
AIX Version 7.2

General programming concepts

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
803.

This edition applies to AIX Version 7.2 and to all subsequent releases and modifications until otherwise indicated in new
editions.
© Copyright International Business Machines Corporation 2015, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document...ix
Highlighting..ix
Case-sensitivity in AIX.. ix
ISO 9000..ix

General programming concepts..1
What's new... 1
Tools and utilities... 1
Curses library... 3

Initializing curses..5
Windows in the curses environment..6
Manipulating window data with curses... 7
Controlling the cursor with curses... 9
Manipulating characters with curses...10
Understanding terminals with curses ... 17
Working with color..23
Manipulating video attributes.. 23
Manipulating soft labels... 26
Curses compatibility...26
List of additional curses subroutines...27

Debugging programs..28
adb debug program overview.. 29
Getting started with the adb debug program.. 29
Controlling program execution.. 30
Using adb expressions... 34
Customizing the adb debug program...35
Computing numbers and displaying text...39
Displaying and manipulating the source file with the adb program... 39
adb debug program reference information... 46
Example adb program: adbsamp...52
Example adb program: adbsamp2...53
Example adb program: adbsamp3...53
Example of directory and i-node dumps in adb debugging.. 54
Example of data formatting in adb debugging...56
Example of tracing multiple functions in adb debugging..58
dbx symbolic debug program overview... 60
Using the dbx debug program..60
Displaying and manipulating the source file with the dbx debug program.. 64
Examining program data.. 66
Debugging at the machine level with dbx..72
Customizing the dbx debugging environment... 75
Developing for the dbx plug-in framework.. 77
List of dbx subcommands.. 94

Error-logging overview...96
Error-logging facility... 97
Managing error logging...98
Error notification.. 101
Error logging tasks..104
Error logging and alerts..111
Error logging controls .. 112

 iii

File systems and logical volumes..113
File types.. 114
Working with JFS directories... 116
Working with JFS2 directories... 118
Working with JFS i-nodes.. 120
Working with JFS2 i-nodes ... 121
Allocating JFS file space.. 123
Allocating JFS2 file space.. 126
JFS file system layout.. 127
JFS2 file system layout.. 129
Writing programs that access large files... 130
Linking for programmers..134
Using file descriptors... 136
Creating and removing files... 139
Working with file I/O.. 140
File status... 147
File accessibility... 148
Creating new file system types..149
Logical volume programming...152
J2_CFG_ASSIST ioctl operation.. 153

Floating-point exceptions..154
Input and output handling...163
Storage protect keys..167
Large program support.. 172
Programming on multiprocessor systems.. 176

Identifying processors... 176
Controlling processor use.. 177
Using Dynamic Processor Deallocation...177
Dynamic memory guarding.. 181
Creating locking services... 181

ProbeVue dynamic tracing facility...184
ProbeVue concepts.. 184
ProveVue variables...190
Running ProbeVue..266

Vue functions... 374
Process attributes..404
Multithreaded programming... 407

Understanding threads and processes..408
Threadsafe and threaded libraries in AIX ...412
Creating threads...413
Terminating threads... 416
Synchronization overview.. 423
Using mutexes..424
Using condition variables...429
Using read/write locks... 434
Joining threads...441
Scheduling threads.. 444
Contention scope and concurrency level.. 447
Synchronization scheduling...448
One-time initializations..451
Thread-specific data.. 452
Creating complex synchronization objects..456
Signal management... 459
Process duplication and termination...463
Threads library options.. 464
Writing reentrant and threadsafe code... 473
Developing multithreaded programs...478
Developing multithreaded programs to examine and modify pthread library objects.................... 482

iv

Developing multithreaded program debuggers.. 485
Benefits of threads...489

lex and yacc program information...490
Generating a lexical analyzer with the lex command..491
Using the lex program with the yacc program...492
Extended regular expressions in the lex command.. 493
Passing code to the generated lex program..496
Defining lex substitution strings.. 496
lex library..497
Actions taken by the lexical analyzer.. 497
lex program start conditions..501
Creating a parser with the yacc program...502
The yacc grammar file..502
Using the yacc grammar file...504
yacc grammar file declarations..505
yacc rules..507
yacc actions..509
yacc program error handling..510
Parser operation generated by the yacc command.. 511
Using ambiguous rules in the yacc program... 513
Turning on debug mode for a parser generated by the yacc command... 515
Example program for the lex and yacc programs..515

make command... 519
Creating a description file.. 519
Internal rules for the make program... 522
Defining and using macros in a description file...525
Creating a target file with the make command... 529
Using the make command with source code control system files... 530
Using the make command with non-source code control system (SCCS) files................................531
Understanding how the make command uses environment variables.. 532
Using the make command in parallel run mode..532

m4 macro processor overview.. 532
Object data manager... 541

ODM commands and subroutines... 551
ODM example code and output... 553

Simultaneous multithreading..556
Dynamic logical partitioning..558

DLPAR-safe and aware programs.. 558
Processor bindings...562
Integrating the DLPAR operation into the application.. 563
Actions taken by DLPAR scripts...563
Making kernel extensions DLPAR-aware...570

sed program information .. 574
Manipulating strings with sed..574
Using text in commands...579
Using string replacement...579

Shared libraries and shared memory..580
Shared objects and run time linking.. 581
Shared libraries and lazy loading...583
Named shared library areas...584
Creating a shared library..586
Program address space overview..588
Understanding memory mapping.. 590
Interprocess communication limits...594
Creating a mapped data file with the shmat subroutine...597
Creating a copy-on-write mapped data file with the shmat subroutine...598
Creating a shared memory segment with the shmat subroutine... 599
Paging space programming requirements.. 600

 v

List of memory manipulation services...601
List of memory mapping services.. 602

AIX vector programming... 602
System memory allocation using the malloc subsystem... 609

User-defined malloc replacement...619
Debug malloc tool.. 623
Malloc multiheap..629
Malloc buckets... 630
Malloc trace.. 633
Malloc log... 634
Malloc disclaim...636
Malloc detect..636
Configuring and using the malloc thread cache.. 637

Writing reentrant and threadsafe code... 637
Packaging software for installation...642
Source code control system ... 681

SCCS flag and parameter conventions.. 682
Creating, editing, and updating an SCCS file... 683
Controlling and tracking SCCS file changes...684
Detecting and repairing damaged SCCS files.. 685
List of additional SCCS commands.. 686

Subroutines, example programs, and libraries...686
128-bit long double floating-point data type..688
List of character manipulation subroutines...689
List of executable program creation subroutines... 691
List of files and directories subroutines.. 692
List of numerical manipulation subroutines..694
List of long long integer numerical manipulation subroutines... 696
List of 128-bit long double numerical manipulation subroutines.. 696
List of processes subroutines.. 697
List of multithreaded programming subroutines.. 700
List of programmer's workbench library subroutines...701
List of security and auditing subroutines.. 702
List of string manipulation subroutines... 705
Example: Program for manipulating characters..706
Example: Searching and sorting program... 709
List of operating system libraries...713

System Management Interface Tool (SMIT)... 714
SMIT screen types..715
SMIT object classes... 717
SMIT aliases and fast paths...720
SMIT information command descriptors...721
SMIT command generation and execution..723
Adding tasks to the SMIT database...725
Debugging SMIT database extensions.. 726
Creating SMIT help information for a new task...726
sm_menu_opt (SMIT menu) object class..727
sm_name_hdr (SMIT selector header) object class... 729
sm_cmd_opt (SMIT dialog/selector command option) object class..732
sm_cmd_hdr (SMIT dialog header) object class...736
SMIT example program..739

System resource controller... 749
SRC objects.. 750
SRC communication types... 755
Programming subsystem communication with the SRC... 757
Defining your subsystem to the SRC..763
List of additional SRC subroutines...764

Trace facility...764

vi

Start the trace facility...769
Tracing user application.. 772

Tracing data structures.. 772
Trace stream attributes..776
Trace event type definitions...776
Trace subroutines...777

tty subsystem...780
Line discipline module (ldterm)...784
Converter modules...787
TTY drivers... 788

Loader domains... 789
Data management application programming interface ...791
AIX transactional memory programming..795

Notices..803
Privacy policy considerations.. 804
Trademarks.. 805

Index.. 807

 vii

viii

About this document

This topic collection provides application developers with complete information about writing applications
for the AIX® operating system. Programmers can use this topic collection to gain knowledge of
programming guidelines and resources. Topics include input and output handling, curses, file systems and
directories, lex and yacc, logical volume programming, shared libraries, large program support, packaging,
trace facility, and System Management Interface Tool (SMIT).

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you
might see displayed, examples of portions of program code similar to what you
might write as a programmer, messages from the system, or information you should
actually type.

Case-sensitivity in AIX
Everything in the AIX® operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS,
the system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three
distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be
performed, always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2015, 2019 ix

x AIX Version 7.2: General programming concepts

General programming concepts
This topic collection provides application developers with complete information about writing applications
for the AIX® operating system. Programmers can use this information to gain knowledge of programming
guidelines and resources. Topics include input and output handling, curses, file systems and directories,
lex and yacc, logical volume programming, shared libraries, large program support, packaging, trace
facility, and System Management Interface Tool (SMIT).

The AIX operating system is designed to support The Open Group's Single UNIX Specification Version 3
(UNIX 03) for portability of operating systems based on the UNIX operating system. Many new interfaces,
and some current ones, have been added or enhanced to meet this specification. To determine the correct
way to develop a UNIX 03 portable application, see The Open Group's UNIX 03 specification on The UNIX
System website (http://www.unix.org).

What's new in General programming concepts
Read about new or significantly changed information for the General programming concepts topic
collection.

How to see what's new or changed
To help you see where technical changes have been made, the General programming concepts topic
collection uses:

• The image to mark where new or changed information begins.

• The image to mark where new or changed information ends.

November 2019
The following information is a summary of the updates that are made to the General programming topic
collection:

• Added information about preferring the writer-thread over a reader thread to get the pthread read/write
locks in the “Using read/write locks” on page 434 topic.

November 2018
The following information is a summary of the updates that are made to the General programming topic
collection:

• Added process ID information to the “UFT probe manager” on page 285 topic.
• Added information about the get_cwd interface in the “Process attributes” on page 404 topic.

Tools and utilities
This section provides an overview of the tools and utilities that you can use to develop C compiled
language programs.

Many tools are provided to help you develop C compiled programs. The tools provide help with the
following programming tasks:

Subroutines and shell commands are provided for use in a C compiled program.

• Entering a program into the system
• Checking a program
• Compiling and linking a program

© Copyright IBM Corp. 2015, 2019 1

http://www.unix.org

• Subroutines
• Shell commands

Entering a program into the system

The system has a line editor called ed for use in entering a program into a file. The system also has the
full-screen editor called vi, which displays one full screen of data at a time and allows interactive editing
of a file.

Checking a program

Use the following commands to check the format of a program for consistency and accuracy:

Commands Description

cb Reformats a C language source program into a consistent format that uses indentation levels
to show the structure of the program.

cflow Generates a diagram of the logic flow of a C language source program.

cxref Generates a list of all external references for each module of a C language source program,
including where the reference is resolved (if it is resolved in the program).

lint Checks for syntax and data type errors in a C language source program. The lint command
might check these areas of a program more carefully than the C language compiler does, and
displays many messages that point out possible problems.

Compiling and linking a program

To convert source code into a program that the system can run, you must process the source file with a
compiler and a linkage editor.

A compiler is a program that reads text from a file and changes the programming language in that file to
a form that the system understands. The linkage editor connects program modules and determines how
to put the finished program into memory. To create this final form of the program, the system does the
following:

1. If a file contains compiler source code, the compiler translates it into object code.
2. If a file contains assembler language, the assembler translates it into object code.
3. The linkage editor links the object files created in the previous step with any other object files specified

in the compiler command.

Other programming languages available for use on the operating system include the C++, FORTRAN,
COBOL, and Assembler and other compiler languages.

You can write parts of a program in different languages and have one main routine call and start the
separate routines to execute. You can also use the compiler program to create object code and link the
program.

Correcting errors in a program

You can use the following debugging tools that are provided with the base operating system:

• The dbx symbolic debug program allows you to debug programs written in C language, C++, FORTRAN,
COBOL and Assembler languages.

• The adb debug program provides subcommands you can use to examine, debug, and repair executable
binary files and to examine non-ASCII data files.

• KDB Kernel Debugger and kdb command can help you determine errors in code running in the kernel.
You can use this debug program to debug device drivers and kernel extensions.

• The trace facility helps isolate system problems by monitoring selected system events.

When syntax errors or parameter-naming inconsistencies are discovered in a program file, you can use
a text editor or string-searching and string-editing programs to locate and change strings in the file.
String-searching and string-editing programs include the grep, sed, and awk commands. To make many
changes in one or more program files, you can include the commands in a shell program and then run the
shell program to locate and change the code in the files.

2 AIX Version 7.2: General programming concepts

Building and Maintaining a Program

The following facilities help you control program changes and build a program from many source
modules. These facilities can be particularly useful in software development environments in which many
source modules are produced.

• The make command builds a program from source modules. Because the make command compiles
only those modules changed since the last build, its use can reduce compilation time when many source
modules must be processed.

• The Source Code Control System (SCCS) allows you to maintain separate versions of a program without
storing separate, complete copies of each version. The use of SCCS can reduce storage requirements
and help in tracking the development of a project that requires keeping many versions of large
programs.

Subroutines

Subroutines from system libraries handle many complex or repetitive programming situations so that you
can concentrate on unique programming situations.

Shell commands

You can include the functions of many of the shell commands in a C language program. Any shell
command used in a program must be available on all systems that use the program.

You can then use the fork and exec subroutines in a program to run the command as a process in a part
of the system that is separate from the program. The system subroutine also runs a shell command in a
program, and the popen subroutine uses shell filters.

Related concepts
Manipulating strings with sed
The sed program performs its editing without interacting with the person requesting the editing.
Generating a lexical analyzer with the lex command
The lex command helps write a C language program that can receive and translate character-stream input
into program actions.
make command
This topic provides information about simplifying the recompiling and relinking processes using the make
command.
Subroutines, example programs, and libraries
This topic provides information about what subroutines are, how to use them, and where they are stored.

Curses library
The curses library provides a set of functions that enable you to manipulate a terminal's display
regardless of the terminal type. The curses library supports color. However, multibyte characters are
not supported. All references to characters in the curses documentation refer to single-byte characters.

Throughout this documentation, the curses library is referred to as curses.

The basis of curses programming is the window data structure. Using this structure, you can manipulate
data on a terminal's display. You can instruct curses to treat the entire terminal display as one large
window, or you can create multiple windows on the display. The windows can be different sizes and can
overlap one another. A typical curses application has a single large window and one subwindow within it.

Each window on a terminal's display has its own window data structure. This structure keeps state
information about the window, such as its size and where it is located on the display. Curses uses the
window data structure to obtain the relevant information it needs to carry out your instructions.

Terminology

When programming with curses, you should be familiar with the following terms:

General programming concepts 3

Term Definition

current character The character that the logical cursor is currently on.

current line The line that the logical cursor is currently on.

curscr A virtual default window provided by curses. The curscr (current screen) is an
internal representation of what currently appears on the terminal's external
display. Do not modify the curscr.

display A physical display connected to a workstation.

logical cursor The cursor location within each window. The window data structure keeps
track of the location of its logical cursor.

pad A pad is a window that is not restricted by the size of the screen

physical cursor The cursor that appears on a display. The workstation uses this cursor to
write to the display. There is only one physical cursor per display.

screen The window that fills the entire display. The screen is synonymous with the
stdscr.

stdscr A virtual default window (standard screen) provided by curses that
represents the entire display.

window A pointer to a C data structure and the graphic representation of that data
structure on the display. A window can be thought of as a two-dimensional
array representing how all or part of the display looks at any point in time.

Naming conventions

A single curses subroutine can have more than one version. Curses subroutines with multiple versions
follow distinct naming conventions that identify the separate versions. These conventions add a prefix to
a standard curses subroutine and identify what arguments the subroutine requires or what actions take
place when the subroutine is called. The different versions of curses subroutine names use the following
prefixes:

Prefix Description

w Identifies a subroutine that requires a window argument

p Identifies a subroutine that requires a pad argument

mv Identifies a subroutine that first performs a move to the program-supplied coordinates

If a curses subroutine has multiple versions and does not include one of the preceding prefixes, the
curses default window stdscr (standard screen) is used. The majority of subroutines that use the
stdscr are macros created in the /usr/include/curses.h file using #define statements. The preprocessor
replaces these statements at compilation time. As a result, these macros do not appear in the compiled
assembler code, a trace, a debug program, or the curses source code.

If a curses subroutine has only a single version, it does not necessarily use stdscr. For example, the
printw subroutine prints a string to the stdscr. The wprintw subroutine prints a string to a specific
window by supplying the window argument. The mvprintw subroutine moves the specified coordinates
to the stdscr and then performs the same function as the printw subroutine. Likewise, the mvwprintw
subroutine moves the specified coordinates to the specified window and then performs the same function
as the wprintw subroutine.

Structure of a curses Pprogram

In general, a curses program has the following progression:

1. Start curses.
2. Check for color support (optional).
3. Start color (optional).

4 AIX Version 7.2: General programming concepts

4. Create one or more windows.
5. Manipulate windows.
6. Destroy one or more windows.
7. Stop curses.

Some steps are optional, so your program does not have to follow this progression exactly.

Return values

With a few exceptions, all curses subroutines return either the integer value ERR or the integer value OK.
Subroutines that do not follow this convention are noted appropriately. Subroutines that return pointers
always return a null pointer or an error.

Initializing curses
This section describes the commands used for initializing curses.

Use the following commands to initialize curses:

Command Description

endwin Terminates the curses subroutine libraries and their data structures

initscr Initializes the curses subroutine library and its data structures

isendwin Returns TRUE if the endwin subroutine has been called without any subsequent calls
to the wrefresh subroutine

newterm Sets up a new terminal

setupterm Sets up the TERMINAL structure for use by curses

You must include the curses.h file at the beginning of any program that calls curses subroutines. To do
this, use the following statement:

#include <curses.h>

Before you can call subroutines that manipulate windows or screens, you must call the initscr or
newterm subroutine. These subroutines first save the terminal's settings and then call the setupterm
subroutine to establish a curses terminal.

If you need to temporarily suspend curses, use a shell escape or subroutine. To resume after a temporary
escape, call the wrefresh or doupdate subroutine. Before exiting a curses program, you must call the
endwin subroutine. The endwin subroutine restores tty modes, moves the cursor to the lower-left corner
of the screen, and resets the terminal into the proper nonvisual mode.

Most interactive, screen-oriented programs require character-at-a-time input without echoing the result
to the screen. To establish your program with character-at-a-time input, call the cbreak and noecho
subroutines after calling the initscr subroutine. When accepting this type of input, programs should also
call the following subroutines:

• nonl subroutine.
• intrflush subroutine with the Window parameter set to the stdscr and the Flag parameter set to

FALSE. The Window parameter is required but ignored. You can use stdscr as the value of the Window
parameter, because stdscr is already created for you.

• keypad subroutine with the Window parameter set to the stdscr and the Flag parameter set to TRUE.

The isendwin subroutine is helpful if, for optimization reasons, you do not want to call the wrefresh
subroutine needlessly. To determine if the endwin subroutine was called without any subsequent calls to
the wrefresh subroutine, use the isendwin subroutine.

General programming concepts 5

Windows in the curses environment
A curses program manipulates windows that appear on a terminal's display. A window can be as large as
the entire display or as small as a single character in length and height.

Note: A pad is a window that is not restricted by the size of the screen.

Within a curses program, windows are variables declared as type WINDOW. The WINDOW data type
is defined in the /usr/include/curses.h file as a C data structure. You create a window by allocating a
portion of a machine's memory for a window structure. This structure describes the characteristics of
the window. When a program changes the window data internally in memory, it must use the wrefresh
subroutine (or equivalent subroutine) to update the external, physical screen to reflect the internal
change in the appropriate window structure.

Default window structure

Curses provides a virtual default window structure called stdscr. The stdscr represents, in memory, the
entire terminal display. The stdscr window structure is created automatically when the curses library is
initialized and it describes the display. When the library is initialized, the length and width variables are set
to the length and width of the physical display.

Programs that use the stdscr first manipulate the stdscr. They then call the refresh subroutine to refresh
the external display so that it matches the stdscr window.

In addition to the stdscr, you can define your own windows. These windows are known as user-defined
windows to distinguish them from the stdscr. Like the stdscr, user-defined windows exist in machine
memory as structures. Except for the amount of memory available to a program, there is no limit to the
number of windows you can create. A curses program can manipulate the default window, user-defined
windows, or both.

Current window structure

Curses supports another virtual window called curscr (current screen). The curscr window is an internal
representation of what currently appears on the terminal's external display.

When a program requires the external representation to match the internal representation, it must call a
subroutine, such as the wrefresh subroutine, to update the physical display (or the refresh subroutine if
the program is working with the stdscr).

The curscr is reserved for internal use by curses. Do not manipulate the curscr.

Subwindows

Curses also allows you to construct subwindows. Subwindows are rectangular portions within other
windows. A subwindow is also of type WINDOW. The window that contains a subwindow is known as the
subwindow's parent, and the subwindow is known as the containing window's child.

Changes to either the parent window or the child window within the area overlapped by the subwindow
are made to both windows. After modifying a subwindow, call the touchline or touchwin subroutine on
the parent window before refreshing it.

Subroutine Description

touchline Forces a range of lines to be refreshed at the next call to the wrefresh subroutine.

touchwin Forces every character in a window's character array to be refreshed at the next
call of the wrefresh subroutine. The touchwin subroutine does not save optimization
information. This subroutine is useful with overlapping windows.

A refresh called on the parent also refreshes the children. A subwindow can also be a parent window. The
process of layering windows inside of windows is called nesting.

Before you can delete a parent window, you must first delete all of its children using the delwin
subroutine. Curses returns an error if you try to delete a window before first deleting all of its children.

Pads

6 AIX Version 7.2: General programming concepts

A pad is a type of window that is not restricted by the terminal's display size or associated with a
particular part of the display. Because a pad is usually larger than the physical display, only a portion of a
pad is visible to the user at a given time.

Use pads if you have a large amount of related data that you want to keep all together in one window but
you do not need to display all of the data at one time.

Windows within pads are known as subpads. Subpads are positioned within a pad at coordinates
relative to the parent pad. This placement differs from subwindows, which are positioned using screen
coordinates.

Unlike other windows, scrolling or echoing of input does not automatically refresh a pad. Like
subwindows, when changing the image of a subpad, you must call either the touchline or touchwin
subroutine on the parent pad before refreshing the parent.

You can use all the curses subroutines with pads except for the newwin, subwin, wrefresh, and
wnoutrefresh subroutines. These subroutines are replaced with the newpad, subpad, prefresh, and
pnoutrefresh subroutines.

Manipulating window data with curses
When curses is initialized, the stdscr is provided automatically. You can manipulate the stdscr using the
curses subroutine library or you can create user-defined windows.

Creating windows

You can create your own window using the newwin subroutine.

Each time you call the newwin subroutine, curses allocates a new window structure in memory. This
structure contains all the information associated with the new window. Curses does not put a limit on
the number of windows you can create. The number of nested subwindows is limited to the amount of
memory available, up to the value of SHRT_MAX as defined in the /usr/include/limits.h file.

You can change windows without regard to the order in which they were created. Updates to the
terminal's display occur through calls to the wrefresh subroutine.

Subwindows

You must supply coordinates for the subwindow relative to the terminal's display. The subwindow,
created using the subwin subroutine, must fit within the bounds of the parent window. Otherwise, a
null value is returned.

Pads

Use the following subroutines to create pads:

Subroutin
e

Description

newpad Creates a pad data structure.

subpad Creates and returns a pointer to a subpad within a pad.

Removing windows, pads, and subwindows

The new subpad is positioned relative to its parent.

To remove a window, pad, or subwindow, use the delwin subroutine. Before you can delete a window or
pad, you must have already deleted its children; otherwise, the delwin subroutine returns an error.

Changing the screen or window images

When curses subroutines change the appearance of a window, the internal representation of the window
is updated, while the display remains unchanged until the next call to the wrefresh subroutine. The
wrefresh subroutine uses the information in the window structure to update the display.

Refreshing windows

General programming concepts 7

Whenever you write output to a window or pad structure, you must refresh the terminal's display to match
the internal representation. A refresh does the following:

• Compares the contents of the curscr to the contents of the user-defined or stdscr
• Updates the curscr structure to match the user-defined or stdscr
• Redraws the portion of the physical display that changed

Use the following subroutines to refresh windows:

Subroutine Description

refresh, or wrefresh Updates the terminal and curscr to reflect changes made to a
window.

wnoutrefresh or doupdate Updates the designated windows and outputs them all at
once to the terminal. These subroutines are useful for faster
response when there are multiple updates.

The refresh and wrefresh subroutines first call the wnoutrefresh subroutine to copy the window being
refreshed to the current screen. They then call the doupdate subroutine to update the display.

If you need to refresh multiple windows at the same time, use one of the two available methods. You can
use a series of calls to the wrefresh subroutine that result in alternating calls to the wnoutrefresh and
doupdate subroutines. You can also call the wnoutrefresh subroutine once for each window and then call
the doupdate subroutine once. With the second method, only one burst of output is sent to the display.

Subroutines used for refreshing pads

The prefresh and pnoutrefresh subroutines are similar to the wrefresh and wnoutrefresh subroutines.

The prefresh subroutine updates both the current screen and the physical display, while the
pnoutrefresh subroutine updates curscr to reflect changes made to a user-defined pad. Because pads
instead of windows are involved, these subroutines require additional parameters to indicate which part
of the pad and screen are involved.

Refreshing areas that have not changed

During a refresh, only those areas that have changed are redrawn on the display. You can refresh areas of
the display that have not changed using the touchwin and touchline subroutines:

Subroutine Description

touchline Forces a range of lines to be refreshed at the next call to the wrefresh subroutine.

touchwin Forces every character in a window's character array to be refreshed at the next
call of the wrefresh subroutine. The touchwin subroutine does not save optimization
information. This subroutine is useful with overlapping windows.

Combining the touchwin and wrefresh subroutines is helpful when dealing with subwindows or
overlapping windows. To bring a window forward from behind another window, call the touchwin
subroutine followed by the wrefresh subroutine.

Garbled displays

If text is sent to the terminal's display with a noncurses subroutine, such as the echo or printf subroutine,
the external window can become garbled. In this case, the display changes, but the current screen is
not updated to reflect these changes. Problems can arise when a refresh is called on the garbled screen
because after a screen is garbled, there is no difference between the window being refreshed and the
current screen structure. As a result, spaces on the display caused by garbled text are not changed.

A similar problem can also occur when a window is moved. The characters sent to the display with the
noncurses subroutines do not move with the window internally.

If the screen becomes garbled, call the wrefresh subroutine on the curscr to update the display to reflect
the current physical display.

8 AIX Version 7.2: General programming concepts

Manipulating window content

After a window or subwindow is created, programs often must manipulate them in some way, by using the
following subroutines:

Subroutine Description

box Draws a box in or around a window

copywin Provides more precise control over the overlay and overwrite subroutine

garbagedlines Indicates to curses that a screen line is discarded and should be thrown away
before having anything written over

mvwin Moves a window or subwindow to a new location

overlay or overwrite Copies one window on top of another

ripoffline Removes a line from the default screen

To use the overlay and overwrite subroutines, the two windows must overlap. The overwrite subroutine
is destructive, whereas the overlay subroutine is not. When text is copied from one window to another
using the overwrite subroutine, blank portions from the copied window overwrite any portions of the
window copied to. The overlay subroutine is nondestructive because it does not copy blank portions from
the copied window.

Similar to the overlay and overwrite subroutines, the copywin subroutine allows you to copy a portion of
one window to another. Unlike overlay and overwrite subroutines, the windows do not have to overlap for
you to use the copywin subroutine.

To remove a line from the stdscr, you can use the ripoffline subroutine. If you pass this subroutine a
positive line argument, the specified number of lines is removed from the top of the stdscr. If you pass the
subroutine a negative line argument, the lines are removed from the bottom of the stdscr.

To discard a specified range of lines before writing anything new, you can use the garbagedlines
subroutine.

Support for filters

The filter subroutine is provided for curses applications that are filters. This subroutine causes curses to
operate as if the stdscr was only a single line. When running with the filter subroutine, curses does not
use any terminal capabilities that require knowledge of the line that curses is on.

Controlling the cursor with curses
This section explains the different types of cursors that exist in the curses library.

The following types of cursors exist in the curses library:
logical cursor

The cursor location within each window. A window's data structure keeps track of the location of its
logical cursor. Each window has a logical cursor.

physical cursor
The display cursor. The workstation uses this cursor to write to the display. There is only one physical
cursor per display.

You can only add to or erase characters at the logical cursor in a window. The following subroutines are
provided for controlling the cursor:
getbegyx

Places the beginning coordinates of the window in integer variables y and x
getmaxyx

Places the size of the window in integer variables y and x
getsyx

Returns the current coordinates of the virtual screen cursor

General programming concepts 9

getyx
Returns the position of the logical cursor associated with a specified window

leaveok
Controls physical cursor placement after a call to the wrefresh subroutine

move
Moves the logical cursor associated with the stdscr

mvcur
Moves the physical cursor

setsyx
Sets the virtual screen cursor to the specified coordinate

wmove
Moves the logical cursor associated with a user-defined window

After a call to the refresh or wrefresh subroutine, curses places the physical cursor at the last updated
character position in the window. To leave the physical cursor where it is and not move it after a refresh,
call the leaveok subroutine with the Window parameter set to the desired window and the Flag parameter
set to TRUE.

Manipulating characters with curses
You can add characters to a curses window using a keyboard or a curses application. This section
describes how you can add, remove, or change characters that appear in a curses window.

Character size

Some character sets define multi-column characters that occupy more than one column position when
displayed on the screen.

Writing a character whose width is greater than the width of the destination window produces an error.

Adding characters to the screen image

The curses library provides a number of subroutines that write text changes to a window and mark the
area to be updated at the next call to the wrefresh subroutine.

waddch subroutines

The waddch subroutines overwrite the character at the current logical cursor location with a specified
character. After overwriting, the logical cursor is moved one space to the right. If the waddch subroutines
are called at the right margin, these subroutines also add an automatic newline character. Additionally,
if you call one of these subroutines at the bottom of a scrolling region and the scrollok subroutine is
enabled, the region is scrolled up one line. For example, if you added a new line at the bottom line of a
window, the window would scroll up one line.

If the character to add is a tab, newline, or backspace character, curses moves the cursor appropriately
in the window to reflect the addition. Tabs are set at every eighth column. If the character is a newline,
curses first uses the wclrtoeol subroutine to erase the current line from the logical cursor position to the
end of the line before moving the cursor. The waddch subroutine family is made up of the following:

Subroutine Description

addch macro Adds a character to the stdscr

mvaddch macro Moves a character to the specified location before adding it to the stdscr

mvwaddch macro Moves a character to the specified location before adding it to the user-
defined window

waddch subroutine Adds a character to the user-defined window

By using the winch and waddch subroutine families together, you can copy text and video attributes
from one place to another. Using the winch subroutine family, you can retrieve a character and its video

10 AIX Version 7.2: General programming concepts

attributes. You can then use one of the waddch subroutines to add the character and its attributes to
another location.

You can also use the waddch subroutines to add control characters to a window. Control characters are
drawn in the ^X notation.

Note: Calling the winch subroutine on a position in the window containing a control character does not
return the character. Instead, it returns one character of the control character representation.

Outputting single, noncontrol characters

When outputting single, noncontrol characters, there can be significant performance gain to using the
wechochar subroutines. These subroutines are functionally equivalent to a call to the corresponding
waddchr subroutine followed by the corresponding wrefresh subroutine. The wechochar subroutines
include the wechochar subroutine, the echochar macro, and the pechochar subroutine.

Some character sets may contain nonspacing characters. (Nonspacing characters are those, other than
the ' \ 0 ' character, for which the wcwidth subroutine returns a width of zero.) The application may
write nonspacing characters to a window. Every nonspacing character in a window is associated with
a spacing character and modifies the spacing character. Nonspacing characters in a window cannot
be addressed separately. A nonspacing character is implicitly addressed whenever a Curses operation
affects the spacing character with which the nonspacing character is associated.

Nonspacing characters do not support attributes. For interfaces that use wide characters and attributes,
the attributes are ignored if the wide character is a nonspacing character. Multi-column characters have a
single set of attributes for all columns. The association of nonspacing characters with spacing characters
can be controlled by the application using the wide character interfaces. The wide character string
functions provide codeset-dependent association.

