6002 CPDBCC9 GSK_OS400_ERROR_NOT_REGISTERED

6003 CPDBCAD GSK_OS400_ERROR_NO_ACCESS

6004 CPDBCB8 GSK_OS400_ERROR_CLOSED

6005 CPDBCCB GSK_OS400_ERROR_NO_CERTIFICATE_AUTHORITIES

6007 CPDBCB4 GSK_OS400_ERROR_NO_INITIALIZE

6008 CPDBCAE GSK_OS400_ERROR_ALREADY_SECURE

6009 CPDBCAF GSK_OS400_ERROR_NOT_TCP

6010 CPDBC9C GSK_OS400_ERROR_INVALID_POINTER

6011 CPDBC9B GSK_OS400_ERROR_TIMED_OUT

6012 CPCBCBA GSK_OS400_ASYNCHRONOUS_RECV

6013 CPCBCBB GSK_OS400_ASYNCHRONOUS_SEND

6014 CPDBCBC GSK_OS400_ERROR_INVALID_OVERLAPPEDIO_T

6015 CPDBCBD GSK_OS400_ERROR_INVALID_IOCOMPLETIONPORT

6016 CPDBCBE GSK_OS400_ERROR_BAD_SOCKET_DESCRIPTOR

6017 CPDBCBF GSK_OS400_ERROR_CERTIFICATE_REVOKED

52 IBM i: Programming Socket programming

Table 14. Secure socket API error code messages (continued)

Return code Message ID Constant name

6018 CPDBC87 GSK_OS400_ERROR_CRL_INVALID

6019 CPCBC88 GSK_OS400_ASYNCHRONOUS_SOC_INIT

0 CPCBC80 Successful return

-1 CPDBC81 SSL_ERROR_NO_CIPHERS

-2 CPDBC82 SSL_ERROR_NO_CERTIFICATE

-4 CPDBC84 SSL_ERROR_BAD_CERTIFICATE

-6 CPDBC86 SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE

-10 CPDBC8A SSL_ERROR_IO

-11 CPDBC8B SSL_ERROR_BAD_MESSAGE

-12 CPDBC8C SSL_ERROR_BAD_MAC

-13 CPDBC8D SSL_ERROR_UNSUPPORTED

-15 CPDBC84 SSL_ERROR_BAD_CERT (map to -4)

-16 CPDBC8B SSL_ERROR_BAD_PEER (map to -11)

-18 CPDBC92 SSL_ERROR_SELF_SIGNED

-21 CPDBC95 SSL_ERROR_BAD_STATE

-22 CPDBC96 SSL_ERROR_SOCKET_CLOSED

-23 CPDBC97 SSL_ERROR_NOT_TRUSTED_ROOT

-24 CPDBC98 SSL_ERROR_CERT_EXPIRED

-26 CPDBC9A SSL_ERROR_BAD_KEY_LEN_FOR_EXPORT

-91 CPDBCB1 SSL_ERROR_KEYPASSWORD_EXPIRED

-92 CPDBCB2 SSL_ERROR_CERTIFICATE_REJECTED

-93 CPDBCB3 SSL_ERROR_SSL_NOT_AVAILABLE

-94 CPDBCB4 SSL_ERROR_NO_INIT

-95 CPDBCB5 SSL_ERROR_NO_KEYRING

-97 CPDBCB7 SSL_ERROR_BAD_CIPHER_SUITE

-98 CPDBCB8 SSL_ERROR_CLOSED

-99 CPDBCB9 SSL_ERROR_UNKNOWN

-1009 CPDBCC9 SSL_ERROR_NOT_REGISTERED

-1011 CPDBCCB SSL_ERROR_NO_CERTIFICATE_AUTHORITIES

-9998 CPDBCD8 SSL_ERROR_NO_REUSE

Related reference:
“Examples: Establishing secure connections” on page 122
You can create secure server and clients using either the Global Security Kit (GSKit) APIs or the Secure
Sockets Layer (SSL_) APIs.

Client SOCKS support
The i5/OS operating system supports SOCKS version 4. This enables programs that use the AF_INET
address family with the SOCK_STREAM socket type to communicate with server programs running on
systems outside a firewall.

A firewall is a very secure host that a network administrator places between a secure internal network
and a less secure external network. Typically such a network configuration does not allow

Socket programming 53

communications that originate from the secure host to be routed on the less secure network, and vice
versa. Proxy servers that exist on the firewall help manage required access between secure hosts and less
secure networks.

Applications that run on hosts in a secure internal network must send their requests to firewall proxy
servers to navigate the firewall. The proxy servers can then forward these requests to the real server on
the less secure network and relay the reply back to the applications on the originating host. A common
example of a proxy server is an HTTP proxy server. Proxy servers perform a number of tasks for HTTP
clients:
v They hide your internal network from outside systems.
v They protect the host from direct access by outside systems.
v They can filter data that comes in from outside if they are properly designed and configured.

HTTP proxy servers handle only HTTP clients.

A common alternative to running multiple proxy servers on a firewall is to run a more robust proxy
server known as a SOCKS server. A SOCKS server can act as a proxy for any TCP client connection that
is established through the sockets API. The key advantage of the i5/OS Client SOCKS support is that it
enables client applications to access a SOCKS server transparently without changing any client code.

The following figure shows a common firewall arrangement with an HTTP proxy, a telnet proxy, and a
SOCKS proxy on the firewall. Notice that the two separate TCP connections used for the secure client
that is accessing a server on the internet. One connection leads from the secure host to the SOCKS server,
and the other leads from the less secure network to the SOCKS server.

54 IBM i: Programming Socket programming

Two actions are required on the secure client host to use a SOCKS server:
1. Configure a SOCKS server.
2. On the secure client system, define all outbound client TCP connections that are to be directed to the

SOCKS server on the client system.
To configure client SOCKS support, follow these steps:
a. From System i® Navigator, expand your system > Network > TCP/IP Configuration.
b. Right-click TCP/IP Configuration.
c. Click Properties.
d. Click the SOCKS tab.
e. Enter your connection information about the SOCKS page.

Note: The secure client SOCKS configuration data is saved in the QASOSCFG file in library
QUSRSYS on the secure client host system.

When configured, the system automatically directs certain outbound connections to the SOCKS server
you specified on the SOCKS page. You do not need to make any changes to the secure client application.

Socket programming 55

When it receives the request, the SOCKS server establishes a separate external TCP/IP connection to the
server in the less secure network. The SOCKS server then relays data between the internal and external
TCP/IP connections.

Note: The remote host on the less secure network connects directly to the SOCKS server. It does not have
direct access to the secure client.

Up to this point, outbound TCP connections that originate from the secure client have been addressed.
Client SOCKS support also lets you tell the SOCKS server to allow an inbound connection request across
a firewall. An Rbind() call from the secure client system allows this communication. For Rbind() to
operate, the secure client must have previously issued a connect() call and the call must have resulted in
an outbound connection over the SOCKS server. The Rbind() inbound connection must be from the same
IP address that was addressed by the outbound connection that the connect() established.

The following figure shows a detailed overview of how sockets APIs interact with a SOCKS server
transparent to the application. In the example, the FTP client calls the Rbind() API instead of a bind()
API, because the FTP protocol allows the FTP server to establish a data connection when there is a
request from the FTP client to send files or data. It makes this call by recompiling the FTP client code
with the __Rbind preprocessor #define, which defines bind() to be Rbind(). Alternatively, an application
can explicitly code Rbind() in the pertinent source code. If an application does not require inbound
connections across a SOCKS server, Rbind() should not be used.

56 IBM i: Programming Socket programming

Socket programming 57

Notes:

1. The FTP client initiates an outbound TCP connection to a less secure network through a
SOCKS server. The destination address that the FTP client specifies on the connect() is the IP
address and port of the FTP server located on the less secure network. The secure host system
is configured through the SOCKS page to direct this connection through the SOCKS server.
When configured, the system automatically directs the connection to the SOCKS server that
was specified through the SOCKS page.

2. A socket is opened and Rbind() is called to establish an inbound TCP connection. When
established, this inbound connection is from the same destination-outbound IP address that
was specified above. You must pair outbound and inbound connections over the SOCKS
server for a particular thread. In other words, all Rbind() inbound connections should
immediately follow the outbound connection over the SOCKS server. You cannot attempt to
intervene non-SOCKS connections relating to this thread before the Rbind() runs.

3. getsockname() returns the SOCKS server address. The socket logically binds to the SOCKS
server IP address coupled with a port that is selected through the SOCKS server. In this
example, the address is sent through the "control connection" Socket CTLed to the FTP server
that is located on the less secure network. This is the address to which the FTP server
connects. The FTP server connects to the SOCKS server and not directly to the secure host.

4. The SOCKS server establishes a data connection with the FTP client and relays data between
the FTP client and the FTP server. Many SOCKS servers allow a fixed length of time for the
server to connect to the Secure client. If the server does not connect within this time, errno
ECONNABORTED is encountered on the accept().

Related information:
bind()--Set Local Address for Socket API
connect()--Establish Connection or Destination Address API
accept()--Wait for Connection Request and Make Connection API
getsockname()--Retrieve Local Address of Socket API
Rbind()--Set Remote Address for Socket API

Thread safety
A function is considered threadsafe if you can start it simultaneously in multiple threads within the same
process. A function is threadsafe only if all the functions it calls are also threadsafe. Socket APIs consist of
system and network functions, which are both threadsafe.

All network functions with names that end in "_r" have similar semantics and are also threadsafe.

The other resolver routines are threadsafe with each other but they use the _res data structure. This data
structure is shared between all threads in a process and can be changed by an application during a
resolver call.
Related reference:
“Example: Using gethostbyaddr_r() for threadsafe network routines” on page 148
This example program uses the gethostbyaddr_r() API. All other routines with names that end in _r have
similar semantics and are also threadsafe.
“Example: Updating and querying DNS” on page 171
This example shows how to query and update Domain Name System (DNS) records.

Nonblocking I/O
When an application issues one of the socket input APIs and there is no data to read, the API blocks and
does not return until there is data to read.

58 IBM i: Programming Socket programming

Similarly, an application can block on a socket output API when data cannot be sent immediately. Finally,
connect() and accept() can block while waiting for connection establishment with the partner's programs.

Sockets provide a method that enables application programs to issue APIs that block so that the API
returns without delay. This is done by either calling fcntl() to turn on the O_NONBLOCK flag, or calling
ioctl() to turn on the FIONBIO flag. When running in this nonblocking mode, if an API cannot be
completed without blocking, it returns immediately. A connect() might return with [EINPROGRESS],
which means that the connection initiation has been started. You can then use the poll() or select() to
determine when the connection has been completed. For all other APIs that are affected by running in the
nonblocking mode, an error code of [EWOULDBLOCK] indicates that the call was unsuccessful.

You can use nonblocking with the following socket APIs:
v accept()
v connect()
v gsk_secure_soc_read()
v gsk_secure_soc_write()
v read()
v readv()
v recv()
v recvfrom()
v recvmsg()
v send()
v send_file()
v send_file64()
v sendmsg()
v sendto()
v SSL_Read()
v SSL_Write()
v write()
v writev()
Related reference:
“Example: Nonblocking I/O and select()” on page 151
This sample program illustrates a server application that uses nonblocking and the select() API.
Related information:
fcntl()--Perform File Control Command API
accept()--Wait for Connection Request and Make Connection API
ioctl()--Perform I/O Control Request API
recv()--Receive Data API
send()--Send Data API
connect()--Establish Connection or Destination Address API
gsk_secure_soc_read()--Receive data on a secure session API
gsk_secure_soc_write()--Send data on a secure session API
SSL_Read()--Receive Data from an SSL-Enabled Socket Descriptor API
SSL_Write()--Write Data to an SSL-Enabled Socket Descriptor API
read()--Read from Descriptor API
readv()--Read from Descriptor Using Multiple Buffers API
recvfrom()--Receive Data API

Socket programming 59

recvmsg()--Receive a Message Over a Socket API
send_file()--Send a File over a Socket Connection API
send_file64()
--Send a Message Over a Socket API
sendto()--Send Data API
write()--Write to Descriptor API
writev()--Write to Descriptor Using Multiple Buffers API

Signals
An application program can request to be notified asynchronously (request that the system send a signal)
when a condition that the application is interested in occurs.

There are two asynchronous signals that sockets send to an application.
1. SIGURG is a signal that is sent when out-of-band (OOB) data is received on a socket for which the

concept of OOB data is supported. For example, a socket with an address family of AF_INET6 and a
type of SOCK_STREAM can be conditioned to send a SIGURG signal.

2. SIGIO is a signal that is sent when normal data, OOB data, error conditions, or just about anything
happens on any type of socket.

The application should ensure that it is able to handle receiving a signal before it requests the system to
send signals. This is done by setting up signal handlers. One way to set a signal handler is by issuing the
sigaction() call.

An application requests the system to send the SIGURG signal by one of the following methods:
v Issuing a fcntl() call and specifying a process ID or a process group ID with the F_SETOWN command.
v Issuing an ioctl() call and specifying the FIOSETOWN or the SIOCSPGRP command (request).

An application requests the system to send the SIGIO signal in two steps. First it must set the process ID
or the process group ID as previously described for the SIGURG signal. This is to inform the system of
where the application wants the signal to be delivered. Second, the application must do either of the
following tasks:
v Issue the fcntl() call and specify the F_SETFL command with the FASYNC flag.
v Issue the ioctl() call and specify the FIOASYNC command.

This step requests the system to generate the SIGIO signal. Note that these steps can be done in any
order. Also note that if an application issues these requests on a listening socket, the values set by the
requests are inherited by all sockets that are returned to the application from the accept() API. That is,
newly accepted sockets also have the same process ID or process group ID as well as the same
information with regard to sending the SIGIO signal.

A socket can also generate synchronous signals on error conditions. Whenever an application receives
[EPIPE] an errno on a socket API, a SIGPIPE signal is delivered to the process that issued the operation
receiving the errno value. On a Berkeley Socket Distribution (BSD) implementation, by default the
SIGPIPE signal ends the process that received the errno value. To remain compatible with previous
releases of the i5/OS implementation, the i5/OS implementation uses a default behavior of ignoring for
the SIGPIPE signal. This ensures that existing applications are not negatively affected by the addition of
the signals API.

When a signal is delivered to a process that is blocked on a sockets API, the API returns from the wait
with the [EINTR] errno value, allowing the application's signal handler to run. The APIs for which this
occur are:
v accept()

60 IBM i: Programming Socket programming

|

v connect()
v poll()
v read()
v readv()
v recv()
v recvfrom()
v recvmsg()
v select()
v send()
v sendto()
v sendmsg()
v write()
v writev()

It is important to note that signals do not provide the application program with a socket descriptor that
identifies where the condition being signalled actually exists. Thus, if the application program is using
multiple socket descriptors, it must either poll the descriptors or use the select() call to determine why
the signal was received.
Related concepts:
“Out-of-band data” on page 63
Out-of-band (OOB) data is user-specific data that only has meaning for connection-oriented (stream)
sockets.
Related reference:
“Example: Using signals with blocking socket APIs” on page 163
When a process or an application becomes blocked, signals allow you to be notified. They also provide a
time limit for blocking processes.
Related information:
accept()--Wait for Connection Request and Make Connection API
--Send a Message Over a Socket API
sendto()--Send Data API
write()--Write to Descriptor API
writev()--Write to Descriptor Using Multiple Buffers API
read()--Read from Descriptor API
readv()--Read from Descriptor Using Multiple Buffers API
connect()--Establish Connection or Destination Address API
recvfrom()--Receive Data API
recvmsg()--Receive a Message Over a Socket API
recv()--Receive Data API
send()--Send Data API
select()--Wait for Events on Multiple Sockets API

IP multicasting
IP multicasting allows an application to send a single IP datagram that a group of hosts in a network can
receive.

The hosts that are in the group can reside on a single subnet or on different subnets that
multicast-capable routers connect. Hosts can join and leave groups at any time. There are no restrictions
on the location or number of members in a host group. For AF_INET, a class D IP address in the range

Socket programming 61

224.0.0.1 to 239.255.255.255 identifies a host group. For AF_INET6, an IPv6 address starting with FF00::/8
identifies the address as a multicast address. Refer to RFC 3513: "Internet Protocol Version 6 (IPv6)

Addressing Architecture"

for more information.

You can currently use IP multicasting with AF_INET and AF_INET6 address families.

An application program can send or receive multicast datagrams using the Sockets API and
connectionless, SOCK_DGRAM type sockets. Multicasting is a one-to-many transmission method.
Connection-oriented sockets of type SOCK_STREAM cannot be used for multicasting. When a socket of
type SOCK_DGRAM is created, an application can use the setsockopt() API to control the multicast
characteristics associated with that socket. The setsockopt() API accepts the following IPPROTO_IP level
flags:
v IP_ADD_MEMBERSHIP: Joins the multicast group specified
v IP_DROP_MEMBERSHIP: Leaves the multicast group specified
v IP_MULTICAST_IF: Sets the interface over which outgoing multicast datagrams should be sent
v IP_MULTICAST_TTL: Sets the Time To Live (TTL) in the IP header for outgoing multicast datagrams
v IP_MULTICAST_LOOP: Specifies whether a copy of an outgoing multicast datagram should be

delivered to the sending host as long as it is a member of the multicast group

The setsockopt() API also accepts the following IPPROTO_IPv6 level flags:
v IPv6_MULTICAST_IF: Sets the interface over which outgoing multicast datagrams are sent
v IPv6_MULTICAST_HOPS: Sets the hop limit values that are used for subsequent multicast packets sent

by a socket
v IPv6_MULTICAST_LOOP: Specifies whether a copy of an outgoing multicast datagram should be

delivered to the sending host as long as it is a member of the multicast group
v IPv6_JOIN_GROUP: Joins the multicast group specified
v IPv6_LEAVE_GROUP: Leaves the multicast group specified
Related reference:
“Examples: Using multicasting with AF_INET” on page 166
With IP multicasting, an application can send a single IP datagram that a group of hosts in a network can
receive.
Related information:
setsockopt()--Set Socket Options API

File data transfer—send_file() and accept_and_recv()
i5/OS sockets provide the send_file() and accept_and_recv() APIs that enable faster and easier file
transfers over connected sockets.

These two APIs are especially useful for file-serving applications such as Hypertext Transfer Protocol
(HTTP) servers.

The send_file() API enables the sending of file data directly from a file system over a connected socket
with a single API call.

The accept_and_recv() API is a combination of three socket APIs: accept(), getsockname(), and recv().
Related reference:
“Examples: Transferring file data using send_file() and accept_and_recv() APIs” on page 175
These examples enable a server to communicate with a client by using the send_file() and
accept_and_recv() APIs.
Related information:

62 IBM i: Programming Socket programming

ftp://ftp.isi.edu/in-notes/rfc3513.txt
ftp://ftp.isi.edu/in-notes/rfc3513.txt

send_file()--Send a File over a Socket Connection API
accept_and_recv()

Out-of-band data
Out-of-band (OOB) data is user-specific data that only has meaning for connection-oriented (stream)
sockets.

Stream data is generally received in the same order it is sent. OOB data is received independent of its
position in the stream (independent of the order in which it was sent). This is possible because the data is
marked in such a way that, when it is sent from program A to program B, program B is notified of its
arrival.

OOB data is supported on AF_INET (SOCK_STREAM) and AF_INET6 (SOCK_STREAM) only.

OOB data is sent by specifying the MSG_OOB flag on the send(), sendto(), and sendmsg() APIs.

The transmission of OOB data is the same as the transmission of regular data. It is sent after any data
that is buffered. In other words, OOB data does not take precedence over any data that might be
buffered; data is transmitted in the order that it was sent.

On the receiving side, things are a little more complex:
v The sockets API keeps track of OOB data that is received on a system by using an OOB marker. The

OOB marker points to the last byte in the OOB data that was sent.

Note: The value that indicates which byte the OOB marker points to is set on a system basis (all
applications use that value). This value must be consistent between the local and remote ends of
a TCP connection. Socket applications that use this value must use it consistently between the
client and server applications.

The SIOCATMARK ioctl() request determines if the read pointer is pointing to the last OOB byte.

Note: If multiple occurrences of OOB data are sent, the OOB marker points to the last OOB byte of the
final OOB data occurrence.

v Independent of whether OOB data is received inline, an input operation processes data up to the OOB
marker, if OOB data was sent.

v A recv(), recvmsg(), or recvfrom() API (with the MSG_OOB flag set) is used to receive OOB data. An
error of [EINVAL] is returned if one of the receive APIs has been completed and one of the following
situations occurs:
– The socket option SO_OOBINLINE is not set and there is no OOB data to receive.
– The socket option SO_OOBINLINE is set.
If the socket option SO_OOBINLINE is not set, and the sending program sent OOB data with a size
greater than one byte, all the bytes but the last are considered normal data. (Normal data means that
the receiving program can receive data without specifying the MSG_OOB flag.) The last byte of the
OOB data that was sent is not stored in the normal data stream. This byte can only be retrieved by
issuing a recv(), recvmsg(), or recvfrom() API with the MSG_OOB flag set. If a receive operation is
issued with the MSG_OOB flag not set, and normal data is received, the OOB byte is deleted. Also, if
multiple occurrences of OOB data are sent, the OOB data from the preceding occurrence is lost, and
the position of the OOB data of the final OOB data occurrence is remembered.
If the socket option SO_OOBINLINE is set, then all of the OOB data that was sent is stored in the
normal data stream. Data can be retrieved by issuing one of the three receive APIs without specifying
the MSG_OOB flag (if it is specified, an error of [EINVAL] is returned). OOB data is not lost if multiple
occurrences of OOB data are sent.

v OOB data is not discarded if SO_OOBINLINE is not set, OOB data has been received, and the user
then sets SO_OOBINLINE on. The initial OOB byte is considered normal data.

Socket programming 63

v If SO_OOBINLINE is not set, OOB data was sent, and the receiving program issued an input API to
receive the OOB data, then the OOB marker is still valid. The receiving program can still check if the
read pointer is at the OOB marker, even though the OOB byte was received.

Related concepts:
“Signals” on page 60
An application program can request to be notified asynchronously (request that the system send a signal)
when a condition that the application is interested in occurs.
Related information:
--Send a Message Over a Socket API
Change TCP Attributes (CHGTCPA) command

I/O multiplexing—select()
Because asynchronous I/O provides a more efficient way to maximize your application resources, it is
recommended that you use asynchronous I/O APIs rather than the select() API. However, your specific
application design might allow select() to be used.

Like asynchronous I/O, the select() API creates a common point to wait for multiple conditions at the
same time. However, select() allows an application to specify sets of descriptors to see if the following
conditions exist:
v There is data to be read.
v Data can be written.
v An exception condition is present.

The descriptors that can be specified in each set can be socket descriptors, file descriptors, or any other
object that is represented by a descriptor.

The select() API also allows the application to specify if it wants to wait for data to become available. The
application can specify how long to wait.
Related reference:
“Example: Nonblocking I/O and select()” on page 151
This sample program illustrates a server application that uses nonblocking and the select() API.

Socket network functions
Socket network functions allow application programs to obtain information from the host, protocol,
service, and network files.

The information can be accessed by name or by address, or by sequential access of the file. These
network functions (or routines) are required when setting up communications between programs that run
across networks, and thus are not used by AF_UNIX sockets.

The routines are as follows:
v Map host names to network addresses.
v Map network names to network numbers.
v Map protocol names to protocol numbers.
v Map service names to port numbers.
v Convert the byte order of Internet network addresses.
v Convert IP address and dotted decimal notation.

Included in the network routines is a group of routines called resolver routines. These routines make,
send, and interpret packets for name servers in the Internet domain and are also used to do name

64 IBM i: Programming Socket programming

resolution. The resolver routines normally get called by gethostbyname(), gethostbyaddr(), getnameinfo(),
and getaddrinfo() but can be called directly. Primarily resolver routines are used for accessing Domain
Name System (DNS) through socket application.
Related concepts:
“Socket characteristics” on page 6
Sockets share some common characteristics.
Related reference:
“Example: Using gethostbyaddr_r() for threadsafe network routines” on page 148
This example program uses the gethostbyaddr_r() API. All other routines with names that end in _r have
similar semantics and are also threadsafe.
“Domain Name System support”
The operating system provides applications with access to the Domain Name System (DNS) through the
resolver functions.
Related information:
Sockets System Functions
gethostbyname()--Get Host Information for Host Name API
getaddrinfo()--Get Address Information API
gethostbyaddr()--Get Host Information for IP Address API
getnameinfo()--Get Name Information for Socket Address API

Domain Name System support
The operating system provides applications with access to the Domain Name System (DNS) through the
resolver functions.

The DNS has the following three major components:

Domain name space and resource records
Specifications for a tree-structured name space and the data associated with the names.

Name servers
Server programs that hold information about the domain tree structure and set information.

Resolvers
Programs that extract information from name servers in response to client requests.

The resolvers provided in the i5/OS implementation are socket functions that provide communication
with a name server. These routines are used to make, send, update, and interpret packets, and perform
name caching for performance. They also provide function for ASCII to EBCDIC and EBCDIC to ASCII
conversion. Optionally, the resolver uses transaction signatures (TSIG) to securely communicate with the
DNS.

For more information about domain names, see the following RFCs, which you can locate from the RFC

Search Engine

page.
v RFC 1034: Domain names - concepts and facilities.
v RFC 1035: Domain names - implementation and specification.
v RFC 1886: DNS Extensions to support IP version 6.
v RFC 2136: Dynamic Updates in the Domain Name System (DNS UPDATE).
v RFC 2181: Clarifications to the DNS Specification.
v RFC 2845: Secret Key Transaction Authentication for DNS (TSIG).
v RFC 3152: DNS Delegation of IP6.ARPA.
Related reference:

Socket programming 65

http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/rfcsearch.html

“Socket network functions” on page 64
Socket network functions allow application programs to obtain information from the host, protocol,
service, and network files.
Related information:
Domain Name System
Sockets System Functions

Environment variables
You can use environment variables to override default initialization of resolver functions.

Environment variables are only checked after a successful call to res_init() or res_ninit(). So if the
structure has been manually initialized, environment variables are ignored. Also note that the structure is
only initialized once so later changes to the environment variables are ignored.

Note: The name of the environment variable must be capitalized. The string value might be mixed case.
Japanese systems using CCSID 290 should use uppercase characters and numbers only in both
environment variables names and values. The list contains the descriptions of environment
variables that can be used with the res_init() and res_ninit() APIs.

LOCALDOMAIN

Set this environment variable to a space-separated list of up to six search domains with a total of 256
characters (including spaces). This overrides the configured search list (struct state.defdname and struct
state.dnsrch). If a search list is specified, the default local domain is not used on queries.

RES_OPTIONS

The RES_OPTIONS environment variable allows certain internal resolver variables to be modified. The
environment variable can be set to one or more of the following space-separated options:
v NDOTS: n Sets a threshold for the number of dots that must appear in a name given to res_query()

before an initial absolute query is made. The default for n is 1, meaning that if there are any dots in a
name, the name is tried first as an absolute name before any search list elements are appended to it.

v TIMEOUT: n Sets the amount of time (in seconds) that the resolver waits for a response from a remote
name server before giving up and trying the query again.

v ATTEMPTS: n Sets the number of queries that the resolver sends to a given nameServer before giving
up and trying the next listed name server.

v ROTATE: Sets RES_ROTATE in _res.options, which rotates the selection of nameServers from among
those listed. This has the effect of spreading the query load among all listed servers, rather than having
all clients try the first listed server first every time.

v NO-CHECK-NAMES: Sets RES_NOCHECKNAME in _res.options, which disables the modern BIND
checking of incoming host names and mail names for invalid characters such as underscore (_),
non-ASCII, or control characters.

QIBM_BIND_RESOLVER_FLAGS

Set this environment variable to a space separated list of resolver option flags. This overrides the
RES_DEFAULT options (struct state.options) and system configured values (Change TCP/IP Domain -
CHGTCPDMN). The state options structure is initialized normally, using RES_DEFAULT, OPTIONS
environment values and CHGTCPDMN configured values. Then this environment variable is used to
override those defaults. The flags named in this environment variable might be prepended with a '+', '-'
or 'NOT_' to set ('+') or reset ('-','NOT_') the value.

For example, to turn on RES_NOCHECKNAME and turn off RES_ROTATE, use the following command
from a character-based interface:

66 IBM i: Programming Socket programming

ADDENVVAR ENVVAR(QIBM_BIND_RESOLVER_FLAGS) VALUE(’RES_NOCHECKNAME NOT_RES_ROTATE’)

or
ADDENVVAR ENVVAR(QIBM_BIND_RESOLVER_FLAGS) VALUE(’+RES_NOCHECKNAME -RES_ROTATE’)

QIBM_BIND_RESOLVER_SORTLIST

Set this environment variable to a space-separated list of up to ten IP addresses/mask pairs in dotted
decimal format (9.5.9.0/255.255.255.0) to create a sort list (struct state.sort_list).
Related information:
res_init()
res_ninit()
res_query()

Data caching
Data caching of responses to Domain Name System (DNS) queries is done by i5/OS sockets in an effort
to lessen the amount of network traffic. The cache is added to and updated as needed.

If RES_AAONLY (authoritative answers only) is set in _res.options, the query is always sent on the
network. In this case, the cache is never checked for the answer. If RES_AAONLY is not set, the cache is
checked for an answer to the query before any attempt to send it on the network is performed. If the
answer is found and the time to live has not expired, the answer is returned to the user as the answer to
the query. If the time to live has expired, the entry is removed, and the query is sent on the network.
Also, if the answer is not found in the cache, the query is sent on the network.

Answers from the network are cached if the responses are authoritative. Nonauthoritative answers are
not cached. Also, responses received as a result of an inverse query are not cached. You can clear this
cache by updating the DNS configuration with either the Change TCP/IP Domain (CHGTCPDMN)
command, Configure TCP/IP (CFGTCP) command, or through System i Navigator.
Related reference:
“Example: Updating and querying DNS” on page 171
This example shows how to query and update Domain Name System (DNS) records.