The typical effects of a nonspacing character associated with a spacing character called c, are as follows:

• The nonspacing character may modify the appearance of c. (For instance, there may be nonspacing
characters that add diacritical marks to characters. However, there may also be spacing characters with
built-in diacritical marks.)

• The nonspacing characters may bridge c to the character following c. Examples of this usage are
the formation of ligatures and the conversion of characters into compound display forms, words, or
ideograms.

Implementations may limit the number of nonspacing characters that can be associated with a spacing
character, provided any limit is at least 5.

Complex characters

A complex character is a set of associated characters, which may include a spacing character and may
also include any nonspacing characters associated with it. A spacing complex character is a complex
character that includes one spacing character and any nonspacing characters associated with it. An
example of a code set that has complex characters is ISO/IEC 10646-1:1993.

A complex character can be written to the screen. If the complex character does not include a spacing
character, any nonspacing characters are associated with the spacing complex character that exists at the
specified screen position. When the application reads information back from the screen, it obtains spacing
complex characters.

The cchar_t data type represents a complex character and its rendition. When a cchar_t represents a
nonspacing complex character (that is, when there is no spacing character within the complex character),
then its rendition is not used. When it is written to the screen, it uses the rendition specified by the
spacing character already displayed.

An object of type cchar_t can be initialized using the setchar subroutine, and its contents can be extracted
using the getchar subroutine. The behavior of functions that take a cchar_t value that was not initialized in
this way are obtained from a curses function that has a cchar_t output argument.

Special characters

General programming concepts 11

Some functions process special characters. In functions that do not move the cursor based on the
information placed in the window, these special characters would only be used within a string in order to
affect the placement of subsequent characters. The cursor movement specified below does not persist in
the visible cursor beyond the end of the operation. In functions that do not move the cursor, these special
characters can be used to affect the placement of subsequent characters and to achieve movement of the
physical cursor.

Character Description

Backspace Unless the cursor was already in column 0, Backspace moves the cursor one
column toward the start of the current line, and any characters after the Backspace
are added or inserted starting there.

Carriage return Unless the cursor was already in column 0, Carriage return moves the cursor to
the start of the current line. Any characters after the Carriage return are added or
inserted starting there.

newline In an add operation, curses adds the background character into successive
columns until reaching the end of the line. Scrolling occurs, and any characters
after the newline character are added, starting at the beginning of the new line.

In an insert operation, newline erases the remainder of the current line with the
background character (effectively a wclrtoeol subroutine), and moves the cursor
to the start of a new line. When scrolling is enabled, advancing the cursor to a new
line may cause scrolling. Any characters after the newline character are inserted at
the beginning of the new line.

The filter function may inhibit this processing.

Tab Tab characters in text move subsequent characters to the next horizontal tab stop.
By default, tab stops are in columns 0, 8, 16, and so on.

In an insert or add operation, curses inserts or adds, respectively, the background
character into successive columns until reaching the next tab stop. If there are no
more tab stops in the current line, wrapping and scrolling occur.

Control characters

The curses functions that perform special-character processing conceptually convert control characters
to the (' ^ ') character followed by a second character (which is an uppercase letter if it is alphabetic) and
write this string to the window in place of the control character. The functions that retrieve text from the
window will not retrieve the original control character.

Line graphics:

You can use the following variables to add line-drawing characters to the screen with the waddch
subroutine. When defined for the terminal, the variable will have the A_ALTCHARSET bit turned on.
Otherwise, the default character listed in the following table is stored in the variable.

Variable name Default character Glyph description

ACS_ULCORNER + upper left corner

ACS_LLCORNER + lower left corner

ACS_URCORNER + upper right corner

ACS_LRCORNER + lower right corner

ACS_RTEE + right tee

ACS_LTEE + left tee

ACS_BTEE + bottom tee

12 AIX Version 7.2: General programming concepts

Variable name Default character Glyph description

ACS_TTEE + top tee

ACS_HLINE — horizontal line

ACS_VLINE | vertical line

ACS_PLUS + plus

ACS_S1 - scan line 1

ACS_S9 _ scan line 9

ACS_DIAMOND + diamond

ACS_CKBOARD : checkerboard (stipple)

ACS_DEGREE , degree symbol

ACS_PLMINUS # plus/minus

ACS_BULLET o bullet

ACS_LARROW < arrow pointing left

ACS_RARROW > arrow pointing right

ACS_DARROW v arrow pointing down

ACS_UARROW ^ arrow pointing up

ACS_BOARD # board of squares

ACS_LANTERN # lantern symbol

ACS_BLOCK # solid square block

waddstr subroutines

The waddstr subroutines add a null-terminated character string to a window, starting with the current
character. If you are adding a single character, use the waddch subroutine. Otherwise, use the waddstr
subroutine. The following are part of the waddstr subroutine family:

Subroutine Description

addstr macro Adds a character string to the stdscr

mvaddstr macro Moves the logical cursor to a specified location before adding a character
string to the stdscr

waddstr subroutine Adds a character string to a user-defined window

wmvaddstr macro Moves the logical cursor to a specified location before adding a character
string to a user-defined window

winsch subroutines

The winsch subroutines insert a specified character before the current character in a window. All
characters to the right of the inserted character are moved one space to the right. As a result, the
rightmost character on the line may be lost. The positions of the logical and physical cursors do not
change after the move. The winsch subroutines include the following:

Subroutine Description

insch macro Inserts a character in the stdscr

mvinsch macro Moves the logical cursor to a specified location in the stdscr before
inserting a character

General programming concepts 13

Subroutine Description

mvwinsch macro Moves the logical cursor to a specified location in a user-defined window
before inserting a character

winsch subroutine Inserts a character in a user-defined window

winsertln subroutines

The winsertln subroutines insert a blank line above the current line in a window. The insertln subroutine
inserts a line in the stdscr. The bottom line of the window is lost. The winsertln subroutine performs the
same action in a user-defined window.

wprintw subroutines

The wprintw subroutines replace a series of characters (starting with the current character) with
formatted output. The format is the same as for the printf command. The printw family is made up
of the following:

Subroutine Description

mvprintw macro Moves the logical cursor to a specified location in the stdscr before
replacing any characters

mvwprintw macro Moves the logical cursor to a specified location in a user-defined window
before replacing any characters

printw macro Replaces a series of characters in the stdscr

wprintw subroutine Replaces a series of characters in a user-defined window

The wprintw subroutines make calls to the waddch subroutine to replace characters.

unctrl macro

The unctrl macro returns a printable representation of the specified control character, displayed in the ^X
notation. The unctrl macro returns print characters as is.

Enabling text scrolling

Use the following subroutines to enable scrolling:

Subroutine Description

idlok Allows curses to use the hardware insert/delete line feature

scrollok Enables a window to scroll when the cursor is moved off the right edge of the last
line of a window

setscrreg or
wsetscrreg

Sets a software scrolling region within a window

Scrolling occurs when a program or user moves a cursor off a window's bottom edge. For scrolling to
occur, you must first use the scrollok subroutine to enable scrolling for a window. A window is scrolled if
scrolling is enabled and if any of the following occurs:

• The cursor is moved off the edge of a window.
• A newline character is encountered on the last line.
• A character is inserted in the last position of the last line.

When a window is scrolled, curses will update both the window and the display. However, to get the
physical scrolling effect on the terminal, you must call the idlok subroutine with the Flag parameter set to
TRUE.

If scrolling is disabled, the cursor remains on the bottom line at the location where the character was
entered.

14 AIX Version 7.2: General programming concepts

When scrolling is enabled for a window, you can use the setscrreg subroutines to create a software
scrolling region inside the window. You pass the setscrreg subroutines values for the top line and bottom
line of the region. If setscrreg is enabled for the region and scrolling is enabled for the window, any
attempt to move off the specified bottom line causes all the lines in the region to scroll up one line. You
can use the setscrreg macro to define a scrolling region in the stdscr. Otherwise, you use the wsetscrreg
subroutine to define scrolling regions in user-defined windows.

Note: Unlike the idlok subroutine, the setscrreg subroutines have no bearing on the use of the physical
scrolling region capability that the terminal may have.

Deleting characters

You can delete text by replacing it with blank spaces or by removing characters from a character array and
sliding the rest of the characters on the line one space to the left.

werase subroutines

The erase macro copies blank space to every position in the stdscr. The werase subroutine puts a blank
space at every position in a user-defined window. To delete a single character in a window, use the
wdelch subroutine.

wclear subroutines

Use the following subroutines to clear the screen:

Subroutine Description

clear, or wclear Clears the screen and sets a clear flag for the next refresh.

clearok Determines whether curses clears a window on the next call to the refresh
or wrefresh subroutine.

The wclear subroutines are similar to the werase subroutines. However, in addition to putting a blank
space at every position of a window, the wclear subroutines also call the wclearok subroutine. As a
result, the screen is cleared on the next call to the wrefresh subroutine.

The wclear subroutine family contains the wclear subroutine, the clear macro, and the clearok
subroutine. The clear macro puts a blank at every position in the stdscr.

wclrtoeol subroutines

The clrtoeol macro operates in the stdscr, while the wclrtoeol subroutine performs the same action
within a user-defined window.

wclrtobot subroutines

The clrtobot macro operates in the stdscr, while the wclrtobot performs the same action in a user-
defined window.

wdelch subroutines

Use the following subroutines to delete characters from the screen:

Subroutine Description

delch macro Deletes the current character from the stdscr

mvdelch macro Moves the logical cursor before deleting a character from the stdscr

mvwdelch macro Moves the logical cursor before deleting a character from a user-defined
window

wdelch subroutine Deletes the current character in a user-defined window

The wdelch subroutines delete the current character and move all the characters to the right of the
current character on the current line one position to the left. The last character in the line is filled with a
blank. The delch subroutine family consists of the following subroutine and macros:

wdeleteln subroutines

General programming concepts 15

The deleteln subroutines delete the current line and move all lines below the current line up one line. This
action clears the window's bottom line.

Getting characters

Your program can retrieve characters from the keyboard or from the display. The wgetch subroutines
retrieve characters from the keyboard. The winch subroutines retrieve characters from the display.

wgetch subroutines

The wgetch subroutines read characters from the keyboard attached to the terminal associated with the
window. Before getting a character, these subroutines call the wrefresh subroutines if anything in the
window has changed: for example, if the cursor has moved or text has changed.

The wgetch subroutine family is made up of the following:

Subroutine Description

getch macro Gets a character from the stdscr

mvgetch macro Moves the cursor before getting a character from the stdscr

mvwgetch macro Moves the cursor before getting a character from a user-defined window

wgetch subroutine Gets a character from a user-defined window

To place a character previously obtained by a call to the wgetch subroutine back in the input queue, use
the ungetch subroutine. The character is retrieved by the next call to the wgetch subroutine.

Terminal modes

The output of the wgetch subroutines is, in part, determined by the mode of the terminal. The following
list describes the action of the wgetch subroutines in each type of terminal mode:

Subroutine Description

DELAY mode Stops reading until the system passes text through the program. If CBREAK mode
is also set, the program stops after one character. If CBREAK mode is not set
(NOCBREAK mode), the wgetch subroutine stops reading after the first newline
character. If ECHO is set, the character is also echoed to the window.

HALF-DELAY
mode

Stops reading until a character is typed or a specified timeout is reached. If ECHO
mode is set, the character is also echoed to the window.

NODELAY
mode

Returns a value of ERR if there is no input waiting.

Note: When you use the getch, mvgetch, mvwgetch, or wgetch subroutines, do not set both the
NOCBREAK mode and the ECHO mode at the same time. Setting both modes can cause undesirable
results depending on the state of the tty driver when each character is typed.

Function keys

Function keys are defined in the curses.h file. Function keys can be returned by the wgetch subroutine if
the keypad is enabled. A terminal may not support all of the function keys. To see if a terminal supports a
particular key, check its terminfo database definition.

Getting function keys

If your program enables the keyboard with the keypad subroutine, and the user presses a function key,
the token for that function key is returned instead of raw characters. The /usr/include/curses.h file
defines the possible function keys. Each define statement begins with a KEY_ prefix, and the keys are
defined as integers beginning with the value 03510.

If a character is received that could be the beginning of a function key (such as an Escape character),
curses sets a timer (a structure of type timeval that is defined in /usr/include/sys/time.h). If the
remainder of the sequence is not received before the timer expires, the character is passed through.

16 AIX Version 7.2: General programming concepts

Otherwise, the function key's value is returned. For this reason, after a user presses the Esc key there is a
delay before the escape is returned to the program. Avoid using the Esc key where possible when you call
a single-character subroutine such as the wgetch subroutine. This timer can be overridden or extended
by the use of the ESCDELAY environment variable.

The ESCDELAY environment variable sets the length of time to wait before timing out and treating
the ESC keystroke as the Escape character rather than combining it with other characters in the
buffer to create a key sequence. The ESCDELAY value is measured in fifths of a millisecond. If the
ESCDELAY variable is 0, the system immediately composes the Escape response without waiting for
more information from the buffer. You may choose any value from 0 to 99,999. The default setting for the
ESCDELAY variable is 500 (1/10th of a second).

To prevent the wgetch subroutine from setting a timer, call the notimeout subroutine. If notimeout is set
to TRUE, curses does not distinguish between function keys and characters when retrieving data.

keyname subroutine

The keyname subroutine returns a pointer to a character string containing a symbolic name for the Key
argument. The Key argument can be any key returned from the wgetch, getch, mvgetch, or mvwgetch
subroutines.

winch subroutines

The winch subroutines retrieve the character at the current position. If any attributes are set for the
position, the attribute values are ORed into the value returned. You can use the winch subroutines to
extract only the character or its attributes. To do this, use the predefined constants A_CHARTEXT and
A_ATTRIBUTES with the logical & (ampersand) operator. These constants are defined in the curses.h file.
The following are the winch subroutines:

Subroutine Description

inch macro Gets the current character from the stdscr

mvinch macro Moves the logical cursor before calling the inch subroutine on the stdscr

mvwinch macro Moves the logical cursor before calling the winch subroutine in the user-
defined window

winch subroutine Gets the current character from a user-defined window

wscanw subroutines

The wscanw subroutines read character data, interpret it according to a conversion specification, and
store the converted results into memory. The wscanw subroutines use the wgetstr subroutines to read
the character data. The following are the wscanw subroutines:

Subroutine Description

mvscanw macro Moves the logical cursor before scanning the stdscr

mvwscanw macro Moves the logical cursor in the user-defined window before scanning

scanw macro Scans the stdscr

wscanw subroutine Scans a user-defined window

Understanding terminals with curses
The capabilities of your program are limited, in part, by the capabilities of the terminal on which it runs.

This section provides information about initializing terminals and identifying their capabilities.

Manipulating multiple terminals

With curses, you can use one or more terminals for input and output. The terminal subroutines enable you
to establish new terminals, to switch input and output processing, and to retrieve terminal capabilities.

General programming concepts 17

You can start curses on a single default screen using the initscr subroutine. If your application sends
output to more than one terminal, use the newterm subroutine. Call the newterm subroutine for each
terminal. Also use the newterm subroutine if your application wants an indication of error conditions
so that it can continue to run in a line-oriented mode if the terminal cannot support a screen-oriented
program.

When it completes, a program must call the endwin subroutine for each terminal it used. If you call the
newterm subroutine more than once for the same terminal, the first terminal referred to must be the last
one for which you call the endwin subroutine.

The set_term subroutine switches input and output processing between different terminals.

Determining terminal capabilities

Curses supplies the following subroutines to help you determine the capabilities of a terminal:

Subroutine Description

has_ic Determines whether a terminal has the insert-character capability

has_il Determines whether a terminal has the insert-line capability

longname Returns the verbose name of the terminal

The longname subroutine returns a pointer to a static area containing a verbose description of the current
terminal. This static area is defined only after a call to the initscr or newterm subroutine. If you intend
to use the longname subroutine with multiple terminals, each call to the newterm subroutine overwrites
this area. Calls to the set_term subroutine do not restore the value. Instead, save this area between calls
to the newterm subroutine.

The has_ic subroutine returns TRUE if the terminal has insert and delete character capabilities.

The has_il subroutine returns TRUE if the terminal has insert and delete line capabilities or can simulate
the capabilities using scrolling regions. Use the has_il subroutine to check whether it is appropriate to
turn on physical scrolling using the scrollok or idlok subroutines.

Setting terminal input and output modes

The subroutines that control input and output determine how your application retrieves and displays data
to users.

Input Modes

Special input characters include the flow-control characters, the interrupt character, the erase character,
and the kill character. The following mutually-exclusive curses modes let the application control the effect
of the input characters:

Cooked mode
This mode achieves normal line-at-a-time processing with all special characters handled outside the
application, achieving the same effect as canonical-mode input processing. The state of the ISIG and
IXON flags is not changed upon entering this mode by calling nocbreak() and are set upon entering
this mode by calling noraw().

The implementation supports erase and kill characters from any supported locale, regardless of the
width of the character.

cbreak mode
Characters typed by the user are immediately available to the application and curses does not
perform special processing on either the erase character or the kill character. An application can
select cbreak mode to do its own line editing but to let the abort character be used to abort the task.
This mode achieves the same effect as noncanonical mode, Case B input processing (with MIN set to
1 and ICRNL cleared). The state of the ISIG and IXON flags is not changed upon entering this mode.

Half-delay mode
The effect is the same as cbreak, except that input functions wait until a character is available or
an interval defined by the application elapses, whichever comes first. This mode achieves the same

18 AIX Version 7.2: General programming concepts

effect as noncanonical mode, Case C input processing (with TIME set to the value specified by the
application). The state of the ISIG and IXON flags is not changed upon entering this mode.

Raw mode
Raw mode gives maximum control to the application over terminal input. The application sees each
character as it is typed. This achieves the same effect as noncanonical mode, Case D input processing.
The ISIG and IXON flags are cleared upon entering this mode.

The terminal interface settings are recorded when the process calls the initscr or newterm subroutines to
initialize curses and restores these settings when the endwin subroutine is called. The initial input mode
for curses operations is unspecified unless the implementation supports enhanced curses compliance, in
which the initial input mode is cbreak mode.

The behavior of the BREAK key depends on other bits in the display driver that are not set by curses.

Delay mode

The following mutually exclusive delay modes specify how quickly certain curses functions return to the
application when there is no terminal input waiting when the function is called:

Delay Description

No Delay The function fails.

Delay The application waits until the implementation passes text through to the application. If
cbreak mode or Raw Mode is set, this is after one character. Otherwise, this is after the
first newline character, end-of-line character, or end-of-file character.

The effect of No Delay mode on function-key processing is unspecified.

Echo mode processing

Echo mode determines whether curses echoes typed characters to the screen. The effect of echo mode
is analogous to the effect of the echo flag in the local mode field of the termios structure associated
with the terminal device connected to the window. However, curses always clears the echo flag when
invoked, to inhibit the operating system from performing echoing. The method of echoing characters is
not identical to the operating system's method of echoing characters, because curses performs additional
processing of terminal input.

If in echo mode, curses performs its own echoing. Any visible input character is stored in the current
or specified window by the input function that the application called, at that window's cursor position,
as though the addch subroutine was called, with all consequent effects such as cursor movement and
wrapping.

If not in echo mode, any echoing of input must be performed by the application. Applications often
perform their own echoing in a controlled area of the screen, or do not echo at all, so they disable echo
mode.

It may not be possible to turn off echo processing for synchronous and network asynchronous terminals
because echo processing is done directly by the terminals. Applications running on such terminals should
be aware that any characters typed will display on the screen at the point where the cursor is positioned.

The following are a part of the echo processing family of subroutines:

Subroutine Description

cbreak or nocbreak Puts the terminal into or takes it out of CBREAK mode

delay_output Sets the output delay in milliseconds

echo or noecho Controls echoing of typed characters to the screen

halfdelay Returns ERR if no input was typed after blocking for a specified
amount of time

General programming concepts 19

Subroutine Description

nl or nonl Determines whether curses translates a new line into a carriage
return and line feed on output, and translates a return into a new
line on input

raw or noraw Places the terminal into or out of mode

The cbreak subroutine performs a subset of the functions performed by the raw subroutine. In cbreak
mode, characters typed by the user are immediately available to the program, and erase or kill character
processing is not done. Unlike RAW mode, interrupt and flow characters are acted upon. Otherwise, the
tty driver buffers the characters typed until a new line or carriage return is typed.

Note: CBREAK mode disables translation by the tty driver.

The delay_output subroutine sets the output delay to the specified number of milliseconds. Do not use
this subroutine excessively because it uses padding characters instead of a processor pause.

The echo subroutine puts the terminal into echo mode. In echo mode, curses writes characters typed by
the user to the terminal at the physical cursor position. The noecho subroutine takes the terminal out of
echo mode.

The nl and nonl subroutines, respectively, control whether curses translates new lines into carriage
returns and line feeds on output, and whether curses translates carriage returns into new lines on input.
Initially, these translations do occur. By disabling these translations, the curses subroutine library has
more control over the line-feed capability, resulting in faster cursor motion.

The nocbreak subroutine takes the terminal out of cbreak mode.

The raw subroutine puts the terminal into raw mode. In raw mode, characters typed by the user
are immediately available to the program. Additionally, the interrupt, quit, suspend, and flow-control
characters are passed uninterpreted instead of generating a signal as they do in cbreak mode. The noraw
subroutine takes the terminal out of raw mode.

Using the terminfo and termcap files

When curses is initialized, it checks the TERM environment variable to identify the terminal type. Then,
curses looks for a definition explaining the capabilities of the terminal. This information is usually kept
in a local directory specified by the TERMINFO environment variable or in the /usr/share/lib/terminfo
directory. All curses programs first check to see if the TERMINFO environment variable is defined. If this
variable is not defined, the /usr/share/lib/terminfo directory is checked.

For example, if the TERM variable is set to vt100 and the TERMINFO variable is set to the /usr/mark/
myterms file, curses checks for the /usr/mark/myterms/v/vt100 file. If this file does not exist, curses
checks the /usr/share/lib/terminfo/v/vt100 file.

Additionally, the LINES and COLUMNS environment variables can be set to override the terminal
description.

Writing programs that use the terminfo subroutines

Use the terminfo subroutines when your program must deal directly with the terminfo database. For
example, use these subroutines to program function keys. In all other cases, curses subroutines are more
suitable and their use is recommended.

Initializing terminals

Your program should begin by calling the setupterm subroutine. Normally, this subroutine is called
indirectly by a call to the initscr or newterm subroutine. The setupterm subroutine reads the terminal-
dependent variables defined in the terminfo database. The terminfo database includes boolean, numeric,
and string variables. All of these terminfo variables use the values defined for the specified terminal.
After reading the database, the setupterm subroutine initializes the cur_term variable with the terminal
definition. When working with multiple terminals, you can use the set_curterm subroutine to set the
cur_term variable to a specific terminal.

20 AIX Version 7.2: General programming concepts

Another subroutine, restartterm, is similar to the setupterm subroutine. However, it is called after
memory is restored to a previous state. For example, you would call the restartterm subroutine after a
call to the scr_restore subroutine. The restartterm subroutine assumes that the input and output options
are the same as when memory was saved, but that the terminal type and baud rate may differ.

The del_curterm subroutine frees the space containing the capability information for a specified terminal.

Header files

Include the curses.h and term.h files in your program in the following order:

#include <curses.h>
#include <term.h>

These files contain the definitions for the strings, numbers, and flags in the terminfo database.

Handling terminal capabilities

Pass all parameterized strings through the tparm subroutine to instantiate them. Use the tputs or putp
subroutine to print all terminfo strings and the output of the tparm subroutine.

Subrouti
ne

Description

putp Provides a shortcut to the tputs subroutine

tparm Instantiates a string with parameters

tputs Applies padding information to the given string and outputs it

Use the following subroutines to obtain and pass terminal capabilities:

Subroutine Description

tigetflag Returns the value of a specified boolean capability. If the capability is not boolean, a -1 is returned.

tigetnum Returns the value of a specified numeric capability. If the capability is not numeric, a -2 is returned.

tigetstr Returns the value of a specified string capability. If the capability specified is not a string, the tigetstr subroutine returns the value of (char *) -1.

Exiting the program

When your program exits, restore the tty modes to their original state. To do this, call the
reset_shell_mode subroutine. If your program uses cursor addressing, it should output the
enter_ca_mode string at startup and the exit_ca_mode string when it exits.

Programs that use shell escapes should call the reset_shell_mode subroutine and output the
exit_ca_mode string before calling the shell. After returning from the shell, the program should output
the enter_ca_mode string and call the reset_prog_mode subroutine. This process differs from standard
curses operations, which call the endwin subroutine on exit.

Low-level screen subroutines

Use the following subroutines for low-level screen manipulations:

Subroutine Description

ripoffline Strips a single line from the stdscr

scr_dump Dumps the contents of the virtual screen to a specified file

scr_init Initializes the curses data structures from a specified file

scr_restore Restores the virtual screen to the contents of a previously dumped file

termcap subroutines

If your program uses the termcap file for terminal information, the termcap subroutines are included
as a conversion aid. The parameters are the same for the termcap subroutines. Curses emulates the
subroutines using the terminfo database. The following termcap subroutines are supplied:

General programming concepts 21

Subroutine Description

tgetent Emulates the setupterm subroutine.

tgetflag Returns the boolean entry for a termcap identifier.

tgetnum Returns the numeric entry for a termcap identifier.

tgetstr Returns the string entry for a termcap identifier.

tgoto Duplicates the tparm subroutine. The output from the tgoto subroutine should be passed
to the tputs subroutine.

Converting termcap descriptions to terminfo descriptions

The captoinfo command converts termcap descriptions to terminfo descriptions. The following example
illustrates how the captoinfo command works:

captoinfo /usr/lib/libtermcap/termcap.src

This command converts the /usr/lib/libtermcap/termcap.src file to terminfo source. The captoinfo
command writes the output to standard output and preserves comments and other information in the file.

Manipulating TTYs

The following functions save and restore the state of terminal modes:

Functions Description

savetty Saves the state of the tty modes.

resetty Restores the state of the tty modes to what they were the last time the savetty subroutine
was called.

Synchronous and networked asynchronous terminals

Synchronous, networked synchronous (NWA) or non-standard directly connected asynchronous terminals
are often used in a mainframe environment and communicate to the host in block mode. That is, the user
types characters at the terminal, then presses a special key to initiate transmission of the characters to
the host.

Note: Although it may be possible to send arbitrarily sized blocks to the host, it is not possible or
desirable to cause a character to be transmitted with only a single keystroke. Doing so could cause severe
problems to an application that makes use of single-character input.

Output

The curses interface can be used for all operations pertaining to output to the terminal, with the possible
exception that on some terminals, the refresh routine may have to redraw the entire screen contents in
order to perform any update.

If it is additionally necessary to clear the screen before each such operation, the result could be
undesirable.

Input

Because of the nature of operation of synchronous (block-mode) and NWA terminals, it might not be
possible to support all or any of the curses input functions. In particular, note the following points:

• Single-character input might not possible. It may be necessary to press a special key to cause all
characters typed at the terminal to be transmitted to the host.

• It is sometimes not possible to disable echo. Character echo may be performed directly by the terminal.
On terminals that behave in this way, any curses application that performs input should be aware that
any characters typed will appear on the screen at the point where the cursor is positioned. This does not
necessarily correspond to the position of the cursor in the window.

22 AIX Version 7.2: General programming concepts

Working with color
If a terminal supports color, you can use the color manipulation subroutines to include color in your
curses program.

Before manipulating colors, test whether a terminal supports color. To do this, you can use either
the has_colors subroutine or the can_change_color subroutine. The can_change_color subroutine also
checks to see if a program can change the terminal's color definitions. Neither of these subroutines
requires an argument.

Subroutine Description

can_change_color Checks to see if the terminal supports colors and changing of the color
definition

has_colors Checks that the terminal supports colors

start_color Initializes the eight basic colors and two global variables, COLORS and
COLOR_PAIRS

After you have determined that the terminal supports color, call the start_color subroutine before you
call other color subroutines. It is a good practice to call this subroutine immediately after the initscr
subroutine and after a successful color test. The COLORS global variable defines the maximum number
of colors that the terminal supports. The COLOR_PAIRS global variable defines the maximum number of
color pairs that the terminal supports.

Manipulating video attributes
Your program can manipulate a number of video attributes.

Video attributes, bit masks, and default colors

Curses enables you to control the following attributes:
A_ALTCHARSET

Alternate character set.
A_BLINK

Blinking.
A_BOLD

Extra bright or bold.
A_DIM

Half-bright.
A_NORMAL

Normal attributes.
A_REVERSE

Reverse video.
A_STANDOUT

Terminal's best highlighting mode.
A_UNDERLINE

Underline.
COLOR_PAIR (Number)

Displays the color pair represented by Number. You must have already initialized the color pair using
the init_pair subroutine.

These attributes are defined in the curses.h file. You can pass attributes to the wattron, wattroff, and
wattrset subroutines, or you can OR them with the characters passed to the waddch subroutine. The C
logical OR operator is a | (pipe symbol). The following bit masks are also provided:

A_ATTRIBUTES
Extracts attributes

General programming concepts 23

A_CHARTEXT
Extracts a character

A_COLOR
Extracts color-pair field information

A_NORMAL
Turns all video attributes off

The following macros are provided for working with color pairs: COLOR_PAIR(Number) and
PAIR_NUMBER(Attribute). The COLOR_PAIR(Number) macro and the A_COLOR mask are used by the
PAIR_NUMBER(Attribute) macro to extract the color-pair number found in the attributes specified by the
Attribute parameter.

If your program uses color, the curses.h file defines a number of macros that identify the following default
colors:

Color Integer Value

COLOR_BLACK 0

COLOR_BLUE 1

COLOR_GREEN 2

COLOR_CYAN 3

COLOR_RED 4

COLOR_MAGENTA 5

COLOR_YELLOW 6

COLOR_WHITE 7

Curses assumes that the default background color for all terminals is 0 (COLOR_BLACK).

Setting video attributes

The current window attributes are applied to all characters written into the window with the addch
subroutines. These attributes remain as a property of the characters. The characters retain these
attributes during terminal operations.

attroff or wattroff
Turns off attributes

attron or wattron
Turns on attributes

attrset or wattrset
Sets the current attributes of a window

standout, wstandout, standend, or wstandend
Puts a window into and out of the terminal's best highlight mode

vidputs or vidattr
Outputs a string that puts the terminal in a video-attribute mode

The attrset subroutine sets the current attributes of the default screen. The wattrset subroutine sets the
current attributes of the user-defined window.

Use the attron and attroff subroutines to turn on and off the specified attributes in the stdscr without
affecting any other attributes. The wattron and wattroff subroutines perform the same actions in user-
defined windows.

The standout subroutine is the same as a call to the attron subroutine with the A_STANDOUT attribute.
It puts the stdscr into the terminal's best highlight mode. The wstandout subroutine is the same as a call
to the wattron(Window, A_STANDOUT) subroutine. It puts the user-defined window into the terminal's
best highlight mode. The standend subroutine is the same as a call to the attrset(0) subroutine. It turns

24 AIX Version 7.2: General programming concepts

off all attributes for stdscr. The wstandend subroutine is the same as a call to the wattrset(Window, 0)
subroutine. It turns off all attributes for the specified window.

The vidputs subroutine outputs a string that puts the terminal in the specified attribute mode. Characters
are output through the putc subroutine. The vidattr subroutine is the same as the vidputs subroutine
except that characters are output through the putchar subroutine.

Working with color pairs

The COLOR_PAIR (Number) macro is defined in the curses.h file so you can manipulate color attributes
as you would any other attributes. You must initialize a color pair with the init_pair subroutine before
you use it. The init_pair subroutine has the following parameters: Pair, Foreground, and Background. The
Pair parameter must be between 1 and COLOR_PAIRS -1. The Foreground and Background parameters
must be between 0 and COLORS -1. For example, to initialize color pair 1 to a foreground of black with a
background of cyan, you would use the following:

init_pair(1, COLOR_BLACK, COLOR_CYAN);

You could then set the attributes for the window as follows:

wattrset(win, COLOR_PAIR(1));

If you then write the string Let's add Color to the terminal, the string displays as black characters on
a cyan background.

Extracting attributes

You can use the results from the call to the winch subroutine to extract attribute information, including
the color-pair number. The following example uses the value returned by a call to the winch subroutine
with the C logical AND operator (&) and the A_ATTRIBUTES bit mask to extract the attributes assigned
to the current position in the window. The results from this operation are used with the PAIR_NUMBER
macro to extract the color-pair number, and the number 1 is printed on the screen.

win = newwin(10, 10, 0, 0);
init_pair(1, COLOR_RED, COLOR_YELLOW);
wattrset(win, COLOR_PAIR(1));
waddstr(win, "apple");

number = PAIR_NUMBER((mvwinch(win, 0, 0) & A_ATTRIBUTES));
wprintw(win, "%d\n", number);
wrefresh(win);

Lights and whistles

The curses library provides the following alarm subroutines to signal the user:

beep
Sounds an audible alarm on the terminal

flash
Displays a visible alarm on the terminal

Setting curses options

All curses options are initially turned off, so it is not necessary to turn them off before calling the endwin
subroutine. The following subroutines allow you to set various options with curses:
curs_set

Sets the cursor visibility to invisible, normal, or very visible.
idlok

Specifies whether curses can use the hardware insert and delete line features of terminals so
equipped.

intrflush
Specifies whether an interrupt key (interrupt, quit, or suspend) flushes all output in the tty driver. This
option's default is inherited from the tty driver.

General programming concepts 25

keypad
Specifies whether curses retrieves the information from the terminal's keypad. If enabled, the user
can press a function key (such as an arrow key) and the wgetch subroutine returns a single value
representing that function key. If disabled, curses will not treat the function keys specially and your
program must interpret the escape sequences. For a list of these function keys, see the wgetch
subroutine.

typeahead
Instructs curses to check for type ahead in an alternative file descriptor.

See the wgetch subroutines and Understanding Terminals with Curses for descriptions of additional
curses options.

Manipulating soft labels
Curses provides subroutines for manipulating soft function-key labels.

These labels appear at the bottom of the screen and give applications, such as editors, a more user-
friendly look. To use soft labels, you must call the slk_init subroutine before calling the initscr or
newterm subroutines.

Subroutine Description

slk_clear Clears soft labels from the screen.

slk_init Initializes soft function key labels.

slk_label Returns the current label.

slk_noutrefresh Refreshes soft labels. This subroutine is functionally equivalent to the
wnoutrefresh subroutine.

slk_refresh Refreshes soft labels. This subroutine is functionally equivalent to the refresh
subroutine.

slk_restore Restores the soft labels to the screen after a call to the slk_clear subroutine.

slk_set Sets a soft label.

slk_touch Updates soft labels on the next call to the slk_noutrefresh subroutine.

To manage soft labels, curses reduces the size of the stdscr by one line. It reserves this line for use by the
soft-label functions. This reservation means that the LINES environment variable is also reduced. Many
terminals support built-in soft labels. If built-in soft labels are supported, curses uses them. Otherwise,
curses simulates the soft-labels with software.

Because many terminals that support soft labels have 8 labels, curses follows the same standard. A label
string is restricted to 8 characters. Curses arranges labels in one of two patterns: 3-2-3 (3 left, 2 center, 3
right) or 4-4 (4 left, 4 right).

To specify a string for a particular label, call the slk_set subroutine. This subroutine also instructs curses
to left-justify, right-justify, or center the string on the label. To obtain a label name before it was justified
by the slk_set subroutine, use the slk_label subroutine. The slk_clear and slk_restore subroutines
clear and restore soft labels respectively. Normally, to update soft labels, your program should call the
slk_noutrefresh subroutine for each label and then use a single call to the slk_refresh subroutine to
perform the actual output. To output all the soft labels on the next call to the slk_noutrefresh subroutine,
use the slk_touch subroutine.

Curses compatibility
This section describes the compatibility issues.

The following compatibility issues need to be considered:

• In AIX 4.3, curses is not compatible with AT&T System V Release 3.2 curses.

26 AIX Version 7.2: General programming concepts

• Applications compiled, rebound, or relinked may need source code changes for compatibility with the
AIX Version 4 of curses. The curses library does not have or use AIX extended curses functions.

• Applications requiring multibyte support might still compile and link with extended curses. Use of the
extended curses library is, however, discouraged except for applications that require multibyte support.

List of additional curses subroutines
The following sections describe additional curses subroutines:

The following sections describe additional curses subroutines:

• Manipulating Windows
• Manipulating Characters
• Manipulating Terminals
• Manipulating Color
• Miscellaneous Utilities

Manipulating windows

Use the following subroutines to manipulate windows:

Subroutine Description

scr_dump Writes the current contents of the virtual screen to the specified file

scr_init Uses the contents of a specified file to initialize the curses data structures

scr_restore Sets the virtual screen to the contents of the specified file

Manipulating characters

Use the following subroutines to manipulate characters:

Subroutine Description

echochar,
wechochar, or
pechochar

Functionally equivalent to a call to the addch (or waddch) subroutine followed
by a call to the refresh (or wrefresh) subroutine.

flushinp Flushes any type-ahead characters typed by the user but not yet read by the
program.

insertln or winsertln Inserts a blank line in a window.

keyname Returns a pointer to a character string containing a symbolic name for the Key
parameter.

meta Determines whether 8-bit character return for the wgetch subroutine is allowed.

nodelay Causes a call to the wgetch subroutine to be a nonblocking call. If no input is
ready, the wgetch subroutine returns ERR.

scroll Scrolls a window up one line.

unctrl Returns the printable representation of a character. Control characters are
punctuated with a ^ (caret).

vwprintw Performs the same operation as the wprintw subroutine, but takes a variable list
of arguments.

vwscanw Performs the same operation as the wscanw subroutine, but takes a variable list
of arguments.

Manipulating terminals

Use the following subroutines to manipulate terminals:

General programming concepts 27

Subroutine Description

def_prog_mode Identifies the current terminal mode as the in-curses mode

def_shell_mode Saves the current terminal mode as the not-in-curses mode

del_curterm Frees the space pointed to by the oterm variable

notimeout Prevents the wgetch subroutine from setting a timer when interpreting an
input escape sequence

pechochar Equivalent to a call to the waddch subroutine followed by a call to the
prefresh subroutine.

reset_prog_mode Restores the terminal into the in-curses program mode.

reset_shell_mode Restores the terminal to shell mode (out-of-curses mode). The endwin
subroutine does this automatically.

restartterm Sets up a TERMINAL structure for use by curses. This subroutine is similar
to the setupterm subroutine. Call the restartterm subroutine after restoring
memory to a previous state. For example, call this subroutine after a call to
the scr_restore subroutine.

Manipulating color

Use the following subroutines to manipulate colors:

Subroutine Description

color_content Returns the composition of a color

init_color Changes a color to the desired composition

init_pair Initializes a color pair to the specified foreground and background colors

pair_content Returns the foreground and background colors for a specified color-pair number

Miscellaneous utilities

The following miscellaneous utilities are available:

Utilities Description

baudrate Queries the current terminal and returns its output speed

erasechar Returns the erase character chosen by the user

killchar Returns the line-kill character chosen by the user

Debugging programs
There are several debug programs available for debugging your programs: the adb, dbx, dex, softdb,
and kernel debug programs. The adb program enables you to debug executable binary files and examine
non-ASCII data files.

The dbx program enables source-level debugging of C, C++, and FORTRAN language programs, as well
as assembler-language debugging of executable programs at the machine level. The (dex) provides an X
interface for the dbx debug program, providing windows for viewing the source, context, and variables of
the application program. The softdb debug program works much like the dex debug program, but softdb
is used with AIX Software Development Environment Workbench. The kernel debug program is used to
help determine errors in code running in the kernel.

The following articles provide information on the adb and dbx debug programs:

Related information
adb Command

28 AIX Version 7.2: General programming concepts

adb debug program overview
The adb command provides a general purpose debug program. You can use this command to examine
object and core files and provide a controlled environment for running a program.

While the adb command is running, it takes standard input and writes to standard output. The command
does not recognize the Quit or Interrupt keys. If these keys are used, the adb command waits for a new
command.

Getting started with the adb debug program
This section explains how to start the adb debugging program from a variety of files, use the adb prompt,
use shell commands from within the adb program, and stop the adb program.

Starting adb with a program file

You can start the adb debug program without a file name. In this case, the adb program searches for the
default a.out file in your current working directory and prepares it for debugging. Thus, the command:

adb

is the same as entering:

adb a.out

The adb program starts with the a.out file and waits for a command. If the a.out file does not exist, the
adb program starts without a file and does not display an error message.

Starting adb with a Ccore image file

You can use the adb debug program to examine the core image files of programs that caused
irrecoverable system errors. Core image files maintain a record of the contents of the CPU registers,
stack, and memory areas of your program at the time of the error. Therefore, core image files provide a
way to determine the cause of an error.

To examine a core image file with its corresponding program, you must give the name of both the core and
the program file. The command line has the form:

adb ProgramFile CoreFile

where ProgramFile is the file name of the program that caused the error, and CoreFile is the file name of
the core image file generated by the system. The adb program then uses information from both files to
provide responses to your commands.

If you do not give the filename of the core image file, the adb program searches for the default core
file, named core, in your current working directory. If such a file is found, the adb program determines
whether the core file belongs to the ProgramFile. If so, the adb program uses it. Otherwise, the adb
program discards the core file by giving an appropriate error message.

Note: The adb command cannot be used to examine 64-bit objects and AIX 4.3 core format.
adb still works with pre-AIX 4.3 core format. On AIX 4.3, user can make kernel to generate
pre-AIX 4.3 style core dumps using smitty.

Starting adb with a data file

The adb program provides a way to look at the contents of the file in a variety of formats and structures.
You can use the adb program to examine data files by giving the name of the data file in place of the
program or core file. For example, to examine a data file named outdata, enter:

adb outdata

The adb program opens a file called outdata and lets you examine its contents. This method of
examining files is useful if the file contains non-ASCII data. The adb command may display a warning

General programming concepts 29

when you give the name of a non-ASCII data file in place of a program file. This usually happens when the
content of the data file is similar to a program file. Like core files, data files cannot be executed.

Starting adb with the write option

If you open a program or data file with the -w flag of the adb command, you can make changes and
corrections to the file. For example, the command:

adb -w sample

opens the program file sample for writing. You can then use adb commands to examine and modify this
file. The -w flag causes the adb program to create a given file if it does not already exist. The option also
lets you write directly to memory after running the given program.

Using a prompt

After you have started the adb program you can redefine your prompt with the $P subcommand.

To change the [adb:scat]>> prompt to Enter a debug command—->, enter:

$P"Enter a debug command--->"

The quotes are not necessary when redefining the new prompt from the adb command line.

Using shell commands from within the adb program

You can run shell commands without leaving the adb program by using the adb escape command (!)
(exclamation point). The escape command has the form:

! Command

In this format Command is the shell command you want to run. You must provide any required arguments
with the command. The adb program passes this command to the system shell that calls it. When the
command is finished, the shell returns control to the adb program. For example, to display the date, enter
the following command:

! date

The system displays the date and restores control to the adb program.

Exiting the adb debug program

You can stop the adb program and return to the system shell by using the $q or $Q subcommands. You
can also stop the adb program by typing the Ctrl-D key sequence. You cannot stop the adb program by
pressing the Interrupt or Quit keys. These keys cause adb to wait for a new command.

Controlling program execution
This section explains the commands and subcommands necessary to prepare programs for debugging;
execute programs; set, display, and delete breakpoints; continue programs; single-step through a
program; stop programs; and kill programs.

Preparing programs for debugging with the adb program

Compile the program using the cc command to a file such as adbsamp2 by entering the following:

cc adbsamp2.c -o adbsamp2

To start the debug session, enter:

adb adbsamp2

The C language does not generate statement labels for programs. Therefore, you cannot refer to individual
C language statements when using the debug program. To use execution commands effectively, you
must be familiar with the instructions that the C compiler generates and how those instructions relate

30 AIX Version 7.2: General programming concepts

to individual C language statements. One useful technique is to create an assembler language listing of
your C program before using the adb program. Then, refer to the listing as you use the debug program. To
create an assembler language listing, use the -S or -qList flag of the cc command.

For example, to create an assembler language listing of the example program, adbsamp2.c, use the
following command:

cc -S adbsamp2.c -o adbsamp2

This command creates the adbsamp2.s file, that contains the assembler language listing for the program,
and compiles the program to the executable file, adbsamp2.

Running program

You can execute a program by using the :r or :R subcommand. The commands have the form:

[Address][,Count] :r [Arguments]

OR

[Address][,Count] :R [Arguments]

In this format, the Address parameter gives the address at which to start running the program; the
Count parameter is the number of breakpoints to skip before one is taken; and the Arguments parameter
provides the command-line arguments, such as file names and options, to pass to the program.

If you do not supply an Address value, the adb program uses the start of the program. To run the program
from the beginning enter:

:r

If you supply a Count value, the adb program ignores all breakpoints until the given number has been
encountered. For example, to skip the first five named breakpoints, use the command:

,5:r

If you provide arguments, separate them by at least one space each. The arguments are passed to the
program in the same way the system shell passes command-line arguments to a program. You can use
the shell redirection symbols.

The :R subcommand passes the command arguments through the shell before starting program
operation. You can use shell pattern-matching characters in the arguments to refer to multiple files or
other input values. The shell expands arguments containing pattern-matching characters before passing
them to the program. This feature is useful if the program expects multiple file names. For example,
the following command passes the argument [a-z]* to the shell where it is expanded to a list of the
corresponding file names before being passed to the program:

:R [a-z]*.s

The :r and :R subcommands remove the contents of all registers and destroy the current stack before
starting the program. This operation halts any previous copy of the program that may be running.

Setting breakpoints

To set a breakpoint in a program, use the :b subcommand. Breakpoints stop operation when the program
reaches the specified address. Control then returns to the adb debug program. The command has the
form:

[Address] [,Count] :b [Command]

In this format, the Address parameter must be a valid instruction address; the Count parameter is a count
of the number of times you want the breakpoint to be skipped before it causes the program to stop;
and the Command parameter is the adb command you want to execute each time that the instruction

General programming concepts 31

is executed (regardless of whether the breakpoint stops the program). If the specified command sets .
(period) to a value of 0, the breakpoint causes a stop.

Set breakpoints to stop program execution at a specific place in the program, such as the beginning of a
function, so that you can look at the contents of registers and memory. For example, when debugging the
example adbsamp2 program, the following command sets a breakpoint at the start of the function named
f:

.f :b

The breakpoint is taken just as control enters the function and before the function's stack frame is
created.

A breakpoint with a count is used within a function that is called several times during the operation of a
program, or within the instructions that correspond to a for or while statement. Such a breakpoint allows
the program to continue to run until the given function or instructions have been executed the specified
number of times. For example, the following command sets a breakpoint for the second time that the f
function is called in the adbsamp2 program:

.f,2 :b

The breakpoint does not stop the function until the second time the function is run.

Displaying breakpoints

Use the $b subcommand to display the location and count of each currently defined breakpoint. This
command displays a list of the breakpoints by address and any count or commands specified for the
breakpoints. For example, the following sets two breakpoints in the adbsamp2 file and then uses the $b
subcommand to display those breakpoints:

.f+4:b

.f+8:b$v
$b
breakpoints
count brkpt command
1 .f+8 $v
1 .f+4

When the program runs, it stops at the first breakpoint that it finds, such as .f+4. If you use the :c
subcommand to continue execution, the program stops again at the next breakpoint and starts the $v
subcommand. The command and response sequence looks like the following example:

:r
adbsamp2:running
breakpoint .f+4: st r3,32(r1)
:c
adbsamp2:running
variables
b = 268435456
d = 236
e = 268435512
m = 264
breakpoint .f+8 l r15,32(r1)

Deleting breakpoints

To use the :d subcommand to delete a breakpoint from a program, enter:

Address :d

In this format, the Address parameter gives the address of the breakpoint to delete.

For example, when debugging the example adbsamp2 program, entering the following command deletes
the breakpoint at the start of the f function:

.f:d

32 AIX Version 7.2: General programming concepts

Continuing program execution

To use the :c subcommand to continue the execution of a program after it has been stopped by a
breakpoint enter:

[Address] [,Count] :c [Signal]

In this format, the Address parameter gives the address of the instruction at which to continue operation;
the Count parameter gives the number of breakpoints to ignore; and the Signal parameter is the number
of the signal to send to the program.

If you do not supply an Address parameter, the program starts at the next instruction after the breakpoint.
If you supply a Count parameter, the adb debug program ignores the first Count breakpoints.

If the program is stopped using the Interrupt or Quit key, this signal is automatically passed to the
program upon restarting. To prevent this signal from being passed, enter the command in the form:

[Address] [,Count] :c 0

The command argument 0 prevents a signal from being sent to the subprocess.

Single-stepping a program

Use the :s subcommand to run a program in single steps or one instruction at a time. This command
issues an instruction and returns control to the adb debug program. The command has the form:

[Aaddress] [,Count] :s [Signal]

In this format, the Address parameter gives the address of the instruction you want to execute, and
the Count parameter is the number of times you want to repeat the command. If there is no current
subprocess, the ObjectFile parameter is run as a subprocess. In this case, no signal can be sent and the
remainder of the line is treated as arguments to the subprocess. If you do not supply a value for the
Address parameter, the adb program uses the current address. If you supply the Count parameter, the
adb program continues to issue each successive instruction until the Count parameter instructions have
been run. Breakpoints are ignored while single-stepping. For example, the following command issues the
first five instructions in the main function:

.main,5:s

Stopping a program with the interrupt and quit keys

Use either the Interrupt or Quit key to stop running a program at any time. Pressing either of these keys
stops the current program and returns control to the adb program. These keys are useful with programs
that have infinite loops or other program errors.

When you press the Interrupt or Quit key to stop a program, the adb program automatically saves the
signal. If you start the program again using the :c command, the adb program automatically passes the
signal to the program. This feature is useful when testing a program that uses these signals as part of its
processing. To continue running the program without sending signals, use the command:

:c 0

The command argument 0 (zero) prevents a signal from being sent to the program.

Stopping a program

To stop a program you are debugging, use the :k subcommand. This command stops the process created
for the program and returns control to the adb debug program. The command clears the current contents
of the system unit registers and stack and begins the program again. The following example shows the
use of the :k subcommand to clear the current process from the adb program:

:k

560: killed

General programming concepts 33

Using adb expressions
This section describes the use of adb expressions.

Using integers in expressions
When creating an expression, you can use integers in three forms: decimal, octal, and hexadecimal.
Decimal integers must begin with a non-zero decimal digit. Octal numbers must begin with a 0 (zero) and
have octal digits only (0-7). Hexadecimal numbers must begin with the prefix 0x and can contain decimal
digits and the letters a through f (in both uppercase and lowercase). The following are examples of valid
numbers:

Decimal Octal Hexadecimal
34 042 0x22
4090 07772 0xffa

Using symbols in expressions
Symbols are the names of global variables and functions defined within the program being debugged.
Symbols are equal to the address of the given variable or function. They are stored in the program symbol
table and are available if the symbol table has not been stripped from the program file.

In expressions, you can spell the symbol exactly as it is in the source program or as it has been stored in
the symbol table. Symbols in the symbol table are no more than 8 characters long.

When you use the ? subcommand, the adb program uses the symbols found in the symbol table of the
program file to create symbolic addresses. Thus, the ? subcommand sometimes gives a function name
when displaying data. This does not happen if the ? subcommand is used for text (instructions) and the /
command is used for data.

Local variables can only be addressed if the C language source program is compiled with the -g flag.

If the C language source program is not compiled using the -g flag the local variable cannot be addressed.
The following command displays the value of the local variable b in a function sample:

.sample.b / x - value of local variable.

.sample.b = x - Address of local variable.

Using operators in expressions
You can combine integers, symbols, variables, and register names with the following operators:

Unary operators:

~ (tilde) Bitwise complementation

- (dash) Integer negation

* (asterisk) Returns contents of location

Binary operators:

+ (plus) Addition

- (minus) Subtraction

* (asterisk) Multiplication

% (percent) Integer division

& (ampersand) Bitwise conjunction

] (right bracket) Bitwise disjunction

^ (caret) Modulo

34 AIX Version 7.2: General programming concepts

Binary operators:

(number sign) Round up to the next multiple

The adb debug program uses 32-bit arithmetic. Values that exceed 2,147,483,647 (decimal) are
displayed as negative values. The following example shows the results of assigning two different values to
the variable n, and then displaying the value in both decimal and hexadecimal:

2147483647>n<
n=D
 2147483647<
n=X
 7fffffff
2147483648>n<
n=D
 -2147483648<
n=X
 80000000

Unary operators have higher precedence than binary operators. All binary operators have the same
precedence and are evaluated in order from left to right. Thus, the adb program evaluates the following
binary expressions as shown:

2*3+4=d
 10
4+2*3=d
 18

You can change the precedence of the operations in an expression by using parentheses. The following
example shows how the previous expression is changed by using parentheses:

4+(2*3)=d
 10

The unary operator, * (asterisk), treats the given address as a pointer into the data segment. An
expression using this operator is equal to the value pointed to by that pointer. For example, the
expression:

*0x1234

is equal to the value at the data address 0x1234, whereas the example:

0x1234

is equal to 0x1234.

Customizing the adb debug program
This section describes how you can customize the adb debug program.

Combining commands on a single line

You can give more than one command on a line by separating the commands with a ; (semicolon). The
commands are performed one at a time, starting at the left. Changes to the current address and format
carry over to the next command. If an error occurs, the remaining commands are ignored. For example,
the following sequence displays both the adb variables and then the active subroutines at one point in the
adbsamp2 program:

$v;$c
variables
b = 10000000
d = ec
e = 10000038
m = 108
t = 2f8.

General programming concepts 35

f(0,0) .main+26.
main(0,0,0) start+fa

Creating adb scripts

You can direct the adb debug program to read commands from a text file instead of from the keyboard
by redirecting the standard input file when you start the adb program. To redirect standard input, use the
input redirection symbol, < (less than), and supply a file name. For example, use the following command
to read commands from the file script:

adb sample <script

The file must contain valid adb subcommands. Use the adb program script files when the same set of
commands can be used for several different object files. Scripts can display the contents of core files after
a program error. The following example shows a file containing commands that display information about
a program error. When that file is used as input to the adb program using the following command to debug
the adbsamp2 file, the specified output is produced.

120$w
4095$s.
f:b:
r
=1n"======= adb Variables ======="
$v
=1n"======= Address Map ======="
$m
=1n"======= C Stack Backtrace ======="
$C
=1n"======= C External Variables ======="
$e
=1n"======= Registers ======="
$r
0$s
=1n"======= Data Segment ======="<
b,10/8xna

$ adb adbsamp2 <script

adbsamp2: running
breakpoint .f: b .f+24
 ======= adb Variables =======
variables
0 = TBD
1 = TBD
2 = TBD
9 = TBD
b = 10000000
d = ec
e = 10000038
m = 108
t = 2f8
 ======= Address Map =======
[0]? map .adbsamp2.
b1 = 10000000 e1 = 100002f8 f1 = 0
b2 = 200002f8 e2 = 200003e4 f2 = 2f8
[0]/ map .-.
b1 = 0 e1 = 0 f1 = 0
b2 = 0 e2 = 0 f2 = 0
 ======= C Stack Backtrace =======.
f(0,0) .main+26.
main(0,0,0) start+fa
 ======= C External Variables =======Full word.
errno: 0.
environ: 3fffe6bc.
NLinit: 10000238.
main: 100001ea.
exit: 1000028c.
fcnt: 0

.loop .count: 1.
f: 100001b4.
NLgetfile: 10000280.
write: 100002e0.

36 AIX Version 7.2: General programming concepts

NLinit. .X: 10000238 .
NLgetfile. .X: 10000280 .
cleanup: 100002bc.
exit: 100002c8 .
exit . .X: 1000028c . .
cleanup . .X: 100002bc

 ======= Registers =======
mq 20003a24 .errno+3634
cs 100000 gt
ics 1000004
pc 100001b4 .f
r15 10000210 .main+26
r14 20000388 .main
r13 200003ec .loop .count
r12 3fffe3d0
r11 3fffe44c
r10 0
r9 20004bcc
r8 200041d8 .errno+3de8
r7 0
r6 200030bc .errno+2ccc
r5 1
r4 200003ec .loop .count
r3 f4240
r2 1
r1 3fffe678
r0 20000380 .f.
f: b .f+24

 ======= Data Segment =======
10000000: 103 5313 3800 0 0 2f8 0 ec
10000010: 0 10 1000 38 0 0 0 1f0
10000020: 0 0 0 0 1000 0 2000 2f8
10000030: 0 0 0 0 4 6000 0 6000
10000040: 6e10 61d0 9430 a67 6730 6820 c82e 8
10000050: 8df0 94 cd0e 60 6520 a424 a432 c84e
10000060: 8 8df0 77 cd0e 64 6270 8df0 86
10000070: cd0e 60 6520 a424 a432 6470 8df0 6a
10000080: cd0e 64 c82e 19 8df0 78 cd0e 60
10000090: 6520 a424 a432 c84e 19 8df0 5b cd0e
100000a0: 64 cd2e 5c 7022 d408 64 911 c82e
100000b0: 2e 8df0 63 cd0e 60 6520 a424 a432
100000c0: c84e 2e 8df0 46 cd0e 64 15 6280
100000d0: 8df0 60 cd0e 68 c82e 3f 8df0 4e
100000e0: cd0e 60 6520 a424 a432 c84e 3f 8df0
100000f0: 31 cd0e 64 c820 14 8df0 2b cd0e
10000100:

Setting output width

Use the $w subcommand to set the maximum width (in characters) of each line of output created by the
adb program. The command has the form:

Width$w

In this format, the Width parameter is an integer that specifies the width in characters of the display. You
can give any width convenient for your display device. When the adb program is first invoked, the default
width is 80 characters.

This command can be used when redirecting output to a line printer or special output device. For
example, the following command sets the display width to 120 characters, a common maximum width for
line printers:

120$w

Setting the maximum offset

The adb debug program normally displays memory and file addresses as the sum of a symbol and an
offset. This format helps to associate the instructions and data on the display with a particular function or
variable. When the adb program starts up, it sets the maximum offset to 255, so that symbolic addresses

General programming concepts 37

are assigned only to instructions or data that occur less than 256 bytes from the start of the function or
variable. Instructions or data beyond that point are given numeric addresses.

In many programs, the size of a function or variable is actually larger than 255 bytes. For this reason the
adb program lets you change the maximum offset to accommodate larger programs. You can change the
maximum offset by using the $s subcommand.

The subcommand has the form:

Offset$s

In this format, the Offset parameter is an integer that specifies the new offset. For example, the following
command increases the maximum possible offset to 4095:

4095$s

All instructions and data that are less than 4096 bytes away are given symbolic addresses. You can
disable all symbolic addressing by setting the maximum offset to zero. All addresses are given numeric
values instead.

Setting default input format

To alter the default format for numbers used in commands, use the $d or $o (octal) subcommands. The
default format tells the adb debug program how to interpret numbers that do not begin with 0 (octal) or
0x (hexadecimal), and how to display numbers when no specific format is given. Use these commands to
work with a combination of decimal, octal, and hexadecimal numbers.

The $o subcommand sets the radix to 8 and thus sets the default format for numbers used in commands
to octal. After you enter that subcommand, the adb program displays all numbers in octal format except
those specified in some other format.

The format for the $d subcommand is the Radix$d command, where the Radix parameter is the new
value of the radix. If the Radix parameter is not specified, the $d subcommand sets the radix to a default
value of 16. When you first start the adb program, the default format is hexadecimal. If you change the
default format, you can restore it as necessary by entering the $d subcommand by itself:

$d

To set the default format to decimal, use the following command:

0xa$d

Changing the disassembly mode

Use the $i and $n subcommands to force the adb debug program to disassemble instructions using the
specified instruction set and mnemonics. The $i subcommand specifies the instruction set to be used for
disassembly. The $n subcommand specifies the mnemonics to be used in disassembly.

If no value is entered, these commands display the current settings.

The $i subcommand accepts the following values:

com
Specifies the instruction set for the common intersection mode of the PowerPC® and POWER® family.

pwr
Specifies the instruction set and mnemonics for the POWER implementation of the POWER
Architecture.

pwrx
Specifies the instruction set and mnemonics for the POWER2 implementation of the POWER family.

ppc
Specifies the instruction set and mnemonics for the PowerPC.

601
Specifies the instruction set and mnemonics for the PowerPC 601 RISC Microprocessor.

38 AIX Version 7.2: General programming concepts

603
Specifies the instruction set and mnemonics for the PowerPC 603 RISC Microprocessor.

604
Specifies the instruction set and mnemonics for the PowerPC 604 RISC Microprocessor.

ANY
Specifies any valid instruction. For instruction sets that overlap, the mnemonics will default to
PowerPC mnemonics.

The $n subcommand accepts the following values:

pwr
Specifies the instruction set and mnemonics for the POWER implementation of the POWER
Architecture.

ppc
Specifies the mnemonics for the PowerPC architecture.

Computing numbers and displaying text
You can perform arithmetic calculations while in the adb debug program by using the = (equal sign)
subcommand. This command directs the adb program to display the value of an expression in a specified
format.

The command converts numbers in one base to another, double-checks the arithmetic performed by a
program, and displays complex addresses in simpler form. For example, the following command displays
the hexadecimal number 0x2a as the decimal number 42:

0x2a=d
 42

Similarly, the following command displays 0x2a as the ASCII character * (asterisk):

0x2a=c
 *

Expressions in a command can have any combination of symbols and operators. For example, the
following command computes a value using the contents of the r0 and r1 registers and the adb variable b.

<r0-12*<r1+<b+5=X
 8fa86f95

You can also compute the value of external symbols to check the hexadecimal value of an external symbol
address, by entering:

main+5=X
 2000038d

The = (equal sign) subcommand can also display literal strings. Use this feature in the adb program
scripts to display comments about the script as it performs its commands. For example, the following
subcommand creates three lines of spaces and then prints the message C Stack Backtrace:

=3n"C Stack Backtrace"

Displaying and manipulating the source file with the adb program
This section describes how to use the adb program to display and manipulate the source file.

Displaying instructions and data

The adb program provides several subcommands for displaying the instructions and data of a given
program and the data of a given data file. The subcommands and their formats are:

General programming concepts 39

Display address
Address [, Count] = Format

Display instruction
Address [, Count] ? Format

Display value of variable
Address [, Count] / Format

In this format, the symbols and variables have the following meaning:

Address
Gives the location of the instruction or data item.

Count
Gives the number of items to be displayed.

Format
Defines how to display the items.

=
Displays the address of an item.

?
Displays the instructions in a text segment.

/
Displays the value of variables.

Forming addresses

In the adb program addresses are 32-bit values that indicate a specific memory address. They can,
however, be represented in the following forms:

Absolute address
The 32-bit value is represented by an 8-digit hexadecimal number, or its equivalent in one of the other
number-base systems.

Symbol name
The location of a symbol defined in the program can be represented by the name of that symbol in the
program.

Entry points
The entry point to a routine is represented by the name of the routine preceded by a . (period). For
example, to refer to the address of the start of the main routine, use the following notation:

.main

Displacements
Other points in the program can be referred to by using displacements from entry points in the
program. For example, the following notation references the instruction that is 4 bytes past the entry
point for the symbol main:

.main+4

Displaying an address

Use the = (equal sign) subcommand to display an address in a given format. This command displays
instruction and data addresses in a simpler form and can display the results of arithmetic expressions. For
example, entering:

main=an

displays the address of the symbol main:

10000370:

40 AIX Version 7.2: General programming concepts

The following example shows a command that displays (in decimal) the sum of the internal variable b and
the hexadecimal value 0x2000, together with its output:

<b+0x2000=D
 268443648

If a count is given, the same value is repeated that number of times. The following example shows a
command that displays the value of main twice and the output that it produces:

main,2=x
 370 370

If no address is given, the current address is used. After running the above command once (setting the
current address to main), the following command repeats that function:

,2=x
 370 370

If you do not specify a format, the adb debug program uses the last format that was used with this
command. For example, in the following sequence of commands, both main and one are displayed in
hexadecimal:

main=x
 370
one=
 33c

Displaying the C stack backtrace

To trace the path of all active functions, use the $c subcommand. This subcommand lists the names
of all functions that have been called and have not yet returned control. It also lists the address from
which each function was called and the arguments passed to each function. For example, the following
command sequence sets a breakpoint at the function address .f+2 in the adbsamp2 program. The
breakpoint calls the $c subcommand. The program is started, runs to the breakpoint, and then displays a
backtrace of the called C language functions:

.f+2:b$c
:r
adbsamp2:running
.f(0,0) .main+26
.main(0,0,0) start+fa
breakpoint f+2: tgte r2,r2

By default, the $c subcommand displays all calls. To display fewer calls, supply a count of the number
of calls to display. For example, the following command displays only one of the active functions at the
preceding breakpoint:

,1$c

.f(0,0) .main+26

Choosing data formats

A format is a letter or character that defines how data is to be displayed. The following are the most
commonly used formats:

a
The current symbolic address

b
One byte in octal (displays data associated with instructions, or the high or low byte of a register)

c
One byte as a character (char variables)

General programming concepts 41

d
Halfword in decimal (short variables)

D
Fullword in decimal (long variables)

i
Machine instructions in mnemonic format

n
A new line

o
Halfword in octal (short variables)

O
Fullword in octal (long variables)

r
A blank space

s
A null-terminated character string (null-terminated arrays of char variables)

t
A horizontal tab

u
Halfword as an unsigned integer (short variables)

x
Halfword in hexadecimal (short variables)

X
Fullword in hexadecimal (long variables)

For example, the following commands produce the indicated output when using the adbsamp example
program:

main=o
1560

main=O
4000001560

main=d
880

main=D
536871792

main=x
370

main=X
20000370

main=u
880

A format can be used by itself or combined with other formats to present a combination of data in
different forms. You can combine the a, n, r, and t formats with other formats to make the display more
readable.