Berkeley Software Distribution compatibility
Sockets is a Berkeley Software Distribution (BSD) interface.

The semantics, such as the return codes that an application receives and the arguments available on
supported functions, are BSD semantics. Some BSD semantics, however, are not available in the IBM i
implementation, and changes might need to be made to a typical BSD socket application in order for it to
run on the system.

The following list summarizes the differences between the IBM i implementation and the BSD
implementation.

QUSRSYS file Contents

QATOCHOST List of host names and the corresponding IP addresses.

QATOCPN List of networks and the corresponding IP addresses.

QATOCPP List of protocols that are used in the Internet.

QATOCPS List of services and the specific port and protocol that
the service uses.

/etc/hosts, /etc/services, /etc/networks, and /etc/protocols
For these files, the IBM i implementation supplies the following database files.

Socket programming 67

/etc/resolv.conf
The IBM i implementation requires that this information be configured using the TCP/IP
properties page in System i Navigator. To access the TCP/IP properties page, complete the
following steps:
1. From System i Navigator, expand your system > Network > TCP/IP Configuration.
2. Right-click TCP/IP Configuration.
3. Click Properties.

bind()

On a BSD system, a client can create an AF_UNIX socket using socket(), connect to a server using
connect(), and then bind a name to its socket using bind(). The IBM i implementation does not
support this scenario (the bind() fails).

close()

The IBM i implementation supports the linger timer for the close() API, except for AF_INET
sockets over Systems Network Architecture (SNA). Some BSD implementations do not support
the linger timer for the close() API.

connect()

On a BSD system, if a connect() is issued against a socket that was previously connected to an
address and is using a connectionless transport service, and an invalid address or an invalid
address length is used, the socket is no longer connected. The IBM i implementation does not
support this scenario (the connect() fails and the socket is still connected).

A connectionless transport socket for which a connect() has been issued can be disconnected by
setting the address_length parameter to zero and issuing another connect().

accept(), getsockname(), getpeername(), recvfrom(), and recvmsg()

When using the AF_UNIX or AF_UNIX_CCSID address family and the socket has not been
bound, the default IBM i implementation might return an address length of zero and an
unspecified address structure. The IBM i BSD 4.4/ UNIX 98 and other implementations might
return a small address structure with only the address family specified.

ioctl()

v On a BSD system, on a socket of type SOCK_DGRAM, the FIONREAD request returns the
length of the data plus the length of the address. On the IBM i implementation, FIONREAD
only returns the length of data.

v Not all requests available on most BSD implementations of ioctl() are available on the IBM i
implementation of ioctl().

listen()

On a BSD system, issuing a listen() with the backlog parameter set to a value that is less than
zero does not result in an error. In addition, the BSD implementation, in some cases, does not use
the backlog parameter, or uses an algorithm to come up with a final result for the backlog value.
The IBM i implementation returns an error if the backlog value is less than zero. If you set the
backlog to a valid value, then the value is used as the backlog. However, setting the backlog to a
value larger than {SOMAXCONN}, the backlog defaults to the value set in {SOMAXCONN}.

Out-of-band (OOB) data

In the IBM i implementation, OOB data is not discarded if SO_OOBINLINE is not set, OOB data
has been received, and the user then sets SO_OOBINLINE on. The initial OOB byte is considered
normal data.

protocol parameter of socket()

As a means of providing additional security, no user is allowed to create a SOCK_RAW socket
specifying a protocol of IPPROTO_TCP or IPPROTO_UDP.

68 IBM i: Programming Socket programming

res_xlate() and res_close()

These APIs are included in the resolver routines for the IBM i implementation. The res_xlate()
API translates Domain Name System (DNS) packets from EBCDIC to ASCII and from ASCII to
EBCDIC. The res_close() API is used to close a socket that was used by the res_send() API with
the RES_STAYOPEN option set. The res_close() API also resets the _res structure.

sendmsg() and recvmsg()

The IBM i implementation of sendmsg() and recvmsg() allows {MSG_MAXIOVLEN} I/O vectors.
The BSD implementation allows {MSG_MAXIOVLEN - 1} I/O vectors.

Signals

There are several differences relating to signal support:
v BSD implementations issue a SIGIO signal each time an acknowledgement is received for data

sent on an output operation. The IBM i sockets implementation does not generate signals
related to outbound data.

v The default action for the SIGPIPE signal is to end the process in BSD implementations. To
maintain downward compatibility with previous releases of IBM i, the IBM i implementation
uses a default action of ignoring for the SIGPIPE signal.

SO_REUSEADDR option

On BSD systems, a connect() all on a socket of family AF_INET and type SOCK_DGRAM causes
the system to change the address to which the socket is bound to the address of the interface that
is used to reach the address specified on the connect() API. For example, if you bind a socket of
type SOCK_DGRAM to address INADDR_ANY, and then connect it to an address of a.b.c.d, the
system changes your socket so it is now bound to the IP address of the interface that was chosen
to route packets to address a.b.c.d. In addition, if this IP address that the socket is bound to is
a.b.c.e, for example, address a.b.c.e now appears on the getsockname() API instead of
INADDR_ANY, and the SO_REUSEADDR option must be used to bind any other sockets to the
same port number with an address of a.b.c.e.

In contrast, in this example, the IBM i implementation does not change the local address from
INADDR_ANY to a.b.c.e. The getsockname() API continues to return INADDR_ANY after the
connection is performed.

SO_SNDBUF and SO_RCVBUF options

The values set for SO_SNDBUF and SO_RCVBUF on a BSD system provide a greater level of
control than on an IBM i implementation. On an IBM i implementation, these values are taken as
advisory values.

Related concepts:
“How sockets work” on page 3
Sockets are commonly used for client and server interaction. Typical system configuration places the
server on one machine, with the clients on other machines. The clients connect to the server, exchange
information, and then disconnect.
Related reference:
“Example: Using signals with blocking socket APIs” on page 163
When a process or an application becomes blocked, signals allow you to be notified. They also provide a
time limit for blocking processes.
Related information:
accept()--Wait for Connection Request and Make Connection API
--Send a Message Over a Socket API
connect()--Establish Connection or Destination Address API
recvfrom()--Receive Data API
recvmsg()--Receive a Message Over a Socket API

Socket programming 69

bind()--Set Local Address for Socket API
getsockname()--Retrieve Local Address of Socket API
socket()--Create Socket API
listen()--Invite Incoming Connections Requests API
ioctl()--Perform I/O Control Request API
getpeername()--Retrieve Destination Address of Socket API
close()--Close File or Socket Descriptor API

UNIX 98 compatibility
Created by The Open Group, a consortium of developers and venders, UNIX 98 improved the
inter-operability of the UNIX operating system while incorporating much of the Internet-related function
for which UNIX had become known.

i5/OS sockets provide programmers the ability to write socket applications that are compatible with
UNIX 98 operating environment. Currently, IBM supports two versions of most sockets APIs. The base
i5/OS socket APIs use Berkeley Socket Distribution (BSD) 4.3 structures and syntax. The other uses
syntax and structures compatible with BSD 4.4 and the UNIX 98 programming interface specifications.
You can select the UNIX 98 compatible interface by defining the _XOPEN_SOURCE macro to a value of
520 or greater.

Differences in address structure for UNIX 98 compatible applications

When you specify the _XOPEN_OPEN macro, you can write UNIX 98 compatible applications with the
same address families that are used in default i5/OS implementations; however, there are differences in
the sockaddr address structure. The table compares the BSD 4.3 sockaddr address structure with the
UNIX 98 compatible address structure:

Table 15. Comparison of BSD 4.3 and UNIX 98/BSD 4.4 socket address structure

BSD 4.3 structure BSD 4.4/ UNIX 98 compatible structure

sockaddr address structure

struct sockaddr {
u_short sa_family;
char sa_data[14];
};

struct sockaddr {
uint8_t sa_len;
sa_family_t sa_family
char sa_data[14];
};

sockaddr_in address structure

struct sockaddr_in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

struct sockaddr_in {
uint8_t sin_len;
sa_family_t sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

sockaddr_in6 address structure

struct sockaddr_in6 {
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;

};

struct sockaddr_in6 {
uint8_t sin6_len;
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;

};

sockaddr_un address structure

70 IBM i: Programming Socket programming

Table 15. Comparison of BSD 4.3 and UNIX 98/BSD 4.4 socket address structure (continued)

BSD 4.3 structure BSD 4.4/ UNIX 98 compatible structure

struct sockaddr_un {
short sun_family;
char sun_path[126];

};

struct sockaddr_un {
uint8_t sun_len;
sa_family_t sun_family;
char sun_path[126]

};

API differences

When you develop in ILE-based languages and an application is compiled with the _XOPEN_SOURCE
macro, some sockets APIs are mapped to internal names. These internal names provide the same function
as the original API. The table lists these affected APIs. If you are writing socket applications in some
other C-based language, you can write directly to the internal name of these APIs. Use the link to the
original API to see usage notes and details for both versions of these APIs.

Table 16. API and UNIX 98 equivelant name

API name Internal name

accept() qso_accept98()

accept_and_recv() qso_accept_and_recv98()

bind() qso_bind98()

connect() qso_connect98()

endhostent() qso_endhostent98()

endnetent() qso_endnetent98()

endprotoent() qso_endprotoent98()

endservent() qso_endservent98()

getaddrinfo() qso_getaddrinfo98()

gethostbyaddr() qso_gethostbyaddr98()

gethostbyaddr_r() qso_gethostbyaddr_r98()

gethostname() qso_gethostname98()

gethostname_r() qso_gethostname_r98()

gethostbyname() qso_gethostbyname98()

gethostent() qso_gethostent98()

getnameinfo() qso_getnameinfo98()

getnetbyaddr() qso_getnetbyaddr98()

getnetbyname() qso_getnetbyname98()

getnetent() qso_getnetent98()

getpeername() qso_getpeername98()

getprotobyname() qso_getprotobyname98()

getprotobynumber() qso_getprotobynumber98()

getprotoent() qso_getprotoent98()

getsockname() qso_getsockname98()

getsockopt() qso_getsockopt98()

getservbyname() qso_getservbyname98()

getservbyport() qso_getservbyport98()

Socket programming 71

Table 16. API and UNIX 98 equivelant name (continued)

API name Internal name

getservent() qso_getservent98()

inet_addr() qso_inet_addr98()

inet_lnaof() qso_inet_lnaof98()

inet_makeaddr() qso_inet_makeaddr98()

inet_netof() qso_inet_netof98()

inet_network() qso_inet_network98()

listen() qso_listen98()

Rbind() qso_Rbind98()

recv() qso_recv98()

recvfrom() qso_recvfrom98()

recvmsg() qso_recvmsg98()

send() qso_send98()

sendmsg() qso_sendmsg98()

sendto() qso_sendto98()

sethostent() qso_sethostent98()

setnetent() qso_setnetent98()

setprotoent() qso_setprotoent98()

setservent() qso_setprotoent98()

setsockopt() qso_setsockopt98()

shutdown() qso_shutdown98()

socket() qso_socket98()

socketpair() qso_socketpair98()

Related concepts:
“How sockets work” on page 3
Sockets are commonly used for client and server interaction. Typical system configuration places the
server on one machine, with the clients on other machines. The clients connect to the server, exchange
information, and then disconnect.
Related information:
accept()--Wait for Connection Request and Make Connection API
accept_and_recv()
connect()--Establish Connection or Destination Address API
--Send a Message Over a Socket API
recvfrom()--Receive Data API
recvmsg()--Receive a Message Over a Socket API
Rbind()--Set Remote Address for Socket API
recv()--Receive Data API
bind()--Set Local Address for Socket API
getsockname()--Retrieve Local Address of Socket API
socket()--Create Socket API
socketpair()--Create a Pair of Sockets API
listen()--Invite Incoming Connections Requests API

72 IBM i: Programming Socket programming

ioctl()--Perform I/O Control Request API
getpeername()--Retrieve Destination Address of Socket API
close()--Close File or Socket Descriptor API
endhostent()
endnetent()
endprotoent()
endservent()
gethostbyname()--Get Host Information for Host Name API
getaddrinfo()--Get Address Information API
gethostbyaddr()--Get Host Information for IP Address API
getnameinfo()--Get Name Information for Socket Address API
gethostname()
gethostent()
getnetbyaddr()
getnetbyname()
getnetent()
getprotobyname()
getprotobynumber()
getprotoent()
getsockopt()
getservbyname()
getservbyport()
getservent()
inet_addr()
inet_1naof()
inet_makeaddr()
inet_netof()
inet_network()
send()--Send Data API
sendto()--Send Data API
sethostent()
setnetent()
setprotoent()
setservent()
setsockopt()--Set Socket Options API

Descriptor passing between processes: sendmsg() and recvmsg()
Passing an open descriptor between jobs allows one process (typically a server) to do everything that is
required to obtain the descriptor, such as opening a file, establishing a connection, and waiting for the
accept() API to complete. It also allows another process (typically a worker) to handle all the data transfer
operations as soon as the descriptor is open.

The ability to pass an open descriptor between jobs can lead to a new way of designing client/server
applications. This design results in simpler logic for both the server and the worker jobs. This design also
allows different types of worker jobs to be easily supported. The server can make a simple check to
determine which type of worker should receive the descriptor.

Socket programming 73

Sockets provide three sets of APIs that can pass descriptors between server jobs:
v spawn()

Note: spawn() is not a socket API. It is supplied as part of the i5/OS Process-Related APIs.
v givedescriptor() and takedescriptor()
v sendmsg() and recvmsg()

The spawn() API starts a new server job (often called a "child job") and gives certain descriptors to that
child job. If the child job is already active, then the givedescriptor() and takedescriptor() or the sendmsg()
and recvmsg() APIs need to be used.

However, the sendmsg() and recvmsg() APIs offer many advantages over spawn() and givedescriptor()
and takedescriptor():

Portability
The givedescriptor() and takedescriptor() APIs are nonstandard and unique to the i5/OS
operating system. If the portability of an application between the i5/OS operating system and
UNIX is an issue, you might want to use the sendmsg() and recvmsg() APIs instead.

Communication of control information
Often the worker job needs to know additional information when it receives a descriptor, such as:
v What type of descriptor is it?
v What should the worker job do with it?

The sendmsg() and recvmsg() APIs allow you to transfer data, which might be control
information, along with the descriptor; the givedescriptor() and takedescriptor() APIs do not.

Performance
Applications that use the sendmsg() and recvmsg() APIs tend to perform slightly better than
those that use the givedescriptor() and takedescriptor() APIs in three areas:
v Elapsed time
v CPU utilization
v Scalability

The amount of performance improvement of an application depends on the extent that the
application passes descriptors.

Pool of worker jobs
You might want to set up a pool of worker jobs so that a server can pass a descriptor and only
one of the jobs in the pool becomes active and receives the descriptor. The sendmsg() and
recvmsg() APIs can be used to accomplish this by having all of the worker jobs wait on a shared
descriptor. When the server calls sendmsg(), only one of the worker jobs receives the descriptor.

Unknown worker job ID
The givedescriptor() API requires the server job to know the job identifier of the worker job.
Typically the worker job obtains the job identifier and transfers it over to the server job with a
data queue. The sendmsg() and recvmsg() do not require the extra overhead to create and
manage this data queue.

Adaptive server design
When a server is designed using the givedescriptor() and takedescriptor(), a data queue is
typically used to transfer the job identifiers from worker jobs over to the server. The server then
does a socket(), bind(), listen(), and an accept(). When the accept() API is completed, the server
pulls off the next available job ID from the data queue. It then passes the inbound connection to
that worker job. Problems arise when many incoming connection requests occur at once and there
are not enough worker jobs available. If the data queue that contains the worker job identifiers is
empty, the server blocks waiting for a worker job to become available, or the server creates

74 IBM i: Programming Socket programming

additional worker jobs. In many environments, neither of these alternatives are what you want
because additional incoming requests might fill the listen backlog.

Servers that use sendmsg() and recvmsg() APIs to pass descriptors remain unhindered during
heavy activity because they do not need to know which worker job is going to handle each
incoming connection. When a server calls sendmsg(), the descriptor for the incoming connection
and any control data are put into an internal queue for the AF_UNIX socket. When a worker job
becomes available, it calls recvmsg() and receives the first descriptor and the control data that
was in the queue.

Inactive worker job
The givedescriptor() API requires the worker job to be active while the sendmsg() API does not.
The job that calls sendmsg() does not require any information about the worker job. The
sendmsg() API requires only that an AF_UNIX socket connection has been set up.

An example of how the sendmsg() API can be used to pass a descriptor to a job that does not
exist follows:

A server can use the socketpair() API to create a pair of AF_UNIX sockets, use the sendmsg() API
to send a descriptor over one of the AF_UNIX sockets created by socketpair(), and then call
spawn() to create a child job that inherits the other end of the socket pair. The child job calls
recvmsg() to receive the descriptor that the server passed. The child job was not active when the
server called sendmsg().

Pass more than one descriptor at a time
The givedescriptor() and takedescriptor() APIs allow only one descriptor to be passed at a time.
The sendmsg() and recvmsg() APIs can be used to pass an array of descriptors.

Related reference:
“Example: Passing descriptors between processes” on page 100
These examples demonstrate how to design a server program using the sendmsg() and recvmsg() APIs to
handle incoming connections.
Related information:
socketpair()--Create a Pair of Sockets API

Sockets-related User Exit Points
Sockets-related user exit points give an exit program the ability to prevent a specific sockets API from
completing successfully.

Sockets-related user exit points give an exit program the ability to control connections based on specific
conditions for a job at runtime. This functionality is provided through system-wide user exit points for
sockets APIs accepting incoming connections, connect(), and listen(). The user exit can allow or deny the
operation successful completion based on the criteria set by the registered exit program. The intent is to
allow exit programs runtime determination if a particular operation is allowed to complete based on the
characteristics of the requesting job. These characteristics can include things such as user ID, job type,
time of day, current system usage, and so on.

Exit points defined in the User Registry

User-defined exit programs registered with the exit points defined in the user registry are able to limit
incoming and outgoing connections. The return codes of the user-defined exit programs indicate whether
to allow successful completion to connect(), listen(), accept(), accept_and_recv(), or QsoStartAccept().

Socket programming 75

|

|
|

|
|
|
|
|
|
|

|

|
|
|

Table 17. Sockets-related User Exit Points

User Exit Point Description

QIBM_QSO_ACCEPT Enables a custom exit program to allow or deny
incoming connections based on the restrictions set by the
programs.

QIBM_QSO_CONNECT Enables a custom exit program to allow or deny
outgoing connections based on the restrictions set by the
programs.

QIBM_QSO_LISTEN Enables a custom exit program to allow or deny a socket
the ability to listen for connections based on the
restrictions set by the programs.

Notes:

1. By default, the sockets APIs accepting connections silently ignore rejected connections and
wait for the next incoming connection. To give an application the ability to be informed about
rejected connections, a socket option is provided. The socket option is enabled by setsockopt()
with a level of SOL_SOCKET and option name SO_ACCEPTEPERM. When the socket option
is enabled, sockets APIs accepting connections fail with EPERM for each incoming connection
rejected by the user exit program registered for QIBM_QSO_ACCEPT.

2. Any user trying to add or remove a sockets-related user exit program is required to have
*IOSYSCFG, *ALLOBJ, and *SECADM authority.

3. Not all IBM developed applications call the configured user exit programs for one of the
following reasons:
v The application does not use sockets APIs for network communication.
v The sockets API was called from a system task that is unable to call user exit programs.

Related information:
Sockets accept API Exit Program
Sockets connect() API Exit Program
Sockets listen() API Exit Program

Example: User Exit Program for QIBM_QSO_ACCEPT
An example application to be registered for user exit point QIBM_QSO_ACCEPT. It rejects all incoming
connections to the server listening on port 12345 coming from a particular remote IP address between the
hours of 12 A.M. and 4 A.M.

This system-wide exit program determines if the incoming connection is allowed to be accepted by the
socket API accepting connections or rejected.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* Sample User Exit Program for QIBM_QSO_ACCEPT */
/* */
/* Exit Point Name : QIBM_QSO_ACCEPT */
/* */
/* Description : The following ILE C language program */
/* will reject all incoming connections to */
/* the server listening on port 12345 coming */
/* from the remote IP address of ’192.0.2.1’ or */
/* ’2001:DB8::1’ between the hours of 12 A.M. */
/* and 4 A.M. */
/**/
#include <stdio.h>
#include <string.h>

76 IBM i: Programming Socket programming

||

||

||
|
|

||
|
|

||
|
|
|

|

|
|
|
|
|
|

|
|

|
|

|

|

|

|

|

|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

#include <esoextpt.h> /* Exit program formats */
#include <netinet/in.h>
#include <arpa/inet.h>
int main(int argc, char *argv[])
{

Qso_ACPT0100_Format_t input; /* input format */
struct in_addr addr4;
struct in6_addr addr6;
void *addr, *compareaddr;
char return_code;
int comparelen, port;
/**/
/* Initialize the address to compare 192.0.2.1 and 2001:DB8::1 */
/**/
inet_pton(AF_INET, "192.0.2.1", &addr4);
inet_pton(AF_INET6, "2001:DB8::1", &addr6);

/**/
/* By default allow the connection. */
/**/
return_code = ’0’;

/**/
/* Copy format parameter to local storage. */
/**/
memcpy(&input, (Qso_ACPT0100_Format_t *) argv[1],

sizeof(Qso_ACPT0100_Format_t));

/**/
/* Determine if we have an IPv4 or IPv6 address */
/**/
if(input.Local_Incoming_Address_Length ==

sizeof(struct sockaddr_in))
{

compareaddr = &addr4;
comparelen = sizeof(addr4);
addr = &input.Remote_Address.sinstruct.sin_addr;
port = input.Local_Incoming_Address.sinstruct.sin_port;

}
else
{

compareaddr = &addr6;
comparelen = sizeof(addr6);
addr = &input.Remote_Address.sin6struct.sin6_addr;
port = input.Local_Incoming_Address.sin6struct.sin6_port;

}

/**/
/* If the local port is 12345 and the incoming connection is */
/* from 192.0.2.1 or 2001:DB8::1 */
/**/
if(port == 12345 && (memcmp(addr, compareaddr, comparelen) == 0))
{

/**/
/* And the time is between 12 A.M. and 4 A.M. */
/* Reject the connection. */
/**/
if(IsTimeBetweenMidnightAnd4AM())

return_code = ’1’;
}
*argv[2] = return_code;
return 0;

}

Socket programming 77

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Socket scenario: Creating an application to accept IPv4 and IPv6
clients
This example shows a typical situation in which you might want to use the AF_INET6 address family.

Situation

Suppose that you are a socket programmer who works for an application development company that
specializes in socket applications for the i5/OS. operating system. To keep ahead of its competitors, your
company has decided to develop a suite of applications that use the AF_INET6 address family, which
accept connections from IPv4 and IPv6. You want to create an application that processes requests from
both IPv4 and IPv6 nodes. You know that the i5/OS operating system supports the AF_INET6 address
family sockets, which provides interoperability with AF_INET address family sockets. You also know that
you can accomplish this by using an IPv4-mapped IPv6 address format.

Scenario objectives

This scenario has the following objectives and goals:
1. Create a server application that accepts and processes requests from IPv6 and IPv4 clients
2. Create a client application that requests data from an IPv4 or IPv6 server application

Prerequisite steps

Before developing your application that meets these objectives, complete the following tasks:
1. Install QSYSINC library. This library provides necessary header files that are needed when compiling

socket applications.
2. Install the ILE C licensed program (5761-WDS option 51).
3. Install and configure an Ethernet card. For information about Ethernet options, see the Ethernet topic

in the information center.
4.

Set up TCP/IP and IPv6 network. Refer to the information about configuring TCP/IP and configuring
IPv6.

Scenario details

The following graphic describes the IPv6 network, for which you create applications to handle requests
from IPv6 and IPv4 clients. The i5/OS operating system contains the program that listens and processes
requests from these clients. The network consists of two separate domains, one that contains IPv4 clients
exclusively and the other remote network that contains only IPv6 clients. The domain name of the system
is myserver.myco.com. The server application uses the AF_INET6 address family to process these
incoming requests with the in6addr_any specified on the bind() API call.

78 IBM i: Programming Socket programming

|

Related reference:
“Using AF_INET6 address family” on page 28
AF_INET6 sockets provide support for Internet Protocol version 6 (IPv6) 128 bit (16 byte) address
structures. Programmers can write applications using the AF_INET6 address family to accept client
requests from either IPv4 or IPv6 nodes, or from IPv6 nodes only.
Related information:
Ethernet
Configuring TCP/IP for the first time
Configuring IPv6

Example: Accepting connections from both IPv6 and IPv4 clients
This example program demonstrates how to create a server/client model that accepts requests from both
IPv4 (those socket applications that use the AF_INET address family) and IPv6 (those applications that
use the AF_INET6 address family).

Currently your socket application can only use the AF_INET address family, which allows for TCP and
User Datagram Protocol (UDP) protocol; however, this might change with the increase in the use of IPv6
addresses. You can use this sample program to create your own applications that accommodate both
address families.

This figure shows how this example program works:

Socket programming 79

Socket flow of events: Server application that accepts requests from both IPv4
and IPv6 clients

This flow describes each of the API calls and what they do within the socket application that accepts
requests from both IPv4 and IPv6 clients.
1. The socket() API specifies a socket descriptor that creates an endpoint. It also specifies the AF_INET6

address family, which supports IPv6, and the TCP transport (SOCK_STREAM) is used for this socket.
2. The setsockopt() API allows an application to reuse the local address when the server is restarted

before the required wait time expires.
3. A bind() API supplies a unique name for the socket. In this example, the programmer sets the address

to in6addr_any, which (by default) allows connections to be established from any IPv4 or IPv6 client
that specifies port 3005 (that is, the bind is done to both the IPv4 and IPv6 port spaces).

Note: If the server only needs to handle IPv6 clients, then IPv6_ONLY socket option can be used.
4. The listen() API allows the server to accept incoming client connections. In this example, the

programmer sets the backlog to 10, which allows the system to queue ten connection requests before
the system starts rejecting incoming requests.

5. The server uses the accept() API to accept an incoming connection request. The accept() call blocks
indefinitely, waiting for the incoming connection to arrive from an IPv4 or IPv6 client.

6. The getpeername() API returns the client's address to the application. If the client is an IPv4 client, the
address is shown as an IPv4–mapped IPv6 address.

80 IBM i: Programming Socket programming

7. The recv() API receives 250 bytes of data from the client. In this example, the client sends 250 bytes of
data over. Knowing this, the programmer uses the SO_RCVLOWAT socket option and specifies that
the recv() API to not wake up until all 250 bytes of data have arrived.

8. The send() API echoes the data back to the client.
9. The close() API closes any open socket descriptors.

Socket flow of events: Requests from either IPv4 or IPv6 clients

Note: This client example can be used with other server application designs that want to accept request
for either IPv4 or IPv6 nodes. Other server designs can be used with this client example.

1. The inet_pton() call converts the text form of the address to the binary form. In this example, two of
these calls are issued. The first determines if the server is a valid AF_INET address. The second
inet_pton() call determines whether the server has an AF_INET6 address. If it is numeric,
getaddrinfo() should be prevented from doing any name resolution. Otherwise a host name was
provided that needs to be resolved when the getaddrinfo() call is issued.

2. The getaddrinfo() call retrieves the address information needed for the subsequent socket() and
connect() calls.

3. The socket() API returns a socket descriptor, which represents an endpoint. The statement also
identifies the address family, socket type, and protocol using the information returned from the
getaddrinfo() API call.

4. The connect() API establishes a connection to the server regardless of whether the server is IPv4 or
IPv6.

5. The send() API sends the data request to the server.
6. The recv() API receives data from the server application.
7. The close() API closes any open socket descriptors.