Changing the memory map

You can change the values of a memory map by using the ?m and /m subcommands. These commands
assign specified values to the corresponding map entries. The commands have the form:

[,count] ?m b1 e1 f1
[,count] /m b1 e1 f2

42 AIX Version 7.2: General programming concepts

The following example shows the results of these commands on the memory map displayed with the $m
subcommand in the previous example:

,0?m 10000100 10000470 0
/m 100 100 100
$m
 [0] : ?map : 'adbsamp3'
 b1 = 0x10000100, e1 = 10000470, f1 = 0
 b2 = 0x20000600, e2 = 0x2002c8a4, f2 = 0x600

 [1] : ?map : 'shr.o' in library '/usr/ccs/lib/libc.a'
 b1 = 0xd00d6200, e1 = 0xd01397bf, f1 = 0xd00defbc
 b2 = 0x20000600, e2 = 0x2002beb8, f2 = 0x4a36c

 [-] : /map : '-'
 b1 = 100, e1 = 100, f1 = 100
 b2 = 0, e2 = 0, f2 = 0

To change the data segment values, add an * (asterisk) after the / or ?.

,0?*m 20000270 20000374 270
/*m 200 200 200
$m
 [0] : ?map : 'adbsamp3'
 b1 = 0x10000100, e1 = 10000470, f1 = 0
 b2 = 0x20000270, e2 = 0x20000374, f2 = 0x270

 [1] : ?map : 'shr.o' in library '/usr/ccs/lib/libc.a'
 b1 = 0xd00d6200, e1 = 0xd01397bf, f1 = 0xd00defbc
 b2 = 0x20000600, e2 = 0x2002beb8, f2 = 0x4a36c

 [-] : /map : '-'
 b1 = 100, e1 = 100, f1 = 100
 b2 = 0, e2 = 0, f2 = 0

Patching binary files

You can make corrections or changes to any file, including executable binary files, by starting the adb
program with the -w flag and by using the w and W () subcommands.

Locating values in a file

Locate specific values in a file by using the l and L subcommands. The subcommands have the form:

?l Value

OR

/l Value

The search starts at the current address and looks for the expression indicated by Value. The l
subcommand searches for 2-byte values. The L subcommand searches for 4-byte values.

The ?l subcommand starts the search at the current address and continues until the first match or the
end of the file. If the value is found, the current address is set to that value's address. For example, the
following command searches for the first occurrence of the f symbol in the adbsamp2 file:

?l .f.
write+a2

The value is found at .write+a2 and the current address is set to that address.

Writing to a file

Write to a file by using the w and W subcommands. The subcommands have the form:

[Address] ?w Value

In this format, the Address parameter is the address of the value you want to change, and the Value
parameter is the new value. The w subcommand writes 2-byte values. The W subcommand writes 4-byte
values. For example, the following commands change the word "This" to "The":

General programming concepts 43

?l .Th.
?W .The.

The W subcommand changes all four characters.

Making changes to memory

Make changes to memory whenever a program has run. If you have used an :r subcommand with a
breakpoint to start program operation, subsequent w subcommands cause the adb program to write to
the program in memory rather than to the file. This command is used to make changes to a program's
data as it runs, such as temporarily changing the value of program flags or variables.

Using adb variables

The adb debug program automatically creates a set of its own variables when it starts. These variables
are set to the addresses and sizes of various parts of the program file as defined in the following table:

0
Last value printed

1
Last displacement part of an instruction source

2
Previous value of the 1 variable

9
Count on the last $< or $<< command

b
Base address of the data segment

d
Size of the data segment

e
Entry address of the program

m
"Magic" number

s
Size of the stack segment

t
Size of the text segment

The adb debug program reads the program file to find the values for these variables. If the file does not
seem to be a program file, then the adb program leaves the values undefined.

To display the values that the adb debug program assigns to these variables, use the $v subcommand.
This subcommand lists the variable names followed by their values in the current format. The
subcommand displays any variable whose value is not 0 (zero). If a variable also has a non-zero segment
value, the variable's value is displayed as an address. Otherwise, it is displayed as a number. The following
example shows the use of this command to display the variable values for the sample program adbsamp:

$v

Variables

0 = undefined

1 = undefined

2 = undefined

44 AIX Version 7.2: General programming concepts

9 = undefined

b = 10000000

d = 130

e = 10000038

m = 108

t = 298

Specify the current value of an adb variable in an expression by preceding the variable name with < (less
than sign). The following example displays the current value of the b base variable:

<b=X

10000000

Create your own variables or change the value of an existing variable by assigning a value to a variable
name with > (greater than sign). The assignment has the form:

Expression > VariableName

where the Expression parameter is the value to be assigned to the variable and the VariableName
parameter is the variable to receive the value. The VariableName parameter must be a single letter.
For example, the assignment:

0x2000>b

assigns the hexadecimal value 0x2000 to the b variable. Display the contents of b again to show that the
assignment occurred:

<b=X

 2000

Finding the current address

The adb program has two special variables that keep track of the last address used in a command and the
last address typed with a command. The . (period) variable, also called the current address, contains the
last address used in a command. The " (double quotation mark) variable contains the last address typed
with a command. The . and " variables usually contain the same address except when implied commands,
such as the newline and ^ (caret) characters, are used. These characters automatically increase and
decrease the . variable but leave the) (right parenthesis) variable unchanged.

Both the . and the " variables can be used in any expression. The < (less than sign) is not required. For
example, the following commands display these variables at the start of debugging with the adbsamp
program:

.=
 0.
=
 0

Displaying external variables

Use the $e subcommand to display the values of all external variables in the adb program. External
variables are the variables in your program that have global scope or have been defined outside of any
function, and include variables defined in library routines used by your program, as well as all external
variables of shared libraries.

General programming concepts 45

The $e subcommand is useful to get a list of the names for all available variables or a summary of their
values. The command displays one name on each line with the variable's value (if any) on the same line. If
the Count parameter is specified, only the external variables associated with that file are printed.

The following example illustrates the setting of a breakpoint in the adbsamp2 sample program that calls
the $e subcommand, and the output that results when the program runs (be sure to delete any previous
breakpoints that you may have set):

.f+2:b,0$e
:r
adbsamp2: running
_errno: 0
_environ: 3fffe6bc
__NLinit: 10000238
_main: 100001ea
_exit: 1000028c
_fcnt: 0
_loop_count: 1
_f: 100001b4
_NLgetfile: 10000280
_write: 100002e0
__NLinit__X: 10000238
_NLgetfile__X: 10000280
__cleanup: 100002bc
__exit: 100002c8
_exit__X: 1000028c
__cleanup__X: 100002bc
breakpoint .f+2: st r2,1c(r1)

Displaying the address maps

The adb program prepares a set of maps for the text and data segments in your program and uses these
maps to access items that you request for display. Use the $m subcommand to display the contents of the
address maps. The subcommand displays the maps for all segments in the program and uses information
taken from either the program and core files or directly from memory.

The $m subcommand displays information similar to the following:

$m
 [0] : ?map : 'adbsamp3'
 b1 = 0x10000200, e1 = 0x10001839, f1 = 0x10000200
 b2 = 0x2002c604, e2 = 0x2002c8a4, f2 = 0x600

 [1] : ?map : 'shr.o' in library 'lib/libc.a'
 b1 = 0xd00d6200, e1 = 0xd013976f, f1 = 0xd00defbc
 b2 = 0x20000600, e2 = 0x2002bcb8, f2 = 0x4a36c

 [-] : /map : '-'
 b1 = 0x0000000, e1 = 0x00000000, f1 = 0x00000000
 b2 = 0x0000000, e2 = 0x00000000, f2 = 0x00000000

The display defines address-mapping parameters for the text (b1, e1, and f1) and data (b2, e2, and f2)
segments for the two files being used by the adb debug program. This example shows values for the
adbsamp3 sample program only. The second set of map values are for the core file being used. Since
none was in use, the example shows the file name as - (dash).

The value displayed inside the square brackets can be used as the Count parameter in the ?e and ?m
subcommands.

adb debug program reference information
The adb debug program uses addresses, expressions, operators, subcommands, and variables to
organize and manipulate data.

adb debug program addresses

The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples (B1, E1, F1) and (B2, E2, F2). The FileAddress parameter
that corresponds to a written Address parameter is calculated as follows:

B1<=Address<E1=>FileAddress=Address+F1-B1

46 AIX Version 7.2: General programming concepts

OR

B2<=Address<E2=>FileAddress=Address+F2-B2

If the requested Address parameter is neither between B1 and E1 nor between B2 and E2, the Address
parameter is not valid. In some cases, such as programs with separated I and D space, the two segments
for a file may overlap. If a ? (question mark) or / (slash) subcommand is followed by an * (asterisk), only
the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of the
kind expected, the B1 parameter for that file is set to a value of 0, the E1 parameter is set to the maximum
file size, and the F1 parameter is set to a value of 0. In this way, the whole file can be examined with no
address translation.

adb debug program expressions

The following expressions are supported by the adb debug program:

. (period)
Specifies the last address used by a subcommand. The last address is also known as the current
address.

+ (plus)
Increases the value of . (period) by the current increment.

^ (caret)
Decreases the value of . (period) by the current increment.

" (double quotes)
Specifies the last address typed by a command.

Integer
Specifies an octal number if this parameter begins with 0o, a hexadecimal number if preceded by
0x or #, or a decimal number if preceded by 0t. Otherwise, this expression specifies a number
interpreted in the current radix. Initially, the radix is 16.

` Cccc '
Specifies the ASCII value of up to 4 characters. A \ (backslash) can be used to escape an
' (apostrophe).

< Name
Reads the current value of the Name parameter. The Name parameter is either a variable name or a
register name. The adb command maintains a number of variables named by single letters or digits. If
the Name parameter is a register name, the value of the register is obtained from the system header in
the CoreFile parameter. Use the $r subcommand to see the valid register names.

Symbol
Specifies a sequence of uppercase or lowercase letters, underscores, or digits, though the sequence
cannot start with a digit. The value of the Symbol parameter is taken from the symbol table in the
ObjectFile parameter. An initial _ (underscore) is prefixed to the Symbol parameter, if needed.

. Symbol
Specifies the entry point of the function named by the Symbol parameter.

Routine.Name
Specifies the address of the Name parameter in the specified C language routine. Both the Routine and
Name parameters are Symbol parameters. If the Name parameter is omitted, the value is the address
of the most recently activated C stack frame corresponding to the Routine parameter.

(Expression)
Specifies the value of the expression.

adb debug program operators

Integers, symbols, variables, and register names can be combined with the following operators:

Unary operators

General programming concepts 47

* Expression
Returns contents of the location addressed by the Expression parameter in the CoreFile parameter.

@ Expression
Returns contents of the location addressed by the Expression parameter in the ObjectFile parameter.

- Expression
Performs integer negation.

~ Expression
Performs bit-wise complement.

Expression
Performs logical negation.

Binary operators

Expression1+Expression2
Performs integer addition.

Expression1-Expression2
Performs integer subtraction.

Expression1*Expression2
Performs integer multiplication.

Expression1%Expression2
Performs integer division.

Expression1&Expression2
Performs bit-wise conjunction.

Expression1|Expression2
Performs bit-wise disjunction.

Expression1#Expression2
Rounds up the Expression1 parameter to the next multiple of the Expression2 parameter.

Binary operators are left-associative and are less binding than unary operators.

adb debug program subcommands

You can display the contents of a text or data segment with the ? (question mark) or the / (slash)
subcommand. The = (equal sign) subcommand displays a given address in the specified format. The ?
and / subcommands can be followed by an * (asterisk).

?Format
Displays the contents of the ObjectFile parameter starting at the Address parameter. The value of .
(period) increases by the sum of the increment for each format letter.

/Format
Displays the contents of the CoreFile parameter starting at the Address parameter. The value of .
(period) increases by the sum of the increment for each format letter.

=Format
Displays the value of the Address parameter. The i and s format letters are not meaningful for this
command.

The Format parameter consists of one or more characters that specify print style. Each format character
may be preceded by a decimal integer that is a repeat count for the format character. While stepping
through a format, the . (period) increments by the amount given for each format letter. If no format is
given, the last format is used.

The available format letters are as follows:

a
Prints the value of . (period) in symbolic form. Symbols are checked to ensure that they have an
appropriate type.

b
Prints the addressed byte in the current radix, unsigned.

48 AIX Version 7.2: General programming concepts

c
Prints the addressed character.

C
Prints the addressed character using the following escape conventions:

• Prints control characters as ~ (tilde) followed by the corresponding printing character.
• Prints nonprintable characters as ~ (tilde) <Number>, where Number specifies the hexadecimal

value of the character. The ~ character prints as ~ ~ (tilde tilde).

d
Prints in decimal.

D
Prints long decimal.

f
Prints the 32-bit value as a floating-point number.

F
Prints double floating point.

i Number
Prints as instructions. Number is the number of bytes occupied by the instruction.

n
Prints a new line.

o
Prints 2 bytes in octal.

O
Prints 4 bytes in octal.

p
Prints the addressed value in symbolic form using the same rules for symbol lookup as the a format
letter.

q
Prints 2 bytes in the current radix, unsigned.

Q
Prints 4 unsigned bytes in the current radix.

r
Prints a space.

s Number
Prints the addressed character until a zero character is reached.

S Number
Prints a string using the ~ (tilde) escape convention. The Number variable specifies the length of the
string including its zero terminator.

t
Tabs to the next appropriate tab stop when preceded by an integer. For example, the 8t format
command moves to the next 8-space tab stop.

u
Prints as an unsigned decimal number.

U
Prints a long unsigned decimal.

x
Prints 2 bytes in hexadecimal.

X
Prints 4 bytes in hexadecimal.

Y
Prints 4 bytes in date format.

General programming concepts 49

/
Local or global data symbol.

?
Local or global text symbol.

=
Local or global absolute symbol.

"..."
Prints the enclosed string.

^
Decreases the . (period) by the current increment. Nothing prints.

+
Increases the . (period) by a value of 1. Nothing prints.

-
Decreases the . (period) decrements by a value of 1. Nothing prints.

newline
Repeats the previous command incremented with a Count of 1.

[?/]lValue Mask
Words starting at the . (period) are masked with the Mask value and compared with the Value
parameter until a match is found. If L is used, the match is for 4 bytes at a time instead of 2 bytes. If
no match is found, then . (period) is unchanged; otherwise, . (period) is set to the matched location. If
the Mask parameter is omitted, a value of -1 is used.

[?/]wValue...
Writes the 2-byte Value parameter into the addressed location. If the command is W, write 4 bytes. If
the command is V, write 1 byte. Alignment restrictions may apply when using the w or W command.

[,Count][?/]m B1 E1 F1[?/]
Records new values for the B1, E1, and F1 parameters. If less than three expressions are given, the
remaining map parameters are left unchanged. If the ? (question mark) or / (slash) is followed by
an * (asterisk), the second segment (B2, E2, F2) of the mapping is changed. If the list is terminated
by ? or /, the file (ObjectFile or CoreFile, respectively) is used for subsequent requests. (For example,
the /m? command causes / to refer to the ObjectFile) file. If the Count parameter is specified, the adb
command changes the maps associated with that file or library only. The $m command shows the
count that corresponds to a particular file. If the Count parameter is not specified, a default value of 0
is used.

>Name
Assigns a . (period) to the variable or register specified by the Name parameter.

!
Calls a shell to read the line following ! (exclamation mark).

$ Modifier
Miscellaneous commands. The available values for Modifier are:
<File

Reads commands from the specified file and returns to standard input. If a count is given as 0, the
command will be ignored. The value of the count is placed in the adb 9 variable before the first
command in the File parameter is executed.

<<File
Reads commands from the specified file and returns to standard input. The <<File command can
be used in a file without causing the file to be closed. If a count is given as 0, the command is
ignored. The value of the count is placed in the adb 9 variable before the first command in File is
executed. The adb 9 variable is saved during the execution of the <<File command and restored
when <<File completes. There is a limit to the number of <<File commands that can be open at
once.

50 AIX Version 7.2: General programming concepts

>File
Sends output to the specified file. If the File parameter is omitted, output returns to standard
output. The File parameter is created if it does not exist.

b
Prints all breakpoints and their associated counts and commands.

c
Stacks back trace. If the Address parameter is given, it is taken as the address of the current frame
(instead of using the frame pointer register). If the format letter C is used, the names and values
of all automatic and static variables are printed for each active function. If the Count parameter is
given, only the number of frames specified by the Count parameter are printed.

d
Sets the current radix to the Address value or a value of 16 if no address is specified.

e
Prints the names and values of external variables. If a count is specified, only the external
variables associated with that file are printed.

f
Prints the floating-point registers in hexadecimal.

i instruction set
Selects the instruction set to be used for disassembly.

I
Changes the default directory as specified by the -I flag to the Name parameter value.

m
Prints the address map.

n mnem_set
Selects the mnemonics to be used for disassembly.

o
Sets the current radix to a value of 8.

q
Exits the adb command.

r
Prints the general registers and the instruction addressed by iar and sets the . (period) to iar. The
Number$r parameter prints the register specified by the Number variable. The Number,Count$r
parameter prints registers Number+Count-1,...,Number.

s
Sets the limit for symbol matches to the Address value. The default is a value of 255.

v
Prints all non-zero variables in octal.

w
Sets the output page width for the Address parameter. The default is 80.

P Name
Uses the Name value as a prompt string.

?
Prints the process ID, the signal that caused stoppage or termination, and the registers of $r.

: Modifier
Manages a subprocess. Available modifiers are:
bCommand

Sets the breakpoint at the Address parameter. The breakpoint runs the Count parameter -1 times
before causing a stop. Each time the breakpoint is encountered, the specified command runs. If
this command sets . (period) to a value of 0, the breakpoint causes a stop.

General programming concepts 51

cSignal
Continues the subprocess with the specified signal. If the Address parameter is given, the
subprocess is continued at this address. If no signal is specified, the signal that caused the
subprocess to stop is sent. Breakpoint skipping is the same as for the r modifier.

d
Deletes the breakpoint at the Address parameter.

k
Stops the current subprocess, if one is running.

r
Runs the ObjectFile parameter as a subprocess. If the Address parameter is given explicitly, the
program is entered at this point. Otherwise, the program is entered at its standard entry point. The
Count parameter specifies how many breakpoints are to be ignored before stopping. Arguments to
the subprocess can be supplied on the same line as the command. An argument starting with < or
> establishes standard input or output for the command. On entry to the subprocess, all signals
are turned on.

sSignal
Continues the subprocess in single steps up to the number specified in the Count parameter. If
there is no current subprocess, the ObjectFile parameter is run as a subprocess. In this case no
signal can be sent. The remainder of the line is treated as arguments to the subprocess.

adb debug program variables

The adb command provides a number of variables. When the adb program is started, the following
variables are set from the system header in the specified core file. If the CoreFile parameter does not
appear to be a core file, these values are set from the ObjectFile parameter:

0
Last value printed

1
Last displacement part of an instruction source

2
Previous value of the 1 variable

9
Count on the last $< or $<< subcommand

b
Base address of the data segment

d
Size of the data segment

e
Entry address of the program

m
"Magic" number

s
Size of the stack segment

t
Size of the text segment

Example adb program: adbsamp
The following sample program is used in this example:

/* Program Listing for adbsamp.c */
char str1[] = "This is a character string";
int one = 1;
int number = 456;
long lnum = 1234;

52 AIX Version 7.2: General programming concepts

float fpt = 1.25;
char str2[] = "This is the second character string";
main()
{
 one = 2;
 printf("First String = %s\n",str1);
 printf("one = %d\n",one);
 printf("Number = %d\n",lnum);
 printf("Floating point Number = %g\n",fpt);
 printf("Second String = %s\n",str2);
}

Compile the program using the cc command to the adbsamp file as follows:

cc -g adbsamp.c -o adbsamp

To start the debug session, enter:

adb adbsamp

Example adb program: adbsamp2
The following sample program is used in this example:

/*program listing for adbsamp2.c*/
int fcnt,loop_count;

f(a,b)
int a,b;
{
 a = a+b;
 fcnt++;
 return(a);
}
main()
{
 loop_count = 0;
 while(loop_count <= 100)
 {
 loop_count = f(loop_count,1);
 printf("%s%d\n","Loop count is: ", loop_count);
 printf("%s%d\n","fcnt count is: ",fcnt);
 }
}

Compile the program using the cc command to the adbsamp2 file with the following command:

cc -g adbsamp2.c -o adbsamp2

To start the debug session, enter:

adb adbsamp2

Example adb program: adbsamp3
The following sample program adbsamp3.c contains an infinite recursion of subfunction calls.

If you run this program to completion, it causes a memory fault error and quits.

int fcnt,gcnt,hcnt;
h(x,y)
int x,y;
{
 int hi;
 register int hr;
 hi = x+1;
 hr = x-y+1;
 hcnt++;
 hj:
 f(hr,hi);

General programming concepts 53

}
g(p,q)
int p,q;
{
 int gi;
 register int gr;
 gi = q-p;
 gr = q-p+1;
 gcnt++;
 gj:
 h(gr,gi);
}
f(a,b)
int a,b;
{
 int fi;
 register int fr;
 fi = a+2*b;
 fr = a+b;
 fcnt++;
 fj:
 g(fr,fi);
}
main()
{
 f(1,1);
}

Compile the program using the cc command to create the adbsamp3 file with the following command:

cc -g adbsamp3.c -o adbsamp3

To start the debug session, enter:

adb adbsamp3

Example of directory and i-node dumps in adb debugging
This example shows how to create adb scripts to display the contents of a directory and the i-node map of
a file system. In the example, the directory is named dir and contains a variety of files.

The file system is associated with the /dev/hd3 device file (/tmp), which has the necessary permissions to
be read by the user.

To display a directory, create an appropriate script. A directory normally contains one or more entries.
Each entry consists of an unsigned i-node number (i-number) and a 14-character file name. You can
display this information by including a command in your script file. The adb debug program expects the
object file to be an xcoff format file. This is not the case with a directory. The adb program indicates that
the directory, because it is not an xcoff format file, has a text length of 0. Use the m command to indicate
to the adb program that this directory has a text length of greater than 0. Therefore, display entries in
your adb session by entering:

,0?m 360 0

For example, the following command displays the first 20 entries separating the i-node number and file
name with a tab:

0,20?ut14cn

You can change the second number, 20, to specify the number of entries in the directory. If you place the
following command at the beginning of the script, the adb program displays the strings as headings for
each column of numbers:

="inumber"8t"Name"

Once you have created the script file, redirect it as input when you start the adb program with the name
of your directory. For example, the following command starts the adb program on the geo directory using
command input from the ddump script file:

54 AIX Version 7.2: General programming concepts

adb geo - <ddump

The minus sign (-) prevents the adb program from opening a core file. The adb program reads the
commands from the script file.

To display the i-node table of a file system, create a new script and then start the adb program with the
file name of the device associated with the file system. The i-node table of a file system has a complex
structure. Each entry contains:

• A word value for status flags
• A byte value for number links
• 2-byte values for the user and group IDs
• A byte and word value for the size
• 8-word values for the location on disk of the file's blocks
• 2-word values for the creation and modification dates

The following is an example directory dump output:

 inumber Name
0: 26 .
 2 ..
 27 .estate
 28 adbsamp
 29 adbsamp.c
 30 calc.lex
 31 calc.yacc
 32 cbtest
 68 .profile
 66 .profile.bak
 46 adbsamp2.c
 52 adbsamp2
 35 adbsamp.s
 34 adbsamp2.s
 48 forktst1.c
 49 forktst2.c
 50 forktst3.c
 51 lpp&us1.name
 33 adbsamp3.c
 241 sample
 198 adbsamp3
 55 msgqtst.c
 56 newsig.c

The i-node table starts at the address 02000. You can display the first entry by putting the following
command in your script file:

02000,-1?on3bnbrdn8un2Y2na

The command specifies several new-line characters for the output display to make it easier to read.

To use the script file with the i-node table of the /dev/hd3 file, enter the following command:

adb /dev/hd3 - <script

Each entry in the display has the form:

02000: 073145
 0163 0164 0141
 0162 10356
 28770 8236 25956 27766 25455 8236 25956 25206
 1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

General programming concepts 55

Example of data formatting in adb debugging
To display the current address after each machine instruction, enter:

main , 5 ? ia

This produces output such as the following when used with the example program adbsamp:

.main:

.main: mflr 0

.main+4: st r0, 0x8(r1)

.main+8: stu rs, (r1)

.main+c: li l r4, 0x1

.main+10: oril r3, r4, 0x0

.main+14:

To make it clearer that the current address does not belong to the instruction that appears on the same
line, add the new-line format character (n) to the command:

.main , 5 ? ian

In addition, you can put a number before a formatting character to indicate the number of times to repeat
that format.

To print a listing of instructions and include addresses after every fourth instruction, use the following
command:

.main,3?4ian

This instruction produces the following output when used with the example program adbsamp:

.main:
 mflr 0
 st r0, 0x8(r1)
 stu r1, -56(r1)
 lil r4, 0x1

.main+10:
 oril r3, r4, 0x0
 bl .f
 l r0, Ox40(r1)
 ai r1, r1, 0x38

.main+20:
 mtlr r0
 br
 Invalid opcode
 Invalid opcode

.main+30:

Be careful where you put the number.

The following command, though similar to the previous command, does not produce the same output:

main,3?i4an

.main:

.main: mflr 0

.main+4: .main+4: .main+4: .main+4:
 st r0, 0x8(r1)
.main+8: .main+8: .main+8: .main+8:
 stu r1, (r1)
.main+c: .main+c: .main+c: .main+c:

You can combine format requests to provide elaborate displays. For example, entering the following
command displays instruction mnemonics followed by their hexadecimal equivalent:

.main,-1?i^xn

56 AIX Version 7.2: General programming concepts

In this example, the display starts at the address main. The negative count (-1) causes an indefinite call
of the command, so that the display continues until an error condition (such as end-of-file) occurs. In the
format, i displays the mnemonic instruction at that location, the ^ (caret) moves the current address back
to the beginning of the instruction, and x re-displays the instruction as a hexadecimal number. Finally, n
sends a newline character to the terminal. The output is similar to the following, only longer:

.main:

.main: mflr 0
 7c0802a6
 st r0, 0x8(r1)
 9001008
 st r1, -56(r1)
 9421ffc8
 lil r4, 0x1
 38800001
 oril r3, r4, 0x0
 60830000
 bl - .f
 4bffff71
 l r0, 0x40(r1)
 80010040
 ai r1, r1, 0x38
 30210038
 mtlr r0
 7c0803a6

The following example shows how to combine formats in the ? or / subcommand to display different types
of values when stored together in the same program. It uses the adbsamp program. For the commands to
have variables with which to work, you must first set a breakpoint to stop the program, and then run the
program until it finds the breakpoint. Use the :b command to set a breakpoint:

.main+4:b

Use the $b command to show that the breakpoint is set:

$b
breakpoints
count bkpt command
1 .main+4

Run the program until it finds the breakpoint by entering:

:r
adbsamp: running
breakpoint .main+4: st r0, 0x8(r1)

You can now display conditions of the program when it stopped. To display the value of each individual
variable, give its name and corresponding format in a / (slash) command. For example, the following
command displays the contents of str1 as a string:

str1/s
str1:
str1: This is a character string

The following command displays the contents of number as a decimal integer:

number/D
number:
number: 456

You can choose to view a variable in a variety of formats. For example, you can display the long variable
lnum as a 4-byte decimal, octal, and hexadecimal number by entering the commands:

lnum/D
lnum:
lnum: 1234

lnum/O
lnum:

General programming concepts 57

lnum: 2322

lnum/X
lnum:
lnum: 4d2

You can also examine variables in other formats. For example, the following command displays some
variables as eight hexadecimal values on a line and continues for five lines:

str1,5/8x
str1:
str1: 5468 6973 2069 7320 6120 6368 6172 6163
 7465 7220 7374 7269 6e67 0 0 0 0

number: 0 1c8 0 0 0 4d2 0 0
 3fa0 0 0 0 5468 6973 2069 7320
 7468 6520 7365 636f 6e64 2063 6861 7261

Since the data contains a combination of numeric and string values, display each value as both a number
and a character to see where the actual strings are located. You can do this with one command:

str1,5/4x4^8Cn
str1:
str1: 5468 6973 2069 7320 This is
 6120 6368 6172 6163 a charac
 7465 7220 7374 7269 ter stri
 6e67 0 0 0 ng~@~@~@~@~@~@
 0 1c8 0 0 ~@~@~A~<c8>~@~@~@~@

In this case, the command displays four values in hexadecimal, then displays the same values as eight
ASCII characters. The ^ (caret) is used four times just before displaying the characters to set the current
address back to the starting address for that line.

To make the display easier to read, you can insert a tab between the values and characters and give an
address for each line:

str1,5/4x4^8t8Cna
str1:
str1: 5468 6973 2069 7320 This is
str1+8: 6120 6368 6172 6163 a charac
str1+10: 7465 7220 7374 7269 ter stri
str1+18: 6e67 0 0 1 ng~@~@~@~@~@~A

number:
number: 0 1c8 0 0 ~@~@~A~<c8>~@~@~@~@
fpt:

Example of tracing multiple functions in adb debugging
The following example shows how to execute a program under adb control and carry out the basic
debugging operations described in the following sections.

Note: The example program used in this section, adbsamp3, contains an infinite recursion of subfunction
calls. If you run this program to completion, it causes a memory fault error and quits.

The source program for this example is stored in a file named adbsamp3.c. Compile this program to an
executable file named adbsamp3 using the cc command:

cc adbsamp3.c -o adbsamp3

Starting the adb program

To start the session and open the program file, use the following command (no core file is used):

adb adbsamp3

Setting breakpoints

First, set breakpoints at the beginning of each function using the :b subcommand:

58 AIX Version 7.2: General programming concepts

.f:b

.g:b

.h:b

Displaying a set of instructions

Next, display the first five instructions in the f function:

.f,5?ia

.f:

.f: mflr r0

.f+4: st r0, 0x8(r1)

.f+8: stu r1, -64(r1)

.f+c: st r3, 0x58(r1)

.f+10: st r4, 0x5c(r1)

.f+14:

Display five instructions in function g without their addresses:

.g,5?i

.g: mflr r0
 st r0, 0x8(r1)
 stu r1, -64(r1)
 st r3, 0x58(r1)
 st r4, 0x5c(r1)

Starting the adsamp3 program

Start the program by entering the following command:

:r
adbsamp3: running
breakpoint .f: mflr r0

The adb program runs the sample program until it reaches the first breakpoint where it stops.

Removing a breakpoint

Since running the program to this point causes no errors, you can remove the first breakpoint:

.f:d

Continuing the program

Use the :c subcommand to continue the program:

:c
adbsamp3: running
breakpoint .g: mflr r0

The adb program restarts the adbsamp3 program at the next instruction. The program operation
continues until the next breakpoint, where it stops.

Tracing the path of execution

Trace the path of execution by entering:

Displaying a variable value

Display the contents of the fcnt integer variable by entering the command:

fcnt/D
fcnt:
fcnt: 1

Skipping breakpoints

Next, continue running the program and skip the first 10 breakpoints by entering:

General programming concepts 59

,10:c
adbsamp3: running
breakpoint .g: mflr r0

The adb program starts the adbsamp3 program and displays the running message again. It does not stop
the program until exactly 10 breakpoints have been encountered. To ensure that these breakpoints have
been skipped, display the backtrace again:

$c
.g(0,0) .f+2a
.f(2,11) .h+28
.h(10,f) .g+2a
.g(11,20) .f+2a
.f(2,f) .h+28
.h(e,d) .g+2a
.g(f,1c) .f+2a
.f(2,d) .h+28
.h(c,b) .g+2a
.g(d,18) .f+2a
.f(2,b) .h+28
.h(a,9) .g+2a
.g(b,14) .f+2a
.f(2,9) .h+28
.h(8,7) .g+2a
.g(9,10) .f+2a
.f(2,7) .h+28
.h(6,5) .g+2a
.g(7,c) .f+2ae
.f(2,5) .h+28
.h(4,3) .g+2a
.g(5,8) .f+2a
.f(2,3) .h+28
.h(2,1) .g+2a
.g(2,3) .f+2a
.f(1,1) .main+e
.main(0,0,0) start+fa

dbx symbolic debug program overview
The dbx symbolic debug program allows you to debug an application program at two levels: the source-
level and the assembler language-level. Source level debugging allows you to debug your C, C++, or
FORTRAN language program.

Assembler language level debugging allows you to debug executable programs at the machine level. The
commands used for machine level debugging are similar to those used for source-level debugging.

Using the dbx debug program, you can step through the application program you want to debug one line
at a time or set breakpoints in the object program that will stop the debug program. You can also search
through and display portions of the source files for an application program.

The following sections contain information on how to perform a variety of tasks with the dbx debug
program:

Using the dbx debug program
This section contains information on how to use the dbx debug program.

Starting the dbx debug program

The dbx program can be started with a variety of flags. The three most common ways to start a debug
session with the dbx program are:

• Running the dbx command on a specified object file
• Using the -r flag to run the dbx command on a program that ends abnormally
• Using the -a flag to run the dbx command on a process that is already in progress

When the dbx command is started, it checks for a .dbxinit file in the user's current directory and in the
user's $HOME directory. If a .dbxinit file exists, its subcommands run at the beginning of the debug

60 AIX Version 7.2: General programming concepts

session. If a .dbxinit file exists in both the home and current directories, then both are read in that order.
Because the current directory .dbxinit file is read last, its subcommands can supercede those in the
home directory.

If no object file is specified, then the dbx program asks for the name of the object file to be examined. The
default is a.out. If the core file exists in the current directory or a CoreFile parameter is specified, then
the dbx program reports the location where the program faulted. Variables, registers, and memory held
in the core image may be examined until execution of the object file begins. At that point the dbx debug
program prompts for commands.

Debugging a core image with missing dependent modules

Beginning with AIX 5.3, the dbx program has the ability to examine a core image even if one or more
dependent modules are inaccessible. During initialization, notification messages are displayed for each
missing dependent module.

In normal operation, the dbx program relies on the information contained in the dependent modules'
symbol tables and text sections. Because some of that information is missing, a dbx session with missing
dependent modules has the following limitations:

• All attempts by the user to read the contents of memory residing in the text sections of the missing
dependent modules result in an error message. The error message is like the error that occurs when
data cannot be accessed because it does not reside in the core file.

• The user cannot obtain information concerning any symbols that would have been read from the symbol
tables of the missing dependent modules. The behavior of the dbx program is similar to the case where
a dependent module's symbol table was stripped.

• Stack frames corresponding to routines within the missing dependent modules are displayed simply as:

.()

In addition, the instruction address within the unknown routine and the name of the corresponding
missing dependent module are displayed.

The user always has the option of directing the dbx program to accessible dependent modules using the
-p flag.

Debugging a core image with mismatched dependent modules

Beginning with AIX 5.3, the dbx program detects if any dependent modules referenced in the core file
are different than at core file creation. During initialization, notification messages are displayed for each
mismatched dependent module.

The user should be aware that any information displayed by the dbx program that is based on the
contents of a mismatched dependent module might be unreliable. In an effort to alert the user
to information that should not be trusted, the dbx program sends notification messages whenever
questionable information is displayed.

To disable this function and force the dbx program to treat mismatched dependent modules as missing
dependent modules, the user can export the DBX_MISMATCH_MODULE environment variable with a value
of DISCARD. With this variable exported, the dbx program still notifies the user of the mismatch, but
proceeds as if mismatched dependent modules were inaccessible.

The user always has the option of directing the dbx program to matching dependent modules using the
-p flag.

Running shell commands from dbx

You can run shell commands without exiting from the debug program using the sh subcommand.

If sh is entered without any commands specified, the shell is entered for use until it is exited, at which
time control returns to the dbx program.

Command line editing in dbx

General programming concepts 61

The dbx command provides command line editing features similar to those provided by Korn Shell. vi
mode provides vi-like editing features, while emacs mode gives you controls similar to emacs.

You can turn these features on by using dbx subcommand set -o or set edit. So, to turn on vi-style
command line editing, you would type the subcommand set edit vi or set -o vi.

You can also use the EDITOR environment variable to set the editing mode.

The dbx command saves commands entered to history file .dbxhistory. If the DBXHISTFILE environment
variable is not set, then the history file used is $HOME/.dbxhistory.

By default, the dbx command saves the text of the last 128 commands entered. The DBXHISTSIZE
environment variable can be used to increase this limit.

Using program control

The dbx debug program allows you to set breakpoints (stopping places) in the program. After entering the
dbx program you can specify which lines or addresses are to be breakpoints and then run the program
you want to debug with the dbx program. The program halts and reports when it reaches a breakpoint.
You can then use dbx commands to examine the state of your program.

An alternative to setting breakpoints is to run your program one line or instruction at a time, a procedure
known as single-stepping.

Setting and deleting breakpoints

Use the stop subcommand to set breakpoints in the dbx program. The stop subcommand halts the
application program when certain conditions are fulfilled:

• The Variable is changed when the Variable parameter is specified.
• The Condition is true when the if Condition flag is used.
• The Procedure is called when the in Procedure flag is used.
• The SourceLine line number is reached when the at SourceLine flag is used.

Note: The SourceLine variable can be specified as an integer or as a file name string followed
by a : (colon) and an integer.

After any of these commands, the dbx program responds with a message reporting the event ID
associated with your breakpoint along with an interpretation of your command. You can associate dbx
subcommands to the specified event ID by using the addcmd subcommand. These associated dbx
subcommands are issued when the breakpoint, tracepoint, or watchpoint corresponding to this event is
hit. Use the delcmd subcommand to delete the associated dbx subcommands from the specified event
ID.

Running a program

The run subcommand starts your program. It tells the dbx program to begin running the object file,
reading any arguments just as if they were typed on the shell command line. The rerun subcommand
has the same form as run; the difference is that if no arguments are passed, the argument list from
the previous execution is used. After your program begins, it continues until one of the following events
occurs:

• The program reaches a breakpoint.
• A signal occurs that is not ignored, such as INTERRUPT or QUIT.
• A multiprocess event occurs while multiprocess debugging is enabled.
• The program performs a load, unload, or loadbind subroutine.

Note: The dbx program ignores this condition if the $ignoreload debug variable is set. This is
the default. For more information see the set subcommand.

• The program completes.

In each case, the dbx debug program receives control and displays a message explaining why the
program stopped.

62 AIX Version 7.2: General programming concepts

There are several ways to continue the program once it stops:

Command Description

cont Continues the program from where it stopped.

detach Continues the program from where it stopped, exiting the debug program. This is useful after you have patched the program and want
to continue without the debug program.

return Continues execution until a return to Procedure is encountered, or until the current procedure returns if Procedure is not specified.

skip Continues execution until the end of the program or until Number + 1 breakpoints execute.

step Runs one or a specified Number of source lines.

next Runs up to the next source line, or runs a specified Number of source lines.

A common method of debugging is to step through your program one line at a time. The step and next
subcommands serve that purpose. The distinction between these two commands is apparent only when
the next source line to be run involves a call to a subprogram. In this case, the step subcommand stops in
the subprogram; the next subcommand runs until the subprogram has finished and then stops at the next
instruction after the call.

The $stepignore debug variable can be used to modify the behavior of the step subcommand.

There is no event number associated with these stops because there is no permanent event associated
with stopping a program.

If your program has multiple threads, they all run normally during the cont, next, nexti, and step
subcommands. These commands act on the running thread (the thread which stopped execution by
hitting a breakpoint), so even if another thread runs the code which is being stepped, the cont, next,
nexti, or step operation continues until the running thread has also executed that code.

If you want these subcommands to execute the running thread only, you can set the dbx debug program
variable $hold_next; this causes the dbx debug program to hold all other user threads during cont, next,
nexti, and step subcommands.

Note: If you use this feature, remember that a held thread will not be able to release any locks
which it has acquired; another thread which requires one of these locks could deadlock your
program.

Separating dbx output from program output

Use the screen subcommand for debugging programs that are screen-oriented, such as text editors or
graphics programs. This subcommand opens an Xwindow for dbx command interaction. The program
continues to operate in the window in which it originated. If screen is not used, dbx program output is
intermixed with the screen-oriented program output.

Tracing execution

The trace subcommand tells the dbx program to print information about the state of the program being
debugged while that program is running. The trace subcommand can slow a program considerably,
depending on how much work the dbx program has to do. There are five forms of program tracing:

• You can single-step the program, printing out each source line that is executed. The $stepignore debug
variable can be used to modify the behavior of the trace subcommand. See the set subcommand for
more information.

• You can restrict the printing of source lines to when the specified procedure is active. You can also
specify an optional condition to control when trace information is produced.

• You can display a message each time a procedure is called or returned.
• You can print the specified source line when the program reaches that line.
• You can print the value of an expression when the program reaches the specified source line.

Deleting trace events is the same as deleting stop events. When the trace subcommand is executed, the
event ID associated is displayed along with the internal representation of the event.

General programming concepts 63

Displaying and manipulating the source file with the dbx debug program
This section describes the process of displaying and manipulating the source file with the dbx debug
program.

You can use the dbx debug program to search through and display portions of the source files for a
program.

You do not need a current source listing for the search. The dbx debug program keeps track of the current
file, current procedure, and current line. If a core file exists, the current line and current file are set initially
to the line and file containing the source statement where the process ended. This is only true if the
process stopped in a location compiled for debugging.

Changing the source directory path

By default, the dbx debug program searches for the source file of the program being debugged in the
following directories:

• Directory where the source file was located when it was compiled. This directory is searched only if the
compiler placed the source path in the object.

• Current directory.
• Directory where the program is currently located.

You can change the list of directories to be searched by using the -I option on the dbx invocation line or
issuing the use subcommand within the dbx program. For example, if you moved the source file to a new
location since compilation time, you might want to use one of these commands to specify the old location,
the new location, and some temporary location.

Displaying the current file

The list subcommand allows you to list source lines.

The $ (dollar sign) and @ (at sign) symbols represent SourceLineExpression and are useful with the list,
stop, and trace subcommands. The $ symbol represents the next line to be run. The @ symbol represents
the next line to be listed.

The move subcommand changes the next line number to be listed.

Changing the current file or procedure

Use the func and file subcommands to change the current file, current procedure, and current line within
the dbx program without having to run any part of your program.

Search through the current file for text that matches regular expressions. If a match is found, the current
line is set to the line containing the matching text. The syntax of the search subcommand is:

/ RegularExpression [/]
Searches forward in the current source file for the given expression.

? RegularExpression [?]
Searches backward in the current source file for the given expression.

If you repeat the search without arguments, the dbx command searches again for the previous regular
expression. The search wraps around the end or beginning of the file.

You can also invoke an external text editor for your source file using the edit subcommand. You can
override the default editor (vi) by setting the EDITOR environment variable to your desired editor before
starting the dbx program.

The dbx program resumes control of the process when the editing session is completed.

Debugging programs involving multiple threads

Programs involving multiple user threads call the subroutine pthread_create. When a process calls this
subroutine, the operating system creates a new thread of execution within the process. When debugging a
multithreaded program, it is necessary to work with individual threads instead of with processes. The dbx

64 AIX Version 7.2: General programming concepts

program only works with user threads: in the dbx documentation, the word thread is usually used alone to
mean user thread. The dbx program assigns a unique thread number to each thread in the process being
debugged, and also supports the concept of a running and current thread:

Running thread
The user thread that was responsible for stopping the program by hitting a breakpoint. Subcommands
that single-step the program work with the running thread.

Current thread
The user thread that you are examining. Subcommands that display information work in the context of
the current thread.

By default, the running thread and current thread are the same. You can select a different current thread
by using the thread subcommand. When the thread subcommand displays threads, the current thread
line is preceded by a >. If the running thread is not the same as the current thread, its line is preceded by
a *.

Debugging programs involving multiple processes

Programs involving multiple processes call the fork and exec subroutines. When a program forks, the
operating system creates another process that has the same image as the original. The original process is
called the parent process, the created process is called the child process.

When a process performs an exec subroutine, a new program takes over the original process. Under
normal circumstances, the debug program debugs only the parent process. However, the dbx program
can follow the execution and debug the new processes when you issue the multproc subcommand. The
multproc subcommand enables multiprocess debugging.

When multiprocess debugging is enabled and a fork occurs, the parent and child processes are halted. A
separate virtual terminal Xwindow is opened for a new version of the dbx program to control running of
the child process:

(dbx) multproc on
(dbx) multproc
multi-process debugging is enabled
(dbx) run

When the fork occurs, execution is stopped in the parent, and the dbx program displays the state of the
program:

application forked, child pid = 422, process stopped, awaiting input
stopped due to fork with multiprocessing enabled in fork at 0x1000025a (fork+0xe)
(dbx)

Another virtual terminal Xwindow is then opened to debug the child process:

debugging child, pid=422, process stopped, awaiting input
stopped due to fork with multiprocessing enabled in fork at 0x10000250
10000250 (fork+0x4))80010010 1 r0,0x10(r1)
(dbx)

At this point, two distinct debugging sessions are running. The debugging session for the child process
retains all the breakpoints from the parent process, but only the parent process can be rerun.

When a program performs an exec subroutine in multiprocess debugging mode, the program overwrites
itself, and the original symbol information becomes obsolete. All breakpoints are deleted when the exec
subroutine runs; the new program is stopped and identified for the debugging to be meaningful. The dbx
program attaches itself to the new program image, makes a subroutine to determine the name of the new
program, reports the name, and then prompts for input. The prompt is similar to the following:

(dbx) multproc
Multi-process debugging is enabled
(dbx) run
Attaching to program from exec . . .
Determining program name . . .
Successfully attached to /home/user/execprog . . .

General programming concepts 65

Reading symbolic information . . .
(dbx)

If a multithreaded program forks, the new child process will have only one thread. The process should
call the exec subroutine. Otherwise, the original symbol information is retained, and thread-related
subcommands (such as thread) display the objects of the parent process, which are obsolete. If an exec
subroutine is called, the original symbol information is reinitialized, and the thread-related subcommands
display the objects in the new child process.

It is possible to follow the child process of a fork without a new Xwindow being opened by using the child
flag of the multproc subcommand. When a forked process is created, dbx follows the child process. The
parent flag of the multproc subcommand causes dbx to stop when a program forks, but then follows
the parent. Both the child and parent flags follow an execed process. These flags are very useful for
debugging programs when Xwindows is not running.

Examining program data
This section explains how to examine, test, and modify program data.

Handling signals

The dbx debug program can either trap or ignore signals before they are sent to your program. Each
time your program is to receive a signal, the dbx program is notified. If the signal is to be ignored,
it is passed to your program; otherwise, the dbx program stops the program and notifies you that a
signal has been trapped. The dbx program cannot ignore the SIGTRAP signal if it comes from a process
outside of the debug process. In a multithreaded program, a signal can be sent to a particular thread via
the pthread_kill subroutine. By default, the dbx program stops and notifies you that a signal has been
trapped. If you request a signal be passed on to your program using the ignore subcommand, the dbx
program ignores the signal and passes it on to the thread. Use the catch and ignore subcommands to
change the default handling.

In the following example, a program uses SIGGRANT and SIGREQUEST to handle allocation of resources.
In order for the dbx program to continue each time one of these signals is received, enter:

(dbx) ignore GRANT
(dbx) ignore SIGREQUEST
(dbx) ignore
CONT CLD ALARM KILL GRANT REQUEST

The dbx debug program can block signals to your program if you set the $sigblock variable. By default,
signals received through the dbx program are sent to the source program or the object file specified by
the dbx ObjectFile parameter. If the $sigblock variable is set using the set subcommand, signals received
by the dbx program are not passed to the source program. If you want a signal to be sent to the program,
use the cont subcommand and supply the signal as an operand.

You can use this feature to interrupt execution of a program running under the dbx debug program.
Program status can be examined before continuing execution as usual. If the $sigblock variable is not set,
interrupting execution causes a SIGINT signal to be sent to the program. This causes execution, when
continued, to branch to a signal handler if one exists.

The following example program illustrates how execution using the dbx debug program changes when the
$sigblock variable is set:

#include <signal.h>
#include <stdio.h>
void inthand() {
 printf("\nSIGINT received\n");
 exit(0);
}

main()
{
 signal(SIGINT, inthand);
 while (1) {
 printf(".");
 fflush(stdout);

66 AIX Version 7.2: General programming concepts

 sleep(1);
 }
}

The following sample session with the dbx program uses the preceding program as the source file. In
the first run of the program, the $sigblock variable is not set. During rerun, the $sigblock variable is set.
Comments are placed between angle brackets to the right:

dbx version 3.1.
Type 'help' for help.
reading symbolic information ...
(dbx) run
.........^C <User pressed Ctrl-C here!>
interrupt in sleep at 0xd00180bc
0xd00180bc (sleep+0x40) 80410014 1 r2,0x14(r1)
(dbx) cont

SIGINT received

execution completed
(dbx) set $sigblock
(dbx) rerun
[looper]
..............^C <User pressed Ctrl-C here!>
interrupt in sleep at 0xd00180bc
0xd00180bc (sleep+0x40) 80410014 1 r2,0x14(r1)
(dbx) cont
....^C <Program did not receive signal, execution continued>

interrupt in sleep at 0xd00180bc
0xd00180bc (sleep+0x40) 80410014 1 r2,0x14(r1)
(dbx) cont 2 <End program with a signal 2>

SIGINT received

execution completed
(dbx)

Calling procedures

You can call your program procedures from the dbx program to test different arguments. You can also
call diagnostic routines that format data to aid in debugging. Use the call subcommand or the print
subcommand to call a procedure.

Displaying a stack trace

To list the procedure calls preceding a program halt, use the where command.

In the following example, the executable object file, hello, consists of two source files and three
procedures, including the standard procedure main. The program stopped at a breakpoint in procedure
sub2.

(dbx) run
[1] stopped in sub2 at line 4 in file "hellosub.c"
(dbx) where
sub2(s = "hello", n = 52), line 4 in "hellosub.c"
sub(s = "hello", a = -1, k = delete), line 31 in "hello.c"
main(), line 19 in "hello.c"

The stack trace shows the calls in reverse order. Starting at the bottom, the following events occurred:

1. Shell called main.
2. main called sub procedure at line 19 with values s = "hello", a = -1, and k = delete.
3. sub called sub2 procedure at line 31 with values s = "hello" and n = 52.
4. The program stopped in sub2 procedure at line 4.

General programming concepts 67

A portion of the stack trace from frame number 0 to frame number 1 can be displayed using where 0 1.

(dbx)run
[1] stopped in sub2 at line 4 in file "hellosub.c"
(dbx) where 0 1
sub2(s = "hello", n = 52), line 4 in "hellosub.c"
sub(s = "hello", a = -1, k = delete), line 31 in "hello.c"

Note: Set the debug program variable $noargs to turn off the display of arguments passed to
procedures. Set the debug program variable $stack_details to display the frame number and
the register set for each active function or procedure.

You can also display portions of the stack with the up, down, and frame subcommands.

Displaying and modifying variables

To display an expression, use the print subcommand. To print the names and values of variables, use
the dump subcommand. If the given procedure is a period, then all active variables are printed. If the
PATTERN parameter is specified, then instead of displaying only the specified symbol, all the symbols that
match the PATTERN are printed. To modify the value of a variable, use the assign subcommand.

In the following example, a C program has an automatic integer variable x with value 7, and s and n
parameters in the sub2 procedure:

(dbx) print x, n
7 52
(dbx) assign x = 3*x
(dbx) print x
21
(dbx) dump
sub2(s = "hello", n = 52)
x = 21

Displaying thread-related information

To display information on user threads, mutexes, conditions, and attribute objects, use the thread,
mutex, condition, and attribute subcommands. You can also use the print subcommand on these
objects. In the following example, the running thread is thread 1. The user sets the current thread to
be thread 2, lists the threads, prints information on thread 1, and finally prints information on several
thread-related objects.

(dbx) thread current 2
(dbx) thread
 thread state-k wchan state-u k-tid mode held scope function
*$t1 run running 12755 u no pro main
>$t2 run running 12501 k no sys thread_1

(dbx) print $t1
(thread_id = 0x1, state = run, state_u = 0x0, tid = 0x31d3, mode = 0x1, held = 0x0, priority = 0x3c,
 policy = other, scount = 0x1, cursig = 0x5, attributes = 0x200050f8)

(dbx) print $a1,$c1,$m2
(attr_id = 0x1, type = 0x1, state = 0x1, stacksize = 0x0, detachedstate = 0x0, process_shared = 0x0,
 contentionscope = 0x0, priority = 0x0, sched = 0x0, inherit = 0x0, protocol = 0x0, prio_ceiling = 0x0)
(cv_id = 0x1, lock = 0x0, semaphore_queue = 0x200032a0, attributes = 0x20003628)
(mutex_id = 0x2, islock = 0x0, owner = (nil), flags = 0x1, attributes = 0x200035c8)

Scoping of names

Names resolve first using the static scope of the current function. The dynamic scope is used if the name
is not defined in the first scope. If static and dynamic searches do not yield a result, an arbitrary symbol
is chosen and the message using QualifiedName is printed. You can override the name resolution
procedure by qualifying an identifier with a block name (such as Module.Variable). Source files are treated
as modules named by the file name without the suffix. For example, the x variable, which is declared in
the sub procedure inside the hello.c file, has the fully qualified name hello.sub.x. The program itself has
a period for a name.

68 AIX Version 7.2: General programming concepts

The which and whereis subcommands can be helpful in determining which symbol is found when
multiple symbols with the same name exist.

Using operators and modifiers in expressions

The dbx program can display a wide range of expressions. Specify expressions with a common subset of C
syntax, with some FORTRAN extensions.

* (asterisk) or ^ (caret)
Denotes indirection or pointer dereferencing.

[] (brackets) or () (parentheses)
Denotes subscript array expressions.

. (period)
Use this field reference operator with pointers and structures. This makes the C operator -> (arrow)
unnecessary, although it is allowed.

& (ampersand)
Gets the address of a variable.

.. (two periods)
Separates the upper and lower bounds when specifying a subsection of an array. For example: n[1..4].

The following types of operations are valid in expressions:

Algebraic
=, -, *,/(floating division), div (integral division), mod, exp (exponentiation)

Bitwise
-, I, bitand, xor, ~, <<, >>

Logical
or, and, not, II, &&

Comparison
<, >, <=, >=, <> or !=, = or ==

Other
sizeof

Logical and comparison expressions are allowed as conditions in stop and trace subcommands.

Checking of expression types

The dbx debug program checks expression types. You can override the expression type by using a
renaming or casting operator. There are three forms of type renaming:

• Typename (Expression)
• Expression \ Typename
• (Typename) Expression

Note: When you cast to or from a structure, union, or class, the casting is left-justified. However,
when casting from a class to a base class, C++ syntax rules are followed.

For example, to rename the x variable where x is an integer with a value of 97, enter:

(dbx) print char (x), x \ char, (char) x, x,
'a' 'a' 'a' 97

The following examples show how you can use the (Typename) Expression form of type renaming:

print (float) i

print ((struct qq *) void_pointer)->first_element

The following restrictions apply to C-style typecasting for the dbx debug program:

General programming concepts 69

• The Fortran types (integer*1, integer*2, integer*4, logical*1, logical*2, logical*4, and so on) are not
supported as cast operators.

• If an active variable has the same name as one of the base types or user-defined types, the type cannot
be used as a cast operator for C-style typecasting.

The whatis subcommand prints the declaration of an identifier, which you can then qualify with block
names.

Use the $$TagName construct to print the declaration of an enumeration, structure, or union tag.

The type of the assign subcommand expression must match the variable type you assigned. If the types
do not match, an error message is displayed. Change the expression type using a type renaming. Disable
type checking by setting a special dbx debug program $unsafeassign variable.

Folding variables to lowercase and uppercase

By default, the dbx program folds symbols based on the current language. If the current language is C,
C++, or undefined, the symbols are not folded. If the current language is Fortran, the symbols are folded
to lowercase. The current language is undefined if the program is in a section of code that has not been
compiled with the debug flag. You can override default handling with the case subcommand.

Using the case subcommand without arguments displays the current case mode.

The Fortran compiler converts all program symbols to lowercase; the C compiler does not. However, some
Fortran compilers might not always generate lowercase symbols. For example, given a procedure named
proc1 inside a module named mod2, the XLF Fortran compiler generates the __mod2_MOD_proc1
symbol, which is mixed case. In such situations, you must change the case in the dbx program to mixed
case.

Changing print output with special debug program variables

Use the set subcommand to set the following special dbx debug program variables to get different results
from the print subcommand:

$hexints
Prints integer expressions in hexadecimal.

$hexchars
Prints character expressions in hexadecimal.

$hexstrings
Prints the address of the character string, not the string itself.

$octints
Prints integer expressions in octal.

$expandunions
Prints fields within a union.

$pretty
Displays complex C and C++ types in pretty format.

$print_dynamic
Prints the dynamic type of the C++ objects.

$show_vft
Prints Virtual Function Table while printing C++ objects.

Set and unset the debug program variables to get the desired results. For example:

(dbx) whatis x; whatis i; whatis s
int x;
char i;
char *s;
(dbx) print x, i, s
375 'c' "hello"
(dbx) set $hexstrings; set $hexints; set $hexchars
(dbx) print x, i, s
0x177 0x63 0x3fffe460
(dbx) unset $hexchars; set $octints

70 AIX Version 7.2: General programming concepts

(dbx) print x, i
0567 'c'
(dbx) whatis p
struct info p;
(dbx) whatis struct info
struct info {
 int x;
 double position[3];
 unsigned char c;
 struct vector force;
};
(dbx) whatis struct vector
struct vector {
 int a;
 int b;
 int c;
};
(dbx) print p
(x = 4, position = (1.3262493258532527e-315, 0.0, 0.0),
c = '\0', force = (a = 0, b = 9, c = 1))(dbx) set $pretty="on"
(dbx) print p
{
 x = 4
 position[0] = 1.3262493258532527e-315
 position[1] = 0.0
 position[2] = 0.0
 c = '\0'
 force = {
 a = 0
 b = 9
 c = 1
 }
}
(dbx) set $pretty="verbose"
(dbx) print p
x = 4
position[0] = 1.3262493258532527e-315
position[1] = 0.0
position[2] = 0.0
c = '\0'
force.a = 0
force.b = 9
force.c = 1

When show_vft is not set and an object is printed using print sub command, the Virtual Function Table
(VFT) is not printed. If it is set VFT is displayed. For example:

(dbx) p *d
 B1:(int_in_b1 = 91)
 B2:(int_in_b2 = 92)
(int_in_d = 93)
(dbx) p *b2
(int_in_b2 = 20)
(dbx)set $show_vft
(dbx) p *d
 B1:(B1::f1(), int_in_b1 = 91)
 B2:(D::f2(), int_in_b2 = 92)
(int_in_d = 93)
(dbx) p *b2
(B2::f2(), int_in_b2 = 20)
(dbx)

When print_dynamic is not set the object is displayed as per the static type’s (what is defined in the
source code) template. Otherwise it will be displayed as per the dynamic type’s (what an object was
before any casts were made to it) template. For example:

(dbx) r
[1] stopped in main at line 57
 57 A *obj1 = new A();
(dbx) n
stopped in main at line 58
 58 A *obj2 = new B();
(dbx) n
stopped in main at line 59
 59 cout<<" a = "<<obj2->a<<" b = "<<obj2->b<<endl;
(dbx) p *obj2
(a = 1, b = 2)
(dbx)set $print_dynamic

General programming concepts 71

(dbx) print *obj2
 A:(a = 1, b = 2)
(c = 3, d = 4)
(dbx)

Debugging at the machine level with dbx
You can use the dbx debug program to examine programs at the assembly language level. You can display
and modify memory addresses, display assembler instructions, single-step instructions, set breakpoints
and trace events at memory addresses, and display the registers.

In the commands and examples that follow, an address is an expression that evaluates to a memory
address. The most common forms of addresses are integers and expressions that take the address of an
identifier with the & (ampersand) operator. You can also specify an address as an expression enclosed
in parentheses in machine-level commands. Addresses can be composed of other addresses and the
operators + (plus), - (minus), and indirection (unary *).

The following sections contain more information on debugging at the machine level with the dbx program.

Using machine registers

Use the registers subcommand to see the values of the machine registers. Registers are divided into
three groups: general-purpose, floating-point, and system-control.

General-purpose registers

General-purpose registers are denoted by $rNumber, where Number represents the number of the
register.

Note: The register value may be set to a hexadecimal value of 0xdeadbeef. This is an
initialization value assigned to all general-purpose registers at process initialization.

Floating-point registers

Floating-point registers are denoted by $frNumber, where Number represents the register number.
Floating-point registers are not displayed by default. You can unset the $noflregs debug program variable
to enable the floating-point register display (unset $noflregs). You can also reference floating-point
registers by type when using these registers with the print and assign subcommands. $frNumber
defaults to the double type. $frNumberh references the floating-point registers as type _Decimal32.
$frNumberd references the floating-point registers as type _Decimal64. The following are examples of
the different types of floating-point registers:

(dbx) print $fr0

1.10000002

(dbx) print $fr0h

1.100001

(dbx) print $fr0d

1.10000062

(dbx) assign $fr0 = 9.876

(dbx) assign $fr0h = 9.876df

(dbx) assign $fr0d = 9.876dd

Vector registors

Vector registers are denoted by $vrNumber, where Number represents the number of the register. Vector
registers are not displayed by default, and are only present on processors supporting a Vector Processing
Unit.

You can unset the $novregs debug program variable to enable the vector register display with unset
$novregs. You can also reference vector registers by type when using them with the print and assign

72 AIX Version 7.2: General programming concepts

subcommands. $vrNumber defaults to a vector type of int. $vrNumberf references the vector as type float.
$vrNumbers references the vector as type short. $vrNumberc references the vector as type char.

Following are examples of the different types of vector registers:

(dbx) print $vr20

((1066192077, 1074161254, 1078355558, 1082340147))

(dbx) print $vr20f

((1.10000002, 2.0999999, 3.0999999, 4.0999999))

(dbx) print $vr20s

((16268, 52429, 16390, 26214, 16454, 26214, 16515, 13107))

(dbx) assign $vr20f[3] = 9.876

(dbx) print $vr20f ((1.10000002, 2.0999999, 3.0999999, 9.8760004))

System-control registers

Supported system-control registers are denoted by:

• The Instruction Address register, $iar or $pc
• The Condition Status register, $cr
• The Multiplier Quotient register, $mq
• The Machine State register, $msr
• The Link register, $link
• The Count register, $ctr
• The Fixed Point Exception register, $xer
• The Transaction ID register, $tid
• The Floating-Point Status register, $fpscr

Examining memory addresses

Use the following command format to print the contents of memory starting at the first address and
continuing up to the second address, or until the number of items specified by the Count variable are
displayed. The Mode specifies how memory is to print.

Address, Address / [Mode][> File]
Address / [Count][Mode] [> File]

If the Mode variable is omitted, the previous mode specified is reused. The initial mode is X. The following
modes are supported:

b
Prints a byte in octal.

c
Prints a byte as a character.

D
Prints a long word in decimal.

d
Prints a short word in decimal.

Df
Prints a double-precision decimal float number.

DDf
Prints a quad-precision decimal float number.

f
Prints a single-precision floating-point number.

General programming concepts 73

g
Prints a double-precision floating-point number.

Hf
Prints a single-precision decimal float number.

h
Prints a byte in hexadecimal.

i
Prints the machine instruction.

lld
Prints an 8-byte signed decimal number.

llo
Prints an 8-byte unsigned octal number.

llu
Prints an 8-byte unsigned decimal number.

llx
Prints an 8-byte unsigned hexadecimal number.

O
Prints a long word in octal.

o
Prints a short word in octal.

q
Prints an extended-precision floating-point number.

s
Prints a string of characters terminated by a null byte.

X
Prints a long word in hexadecimal.

x
Prints a short word in hexadecimal.

In the following example, expressions in parentheses can be used as an address:

(dbx) print &x
0x3fffe460
(dbx) &x/X
3fffe460: 31323300
(dbx) &x,&x+12/x
3fffe460: 3132 3300 7879 7a5a 5958 5756 003d 0032
(dbx) ($pc)/2i
100002cc (sub) 7c0802a6 mflr r0
100002d0 (sub + 0x4) bfc1fff8 stm r30,-8(r1)

Running a program at the machine level

The commands for debugging your program at the machine-level are similar to those at the symbolic
level. The stopi subcommand stops the machine when the address is reached, the condition is true, or
the variable is changed. The tracei subcommands are similar to the symbolic trace commands. The stepi
subcommand executes either one or the specified Number of machine instructions.