The following sample code shows the server application for this scenario.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* Header files needed for this sample program */
/**/
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

/**/
/* Constants used by this program */
/**/
#define SERVER_PORT 3005
#define BUFFER_LENGTH 250
#define FALSE 0

void main()
{

/***/
/* Variable and structure definitions. */
/***/
int sd=-1, sdconn=-1;
int rc, on=1, rcdsize=BUFFER_LENGTH;
char buffer[BUFFER_LENGTH];
struct sockaddr_in6 serveraddr, clientaddr;
int addrlen=sizeof(clientaddr);
char str[INET6_ADDRSTRLEN];

Socket programming 81

/***/
/* A do/while(FALSE) loop is used to make error cleanup easier. The */
/* close() of each of the socket descriptors is only done once at the */
/* very end of the program. */
/***/
do
{

/**/
/* The socket() function returns a socket descriptor, which represents */
/* an endpoint. Get a socket for address family AF_INET6 to */
/* prepare to accept incoming connections on. */
/**/
if ((sd = socket(AF_INET6, SOCK_STREAM, 0)) < 0)
{

perror("socket() failed");
break;

}

/**/
/* The setsockopt() function is used to allow the local address to */
/* be reused when the server is restarted before the required wait */
/* time expires. */
/**/
if (setsockopt(sd, SOL_SOCKET, SO_REUSEADDR,

(char *)&on,sizeof(on)) < 0)
{

perror("setsockopt(SO_REUSEADDR) failed");
break;

}

/**/
/* After the socket descriptor is created, a bind() function gets a */
/* unique name for the socket. In this example, the user sets the */
/* address to in6addr_any, which (by default) allows connections to */
/* be established from any IPv4 or IPv6 client that specifies port */
/* 3005. (that is, the bind is done to both the IPv4 and IPv6 TCP/IP */
/* stacks). This behavior can be modified using the IPPROTO_IPV6 */
/* level socket option IPV6_V6ONLY if required. */
/**/
memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sin6_family = AF_INET6;
serveraddr.sin6_port = htons(SERVER_PORT);
/**/
/* Note: applications use in6addr_any similarly to the way they use */
/* INADDR_ANY in IPv4. A symbolic constant IN6ADDR_ANY_INIT also */
/* exists but can only be used to initialize an in6_addr structure */
/* at declaration time (not during an assignment). */
/**/
serveraddr.sin6_addr = in6addr_any;
/**/
/* Note: the remaining fields in the sockaddr_in6 are currently not */
/* supported and should be set to 0 to ensure upward compatibility. */
/**/

if (bind(sd,
(struct sockaddr *)&serveraddr,
sizeof(serveraddr)) < 0)

{
perror("bind() failed");
break;

}

/**/
/* The listen() function allows the server to accept incoming */
/* client connections. In this example, the backlog is set to 10. */
/* This means that the system will queue 10 incoming connection */

82 IBM i: Programming Socket programming

/* requests before the system starts rejecting the incoming */
/* requests. */
/**/
if (listen(sd, 10) < 0)
{

perror("listen() failed");
break;

}

printf("Ready for client connect().\n");

/**/
/* The server uses the accept() function to accept an incoming */
/* connection request. The accept() call will block indefinitely */
/* waiting for the incoming connection to arrive from an IPv4 or */
/* IPv6 client. */
/**/
if ((sdconn = accept(sd, NULL, NULL)) < 0)
{

perror("accept() failed");
break;

}
else
{

/***/
/* Display the client address. Note that if the client is */
/* an IPv4 client, the address will be shown as an IPv4 Mapped */
/* IPv6 address. */
/***/
getpeername(sdconn, (struct sockaddr *)&clientaddr, &addrlen);
if(inet_ntop(AF_INET6, &clientaddr.sin6_addr, str, sizeof(str))) {

printf("Client address is %s\n", str);
printf("Client port is %d\n", ntohs(clientaddr.sin6_port));

}
}

/**/
/* In this example we know that the client will send 250 bytes of */
/* data over. Knowing this, we can use the SO_RCVLOWAT socket */
/* option and specify that we don’t want our recv() to wake up */
/* until all 250 bytes of data have arrived. */
/**/
if (setsockopt(sdconn, SOL_SOCKET, SO_RCVLOWAT,

(char *)&rcdsize,sizeof(rcdsize)) < 0)
{

perror("setsockopt(SO_RCVLOWAT) failed");
break;

}

/**/
/* Receive that 250 bytes of data from the client */
/**/
rc = recv(sdconn, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("recv() failed");
break;

}

printf("%d bytes of data were received\n", rc);
if (rc == 0 ||

rc < sizeof(buffer))
{

printf("The client closed the connection before all of the\n");
printf("data was sent\n");
break;

}

Socket programming 83

/**/
/* Echo the data back to the client */
/**/
rc = send(sdconn, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("send() failed");
break;

}

/**/
/* Program complete */
/**/

} while (FALSE);

/***/
/* Close down any open socket descriptors */
/***/
if (sd != -1)

close(sd);
if (sdconn != -1)

close(sdconn);
}

Related reference:
“Examples: Connection-oriented designs” on page 90
You can design a connection-oriented socket server on the system in a number of ways. These example
programs can be used to create your own connection-oriented designs.
“Example: IPv4 or IPv6 client”
This sample program can be used with the server application that accepts requests from either IPv4 or
IPv6 clients.
“Example: Generic client” on page 112
This example contains the code for a common client job. The client job does a socket(), connect(), send(),
recv(), and close() operation.
Related information:
socket()--Create Socket API
setsockopt()--Set Socket Options API
bind()--Set Local Address for Socket API
listen()--Invite Incoming Connections Requests API
accept()--Wait for Connection Request and Make Connection API
getpeername()--Retrieve Destination Address of Socket API
recv()--Receive Data API
send()--Send Data API
close()--Close File or Socket Descriptor API
inet_pton()
getaddrinfo()--Get Address Information API
connect()--Establish Connection or Destination Address API

Example: IPv4 or IPv6 client
This sample program can be used with the server application that accepts requests from either IPv4 or
IPv6 clients.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

84 IBM i: Programming Socket programming

/**/
/* This is an IPv4 or IPv6 client. */
/**/

/**/
/* Header files needed for this sample program */
/**/
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

/**/
/* Constants used by this program */
/**/
#define BUFFER_LENGTH 250
#define FALSE 0
#define SERVER_NAME "ServerHostName"

/* Pass in 1 parameter which is either the */
/* address or host name of the server, or */
/* set the server name in the #define */
/* SERVER_NAME. */
void main(int argc, char *argv[])
{

/***/
/* Variable and structure definitions. */
/***/
int sd=-1, rc, bytesReceived=0;
char buffer[BUFFER_LENGTH];
char server[NETDB_MAX_HOST_NAME_LENGTH];
char servport[] = "3005";
struct in6_addr serveraddr;
struct addrinfo hints, *res=NULL;

/***/
/* A do/while(FALSE) loop is used to make error cleanup easier. The */
/* close() of the socket descriptor is only done once at the very end */
/* of the program along with the free of the list of addresses. */

/***/
do
{

/**/
/* If an argument was passed in, use this as the server, otherwise */
/* use the #define that is located at the top of this program. */
/**/
if (argc > 1)

strcpy(server, argv[1]);
else

strcpy(server, SERVER_NAME);

memset(&hints, 0x00, sizeof(hints));
hints.ai_flags = AI_NUMERICSERV;
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
/**/
/* Check if we were provided the address of the server using */
/* inet_pton() to convert the text form of the address to binary */
/* form. If it is numeric then we want to prevent getaddrinfo() */
/* from doing any name resolution. */
/**/
rc = inet_pton(AF_INET, server, &serveraddr);
if (rc == 1) /* valid IPv4 text address? */
{

Socket programming 85

hints.ai_family = AF_INET;
hints.ai_flags |= AI_NUMERICHOST;

}
else
{

rc = inet_pton(AF_INET6, server, &serveraddr);
if (rc == 1) /* valid IPv6 text address? */
{

hints.ai_family = AF_INET6;
hints.ai_flags |= AI_NUMERICHOST;

}
}
/**/
/* Get the address information for the server using getaddrinfo(). */
/**/
rc = getaddrinfo(server, servport, &hints, &res);
if (rc != 0)
{

printf("Host not found --> %s\n", gai_strerror(rc));
if (rc == EAI_SYSTEM)

perror("getaddrinfo() failed");
break;

}

/**/
/* The socket() function returns a socket descriptor, which represents */
/* an endpoint. The statement also identifies the address family, */
/* socket type, and protocol using the information returned from */
/* getaddrinfo(). */
/**/
sd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (sd < 0)
{

perror("socket() failed");
break;

}
/**/
/* Use the connect() function to establish a connection to the */
/* server. */
/**/
rc = connect(sd, res->ai_addr, res->ai_addrlen);
if (rc < 0)
{

/***/
/* Note: the res is a linked list of addresses found for server. */
/* If the connect() fails to the first one, subsequent addresses */
/* (if any) in the list can be tried if required. */
/***/
perror("connect() failed");
break;

}

/**/
/* Send 250 bytes of a’s to the server */
/**/
memset(buffer, ’a’, sizeof(buffer));
rc = send(sd, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("send() failed");
break;

}

/**/
/* In this example we know that the server is going to respond with */
/* the same 250 bytes that we just sent. Since we know that 250 */

86 IBM i: Programming Socket programming

/* bytes are going to be sent back to us, we can use the */
/* SO_RCVLOWAT socket option and then issue a single recv() and */
/* retrieve all of the data. */
/* */
/* The use of SO_RCVLOWAT is already illustrated in the server */
/* side of this example, so we will do something different here. */
/* The 250 bytes of the data may arrive in separate packets, */
/* therefore we will issue recv() over and over again until all */
/* 250 bytes have arrived. */
/**/
while (bytesReceived < BUFFER_LENGTH)
{

rc = recv(sd, & buffer[bytesReceived],
BUFFER_LENGTH - bytesReceived, 0);

if (rc < 0)
{

perror("recv() failed");
break;

}
else if (rc == 0)
{

printf("The server closed the connection\n");
break;

}

/***/
/* Increment the number of bytes that have been received so far */
/***/
bytesReceived += rc;

}

} while (FALSE);

/***/
/* Close down any open socket descriptors */
/***/
if (sd != -1)

close(sd);
/***/
/* Free any results returned from getaddrinfo */
/***/
if (res != NULL)

freeaddrinfo(res);
}

Related reference:
“Example: Accepting connections from both IPv6 and IPv4 clients” on page 79
This example program demonstrates how to create a server/client model that accepts requests from both
IPv4 (those socket applications that use the AF_INET address family) and IPv6 (those applications that
use the AF_INET6 address family).
“Example: Generic client” on page 112
This example contains the code for a common client job. The client job does a socket(), connect(), send(),
recv(), and close() operation.

Socket application design recommendations
Before working with a socket application, assess the functional requirements, goals, and needs of the
socket application. Also, consider the performance requirements and the system resource impacts of the
application.

The following list of recommendations helps you address some of these issues for your socket application
and points out better ways to use sockets and to design your socket applications:

Socket programming 87

Table 18. Socket design applications

Recommendation Reason Best used in

Use asynchronous I/O Asynchronous I/O used in a
threaded server model is preferable
over the more conventional select()
model.

Socket server applications which
handle numerous concurrent clients.

When using asynchronous I/O,
adjust the number of threads in the
process to an optimum number for
the number of clients to be processed.

If too few threads are defined then
some clients might time out before
being handled. If too many threads
are defined then some system
resource are not used efficiently.
Note: It is better to have too many
threads than too few threads.

Socket applications using
asynchronous I/O.

Design socket application to avoid
the use of the postflag on all start
operations for asynchronous I/O.

Avoids the performance overhead of
transition to a completion port if the
operation has already been satisfied
synchronously.

Socket applications using
asynchronous I/O.

Use send() and recv() over read() and
write().

send() and recv() APIs provide a
small performance and serviceability
improvement over read() and write().

Any socket program that knows it
uses a socket descriptor and not a file
descriptor.

Use the receive low water
(SO_RCVLOWAT) socket option to
avoid looping on a receive operation
until all data has arrived.

Allows your application to wait for a
minimum amount of data to be
received on the socket before
satisfying a blocked receive
operation.

Any socket application that receives
data

Use the MSG_WAITALL flag to avoid
looping on a receive operation until
all data has arrived.

Allows your application to wait for
the entire buffer provided on the
receive operation to be received
before satisfying a blocked receive
operation.

Any socket application that receives
data and knows in advance how
much it expects to arrive.

Use sendmsg() and recvmsg() over
givedescriptor() and takedescriptor().

See “Descriptor passing between
processes: sendmsg() and recvmsg()”
on page 73 for the advantages.

Any socket application passing socket
or file descriptors between processes.

When using select(), try to avoid a
large number of descriptors in the
read, write or exception set.
Note: If you have a large number of
descriptors being used for select()
processing see the asynchronous I/O
recommendation above.

When there are a large number of
descriptors in a read, write or
exception set, considerable redundant
work occurs each time select() is
called. As soon as a select() is
satisfied the actual socket function
must still be done, that is, a read or
write or accept must still be
performed. Asynchronous I/O APIs
combine the notification that
something has occurred on a socket
with the actual I/O operation.

Applications that have a large(> 50)
number of descriptors active for
select().

Save your copy of the read, write and
exception sets before using select() to
avoid rebuilding the sets for every
time you must reissue the select().

This saves the overhead of rebuilding
the read, write, or exception sets
every time you plan to issue the
select().

Any socket application where you are
using select() with a large number of
socket descriptors enabled for read,
write or exception processing.

88 IBM i: Programming Socket programming

Table 18. Socket design applications (continued)

Recommendation Reason Best used in

Do not use select() as a timer. Use
sleep() instead.
Note: If granularity of the sleep()
timer is not adequate, you might
need to use select() as a timer. In this
case, set maximum descriptor to 0
and the read, write, and exception set
to NULL.

Better timer response and less system
overhead.

Any socket application where you are
using select() just as a timer.

If your socket application has
increased the maximum number of
file and socket descriptors allowed
per process using DosSetRelMaxFH()
and you are using select() in this
same application, be careful of the
affect this new maximum value has
on the size of the read, write and
exception sets used for select()
processing.

If you allocate a descriptor outside
the range of the read, write or
exception set, as specified by
FD_SETSIZE, then you can overwrite
and destroy storage. Ensure your set
sizes are at least large enough to
handle whatever the maximum
number of descriptors are set for the
process and the maximum descriptor
value specified on the select() API.

Any application or process where
you use DosSetRelMaxFH() and
select().

Set all socket descriptors in the read
or write sets to nonblocking. When a
descriptor becomes enabled for read
or write, loop and consume or send
all of the data until EWOULDBLOCK
is returned.

This allows you to minimize the
number of select() calls when data is
still available to be processed or read
on a descriptor.

Any socket application where you are
using select().

Only specify the sets that you need
to use for select() processing.

Most applications do not need to
specify the exception set or write set.

Any socket application where you are
using select().

Use GSKit APIs instead of SSL_APIs. Both the Global Secure Toolkit
(GSKit) and i5/OS SSL_ APIs allow
you to develop secure AF_INET or
AF_INET6, SOCK_STREAM socket
applications. Because the GSKit APIs
are supported across IBM systems,
they are the preferred APIs to secure
an application. The SSL_ APIs exist
only in the i5/OS operating system.

Any socket application that needs to
be enabled for SSL or TLS processing.

Avoid using signals. The performance overhead of signals
(on all platforms, not just the System
i platform) is expensive. It is better to
design your socket application to use
Asynchronous I/O or select() APIs.

Any socket application that uses
signals.

Use protocol independent routines
when available, such as inet_ntop(),
inet_pton(), getaddrinfo(), and
getnameinfo().

Even if you are not yet ready to
support IPv6, use these APIs, (instead
of inet_ntoa(), inet_addr(),
gethostbyname() and
gethostbyaddr()) to prepare you for
easier migration.

Any AF_INET or AF_INET6
application that uses network
routines.

Use sockaddr_storage to declare
storage for any address family
address.

Simplifies writing code portable
across multiple address families and
platforms. Declares enough storage to
hold the largest address family and
ensures the correct boundary
alignment.

Any socket application that stores
addresses.

Related concepts:

Socket programming 89

“Asynchronous I/O” on page 43
Asynchronous I/O APIs provide a method for threaded client/server models to perform highly
concurrent and memory-efficient I/O.
Related reference:
“Example: Using asynchronous I/O” on page 115
An application creates an I/O completion port using the QsoCreateIOCompletionPort() API. This API
returns a handle that can be used to schedule and wait for completion of asynchronous I/O requests.
“Example: Nonblocking I/O and select()” on page 151
This sample program illustrates a server application that uses nonblocking and the select() API.
“Example: Passing descriptors between processes” on page 100
These examples demonstrate how to design a server program using the sendmsg() and recvmsg() APIs to
handle incoming connections.
Related information:
DosSetRelMaxFH()

Examples: Socket application designs
These example programs illustrate the more advanced socket concepts. You can use these example
programs to create your own applications that complete a similar task.

With these examples, there are graphics and a listing of calls that illustrate the flow of events in each of
these applications. You can use the Xsockets tool interactively, try some of these APIs in these programs,
or you can make specific changes for your particular environment.

Examples: Connection-oriented designs
You can design a connection-oriented socket server on the system in a number of ways. These example
programs can be used to create your own connection-oriented designs.

While additional socket server designs are possible, the designs provided in these examples are the most
common.

Iterative server

In the iterative server example, a single server job handles all incoming connections and all data flows
with the client jobs. When the accept() API is completed, the server handles the entire transaction. This is
the easiest server to develop, but it does have a few problems. While the server is handling the request
from a given client, additional clients can be trying to get to the server. These requests fill the listen()
backlog and some of the them are rejected eventually.

Concurrent server

In the concurrent server designs, the system uses multiple jobs and threads to handle the incoming
connection requests. With a concurrent server there are typically multiple clients that connect to the
server at the same time.

For multiple concurrent clients in a network, it is recommended that you use the asynchronous I/O
socket APIs. These APIs provide the best performance in networks that have multiple concurrent clients.
v spawn() server and spawn() worker

The spawn() API is used to create a new job to handle each incoming request. After spawn() is
completed, the server can wait on the accept() API for the next incoming connection to be received.
The only problem with this server design is the performance overhead of creating a new job each time
a connection is received. You can avoid the performance overhead of the spawn() server example by

90 IBM i: Programming Socket programming

using prestarted jobs. Instead of creating a new job each time a connection is received, the incoming
connection is given to a job that is already active. All of the remaining examples in this topic use
prestarted jobs.

v sendmsg() server and recvmsg() worker
The sendmsg() and recvmsg() APIs are used to handle incoming connections. The server prestarts all of
the worker jobs when the server job first starts.

v Multiple accept() servers and multiple accept() workers
For the previous APIs, the worker job does not get involved until after the server receives the incoming
connection request. When the multiple accept() APIs are used, each of the worker jobs can be turned
into an iterative server. The server job still calls the socket(), bind(), and listen() APIs. When the listen()
call is completed, the server creates each of the worker jobs and gives a listening socket to each one of
them. All of the worker jobs then call the accept() API. When a client tries to connect to the server, only
one accept() call is completed, and that worker handles the connection.

Related concepts:
“Asynchronous I/O” on page 43
Asynchronous I/O APIs provide a method for threaded client/server models to perform highly
concurrent and memory-efficient I/O.
Related reference:
“Example: Accepting connections from both IPv6 and IPv4 clients” on page 79
This example program demonstrates how to create a server/client model that accepts requests from both
IPv4 (those socket applications that use the AF_INET address family) and IPv6 (those applications that
use the AF_INET6 address family).
“Example: Using asynchronous I/O” on page 115
An application creates an I/O completion port using the QsoCreateIOCompletionPort() API. This API
returns a handle that can be used to schedule and wait for completion of asynchronous I/O requests.
“Example: Generic client” on page 112
This example contains the code for a common client job. The client job does a socket(), connect(), send(),
recv(), and close() operation.
Related information:
accept()--Wait for Connection Request and Make Connection API
spawn()

Example: Writing an iterative server program
This example illustrates how to create a single server job that handles all incoming connections. When the
accept() API is completed, the server handles the entire transaction.

The figure illustrates how the server and client jobs interact when the system uses the iterative server
design.

Socket programming 91

Flow of socket events: Iterative server

The following sequence of the socket calls provides a description of the graphic. It also describes the
relationship between the server and worker applications. Each set of flows contains links to usage notes
on specific APIs. If you need more details on the use of a particular API, you can use these links. The
following sequence shows the API calls for the iterative server application:
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the INET (Internet Protocol) address family with the TCP transport (SOCK_STREAM) is
used for this socket.

2. After the socket descriptor is created, the bind() API gets a unique name for the socket.
3. The listen() allows the server to accept incoming client connections.
4. The server uses the accept() API to accept an incoming connection request. The accept() call blocks

indefinitely, waiting for the incoming connection to arrive.
5. The recv() API receives data from the client application.
6. The send() API echoes the data back to the client.
7. The close() API closes any open socket descriptors.

92 IBM i: Programming Socket programming

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* Application creates an iterative server design */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_PORT 12345

main (int argc, char *argv[])
{

int i, len, num, rc, on = 1;
int listen_sd, accept_sd;
char buffer[80];
struct sockaddr_in6 addr;

/***/
/* If an argument was specified, use it to */
/* control the number of incoming connections */
/***/
if (argc >= 2)

num = atoi(argv[1]);
else

num = 1;

/***/
/* Create an AF_INET6 stream socket to receive */
/* incoming connections on */
/***/
listen_sd = socket(AF_INET6, SOCK_STREAM, 0);
if (listen_sd < 0)
{

perror("socket() failed");
exit(-1);

}

/***/
/* Allow socket descriptor to be reuseable */
/***/
rc = setsockopt(listen_sd,

SOL_SOCKET, SO_REUSEADDR,
(char *)&on, sizeof(on));

if (rc < 0)
{

perror("setsockopt() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Bind the socket */
/***/
memset(&addr, 0, sizeof(addr));
addr.sin6_family = AF_INET6;
memcpy(&addr.sin6_addr, &in6addr_any, sizeof(in6addr_any));
addr.sin6_port = htons(SERVER_PORT);
rc = bind(listen_sd,

(struct sockaddr *)&addr, sizeof(addr));
if (rc < 0)
{

perror("bind() failed");
close(listen_sd);
exit(-1);

Socket programming 93

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}

/***/
/* Set the listen back log */
/***/
rc = listen(listen_sd, 5);
if (rc < 0)
{

perror("listen() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Inform the user that the server is ready */
/***/
printf("The server is ready\n");

/***/
/* Go through the loop once for each connection */
/***/
for (i=0; i < num; i++)
{

/**/
/* Wait for an incoming connection */
/**/
printf("Interation: %d\n", i+1);
printf(" waiting on accept()\n");
accept_sd = accept(listen_sd, NULL, NULL);
if (accept_sd < 0)
{

perror("accept() failed");
close(listen_sd);
exit(-1);

}
printf(" accept completed successfully\n");

/**/
/* Receive a message from the client */
/**/
printf(" wait for client to send us a message\n");
rc = recv(accept_sd, buffer, sizeof(buffer), 0);
if (rc <= 0)
{

perror("recv() failed");
close(listen_sd);
close(accept_sd);
exit(-1);

}
printf(" <%s>\n", buffer);

/**/
/* Echo the data back to the client */
/**/
printf(" echo it back\n");
len = rc;
rc = send(accept_sd, buffer, len, 0);
if (rc <= 0)
{

perror("send() failed");
close(listen_sd);
close(accept_sd);
exit(-1);

}

/**/
/* Close down the incoming connection */

94 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/**/
close(accept_sd);

}

/***/
/* Close down the listen socket */
/***/
close(listen_sd);

}

Related reference:
“Example: Generic client” on page 112
This example contains the code for a common client job. The client job does a socket(), connect(), send(),
recv(), and close() operation.
Related information:
recv()--Receive Data API
bind()--Set Local Address for Socket API
socket()--Create Socket API
listen()--Invite Incoming Connections Requests API
accept()--Wait for Connection Request and Make Connection API
send()--Send Data API
close()--Close File or Socket Descriptor API

Example: Using the spawn() API to create child processes
This example shows how a server program can use the spawn() API to create a child process that inherits
the socket descriptor from the parent.

The server job waits for an incoming connection, and then calls the spawn() API to create children jobs to
handle the incoming connection. The child process inherits the following attributes with the spawn() API:
v The socket and file descriptors.
v The signal mask.
v The signal action vector.
v The environment variables.

The following figure illustrates how the server, worker, and client jobs interact when the spawn() server
design is used.

Socket programming 95

|
|
|
|
|
|
|
|
|

Flow of socket events: Server that uses spawn() to accept and process requests

The following sequence of the socket calls provides a description of the graphic. It also describes the
relationship between the server and worker examples. Each set of flows contains links to usage notes on
specific APIs. If you need more details about the use of a particular API, you can use these links. The first
example uses the following socket calls to create a child process with the spawn() API call:
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the INET (Internet Protocol) address family with the TCP transport (SOCK_STREAM) is
used for this socket.

2. After the socket descriptor is created, the bind() API gets a unique name for the socket.
3. The listen() allows the server to accept incoming client connections.
4. The server uses the accept() API to accept an incoming connection request. The accept() call blocks

indefinitely, waiting for the incoming connection to arrive.
5. The spawn() API initializes the parameters for a work job to handle incoming requests. In this

example, the socket descriptor for the new connection is mapped over to descriptor 0 in the child
program.

6. In this example, the first close() API closes the listening socket descriptor. The second close() call ends
the accepted socket.

96 IBM i: Programming Socket programming

Socket flow of events: Worker job created by spawn()

The second example uses the following sequence of API calls:
1. After the spawn() API is called on the server, the recv() API receives the data from the incoming

connection.
2. The send() API echoes data back to the client.
3. The close() API ends the spawned worker job.
Related reference:
“Example: Generic client” on page 112
This example contains the code for a common client job. The client job does a socket(), connect(), send(),
recv(), and close() operation.
Related information:
spawn()
bind()--Set Local Address for Socket API
socket()--Create Socket API
listen()--Invite Incoming Connections Requests API
accept()--Wait for Connection Request and Make Connection API
close()--Close File or Socket Descriptor API
send()--Send Data API
recv()--Receive Data API

Example: Creating a server that uses spawn():

This example shows how to use the spawn() API to create a child process that inherits the socket
descriptor from the parent.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* Application creates an child process using spawn(). */
/**/

#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <spawn.h>

#define SERVER_PORT 12345

main (int argc, char *argv[])
{

int i, num, pid, rc, on = 1;
int listen_sd, accept_sd;
int spawn_fdmap[1];
char *spawn_argv[1];
char *spawn_envp[1];
struct inheritance inherit;
struct sockaddr_in6 addr;

/***/
/* If an argument was specified, use it to */
/* control the number of incoming connections */
/***/
if (argc >= 2)

num = atoi(argv[1]);
else

Socket programming 97

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

num = 1;

/***/
/* Create an AF_INET6 stream socket to receive */
/* incoming connections on */
/***/
listen_sd = socket(AF_INET6, SOCK_STREAM, 0);
if (listen_sd < 0)
{

perror("socket() failed");
exit(-1);

}

/***/
/* Allow socket descriptor to be reuseable */
/***/
rc = setsockopt(listen_sd,

SOL_SOCKET, SO_REUSEADDR,
(char *)&on, sizeof(on));

if (rc < 0)
{

perror("setsockopt() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Bind the socket */
/***/
memset(&addr, 0, sizeof(addr));
addr.sin6_family = AF_INET6;
addr.sin6_port = htons(SERVER_PORT);
memcpy(&addr.sin6_addr, &in6addr_any, sizeof(in6addr_any));
rc = bind(listen_sd,

(struct sockaddr *)&addr, sizeof(addr));
if (rc < 0)
{

perror("bind() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Set the listen back log */
/***/
rc = listen(listen_sd, 5);
if (rc < 0)
{

perror("listen() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Inform the user that the server is ready */
/***/
printf("The server is ready\n");

/***/
/* Go through the loop once for each connection */
/***/
for (i=0; i < num; i++)
{

/**/
/* Wait for an incoming connection */
/**/
printf("Interation: %d\n", i+1);

98 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf(" waiting on accept()\n");
accept_sd = accept(listen_sd, NULL, NULL);
if (accept_sd < 0)
{

perror("accept() failed");
close(listen_sd);
exit(-1);

}
printf(" accept completed successfully\n");

/**/
/* Initialize the spawn parameters */
/* */
/* The socket descriptor for the new */
/* connection is mapped over to descriptor 0 */
/* in the child program. */
/**/
memset(&inherit, 0, sizeof(inherit));
spawn_argv[0] = NULL;
spawn_envp[0] = NULL;
spawn_fdmap[0] = accept_sd;

/**/
/* Create the worker job */
/**/
printf(" creating worker job\n");
pid = spawn("/QSYS.LIB/QGPL.LIB/WRKR1.PGM",

1, spawn_fdmap, &inherit,
spawn_argv, spawn_envp);

if (pid < 0)
{

perror("spawn() failed");
close(listen_sd);
close(accept_sd);
exit(-1);

}
printf(" spawn completed successfully\n");

/**/
/* Close down the incoming connection since */
/* it has been given to a worker to handle */
/**/
close(accept_sd);

}

/***/
/* Close down the listen socket */
/***/
close(listen_sd);

}

Related reference:
“Example: Enabling the worker job to receive a data buffer”
This example contains the code that enables the worker job to receive a data buffer from the client job
and echo it back.

Example: Enabling the worker job to receive a data buffer:

This example contains the code that enables the worker job to receive a data buffer from the client job
and echo it back.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

Socket programming 99

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/**/
/* Worker job that receives and echoes back a data buffer to a client */
/**/

#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>

main (int argc, char *argv[])
{

int rc, len;
int sockfd;
char buffer[80];

/***/
/* The descriptor for the incoming connection is */
/* passed to this worker job as a descriptor 0. */
/***/
sockfd = 0;

/***/
/* Receive a message from the client */
/***/
printf("Wait for client to send us a message\n");
rc = recv(sockfd, buffer, sizeof(buffer), 0);
if (rc <= 0)
{

perror("recv() failed");
close(sockfd);
exit(-1);

}
printf("<%s>\n", buffer);

/***/
/* Echo the data back to the client */
/***/
printf("Echo it back\n");
len = rc;
rc = send(sockfd, buffer, len, 0);
if (rc <= 0)
{

perror("send() failed");
close(sockfd);
exit(-1);

}

/***/
/* Close down the incoming connection */
/***/
close(sockfd);

}

Related reference:
“Example: Creating a server that uses spawn()” on page 97
This example shows how to use the spawn() API to create a child process that inherits the socket
descriptor from the parent.

Example: Passing descriptors between processes
These examples demonstrate how to design a server program using the sendmsg() and recvmsg() APIs to
handle incoming connections.

When the server starts, it creates a pool of worker jobs. These preallocated (spawned) worker jobs wait
until needed. When the client job connects to the server, the server gives the incoming connection to one
of the worker jobs.

100 IBM i: Programming Socket programming

The following figure illustrates how the server, worker, and client jobs interact when the system uses the
sendmsg() and recvmsg() server design.

Flow of socket events: Server that uses sendmsg() and recvmsg() APIs

The following sequence of the socket calls provides a description of the graphic. It also describes the
relationship between the server and worker examples. The first example uses the following socket calls to
create a child process with the sendmsg() and recvmsg() API calls:
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the INET (Internet Protocol) address family with the TCP transport (SOCK_STREAM) is
used for this socket.

2. After the socket descriptor is created, the bind() API gets a unique name for the socket.
3. The listen() allows the server to accept incoming client connections.
4. The socketpair() API creates a pair of UNIX datagram sockets. A server can use the socketpair() API to

create a pair of AF_UNIX sockets.

Socket programming 101

5. The spawn() API initializes the parameters for a work job to handle incoming requests. In this
example, the child job created inherits the socket descriptor that was created by the socketpair().

6. The server uses the accept() API to accept an incoming connection request. The accept() call blocks
indefinitely, waiting for the incoming connection to arrive.

7. The sendmsg() API sends an incoming connection to one of the worker jobs. The child process accepts
the connection with therecvmsg() API. The child job is not active when the server called sendmsg().