If you performed another stepi subcommand at this point, you would stop at address 0x10000618,
identified as the entry point of procedure printf. If you do not intend to stop at this address, you could
use the return subcommand to continue execution at the next instruction in sub at address 0x100002e0.
At this point, the nexti subcommand will automatically continue execution to 0x10000428.

If your program has multiple threads, the symbolic thread name of the running thread is displayed when
the program stops. For example:

74 AIX Version 7.2: General programming concepts

stopped in sub at 0x100002d4 ($t4)
10000424 (sub+0x4) 480001f5 bl 0x10000618 (printf)

Debugging fdpr reordered executables

You can debug programs that have been reordered with fdpr (feedback directed program restructuring,
part of Performance Toolbox for AIX) at the instruction level. If optimization options -R0 or -R2 are
used, additional information is provided enabling dbx to map most reordered instruction addresses to the
corresponding addresses in the original executable as follows:

0xRRRRRRRR = fdpr[0xYYYYYYYY]

In this example, 0xRRRRRRRR is the reordered address and 0xYYYYYYYY is the original address. In
addition, dbx uses the traceback entries in the original instruction area to find associated procedure
names for the stopped in message, the func subcommand, and the traceback.

(dbx) stepi
stopped in proc_d at 0x1000061c = fdpr[0x10000278]
0x1000061c (???) 9421ffc0 stwu r1,-64(r1)
(dbx)

In the preceding example, dbx indicates the program is stopped in the proc_d subroutine at address
0x1000061c in the reordered text section originally located at address 0x10000278. For more
information about fdpr, see the fdpr command.

Displaying assembly instructions

The listi subcommand for the dbx command displays a specified set of instructions from the source
file. In the default mode, the dbx program lists the instructions for the architecture on which it is
running. You can override the default mode with the $instructionset and $mnemonics variables of the
set subcommand for the dbx command.

For more information on displaying instructions or disassembling instructions, see the listi subcommand
for the dbx command. For more information on overriding the default mode, see the $instructionset and
$mnemonics variables of the set subcommand for the dbx command.

Customizing the dbx debugging environment
You can customize the debugging environment by creating subcommand aliases and by specifying options
in the .dbxinit file. You can read dbx subcommands from a file using the -c flag.

The following sections contain more information about customization options:

Defining a new dbx prompt

The dbx prompt is normally the name used to start the dbx program. If you specified /usr/ucb/dbx
a.out on the command line, then the prompt is /usr/ucb/dbx.

You can change the prompt with the prompt subcommand, or by specifying a different prompt in the
prompt line of the .dbxinit file. Changing the prompt in the .dbxinit file causes your prompt to be used
instead of the default each time you initialize the dbx program.

For example, to initialize the dbx program with the debug prompt debug—>, enter the following line in
your .dbxinit file:

prompt "debug-->"

Creating dbx subcommand aliases

You can build your own commands from the dbx primitive subcommand set. The following commands
allow you to build a user alias from the arguments specified. All commands in the replacement string
for the alias must be dbx primitive subcommands. You can then use your aliases in place of the dbx
primitives.

General programming concepts 75

The alias subcommand with no arguments displays the current aliases in effect; with one argument the
command displays the replacement string associated with that alias.

alias [AliasName[CommandName]]

alias AliasName "CommandString"

alias AliasName (Parameter1, Parameter2, . . .) "CommandString"

The first two forms of the alias subcommand are used to substitute the replacement string for the alias
each time it is used. The third form of aliasing is a limited macro facility. Each parameter specified in the
alias subcommand is substituted in the replacement string.

The following aliases and associated subcommand names are defaults:

attr
attribute

bfth
stop (in given thread at specified function)

blth
stop (in given thread at specified source line)

c
cont

cv
condition

d
delete

e
edit

h
help

j
status

l
list

m
map

mu
mutex

n
next

p
print

q
quit

r
run

s
step

st
stop

t
where

76 AIX Version 7.2: General programming concepts

th
thread

x
registers

You can remove an alias with the unalias command.

Using the .dbxinit file

Each time you begin a debugging session, the dbx program searches for special initialization files
named .dbxinit, which contain lists of dbx subcommands to execute. These subcommands are executed
before the dbx program begins to read subcommands from standard input. When the dbx command is
started, it checks for a .dbxinit file in the user's current directory and in the user's $HOME directory.
If a .dbxinit file exists, its subcommands run at the beginning of the debug session. If a .dbxinit file
exists in both the home and current directories, then both are read in that order. Because the current
directory .dbxinit file is read last, its subcommands can supercede those in the home directory.

Normally, the .dbxinit file contains alias subcommands, but it can contain any valid dbx subcommands.
For example:

$ cat .dbxinit
alias si "stop in"
prompt "dbg-->"
$ dbx a.out
dbx version 3.1
Type 'help' for help.
reading symbolic information . . .
dbg--> alias
si stop in
t where . . .
dbg-->

reading dbx subcommands from a file

The -c invocation option and .dbxinit file provide mechanisms for executing dbx subcommands before
reading from standard input. When the -c option is specified, the dbx program does not search for
a .dbxinit file. Use the source subcommand to read dbx subcommands from a file once the debugging
session has begun.

After executing the list of commands in the cmdfile file, the dbx program displays a prompt and waits for
input.

You can also use the -c option to specify a list of subcommands to be executed when initially starting the
dbx program.

Debugging spinlocks

You can use the dbx program to debug spinlocks. To do so, set the AIXTHREAD_SPINLOCKS environment
variable to ON.

Developing for the dbx plug-in framework
dbx provides a plug-in framework for developers who want to add new dbx subcommands and event
handlers.

Any dbx user can create a plug-in that enhances dbx with application or library specific commands to aid
in debugging.

Note:

1. Because the default dbx command is a 64-bit process, all plug-ins need to be compiled to 64-bit to
be used with the dbx command. In order to load 32-bit plug-ins, use the 32-bit version of the dbx
command, which is the dbx32 command.

2. Care should be taken not to confuse dbx callback routines and plug-in interface
routines.

General programming concepts 77

3. dbx callback routines are the set of services offered by dbx to the plug-in. The plug-in is given
access to these routines through a set of function pointers.

4. plug-in interface routines are the set of methods dbx requires to be implemented by the
plug-in.

File format

Each plug-in must be a shared object file.

Naming

To correctly redirect subcommand input, dbx requires each plug-in to have a unique name.

The file name of the plug-in communicates this unique name to dbx. Upon initialization, dbx searches
a set of predefined and user-specified directories for files whose base name matches the regular
expression:

^libdbx_.+\.so$

The following table shows examples of file names that are valid and not valid for dbx plug-ins. The
corresponding unique name is shown for all valid examples:

File Name Valid Unique Name

libdbx_sample.so Yes sample

libdbx_xyz.so Yes xyz

libdbx_my_app.so Yes my_app

libdbx.so No

libdbx_.so No

libdbx_sample.so.plugin No

plugin_libdbx_sample.so No

Location

dbx allows the user to specify a list of directories to search using the DBX_PLUGIN_PATH environment
variable. Each directory in the list should be separated by a colon. In the following example, the colon
separates two directories.

$ export dbx_PLUGIN_PATH=$HOME/dbx_plugins:/mnt/share/dbx_plugins

Upon initialization, dbx searches for plug-ins. dbx also searches the directory of the executable file (if
known). This directory is searched after the user-defined directories are searched.

Note: When you use dbx to attach to a process, the full path to the executable file cannot be determined.

Loading

A plug-in can be loaded in one of the following ways:

• A plug-in can be automatically loaded and initialized by placing it in a directory that is searched by dbx.
This occurs at dbx initialization time.

• A plug-in can be manually loaded and initialized by specifying its location to the pluginload dbx
subcommand. This can occur at any time during the dbx session.

After a successful automatic or manual plug-in load, a message similar to the following is displayed:

(dbx) pluginload /home/user/dbx_plugins/libdbx_sample.so
 plug-in "/home/user/dbx_plugins/libdbx_sample.so" loaded

78 AIX Version 7.2: General programming concepts

Any plug-in whose unique name is identical to that of a currently active plug-in is discarded and a warning
message similar to the following is displayed.

(dbx) pluginload /mnt/share/dbx_plugins/libdbx_sample.so

could not load plug-in
"/mnt/share/dbx_plugins/libdbx_sample.so":
plug-in "/home/user/dbx_plugins/libdbx_sample.so" already loaded.

Unloading

Any plug-in, regardless of how it was loaded, can be manually unloaded by specifying its name to the
pluginunload dbx subcommand. After a plug-in is successfully unloaded, a message similar to the
following is displayed.

(dbx) pluginunload sample
plug-in "/home/user/dbx_plugins/libdbx_sample.so" unloaded.

Version Control

If changes are made to the plug-in framework that would otherwise break the compatibility of the existing
plug-ins with earlier versions, a new version identifier is created. This process is true for any significant
changes or additions done to the Plug-in Interface or Plug-in dbx callback routine.

To minimize the need for frequent plug-in version changes, some Plug-in dbx callback routines
require an additional parameter that represents the size of the buffer. This practice is used for buffer
parameters that are based on system structures whose size is not controlled by dbx. This allows the size
of the system structures to change without requiring updates to the plug-in version.

Currently, the only version identifier is DBX_PLUGIN_VERSION_1.

Header File

dbx Plug-in developers can find function prototypes, data structure definitions and macro definitions in
the following header file:

/usr/include/sys/dbx_plugin.h

Plug-in interface

Refer to the dbx_plugin.h header file for prototypes and definitions for the Plug-in Interface
routines.

Each plug-in must implement and export all of the following routines:

• int dbx_plugin_version(void)
• int dbx_plugin_session_init(dbx_plugin_session_t session,
constdbx_plugin_service_t *servicep)

• void dbx_plugin_session_command(dbx_plugin_session_t session, int argc, char
*const argv[])

• void dbx_plugin_session_event(dbx_plugin_session_t session, int event,
dbx_plugin_event_info_t *event_infop)

int dbx_plugin_version(void)

This routine should return the dbx Plug-in version identifier corresponding to the version to which the
plug-in conforms. Currently, the only version identifier is DBX_PLUGIN_VERSION_1.

int dbx_plugin_session_init(dbx_plugin_session_t session, constdbx_plugin_service_t *servicep)

This routine should perform any initialization needed for the plug-in to function properly before returning
control back to dbx. This includes setting up any aliases for plug-in subcommands, if desired.

This routine should create a plug-in session that associates the given session identifier with the
application program or core file. To identify the process or core file, the session identifier is used by

General programming concepts 79

dbx in Plug-in Interface calls and by the plug-in for plugin dbx callback routine requests. This
routine also accepts the callback routine structure.

This routine should return zero for successful initialization. If initialization is not successful, dbx unloads
and discards the plug-in.

void dbx_plugin_session_command(dbx_plugin_session_t session, int argc, char *const argv[])

This routine should accept input from the dbx user in the form of arguments provided to the plugin
subcommand. The syntax of the plugin subcommand is as follows:

plugin Name [arg0 arg1 arg2 ... argn]

This allows the dbx user to provide any input to any single plug-in. The plug-in has full control over what it
accepts as input.

The plugin subcommand passes the command specified by the arg* parameters to the plug-in specified
by the Name parameter. (For example, the plug-in name could be libdbx_Name.so) Using this routine,
dbx passes arg0 through argn to the plug-in. argv[0] corresponds to arg0, argv[1] to arg1, and so on.

In most circumstances, arg0 would represent the name of a subcommand defined by the plug-in and arg1
through argn would represent additional flags or arguments. However, this is not a requirement.

Developers are encouraged to implement a help subcommand which displays usage information for the
plug-in.

void dbx_plugin_session_event(dbx_plugin_session_t session, int event, dbx_plugin_event_info_t
*event_infop)

In response to application program events, this routine should perform any internal processing required
by the plug-in. The routine is invoked once by dbx upon the occurrence of each event. The following table
describes the event types for which a plug-in is notified:

ID (event) Associated data
(event_infop) Cause

DBX_PLUGIN_EVENT_RESTART None The dbx user
executed the run
subcommand.

DBX_PLUGIN_EVENT _EXIT Exit code The application
program ended
through the exit
routine.

DBX_PLUGIN_EVENT _TERM Terminating signal
number

The application
program terminated
because of an
unhandled signal.

DBX_PLUGIN_EVENT _LOAD dbx_plugin_modinfo_t
structure of loaded
module

A module was loaded
into the application
program.

DBX_PLUGIN_EVENT _UNLOAD dbx_plugin_modinfo_t
structure of unloaded
module

A module was
unloaded from the
application program.

DBX_PLUGIN_EVENT_BP None The application
program has stopped
because of a user
or internal dbx
breakpoint or data
watchpoint.

80 AIX Version 7.2: General programming concepts

ID (event) Associated data
(event_infop) Cause

DBX_PLUGIN_EVENT_SIGNAL Signal number The application
program stopped
because of a signal
delivery.

DBX_PLUGIN_EVENT_SWTHRD Handle of current
pthread

The dbx user
executed the thread
current<handle>
subcommand
resulting in a change
in the current pthread.

The DBX_PLUGIN_EVENT_BP and DBX_PLUGIN_EVENT_SIGNAL events imply that the application
program was started but has stopped. These events are meant to signify that any cached data that
the plug-in possesses might no longer be valid. Upon notification of these events, it is more efficient
for plug-ins to simply invalidate any cached data rather than refreshing the data. A complete refresh
of cached data should only occur when the data is needed. This is especially relevant because some
signals might be ignored by dbx and some breakpoints might be internal breakpoints. If the user has no
opportunity to run subcommands before the application program starts again, repeatedly refreshing data
wastes resources.

void dbx_plugin_session_destroy(dbx_plugin_session_t session)

This routine should perform any final cleanup and memory management tasks required by the plug-in.

dbx callback routines

The following are the dbx callback routines provided for each plug-in through the
dbx_plugin_session_init routine.

The dbx session callback routine allows you to get characteristics of the dbx session. dbx fills in the
flagsp parameter.

typedef int (*dbx_plugin_session_service_t)(dbx_plugin_session_t session,
 dbx_plugin_session_flags_t *flagsp).

The dbx session callback routine parameters are:

Parameter
Description

session
Session identifier.

flagsp
Session characteristics in any combination of:

• DBX_PLUGIN_SESSION_64BIT

If set, the session represents a 64-bit application program. Otherwise, the session represents a
32-bit application program.

• DBX_PLUGIN_SESSION_CORE

If set, the session represents a core file. Otherwise, the session represents a live process.

The dbx session callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_POINTER flagsp is NULL

General programming concepts 81

process

The dbx process callback routine allows you to get information on the process being debugged. dbx
populates the infop parameter.

typedef int (*dbx_plugin_process_service_t)(dbx_plugin_session_t session,
 dbx _plugin_procinfo_t *infop,
 size_t procinfo_size)

The dbx process callback routine parameters are:

Parameter
Description

session
Session identifier

infop
Allocated dbx_plugin_procinfo_t structure

procinfo_size
Size of dbx_plugin_procinfo_t structure

The dbx process callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_POINTER infop is NULL
• DBX_PLUGIN_BAD_ARG procinfo_size is not valid
• DBX_PLUGIN_UNAVAILABLE process not active or info not in core

fds

The dbx fds callback routine allows you to get information on file descriptors for the process. You can
either:

• Call iteratively to get information separately on each file descriptor. Or,
• Call once to get the total number of file descriptors and call once again to get information on all file

descriptors simultaneously.

If the plug-in passes a non-NULL infop buffer, dbx populates the buffer with the number of entries
requested in *countp, starting with the file descriptor referenced by *indexp.

If the plug-in passes a *countp that is greater than the number of remaining entries, dbx retrieves all
remaining entries. dbx updates countp to reflect the actual number of entries retrieved and indexp to
reflect the next module index. If the last file descriptor was retrieved, indexp is set to -1. If the plug-in
passes a NULL infop buffer, indexp and countp are still updated — just as if infop were non-NULL.

typedef int (*dbx_plugin_fds_service_t)(dbx_plugin_session_t session,
 dbx_plugin_fdinfo_t *infop,
 size_t fdinfo_size,
 unsigned int *indexp,
 unsigned int *countp)

The dbx fds callback routine parameters are:

Parameter
Description

session
Session identifier

infop
Allocated array of dbx_plugin_fdinfo_t structures or NULL

fdinfo_size
Size of a single dbx_plugin_fdinfo_t structure

82 AIX Version 7.2: General programming concepts

indexp
Starting/next file descriptor (where zero corresponds to the first file descriptor)

countp
number of file descriptors

The dbx fds callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_POINTER indexp is NULL or countp is NULL
• DBX_PLUGIN_BAD_ARG fdinfo_size is not valid or * countp == 0
• DBX_PLUGIN_UNAVAILABLE process not active or info not in core

modules

The dbx modules callback routine allows you to get information on loaded modules for the process. You
can either:

• Call iteratively to get information separately on each module. Or,
• Call once to get the total number of modules and call once again to get information on all modules

simultaneously.

If the plug-in passes a non-NULL infop buffer, dbx populates the buffer with the number of entries
requested in *countp, starting with the module referenced by *indexp.

If the plug-in passes a *countp that is greater than the number of remaining entries, dbx retrieves all
remaining entries. dbx updates countp to reflect the actual number of entries retrieved and updates
indexp to reflect the next module index. If the last module was retrieved, indexp is set to -1. If the plug-in
passes a NULL infop buffer, indexp and countp are still updated — just as if infop were not NULL.

Note: This routine allocates memory to hold the file name and member character strings. The caller must
free this memory when it is no longer needed.

typedef int (*dbx_plugin_modules_service_t)(dbx_plugin_session_t session,
 dbx_plugin_modinfo_t *infop,
 size_t modinfo_size,
 unsigned int *indexp,
 unsigned int *countp)

The dbx modules callback routine parameters are:

Parameter
Description

session
Session identifier

infop
Allocated array of dbx_plugin_modinfo_t structures or NULL

modinfo_size
Size of a single dbx_plugin_modinfo_t structure

indexp
Starting/next module (where zero corresponds to the first module)

countp
Number of modules

The dbx modules callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_POINTER indexp is NULL or countp is NULL
• DBX_PLUGIN_BAD_ARG modinfo_size is not valid or *countp == 0

General programming concepts 83

regions

The dbx regions callback routine allows you to get information on memory regions for the process.

Retrieved regions can include:

• Main thread stack region (DBX_PLUGIN_REGION_STACK)
• User data region (DBX_PLUGIN_REGION_DATA)
• Process private data region (DBX_PLUGIN_REGION_SDATA)
• Memory mapped region (DBX_PLUGIN_REGION_MMAP)
• Shared memory region (DBX_PLUGIN_REGION_SHM)

You can either:

• Call iteratively to get information separately on one region. Or,
• Call once to get the total number of regions and call once again to get information on all regions

simultaneously.

If the plug-in passes a non-NULL infop buffer, dbx populates the buffer with the number of entries
requested in *countp, starting with the region referenced by *indexp.

If the plug-in passes a *countp that is greater than the number of remaining entries, dbx retrieves all
remaining entries. dbx updates countp to reflect the actual number of entries retrieved and indexp to
reflect the next region index.

If the last region was retrieved, indexp is set to -1. If the plug-in passes a NULL infop buffer, indexp and
countp are still updated — just as if infop were non-NULL.

Note: Currently, this routine is only implemented for sessions representing core files. Sufficient
information is not available to dbx for sessions representing live processes. Calls for such sessions return
DBX_PLUGIN_UNAVAILABLE.

typedef int (*dbx_plugin_regions_service_t)(dbx_plugin_session_t session,
 dbx_plugin_reginfo_t *infop,
 size_t reginfo_size,
 unsigned int *indexp,
 unsigned int *countp)

The dbx regions callback routine parameters are:

Parameter
Description

session
Session identifier

infop
Allocated array of dbx_plugin_region_t structures or NULL

reginfo_size
Size of a single dbx_plugin_reginfo_t structure

indexp
Starting/next region (where zero corresponds to the first region)

countp
Number of regions

The dbx regions callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_POINTER indexp is NULL or countp is NULL
• DBX_PLUGIN_BAD_ARG reginfo_size is not valid or *countp == 0
• DBX_PLUGIN_UNAVAILABLE session represents a live processes and regions not accessible

84 AIX Version 7.2: General programming concepts

threads

The dbx threads callback routine allows you to get information on the kernel threads in the process.

You can either:

• Call iteratively to get information separately on one thread. Or,
• Call once to get the total number of threads and call once again to get information on all threads

simultaneously.

If the plug-in passes a non-NULL infop buffer, dbx populates the buffer with the number of entries
requested in *countp, starting with the thread referenced by *indexp.

If the plug-in passes a *countp that is greater than or equal to the number of remaining entries, dbx
retrieves all remaining entries and updates countp to reflect the actual number of entries retrieved.

If the last entry was retrieved, and countp is less than its passed value, indexp is set to -1. Otherwise,
indexp is updated to reflect the thread id for the next request.

Note: If the value of countp passed is equal to the number of available entries, countp remains the same,
but indexp is not set to -1.

If the plug-in passes a NULL infop buffer, indexp and countp are updated — just as if infop were non-NULL.

typedef int (*dbx_plugin_threads_service_t)(dbx_plugin_session_t session,
 dbx _plugin_thrdinfo_t *infop,
 size_t thrdinfo_size,
 tid64_t *indexp,
 unsigned int *countp)

The dbx threads callback routine parameters are:

Parameter
Description

session
Session identifier

infop
Allocated array of dbx_plugin_thrdinfo_t structures or NULL

thrdinfo_size
Size of a single dbx_plugin_thrdinfo_t structure

indexp
Starting/next thread id (where, on input, zero corresponds to the first thread)

countp
Number of threads

The dbx threads callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_POINTER indexp is NULL or countp is NULL
• DBX_PLUGIN_BAD_ID *indexp is not a valid id
• DBX_PLUGIN_BAD_ARG thrdinfo_size is not valid or *countp ==0
• DBX_PLUGIN_UNAVAILABLE process not active or entries not in core

pthreads

The dbx pthreads callback routine allows you to get information on pthreads in the process, including
any kernel thread associations.

You can either:

• Call iteratively to get information separately on one pthread. Or,

General programming concepts 85

• Call once to get the total number of pthreads and call once again to get information on all pthreads
simultaneously.

If the plug-in passes a non-NULL infop buffer, dbx populates the buffer with the number of entries
requested in *countp, starting with the pthread referenced by *indexp.

If the plug-in passes a *countp that is greater than the number of remaining entries, dbx retrieves all
remaining entries. dbx updates countp to reflect the actual number of entries retrieved and indexp to
reflect the pthread handle for the next request.

If the last entry was retrieved, indexp is set to -1. If the plug-in passes a NULL infop buffer, indexp and
countp are still updated — just as if infop were non-NULL.

If the first pthread is requested and countp is updated to zero, the process is not pthreaded.

typedef int (*dbx_plugin_pthreads_service_t)(dbx_plugin_session_t session,
 dbx_plugin_pthinfo_t *infop,
 size_t pthrdinfo_size,
 pthdb_pthread_t *indexp,
 unsigned int *countp)

The dbx pthreads callback routine parameters are:

Parameter
Description

session
Session identifier

infop
Allocated array of dbx_plugin_pthinfo_t structures or NULL

pthrdinfo_size
Size of a single dbx_plugin_pthrdinfo_t structure

indexp
Starting/next pthread handle (where, on input, zero corresponds to the first pthread and
DBX_PLUGIN_PTHREAD_CURRENT corresponds to the current pthread in dbx)

countp
Number of pthreads

The dbx pthreads callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_POINTER indexp is NULL or countp is NULL
• DBX_PLUGIN_BAD_ARG pthrdinfo_size is not valid or *countp == 0

get_thread_context

The dbx get_thread_context callback routine allows you to read a kernel thread's general purpose,
special purpose, and floating point registers. dbx populates the contextp parameter.

typedef int (*dbx_plugin_reg_service_t)(dbx_plugin_session_t session,
 uint64_t reg_flags,
 uint64_t id,
 dbx_plugin_context_t *contextp,
 size_t context_size)

The dbx get_thread_context callback routine parameters are:

Parameter
Description

session
Session identifier

86 AIX Version 7.2: General programming concepts

reg_flags
Logical OR of at least one of DBX_PLUGIN_REG_GPRS, DBX_PLUGIN_REG_SPRS,
DBX_PLUGIN_REG_FPRS, DBX_PLUGIN_REG_EXT

id
Kernel thread tid (tid64_t)

contextp
Allocated dbx_plugin_context_t structure

context_size
Size of dbx_plugin_context_t structure. If the DBX_PLUGIN_REG_EXT register flag is used, then the
size of the dbx_plugin_extctx_t structure should be used. The dbx_plugin_extctx_t structure is an
extended version of dbx_plugin_context_t structure.

The dbx get_thread_context callback routine return codes are:

• DBX_PLUGIN_SUCCESS.
• DBX_PLUGIN_BAD_SESSION session is not valid.
• DBX_PLUGIN_BAD_ID id is not valid.
• DBX_PLUGIN_BAD_ARG reg_flags is not valid or context_size is not valid.
• DBX_PLUGIN_BAD_POINTER contextp is NULL
• DBX_PLUGIN_UNAVAILABLE process is not active or thread is in kernel mode and registers are not

accessible.

set_thread_context

The dbx set_thread_context callback routine allows you to write to a kernel thread's general purpose,
special purpose and floating point registers.

typedef int (*dbx_plugin_reg_service_t) (dbx_plugin_session_t session,
 uint64_t reg_flags,
 uint64_t id,
 dbx_plugin_context_t *contextp,
 size_t context_size)

The dbx set_thread_context callback routine parameters are:

Parameter
Description

session
Session identifier

reg_flags
Logical OR of at least one of DBX_PLUGIN_REG_GPRS, DBX_PLUGIN_REG_SPRS,
DBX_PLUGIN_REG_FPRS, DBX_PLUGIN_REG_EXT

id
Kernel thread tid (tid64_t)

contextp
Allocated dbx_plugin_context_t structure

context_size
Size of dbx_plugin_context_t structure. If the DBX_PLUGIN_REG_EXT register flag is used, then the
size of the dbx_plugin_extctx_t structure should be used. The dbx_plugin_extctx_t structure is an
extended version of dbx_plugin_context_t structure.

The dbx set_thread_context callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_ID id is not valid
• DBX_PLUGIN_BAD_ARG reg_flags is not valid or context_size is not valid

General programming concepts 87

• DBX_PLUGIN_BAD_POINTER contextp is NULL
• DBX_PLUGIN_UNAVAILABLE process is not active or thread is in kernel mode and registers are not

accessible

get_pthread_context

The dbx get_pthread_context callback routine allows you to read a pthread's general purpose,
special purpose and floating point registers. dbx populates the contextp parameter.

typedef int (*dbx_plugin_reg_service_t)(dbx_plugin_session_t session,
 uint64_t reg_flags,
 uint64_t id,
 dbx_plugin_context_t *contextp,
 size_t context_size)

The dbx get_pthread_context callback routine parameters are:

Parameter
Description

session
Session identifier

reg_flags
logical OR of at least one of DBX_PLUGIN_REG_GPRS, DBX_PLUGIN_REG_SPRS,
DBX_PLUGIN_REG_FPRS, DBX_PLUGIN_REG_EXT

id
pthread handle (pthdb_pthread_t)

contextp
Allocated dbx_plugin_context_t structure

context_size
size of dbx_plugin_context_t structure. If the DBX_PLUGIN_REG_EXT register flag is used, then the
size of the dbx_plugin_extctx_t structure should be used. The dbx_plugin_extctx_t structure is an
extended version of dbx_plugin_context_t structure.

The dbx get_pthread_context callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_ID id is not valid.
• DBX_PLUGIN_BAD_ARG reg_flags is not valid or context_size is not valid
• DBX_PLUGIN_BAD_POINTER contextp is NULL
• DBX_PLUGIN_UNAVAILABLE process is not active or thread is in kernel mode and registers are not

accessible

set_pthread_context

The dbx set_pthread_context callback routine allows you to write to a pthread's general purpose,
special purpose and floating point registers.

typedef int (*dbx_plugin_reg_service_t)(dbx_plugin_session_t session,
 uint64_t reg_flags,
 uint64_t id,
 dbx_plugin_context_t *contextp,
 size_t context_size)

The dbx set_pthread_context callback routine parameters are:

Parameter
Description

session
Session identifier

88 AIX Version 7.2: General programming concepts

reg_flags
Logical OR of at least one of DBX_PLUGIN_REG_GPRS, DBX_PLUGIN_REG_SPRS,
DBX_PLUGIN_REG_FPRS, DBX_PLUGIN_REG_EXT

id
Pthread handle (pthdb_pthread_t)

contextp
Allocated dbx_plugin_context_t structure

context_size
Size of dbx_plugin_context_t structure. If the DBX_PLUGIN_REG_EXT register flag is used, then the
size of the dbx_plugin_extctx_t structure should be used. The dbx_plugin_extctx_t structure is an
extended version of dbx_plugin_context_t structure.

The dbx set_pthread_context callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_ID id is not valid
• DBX_PLUGIN_BAD_ARG reg_flags is not valid or context_size is not valid
• DBX_PLUGIN_BAD_POINTER contextp is NULL
• DBX_PLUGIN_UNAVAILABLE process is not active or kernel thread associated with pthread is in kernel

mode and registers are not accessible

read_memory

The dbx read_memory callback routine allows you to read from the process's address space. dbx
populates the buffer parameter.

typedef int (*dbx_plugin_mem_service_t)(dbx_plugin_session_t session,
 uint64_t addr,
 void *buffer,
 size_t len)

The dbx read_memory callback routine parameters are:

Parameter
Description

session
Session identifier

addr
Address to read from

buffer
Allocated buffer to hold memory contents

len
Number of bytes to read

The dbx read_memory callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_POINTER buffer is NULL
• DBX_PLUGIN_UNAVAILABLE unable to read from addr

write_memory

The dbx write_memory callback routine allows you to write to the process's address space.

typedef int (*dbx_plugin_mem_service_t)(dbx_plugin_session_t session,
 uint64_t addr,

General programming concepts 89

 void *buffer,
 size_t len)

The dbx write_memory callback routine parameters are:

Parameter
Description

session
Session identifier

addr
Address to write to

buffer
Allocated and initialized buffer

len
Number of bytes to write

The dbx write_memory callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_POINTER buffer is NULL
• DBX_PLUGIN_UNAVAILABLE unable to write to addr

locate_symbol

The dbx locate_symbol callback routine allows you to convert symbol names to addresses.

The plug-in must initialize the name and mod fields of each entry in the symbols parameter array. The
name field specifies the name of the symbol to be located. The mod field specifies the module index of
the module in which the lookup should occur. A mod field initialized to -1 denotes that all modules should
be searched.

dbx populates the addr field. Any unknown symbols have an address of zero. If the symbol is located and
all modules searched, dbx updates the mod field with the actual module index of the symbol.

typedef int (*dbx_plugin_sym_service_t)(dbx_plugin_session_t session,
 dbx_plugin_sym_t *symbols,
 size_t syminfo_size,
 unsigned int count)

The dbx locate_symbol callback routine parameters are:

Parameter
Description

session
Session identifier

symbols
Allocated array of dbx_plugin_sym_t structures with the name and mod fields initialized

syminfo_size
Size of dbx_plugin_sym_t structure

count
Number of symbols to locate

The dbx locate_symbol callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_ARG syminfo_size is not valid
• DBX_PLUGIN_BAD_POINTER symbols is NULL

90 AIX Version 7.2: General programming concepts

what_function

The dbx what_function callback routine allows you to convert text addresses to symbols.

The plug-in must initialize the addr field of each entry in the symbols parameter array. The addr field
specifies an instruction address within the function to be identified.

dbx populates the name field. Any unknown text address has a name of NULL. dbx populates the mod
field with the actual module index of the text address.

typedef int (*dbx_plugin_sym_service_t)(dbx_plugin_session_t session,
 dbx_plugin_sym_t *symbols,
 size_t syminfo_size,
 unsigned int count)

The dbx what_function callback routine parameters are:

Parameter
Description

session
Session identifier

symbols
Allocated array of dbx_plugin_sym_t structures with the addr field(s) initialized with text address(es)

syminfo_size
Size of dbx_plugin_sym_t structure

count
Number of addresses to convert

The dbx what_function callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_ARG syminfo_size is not valid
• DBX_PLUGIN_BAD_POINTER symbols is NULL

print

The dbx print callback routine allows you to display informational output or error output.

typedef int (*dbx_plugin_print_service_t)(dbx_plugin_session_t session,
 int print_mode,
 char *message)

The dbx print callback routine parameters are:

Parameter
Description

session
session identifier

print_mode
Either DBX_PLUGIN_PRINT_MODE_OUT or DBX_PLUGIN_PRINT_MODE_ERR

message
Character string for dbx to display

The dbx print callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_ARG print_mode is not valid
• DBX_PLUGIN_BAD_POINTER message is NULL

General programming concepts 91

alias

The dbx alias callback routine allows you to create an alias for a plug-in subcommand.

The syntax of the plugin dbx subcommand requires the dbx user to type a prefix of plugin Name for
each plug-in subcommand invocation. To provide a way to shorten such invocations, dbx allows plug-ins
to create new aliases.

The alias and expansion parameters should provide a description of the new alias. The syntax is the same
as the syntax defined for the alias dbx subcommand.

The following are example invocations of the dbx alias callback routine:

alias("intprt", "plugin xyz interpret");

alias("intprt2(addr, count, format)", "addr / count format; plugin xyz interpret addr");

Note: If you try to create an alias that has the same name as an existing alias, the request is denied and
a warning message is displayed. Plug-in developers are encouraged to carry out alias creation in a way
that allows users to correct alias conflicts. One way to accomplish this is by reading alias definitions from
a configuration file that is packaged with the plug-in.

typedef int (*dbx_plugin_alias_service_t)(dbx_plugin_session_t session,
 const char *alias,
 const char *expansion)

The dbx alias callback routine parameters are:

Parameter
Description

session
Session identifier

alias
Character string representing the alias name and optional parameter

expansion
Character string representing the alias expansion

The dbx alias callback routine return codes are:

• DBX_PLUGIN_SUCCESS
• DBX_PLUGIN_BAD_SESSION session is not valid
• DBX_PLUGIN_BAD_ARG alias is not valid
• DBX_PLUGIN_BAD_POINTER alias is NULL or expansion is NULL
• DBX_PLUGIN_UNAVAILABLE an alias with an identical name already exists

Example

1. The following example defines a help subcommand and a hello subcommand:

example.c:

#include <sys/dbx_plugin.h>

dbx_plugin_session_t sid;
dbx_plugin_services_t dbx;

static void usage(void);
static void hello_cmd(void);

int
dbx_plugin_version(void) {
 return DBX_PLUGIN_VERSION_1;
}

int dbx_plugin_session_init(dbx_plugin_session_t session,
 const dbx_plugin_services_t *servicep) {

92 AIX Version 7.2: General programming concepts

 /* record session identifier */
 sid= session;

 /* record dbx service */
 memcpy(&dbx, servicep, sizeof(dbx_plugin_services_t));

 (*(dbx.alias))(sid, "hello", "plugin example hello");
 (*(dbx.alias))(sid, "help", "plugin example help");

 return 0;

}

void
dbx_plugin_session_command(dbx_plugin_session_t session,
 int argc,
 char *const argv[]) {
 if (argc == 0 || (argc == 1 && strcmp(argv[0], "help") == 0)) {

 usage();
 return;
 }
 if (argc == 1 && strcmp(argv[0], "hello") == 0) {
 hello_cmd();
 return;
 }
 (*(dbx.print))(sid,DBX_PLUGIN_PRINT_MODE_ERR,
 "unrecognized command\n");

}

void
dbx_plugin_session_event(dbx_plugin_session_t session,
 int event,
 dbx_plugin_event_info_t *event_infop) {
 /* ignore event notifications */
}

void
dbx_plugin_session_destroy(dbx_plugin_session_t session){
 /* no clean up to perform */
}

static
void
usage(void) {
 (*(dbx.print))(sid,DBX_PLUGIN_PRINT_MODE_OUT,
 "Subcommands for Plug-in \"example\":\n\n" \
 " help - displays this output\n" \
 " hello - displays a greeting\n" \
 "\n");
}

static
void
hello_cmd(void) {
 (*(dbx.print))(sid,DBX_PLUGIN_PRINT_MODE_OUT,
 "Hello dbx World!\n");

}

example.exp:

dbx_plugin_version
dbx_plugin_session_init
dbx_plugin_session_command
dbx_plugin_session_event
dbx_plugin_session_destroy

2. To compile the example plug-in, type:

cc -q64 -o libdbx_example.so example.c -bM:Sre -bE:example.exp -bnoentry

General programming concepts 93

List of dbx subcommands
The commands and sub commands for the dbx debug program are documented in the dbx command .

The dbx debug program provides subcommands for performing the following task categories:

Setting and deleting breakpoints

Subcommand Description

clear Removes all stops at a given source line.

cleari Removes all breakpoints at an address.

delete Removes the traces and stops corresponding to the specified numbers.

status Displays the currently active trace and stop subcommands.

stop Stops execution of the application program.

Running your program

Subcommand Description

cont Continues running the program from the current breakpoint until the program finishes or another
breakpoint is encountered.

detach Exits the debug program, but continues running the application.

down Moves a function down the stack.

goto Causes the specified source line to be the next line run.

gotoi Changes program counter addresses.

next Runs the application program up to the next source line.

nexti Runs the application program up to the next source instruction.

rerun Begins running an application.

return Continues running the application program until a return to the specified procedure is reached.

run Begins running an application.

skip Continues execution from the current stopping point.

step Runs one source line.

stepi Runs one source instruction.

up Move a function up the stack.

Tracing program execution

Subcommand Description

trace Prints tracing information.

tracei Turns on tracing.

where Displays a list of all active procedures and functions.

Ending program execution

Subcommand Description

quit Quits the dbx debug program.

Displaying the source file

Subcommand Description

edit Invokes an editor on the specified file.

file Changes the current source file to the specified file.

func Changes the current function to the specified function or procedure.

list Displays lines of the current source file.

listi Lists instructions from the application.

move Changes the next line to be displayed.

94 AIX Version 7.2: General programming concepts

Subcommand Description

/ (Search) Searches forward in the current source file for a pattern.

? (Search) Searches backward in the current source file for a pattern.

use Sets the list of directories to be searched when looking for a file.

Printing and modifying variables, expressions, and types

Subcommand Description

assign Assigns a value to a variable.

case Changes the way in which dbx interprets symbols.

dump Displays the names and values of variables in the specified procedure.

print Prints the value of an expression or runs a procedure and prints the return code.

set Assigns a value to a nonprogram variable.

unset Deletes a nonprogram variable.

whatis Displays the declaration of application program components.

whereis Displays the full qualifications of all the symbols whose names match the specified identifier.

which Displays the full qualification of the specified identifier.

Thread debugging

Subcommand Description

attribute Displays information about all or selected attributes objects.

condition Displays information about all or selected condition variables.

mutex Displays information about all or selected mutexes.

thread Displays and controls threads.

tstophwp Sets a thread-level hardware watchpoint stop.

ttracehwp Sets a thread-level hardware watchpoint trace.

tstop Sets a source-level breakpoint stop for a thread.

tstopi Sets an instruction-level breakpoint stop for a thread.

ttrace Sets a source-level trace for a thread.

ttracei Sets an instruction-level trace for a thread.

tnext Runs a thread up to the next source line.

tnexti Runs a thread up to the next machine instruction.

tstep Runs a thread one source line.

tstepi Runs a thread one machine instruction.

tskip Skips breakpoints for a thread.

Multiprocess debugging

Subcommand Description

multproc Enables or disables multiprocess debugging.

Procedure calling

Subcommand Description

call Runs the object code associated with the named procedure or function.

print Prints the value of an expression or runs a procedure and prints the return code.

Signal handling

Subcommand Description

catch Starts trapping a signal before that signal is sent to the application program.

ignore Stops trapping a signal before that signal is sent to the application program.

General programming concepts 95

Machine-level debugging

Subcommand Description

display memory Displays the contents of memory.

gotoi Changes program counter addresses.

map Displays address maps and loader information for the application program.

nexti Runs the application program up to the next machine instruction.

registers Displays the values of all general-purpose registers, system-control registers, floating-point registers, and
the current instruction register.

stepi Runs one source instruction.

stopi Sets a stop at a specified location.

tracei Turns on tracing.

Debugging environment control

Subcommand Description

alias Displays and assigns aliases for dbx subcommands.

help Displays help information for dbx subcommands or topics.

prompt Changes the dbx prompt to the specified string.

screen Opens an Xwindow for dbx command output.

sh Passes a command to the shell for execution.

source Reads dbx commands from a file.

unalias Removes an alias.

Error-logging overview
The error-logging process begins when an operating system module detects an error.

The error-detecting segment of code then sends error information to either the errsave and errlast kernel
service or to the errlog subroutine. This error information is then written to the /dev/error special file.
This process then adds a time stamp to the collected data. The errdemon daemon constantly checks
the /dev/error file for new entries, and when new data is written, the daemon conducts a series of
operations.

Before an entry is written to the error log, the errdemon daemon compares the label sent by the kernel or
application code to the contents of the Error Record Template Repository. If the label matches an item in
the repository, the daemon collects additional data from other parts of the system.

To create an entry in the error log, the errdemon daemon retrieves the appropriate template from
the repository, the resource name of the unit that detected the error, and detail data. Also, if the
error signifies a hardware-related problem and hardware vital product data (VPD) exists, the daemon
retrieves the VPD from the Object Data Manager. When you access the error log, either through SMIT
or with the errpt command, the error log is formatted according to the error template in the error
template repository and presented in either a summary or detailed report. Entries can also be retrieved
using the services provided in liberrlog, errlog_open, errlog_close, errlog_find_first, errlog_find_next,
errlog_find_sequence, errlog_set_direction, and errlog_write. errlog_write provides a limited update
capability.

Most entries in the error log are attributable to hardware and software problems, but informational
messages can also be logged.

The diag command uses the error log to diagnose hardware problems. To correctly diagnose new system
problems, the system deletes hardware-related entries older than 90 days from the error log. The system
deletes software-related entries 30 days after they are logged.

You should be familiar with the following terms:

96 AIX Version 7.2: General programming concepts

Term Description

error ID A 32-bit CRC hexadecimal code used to identify a particular failure.
Each error record template has a unique error ID.

error label The mnemonic name for an error ID.

error log The file that stores instances of errors and failures encountered by
the system.

error log entry A record in the system error log that describes a hardware failure,
a software failure, or an operator message. An error log entry
contains captured failure data.

error record template A description of information displayed when the error log is
formatted for a report, including information on the type and
class of the error, probable causes, and recommended actions.
Collectively, the templates comprise the Error Record Template
Repository.

Related information
Error Logging Special Files
errsave Command
errlog Command
crontab Command
errclear Command
errdead Command
errdemon Command
errinstall Command
errlogger Command
errmsg Command
errpt Command
errstop Command
errupdate Command
odmadd Command
errstop Command
odmget Command
snap Command

Error-logging facility
The error-logging facility records hardware and software failures in the error log for information purposes
or for fault detection and corrective action.

Refer to the following to use the error-logging facility:

In AIX Version 4 some of the error log commands are delivered in an optionally installable package called
bos.sysmgt.serv_aid. The base system (bos.rte) includes the following services for logging errors to the
error log file:

• errlog subroutines
• errsave and errlast kernel service
• error device driver (/dev/error)
• error daemon
• errstop command

General programming concepts 97

The commands required for licensed program installation (errinstall and errupdate) are also included
in bos.rte. For information on transferring your system's error log file to a system that has the Software
Service Aids package installed, see Transferring Your Error Log to Another System.

Managing error logging
Error logging is automatically started by the rc.boot script during system initialization and is automatically
stopped by the shutdown script during system shutdown.

The error log analysis performed by the diag command analyzes hardware error entries. The default
length of time that hardware error entries remain in the error log is 90 days. If you remove hardware error
entries less than 90 days old, you can limit the effectiveness of this error log analysis.

Transferring your error log to another system

The errclear, errdead, errlogger, errmsg, and errpt commands are part of the optionally installable
Software Service Aids package (bos.sysmgt.serv_aid). You need the Software Service Aids package to
generate reports from the error log or to delete entries from the error log. You can install the Software
Service Aids package on your system, or you can transfer your system's error log file to a system that has
the Software Service Aids package installed.

Determine the path to your system's error log file by running the following command:

/usr/lib/errdemon -l

You can transfer the file to another system in a number of ways. You can:

• Copy the file to a remotely mounted file system using the cp command
• Copy the file across the network connection using the rcp, ftp, or tftp commands
• Copy the file to removable media using the tar or backup command and restore the file onto another

system.

You can format reports for an error log copied to your system from another system by using the -i flag
of the errpt command. The -i flag allows you to specify the path name of an error log file other than the
default. Likewise, you can delete entries from an error log file copied to your system from another system
by using the -i flag of the errclear command.

Configuring errorl logging

You can customize the name and location of the error log file and the size of the internal error buffer to
suit your needs. You can also control the logging of duplicate errors.

Listing the current settings

To list the current settings, run /usr/lib/errdemon -l. The values for the error log file name, error log
file size, and buffer size that are currently stored in the error-log configuration database display on your
screen.

Customizing the log file location

To change the file name used for error logging, run the /usr/lib/errdemon -i FileName command. The
specified file name is saved in the error log configuration database, and the error daemon is immediately
restarted.

Customizing the log file size

To change the maximum size of the error log file, type:

/usr/lib/errdemon -s LogSize

The specified size limit for the log file is saved in the error-log configuration database, and the error
daemon is immediately restarted. If the size limit for the log file is smaller than the size of the log file
currently in use, the current log file is renamed by appending .old to the file name, and a new log file is
created with the specified size limit. The amount of space specified is reserved for the error log file and is
not available for use by other files. Therefore, be careful not to make the log excessively large. But, if you

98 AIX Version 7.2: General programming concepts

make the log too small, important information may be overwritten prematurely. When the log file size limit
is reached, the file wraps, that is, the oldest entries are overwritten by new entries.

Customizing the buffer size

To change the size of the error log device driver's internal buffer, type:

/usr/lib/errdemon -B BufferSize

The specified buffer size is saved in the error-log configuration database, and if it is larger than the buffer
size currently in use, the in-memory buffer is immediately increased. If it is smaller than the buffer size
currently in use, the new size is put into effect the next time that the error daemon is started after the
system is rebooted. The buffer cannot be made smaller than the hard-coded default of 8 KB. The size you
specify is rounded up to the next integral multiple of the memory page size (4 KBs). The memory used
for the error log device driver's in-memory buffer is not available for use by other processes (the buffer is
pinned).

Be careful not to impact your system's performance by making the buffer excessively large. But, if you
make the buffer too small, the buffer may become full if error entries are arriving faster than they are
being read from the buffer and put into the log file. When the buffer is full, new entries are discarded until
space becomes available in the buffer. When this situation occurs, an error log entry is created to inform
you of the problem, and you can correct the problem by enlarging the buffer.

Customizing duplicate error handling

By default, starting with AIX 5.1, the error daemon eliminates duplicate errors by looking at each error
that is logged. An error is a duplicate if it is identical to the previous error, and if it occurs within the
approximate time interval specified with /usr/lib/errdemon -t time-interval. The default time value is
10000, or 10 seconds. The value is in milliseconds.

The -m maxdups flag controls how many duplicates can accumulate before a duplicate entry is logged.
The default value is 1000. If an error, followed by 1000 occurrences of the same error, is logged, a
duplicate error is logged at that point rather than waiting for the time interval to expire or for a unique
error to occur.

For example, if a device handler starts logging many identical errors rapidly, most will not appear in the
log. Rather, the first occurrence will be logged. Subsequent occurrences will not be logged immediately,
but are only counted. When the time interval expires, the maxdups value is reached, or when another
error is logged, an alternate form of the error is logged, giving the times of the first and last duplicate and
the number of duplicates.

Note: The time interval refers to the time since the last error, not the time since the first occurrence of this
error, that is, it is reset each time an error is logged. Also, to be a duplicate, an error must exactly match
the previous error. If, for example, anything about the detail data is different from the previous error, then
that error is considered unique and logged as a separate error.

Removing error log entries

Entries are removed from the error log when the root user runs the errclear command, when the errclear
command is automatically invoked by a daily cron job, or when the error log file wraps as a result of
reaching its maximum size. When the error log file reaches the maximum size specified in the error-log
configuration database, the oldest entries are overwritten by the newest entries.

Automatic removal

A crontab file provided with the system deletes hardware errors older than 90 days and other errors older
than 30 days. To display the crontab entries for your system, type:

crontab -l Command

To change these entries, type:

crontab -e Command

errclear command

General programming concepts 99

The errclear command can be used to selectively remove entries from the error log. The selection criteria
you may specify include the error ID number, sequence number, error label, resource name, resource
class, error class, and error type. You must also specify the age of entries to be removed. The entries that
match the selection criteria you specified, and are older than the number of days you specified, will be
removed.

Enabling and disabling logging for an event

You can disable logging or reporting of a particular event by modifying the Log or the Report field of the
error template for the event. You can use the errupdate command to change the current settings for an
event.

Showing events for which logging is disabled

To list all events for which logging is currently disabled, type:

errpt -t -F Log=0

Events for which logging is disabled are not saved in the error log file.

Showing events for which reporting is disabled

To list all events for which reporting is currently disabled, type:

errpt -t -F Report=0

Events for which reporting is disabled are saved in the error log file when they occur, but they are not
displayed by the errpt command.

Changing the current setting for an event

To change the current settings for an event, you can use the errupdate command The necessary input to
the errupdate command can be in a file or from standard input.

The following example uses standard input. To disable the reporting of the ERRLOG_OFF event (error ID
192AC071), type the following to run the errupdate command:

errupdate <Enter>
=192AC071: <Enter>
Report=False <Enter>
<Ctrl-D>
<Ctrl-D>

Logging maintenance activities

The errlogger command allows the system administrator to record messages in the error log. Whenever
you perform a maintenance activity, such as clearing entries from the error log, replacing hardware, or
applying a software fix, it is a good idea to record this activity in the system error log.

The ras_logger command provides a way to log any error from the command line. It can be used to test
newly created error templates and provides a way to log an error from a shell script.

Redirecting syslog messages to error log

Some applications use syslog for logging errors and other events. To list error log messages and syslog
messages in a single report, redirect the syslog messages to the error log. You can do this by specifying
errlog as the destination in the syslog configuration file (/etc/syslog.conf). See the syslogd daemon for
more information.

Directing error log messages to syslog

You can log error log events in the syslog file by using the logger command with the concurrent error
notification capabilities of error log. For example, to log system messages (syslog), add an errnotify object
with the following contents:

errnotify:
 en_name = "syslog1"
 en_persistenceflg = 1
 en_method = "logger Msg from Error Log: `errpt -l $1 | grep -v 'ERROR_ID TIMESTAMP'`"

100 AIX Version 7.2: General programming concepts

For example, create a file called /tmp/syslog.add with these contents. Then run the odmadd /tmp/
syslog.add command (you must be logged in as root user).

For more information about concurrent error notification, see Error Notification.

Error notification
The Error Notification object class specifies the conditions and actions to be taken when errors are
recorded in the system error log. The user specifies these conditions and actions in an Error Notification
object.

Each time an error is logged, the error notification daemon determines if the error log entry matches
the selection criteria of any of the Error Notification objects. If matches exist, the daemon runs the
programmed action, also called a notify method, for each matched object.

The Error Notification object class is located in the /etc/objrepos/errnotify file. Error Notification objects
are added to the object class by using Object Data Manager (ODM) commands. Only processes running
with the root user authority can add objects to the Error Notification object class. Error Notification
objects contain the following descriptors:

en_alertflg
Identifies whether the error can be alerted. This descriptor is provided for use by alert agents
associated with network management applications using the SNA Alert Architecture. The valid alert
descriptor values are:
TRUE

can be alerted
FALSE

cannot be alerted
en_class

Identifies the class of the error log entries to match. The valid en_class descriptor values are:
H

Hardware Error class
S

Software Error class
O

Messages from the errlogger command
U

Undetermined
en_crcid

Specifies the error identifier associated with a particular error. An error identifier can be any numeric
value that is valid as a Predefined Attribute (PdAt) object class attribute value. The errpt command
displays error identifiers as hexadecimal. For example, to select an entry that the errpt command
displays with IDENTIFIER: 67581038, specify en_crcid = 0x67581038.

en_dup
If set, identifies whether duplicate errors as defined by the kernel should be matched. The valid
en_dup descriptor values are:
TRUE

Error is a duplicate.
FALSE

Error is not a duplicate.
en_err64

If set, identifies whether errors from a 64-bit or 32-bit environment should be matched. The valid
en_err64 descriptors value are:
TRUE

Error is from a 64-bit environment.

General programming concepts 101

FALSE
Error is from a 32-bit environment.

en_label
Specifies the label associated with a particular error identifier as defined in the output of the errpt -t
command.

en_method
Specifies a user-programmable action, such as a shell script or command string, to be run when an
error matching the selection criteria of this Error Notification object is logged. The error notification
daemon uses the sh -c command to execute the notify method.

The following key words are automatically expanded by the error notification daemon as arguments
to the notify method.

$1
Sequence number from the error log entry

$2
Error ID from the error log entry

$3
Class from the error log entry

$4
Type from the error log entry

$5
Alert flags value from the error log entry

$6
Resource name from the error log entry

$7
Resource type from the error log entry

$8
Resource class from the error log entry

$9
Error label from the error log entry

en_name
Uniquely identifies the object. This unique name is used when removing the object.

en_persistenceflg
Designates whether the Error Notification object should be automatically removed when the system
is restarted. For example, to avoid erroneous signaling, Error Notification objects containing methods
that send a signal to another process should not persist across system restarts. The receiving process
and its process ID do not persist across system restarts.

The creator of the Error Notification object is responsible for removing the Error Notification object
at the appropriate time. In the event that the process terminates and fails to remove the Error
Notification object, the en_persistenceflg descriptor ensures that obsolete Error Notification objects
are removed when the system is restarted.

The valid en_persistenceflg descriptor values are:

0
non-persistent (removed at boot time)

1
persistent (persists through boot)

en_pid
Specifies a process ID (PID) for use in identifying the Error Notification object. Objects that have a PID
specified should have the en_persistenceflg descriptor set to 0.

102 AIX Version 7.2: General programming concepts

en_rclass
Identifies the class of the failing resource. For the hardware error class, the resource class is the
device class. The resource error class is not applicable for the software error class.

en_resource
Identifies the name of the failing resource. For the hardware error class, a resource name is the device
name.

en_rtype
Identifies the type of the failing resource. For the hardware error class, a resource type is the device
type by which a resource is known in the devices object class.

en_symptom
Enables notification of an error accompanied by a symptom string when set to TRUE.

en_type
Identifies the severity of error log entries to match. The valid en_type descriptor values are:
INFO

Informational
PEND

Impending loss of availability
PERM

Permanent
PERF

Unacceptable performance degradation
TEMP

Temporary
UNKN

Unknown

Examples

1. To create a notify method that mails a formatted error entry to root each time a disk error of type PERM
is logged, create a file called /tmp/en_sample.add containing the following Error Notification object:

errnotify:
 en_name = "sample"
 en_persistenceflg = 0
 en_class = "H"
 en_type = "PERM"
 en_rclass = "disk"
 en_method = "errpt -a -l $1 | mail -s 'Disk Error' root"

To add the object to the Error Notification object class, type:

odmadd /tmp/en_sample.add

The odmadd command adds the Error Notification object contained in /tmp/en_sample.add to the
errnotify file.

2. To verify that the Error Notification object was added to the object class, type:

odmget -q"en_name='sample'" errnotify

The odmget command locates the Error Notification object within the errnotify file that has an
en_name value of "sample" and displays the object. The following output is returned:

errnotify:
 en_pid = 0
 en_name = "sample"
 en_persistenceflg = 0
 en_label = ""
 en_crcid = 0
 en_class = "H"
 en_type = "PERM"
 en_alertflg = ""

General programming concepts 103

 en_resource = ""
 en_rtype = ""
 en_rclass = "disk"
 en_method = "errpt -a -l $1 | mail -s 'Disk Error' root"

3. To delete the sample Error Notification object from the Error Notification object class, type:

odmdelete -q"en_name='sample'" -o errnotify

The odmdelete command locates the Error Notification object within the errnotify file that has an
en_name value of "sample" and removes it from the Error Notification object class.

4. To send an email to root when a duplicate error occurs, create a file called /tmp/en_sample.add
containing the following error notification stanza:

errnotify:
 en_name = "errdupxmp"
 en_persistenceflg = 1
 en_dup = "TRUE"
 en_method = "/usr/lib/dupmethod $1"

Create the /usr/lib/dupmethod script as follows:

#!/bin/sh
email root when a duplicate error is logged.
We currently don't clear the duplicate from the log.

Input:
$1 contains the error log sequence number.
#
Use errpt to generate the body of this email.
/usr/bin/errpt -al$1 | /usr/bin/mail -s "Duplicate Error Logged" root >/dev/null

Now delete that error (currently not done)
#/usr/bin/errclear -l$1 0
exit $?

Error logging tasks
This section describes the error-logging tasks and information.

Error-logging tasks and information to assist you in using the error logging facility include:

• Reading an Error Report
• Examples of Detailed Error Reports
• Example of a Summary Error Report
• Generating an Error Report
• Stopping an Error Log
• Cleaning an Error Log
• Copying an Error Log to Diskette or Tape
• Using the liberrlog Services

Reading an error report

To obtain a report of all errors logged in the 24 hours prior to the failure, type:

errpt -a -s mmddhhmmyy | pg

where mmddhhmmyy represents the month, day, hour, minute, and year 24 hours prior to the failure.

An error-log report contains the following information:

Note: Not all errors generate information for each of the following categories.

LABEL
Predefined name for the event.

104 AIX Version 7.2: General programming concepts

ID
Numerical identifier for the event.

Date/Time
Date and time of the event.

Sequence Number
Unique number for the event.

Machine ID
Identification number of your system processor unit.

Node ID
Mnemonic name of your system.

Class
General source of the error. The possible error classes are:
H

Hardware. (When you receive a hardware error, refer to your system operator guide for information
about performing diagnostics on the problem device or other piece of equipment. The diagnostics
program tests the device and analyzes the error log entries related to it to determine the state of
the device.)

S
Software.

O
Informational messages.

U
Undetermined (for example, a network).

Type
Severity of the error that has occurred. The following types of errors are possible:
PEND

The loss of availability of a device or component is imminent.
PERF

The performance of the device or component has degraded to below an acceptable level.
PERM

Condition that could not be recovered from. Error types with this value are usually the most severe
errors and are more likely to mean that you have a defective hardware device or software module.
Error types other than PERM usually do not indicate a defect, but they are recorded so that they
can be analyzed by the diagnostics programs.

TEMP
Condition that was recovered from after a number of unsuccessful attempts. This error type is also
used to record informational entries, such as data transfer statistics for DASD devices.

UNKN
It is not possible to determine the severity of the error.

INFO
The error log entry is informational and was not the result of an error.

Resource name
Name of the resource that has detected the error. For software errors. this is the name of a software
component or an executable program. For hardware errors, this is the name of a device or system
component. It does not indicate that the component is faulty or needs replacement. Instead, it is used
to determine the appropriate diagnostic modules to be used to analyze the error.

Resource class
General class of the resource that detected the failure (for example, a device class of disk).

Resource type
Type of the resource that detected the failure (for example, a device type of 355mb).

General programming concepts 105

Location code
Path to the device. There may be up to four fields, which refer to drawer, slot, connector, and port,
respectively.

VPD
Vital product data. The contents of this field, if any, vary. Error log entries for devices typically return
information concerning the device manufacturer, serial number, Engineering Change levels, and Read
Only Storage levels.

Description
Summary of the error.

Probable cause
List of some of the possible sources of the error.

User causes
List of possible reasons for errors due to user mistakes. An improperly inserted disk and external
devices (such as modems and printers) that are not turned on are examples of user-caused errors.

Recommended actions
Description of actions for correcting a user-caused error.

Install causes
List of possible reasons for errors due to incorrect installation or configuration procedures. Examples
of this type of error include hardware and software mismatches, incorrect installation of cables or
cable connections becoming loose, and improperly configured systems.

Recommended actions
Description of actions for correcting an installation-caused error.

Failure causes
List of possible defects in hardware or software.

Note: A failure causes section in a software error log usually indicates a software defect. Logs that list
user or installation causes or both, but not failure causes, usually indicate that the problem is not a
software defect.

If you suspect a software defect, or are unable to correct user or installation causes, report the
problem to your software service department.

Recommended actions
Description of actions for correcting the failure. For hardware errors, PERFORM PROBLEM
DETERMINATION PROCEDURES is one of the recommended actions listed. For hardware errors, this
will lead to running the diagnostic programs.

Detailed data

• Failure data that is unique for each error log entry, such as device sense data.
• Information on the current working directory of the process, such as FILE SYSTEM SERIAL NUMBER

and INODE NUMBER when the process dumps the core.

To display a shortened version of the detailed report produced by the -a flag, use the -A flag. The -A flag is
not valid with the -a, -g, or -t flags. The items reported when you use -A to produce the shortened version
of the report are:

• Label
• Date and time
• Type
• Resource name
• Description
• Detail data

The example output of this flag is in the following format:

LABEL: STOK_RCVRY_EXIT
Date/Time: Tue Dec 14 15:25:33

106 AIX Version 7.2: General programming concepts

Type: TEMP Resource Name: tok0
Description PROBLEM RESOLVED
Detail Data FILE NAME line: 273 file: stok_wdt.c
SENSE DATA
0000 0000 0000 0000 0000 0000 DEVICE ADDRESS 0004 AC62 25F1

Reporting can be turned off for some errors. To show which errors have reporting turned off, type:

errpt -t -F report=0 | pg

If reporting is turned off for any errors, enable reporting of all errors using the errupdate command.

Logging may also have been turned off for some errors. To show which errors have logging turned off,
type:

errpt -t -F log=0 | pg

If logging is turned off for any errors, enable logging for all errors using the errupdate command. Logging
all errors is useful if it becomes necessary to re-create a system error.

Examples of detailed error reports

The following are sample error-report entries that are generated by issuing the errpt -a command.

An error-class value of H and an error-type value of PERM indicate that the system encountered a
hardware problem (for example, with a SCSI adapter device driver) and could not recover from it.
Diagnostic information might be associated with this type of error. If so, it displays at the end of the
error listing, as illustrated in the following example of a problem encountered with a device driver:

LABEL: SCSI_ERR1
ID: 0502F666

Date/Time: Jun 19 22:29:51
Sequence Number: 95
Machine ID: 123456789012
Node ID: host1
Class: H
Type: PERM
Resource Name: scsi0
Resource Class: adapter
Resource Type: hscsi
Location: 00-08
VPD:
 Device Driver Level.........00
 Diagnostic Level............00
 Displayable Message.........SCSI
 EC Level....................C25928
 FRU Number..................30F8834
 Manufacturer................IBM97F
 Part Number.................59F4566
 Serial Number...............00002849
 ROS Level and ID............24
 Read/Write Register Ptr.....0120

Description
ADAPTER ERROR

Probable Causes
ADAPTER HARDWARE CABLE
CABLE TERMINATOR DEVICE

Failure Causes
ADAPTER
CABLE LOOSE OR DEFECTIVE

 Recommended Actions
 PERFORM PROBLEM DETERMINATION PROCEDURES
 CHECK CABLE AND ITS CONNECTIONS

Detail Data
SENSE DATA
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Diagnostic Log sequence number: 153
Resource Tested: scsi0
Resource Description: SCSI I/O Controller

General programming concepts 107

Location: 00-08
SRN: 889-191
Description: Error log analysis indicates hardware failure.
Probable FRUs:
 SCSI Bus FRU: n/a 00-08
 Fan Assembly
 SCSI2 FRU: 30F8834 00-08
 SCSI I/O Controller

An error-class value of H and an error-type value of PEND indicate that a piece of hardware (the Token
Ring) may become unavailable soon due to numerous errors detected by the system.

LABEL: TOK_ESERR
ID: AF1621E8

Date/Time: Jun 20 11:28:11
Sequence Number: 17262
Machine Id: 123456789012
Node Id: host1
Class: H
Type: PEND
Resource Name: TokenRing
Resource Class: tok0
Resource Type: Adapter
Location: TokenRing

Description
EXCESSIVE TOKEN-RING ERRORS

Probable Causes
TOKEN-RING FAULT DOMAIN

Failure Causes
TOKEN-RING FAULT DOMAIN

 Recommended Actions
 REVIEW LINK CONFIGURATION DETAIL DATA
 CONTACT TOKEN-RING ADMINISTRATOR RESPONSIBLE FOR THIS LAN

Detail Data
SENSE DATA
0ACA 0032 A440 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 2080 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 78CC 0000 0000 0005 C88F 0304 F4E0 0000 1000 5A4F 5685
1000 5A4F 5685 3030 3030 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

An error-class value of S and an error-type value of PERM indicate that the system encountered a
problem with software and could not recover from it.