8. In this example, the first close() API closes the accepted socket. The second close() call ends the
listening socket.

Socket flow of events: Worker job that uses recvmsg()

The second example uses the following sequence of API calls:
1. After the server has accepted a connection and passed its socket descriptor to the worker job, the

recvmsg() API receives the descriptor. In this example, the recvmsg() API waits until the server sends
the descriptor.

2. The recv() API receives a message from the client.
3. The send() API echoes data back to the client.
4. The close() API ends the worker job.
Related reference:
“Descriptor passing between processes: sendmsg() and recvmsg()” on page 73
Passing an open descriptor between jobs allows one process (typically a server) to do everything that is
required to obtain the descriptor, such as opening a file, establishing a connection, and waiting for the
accept() API to complete. It also allows another process (typically a worker) to handle all the data transfer
operations as soon as the descriptor is open.
“Socket application design recommendations” on page 87
Before working with a socket application, assess the functional requirements, goals, and needs of the
socket application. Also, consider the performance requirements and the system resource impacts of the
application.
“Example: Generic client” on page 112
This example contains the code for a common client job. The client job does a socket(), connect(), send(),
recv(), and close() operation.
Related information:
spawn()
bind()--Set Local Address for Socket API
socket()--Create Socket API
listen()--Invite Incoming Connections Requests API
accept()--Wait for Connection Request and Make Connection API
close()--Close File or Socket Descriptor API
socketpair()--Create a Pair of Sockets API
--Send a Message Over a Socket API
recvmsg()--Receive a Message Over a Socket API
send()--Send Data API
recv()--Receive Data API

Example: Server program used for sendmsg() and recvmsg():

This example shows how to use the sendmsg() API to create a pool of worker jobs.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

102 IBM i: Programming Socket programming

/**/
/* Server example that uses sendmsg() to create worker jobs */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <spawn.h>

#define SERVER_PORT 12345

main (int argc, char *argv[])
{

int i, num, pid, rc, on = 1;
int listen_sd, accept_sd;
int server_sd, worker_sd, pair_sd[2];
int spawn_fdmap[1];
char *spawn_argv[1];
char *spawn_envp[1];
struct inheritance inherit;
struct msghdr msg;
struct sockaddr_in6 addr;

/***/
/* If an argument was specified, use it to */
/* control the number of incoming connections */
/***/
if (argc >= 2)

num = atoi(argv[1]);
else

num = 1;

/***/
/* Create an AF_INET6 stream socket to receive */
/* incoming connections on */
/***/
listen_sd = socket(AF_INET6, SOCK_STREAM, 0);
if (listen_sd < 0)
{

perror("socket() failed");
exit(-1);

}

/***/
/* Allow socket descriptor to be reuseable */
/***/
rc = setsockopt(listen_sd,

SOL_SOCKET, SO_REUSEADDR,
(char *)&on, sizeof(on));

if (rc < 0)
{

perror("setsockopt() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Bind the socket */
/***/
memset(&addr, 0, sizeof(addr));
addr.sin6_family = AF_INET6;
memcpy(&addr.sin6_addr, &in6addr_any, sizeof(in6addr_any));
addr.sin6_port = htons(SERVER_PORT);
rc = bind(listen_sd,

(struct sockaddr *)&addr, sizeof(addr));
if (rc < 0)
{

Socket programming 103

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

perror("bind() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Set the listen back log */
/***/
rc = listen(listen_sd, 5);
if (rc < 0)
{

perror("listen() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Create a pair of UNIX datagram sockets */
/***/
rc = socketpair(AF_UNIX, SOCK_DGRAM, 0, pair_sd);
if (rc != 0)
{

perror("socketpair() failed");
close(listen_sd);
exit(-1);

}
server_sd = pair_sd[0];
worker_sd = pair_sd[1];

/***/
/* Initialize parms before entering for loop */
/* */
/* The worker socket descriptor is mapped to */
/* descriptor 0 in the child program. */
/***/
memset(&inherit, 0, sizeof(inherit));
spawn_argv[0] = NULL;
spawn_envp[0] = NULL;
spawn_fdmap[0] = worker_sd;

/***/
/* Create each of the worker jobs */
/***/
printf("Creating worker jobs...\n");
for (i=0; i < num; i++)
{

pid = spawn("/QSYS.LIB/QGPL.LIB/WRKR2.PGM",
1, spawn_fdmap, &inherit,
spawn_argv, spawn_envp);

if (pid < 0)
{

perror("spawn() failed");
close(listen_sd);
close(server_sd);
close(worker_sd);
exit(-1);

}
printf(" Worker = %d\n", pid);

}

/***/
/* Close down the worker side of the socketpair */
/***/
close(worker_sd);

/***/
/* Inform the user that the server is ready */

104 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/***/
printf("The server is ready\n");

/***/
/* Go through the loop once for each connection */
/***/
for (i=0; i < num; i++)
{

/**/
/* Wait for an incoming connection */
/**/
printf("Interation: %d\n", i+1);
printf(" waiting on accept()\n");
accept_sd = accept(listen_sd, NULL, NULL);
if (accept_sd < 0)
{

perror("accept() failed");
close(listen_sd);
close(server_sd);
exit(-1);

}
printf(" accept completed successfully\n");

/**/
/* Initialize message header structure */
/**/
memset(&msg, 0, sizeof(msg));

/**/
/* We are not sending any data so we do not */
/* need to set either of the msg_iov fields. */
/* The memset of the message header structure */
/* will set the msg_iov pointer to NULL and */
/* it will set the msg_iovcnt field to 0. */
/**/

/**/
/* The only fields in the message header */
/* structure that need to be filled in are */
/* the msg_accrights fields. */
/**/
msg.msg_accrights = (char *)&accept_sd;
msg.msg_accrightslen = sizeof(accept_sd);

/**/
/* Give the incoming connection to one of the */
/* worker jobs. */
/* */
/* NOTE: We do not know which worker job will */
/* get this inbound connection. */
/**/
rc = sendmsg(server_sd, &msg, 0);
if (rc < 0)
{

perror("sendmsg() failed");
close(listen_sd);
close(accept_sd);
close(server_sd);
exit(-1);

}
printf(" sendmsg completed successfully\n");

/**/
/* Close down the incoming connection since */
/* it has been given to a worker to handle */
/**/
close(accept_sd);

Socket programming 105

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}

/***/
/* Close down the server and listen sockets */
/***/
close(server_sd);
close(listen_sd);

}

Related reference:
“Example: Generic client” on page 112
This example contains the code for a common client job. The client job does a socket(), connect(), send(),
recv(), and close() operation.

Example: Worker program used for sendmsg() and recvmsg():

This example shows how to use the recvmsg() API client job to receive the worker jobs.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* Worker job that uses the recvmsg to process client requests */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>

main (int argc, char *argv[])
{

int rc, len;
int worker_sd, pass_sd;
char buffer[80];
struct iovec iov[1];
struct msghdr msg;

/***/
/* One of the socket descriptors that was */
/* returned by socketpair(), is passed to this */
/* worker job as descriptor 0. */
/***/
worker_sd = 0;

/***/
/* Initialize message header structure */
/***/
memset(&msg, 0, sizeof(msg));
memset(iov, 0, sizeof(iov));

/***/
/* The recvmsg() call will NOT block unless a */
/* non-zero length data buffer is specified */
/***/
iov[0].iov_base = buffer;
iov[0].iov_len = sizeof(buffer);
msg.msg_iov = iov;
msg.msg_iovlen = 1;

/***/
/* Fill in the msg_accrights fields so that we */
/* can receive the descriptor */
/***/
msg.msg_accrights = (char *)&pass_sd;
msg.msg_accrightslen = sizeof(pass_sd);

/***/

106 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|

/* Wait for the descriptor to arrive */
/***/
printf("Waiting on recvmsg\n");
rc = recvmsg(worker_sd, &msg, 0);
if (rc < 0)
{

perror("recvmsg() failed");
close(worker_sd);
exit(-1);

}
else if (msg.msg_accrightslen <= 0)
{

printf("Descriptor was not received\n");
close(worker_sd);
exit(-1);

}
else
{

printf("Received descriptor = %d\n", pass_sd);
}

/***/
/* Receive a message from the client */
/***/
printf("Wait for client to send us a message\n");
rc = recv(pass_sd, buffer, sizeof(buffer), 0);
if (rc <= 0)
{

perror("recv() failed");
close(worker_sd);
close(pass_sd);
exit(-1);

}
printf("<%s>\n", buffer);

/***/
/* Echo the data back to the client */
/***/
printf("Echo it back\n");
len = rc;
rc = send(pass_sd, buffer, len, 0);
if (rc <= 0)
{

perror("send() failed");
close(worker_sd);
close(pass_sd);
exit(-1);

}

/***/
/* Close down the descriptors */
/***/
close(worker_sd);
close(pass_sd);

}

Examples: Using multiple accept() APIs to handle incoming requests
These examples show how to design a server program that uses the multiple accept() model for handling
incoming connection requests.

When the multiple accept() server starts up, it does a socket(), bind(), and listen() as normal. It then
creates a pool of worker jobs and gives each worker job the listening socket. Each multiple accept()
worker then calls accept().

Socket programming 107

The following figure illustrates how the server, worker, and client jobs interact when the system uses the
multiple accept() server design.

Flow of socket events: Server that creates a pool of multiple accept() worker jobs

The following sequence of the socket calls provides a description of the figure. It also describes the
relationship between the server and worker examples. Each set of flows contains links to usage notes on
specific APIs. If you need more details about the use of a particular API, you can use these links. The first
example uses the following socket calls to create a child process:
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the INET (Internet Protocol) address family with the TCP transport (SOCK_STREAM) is
used for this socket.

2. After the socket descriptor is created, the bind() API gets a unique name for the socket.
3. The listen() API allows the server to accept incoming client connections.
4. The spawn() API creates each of the worker jobs.
5. In this example, the first close() API closes the listening socket.

108 IBM i: Programming Socket programming

Socket flow of events: Worker job that multiple accept()

The second example uses the following sequence of API calls:
1. After the server has spawned the worker jobs, the listen socket descriptor is passed to this worker job

as a command line parameter. The accept() API waits for an incoming client connection.
2. The recv() API receives a message from the client.
3. The send() API echoes data back to the client.
4. The close() API ends the worker job.
Related reference:
“Example: Generic client” on page 112
This example contains the code for a common client job. The client job does a socket(), connect(), send(),
recv(), and close() operation.
Related information:
spawn()
bind()--Set Local Address for Socket API
socket()--Create Socket API
listen()--Invite Incoming Connections Requests API
close()--Close File or Socket Descriptor API
accept()--Wait for Connection Request and Make Connection API
send()--Send Data API
recv()--Receive Data API

Example: Server program to create a pool of multiple accept() worker jobs:

This example shows how to use the multiple accept() model to create a pool of worker jobs.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/***/
/* Server example creates a pool of worker jobs with multiple accept() calls */
/***/

#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <spawn.h>

#define SERVER_PORT 12345

main (int argc, char *argv[])
{

int i, num, pid, rc, on = 1;
int listen_sd, accept_sd;
int spawn_fdmap[1];
char *spawn_argv[1];
char *spawn_envp[1];
struct inheritance inherit;
struct sockaddr_in6 addr;

/***/
/* If an argument was specified, use it to */
/* control the number of incoming connections */
/***/
if (argc >= 2)

num = atoi(argv[1]);
else

Socket programming 109

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

num = 1;

/***/
/* Create an AF_INET6 stream socket to receive */
/* incoming connections on */
/***/
listen_sd = socket(AF_INET6, SOCK_STREAM, 0);
if (listen_sd < 0)
{

perror("socket() failed");
exit(-1);

}

/***/
/* Allow socket descriptor to be reuseable */
/***/
rc = setsockopt(listen_sd,

SOL_SOCKET, SO_REUSEADDR,
(char *)&on, sizeof(on));

if (rc < 0)
{

perror("setsockopt() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Bind the socket */
/***/
memset(&addr, 0, sizeof(addr));
addr.sin6_family = AF_INET6;
memcpy(&addr.sin6_addr, &in6addr_any, sizeof(in6addr_any));
addr.sin6_port = htons(SERVER_PORT);
rc = bind(listen_sd,

(struct sockaddr *)&addr, sizeof(addr));
if (rc < 0)
{

perror("bind() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Set the listen back log */
/***/
rc = listen(listen_sd, 5);
if (rc < 0)
{

perror("listen() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Initialize parameters before entering for loop */
/* */
/* The listen socket descriptor is mapped to */
/* descriptor 0 in the child program. */
/***/
memset(&inherit, 0, sizeof(inherit));
spawn_argv[0] = NULL;
spawn_envp[0] = NULL;
spawn_fdmap[0] = listen_sd;

/***/
/* Create each of the worker jobs */
/***/

110 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("Creating worker jobs...\n");
for (i=0; i < num; i++)
{

pid = spawn("/QSYS.LIB/QGPL.LIB/WRKR3.PGM",
1, spawn_fdmap, &inherit,
spawn_argv, spawn_envp);

if (pid < 0)
{

perror("spawn() failed");
close(listen_sd);
exit(-1);

}
printf(" Worker = %d\n", pid);

}

/***/
/* Inform the user that the server is ready */
/***/
printf("The server is ready\n");

/***/
/* Close down the listening socket */
/***/
close(listen_sd);

}

Related reference:
“Example: Generic client” on page 112
This example contains the code for a common client job. The client job does a socket(), connect(), send(),
recv(), and close() operation.

Example: Worker jobs for multiple accept():

This example shows how multiple accept() APIs receive the worker jobs and call the accept() server.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* Worker job uses multiple accept() to handle incoming client connections*/
/**/
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>

main (int argc, char *argv[])
{

int rc, len;
int listen_sd, accept_sd;
char buffer[80];

/***/
/* The listen socket descriptor is passed to */
/* this worker job as a command line parameter */
/***/
listen_sd = 0;

/***/
/* Wait for an incoming connection */
/***/
printf("Waiting on accept()\n");
accept_sd = accept(listen_sd, NULL, NULL);
if (accept_sd < 0)
{

perror("accept() failed");
close(listen_sd);

Socket programming 111

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

exit(-1);
}
printf("Accept completed successfully\n");

/***/
/* Receive a message from the client */
/***/
printf("Wait for client to send us a message\n");
rc = recv(accept_sd, buffer, sizeof(buffer), 0);
if (rc <= 0)
{

perror("recv() failed");
close(listen_sd);
close(accept_sd);
exit(-1);

}
printf("<%s>\n", buffer);

/***/
/* Echo the data back to the client */
/***/
printf("Echo it back\n");
len = rc;
rc = send(accept_sd, buffer, len, 0);
if (rc <= 0)
{

perror("send() failed");
close(listen_sd);
close(accept_sd);
exit(-1);

}

/***/
/* Close down the descriptors */
/***/
close(listen_sd);
close(accept_sd);

}

Example: Generic client
This example contains the code for a common client job. The client job does a socket(), connect(), send(),
recv(), and close() operation.

The client job is not aware that the data buffer it sent and received is going to a worker job rather than
the server. If you want to create a client application that works whether the server uses the AF_INET
address family or AF_INET6 address family, use the IPv4 or IPv6 client example.

This client job works with each of these common connection-oriented server designs:
v An iterative server. See Example: Writing an iterative server program.
v A spawn server and worker. See Example: Using the spawn() API to create child processes.
v A sendmsg() server and rcvmsg() worker. See Example: Server program used for sendmsg() and

recvmsg().
v A multiple accept() design. See Example: Server program to create a pool of multiple accept() worker

jobs.
v A nonblocking I/O and select() design. See Example: Nonblocking I/O and select().
v A server that accepts connections from either an IPv4 or IPv6 client. See Example: Accepting

connections from both IPv6 and IPv4 clients.

Socket flow of events: Generic client

The following example program uses the following sequence of API calls:

112 IBM i: Programming Socket programming

1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also
identifies that the INET (Internet Protocol) address family with the TCP transport (SOCK_STREAM) is
used for this socket.

2. After the socket descriptor is received, the connect() API is used to establish a connection to the
server.

3. The send() API sends the data buffer to the worker jobs.
4. The recv() API receives the data buffer from the worker jobs.
5. The close() API closes any open socket descriptors.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* Generic client example is used with connection-oriented server designs */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_PORT 12345

main (int argc, char *argv[])
{

int len, rc;
int sockfd;
char send_buf[80];
char recv_buf[80];
struct sockaddr_in6 addr;

/***/
/* Create an AF_INET6 stream socket */
/***/
sockfd = socket(AF_INET6, SOCK_STREAM, 0);
if (sockfd < 0)
{

perror("socket");
exit(-1);

}

/***/
/* Initialize the socket address structure */
/***/
memset(&addr, 0, sizeof(addr));
addr.sin6_family = AF_INET6;
memcpy(&addr.sin6_addr, &in6addr_any, sizeof(in6addr_any));
addr.sin6_port = htons(SERVER_PORT);

/***/
/* Connect to the server */
/***/
rc = connect(sockfd,

(struct sockaddr *)&addr,
sizeof(struct sockaddr_in6));

if (rc < 0)
{

perror("connect");
close(sockfd);
exit(-1);

}
printf("Connect completed.\n");

/***/
/* Enter data buffer that is to be sent */

Socket programming 113

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/***/
printf("Enter message to be sent:\n");
gets(send_buf);

/***/
/* Send data buffer to the worker job */
/***/
len = send(sockfd, send_buf, strlen(send_buf) + 1, 0);
if (len != strlen(send_buf) + 1)
{

perror("send");
close(sockfd);
exit(-1);

}
printf("%d bytes sent\n", len);

/***/
/* Receive data buffer from the worker job */
/***/
len = recv(sockfd, recv_buf, sizeof(recv_buf), 0);
if (len != strlen(send_buf) + 1)
{

perror("recv");
close(sockfd);
exit(-1);

}
printf("%d bytes received\n", len);

/***/
/* Close down the socket */
/***/
close(sockfd);

}

Related reference:
“Example: IPv4 or IPv6 client” on page 84
This sample program can be used with the server application that accepts requests from either IPv4 or
IPv6 clients.
“Examples: Connection-oriented designs” on page 90
You can design a connection-oriented socket server on the system in a number of ways. These example
programs can be used to create your own connection-oriented designs.
“Example: Writing an iterative server program” on page 91
This example illustrates how to create a single server job that handles all incoming connections. When the
accept() API is completed, the server handles the entire transaction.
“Example: Passing descriptors between processes” on page 100
These examples demonstrate how to design a server program using the sendmsg() and recvmsg() APIs to
handle incoming connections.
“Example: Server program used for sendmsg() and recvmsg()” on page 102
This example shows how to use the sendmsg() API to create a pool of worker jobs.
“Examples: Using multiple accept() APIs to handle incoming requests” on page 107
These examples show how to design a server program that uses the multiple accept() model for handling
incoming connection requests.
“Example: Server program to create a pool of multiple accept() worker jobs” on page 109
This example shows how to use the multiple accept() model to create a pool of worker jobs.
“Example: Using the spawn() API to create child processes” on page 95
This example shows how a server program can use the spawn() API to create a child process that inherits
the socket descriptor from the parent.
“Example: Accepting connections from both IPv6 and IPv4 clients” on page 79
This example program demonstrates how to create a server/client model that accepts requests from both
IPv4 (those socket applications that use the AF_INET address family) and IPv6 (those applications that

114 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

use the AF_INET6 address family).
“Example: Using asynchronous I/O”
An application creates an I/O completion port using the QsoCreateIOCompletionPort() API. This API
returns a handle that can be used to schedule and wait for completion of asynchronous I/O requests.
“Example: Nonblocking I/O and select()” on page 151
This sample program illustrates a server application that uses nonblocking and the select() API.
Related information:
socket()--Create Socket API
connect()--Establish Connection or Destination Address API
close()--Close File or Socket Descriptor API
send()--Send Data API
recv()--Receive Data API

Example: Using asynchronous I/O
An application creates an I/O completion port using the QsoCreateIOCompletionPort() API. This API
returns a handle that can be used to schedule and wait for completion of asynchronous I/O requests.

The application starts an input or an output function, specifying an I/O completion port handle. When
the I/O is completed, status information and an application-defined handle are posted to the specified
I/O completion port. The post to the I/O completion port wakes up exactly one of possibly many
threads that are waiting. The application receives the following items:
v A buffer that was supplied on the original request
v The length of data that was processed to or from that buffer
v A indication of what type of I/O operation has been completed
v Application-defined handle that was passed on the initial I/O request

This application handle can be the socket descriptor identifying the client connection, or a pointer to
storage that contains extensive information about the state of the client connection. Since the operation
was completed and the application handle was passed, the worker thread determines the next step to
complete the client connection. Worker threads that process these completed asynchronous operations can
handle many different client requests and are not tied to just one. Because copying to and from user
buffers occurs asynchronously to the server processes, wait time for client request diminishes. This can be
beneficial on systems where there are multiple processors.

Socket programming 115

Flow of socket events: Asynchronous I/O server

The following sequence of the socket calls provides a description of the graphic. It also describes the
relationship between the server and worker examples. Each set of flows contain links to usage notes on
specific APIs. If you need more details on the use of a particular API, you can use these links. This flow
describes the socket calls in the following sample application. Use this server example with the generic
client example.
1. Master thread creates I/O completion port by calling QsoCreateIOCompletionPort()
2. Master thread creates pool of worker thread(s) to process any I/O completion port requests with the

pthread_create function.
3. Worker thread(s) call QsoWaitForIOCompletionPort() which waits for client requests to process.
4. The master thread accepts a client connection and proceeds to issue a QsoStartRecv() which specifies

the I/O completion port upon which the worker threads are waiting.

Note: You can also use accept asynchronously by using the QsoStartAccept().
5. At some point, a client request arrives asynchronous to the server process. The sockets operating

system loads the supplied user buffer and sends the completed QsoStartRecv() request to the specified
I/O completion port. One worker thread is awoken and proceeds to process this request.

6. The worker thread extracts the client socket descriptor from the application-defined handle and
proceeds to echo the received data back to the client by performing a QsoStartSend() operation.

116 IBM i: Programming Socket programming

7. If the data can be immediately sent, then the QsoStartSend() API returns indication of the fact;
otherwise, the sockets operating system sends the data as soon as possible and posts indication of the
fact to the specified I/O completion port. The worker thread gets indication of data sent and can wait
on the I/O completion port for another request or end if instructed to do so. The
QsoPostIOCompletion() API can be used by the master thread to post a worker thread end event.

8. Master thread waits for worker thread to finish and then destroys the I/O completion port by calling
the QsoDestroyIOCompletionPort() API.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <errno.h>
#include <unistd.h>
#define _MULTI_THREADED
#include "pthread.h"
#include "qsoasync.h"
#define BufferLength 80
#define Failure 0
#define Success 1
#define SERVPORT 12345

void *workerThread(void *arg);

/**/
/* */
/* Function Name: main */
/* */
/* Descriptive Name: Master thread will establish a client */
/* connection and hand processing responsibility */
/* to a worker thread. */
/* Note: Due to the thread attribute of this program, spawn() must */
/* be used to invoke. */
/**/

int main()
{

int listen_sd, client_sd, rc;
int on = 1, ioCompPort;
pthread_t thr;
void *status;
char buffer[BufferLength];
struct sockaddr_in6 serveraddr;
Qso_OverlappedIO_t ioStruct;

/***/
/* Create an I/O completion port for this */
/* process. */
/***/
if ((ioCompPort = QsoCreateIOCompletionPort()) < 0)
{

perror("QsoCreateIOCompletionPort() failed");
exit(-1);

}

/***/
/* Create a worker thread */
/* to process all client requests. The */
/* worker thread will wait for client */

Socket programming 117

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* requests to arrive on the I/O completion */
/* port just created. */
/***/
rc = pthread_create(&thr, NULL, workerThread,

&ioCompPort);
if (rc < 0)
{

perror("pthread_create() failed");
QsoDestroyIOCompletionPort(ioCompPort);
close(listen_sd);
exit(-1);

}

/***/
/* Create an AF_INET6 stream socket to */
/* receive incoming connections on */
/***/
if ((listen_sd = socket(AF_INET6, SOCK_STREAM, 0)) < 0)
{

perror("socket() failed");
QsoDestroyIOCompletionPort(ioCompPort);
exit(-1);

}

/***/
/* Allow socket descriptor to be reuseable */
/***/
if ((rc = setsockopt(listen_sd, SOL_SOCKET,

SO_REUSEADDR,
(char *)&on,
sizeof(on))) < 0)

{
perror("setsockopt() failed");
QsoDestroyIOCompletionPort(ioCompPort);
close(listen_sd);
exit(-1);

}

/***/
/* bind the socket */
/***/
memset(&serveraddr, 0x00, sizeof(struct sockaddr_in6));
serveraddr.sin6_family = AF_INET6;
serveraddr.sin6_port = htons(SERVPORT);
memcpy(&serveraddr.sin6_addr, &in6addr_any, sizeof(in6addr_any));

if ((rc = bind(listen_sd,
(struct sockaddr *)&serveraddr,
sizeof(serveraddr))) < 0)

{
perror("bind() failed");
QsoDestroyIOCompletionPort(ioCompPort);
close(listen_sd);
exit(-1);

}

/***/
/* Set listen backlog */
/***/
if ((rc = listen(listen_sd, 10)) < 0)
{

perror("listen() failed");
QsoDestroyIOCompletionPort(ioCompPort);
close(listen_sd);
exit(-1);

}

118 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("Waiting for client connection.\n");

/***/
/* accept an incoming client connection. */
/***/
if ((client_sd = accept(listen_sd, (struct sockaddr *)NULL,

NULL)) < 0)
{

perror("accept() failed");
QsoDestroyIOCompletionPort(ioCompPort);
close(listen_sd);
exit(-1);

}

/***/
/* Issue QsoStartRecv() to receive client */
/* request. */
/* Note: */
/* postFlag == on denoting request should */
/* posted to the I/O */
/* completion port, even if */
/* if request is immediately */
/* available. Worker thread */
/* will process client */
/* request. */
/***/

/***/
/* initialize Qso_OverlappedIO_t structure - */
/* reserved fields must be hex 00’s. */
/***/
memset(&ioStruct, ’\0’, sizeof(ioStruct));

ioStruct.buffer = buffer;
ioStruct.bufferLength = sizeof(buffer);

/***/
/* Store the client descriptor in the */
/* Qso_OverlappedIO_t descriptorHandle field.*/
/* This area is used to house information */
/* defining the state of the client */
/* connection. Field descriptorHandle is */
/* defined as a (void *) to allow the server */
/* to address more extensive client */
/* connection state if needed. */
/***/
((int)&ioStruct.descriptorHandle) = client_sd;
ioStruct.postFlag = 1;
ioStruct.fillBuffer = 0;

rc = QsoStartRecv(client_sd, ioCompPort, &ioStruct);
if (rc == -1)
{

perror("QsoStartRecv() failed");
QsoDestroyIOCompletionPort(ioCompPort);
close(listen_sd);
close(client_sd);
exit(-1);

}
/***/
/* close the server’s listening socket. */
/***/
close(listen_sd);

/***/
/* Wait for worker thread to finish */

Socket programming 119

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* processing client connection. */
/***/
rc = pthread_join(thr, &status);

QsoDestroyIOCompletionPort(ioCompPort);
if (rc == 0 && (rc = __INT(status)) == Success)
{

printf("Success.\n");
exit(0);

}
else
{

perror("pthread_join() reported failure");
exit(-1);

}
}
/* end workerThread */

/**/
/* */
/* Function Name: workerThread */
/* */
/* Descriptive Name: Process client connection. */
/**/
void *workerThread(void *arg)
{

struct timeval waitTime;
int ioCompPort, clientfd;
Qso_OverlappedIO_t ioStruct;
int rc, tID;
pthread_t thr;
pthread_id_np_t t_id;
t_id = pthread_getthreadid_np();
tID = t_id.intId.lo;

/***/
/* I/O completion port is passed to this */
/* routine. */
/***/
ioCompPort = *(int *)arg;

/***/
/* Wait on the supplied I/O completion port */
/* for a client request. */
/***/
waitTime.tv_sec = 500;
waitTime.tv_usec = 0;
rc = QsoWaitForIOCompletion(ioCompPort, &ioStruct, &waitTime);
if (rc == 1 && ioStruct.returnValue != -1)
/***/
/* Client request has been received. */
/***/

;
else
{

printf("QsoWaitForIOCompletion() or QsoStartRecv() failed.\n");
if(rc != 1)

perror("QsoWaitForIOCompletion() failed");
if(ioStruct.returnValue == -1)

printf("QsoStartRecv() failed - %s\n",
strerror(ioStruct.errnoValue));

return __VOID(Failure);
}

120 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/***/
/* Obtain the socket descriptor associated */
/* with the client connection. */
/***/
clientfd = *((int *) &ioStruct.descriptorHandle);

/***/
/* Echo the data back to the client. */
/* Note: postFlag == 0. If write completes */
/* immediate then indication will be */
/* returned, otherwise once the */
/* write is performed the I/O Completion */
/* port will be posted. */
/***/
ioStruct.postFlag = 0;
ioStruct.bufferLength = ioStruct.returnValue;
rc = QsoStartSend(clientfd, ioCompPort, &ioStruct);

if (rc == 0)
/***/
/* Operation complete - data has been sent. */
/***/

;
else
{
/***/
/* Two possibilities */
/* rc == -1 */
/* Error on function call */
/* rc == 1 */
/* Write cannot be immediately */
/* performed. Once complete, the I/O */
/* completion port will be posted. */
/***/

if (rc == -1)
{

printf("QsoStartSend() failed.\n");
perror("QsoStartSend() failed");
close(clientfd);
return __VOID(Failure);

}
/***/
/* Wait for operation to complete. */
/***/
rc = QsoWaitForIOCompletion(ioCompPort, &ioStruct, &waitTime);
if (rc == 1 && ioStruct.returnValue != -1)
/***/
/* Send successful. */
/***/

;
else
{

printf("QsoWaitForIOCompletion() or QsoStartSend() failed.\n");
if(rc != 1)

perror("QsoWaitForIOCompletion() failed");
if(ioStruct.returnValue == -1)

printf("QsoStartRecv() failed - %s\n",
strerror(ioStruct.errnoValue));

return __VOID(Failure);
}

}
close(clientfd);
return __VOID(Success);

} /* end workerThread */

Related concepts:

Socket programming 121

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

“Asynchronous I/O” on page 43
Asynchronous I/O APIs provide a method for threaded client/server models to perform highly
concurrent and memory-efficient I/O.
Related reference:
“Socket application design recommendations” on page 87
Before working with a socket application, assess the functional requirements, goals, and needs of the
socket application. Also, consider the performance requirements and the system resource impacts of the
application.
“Examples: Connection-oriented designs” on page 90
You can design a connection-oriented socket server on the system in a number of ways. These example
programs can be used to create your own connection-oriented designs.
“Example: Generic client” on page 112
This example contains the code for a common client job. The client job does a socket(), connect(), send(),
recv(), and close() operation.
“Example: Using signals with blocking socket APIs” on page 163
When a process or an application becomes blocked, signals allow you to be notified. They also provide a
time limit for blocking processes.
Related information:
QsoCreateIOCompletionPort()--Create I/O Completion Port API
pthread_create
QsoWaitForIOCompletion()--Wait for I/O Operation API
QsoStartAccept()--Start asynchronous accept operation API
QsoStartSend()--Start Asynchronous Send Operation API
QsoDestroyIOCompletionPort()--Destroy I/O Completion Port API

Examples: Establishing secure connections
You can create secure server and clients using either the Global Security Kit (GSKit) APIs or the Secure
Sockets Layer (SSL_) APIs.

GSKit APIs are preferred because they are supported across IBM systems, while SSL_APIs exist only in
the i5/OS operating system. Each set of Secure Sockets APIs has return codes that help you identify
errors when establishing secure socket connections.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

Related concepts:
“Secure socket API error code messages” on page 51
To get the error code messages for the secure socket API, follow these steps.

Example: GSKit secure server with asynchronous data receive
This example demonstrates how to establish a secure server using Global Security Kit (GSKit) APIs.

The server opens the socket, prepares the secure environment, accepts and processes connection requests,
exchanges data with the client and ends the session. The client also opens a socket, sets up the secure
environment, calls the server and requests a secure connection, exchanges data with the server, and closes
the session. The following diagram and description shows the server/client flow of events.

Note: The following example programs use AF_INET6 address family.

122 IBM i: Programming Socket programming

|

Socket flow of events: Secure server that uses asynchronous data receive

Socket programming 123

The following sequence of the socket calls provides a description of the graphic. It also describes the
relationship between the server and client examples.
1. The QsoCreateIOCompletionPort() API creates an I/O completion port.
2. The pthread_create API creates a worker thread to receive data and to echo it back to the client. The

worker thread waits for client requests to arrive on the I/O completion port just created.
3. A call to gsk_environment_open() to obtain a handle to an SSL environment.
4. One or more calls to gsk_attribute_set_xxxxx() to set attributes of the SSL environment. At a

minimum, either a call to gsk_attribute_set_buffer() to set the GSK_OS400_APPLICATION_ID value
or to set the GSK_KEYRING_FILE value. Only one of these should be set. It is preferred that you use
the GSK_OS400_APPLICATION_ID value. Also ensure you set the type of application (client or
server), GSK_SESSION_TYPE, using gsk_attribute_set_enum().

5. A call to gsk_environment_init() to initialize this environment for SSL processing and to establish the
SSL security information for all SSL sessions that run using this environment.

6. The socket API creates a socket descriptor. The server then issues the standard set of socket calls:
bind(), listen(), and accept() to enable a server to accept incoming connection requests.

7. The gsk_secure_soc_open() API obtains storage for a secure session, sets default values for attributes,
and returns a handle that must be saved and used on secure session-related API calls.

8. One or more calls to gsk_attribute_set_xxxxx() to set attributes of the secure session. At a minimum,
a call to gsk_attribute_set_numeric_value() to associate a specific socket with this secure session.

9. A call to gsk_secure_soc_init() to initiate the SSL handshake negotiation of the cryptographic
parameters.

Note: Typically, a server program must provide a certificate for an SSL handshake to succeed. A
server must also have access to the private key that is associated with the server certificate
and the key database file where the certificate is stored. In some cases, a client must also
provide a certificate during the SSL handshake processing. This occurs if the server, to which
the client is connecting, has enabled client authentication. The
gsk_attribute_set_buffer(GSK_OS400_APPLICATION_ID) or
gsk_attribute_set_buffer(GSK_KEYRING_FILE) API calls identify (though in dissimilar ways)
the key database file, from which the certificate and private key that are used during the
handshake are obtained.

10. The gsk_secure_soc_startRecv() API initiates an asynchronous receive operation on a secure session.
11. The pthread_join synchronizes the server and worker programs. This API waits for the thread to end,

detaches the thread, and then returns the threads exit status to the server.
12. The gsk_secure_soc_close() API ends the secure session.
13. The gsk_environment_close() API closes the SSL environment.
14. The close() API ends the listening socket.
15. The close() ends the accepted (client connection) socket.
16. The QsoDestroyIOCompletionPort() API destroys the completion port.

Socket flow of events: Worker thread that uses GSKit APIs
1. After the server application creates a worker thread, it waits for server to send it the incoming client

request to process client data with the gsk_secure_soc_startRecv() call. The
QsoWaitForIOCompletionPort() API waits on the supplied I/O completion port that was specified by
the server.

2. As soon as the client request has been received, the gsk_attribute_get_numeric_value() API gets the
socket descriptor associated with the secure session.

3. The gsk_secure_soc_write() API sends the message to the client using the secure session.

124 IBM i: Programming Socket programming

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/* GSK Asynchronous Server Program using ApplicationId*/

/* "IBM grants you a nonexclusive copyright license */
/* to use all programming code examples, from which */
/* you can generate similar function tailored to your */
/* own specific needs. */
/* */
/* All sample code is provided by IBM for illustrative*/
/* purposes only. These examples have not been */
/* thoroughly tested under all conditions. IBM, */
/* therefore, cannot guarantee or imply reliability, */
/* serviceability, or function of these programs. */
/* */
/* All programs contained herein are provided to you */
/* "AS IS" without any warranties of any kind. The */
/* implied warranties of non-infringement, */
/* merchantability and fitness for a particular */
/* purpose are expressly disclaimed. " */

/* Assummes that application id is already registered */
/* and a certificate has been associated with the */
/* application id. */
/* No parameters, some comments and many hardcoded */
/* values to keep it short and simple */

/* use following command to create bound program: */
/* CRTBNDC PGM(PROG/GSKSERVa) */
/* SRCFILE(PROG/CSRC) */
/* SRCMBR(GSKSERVa) */

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <gskssl.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>
#define _MULTI_THREADED
#include "pthread.h"
#include "qsoasync.h"
#define Failure 0
#define Success 1
#define TRUE 1
#define FALSE 0
void *workerThread(void *arg);
/**/
/* Descriptive Name: Master thread will establish a client */
/* connection and hand processing responsibility */
/* to a worker thread. */
/* Note: Due to the thread attribute of this program, spawn() must */
/* be used to invoke. */
/**/
int main(void)
{

gsk_handle my_env_handle=NULL; /* secure environment handle */
gsk_handle my_session_handle=NULL; /* secure session handle */

struct sockaddr_in6 address;
int buf_len, on = 1, rc = 0;
int sd = -1, lsd = -1, al = -1, ioCompPort = -1;
int successFlag = FALSE;
char buff[1024];
pthread_t thr;

Socket programming 125

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

void *status;
Qso_OverlappedIO_t ioStruct;

/***/
/* Issue all of the command in a do/while */
/* loop so that clean up can happen at end */
/***/
do
{

/***/
/* Create an I/O completion port for this */
/* process. */
/***/
if ((ioCompPort = QsoCreateIOCompletionPort()) < 0)
{

perror("QsoCreateIOCompletionPort() failed");
break;

}
/***/
/* Create a worker thread */
/* to process all client requests. The */
/* worker thread will wait for client */
/* requests to arrive on the I/O completion */
/* port just created. */
/***/
rc = pthread_create(&thr, NULL, workerThread, &ioCompPort);
if (rc < 0)
{

perror("pthread_create() failed");
break;

}

/* open a gsk environment */
rc = errno = 0;
rc = gsk_environment_open(&my_env_handle);
if (rc != GSK_OK)
{

printf("gsk_environment_open() failed with rc = %d & errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* set the Application ID to use */
rc = errno = 0;
rc = gsk_attribute_set_buffer(my_env_handle,

GSK_OS400_APPLICATION_ID,
"MY_SERVER_APP",
13);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_buffer() failed with rc = %d & errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* set this side as the server */
rc = errno = 0;
rc = gsk_attribute_set_enum(my_env_handle,

GSK_SESSION_TYPE,
GSK_SERVER_SESSION);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_enum() failed with rc = %d & errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));

126 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

break;
}

/* by default SSL_V2, SSL_V3, and TLS_V1 are enabled */
/* We will disable SSL_V2 for this example. */
rc = errno = 0;
rc = gsk_attribute_set_enum(my_env_handle,

GSK_PROTOCOL_SSLV2,
GSK_PROTOCOL_SSLV2_OFF);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_enum() failed with rc = %d & errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* set the cipher suite to use. By default our default list */
/* of ciphers is enabled. For this example we will just use one */
rc = errno = 0;
rc = gsk_attribute_set_buffer(my_env_handle,

GSK_V3_CIPHER_SPECS,
"05", /* SSL_RSA_WITH_RC4_128_SHA */
2);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_buffer() failed with rc = %d & errno = %d.\n"
,rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* Initialize the secure environment */
rc = errno = 0;
rc = gsk_environment_init(my_env_handle);
if (rc != GSK_OK)
{

printf("gsk_environment_init() failed with rc = %d & errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* initialize a socket to be used for listening */
lsd = socket(AF_INET6, SOCK_STREAM, 0);
if (lsd < 0)
{

perror("socket() failed");
break;

}

/* set socket so can be reused immediately */
rc = setsockopt(lsd, SOL_SOCKET,

SO_REUSEADDR,
(char *)&on,
sizeof(on));

if (rc < 0)
{

perror("setsockopt() failed");
break;

}

/* bind to the local server address */
memset((char *) &address, 0, sizeof(address));
address.sin6_family = AF_INET6;
address.sin6_port = 13333;
memcpy(&address.sin6_addr, &in6addr_any, sizeof(in6addr_any));

Socket programming 127

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

rc = bind(lsd, (struct sockaddr *) &address, sizeof(address));
if (rc < 0)
{

perror("bind() failed");
break;

}

/* enable the socket for incoming client connections */
listen(lsd, 5);
if (rc < 0)
{

perror("listen() failed");
break;

}

/* accept an incoming client connection */
al = sizeof(address);
sd = accept(lsd, (struct sockaddr *) &address, &al);
if (sd < 0)
{

perror("accept() failed");
break;

}

/* open a secure session */
rc = errno = 0;
rc = gsk_secure_soc_open(my_env_handle, &my_session_handle);
if (rc != GSK_OK)
{

printf("gsk_secure_soc_open() failed with rc = %d & errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* associate our socket with the secure session */
rc=errno=0;
rc = gsk_attribute_set_numeric_value(my_session_handle,

GSK_FD,
sd);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_numeric_value() failed with rc = %d ", rc);
printf("and errno = %d.\n", errno);
printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* initiate the SSL handshake */
rc = errno = 0;
rc = gsk_secure_soc_init(my_session_handle);
if (rc != GSK_OK)
{

printf("gsk_secure_soc_init() failed with rc = %d & errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}
/***/
/* Issue gsk_secure_soc_startRecv() to */
/* receive client request. */
/* Note: */
/* postFlag == on denoting request should */
/* posted to the I/O completion port, even */
/* if request is immediately available. */
/* Worker thread will process client request.*/
/***/

128 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/***/
/* initialize Qso_OverlappedIO_t structure - */
/* reserved fields must be hex 00’s. */
/***/
memset(&ioStruct, ’\0’, sizeof(ioStruct));
memset((char *) buff, 0, sizeof(buff));
ioStruct.buffer = buff;
ioStruct.bufferLength = sizeof(buff);

/***/
/* Store the session handle in the */
/* Qso_OverlappedIO_t descriptorHandle field.*/
/* This area is used to house information */
/* defining the state of the client */
/* connection. Field descriptorHandle is */
/* defined as a (void *) to allow the server */
/* to address more extensive client */
/* connection state if needed. */
/***/
ioStruct.descriptorHandle = my_session_handle;
ioStruct.postFlag = 1;
ioStruct.fillBuffer = 0;

rc = gsk_secure_soc_startRecv(my_session_handle,
ioCompPort,
&ioStruct);

if (rc != GSK_AS400_ASYNCHRONOUS_RECV)
{

printf("gsk_secure_soc_startRecv() rc = %d & errno = %d.\n",rc,errno);
printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}
/***/
/* This is where the server can loop back */
/* to accept a new connection. */
/***/

/***/
/* Wait for worker thread to finish */
/* processing client connection. */
/***/
rc = pthread_join(thr, &status);

/* check status of the worker */
if (rc == 0 && (rc = __INT(status)) == Success)
{

printf("Success.\n");
successFlag = TRUE;

}
else
{

perror("pthread_join() reported failure");
}

} while(FALSE);

/* disable the SSL session */
if (my_session_handle != NULL)

gsk_secure_soc_close(&my_session_handle);

/* disable the SSL environment */
if (my_env_handle != NULL)

gsk_environment_close(&my_env_handle);

/* close the listening socket */
if (lsd > -1)

close(lsd);

Socket programming 129

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* close the accepted socket */
if (sd > -1)

close(sd);

/* destroy the completion port */
if (ioCompPort > -1)

QsoDestroyIOCompletionPort(ioCompPort);

if (successFlag)
exit(0);

else
exit(-1);

}
/**/
/* Function Name: workerThread */
/* */
/* Descriptive Name: Process client connection. */
/* */
/* Note: To make the sample more straight forward the main routine */
/* handles all of the clean up although this function can */
/* be made responsible for the clientfd and session_handle. */
/**/
void *workerThread(void *arg)
{

struct timeval waitTime;
int ioCompPort = -1, clientfd = -1;
Qso_OverlappedIO_t ioStruct;
int rc, tID;
int amtWritten;
gsk_handle client_session_handle = NULL;
pthread_t thr;
pthread_id_np_t t_id;
t_id = pthread_getthreadid_np();
tID = t_id.intId.lo;
/***/
/* I/O completion port is passed to this */
/* routine. */
/***/
ioCompPort = *(int *)arg;
/***/
/* Wait on the supplied I/O completion port */
/* for a client request. */
/***/
waitTime.tv_sec = 500;
waitTime.tv_usec = 0;
rc = QsoWaitForIOCompletion(ioCompPort, &ioStruct, &waitTime);
if ((rc == 1) &&

(ioStruct.returnValue == GSK_OK) &&
(ioStruct.operationCompleted == GSKSECURESOCSTARTRECV))

/***/
/* Client request has been received. */
/***/
;
else
{

perror("QsoWaitForIOCompletion()/gsk_secure_soc_startRecv() failed");
printf("ioStruct.returnValue = %d.\n", ioStruct.returnValue);
return __VOID(Failure);

}

/* write results to screen */
printf("gsk_secure_soc_startRecv() received %d bytes, here they are:\n",

ioStruct.secureDataTransferSize);
printf("%s\n",ioStruct.buffer);

/***/
/* Obtain the session handle associated */

130 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* with the client connection. */
/***/
client_session_handle = ioStruct.descriptorHandle;

/* get the socket associated with the secure session */
rc=errno=0;
rc = gsk_attribute_get_numeric_value(client_session_handle,

GSK_FD,
&clientfd);

if (rc != GSK_OK)
{

printf("gsk_attribute_get_numeric_value() rc = %d & errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
return __VOID(Failure);

}

/* send the message to the client using the secure session */
amtWritten = 0;
rc = gsk_secure_soc_write(client_session_handle,

ioStruct.buffer,
ioStruct.secureDataTransferSize,
&amtWritten);

if (amtWritten != ioStruct.secureDataTransferSize)
{

if (rc != GSK_OK)
{

printf("gsk_secure_soc_write() rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
return __VOID(Failure);

}
else
{

printf("gsk_secure_soc_write() did not write all data.\n");
return __VOID(Failure);

}
}

/* write results to screen */
printf("gsk_secure_soc_write() wrote %d bytes...\n", amtWritten);
printf("%s\n",ioStruct.buffer);

return __VOID(Success);
} /* end workerThread */

Related concepts:
“Global Security Kit (GSKit) APIs” on page 47
Global Security Kit (GSKit) is a set of programmable interfaces that allow an application to be SSL
enabled.
Related reference:
“Example: Establishing a secure client with Global Security Kit APIs” on page 142
This example demonstrates how to establish a client using the Global Security Kit (GSKit) APIs.
“Example: GSKit secure server with asynchronous handshake” on page 132
The gsk_secure_soc_startInit() API allows you to create secure server applications that can handle
requests asynchronously.
Related information:
QsoCreateIOCompletionPort()--Create I/O Completion Port API
pthread_create
QsoWaitForIOCompletion()--Wait for I/O Operation API
QsoDestroyIOCompletionPort()--Destroy I/O Completion Port API
bind()--Set Local Address for Socket API

Socket programming 131

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

socket()--Create Socket API
listen()--Invite Incoming Connections Requests API
close()--Close File or Socket Descriptor API
accept()--Wait for Connection Request and Make Connection API
gsk_environment_open()--Get a handle for an SSL environment API
gsk_attribute_set_buffer()--Set character information for a secure session or an SSL environment API
gsk_attribute_set_enum()--Set enumerated information for a secure session or an SSL environment API
gsk_environment_init()--Initialize an SSL environment API
gsk_secure_soc_open()--Get a handle for a secure session API
gsk_attribute_set_numeric_value()--Set numeric information for a secure session or an SSL environment
API
gsk_secure_soc_init()--Negotiate a secure session API
gsk_secure_soc_startRecv()--Start asynchronous receive operation on a secure session API
pthread_join
gsk_secure_soc_close()--Close a secure session API
gsk_environment_close()--Close an SSL environment API
gsk_attribute_get_numeric_value()--Get numeric information about a secure session or an SSL
environment API
gsk_secure_soc_write()--Send data on a secure session API

Example: GSKit secure server with asynchronous handshake
The gsk_secure_soc_startInit() API allows you to create secure server applications that can handle
requests asynchronously.

The following example illustrates how this API can be used. It is similar to the GSKit secure server with
asynchronous data receive example, but uses this API to start a secure session.

The following graphic shows the API calls that are used to negotiate an asynchronous handshake on a
secure server.

132 IBM i: Programming Socket programming

Socket programming 133

To view the client portion of this graphic, see GSKit client.

Socket flow of events: GSKit secure server that uses asynchronous handshake

This flow describes the socket calls in the following example application.
1. The QsoCreateIOCompletionPort() API creates an I/O completion port.
2. The pthread_create() API creates a worker thread to process all client requests. The worker thread

waits for client requests to arrive on the I/O completion port just created.
3. A call to gsk_environment_open() to obtain a handle to an SSL environment.
4. One or more calls to gsk_attribute_set_xxxxx() to set attributes of the SSL environment. At a

minimum, either a call to gsk_attribute_set_buffer() to set the GSK_OS400_APPLICATION_ID value
or to set the GSK_KEYRING_FILE value. Only one of these should be set. It is preferred that you use
the GSK_OS400_APPLICATION_ID value. Also ensure you set the type of application (client or
server), GSK_SESSION_TYPE, using gsk_attribute_set_enum().

5. A call to gsk_environment_init() to initialize this environment for SSL processing and to establish the
SSL security information for all SSL sessions that run using this environment.

6. The socket API creates a socket descriptor. The server then issues the standard set of socket calls,
bind(), listen(), and accept(), to enable a server to accept incoming connection requests.

7. The gsk_secure_soc_open() API obtains storage for a secure session, sets default values for attributes,
and returns a handle that must be saved and used on secure session-related API calls.

8. One or more calls to gsk_attribute_set_xxxxx() to set attributes of the secure session. At a minimum,
a call to gsk_attribute_set_numeric_value() to associate a specific socket with this secure session.

9. The gsk_secure_soc_startInit() API starts an asynchronous negotiation of a secure session, using the
attributes set for the SSL environment and the secure session. Control returns to the program here.
When the handshake processing is completed, the completion port is posted with the results. The
thread can continue on with other processing; however, for simplicity, wait here for the worker
thread to complete.

Note: Typically, a server program must provide a certificate for an SSL handshake to succeed. A
server must also have access to the private key that is associated with the server certificate
and the key database file where the certificate is stored. In some cases, a client must also
provide a certificate during the SSL handshake processing. This occurs if the server, which the
client is connecting to, has enabled client authentication. The
gsk_attribute_set_buffer(GSK_OS400_APPLICATION_ID) or
gsk_attribute_set_buffer(GSK_KEYRING_FILE) API call identifies (though in dissimilar ways)
the key database file, from which the certificate and private key that are used during the
handshake are obtained.

10. The pthread_join synchronizes the server and worker programs. This API waits for the thread to
end, detaches the thread, and then returns the thread's exit status to the server.

11. The gsk_secure_soc_close() API ends the secure session.
12. The gsk_environment_close() API closes the SSL environment.
13. The close() API ends the listening socket.
14. The close() API ends the accepted (client connection) socket.
15. The QsoDestroyIOCompletionPort() API destroys the completion port.

Socket flow of events: Worker thread that process secure asynchronous requests
1. After the server application creates a worker thread, it waits for the server to send it the incoming

client request to process. The QsoWaitForIOCompletionPort() API waits for the supplied I/O
completion port that was specified by the server. This call waits until the gsk_secure_soc_startInit()
call is completed.

2. As soon as the client request has been received, the gsk_attribute_get_numeric_value() API gets the
socket descriptor associated with the secure session.

134 IBM i: Programming Socket programming

3. The gsk_secure_soc_read() API receives a message from the client using the secure session.
4. The gsk_secure_soc_write() API sends the message to the client using the secure session.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/* GSK Asynchronous Server Program using Application Id*/
/* and gsk_secure_soc_startInit() */

/* Assummes that application id is already registered */
/* and a certificate has been associated with the */
/* application id. */
/* No parameters, some comments and many hardcoded */
/* values to keep it short and simple */

/* use following command to create bound program: */
/* CRTBNDC PGM(MYLIB/GSKSERVSI) */
/* SRCFILE(MYLIB/CSRC) */
/* SRCMBR(GSKSERVSI) */

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <gskssl.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>
#define _MULTI_THREADED
#include "pthread.h"
#include "qsoasync.h"
#define Failure 0
#define Success 1
#define TRUE 1
#define FALSE 0

void *workerThread(void *arg);
/**/
/* Descriptive Name: Master thread will establish a client */
/* connection and hand processing responsibility */
/* to a worker thread. */
/* Note: Due to the thread attribute of this program, spawn() must */
/* be used to invoke. */
/**/
int main(void)
{

gsk_handle my_env_handle=NULL; /* secure environment handle */
gsk_handle my_session_handle=NULL; /* secure session handle */

struct sockaddr_in6 address;
int buf_len, on = 1, rc = 0;
int sd = -1, lsd = -1, al, ioCompPort = -1;
int successFlag = FALSE;
pthread_t thr;
void *status;
Qso_OverlappedIO_t ioStruct;

/***/
/* Issue all of the command in a do/while */
/* loop so that clean up can happen at end */
/***/

do
{

/***/
/* Create an I/O completion port for this */
/* process. */

Socket programming 135

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/***/
if ((ioCompPort = QsoCreateIOCompletionPort()) < 0)
{

perror("QsoCreateIOCompletionPort() failed");
break;

}
/***/
/* Create a worker thread */
/* to process all client requests. The */
/* worker thread will wait for client */
/* requests to arrive on the I/O completion */
/* port just created. */
/***/
rc = pthread_create(&thr, NULL, workerThread, &ioCompPort);
if (rc < 0)
{

perror("pthread_create() failed");
break;

}

/* open a gsk environment */
rc = errno = 0;
printf("gsk_environment_open()\n");
rc = gsk_environment_open(&my_env_handle);
if (rc != GSK_OK)
{
printf("gsk_environment_open() failed with rc = %d and errno = %d.\n",

rc,errno);
printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* set the Application ID to use */
rc = errno = 0;
rc = gsk_attribute_set_buffer(my_env_handle,

GSK_OS400_APPLICATION_ID,
"MY_SERVER_APP",
13);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_buffer() failed with rc = %d and errno = %d.\n"
,rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* set this side as the server */
rc = errno = 0;
rc = gsk_attribute_set_enum(my_env_handle,

GSK_SESSION_TYPE,
GSK_SERVER_SESSION);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_enum() failed with rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* by default SSL_V2, SSL_V3, and TLS_V1 are enabled */
/* We will disable SSL_V2 for this example. */
rc = errno = 0;
rc = gsk_attribute_set_enum(my_env_handle,

GSK_PROTOCOL_SSLV2,
GSK_PROTOCOL_SSLV2_OFF);

if (rc != GSK_OK)
{

136 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("gsk_attribute_set_enum() failed with rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* set the cipher suite to use. By default our default list */
/* of ciphers is enabled. For this example we will just use one */
rc = errno = 0;
rc = gsk_attribute_set_buffer(my_env_handle,

GSK_V3_CIPHER_SPECS,
"05", /* SSL_RSA_WITH_RC4_128_SHA */
2);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_buffer() failed with rc = %d and errno = %d.\n"
,rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* Initialize the secure environment */
rc = errno = 0;
printf("gsk_environment_init()\n");
rc = gsk_environment_init(my_env_handle);
if (rc != GSK_OK)
{

printf("gsk_environment_init() failed with rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* initialize a socket to be used for listening */
printf("socket()\n");
lsd = socket(AF_INET6, SOCK_STREAM, 0);
if (lsd < 0)
{

perror("socket() failed");
break;

}

/* set socket so can be reused immediately */
rc = setsockopt(lsd, SOL_SOCKET,

SO_REUSEADDR,
(char *)&on,
sizeof(on));

if (rc < 0)
{

perror("setsockopt() failed");
break;

}

/* bind to the local server address */
memset((char *) &address, 0, sizeof(address));
address.sin6_family = AF_INET6;
address.sin6_port = 13333;
memcpy(&address.sin6_addr, &in6addr_any, sizeof(in6addr_any));
printf("bind()\n");
rc = bind(lsd, (struct sockaddr *) &address, sizeof(address));
if (rc < 0)
{

perror("bind() failed");
break;

}

/* enable the socket for incoming client connections */

Socket programming 137

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("listen()\n");
listen(lsd, 5);
if (rc < 0)
{

perror("listen() failed");
break;

}

/* accept an incoming client connection */
al = sizeof(address);
printf("accept()\n");
sd = accept(lsd, (struct sockaddr *) &address, &al);
if (sd < 0)
{

perror("accept() failed");
break;

}

/* open a secure session */
rc = errno = 0;
printf("gsk_secure_soc_open()\n");
rc = gsk_secure_soc_open(my_env_handle, &my_session_handle);
if (rc != GSK_OK)
{

printf("gsk_secure_soc_open() failed with rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}
/* associate our socket with the secure session */
rc=errno=0;
rc = gsk_attribute_set_numeric_value(my_session_handle,

GSK_FD,
sd);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_numeric_value() failed with rc = %d ", rc);
printf("and errno = %d.\n", errno);
printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/***/
/* Issue gsk_secure_soc_startInit() to */
/* process SSL Handshake flow asynchronously */
/***/
/***/
/* initialize Qso_OverlappedIO_t structure - */
/* reserved fields must be hex 00’s. */
/***/
memset(&ioStruct, ’\0’, sizeof(ioStruct));

/***/
/* Store the session handle in the */
/* Qso_OverlappedIO_t descriptorHandle field.*/
/* This area is used to house information */
/* defining the state of the client */
/* connection. Field descriptorHandle is */
/* defined as a (void *) to allow the server */
/* to address more extensive client */
/* connection state if needed. */
/***/
ioStruct.descriptorHandle = my_session_handle;

/* initiate the SSL handshake */
rc = errno = 0;
printf("gsk_secure_soc_startInit()\n");

138 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

rc = gsk_secure_soc_startInit(my_session_handle, ioCompPort, &ioStruct);
if (rc != GSK_OS400_ASYNCHRONOUS_SOC_INIT)
{

printf("gsk_secure_soc_startInit() rc = %d and errno = %d.\n",rc,errno);
printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}
else

printf("gsk_secure_soc_startInit got GSK_OS400_ASYNCHRONOUS_SOC_INIT\n");

/***/
/* This is where the server can loop back */
/* to accept a new connection. */
/***/

/***/
/* Wait for worker thread to finish */
/* processing client connection. */
/***/
rc = pthread_join(thr, &status);

/* check status of the worker */
if (rc == 0 && (rc = __INT(status)) == Success)
{

printf("Success.\n");
successFlag = TRUE;

}
else
{

perror("pthread_join() reported failure");
}

} while(FALSE);

/* disable the SSL session */
if (my_session_handle != NULL)

gsk_secure_soc_close(&my_session_handle);

/* disable the SSL environment */
if (my_env_handle != NULL)

gsk_environment_close(&my_env_handle);

/* close the listening socket */
if (lsd > -1)

close(lsd);
/* close the accepted socket */
if (sd > -1)

close(sd);

/* destroy the completion port */
if (ioCompPort > -1)

QsoDestroyIOCompletionPort(ioCompPort);

if (successFlag)
exit(0);

exit(-1);
}

/**/
/* Function Name: workerThread */
/* */
/* Descriptive Name: Process client connection. */
/* */
/* Note: To make the sample more straight forward the main routine */
/* handles all of the clean up although this function can */

Socket programming 139

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* be made responsible for the clientfd and session_handle. */
/**/
void *workerThread(void *arg)
{

struct timeval waitTime;
int ioCompPort, clientfd;
Qso_OverlappedIO_t ioStruct;
int rc, tID;
int amtWritten, amtRead;
char buff[1024];
gsk_handle client_session_handle;
pthread_t thr;
pthread_id_np_t t_id;
t_id = pthread_getthreadid_np();
tID = t_id.intId.lo;
/***/
/* I/O completion port is passed to this */
/* routine. */
/***/
ioCompPort = *(int *)arg;
/***/
/* Wait on the supplied I/O completion port */
/* for the SSL handshake to complete. */
/***/
waitTime.tv_sec = 500;
waitTime.tv_usec = 0;

sleep(4);
printf("QsoWaitForIOCompletion()\n");
rc = QsoWaitForIOCompletion(ioCompPort, &ioStruct, &waitTime);
if ((rc == 1) &&

(ioStruct.returnValue == GSK_OK) &&
(ioStruct.operationCompleted == GSKSECURESOCSTARTINIT))

/***/
/* SSL Handshake has completed. */
/***/
;
else
{

printf("QsoWaitForIOCompletion()/gsk_secure_soc_startInit() failed.\n");
printf("rc == %d, returnValue - %d, operationCompleted = %d\n",

rc, ioStruct.returnValue, ioStruct.operationCompleted);
perror("QsoWaitForIOCompletion()/gsk_secure_soc_startInit() failed");
return __VOID(Failure);

}

/***/
/* Obtain the session handle associated */
/* with the client connection. */
/***/
client_session_handle = ioStruct.descriptorHandle;

/* get the socket associated with the secure session */
rc=errno=0;
printf("gsk_attribute_get_numeric_value()\n");
rc = gsk_attribute_get_numeric_value(client_session_handle,

GSK_FD,
&clientfd);

if (rc != GSK_OK)
{

printf("gsk_attribute_get_numeric_value() rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
return __VOID(Failure);

}
/* memset buffer to hex zeros */
memset((char *) buff, 0, sizeof(buff));

140 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

amtRead = 0;
/* receive a message from the client using the secure session */
printf("gsk_secure_soc_read()\n");
rc = gsk_secure_soc_read(client_session_handle,

buff,
sizeof(buff),
&amtRead);

if (rc != GSK_OK)
{

printf("gsk_secure_soc_read() rc = %d and errno = %d.\n",rc,errno);
printf("rc of %d means %s\n", rc, gsk_strerror(rc));
return;

}

/* write results to screen */
printf("gsk_secure_soc_read() received %d bytes, here they are ...\n",

amtRead);
printf("%s\n",buff);

/* send the message to the client using the secure session */
amtWritten = 0;
printf("gsk_secure_soc_write()\n");
rc = gsk_secure_soc_write(client_session_handle,

buff,
amtRead,
&amtWritten);

if (amtWritten != amtRead)
{

if (rc != GSK_OK)
{

printf("gsk_secure_soc_write() rc = %d and errno = %d.\n",rc,errno);
printf("rc of %d means %s\n", rc, gsk_strerror(rc));
return __VOID(Failure);

}
else
{

printf("gsk_secure_soc_write() did not write all data.\n");
return __VOID(Failure);

}
}
/* write results to screen */
printf("gsk_secure_soc_write() wrote %d bytes...\n", amtWritten);
printf("%s\n",buff);

return __VOID(Success);
}
/* end workerThread */

Related concepts:
“Global Security Kit (GSKit) APIs” on page 47
Global Security Kit (GSKit) is a set of programmable interfaces that allow an application to be SSL
enabled.
Related reference:
“Example: Establishing a secure client with Global Security Kit APIs” on page 142
This example demonstrates how to establish a client using the Global Security Kit (GSKit) APIs.
“Example: GSKit secure server with asynchronous data receive” on page 122
This example demonstrates how to establish a secure server using Global Security Kit (GSKit) APIs.
Related information:
QsoCreateIOCompletionPort()--Create I/O Completion Port API
pthread_create
QsoWaitForIOCompletion()--Wait for I/O Operation API

Socket programming 141

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QsoDestroyIOCompletionPort()--Destroy I/O Completion Port API
bind()--Set Local Address for Socket API
socket()--Create Socket API
listen()--Invite Incoming Connections Requests API
close()--Close File or Socket Descriptor API
accept()--Wait for Connection Request and Make Connection API
gsk_environment_open()--Get a handle for an SSL environment API
gsk_attribute_set_buffer()--Set character information for a secure session or an SSL environment API
gsk_attribute_set_enum()--Set enumerated information for a secure session or an SSL environment API
gsk_environment_init()--Initialize an SSL environment API
gsk_secure_soc_open()--Get a handle for a secure session API
gsk_attribute_set_numeric_value()--Set numeric information for a secure session or an SSL environment
API
gsk_secure_soc_init()--Negotiate a secure session API
pthread_join
gsk_secure_soc_close()--Close a secure session API
gsk_environment_close()--Close an SSL environment API
gsk_attribute_get_numeric_value()--Get numeric information about a secure session or an SSL
environment API
gsk_secure_soc_write()--Send data on a secure session API
gsk_secure_soc_startInit()--Start asynchronous operation to negotiate a secure session API
gsk_secure_soc_read()--Receive data on a secure session API

Example: Establishing a secure client with Global Security Kit APIs
This example demonstrates how to establish a client using the Global Security Kit (GSKit) APIs.

The following graphic shows the API calls on a secure client using the GSKit APIs.

142 IBM i: Programming Socket programming

Socket programming 143

Socket flow of events: GSKit client

This flow describes the socket calls in the following sample application. Use this client example with the
GSKit server example and the Example: GSKit secure server with asynchronous handshake.
1. The gsk_environment_open() API obtains a handle to an SSL environment.
2. One or more calls to gsk_attribute_set_xxxxx() to set attributes of the SSL environment. At a

minimum, either a call to gsk_attribute_set_buffer() to set the GSK_OS400_APPLICATION_ID value
or to set the GSK_KEYRING_FILE value. Only one of these should be set. It is preferred that you use
the GSK_OS400_APPLICATION_ID value. Also ensure you set the type of application (client or
server), GSK_SESSION_TYPE, using gsk_attribute_set_enum().

3. A call to gsk_environment_init() to initialize this environment for SSL processing and to establish the
SSL security information for all SSL sessions that run using this environment.

4. The socket() API creates a socket descriptor. The client then issues the connect() API to connect to the
server application.

5. The gsk_secure_soc_open() API obtains storage for a secure session, sets default values for attributes,
and returns a handle that must be saved and used on secure session-related API calls.

6. The gsk_attribute_set_numeric_value() API associates a specific socket with this secure session.
7. The gsk_secure_soc_init() API starts an asynchronous negotiation of a secure session, using the

attributes set for the SSL environment and the secure session.
8. The gsk_secure_soc_write() API writes data on a secure session to the worker thread.

Note: For the GSKit server example, this API writes data to the worker thread where the
gsk_secure_soc_startRecv() API is completed. In the asynchronous example, it writes to the
completed gsk_secure_soc_startInit() .

9. The gsk_secure_soc_read() API receives a message from the worker thread using the secure session.
10. The gsk_secure_soc_close() API ends the secure session.
11. The gsk_environment_close() API closes the SSL environment.
12. The close() API ends the connection.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/* GSK Client Program using Application Id */

/* This program assumes that the application id is */
/* already registered and a certificate has been */
/* associated with the application id */
/* */
/* No parameters, some comments and many hardcoded */
/* values to keep it short and simple */

/* use following command to create bound program: */
/* CRTBNDC PGM(MYLIB/GSKCLIENT) */
/* SRCFILE(MYLIB/CSRC) */
/* SRCMBR(GSKCLIENT) */

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <gskssl.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>
#define TRUE 1
#define FALSE 0

void main(void)
{

144 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

gsk_handle my_env_handle=NULL; /* secure environment handle */
gsk_handle my_session_handle=NULL; /* secure session handle */

struct sockaddr_in6 address;
int buf_len, rc = 0, sd = -1;
int amtWritten, amtRead;
char buff1[1024];
char buff2[1024];

/* hardcoded IP address (change to make address where server program runs) */
char addr[40] = "FE80::1";

/***/
/* Issue all of the command in a do/while */
/* loop so that cleanup can happen at end */
/***/
do
{

/* open a gsk environment */
rc = errno = 0;
rc = gsk_environment_open(&my_env_handle);
if (rc != GSK_OK)
{

printf("gsk_environment_open() failed with rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* set the Application ID to use */
rc = errno = 0;
rc = gsk_attribute_set_buffer(my_env_handle,

GSK_OS400_APPLICATION_ID,
"MY_CLIENT_APP",
13);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_buffer() failed with rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* set this side as the client (this is the default */
rc = errno = 0;
rc = gsk_attribute_set_enum(my_env_handle,

GSK_SESSION_TYPE,
GSK_CLIENT_SESSION);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_enum() failed with rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* by default SSL_V2, SSL_V3, and TLS_V1 are enabled */
/* We will disable SSL_V2 for this example. */
rc = errno = 0;
rc = gsk_attribute_set_enum(my_env_handle,

GSK_PROTOCOL_SSLV2,
GSK_PROTOCOL_SSLV2_OFF);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_enum() failed with rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));

Socket programming 145

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

break;
}

/* set the cipher suite to use. By default our default list */
/* of ciphers is enabled. For this example we will just use one */
rc = errno = 0;
rc = gsk_attribute_set_buffer(my_env_handle,

GSK_V3_CIPHER_SPECS,
"05", /* SSL_RSA_WITH_RC4_128_SHA */
2);

if (rc != GSK_OK)
{

printf("gsk_attribute_set_buffer() failed with rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* Initialize the secure environment */
rc = errno = 0;
rc = gsk_environment_init(my_env_handle);
if (rc != GSK_OK)
{

printf("gsk_environment_init() failed with rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* initialize a socket to be used for listening */
sd = socket(AF_INET6, SOCK_STREAM, 0);
if (sd < 0)
{

perror("socket() failed");
break;

}

/* connect to the server using a set port number */
memset((char *) &address, 0, sizeof(address));
address.sin6_family = AF_INET6;
address.sin6_port = 13333;
rc = inet_pton(AF_INET6, addr, &address.sin6_addr.s6_addr);
rc = connect(sd, (struct sockaddr *) &address, sizeof(address));
if (rc < 0)
{

perror("connect() failed");
break;

}

/* open a secure session */
rc = errno = 0;
rc = gsk_secure_soc_open(my_env_handle, &my_session_handle);
if (rc != GSK_OK)
{

printf("gsk_secure_soc_open() failed with rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* associate our socket with the secure session */
rc=errno=0;
rc = gsk_attribute_set_numeric_value(my_session_handle,

GSK_FD,
sd);

if (rc != GSK_OK)
{

146 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("gsk_attribute_set_numeric_value() failed with rc = %d ", rc);
printf("and errno = %d.\n", errno);
printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* initiate the SSL handshake */
rc = errno = 0;
rc = gsk_secure_soc_init(my_session_handle);
if (rc != GSK_OK)
{

printf("gsk_secure_soc_init() failed with rc = %d and errno = %d.\n",
rc,errno);

printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* memset buffer to hex zeros */
memset((char *) buff1, 0, sizeof(buff1));

/* send a message to the server using the secure session */
strcpy(buff1,"Test of gsk_secure_soc_write \n\n");

/* send the message to the client using the secure session */
buf_len = strlen(buff1);
amtWritten = 0;
rc = gsk_secure_soc_write(my_session_handle, buff1, buf_len, &amtWritten);
if (amtWritten != buf_len)
{

if (rc != GSK_OK)
{

printf("gsk_secure_soc_write() rc = %d and errno = %d.\n",rc,errno);
printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}
else
{

printf("gsk_secure_soc_write() did not write all data.\n");
break;

}
}

/* write results to screen */
printf("gsk_secure_soc_write() wrote %d bytes...\n", amtWritten);
printf("%s\n",buff1);

/* memset buffer to hex zeros */
memset((char *) buff2, 0x00, sizeof(buff2));

/* receive a message from the client using the secure session */
amtRead = 0;
rc = gsk_secure_soc_read(my_session_handle, buff2, sizeof(buff2), &amtRead);

if (rc != GSK_OK)
{

printf("gsk_secure_soc_read() rc = %d and errno = %d.\n",rc,errno);
printf("rc of %d means %s\n", rc, gsk_strerror(rc));
break;

}

/* write results to screen */
printf("gsk_secure_soc_read() received %d bytes, here they are ...\n",

amtRead);
printf("%s\n",buff2);

} while(FALSE);

Socket programming 147

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* disable SSL support for the socket */
if (my_session_handle != NULL)

gsk_secure_soc_close(&my_session_handle);

/* disable the SSL environment */
if (my_env_handle != NULL)

gsk_environment_close(&my_env_handle);

/* close the connection */
if (sd > -1)

close(sd);

return;
}

Related concepts:
“Global Security Kit (GSKit) APIs” on page 47
Global Security Kit (GSKit) is a set of programmable interfaces that allow an application to be SSL
enabled.
Related reference:
“Example: GSKit secure server with asynchronous data receive” on page 122
This example demonstrates how to establish a secure server using Global Security Kit (GSKit) APIs.
“Example: GSKit secure server with asynchronous handshake” on page 132
The gsk_secure_soc_startInit() API allows you to create secure server applications that can handle
requests asynchronously.
Related information:
socket()--Create Socket API
close()--Close File or Socket Descriptor API
connect()--Establish Connection or Destination Address API
gsk_environment_open()--Get a handle for an SSL environment API
gsk_attribute_set_buffer()--Set character information for a secure session or an SSL environment API
gsk_attribute_set_enum()--Set enumerated information for a secure session or an SSL environment API
gsk_environment_init()--Initialize an SSL environment API
gsk_secure_soc_open()--Get a handle for a secure session API
gsk_attribute_set_numeric_value()--Set numeric information for a secure session or an SSL environment
API
gsk_secure_soc_init()--Negotiate a secure session API
gsk_secure_soc_close()--Close a secure session API
gsk_environment_close()--Close an SSL environment API
gsk_secure_soc_write()--Send data on a secure session API
gsk_secure_soc_startInit()--Start asynchronous operation to negotiate a secure session API
gsk_secure_soc_startRecv()--Start asynchronous receive operation on a secure session API
gsk_secure_soc_read()--Receive data on a secure session API

Example: Using gethostbyaddr_r() for threadsafe network routines
This example program uses the gethostbyaddr_r() API. All other routines with names that end in _r have
similar semantics and are also threadsafe.

This example program takes an IP address in the dotted-decimal notation and prints the host name.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

148 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/**/
/* Header files */
/**/
#include </netdb.h>
#include <sys/param.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <stdio.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#define HEX00 ’\x00’
#define NUMPARMS 2
/**/
/* Pass one parameter that is the IP address in */
/* dotted decimal notation. The host name will be */
/* displayed if found; otherwise, a message states */
/* host not found. */
/**/
int main(int argc, char *argv[])

{
int rc;
struct in_addr internet_address;
struct hostent hst_ent;
struct hostent_data hst_ent_data;
char dotted_decimal_address [16];
char host_name[MAXHOSTNAMELEN];

/**/
/* Verify correct number of arguments have been passed */
/**/
if (argc != NUMPARMS)
{
printf("Wrong number of parms passed\n");
exit(-1);

}
/**/
/* Obtain addressability to parameters passed */
/**/
strcpy(dotted_decimal_address, argv[1]);

/**/
/* Initialize the structure-field */
/* hostent_data.host_control_blk with hexadecimal zeros */
/* before its initial use. If you require compatibility */
/* with other platforms, then you must initialize the */
/* entire hostent_data structure with hexadecimal zeros. */
/**/
/* Initialize to hex 00 hostent_data structure */
/**/
memset(&hst_ent_data,HEX00,sizeof(struct hostent_data));

/**/
/* Translate an IP address from dotted decimal */
/* notation to 32-bit IP address format. */
/**/
internet_address.s_addr=inet_addr(dotted_decimal_address);

/**/
/* Obtain host name */
/**/
/**/
/* NOTE: The gethostbyaddr_r() returns an integer. */
/* The following are possible values: */
/* -1 (unsuccessful call) */
/* 0 (successful call) */
/**/
rc=gethostbyaddr_r((char *) &internet_address,

Socket programming 149

sizeof(struct in_addr), AF_INET,
&hst_ent, &hst_ent_data);

if (rc== -1)
{

printf("Host name not found\n");
exit(-1);

}
else

{
/***/
/* Copy the host name to an output buffer */
/***/

(void) memcpy((void *) host_name,
/**/
/* You must address all the results through the */
/* hostent structure hst_ent. */
/* NOTE: Hostent_data structure hst_ent_data is just */
/* a data repository that is used to support the */
/* hostent structure. Applications should consider */
/* hostent_data a storage area to put host level data */
/* that the application does not need to access. */
/**/

(void *) hst_ent.h_name,
MAXHOSTNAMELEN);

/***/
/* Print the host name */
/***/

printf("The host name is %s\n", host_name);

}
exit(0);

}

Related concepts:
“Thread safety” on page 58
A function is considered threadsafe if you can start it simultaneously in multiple threads within the same
process. A function is threadsafe only if all the functions it calls are also threadsafe. Socket APIs consist of
system and network functions, which are both threadsafe.
Related reference:
“Socket network functions” on page 64
Socket network functions allow application programs to obtain information from the host, protocol,
service, and network files.
Related information:
gethostbyaddr_r()--Get Host Information for IP Address API

150 IBM i: Programming Socket programming

Example: Nonblocking I/O and select()
This sample program illustrates a server application that uses nonblocking and the select() API.

Socket flow of events: Server that uses nonblocking I/O and select()

The following calls are used in the example:
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the INET (Internet Protocol) address family with the TCP transport (SOCK_STREAM) is
used for this socket.

2. The ioctl() API allows the local address to be reused when the server is restarted before the required
wait time expires. In this example, it sets the socket to be nonblocking. All of the sockets for the
incoming connections are also nonblocking because they inherit that state from the listening socket.

3. After the socket descriptor is created, the bind() gets a unique name for the socket.

Socket programming 151

4. The listen() allows the server to accept incoming client connections.
5. The server uses the accept() API to accept an incoming connection request. The accept() API call

blocks indefinitely, waiting for the incoming connection to arrive.
6. The select() API allows the process to wait for an event to occur and to wake up the process when the

event occurs. In this example, the select() API returns a number that represents the socket descriptors
that are ready to be processed.

0 Indicates that the process times out. In this example, the timeout is set for 3 minutes.

-1 Indicates that the process has failed.

1 Indicates only one descriptor is ready to be processed. In this example, when a 1 is returned,
the FD_ISSET and the subsequent socket calls complete only once.

n Indicates that multiple descriptors are waiting to be processed. In this example, when an n is
returned, the FD_ISSET and subsequent code loops and completes the requests in the order
they are received by the server.

7. The accept() and recv() APIs are completed when the EWOULDBLOCK is returned.
8. The send() API echoes the data back to the client.
9. The close() API closes any open socket descriptors.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <errno.h>

#define SERVER_PORT 12345

#define TRUE 1
#define FALSE 0

main (int argc, char *argv[])
{

int i, len, rc, on = 1;
int listen_sd, max_sd, new_sd;
int desc_ready, end_server = FALSE;
int close_conn;
char buffer[80];
struct sockaddr_in6 addr;
struct timeval timeout;
struct fd_set master_set, working_set;

/***/
/* Create an AF_INET6 stream socket to receive incoming */
/* connections on */
/***/
listen_sd = socket(AF_INET6, SOCK_STREAM, 0);
if (listen_sd < 0)
{

perror("socket() failed");
exit(-1);

}

/***/
/* Allow socket descriptor to be reuseable */
/***/
rc = setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR,

(char *)&on, sizeof(on));

152 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if (rc < 0)
{

perror("setsockopt() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Set socket to be nonblocking. All of the sockets for */
/* the incoming connections will also be nonblocking since */
/* they will inherit that state from the listening socket. */
/***/
rc = ioctl(listen_sd, FIONBIO, (char *)&on);
if (rc < 0)
{

perror("ioctl() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Bind the socket */
/***/
memset(&addr, 0, sizeof(addr));
addr.sin6_family = AF_INET6;
memcpy(&addr.sin6_addr, &in6addr_any, sizeof(in6addr_any));
addr.sin6_port = htons(SERVER_PORT);
rc = bind(listen_sd,

(struct sockaddr *)&addr, sizeof(addr));
if (rc < 0)
{

perror("bind() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Set the listen back log */
/***/
rc = listen(listen_sd, 32);
if (rc < 0)
{

perror("listen() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Initialize the master fd_set */
/***/
FD_ZERO(&master_set);
max_sd = listen_sd;
FD_SET(listen_sd, &master_set);

/***/
/* Initialize the timeval struct to 3 minutes. If no */
/* activity after 3 minutes this program will end. */
/***/
timeout.tv_sec = 3 * 60;
timeout.tv_usec = 0;

/***/
/* Loop waiting for incoming connects or for incoming data */
/* on any of the connected sockets. */
/***/
do
{

Socket programming 153

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/**/
/* Copy the master fd_set over to the working fd_set. */
/**/
memcpy(&working_set, &master_set, sizeof(master_set));

/**/
/* Call select() and wait 3 minutes for it to complete. */
/**/
printf("Waiting on select()...\n");
rc = select(max_sd + 1, &working_set, NULL, NULL, &timeout);

/**/
/* Check to see if the select call failed. */
/**/
if (rc < 0)
{

perror(" select() failed");
break;

}

/**/
/* Check to see if the 3 minute time out expired. */
/**/
if (rc == 0)
{

printf(" select() timed out. End program.\n");
break;

}

/**/
/* One or more descriptors are readable. Need to */
/* determine which ones they are. */
/**/
desc_ready = rc;
for (i=0; i <= max_sd && desc_ready > 0; ++i)
{

/***/
/* Check to see if this descriptor is ready */
/***/
if (FD_ISSET(i, &working_set))
{

/**/
/* A descriptor was found that was readable - one */
/* less has to be looked for. This is being done */
/* so that we can stop looking at the working set */
/* once we have found all of the descriptors that */
/* were ready. */
/**/
desc_ready -= 1;

/**/
/* Check to see if this is the listening socket */
/**/
if (i == listen_sd)
{

printf(" Listening socket is readable\n");
/***/
/* Accept all incoming connections that are */
/* queued up on the listening socket before we */
/* loop back and call select again. */
/***/
do
{

/**/
/* Accept each incoming connection. If */
/* accept fails with EWOULDBLOCK, then we */
/* have accepted all of them. Any other */

154 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* failure on accept will cause us to end the */
/* server. */
/**/
new_sd = accept(listen_sd, NULL, NULL);
if (new_sd < 0)
{

if (errno != EWOULDBLOCK)
{

perror(" accept() failed");
end_server = TRUE;

}
break;

}

/**/
/* Add the new incoming connection to the */
/* master read set */
/**/
printf(" New incoming connection - %d\n", new_sd);
FD_SET(new_sd, &master_set);
if (new_sd > max_sd)

max_sd = new_sd;

/**/
/* Loop back up and accept another incoming */
/* connection */
/**/

} while (new_sd != -1);
}

/**/
/* This is not the listening socket, therefore an */
/* existing connection must be readable */
/**/
else
{

printf(" Descriptor %d is readable\n", i);
close_conn = FALSE;
/***/
/* Receive all incoming data on this socket */
/* before we loop back and call select again. */
/***/
do
{

/**/
/* Receive data on this connection until the */
/* recv fails with EWOULDBLOCK. If any other */
/* failure occurs, we will close the */
/* connection. */
/**/
rc = recv(i, buffer, sizeof(buffer), 0);
if (rc < 0)
{

if (errno != EWOULDBLOCK)
{

perror(" recv() failed");
close_conn = TRUE;

}
break;

}

/**/
/* Check to see if the connection has been */
/* closed by the client */
/**/
if (rc == 0)
{

Socket programming 155

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf(" Connection closed\n");
close_conn = TRUE;
break;

}

/**/
/* Data was received */
/**/
len = rc;
printf(" %d bytes received\n", len);

/**/
/* Echo the data back to the client */
/**/
rc = send(i, buffer, len, 0);
if (rc < 0)
{

perror(" send() failed");
close_conn = TRUE;
break;

}

} while (TRUE);

/***/
/* If the close_conn flag was turned on, we need */
/* to clean up this active connection. This */
/* clean up process includes removing the */
/* descriptor from the master set and */
/* determining the new maximum descriptor value */
/* based on the bits that are still turned on in */
/* the master set. */
/***/
if (close_conn)
{

close(i);
FD_CLR(i, &master_set);
if (i == max_sd)
{

while (FD_ISSET(max_sd, &master_set) == FALSE)
max_sd -= 1;

}
}

} /* End of existing connection is readable */
} /* End of if (FD_ISSET(i, &working_set)) */

} /* End of loop through selectable descriptors */

} while (end_server == FALSE);

/***/
/* Clean up all of the sockets that are open */
/***/
for (i=0; i <= max_sd; ++i)
{

if (FD_ISSET(i, &master_set))
close(i);

}
}

Related concepts:
“Nonblocking I/O” on page 58
When an application issues one of the socket input APIs and there is no data to read, the API blocks and
does not return until there is data to read.
“I/O multiplexing—select()” on page 64
Because asynchronous I/O provides a more efficient way to maximize your application resources, it is
recommended that you use asynchronous I/O APIs rather than the select() API. However, your specific

156 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

application design might allow select() to be used.
Related reference:
“Socket application design recommendations” on page 87
Before working with a socket application, assess the functional requirements, goals, and needs of the
socket application. Also, consider the performance requirements and the system resource impacts of the
application.
“Example: Generic client” on page 112
This example contains the code for a common client job. The client job does a socket(), connect(), send(),
recv(), and close() operation.
Related information:
accept()--Wait for Connection Request and Make Connection API
recv()--Receive Data API
ioctl()--Perform I/O Control Request API
send()--Send Data API
listen()--Invite Incoming Connections Requests API
close()--Close File or Socket Descriptor API
socket()--Create Socket API
bind()--Set Local Address for Socket API
select()--Wait for Events on Multiple Sockets API

Using poll() instead of select()
The poll() API is part of the Single Unix Specification and the UNIX 95/98 standard. The poll() API
performs the same API as the existing select() API. The only difference between these two APIs is the
interface provided to the caller.

The select() API requires that the application pass in an array of bits in which one bit is used to represent
each descriptor number. When descriptor numbers are very large, it can overflow the 30KB allocated
memory size, forcing multiple iterations of the process. This overhead can adversely affect performance.

The poll() API allows the application to pass an array of structures rather than an array of bits. Because
each pollfd structure can contain up to 8 bytes, the application only needs to pass one structure for each
descriptor, even if descriptor numbers are very large.

Socket flow of events: Server that uses poll()

The following calls are used in the example:
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the AF_INET6 (Internet Protocol version 6) address family with the TCP transport
(SOCK_STREAM) is used for this socket.

2. The setsockopt() API allows the application to reuse the local address when the server is restarted
before the required wait time expires.

3. The ioctl() API sets the socket to be nonblocking. All of the sockets for the incoming connections are
also nonblocking because they inherit that state from the listening socket.

4. After the socket descriptor is created, the bind() API gets a unique name for the socket.
5. The listen() API call allows the server to accept incoming client connections.
6. The poll() API allows the process to wait for an event to occur and to wake up the process when the

event occurs. The poll() API might return one of the following values.

0 Indicates that the process times out. In this example, the timeout is set for 3 minutes (in
milliseconds).

-1 Indicates that the process has failed.

Socket programming 157

|
|
|

1 Indicates only one descriptor is ready to be processed, which is processed only if it is the
listening socket.

1++ Indicates that multiple descriptors are waiting to be processed. The poll() API allows
simultaneous connection with all descriptors in the queue on the listening socket.

7. The accept() and recv() APIs are completed when the EWOULDBLOCK is returned.
8. The send() API echoes the data back to the client.
9. The close() API closes any open socket descriptors.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/poll.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <errno.h>

#define SERVER_PORT 12345

#define TRUE 1
#define FALSE 0

main (int argc, char *argv[])
{

int len, rc, on = 1;
int listen_sd = -1, new_sd = -1;
int desc_ready, end_server = FALSE, compress_array = FALSE;
int close_conn;
char buffer[80];
struct sockaddr_in6 addr;
int timeout;
struct pollfd fds[200];
int nfds = 1, current_size = 0, i, j;

/***/
/* Create an AF_INET6 stream socket to receive incoming */
/* connections on */
/***/
listen_sd = socket(AF_INET6, SOCK_STREAM, 0);
if (listen_sd < 0)
{

perror("socket() failed");
exit(-1);

}

/***/
/* Allow socket descriptor to be reuseable */
/***/
rc = setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR,

(char *)&on, sizeof(on));
if (rc < 0)
{

perror("setsockopt() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Set socket to be nonblocking. All of the sockets for */
/* the incoming connections will also be nonblocking since */
/* they will inherit that state from the listening socket. */

158 IBM i: Programming Socket programming

/***/
rc = ioctl(listen_sd, FIONBIO, (char *)&on);
if (rc < 0)
{

perror("ioctl() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Bind the socket */
/***/
memset(&addr, 0, sizeof(addr));
addr.sin6_family = AF_INET6;
memcpy(&addr.sin6_addr, &in6addr_any, sizeof(in6addr_any));
addr.sin6_port = htons(SERVER_PORT);
rc = bind(listen_sd,

(struct sockaddr *)&addr, sizeof(addr));
if (rc < 0)
{

perror("bind() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Set the listen back log */
/***/
rc = listen(listen_sd, 32);
if (rc < 0)
{

perror("listen() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Initialize the pollfd structure */
/***/
memset(fds, 0 , sizeof(fds));

/***/
/* Set up the initial listening socket */
/***/
fds[0].fd = listen_sd;
fds[0].events = POLLIN;
/***/
/* Initialize the timeout to 3 minutes. If no */
/* activity after 3 minutes this program will end. */
/* timeout value is based on milliseconds. */
/***/
timeout = (3 * 60 * 1000);

/***/
/* Loop waiting for incoming connects or for incoming data */
/* on any of the connected sockets. */
/***/
do
{

/***/
/* Call poll() and wait 3 minutes for it to complete. */
/***/
printf("Waiting on poll()...\n");
rc = poll(fds, nfds, timeout);

/***/
/* Check to see if the poll call failed. */

Socket programming 159

/***/
if (rc < 0)
{

perror(" poll() failed");
break;

}

/***/
/* Check to see if the 3 minute time out expired. */
/***/
if (rc == 0)
{

printf(" poll() timed out. End program.\n");
break;

}

/***/
/* One or more descriptors are readable. Need to */
/* determine which ones they are. */
/***/
current_size = nfds;
for (i = 0; i < current_size; i++)
{

/***/
/* Loop through to find the descriptors that returned */
/* POLLIN and determine whether it’s the listening */
/* or the active connection. */
/***/
if(fds[i].revents == 0)

continue;

/***/
/* If revents is not POLLIN, it’s an unexpected result, */
/* log and end the server. */
/***/
if(fds[i].revents != POLLIN)
{

printf(" Error! revents = %d\n", fds[i].revents);
end_server = TRUE;
break;

}
if (fds[i].fd == listen_sd)
{

/***/
/* Listening descriptor is readable. */
/***/
printf(" Listening socket is readable\n");

/***/
/* Accept all incoming connections that are */
/* queued up on the listening socket before we */
/* loop back and call poll again. */
/***/
do
{

/***/
/* Accept each incoming connection. If */
/* accept fails with EWOULDBLOCK, then we */
/* have accepted all of them. Any other */
/* failure on accept will cause us to end the */
/* server. */
/***/
new_sd = accept(listen_sd, NULL, NULL);
if (new_sd < 0)
{

160 IBM i: Programming Socket programming

if (errno != EWOULDBLOCK)
{

perror(" accept() failed");
end_server = TRUE;

}
break;

}

/***/
/* Add the new incoming connection to the */
/* pollfd structure */
/***/
printf(" New incoming connection - %d\n", new_sd);
fds[nfds].fd = new_sd;
fds[nfds].events = POLLIN;
nfds++;

/***/
/* Loop back up and accept another incoming */
/* connection */
/***/

} while (new_sd != -1);
}

/***/
/* This is not the listening socket, therefore an */
/* existing connection must be readable */
/***/

else
{

printf(" Descriptor %d is readable\n", fds[i].fd);
close_conn = FALSE;
/***/
/* Receive all incoming data on this socket */
/* before we loop back and call poll again. */
/***/

do
{

/***/
/* Receive data on this connection until the */
/* recv fails with EWOULDBLOCK. If any other */
/* failure occurs, we will close the */
/* connection. */
/***/
rc = recv(fds[i].fd, buffer, sizeof(buffer), 0);
if (rc < 0)
{

if (errno != EWOULDBLOCK)
{

perror(" recv() failed");
close_conn = TRUE;

}
break;

}

/***/
/* Check to see if the connection has been */
/* closed by the client */
/***/
if (rc == 0)
{

printf(" Connection closed\n");
close_conn = TRUE;
break;

}

Socket programming 161

/***/
/* Data was received */
/***/
len = rc;
printf(" %d bytes received\n", len);

/***/
/* Echo the data back to the client */
/***/
rc = send(fds[i].fd, buffer, len, 0);
if (rc < 0)
{

perror(" send() failed");
close_conn = TRUE;
break;

}

} while(TRUE);

/***/
/* If the close_conn flag was turned on, we need */
/* to clean up this active connection. This */
/* clean up process includes removing the */
/* descriptor. */
/***/
if (close_conn)
{

close(fds[i].fd);
fds[i].fd = -1;
compress_array = TRUE;

}

} /* End of existing connection is readable */
} /* End of loop through pollable descriptors */

/***/
/* If the compress_array flag was turned on, we need */
/* to squeeze together the array and decrement the number */
/* of file descriptors. We do not need to move back the */
/* events and revents fields because the events will always*/
/* be POLLIN in this case, and revents is output. */
/***/
if (compress_array)
{

compress_array = FALSE;
for (i = 0; i < nfds; i++)
{

if (fds[i].fd == -1)
{

for(j = i; j < nfds; j++)
{

fds[j].fd = fds[j+1].fd;
}
i--;
nfds--;

}
}

}

} while (end_server == FALSE); /* End of serving running. */

/***/
/* Clean up all of the sockets that are open */
/***/
for (i = 0; i < nfds; i++)

162 IBM i: Programming Socket programming

{
if(fds[i].fd >= 0)

close(fds[i].fd);
}

}

Related information:
accept()--Wait for Connection Request and Make Connection API
recv()--Receive Data API
ioctl()--Perform I/O Control Request API
send()--Send Data API
listen()--Invite Incoming Connections Requests API
close()--Close File or Socket Descriptor API
socket()--Create Socket API
bind()--Set Local Address for Socket API
setsockopt()--Set Socket Options API
poll()--Wait for Events on Multiple Descriptors API

Example: Using signals with blocking socket APIs
When a process or an application becomes blocked, signals allow you to be notified. They also provide a
time limit for blocking processes.

In this example, the signal occurs after five seconds on the accept() call. This call normally blocks
indefinitely, but because there is an alarm set, the call blocks only for five seconds. Because blocked
programs can hinder performance of an application or a server, you can use signals to diminish this
impact. The following example shows how to use signals with blocking socket APIs.

Note: Asynchronous I/O used in a threaded server model is preferable over the more conventional
model.

Socket programming 163

Socket flow of events: Using signals with blocking socket

The following sequence of API calls shows how you can use signals to alert the application when the
socket has been inactive:
1. The socket() API returns a socket descriptor, which represents an endpoint. The statement also

identifies that the AF_INET6 (Internet Protocol version 6) address family with the TCP transport
(SOCK_STREAM) is used for this socket.

2. After the socket descriptor is created, a bind() API gets a unique name for the socket. In this example,
a port number is not specified because the client application does not connect to this socket. This code
snippet can be used within other server programs that use blocking APIs, such as accept().

3. The listen() API indicates a willingness to accept client connection requests. After the listen() API is
issued, an alarm is set to go off in five seconds. This alarm or signal alerts you when the accept() call
blocks.

4. The accept() API accepts a client connection request. This call normally blocks indefinitely, but
because there is an alarm set, the call only blocks for five seconds. When the alarm goes off, the
accept call is completed with -1 and with an errno value of EINTR.

5. The close() API ends any open socket descriptors.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* Example shows how to set alarms for blocking socket APIs */
/**/

/**/
/* Include files */
/**/
#include <signal.h>
#include <unistd.h>
#include <stdio.h>
#include <time.h>
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>

/**/
/* Signal catcher routine. This routine will be called when the */
/* signal occurs. */
/**/
void catcher(int sig)
{

printf(" Signal catcher called for signal %d\n", sig);
}

/**/
/* Main program */
/**/
int main(int argc, char *argv[])
{

struct sigaction sact;
struct sockaddr_in6 addr;
time_t t;
int sd, rc;

/**/
/* Create an AF_INET6, SOCK_STREAM socket */
/**/

printf("Create a TCP socket\n");
sd = socket(AF_INET6, SOCK_STREAM, 0);
if (sd == -1)
{

164 IBM i: Programming Socket programming

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

perror(" socket failed");
return(-1);

}

/**/
/* Bind the socket. A port number was not specified because */
/* we are not going to ever connect to this socket. */
/**/

memset(&addr, 0, sizeof(addr));
addr.sin6_family = AF_INET6;
printf("Bind the socket\n");
rc = bind(sd, (struct sockaddr *)&addr, sizeof(addr));
if (rc != 0)
{

perror(" bind failed");
close(sd);
return(-2);

}

/**/
/* Perform a listen on the socket. */
/**/

printf("Set the listen backlog\n");
rc = listen(sd, 5);
if (rc != 0)
{

perror(" listen failed");
close(sd);
return(-3);

}

/**/
/* Set up an alarm that will go off in 5 seconds. */
/**/

printf("\nSet an alarm to go off in 5 seconds. This alarm will cause the\n");
printf("blocked accept() to return a -1 and an errno value of EINTR.\n\n");
sigemptyset(&sact.sa_mask);
sact.sa_flags = 0;
sact.sa_handler = catcher;
sigaction(SIGALRM, &sact, NULL);
alarm(5);

/**/
/* Display the current time when the alarm was set */
/**/

time(&t);
printf("Before accept(), time is %s", ctime(&t));

/**/
/* Call accept. This call will normally block indefinitely, */
/* but because we have an alarm set, it will only block for */
/* 5 seconds. When the alarm goes off, the accept call will */
/* complete with -1 and an errno value of EINTR. */
/**/

errno = 0;
printf(" Wait for an incoming connection to arrive\n");
rc = accept(sd, NULL, NULL);
printf(" accept() completed. rc = %d, errno = %d\n", rc, errno);
if (rc >= 0)
{

printf(" Incoming connection was received\n");
close(rc);

}
else
{

perror(" errno string");
}

Socket programming 165

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/**/
/* Show what time it was when the alarm went off */
/**/

time(&t);
printf("After accept(), time is %s\n", ctime(&t));
close(sd);
return(0);

}

Related concepts:
“Signals” on page 60
An application program can request to be notified asynchronously (request that the system send a signal)
when a condition that the application is interested in occurs.
“Asynchronous I/O” on page 43
Asynchronous I/O APIs provide a method for threaded client/server models to perform highly
concurrent and memory-efficient I/O.
Related reference:
“Berkeley Software Distribution compatibility” on page 67
Sockets is a Berkeley Software Distribution (BSD) interface.
“Example: Using asynchronous I/O” on page 115
An application creates an I/O completion port using the QsoCreateIOCompletionPort() API. This API
returns a handle that can be used to schedule and wait for completion of asynchronous I/O requests.
Related information:
accept()--Wait for Connection Request and Make Connection API
listen()--Invite Incoming Connections Requests API
close()--Close File or Socket Descriptor API
socket()--Create Socket API
bind()--Set Local Address for Socket API

Examples: Using multicasting with AF_INET
With IP multicasting, an application can send a single IP datagram that a group of hosts in a network can
receive.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

The hosts that are in the group might reside on a single subnet or on different subnets that connect
multicast-capable routers. Hosts might join and leave groups at any time. There are no restrictions on the
location or number of members in a host group. A class D IP address in the range 224.0.0.1 to
239.255.255.255 identifies a host group.

An application program can send or receive multicast datagrams by using the socket() API and
connectionless SOCK_DGRAM type sockets. Multicasting is a one-to-many transmission method. You
cannot use connection-oriented sockets of type SOCK_STREAM for multicasting. When a socket of type
SOCK_DGRAM is created, an application can use the setsockopt() API to control the multicast
characteristics associated with that socket. The setsockopt() API accepts the following IPPROTO_IP level
flags:
v IP_ADD_MEMBERSHIP: Joins the multicast group specified.
v IP_DROP_MEMBERSHIP: Leaves the multicast group specified.
v IP_MULTICAST_IF: Sets the interface over which outgoing multicast datagrams are sent.
v IP_MULTICAST_TTL: Sets the Time To Live (TTL) in the IP header for outgoing multicast datagrams.
v IP_MULTICAST_LOOP: Specifies whether a copy of an outgoing multicast datagram is delivered to the

sending host as long as it is a member of the multicast group.

166 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|

Note: i5/OS sockets support IP multicasting for the AF_INET address family.

Socket flow of events: Sending multicast datagrams

The following sequence of the socket calls provides a description of the graphic. It also describes the
relationship between two applications that send and receive multicast datagrams. The first example uses
the following sequence of API calls:
1. The socket() API returns a socket descriptor representing an endpoint. The statement also identifies

that the INET (Internet Protocol) address family with the TCP transport (SOCK_DGRAM) is used for
this socket. This socket sends datagrams to another application.

2. The sockaddr_in structure specifies the destination IP address and port number. In this example, the
address is 225.1.1.1 and the port number is 5555.

3. The setsockopt() API sets the IP_MULTICAST_LOOP socket option so that the sending system does
not receive a copy of the multicast datagrams it transmits.

4. The setsockopt() API uses the IP_MULTICAST_IF socket option, which defines the local interface over
which the multicast datagrams are sent.

5. The sendto() API sends multicast datagrams to the specified group IP addresses.
6. The close() API closes any open socket descriptors.

Socket programming 167

Socket flow of events: Receiving multicast datagrams

The second example uses the following sequence of API calls:
1. The socket() API returns a socket descriptor representing an endpoint. The statement also identifies

that the INET (Internet Protocol) address family with the TCP transport (SOCK_DGRAM) is used for
this socket. This socket sends datagrams to another application.

2. The setsockopt() API sets the SO_REUSEADDR socket option to allow multiple applications to receive
datagrams that are destined to the same local port number.

3. The bind() API specifies the local port number. In this example, the IP address is specified as
INADDR_ANY to receive datagrams that are addressed to the multicast group.

4. The setsockopt() API uses the IP_ADD_MEMBERSHIP socket option, which joins the multicast group
that receives the datagrams. When joining a group, specify the class D group address along with the
IP address of a local interface. The system must call the IP_ADD_MEMBERSHIP socket option for
each local interface that receives the multicast datagrams. In this example, the multicast group
(225.1.1.1) is joined on the local 9.5.1.1 interface.

Note: The IP_ADD_MEMBERSHIP option must be called for each local interface over which the
multicast datagrams are to be received.

5. The read() API reads multicast datagrams that are being sent.
6. The close() API closes any open socket descriptors.
Related concepts:
“IP multicasting” on page 61
IP multicasting allows an application to send a single IP datagram that a group of hosts in a network can
receive.
Related reference:
“Example: Sending multicast datagrams”
This example enables a socket to send multicast datagrams.
Related information:
close()--Close File or Socket Descriptor API
socket()--Create Socket API
bind()--Set Local Address for Socket API
setsockopt()--Set Socket Options API
read()--Read from Descriptor API
sendto()--Send Data API

Example: Sending multicast datagrams
This example enables a socket to send multicast datagrams.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>

struct in_addr localInterface;
struct sockaddr_in groupSock;
int sd;
int datalen;
char databuf[1024];

168 IBM i: Programming Socket programming

int main (int argc, char *argv[])
{

/* --*/
/* */
/* Send Multicast Datagram code example. */
/* */
/* --*/

/*
* Create a datagram socket on which to send.
*/
sd = socket(AF_INET, SOCK_DGRAM, 0);
if (sd < 0) {

perror("opening datagram socket");
exit(1);

}

/*
* Initialize the group sockaddr structure with a
* group address of 225.1.1.1 and port 5555.
*/
memset((char *) &groupSock, 0, sizeof(groupSock));
groupSock.sin_family = AF_INET;
groupSock.sin_addr.s_addr = inet_addr("225.1.1.1");
groupSock.sin_port = htons(5555);

/*
* Disable loopback so you do not receive your own datagrams.
*/
{

char loopch=0;

if (setsockopt(sd, IPPROTO_IP, IP_MULTICAST_LOOP,
(char *)&loopch, sizeof(loopch)) < 0) {

perror("setting IP_MULTICAST_LOOP:");
close(sd);
exit(1);

}
}

/*
* Set local interface for outbound multicast datagrams.
* The IP address specified must be associated with a local,
* multicast-capable interface.
*/
localInterface.s_addr = inet_addr("9.5.1.1");
if (setsockopt(sd, IPPROTO_IP, IP_MULTICAST_IF,

(char *)&localInterface,
sizeof(localInterface)) < 0) {

perror("setting local interface");
exit(1);

}

/*
* Send a message to the multicast group specified by the
* groupSock sockaddr structure.
*/
datalen = 10;
if (sendto(sd, databuf, datalen, 0,

(struct sockaddr*)&groupSock,
sizeof(groupSock)) < 0)

{
perror("sending datagram message");

}
}

Socket programming 169

Related reference:
“Examples: Using multicasting with AF_INET” on page 166
With IP multicasting, an application can send a single IP datagram that a group of hosts in a network can
receive.

Example: Receiving multicast datagrams
This example enables a socket to receive multicast datagrams.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>

struct sockaddr_in localSock;
struct ip_mreq group;
int sd;
int datalen;
char databuf[1024];

int main (int argc, char *argv[])
{

/* --*/
/* */
/* Receive Multicast Datagram code example. */
/* */
/* --*/

/*
* Create a datagram socket on which to receive.
*/
sd = socket(AF_INET, SOCK_DGRAM, 0);
if (sd < 0) {

perror("opening datagram socket");
exit(1);

}

/*
* Enable SO_REUSEADDR to allow multiple instances of this
* application to receive copies of the multicast datagrams.
*/
{

int reuse=1;

if (setsockopt(sd, SOL_SOCKET, SO_REUSEADDR,
(char *)&reuse, sizeof(reuse)) < 0) {

perror("setting SO_REUSEADDR");
close(sd);
exit(1);

}
}

/*
* Bind to the proper port number with the IP address
* specified as INADDR_ANY.
*/
memset((char *) &localSock, 0, sizeof(localSock));
localSock.sin_family = AF_INET;
localSock.sin_port = htons(5555);;

170 IBM i: Programming Socket programming

localSock.sin_addr.s_addr = INADDR_ANY;

if (bind(sd, (struct sockaddr*)&localSock, sizeof(localSock))) {
perror("binding datagram socket");
close(sd);
exit(1);

}

/*
* Join the multicast group 225.1.1.1 on the local 9.5.1.1
* interface. Note that this IP_ADD_MEMBERSHIP option must be
* called for each local interface over which the multicast
* datagrams are to be received.
*/
group.imr_multiaddr.s_addr = inet_addr("225.1.1.1");
group.imr_interface.s_addr = inet_addr("9.5.1.1");
if (setsockopt(sd, IPPROTO_IP, IP_ADD_MEMBERSHIP,

(char *)&group, sizeof(group)) < 0) {
perror("adding multicast group");
close(sd);
exit(1);

}

/*
* Read from the socket.
*/
datalen = sizeof(databuf);
if (read(sd, databuf, datalen) < 0) {

perror("reading datagram message");
close(sd);
exit(1);

}

}

Example: Updating and querying DNS
This example shows how to query and update Domain Name System (DNS) records.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/**/
/* This program updates a DNS using a transaction signature (TSIG) to */
/* sign the update packet. It then queries the DNS to verify success. */
/**/

/**/
/* Header files needed for this sample program */
/**/
#include <stdio.h>
#include <errno.h>
#include <arpa/inet.h>
#include <resolv.h>
#include <netdb.h>

/**/
/* Declare update records - a zone record, a pre-requisite record, and */
/* 2 update records */
/**/
ns_updrec update_records[] =
{

{
{NULL,&update_records[1]},
{NULL,&update_records[1]},
ns_s_zn, /* a zone record */

Socket programming 171

"mydomain.ibm.com.",
ns_c_in,
ns_t_soa,
0,
NULL,
0,
0,
NULL,
NULL,
0

},
{

{&update_records[0],&update_records[2]},
{&update_records[0],&update_records[2]},
ns_s_pr, /* pre-req record */
"mypc.mydomain.ibm.com.",
ns_c_in,
ns_t_a,
0,
NULL,
0,
ns_r_nxdomain, /* record must not exist */
NULL,
NULL,
0

},
{

{&update_records[1],&update_records[3]},
{&update_records[1],&update_records[3]},
ns_s_ud, /* update record */
"mypc.mydomain.ibm.com.",
ns_c_in,
ns_t_a, /* IPv4 address */
10,
(unsigned char *)"10.10.10.10",
11,
ns_uop_add, /* to be added */
NULL,
NULL,
0

},
{

{&update_records[2],NULL},
{&update_records[2],NULL},
ns_s_ud, /* update record */
"mypc.mydomain.ibm.com.",
ns_c_in,
ns_t_aaaa, /* IPv6 address */
10,
(unsigned char *)"fedc:ba98:7654:3210:fedc:ba98:7654:3210",
39,
ns_uop_add, /* to be added */
NULL,
NULL,
0

}
};

/**/
/* These two structures define a key and secret that must match the one */
/* configured on the DNS : */
/* allow-update { */
/* key my-long-key.; */
/* } */
/* */
/* This must be the binary equivalent of the base64 secret for */
/* the key */

172 IBM i: Programming Socket programming

/**/
unsigned char secret[18] =
{

0x6E,0x86,0xDC,0x7A,0xB9,0xE8,0x86,0x8B,0xAA,
0x96,0x89,0xE1,0x91,0xEC,0xB3,0xD7,0x6D,0xF8

};

ns_tsig_key my_key = {
"my-long-key", /* This key must exist on the DNS */
NS_TSIG_ALG_HMAC_MD5,
secret,
sizeof(secret)

};

void main()
{

/***/
/* Variable and structure definitions. */
/***/
struct state res;
int result, update_size;
unsigned char update_buffer[2048];
unsigned char answer_buffer[2048];
int buffer_length = sizeof(update_buffer);

/* Turn off the init flags so that the structure will be initialized */
res.options &= ~ (RES_INIT | RES_XINIT);

result = res_ninit(&res);

/* Put processing here to check the result and handle errors */

/* Build an update buffer (packet to be sent) from the update records */
update_size = res_nmkupdate(&res, update_records,

update_buffer, buffer_length);

/* Put processing here to check the result and handle errors */

{
char zone_name[NS_MAXDNAME];
size_t zone_name_size = sizeof zone_name;
struct sockaddr_in s_address;
struct in_addr addresses[1];
int number_addresses = 1;

/* Find the DNS server that is authoritative for the domain */
/* that we want to update */

result = res_findzonecut(&res, "mypc.mydomain.ibm.com", ns_c_in, 0,
zone_name, zone_name_size,

addresses, number_addresses);

/* Put processing here to check the result and handle errors */

/* Check if the DNS server found is one of our regular DNS addresses */
s_address.sin_addr = addresses[0];
s_address.sin_family = res.nsaddr_list[0].sin_family;
s_address.sin_port = res.nsaddr_list[0].sin_port;
memset(s_address.sin_zero, 0x00, 8);

result = res_nisourserver(&res, &s_address);

/* Put processing here to check the result and handle errors */

/* Set the DNS address found with res_findzonecut into the res */
/* structure. We will send the (TSIG signed) update to that DNS. */

res.nscount = 1;

Socket programming 173

res.nsaddr_list[0] = s_address;

/* Send a TSIG signed update to the DNS */
result = res_nsendsigned(&res, update_buffer, update_size,

&my_key,
answer_buffer, sizeof answer_buffer);

/* Put processing here to check the result and handle errors */
}

/***/
/* The res_findzonecut(), res_nmkupdate(), and res_nsendsigned() */
/* can be replaced with one call to res_nupdate() using */
/* update_records[1] to skip the zone record: */
/* */
/* result = res_nupdate(&res, &update_records[1], &my_key); */
/* */
/***/
/***/
/* Now verify that our update actually worked! */
/* We choose to use TCP and not UDP, so set the appropriate option now */
/* that the res variable has been initialized. We also want to ignore */
/* the local cache and always send the query to the DNS server. */
/***/

res.options |= RES_USEVC|RES_NOCACHE;

/* Send a query for mypc.mydomain.ibm.com address records */
result = res_nquerydomain(&res,"mypc", "mydomain.ibm.com.",

ns_c_in, ns_t_a,
update_buffer, buffer_length);

/* Sample error handling and printing errors */
if (result == -1)
{

printf("\nquery domain failed. result = %d \nerrno: %d: %s \
\nh_errno: %d: %s",

result,
errno, strerror(errno),
h_errno, hstrerror(h_errno));

}
/***/
/* The output on a failure will be: */
/* */
/* query domain failed. result = -1 */
/* errno: 0: There is no error. */
/* h_errno: 5: Unknown host */
/***/
return;

}

Related concepts:
“Thread safety” on page 58
A function is considered threadsafe if you can start it simultaneously in multiple threads within the same
process. A function is threadsafe only if all the functions it calls are also threadsafe. Socket APIs consist of
system and network functions, which are both threadsafe.
Related reference:
“Data caching” on page 67
Data caching of responses to Domain Name System (DNS) queries is done by i5/OS sockets in an effort
to lessen the amount of network traffic. The cache is added to and updated as needed.

174 IBM i: Programming Socket programming

Examples: Transferring file data using send_file() and
accept_and_recv() APIs
These examples enable a server to communicate with a client by using the send_file() and
accept_and_recv() APIs.

Socket flow of events: Server sends contents of a file

The following sequence of the socket calls provides a description of the graphic. It also describes the
relationship between two applications that send and receive files. The first example uses the following
sequence of API calls:
1. The server calls socket(), bind(), and listen() to create a listening socket.
2. The server initializes the local and remote address structures.
3. The server calls accept_and_recv() to wait for an incoming connection and to wait for the first data

buffer to arrive over this connection. This call returns the number of bytes that is received and the
local and remote addresses that are associated with this connection. This call is a combination of the
accept(), getsockname(), and recv() APIs.

4. The server calls open() to open the file whose name was obtained as data on the accept_and_recv()
from the client application.

5. The memset() API is used to set all of the fields of the sf_parms structure to an initial value of 0. The
server sets the file descriptor field to the value that the open() API returned. The server then sets the

Socket programming 175

file bytes field to -1 to indicate that the server should send the entire file. The system is sending the
entire file, so you do not need to assign the file offset field.

6. The server calls the send_file() API to transmit the contents of the file. The send_file() API does not
complete until the entire file has been sent or an interruption occurs. The send_file() API is more
efficient because the application does not need to go into a read() and send() loop until the file
finishes.

7. The server specifies the SF_CLOSE flag on the send_file() API. The SF_CLOSE flag informs the send_file()
API that it should automatically close the socket connection when the last byte of the file and the
trailer buffer (if specified) have been sent successfully. The application does not need to call close() if
the SF_CLOSE flag is specified.

Socket flow of events: Client request for file

The second example uses the following sequence of API calls:
1. This client program takes from zero to two parameters.

The first parameter (if specified) is the dotted-decimal IP address or the host name where the server
application is located.
The second parameter (if specified) is the name of the file that the client attempts to obtain from the
server. A server application sends the contents of the specified file to the client. If the user does not
specify any parameters, then the client uses INADDR_ANY for the server's IP address. If the user
does not specify a second parameter, the program prompts the user to enter a file name.

2. The client calls socket() to create a socket descriptor.
3. The client calls connect() to establish a connection to the server. Step one obtained the IP address of

the server.
4. The client calls send() to inform the server what file name it wants to obtain. Step one obtained the

name of the file.
5. The client goes into a "do" loop calling recv() until the end of the file is reached. A return code of 0 on

the recv() means that the server closed the connection.
6. The client calls close() to close the socket.
Related concepts:
“File data transfer—send_file() and accept_and_recv()” on page 62
i5/OS sockets provide the send_file() and accept_and_recv() APIs that enable faster and easier file
transfers over connected sockets.
Related information:
accept()--Wait for Connection Request and Make Connection API
recv()--Receive Data API
send()--Send Data API
listen()--Invite Incoming Connections Requests API
close()--Close File or Socket Descriptor API
socket()--Create Socket API
bind()--Set Local Address for Socket API
getsockname()--Retrieve Local Address of Socket API
open()--Open File API
read()--Read from Descriptor API
connect()--Establish Connection or Destination Address API

Example: Using accept_and_recv() and send_file() APIs to send contents of a file
This example enables a server to communicate with a client by using the send_file() and
accept_and_recv() APIs.

176 IBM i: Programming Socket programming

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/***/
/* Server example send file data to client */
/***/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_PORT 12345

main (int argc, char *argv[])
{

int i, num, rc, flag = 1;
int fd, listen_sd, accept_sd = -1;

size_t local_addr_length;
size_t remote_addr_length;
size_t total_sent;

struct sockaddr_in6 addr;
struct sockaddr_in6 local_addr;
struct sockaddr_in6 remote_addr;
struct sf_parms parms;

char buffer[255];

/***/
/* If an argument is specified, use it to */
/* control the number of incoming connections */
/***/
if (argc >= 2)

num = atoi(argv[1]);
else

num = 1;

/***/
/* Create an AF_INET6 stream socket to receive */
/* incoming connections on */
/***/
listen_sd = socket(AF_INET6, SOCK_STREAM, 0);
if (listen_sd < 0)
{

perror("socket() failed");
exit(-1);

}

/***/
/* Set the SO_REUSEADDR bit so that you do not */
/* need to wait 2 minutes before restarting */
/* the server */
/***/
rc = setsockopt(listen_sd,

SOL_SOCKET,
SO_REUSEADDR,
(char *)&flag,
sizeof(flag));

if (rc < 0)
{

perror("setsockop() failed");
close(listen_sd);
exit(-1);

Socket programming 177

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}

/***/
/* Bind the socket */
/***/
memset(&addr, 0, sizeof(addr));
addr.sin6_family = AF_INET6;
memcpy(&addr.sin6_addr, &in6addr_any, sizeof(in6addr_any));
addr.sin6_port = htons(SERVER_PORT);
rc = bind(listen_sd,

(struct sockaddr *)&addr, sizeof(addr));
if (rc < 0)
{

perror("bind() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Set the listen backlog */
/***/
rc = listen(listen_sd, 5);
if (rc < 0)
{

perror("listen() failed");
close(listen_sd);
exit(-1);

}

/***/
/* Initialize the local and remote addr lengths */
/***/
local_addr_length = sizeof(local_addr);
remote_addr_length = sizeof(remote_addr);

/***/
/* Inform the user that the server is ready */
/***/
printf("The server is ready\n");

/***/
/* Go through the loop once for each connection */
/***/
for (i=0; i < num; i++)
{

/**/
/* Wait for an incoming connection */
/**/
printf("Iteration: %d\n", i+1);
printf(" waiting on accept_and_recv()\n");

rc = accept_and_recv(listen_sd,
&accept_sd,
(struct sockaddr *)&remote_addr,
&remote_addr_length,
(struct sockaddr *)&local_addr,
&local_addr_length,
&buffer,
sizeof(buffer));

if (rc < 0)
{

perror("accept_and_recv() failed");
close(listen_sd);
close(accept_sd);
exit(-1);

}
printf(" Request for file: %s\n", buffer);

178 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/**/
/* Open the file to retrieve */
/**/
fd = open(buffer, O_RDONLY);
if (fd < 0)
{

perror("open() failed");
close(listen_sd);
close(accept_sd);
exit(-1);

}

/**/
/* Initialize the sf_parms structure */
/**/
memset(&parms, 0, sizeof(parms));
parms.file_descriptor = fd;
parms.file_bytes = -1;

/**/
/* Initialize the counter of the total number */
/* of bytes sent */
/**/
total_sent = 0;

/**/
/* Loop until the entire file has been sent */
/**/
do
{

rc = send_file(&accept_sd, &parms, SF_CLOSE);
if (rc < 0)
{

perror("send_file() failed");
close(fd);
close(listen_sd);
close(accept_sd);
exit(-1);

}
total_sent += parms.bytes_sent;

} while (rc == 1);

printf(" Total number of bytes sent: %d\n", total_sent);

/**/
/* Close the file that is sent out */
/**/
close(fd);

}

/***/
/* Close the listen socket */
/***/
close(listen_sd);

/***/
/* Close the accept socket */
/***/
if (accept_sd != -1)

close(accept_sd);
}

Related information:
send_file()--Send a File over a Socket Connection API
accept_and_recv()

Socket programming 179

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example: Client request for a file
This example enables a client to request a file from the server and to wait for the server to send the
contents of that file back.

Note: By using the examples, you agree to the terms of the “Code license and disclaimer information” on
page 192.

/***/
/* Client example requests file data from server */
/***/
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <netdb.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#define SERVER_PORT 12345

main (int argc, char *argv[])
{

int rc, sockfd;

char filename[256];
char buffer[32 * 1024];

struct sockaddr_in6 addr;
struct addrinfo hints, *res;

/***/
/* Initialize the socket address structure */
/***/
memset(&addr, 0, sizeof(addr));
addr.sin6_family = AF_INET6;
addr.sin6_port = htons(SERVER_PORT);

/***/
/* Determine the host name and IP address of the */
/* machine the server is running on */
/***/
if (argc < 2)
{

memcpy(&addr.sin6_addr, &in6addr_any, sizeof(in6addr_any));
}
else if ((isdigit(*argv[1])) || (*argv[1] == ’:’))
{

rc = inet_pton(AF_INET6, argv[1], &addr.sin6_addr.s6_addr);
}
else
{

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET6;
hints.ai_flags = AI_V4MAPPED;
rc = getaddrinfo(argv[1], NULL, &hints, &res);
if (rc != 0)
{

printf("Host not found! (%s)\n", argv[1]);
exit(-1);

}

memcpy(&addr.sin6_addr,
(&((struct sockaddr_in6 *)(res->ai_addr))->sin6_addr),
sizeof(addr.sin6_addr));

freeaddrinfo(res);

180 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}

/**/
/* Check to see if the user specified a file name */
/* on the command line */
/**/
if (argc == 3)
{

strcpy(filename, argv[2]);
}
else
{

printf("Enter the name of the file:\n");
gets(filename);

}

/***/
/* Create an AF_INET6 stream socket */
/***/
sockfd = socket(AF_INET6, SOCK_STREAM, 0);
if (sockfd < 0)
{

perror("socket() failed");
exit(-1);

}
printf("Socket completed.\n");

/***/
/* Connect to the server */
/***/
rc = connect(sockfd,

(struct sockaddr *)&addr,
sizeof(struct sockaddr_in6));

if (rc < 0)
{

perror("connect() failed");
close(sockfd);
exit(-1);

}
printf("Connect completed.\n");

/***/
/* Send the request over to the server */
/***/
rc = send(sockfd, filename, strlen(filename) + 1, 0);
if (rc < 0)
{

perror("send() failed");
close(sockfd);
exit(-1);

}
printf("Request for %s sent\n", filename);

/***/
/* Receive the file from the server */
/***/
do
{

rc = recv(sockfd, buffer, sizeof(buffer), 0);
if (rc < 0)
{

perror("recv() failed");
close(sockfd);
exit(-1);

}
else if (rc == 0)
{

Socket programming 181

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("End of file\n");
break;

}
printf("%d bytes received\n", rc);

} while (rc > 0);

/***/
/* Close the socket */
/***/
close(sockfd);

}

Xsockets tool
The Xsockets tool is one of the many tools that is supplied with the System i product. All tools are stored
in the QUSRTOOL library. The Xsockets tool allows programmers to interactively work with socket APIs.

The Xsockets tool allows you to do the following tasks:
v Learn about the socket APIs.
v Re-create specific scenarios interactively to help debug.

Note: The Xsockets tool is supplied in an as-is format.

Prerequisites for using Xsockets

Do the following tasks before using Xsockets:
v Install the ILE C language.
v Install the System Openness Includes feature (option 13) of the IBM i5/OS licensed program.
v Install the IBM HTTP Server for i5/OS (5761-DG1) licensed program.

Note: This is needed if you plan to use Xsockets in a Web browser.
v The IBM Developer Kit for Java (5761-JV1) licensed program is installed.

Note: This is needed if you plan to use Xsockets in a Web browser.

Configuring Xsockets
The Xsockets tool is available in two versions. The first version is integrated with the System i client. The
integrated version is completely created by the first set of instructions. The second version uses a Web
browser as the client.

If you want to use the Web browser client, you must complete setup instructions for the integrated
version first.

To create the Xsockets tool, complete the following steps:
1. To unpackage the tool, enter

CALL QUSRTOOL/UNPACKAGE (’*ALL ’ 1)

on a command line.

Note: You must have 10 characters between the opening and closing single quotation marks (').
2. To add the QUSRTOOL library to your library list, enter

ADDLIBLE QUSRTOOL

on a command line.

182 IBM i: Programming Socket programming

|
|
|
|
|
|
|
|
|
|
|
|

3. Create a library in which to create the Xsocket program files by entering
CRTLIB <library-name>

on a command line. The <library-name> is the the library in which you want the Xsockets tool objects
created. For example,
CRTLIB MYXSOCKET

is a valid library name.

Note: If XSOCKETS is used as the library, you will be able to skip a configuration step when
configuring Xsockets for the Web. Do not add Xsockets tool objects to the QUSRTOOL library.
Adding Xsockets tool objects to the QUSRTOOL library can interfere with the use of other tools
within that directory.

4. To add this library to the library list, enter ADDLIBLE <library-name> on the command line. The
<library-name> is the library that you created in step 3. For example, if MYXSOCKET was used as the
library name, then ADDLIBLE MYXSOCKET must be entered.

5. Create the installation program TSOCRT that automatically installs the Xsockets tool by entering:
CRTCLPGM <library-name>/TSOCRT QUSRTOOL/QATTCL on the command line.

6. To call the installation program, enter:
CALL TSOCRT library-name

on the command line. In the place of library-name, use the library you created in step 3. For example,
to create the tool in the MYXSOCKET library, enter:
CALL TSOCRT MYXSOCKET

Note: This might take a few minutes to complete.

If you do not have job control (*JOBCTL) special authority when you call TSOCRT to create the sockets
tool, the givedescriptor() socket function returns errors when an attempt is made to pass a descriptor to a
job that is not the one you are running.

TSOCRT creates a CL program, an ILE C program (two modules are created), two ILE C service
programs (two modules are created), and three display files. Whenever you want to use the tool, you
must add the library to your library list. All objects created by the tool have a name that is prefixed by
TSO.

Note: The integrated version does not support GSKit secure socket APIs. If you want to write socket
programs that use the integrated APIs, you should use the browser-based version of the tool.

Related concepts:
“Using Xsockets” on page 188
You can work with the Xsockets tool either from the integrated client or from a Web browser.
Related tasks:
“Using integrated Xsockets” on page 189
Follow these instructions to use the Xsockets tool on an integrated client.
“Updating configuration files” on page 186
After you have installed the integrated Xsockets tool, you must complete manual changes to several
configuration files for the instance.
“Using Xsockets in a Web browser” on page 189
Follow these instructions for using the Xsockets tool in a Web browser.

What is created by integrated Xsocket setup
This table lists the objects created by the installation program. All of the created objects reside in the
specified library.

Socket programming 183

Table 19. Objects created during Xsocket installation

Object name Member name Source file
name

Object type Extension Description

TSOJNI TSOJNI QATTSYSC *MODULE C Module that is used
for interfacing
between JSP and
TSOSTSOC

TSODLT TSODLT QATTCL *PGM CLP CL program to delete
the tool objects, the
source file members,
or both.

TSOXSOCK N/A N/A *PGM C Main program that is
used for the
SOCKETS interactive
tool.

TSOXGJOB N/A N/A *SRVPGM C Service program that
is used in support of
the SOCKETS
interactive tool

TSOJNI N/A N/A *SRVPGM C Service program that
is used for interfacing
between JSP and
TSOSTSOC in
support of the
SOCKETS interactive
tool.

TSOXSOCK TSOXSOCK QATTSYSC *MODULE C Module that is used
in the creation of the
TSOXSOCK program.
The source file
contains the main()
routine.

TSOSTSOC TSOSTSOC QATTSYSC *MODULE C Module that is used
in the creation of the
TSOXSOCK program.
The source file
contains the routines
that actually call the
socket functions.

TSOXGJOB TSOXGJOB QATTSYSC *MODULE C Module that is used
in the creation of the
TSOXGJOB service
program. The source
file contains the
routine that identifies
the internal job. This
internal job identifier
is made up of the job
name, user ID, and
job number.

TSODSP TDSPDSP QATTDDS *FILE DSPF Display file used by
the Xsockets tool for
the main window
that contains the
sockets functions.

184 IBM i: Programming Socket programming

Table 19. Objects created during Xsocket installation (continued)

Object name Member name Source file
name

Object type Extension Description

TSOFUN TDSOFUN QATTDDS *FILE DSPF Display file used by
the XSockets tool in
support of the
various socket
functions.

TSOMNU TDSOMNU QATTDDS *FILE DSPF Display file used by
the Xsockets tool that
supports the menu
bar.

QATTIFS2 N/A N/A *FILE PF-DTA Contains the JAR file
used by the
Lightweight Web
Infrastructure.

Configuring Xsockets to use a Web browser
You can configure the Xsockets tool to allow access through a Web browser. You can implement these
instructions multiple times on the same system to create different server instances. With multiple
instances, you can run multiple versions at the same time on different listening ports.
Related concepts:
“Using Xsockets” on page 188
You can work with the Xsockets tool either from the integrated client or from a Web browser.
Related tasks:
“Using Xsockets in a Web browser” on page 189
Follow these instructions for using the Xsockets tool in a Web browser.

Configuring an Integrated Web Application Server
To use the Xsockets tool in a Web browser, you need to configure an integrated Web application server.

Before configuring a Web browser to work with the Xsockets tool, you must first configure Xsockets. See
Configuring Xsockets to learn how to do this.
1. Verify the HTTP admin instance is running under the QHTTPSVR subsystem. You can start it with

the following CL command if it is not running:
STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

2. In a Web browser, enter:
http://<system_name>:2001/.

where <system_name> is the machine name of the system. For example: http://mysystemi:2001/.
3. On the IBM i Tasks page, select IBM Web Administration for i.
4. From the top menu, select the Setup tab.
5. Click Create Application Server.
6. Under integrated Web application server, select the type of application server to create, and click

Next.
7. Enter the name for the server instance, and click Next. For example, if this instance serves the

Xsockets tool in a browser, then you can use the name xsocket. A new HTTP Server (powered by
Apache) will be created in addition to the integrated Web application server.

Note: Use the default HTTP Server name and description.
8. Select a range for internal ports to be used by the application server and click Next.

Socket programming 185

Note: Use a port number that is greater than 1024.
9. Select the IP address, an available port that you want to use, and click Next.

Note: Use a port number that is greater than 1024. Do not select the default port number 80.
10. Click Next to use the default value for specifying the user ID.
11. Click Next on the Sample Applications display screen.
12. Click Finish to confirm the Application Server and HTTP Server (powered by Apache) configuration

settings.
Related tasks:
“Updating configuration files”
After you have installed the integrated Xsockets tool, you must complete manual changes to several
configuration files for the instance.
“Testing Xsockets tool in a Web browser” on page 188
After you have completed configuring the Xsockets Web application, you are ready to test the Xsockets
tool within a browser. The server and application instance should already be started.
“Using Xsockets in a Web browser” on page 189
Follow these instructions for using the Xsockets tool in a Web browser.

Updating configuration files
After you have installed the integrated Xsockets tool, you must complete manual changes to several
configuration files for the instance.

You need to update these files: the JAR file, the web.xml file, and the httpd.conf file.
1. Copy the JAR file From a command line, enter this command:

CPY OBJ(’/QSYS.LIB/XXXX.LIB/QATTIFS2.FILE/XSOCK.MBR’)
TOOBJ(’/www/<server_name>/xsock.jar’) FROMCCSID(*OBJ) TOCCSID(819) OWNER(*NEW)

where XXXX is the library name you created during Xsockets configuration and <server_name> is the
name of the server instance you created during Apache configuration. This is the integrated file
system directory where you would like to store the XSockets JAR file.

2. Optional: Update the web.xml file:

Note: This step is only necessary if Xsockets was installed to a library other than XSOCKETS during
Xsockets configuration.

a. From a command line, enter
CD DIR(’/www/<server_name>’)

where <server_name> is the name of the server instance you created during Apache configuration.
b. From a command line, enter

STRQSH CMD(’jar xf xsock.jar’)

to extract the configuration files stored in the XSockets JAR file.
c. From a command line, enter

wrklnk ’WEB-INF/web.xml’

d. Press function 2 (Edit) to edit the file.
e. Find the </servlet-class> line in the web.xml file.
f. Update the following code after this line:

<init-param>
<param-name>library</param-name>
<param-value>xsockets</param-value>

</init-param>

186 IBM i: Programming Socket programming

|

In place of the xsockets, insert the library name that you created during Xsockets configuration.
g. Save the file and exit the edit session.
h. From a command line, enter

STRQSH CMD(’jar cmf META-INF/MANIFEST.MF xsock.war lib WEB-INF’)

to create a new XSockets JAR file containing the updated configuration file.
3. Optional: Add the authority check to httpd.conf file. This forces Apache to authenticate users trying to

access the Xsockets Web application.

Note: It is also necessary for getting write access to create UNIX sockets.
a. From a command line, enter

wrklnk ’/www/<server_name>/conf/httpd.conf’

where <server_name> is the name of the server instance you created during the Apache
configuration. For example, if you choose xsocks for the server name, you can enter:
wrklnk ’/www/xsocks/conf/httpd.conf’

b. Press function 2 (Edit) to edit the file.
c. Insert the following lines at the end of the file.

<Location /xsock>
AuthName "X Socket"
AuthType Basic
PasswdFile %%SYSTEM%%
UserId %%CLIENT%%
Require valid-user
order allow,deny
allow from all

</Location>

d. Save the file and exit the edit session.
Related tasks:
“Configuring an Integrated Web Application Server” on page 185
To use the Xsockets tool in a Web browser, you need to configure an integrated Web application server.
“Configuring Xsockets” on page 182
The Xsockets tool is available in two versions. The first version is integrated with the System i client. The
integrated version is completely created by the first set of instructions. The second version uses a Web
browser as the client.
“Configuring Xsockets Web application”
After you have configured the integrated Web application server and HTTP Server (powered by Apache)
server instance, you must configure a new application to use the Xsockets tool in a Web browser.

Configuring Xsockets Web application
After you have configured the integrated Web application server and HTTP Server (powered by Apache)
server instance, you must configure a new application to use the Xsockets tool in a Web browser.
1. Under Manage, select the Application Server that you have created.
2. Under Application Server Wizards in the left pane, select Install New Application.
3. Specify the location of the JAR file that contains the application, and click Next. This is the JAR file

that was created from '/QSYS.LIB/XXX.LIB/QATTIFS2.FILE/XSOCK.MBR' and was updated when
you updated the configuration files.

4. Enter the name for the application and click Next. For example, if this application serves the Xsockets
tool in a browser, you can use XSockets.

5. Click Next to accept the default values on the Context Root Port Mapping page.
6. Click Finish to completed the application configuration for the Xsockets tool.
Related tasks:

Socket programming 187

|

“Updating configuration files” on page 186
After you have installed the integrated Xsockets tool, you must complete manual changes to several
configuration files for the instance.

Testing Xsockets tool in a Web browser
After you have completed configuring the Xsockets Web application, you are ready to test the Xsockets
tool within a browser. The server and application instance should already be started.
1. If the server and application instance is not already started, start the server instance with the

following command on a command line:
STRTCPSVR SERVER(*HTTP) HTTPSVR(<server_name>)

where <server_name> is the name of the server instance you created during the HTTP Server (powered
by Apache) configuration. This takes a while.

2. Check the status of the server by issuing the Work with Active Jobs (WRKACTJOB) command from
the command line interface. You should see one job with your server_name, PGM-QLWISVR Function,
with JVAW status, and all additional jobs should have the SIGW status. If this is the case, then you
can proceed to the next step.

3. In a browser, enter the following URL:

http://<system_name>:<port>/xsock/index

where <system_name> is the machine name of the system and <port> is the port number that you
chose during the Apache configuration.

4. When prompted, enter your user name and password for the server. The Web client for Xsocket
should appear.

Related tasks:
“Configuring an Integrated Web Application Server” on page 185
To use the Xsockets tool in a Web browser, you need to configure an integrated Web application server.

Using Xsockets
You can work with the Xsockets tool either from the integrated client or from a Web browser.

To work with an integrated version of Xsockets, you must configure the Xsockets tool. In addition to
configuring the Xsockets tool for an integrated client, you must also complete the steps in Configuring
Xsockets to use a Web browser if you prefer to work with the tool in a browser environment. Many of
the concepts are similar between the two versions of the tools. Both tools allow you to issue socket calls
interactively and both tools provide errnos for issued socket calls; however, the interfaces do have some
differences.

Note: If you want to work with socket programs that use the GSKit secure socket APIs, you must use the
Web version of the tool.

Related concepts:
“Configuring Xsockets to use a Web browser” on page 185
You can configure the Xsockets tool to allow access through a Web browser. You can implement these
instructions multiple times on the same system to create different server instances. With multiple
instances, you can run multiple versions at the same time on different listening ports.
Related tasks:
“Configuring Xsockets” on page 182
The Xsockets tool is available in two versions. The first version is integrated with the System i client. The
integrated version is completely created by the first set of instructions. The second version uses a Web
browser as the client.

188 IBM i: Programming Socket programming

Using integrated Xsockets
Follow these instructions to use the Xsockets tool on an integrated client.
1. From a command line, add the library in which the Xsockets tool exists to your library list by issuing

this command:
ADDLIBLE <library-name>

where the <library-name> is the name of the library you created during integrated Xsockets
configuration. For example, if the name of the library is MYXSOCKET, then enter:
ADDLIBLE MYXSOCKET

2. On a command line interface, enter:
CALL TSOXSOCK

3. From the Xsocket window that is shown, you can access all socket routines through its menu bar and
selection field. This window is always shown after you choose a socket API. You can use this interface
to select socket programs that already exist. To work with a new socket, follow these steps:
a. In the list of socket APIs, select socket and press Enter.
b. In the socket() prompt window that displays, select the appropriate Address Family, Socket Type,

and Protocol for the socket, and press Enter.
c. Select Descriptor and select Select descriptor.

Note: If other socket descriptors already exist, this displays a list of active socket descriptors.
d. From the list that displays, select the socket descriptor that you created.

Note: If other socket descriptors exist, the tool automatically applies a socket API to the latest
socket descriptor.

4. From the list of socket APIs, select a socket API with which you want to work, whatever socket
descriptor you chose in step 3c is used on that socket API. As soon as you select a socket API, a series
of windows are displayed where you can provide specific information about the socket API. For
example, if you select connect(), you need to provide the address length, address family, and address
data in the resulting windows. The socket API chosen is then called with this information that you
provided. Any errors that occur on a socket API are displayed back to the user as an errno.

Notes:

1. The Xsockets tool uses the graphical support for DDS. Thus, how data is entered and how
selections are made from the windows you see depend on whether you are using a graphical
display station or a nongraphical display station. For example, on a graphical display station,
you can see the selection field for the socket APIs as a check box; otherwise, you might see a
single field.

2. Be aware that there are ioctl() requests that are available on a socket which have not been
implemented in the tool.

Using Xsockets in a Web browser
Follow these instructions for using the Xsockets tool in a Web browser.

Ensure that you have completed all the Xsockets configuration and all the necessary Web browser
configuration before working with the Xsockets tool in a Web browser. Also ensure that cookies are
enabled.
1. In a Web browser, type:

http://system-name:2001/

where system-name is the name of the system that contains the server instance.
2. Select Administration.
3. From the left navigation, select Manage HTTP Servers.

Socket programming 189

4. Select your instance name, and click Start. You can also start the server instance from a command line
by entering:
STRTCPSVR SERVER(*HTTP) HTTPSVR(<instance_name>)

where <instance_name> is the name of your HTTP Server created in the Apache configuration. For
example, you can use the server instance name xsocks.

5. To access the Xsockets Web application, enter this URL in a browser:
http://<system_name>:<port>/xsock/index

where <system_name> is the machine name of the system and <port> is the port specified when you
created the HTTP instance. For example, if the system name is mySystemi and the HTTP Server
instance listens on port 1025, you can enter:
http://mySystemi:1025/xsock/index

6. After the Xsockets tool loads in the Web browser, you can work with the existing socket descriptor or
create a new one. To create a new socket descriptor, follow these steps:
a. From the Xsocket Menu, select socket.
b. In the Xsocket Query window that displays, select the appropriate Address Family, Socket Type,

and Protocol for this socket descriptor. Click Submit. As soon as the page reloads, the new socket
descriptor is displayed in the Socket pull-down menu.

c. From the Xsocket Menu, select API calls to which you want to apply this socket descriptor. As
with the integrated version of the Xsockets tool, the tool automatically applies API calls to the
latest socket descriptor if you do not select a socket descriptor.

Related concepts:
“Configuring Xsockets to use a Web browser” on page 185
You can configure the Xsockets tool to allow access through a Web browser. You can implement these
instructions multiple times on the same system to create different server instances. With multiple
instances, you can run multiple versions at the same time on different listening ports.
Related tasks:
“Configuring Xsockets” on page 182
The Xsockets tool is available in two versions. The first version is integrated with the System i client. The
integrated version is completely created by the first set of instructions. The second version uses a Web
browser as the client.
“Configuring an Integrated Web Application Server” on page 185
To use the Xsockets tool in a Web browser, you need to configure an integrated Web application server.

Deleting objects created by the Xsockets tool
You might need to delete objects that are created by the Xsockets tool. The program named TSODLT is
created by the installation program to remove the objects created by the tool (except the library and the
program TSODLT) or to remove the source members used by the Xsockets tool, or both.

The following set of commands allow you to delete these objects:

To delete ONLY the source members used by the tool, enter the following command :
CALL TSODLT (*YES *NONE)

To delete ONLY objects that the tool creates, enter the following command:.
CALL TSODLT (*NO library-name)

To delete BOTH source members and objects created by the tool, enter the following command:
CALL TSODLT (*YES library-name)

190 IBM i: Programming Socket programming

Customizing Xsockets
You can change the Xsockets tool by adding additional support for the socket network routines (such as
inet_addr()).

If you choose to customize this tool to meet your own needs, it is recommended that you do not make
changes in the QUSRTOOL library. Instead, copy the source files into a separate library and make the
changes there. This preserves the original files in the QUSRTOOL library so they are available if needed
in the future. You can use the TSOCRT program to recompile the tool after making your changes (note
that if the source files are copied to a separate library, you also need to make changes in TSOCRT to use
it). Use the TSODLT program to remove old versions of the tool objects before creating the tool.

Serviceability tools
Because the use of sockets and secure sockets continues to grow to accommodate e-business applications
and servers, the current serviceability tools need to keep up with this demand.

Enhanced serviceability tools help you complete traces on socket programs to find solutions to errors
within socket and SSL-enabled applications. These tools help you and support center personnel to
determine where socket problems are by selecting socket traits, such as IP address or port information.

The following table gives an overview for the each of these service tools.

Table 20. Serviceability tools for socket and secure sockets

Serviceability tool Description

Licensed Internal Code trace filtering (TRCINT and
TRCCNN)

Provides selective trace on sockets. You can now restrict
sockets trace on address family, socket type, protocol, IP
address, and port information. You can also limit traces
to only certain categories of socket APIs and also to only
those sockets that have the SO_DEBUG socket option set.
A Licensed Internal Code trace can be filtered by thread,
task, user profile, job name, or server name.

Trace job with STRTRC SSNID(*GEN)
JOBTRCTYPE(*TRCTYPE) TRCTYPE((*SOCKETS
*ERROR))

STRTRC command provides additional parameters that
generate output that is separated from all other
non-socket related trace points. This output contains
return code and errno information when an error is
encountered during a socket operation.

Flight recorder tracing Sockets Licensed Internal Code component traces now
include a dump of the flight recorder entries for each
socket operation performed.

Associated job information Allows service personnel and programmers to find all
jobs that are associated to a connected or listening socket.
This information can be viewed using NETSTAT for
those socket applications using an address family of
AF_INET or AF_INET6.

NETSTAT connection status(option 3) to enable
SO_DEBUG

Provides enhanced low-level debug information when
the SO_DEBUG socket option is set on a socket
application.

Secure socket return code and message processing Presents standardized secure socket return code
messages through two SSL_ APIs. These APIs are
SSL_Strerror() and SSL_Perror(). In addition, the
gsk_strerror() provides similar function for GSKit APIs.
There is also the hstrerror() API that provides return
code information from resolver routines.

Performance data collection tracepoints Provides a trace for the data flow from an application
through sockets and the TCP/IP stack.

Socket programming 191

Related information:
SSL_Strerror()--Retrieve SSL Runtime Error Message API
SSL_Perror()--Print SSL Error Message API
gsk_strerror()--Retrieve GSKit runtime error message API
hstrerror()--Retrieve Resolver Error Message API
Start Trace (STRTRC) command

Code license and disclaimer information
IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:
1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

192 IBM i: Programming Socket programming

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 2001, 2010 193

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This Socket programming publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of IBM i.

194 IBM i: Programming Socket programming

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE
PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 195

http://www.ibm.com/legal/copytrade.shtml

196 IBM i: Programming Socket programming

IBM®

Printed in USA

	Contents
	Socket programming
	What's new for IBM i 7.1
	PDF files for Socket programming
	Prerequisites for socket programming
	How sockets work
	Socket characteristics
	Socket address structure
	Socket address family
	AF_INET address family
	AF_INET6 address family
	AF_UNIX address family
	AF_UNIX_CCSID address family

	Socket type
	Socket protocols

	Basic socket design
	Creating a connection-oriented socket
	Example: A connection-oriented server
	Example: A connection-oriented client

	Creating a connectionless socket
	Example: A connectionless server
	Example: A connectionless client

	Designing applications with address families
	Using AF_INET address family
	Using AF_INET6 address family
	Using AF_UNIX address family
	Example: Server application that uses AF_UNIX address family
	Example: Client application that uses AF_UNIX address family

	Using AF_UNIX_CCSID address family
	Example: Server application that uses AF_UNIX_CCSID address family
	Example: Client application that uses AF_UNIX_CCSID address family

	Advanced socket concepts
	Asynchronous I/O
	Secure sockets
	Global Security Kit (GSKit) APIs
	SSL_ APIs
	Secure socket API error code messages

	Client SOCKS support
	Thread safety
	Nonblocking I/O
	Signals
	IP multicasting
	File data transfer—send_file() and accept_and_recv()
	Out-of-band data
	I/O multiplexing—select()
	Socket network functions
	Domain Name System support
	Environment variables
	Data caching

	Berkeley Software Distribution compatibility
	UNIX 98 compatibility
	Descriptor passing between processes: sendmsg() and recvmsg()
	Sockets-related User Exit Points
	Example: User Exit Program for QIBM_QSO_ACCEPT

	Socket scenario: Creating an application to accept IPv4 and IPv6 clients
	Example: Accepting connections from both IPv6 and IPv4 clients
	Example: IPv4 or IPv6 client

	Socket application design recommendations
	Examples: Socket application designs
	Examples: Connection-oriented designs
	Example: Writing an iterative server program
	Example: Using the spawn() API to create child processes
	Example: Creating a server that uses spawn()
	Example: Enabling the worker job to receive a data buffer

	Example: Passing descriptors between processes
	Example: Server program used for sendmsg() and recvmsg()
	Example: Worker program used for sendmsg() and recvmsg()

	Examples: Using multiple accept() APIs to handle incoming requests
	Example: Server program to create a pool of multiple accept() worker jobs
	Example: Worker jobs for multiple accept()

	Example: Generic client

	Example: Using asynchronous I/O
	Examples: Establishing secure connections
	Example: GSKit secure server with asynchronous data receive
	Example: GSKit secure server with asynchronous handshake
	Example: Establishing a secure client with Global Security Kit APIs

	Example: Using gethostbyaddr_r() for threadsafe network routines
	Example: Nonblocking I/O and select()
	Using poll() instead of select()
	Example: Using signals with blocking socket APIs
	Examples: Using multicasting with AF_INET
	Example: Sending multicast datagrams
	Example: Receiving multicast datagrams

	Example: Updating and querying DNS
	Examples: Transferring file data using send_file() and accept_and_recv() APIs
	Example: Using accept_and_recv() and send_file() APIs to send contents of a file
	Example: Client request for a file

	Xsockets tool
	Configuring Xsockets
	What is created by integrated Xsocket setup

	Configuring Xsockets to use a Web browser
	Configuring an Integrated Web Application Server
	Updating configuration files
	Configuring Xsockets Web application
	Testing Xsockets tool in a Web browser

	Using Xsockets
	Using integrated Xsockets
	Using Xsockets in a Web browser

	Deleting objects created by the Xsockets tool
	Customizing Xsockets

	Serviceability tools

	Appendix. Notices
	Programming interface information
	Trademarks
	Terms and conditions