LABEL: DSI_PROC
ID: 20FAED7F

Date/Time: Jun 28 23:40:14
Sequence Number: 20136
Machine Id: 123456789012
Node Id: 123456789012
Class: S
Type: PERM
Resource Name: SYSVMM

Description
Data Storage Interrupt, Processor

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

 Recommended Actions
 IF PROBLEM PERSISTS THEN DO THE FOLLOWING
 CONTACT APPROPRIATE SERVICE REPRESENTATIVE

Detail Data
Data Storage Interrupt Status Register
4000 0000

108 AIX Version 7.2: General programming concepts

Data Storage Interrupt Address Register
0000 9112
Segment Register, SEGREG
D000 1018
EXVAL
0000 0005

An error-class value of S and an error-type value of TEMP indicate that the system encountered a problem
with software. After several attempts, the system was able to recover from the problem.

LABEL: SCSI_ERR6
ID: 52DB7218

Date/Time: Jun 28 23:21:11
Sequence Number: 20114
Machine Id: 123456789012
Node Id: host1
Class: S
Type: INFO
Resource Name: scsi0

Description
SOFTWARE PROGRAM ERROR

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

 Recommended Actions
 IF PROBLEM PERSISTS THEN DO THE FOLLOWING
 CONTACT APPROPRIATE SERVICE REPRESENTATIVE

Detail Data
SENSE DATA
0000 0000 0000 0000 0000 0011 0000 0008 000E 0900 0000 0000 FFFF
FFFE 4000 1C1F 01A9 09C4 0000 000F 0000 0000 0000 0000 FFFF FFFF
0325 0018 0040 1500 0000 0000 0000 0000 0000 0000 0000 0000 0800
0000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000

An error class value of O indicates that an informational message has been logged.

LABEL: OPMSG
ID: AA8AB241

Date/Time: Jul 16 03:02:02
Sequence Number: 26042
Machine Id: 123456789012
Node Id: host1
Class: O
Type: INFO
Resource Name: OPERATOR

Description
OPERATOR NOTIFICATION

User Causes
errlogger COMMAND

 Recommended Actions
 REVIEW DETAILED DATA

Detail Data
MESSAGE FROM errlogger COMMAND
hdisk1 : Error log analysis indicates a hardware failure.

Example of a summary error report

The following is an example of a summary error report generated using the errpt command. One line of
information is returned for each error entry.

ERROR_
IDENTIFIER TIMESTAMP T CL RESOURCE_NAME ERROR_DESCRIPTION
192AC071 0101000070 I 0 errdemon Error logging turned off
0E017ED1 0405131090 P H mem2 Memory failure

General programming concepts 109

9DBCFDEE 0101000070 I 0 errdemon Error logging turned on
038F2580 0405131090 U H scdisk0 UNDETERMINED ERROR
AA8AB241 0405130990 I O OPERATOR OPERATOR NOTIFICATION

Generating an error report

To create an error report of software or hardware problems do the following:

1. Determine if error logging is on or off by determining if the error log contains entries:

errpt -a

The errpt command generates an error report from entries in the system error log.

If the error log does not contain entries, error logging has been turned off. Activate the facility by
typing:

/usr/lib/errdemon

Note: You must have root user access to run this command.

The errdemon daemon starts error logging and writes error log entries in the system error log. If the
daemon is not running, errors are not logged.

2. Generate an error log report using the errpt command. For example, to see all the errors for the
hdisk1 disk drive, type:

errpt -N hdisk1

3. Generate an error log report using SMIT. For example, use the smit errpt command:

smit errpt

a. Select 1 to send the error report to standard output, or select 2 to send the report to the printer.
b. Select yes to display or print error log entries as they occur. Otherwise, select no.
c. Specify the appropriate device name in the Select resource names option (such as hdisk1).
d. Select Do.

Stopping an error log

This procedure describes how to stop the error-logging facility.

To turn off error logging, use the errstop command. You must have root user authority to use this
command.

Ordinarily, you would not want to turn off the error-logging facility. Instead, you should clean the error log
of old or unnecessary entries.

Turn off the error-logging facility when you are installing or experimenting with new software or hardware.
This way the error logging daemon does not use CPU time to log problems you know you are causing.

Cleaning an error log

Error-log cleaning is normally done for you as part of the daily cron command. If it is not done
automatically, clean the error log yourself every couple of days after you have examined the contents
to make sure there are no significant errors.

You can also clean up specific errors. For example, if you get a new disk and you do not want the old disk's
errors in the log, you can clean just the old disk's errors.

Delete all entries in your error log by doing either of the following:

• Use the errclear -d command. For example, to delete all software errors, type:

errclear -d S 0

110 AIX Version 7.2: General programming concepts

The errclear command deletes entries from the error log that are older than a specified number of days.
The 0 in the previous example indicates that you want to delete entries for all days.

• Use the smit errclear command:

smit errclear

Copying an error log to diskette or tape

Copy an error log by doing one of the following:

• To copy the error log to diskette, use the ls and backup commands. Insert a formatted diskette into the
diskette drive and type:

ls /var/adm/ras/errlog | backup -ivp

• To copy the error log to tape, insert a tape in the drive and type:

ls /var/adm/ras/errlog | backup -ivpf/dev/rmt0

• To gather system configuration information in a tar file and copy it to diskette, use the snap command.
Insert a formatted diskette into the diskette drive and type:

snap -a -o /dev/rfd0

Note: To use the snap command, you need root user authority.

The snap command in this example uses the -a flag to gather all information about your system
configuration. The -o flag copies the compressed tar file to the device you name. The /dev/rfd0
names your disk drive.

To gather all configuration information in a tar file and copy it to tape, type:

snap -a -o /dev/rmt0

The /dev/rmt0 names your tape drive.

Using the liberrlog services

The liberrlog services allow you to read entries from an error log, and provide a limited update capability.
They are especially useful from an error notification method written in the C programming language,
rather than a shell script. Accessing the error log using the liberrlog functions is much more efficient than
using the errpt command.

Related information
error_open
errorlog_close
errlog_find, errlog_error_sequence,errlog_find_next
errlog_set_direction
errlog_write

Error logging and alerts
This section describes the process of error logging and receiving alert

If the Alert field of an error record template is set to True, programs that process alerts use the following
fields in the error log to build an alert:

• Class
• Type
• Description
• Probable Cause
• User Cause

General programming concepts 111

• Install Cause
• Failure Cause
• Recommended Action
• Detail Data

These template fields must be set up according to the SNA Generic Alert Architecture described in
SNA Formats , order number GA27-3136. You can view the book at http://publib.boulder.ibm.com/cgi-bin/
bookmgr/BOOKS/D50A5007. Alerts that are not set up according to the architecture cannot be processed
properly by a receiving program, such as NetView®.

Messages added to the error-logging message sets must not conflict with the SNA Generic Alert
Architecture. When the errmsg command is used to add messages, the command selects message
numbers that do not conflict with the architecture.

If the Alert field of an error record template is set to False, you can use any of the messages in the
error-logging message catalog.

Error logging controls
To control the error-logging facility, you can use error-logging commands, subroutines and kernel
services, as well as files.

Error-logging commands

errclear
Deletes entries from the error log. This command can erase the entire error log. Removes entries with
specified error ID numbers, classes, or types.

errdead
Extracts errors contained in the /dev/error buffer captured in the system dump. The system dump
will contain error records if the errdemon daemon was not active prior to the dump.

errdemon
Reads error records from the /dev/error file and writes error log entries to the system error log. The
errdemon also performs error notification as specified in the error notification objects in the Object
Data Manager (ODM). This daemon is started automatically during system initialization.

errinstall
Can be used to add or replace messages in the error message catalog. Provided for use by software
installation procedures. The system creates a backup file named File.undo. The undo file allows you
to cancel the changes you made by issuing the errinstall command.

errlogger
Writes an operator message entry to the error log.

errmsg
Implements error logging in in-house applications. The errmsg command lists, adds, or deletes
messages stored in the error message catalog. Using this command, text can be added to the
Error Description, Probable Cause, User Cause, Install Cause, Failure Cause,
Recommended Action, and Detailed Data message sets.

errpt
Generates an error report from entries in the system error log. The report can be formatted as a single
line of data for each entry, or the report can be a detailed listing of data associated with each entry in
the error log. Entries of varying classes and types can be omitted from or included in the report.

errstop
Stops the errdemon daemon, which is initiated during system initialization. Running the errstop
command also disables some diagnostic and recovery functions of the system.

errupdate
Adds or deletes templates in the Error Record Template Repository. Modifies the Alert, Log, and
Report attributes of an error template. Provided for use by software installation procedures.

Error logging subroutines and kernel services

112 AIX Version 7.2: General programming concepts

https://www.ibm.com/resources/publications/OutputPubsDetails?PubID=GA27-3136-20
https://www.ibm.com/resources/publications/OutputPubsDetails?PubID=GA27-3136-20

errlog
Writes an error to the error log device driver

errsave and errlast
Allows the kernel and kernel extensions to write to the error log

errlog_open
Opens an error log

errlog_close
Closes an error log

errlog_find_first
Finds the first occurrence of an error log entry

errlog_find_next
Finds the next occurrence of an error log entry

errlog_find_sequence
Finds the error log entry with the specified sequence number

errlog_set_direction
Sets the direction for the error log find functions

errlog_write
Updates an error log entry

errresume
Resumes error logging after an errlast command was issued.

Error logging files

/dev/error
Provides standard device driver interfaces required by the error log component

/dev/errorctl
Provides nonstandard device driver interfaces for controlling the error logging system

/usr/include/sys/err_rec.h
Contains structures defined as arguments to the errsave kernel service and the errlog subroutine

/usr/include/sys/errlog.h
Defines the interface to the liberrlog subroutines

/var/adm/ras/errlog
Stores instances of errors and failures encountered by the system

/var/adm/ras/errtmplt
Contains the Error Record Template Repository

File systems and logical volumes
A file is a one-dimensional array of bytes that can contain ASCII or binary information.

AIX files can contain data, shell scripts, and programs. File names are also used to represent abstract
objects such as sockets or device drivers.

Files are represented internally by index nodes (i-nodes). Within the journaled file system (JFS), an i-node
is a structure that contains all access, timestamp, ownership, and data location information for each
file. An i-node is 128-bytes in JFS and 512-bytes in the enhanced journaled file system (JFS2). Pointers
within the i-node structure designate the real disk address of the data blocks associated with the file. An
i-node is identified by an offset number (i-number) and has no file name information. The connection of
i-numbers and file names is called a link.

File names exist only in directories. Directories are a unique type of file that give hierarchical structure
to the file system. Directories contain directory entries. Each directory entry contains a file name and an
i-number.

JFS and JFS2 are supported by this operating system. The file system links the file and directory data to
the structure used by storage and retrieval mechanisms.

General programming concepts 113

Related information
ls
mkfs
pr
fullstat.h
stat
statfs

File types
A file is a one-dimensional array of bytes with at least one hard link (file name). Files can contain ASCII or
binary information.

Files contain data, shell scripts, or programs. File names are also used to represent abstract objects, such
as sockets, pipes, and device drivers.

The kernel does not distinguish record boundaries in regular files, so programs can establish their own
boundary markers.

Files are represented in the journaled file system (JFS and JFS2) by disk index nodes (i-node).
Information about the file (such as ownership, access modes, access time, data addresses, and
modification time) is stored in the i-node.

The journaled file system supports the following file types:

File types supported by journaled file system

Type of file Macro name used in mode.h Description

Regular S_ISREG A sequence of bytes with one or
more names. Regular files can
contain ASCII or binary data.
These files can be randomly
accessed (read from or written
to) from any byte in the file.

Directory S_ISDIR Contains directory entries (file
name and i-number pairs).
Directory formats are determined
by the file system. Processes
read directories as they do
ordinary files, but the kernel
reserves the right to write to
a directory. Special sets of
subroutines control directory
entries.

Block Special S_ISBLK Associates a structured device
driver with a file name.

Character Special S_ISCHR Associates an unstructured
device driver with a file name.

Pipes S_ISFIFO Designates an interprocess
communication (IPC) channel.
The mkfifo subroutine creates
named pipes. The pipe
subroutine creates unnamed
pipes.

114 AIX Version 7.2: General programming concepts

Type of file Macro name used in mode.h Description

Symbolic Links S_ISLNK A file that contains either an
absolute or relative path name to
another file name.

Sockets S_ISSOCK An IPC mechanism that allows
applications to exchange data.
The socket subroutine creates
sockets, and the bind subroutine
allows sockets to be named.

The maximum size of a regular file in a JFS file system enabled for large files is slightly less than 64
gigabytes (68589453312). In other file systems that are enabled for large files and in other JFS file
system types, all files not listed as regular in the previous table have a maximum file size of 2 gigabytes
minus 1 (2147483647). The maximum size of a file in JFS2 is limited by the size of the file system itself.

The architectural limit on the size of a JFS2 file system is 252 bytes, or 4 petabytes. The maximum file size
supported by the 64-bit kernel is 244 - 4096 bytes, or just less than 16 terabytes.

The maximum length of a file name is 255 characters, and the maximum length of a path name is 1023
bytes.

Working with files

The operating system provides many subroutines that manipulate files. For brief descriptions of the most
common file-control subroutines, see the following:

Creating files

The following subroutines are used when creating files:
creat

Creates a new, empty, regular file
link

Creates an additional name (directory entry) for an existing file
mkdir

Creates a directory
mkfifo

Creates a named pipe
mknod

Creates a file that defines a device
open

Creates a new, empty file if the O_CREAT flag is set
pipe

Creates an IPC
socket

Creates a socket

Manipulating files (programming)

The following subroutines can be used to manipulate files:
access

Determines the accessibility of a file.
chmod

Changes the access modes of a file.
chown

Changes ownership of a file.

General programming concepts 115

close
Closes open file descriptors (including sockets).

fclear
Creates space in a file.

fcntl, dup, or dup2
Control open file descriptors.

fsync
Writes changes in a file to permanent storage.

ioctl
Controls functions associated with open file descriptors, including special files, sockets, and generic
device support, such as the termio general terminal interface.

lockf or flock
Control open file descriptors.

lseek or llseek
Move the I/O pointer position in an open file.

open
Returns a file descriptor used by other subroutines to refer to the opened file. The open operation
takes a regular file name and a permission mode that indicates whether the file is to be read from,
written to, or both.

read
Gets data from an open file if the appropriate permissions (O_RDONLY or O_RDWR) were set by the
open subroutine.

rename
Changes the name of a file.

rmdir
Removes directories from the file system.

stat
Reports the status of a file, including the owner and access modes.

truncate
Changes the length of a file.

write
Puts data into an open file if the appropriate permissions (O_WRONLY or O_RDWR) were set by the
open subroutine.

For more information on types and characteristics of file systems, see File systems in Operating system
and device management.

Working with JFS directories
Directories provide a hierarchical structure to the file system, link files, and i-node subdirectory names.
There is no limit on the depth of nested directories. Disk space is allocated for directories in 4096-byte
blocks, but the operating system allocates directory space in 512-byte records.

Processes can read directories as regular files. However, the kernel can write directories. For this reason,
directories are created and maintained by a set of subroutines unique to them.

JFS directory structures
Directories contain a sequence of directory entries. Each directory entry contains three fixed-length fields
(the index number associated with the file's i-node, the length of the file name, and the number of bytes
for the entry) and one variable-length field for the file name. The file name field is null-terminated and
padded to 4 bytes. File names can be up to 255 bytes long.

Directory entries are of variable length to allow file names the greatest flexibility. However, all directory
space is allocated at all times.

116 AIX Version 7.2: General programming concepts

No directory entry can span 512-byte sections of a directory. When a directory requires more than 512
bytes, another 512-byte record is appended to the original record. If all of the 512-byte records in the
allocated data block are filled, an additional data block (4096 bytes) is allotted.

When a file is removed, the space that the file occupied in the directory structure is added to the
preceding directory entry. The information about the removed directory remains until a new entry fits into
the space vacated.

Every directory contains the entries . (dot) and .. (dot, dot). The . (dot) directory entry points to the i-node
for the directory itself. The .. (dot, dot) directory entry points to the i-node for the parent directory. The
mkfs program initializes a file system so that the . (dot) and .. (dot, dot) entries in the new root directory
point to the root i-node of the file system.

Directories have the following access modes:

Mode Description

read Allows a process to read directory entries

write Allows a process to create new directory entries or remove old ones by using the creat,
mknod, link, and unlink subroutines

execute Allows a process to use the directory as a current working directory or to search below
the directory in the file tree

Working with JFS directories (programming)
The following is a list of subroutines available for working with directories:
closedir

Closes a directory stream and frees the structure associated with the DirectoryPointer parameter
mkdir

Creates directories
opendir

Opens the directory designated by the DirectoryName parameter and associates a directory stream
with it

readdir
Returns a pointer to the next directory entry

rewinddir
Resets the position of the specified directory stream to the beginning of the directory

rmdir
Removes directories

seekdir
Sets the position of the next readdir subroutine operation on the directory stream

telldir
Returns the current location associated with the specified directory stream

Changing the current directory of a process
When the system is booted, the first process uses the root directory of the root file system as its current
directory. New processes created with the fork subroutine inherit the current directory used by the parent
process. The chdir subroutine changes the current directory of a process.

The chdir subroutine parses the path name to ensure that the target file is a directory and that the
process owner has permissions to the directory. After the chdir subroutine is run, the process uses the
new current directory to search all path names that do not begin with a / (slash).

General programming concepts 117

Changing the root directory of a process
You can cause the directory named by a process Path parameter to become the effective root directory by
using the chroot subroutine. Child processes of the calling process consider the directory indicated by the
chroot subroutine as the logical root directory of the file system.

Processes use the global file system root directory for all path names starting with a / (slash). All path
name searches beginning with a / (slash) begin at this new root directory.

Subroutines that control JFS directories
Due to the unique nature of directory files, directories are controlled by a special set of subroutines. The
following subroutines are designed to control directories:

chdir
Changes the current working directory

chroot
Changes the effective root directory

getcwd or getwd
Gets path to current directory

mkdir
Creates a directory

opendir, readdir, telldir, seekdir, rewinddir, or closedir
Perform various actions on directories

rename
Renames a directory

rmdir
Removes a directory

Working with JFS2 directories
Directories provide a hierarchical structure to the file system, link files, and i-node subdirectory names.
There is no limit on the depth of nested directories.

Disk space is allocated for directories in file system blocks.

Processes can read directories as regular files. However, the kernel can write directories. For this reason,
directories are created and maintained by a set of subroutines unique to them.

JFS2 directory structures

A directory contains entries that describe the objects contained in the directory. A directory entry has a
fixed length and contains the following:

• The i-node number
• The name (up to 22 bytes long)
• A name length field
• A field to continue the entry if the name is longer than 22 bytes

The directory entries are stored in a B+ tree sorted by name. The self (.) and parent (..) information is
contained in the i-node instead of in a directory entry.

Directories have the following access modes:

Mode Description

read Allows a process to read directory entries

write Allows a process to create new directory entries or remove old ones, by using the creat,
mknod, link, and unlink subroutines

118 AIX Version 7.2: General programming concepts

Mode Description

execute Allows a process to use the directory as a current working directory or to search below
the directory in the file tree

Working with JFS2 directories (programming)

The following is a list of subroutines available for working with directories:
closedir

Closes a directory stream and frees the structure associated with the DirectoryPointer parameter
mkdir

Creates directories
opendir

Returns a structure pointer that is used by the readdir subroutine to obtain the next directory entry,
by rewinddir to reset the read position to the beginning, and by closedir to close the directory.

readdir
Returns a pointer to the next directory entry

rewinddir
Resets the position of the specified directory stream to the beginning of the directory

rmdir
Removes directories

seekdir
Returns to a position previously obtained with the telldir subroutine

telldir
Returns the current location associated with the specified directory stream

Do not use the open, read, lseek, and close subroutines to access directories.

Changing current directory of a process

When the system is booted, the first process uses the root directory of the root file system as its current
directory. New processes created with the fork subroutine inherit the current directory used by the parent
process. The chdir subroutine changes the current directory of a process.

The chdir subroutine parses the path name to ensure that the target file is a directory and that the
process owner has permissions to the directory. After the chdir subroutine is run, the process uses the
new current directory to search all path names that do not begin with a / (slash).

Changing the root directory of a process

Processes can change their understanding of the root directory through the chroot subroutine. Child
processes of the calling process consider the directory indicated by the chroot subroutine as the logical
root directory of the file system.

Processes use the global file system root directory for all path names starting with a / (slash).All path
name searches beginning with a / (slash) begin at this new root directory.

Subroutines that control JFS2 directories

Due to the unique nature of directory files, directories are controlled by a special set of subroutines. The
following subroutines are designed to control directories:

chdir
Changes the current working directory

chroot
Changes the effective root directory

opendir, readdir, telldir, seekdir, rewinddir, or closedir
Perform various actions on directories

General programming concepts 119

getcwd or getwd
Gets path to current directory

mkdir
Creates a directory

rename
Renames a directory

rmdir
Removes a directory

Working with JFS i-nodes
Files in the journaled file system (JFS) are represented internally as index nodes (i-nodes). JFS i-nodes
exist in a static form on disk and contain access information for the file, as well as pointers to the real disk
addresses of the file's data blocks.

The number of disk i-nodes available to a file system is dependent on the size of the file system, the
allocation group size (8 MB by default), and the number of bytes per i-node ratio (4096 by default). These
parameters are given to the mkfs command at file system creation. When enough files have been created
to use all the available i-nodes, no more files can be created, even if the file system has free space.

To determine the number of available i-nodes, use the df -v command. Disk i-nodes are defined in
the /usr/include/jfs/ino.h file.

Disk i-node structure for JFS

Each disk i-node in JFS is a 128-byte structure. The offset of a particular i-node within the i-node list
of the file system produces the unique number (i-number) by which the operating system identifies the
i-node. A bit map, known as the i-node map, tracks the availability of free disk i-nodes for the file system.

Disk i-nodes include the following information:

Field Contents

i_mode Type of file and access permission mode bits

i_size Size of file in bytes

i_uid Access permissions for the user ID

i_gid Access permissions for the group ID

i_nblocks Number of blocks allocated to the file

i_mtime Last time the file was modified

i_atime Last time the file was accessed

i_ctime Last time the i-node was modified

i_nlink Number of hard links to the file

i_rdaddr[8] Real disk addresses of the data

i_rindirect Real disk address of the indirect block, if any

You cannot change file data without changing the i-node, but it is possible to change the i-node without
changing the contents of the file. For example, when permission is changed, the information within the
i-node (i_mode) is modified, but the data in the file remains the same.

The i_rdaddr field within the disk i-node contains 8 disk addresses. These addresses point to the first 8
data blocks assigned to the file. The i_rindirect field address points to an indirect block. Indirect blocks
are either single indirect or double indirect. Thus, there are three possible geometries of block allocation
for a file: direct, indirect, or double indirect.

120 AIX Version 7.2: General programming concepts

Disk i-nodes do not contain file or path name information. Directory entries are used to link file names to
i-nodes. Any i-node can be linked to many file names by creating additional directory entries with the link
or symlink subroutine. To determine the i-node number assigned to a file, use the ls -i command.

The i-nodes that represent files that define devices contain slightly different information from i-nodes for
regular files. Files associated with devices are called special files. There are no data block addresses in
special device files, but the major and minor device numbers are included in the i_rdev field.

A disk i-node is released when the link count (i_nlink) to the i-node equals 0. Links represent the
file names associated with the i-node. When the link count to the disk i-node is 0, all the data blocks
associated with the i-node are released to the bit map of free data blocks for the file system. The i-node is
then placed on the free i-node map.

JFS In-core i-node structure

When a file is opened, the operating system creates an in-core i-node. The in-core i-node contains a copy
of all the fields defined in the disk i-node, plus additional fields for tracking and managing access to the
in-core i-node. When a file is opened, the information in the disk i-node is copied into an in-core i-node
for easier access. In-core i-nodes are defined in the /usr/include/jfs/inode.h file. Some of the additional
information tracked by the in-core i-node is as follows:

• Status of the in-core i-node, including flags that indicate:

– An i-node lock
– A process waiting for the i-node to unlock
– Changes to the file's i-node information
– Changes to the file's data

• Logical device number of the file system that contains the file
• i-number used to identify the i-node
• Reference count. When the reference count field equals 0, the in-core i-node is released.

When an in-core i-node is released (for example, with the close subroutine), the in-core i-node reference
count is reduced by 1. If this reduction results in the reference count to the in-core i-node becoming 0,
the i-node is released from the in-core i-node table, and the contents of the in-core i-node are written to
the disk copy of the i-node (if the two versions differ).

Working with JFS2 i-nodes
Files in JFS2 are represented internally as index nodes (i-nodes).

JFS2 disk i-nodes exist in a static form on the disk and contain access information for the files, as well
as pointers to the real disk addresses of the file's data blocks. The i-nodes are allocated dynamically by
JFS2. Disk-inodes are defined in the /usr/include/j2/j2_dinode.h file.

When a file is opened, an in-core i-node is created by the operating system. The in-core i-node contains
a copy of all the fields defined in the disk i-node, plus additional fields for tracking the in-core i-node.
In-core i-nodes are defined in the /usr/include/j2/j2_inode.h file.

Disk i-node structure for JFS2

Each disk i-node in JFS2 is a 512-byte structure. The index of a particular i-node allocation map of the file
system produces the unique number (i-number) by which the operating system identifies the i-node. The
i-node allocation map tracks the location of the i-nodes on the disk, as well as their availability.

Disk i-nodes include the following information:

Field Contents

di_mode Type of file and access permission mode bits

di_size Size of file in bytes

di_uid Access permissions for the user ID

General programming concepts 121

Field Contents

di_gid Access permissions for the group ID

di_nblocks Number of blocks allocated to the file

di_mtime Last time the file was modified

di_atime Last time the file was accessed

di_ctime Last time the i-node was modified

di_nlink Number of hard links to the file

di_btroot Root of B+ tree describing the disk addresses of the data

You cannot change the file data without changing the i-node, but it is possible to change the i-node
without changing the contents of the file. For example, when permission is changed, the information
within the i-node (di_mode) is modified, but the data in the file remains the same.

The di_btroot describes the root of the B+ tree. It describes the data for the i-node. di_btroot has a field
indicating how many of its entries in the i-node are being used and another field describing whether they
are leaf nodes or internal nodes for the B+ tree.

Disk i-nodes do not contain file or path name information. Directory entries are used to link file names to
i-nodes. Any i-node can be linked to many file names by creating additional directory entries with the link
or symlink subroutine. To determine the i-node number assigned to a file, use the ls -i command.

The i-nodes that represent files that define devices contain slightly different information from i-nodes for
regular files. Files associated with devices are called special files. There are no data block addresses in
special device files, but the major and minor device numbers are included in the di_rdev field.

A disk i-node is released when the link count (di_nlink) to the i-node equals 0. Links represent the
file names associated with the i-node. When the link count to the disk i-node is 0, all the data blocks
associated with the i-node are released to the bitmap of free data blocks for the file system. The i-node is
then placed on the free i-node map.

JFS2 in-core i-node structure

When a file is opened, the information in the disk i-node is copied into an in-core i-node for easier access.
The in-core i-node structure contains additional fields that manage access to the disk i-node's valuable
data. The fields of the in-core i-node are defined in the j2_inode.h file. Some of the additional information
tracked by the in-core i-node is as follows:

• Status of the in-core i-node, including flags that indicate:

– An i-node lock
– A process waiting for the i-node to unlock
– Changes to the file's i-node information
– Changes to the file's data

• Logical device number of the file system that contains the file
• i-number used to identify the i-node
• Reference count. When the reference count field equals 0, the in-core i-node is released.

When an in-core i-node is released (for example, with the close subroutine), the in-core i-node reference
count is reduced by 1. If this reduction results in the reference count to the in-core i-node becoming 0,
the i-node is released from the in-core i-node table, and the contents of the in-core i-node are written to
the disk copy of the i-node (if the two versions differ).

122 AIX Version 7.2: General programming concepts

Allocating JFS file space
File space allocation is the method by which data is apportioned physical storage space in the operating
system.

The kernel allocates disk space to a file or directory in the form of logical blocks. A logical block for JFS
refers to the division of a file or directory's contents into 4096-byte units. Logical blocks are not tangible
entities; however, the data in a logical block consumes physical storage space on the disk. Each file or
directory consists of 0 or more logical blocks. Fragments, instead of logical blocks, are the basic units for
allocated disk space in JFS.

Full and partial logical blocks

A file or directory may contain full or partial logical blocks. A full logical block contains 4096 bytes of data.
Partial logical blocks occur when the last logical block of a file or directory contains less than 4096 bytes
of data.

For example, a file of 8192 bytes is two logical blocks. The first 4096 bytes reside in the first logical block
and the following 4096 bytes reside in the second logical block. Likewise, a file of 4608 bytes consists of
two logical blocks. However, the last logical block is a partial logical block, containing the last 512 bytes of
the file's data. Only the last logical block of a file can be a partial logical block.

Allocation in fragmented file systems

The default fragment size is 4096 bytes. You can specify smaller fragment sizes with the mkfs command
during a file system's creation. Allowable fragment sizes are: 512, 1024, 2048, and 4096 bytes. You can
use only one fragment size in a file system.

To maintain efficiency in file system operations, the JFS allocates 4096 bytes of fragment space to
files and directories that are 32 KB or larger in size. A fragment that covers 4096 bytes of disk space
is allocated to a full logical block. When data is added to a file or directory, the kernel allocates disk
fragments to store the logical blocks. Thus, if the file system's fragment size is 512 bytes, a full logical
block is the allocation of eight fragments.

The kernel allocates disk space so that only the last bytes of data receive a partial block allocation. As the
partial block grows beyond the limits of its current allocation, additional fragments are allocated. If the
partial block increases to 4096 bytes, the data stored in its fragments reallocated into 4096 file-system
block allocations. A partial logical block that contains less than 4096 bytes of data is allocated the
number of fragments that best matches its storage requirements.

Block reallocation also occurs if data is added to logical blocks that represent file holes. A file hole is an
empty logical block located prior to the last logical block that stores data. (File holes do not occur within
directories.) These empty logical blocks are not allocated fragments. However, as data is added to file
holes, allocation occurs. Each logical block that was not previously allocated disk space is allocated 4096
bytes of fragment space.

Additional block allocation is not required if existing data in the middle of a file or directory is overwritten.
The logical block containing the existing data has already been allocated fragments.

JFS tries to maintain contiguous allocation of a file or directory's logical blocks on the disk. Maintaining
contiguous allocation lessens seek time because the data for a file or directory can be accessed
sequentially and found on the same area of the disk. However, disk fragments for one logical block are not
always contiguous to the disk fragments for another logical block. The disk space required for contiguous
allocation may not be available if it has already been written to by another file or directory. An allocation
for a single logical block, however, always contains contiguous fragments.

The file system uses a bitmap called the block allocation map to record the status of every block in the file
system. When the file system needs to allocate a new fragment, it refers to the fragment allocation map
to identify which fragments are available. A fragment can only be allocated to a single file or directory at a
time.

Allocation in compressed JFS file systems

In a file system that supports data compression, directories are allocated disk space. Data compression
also applies to regular files and symbolic links whose size is larger than that of their i-nodes.

General programming concepts 123

The allocation of disk space for compressed file systems is the same as that of fragments in fragmented
file systems. A logical block is allocated 4096 bytes when it is modified. This allocation guarantees that
there will be a place to store the logical block if the data does not compress. The system requires that
a write or store operation report an out-of-disk-space condition into a memory-mapped file at a logical
block's initial modification. After modification is complete, the logical block is compressed before it is
written to a disk. The compressed logical block is then allocated only the number of fragments required
for its storage.

In a fragmented file system, only the last logical block of a file (not larger than 32 KB) can be allocated
less than 4096 bytes. The logical block becomes a partial logical block. In a compressed file system,
every logical block can be allocated less than a full block.

A logical block is no longer considered modified after it is written to a disk. Each time a logical block is
modified, a full disk block is allocated again, according to the system requirements. Reallocation of the
initial full block occurs when the logical block of compressed data is successfully written to a disk.

Allocation in JFS file systems enabled for large files

In a file system enabled for large files, the JFS allocates two sizes of fragments for regular files. A
"large" fragment (32 X 4096) is allocated for logical blocks after the 4 MB boundary, and a 4096 bytes
fragment is allocated for logical blocks before the 4 MB boundary. All nonregular files allocate 4096 bytes
fragments. This geometry allows a maximum file size of slightly less than 64 gigabytes (68589453312).

A large fragment is made up of 32 contiguous 4096 bytes fragments. Because of this requirement, it is
recommended that file systems enabled for large files have predominantly large files in them. Storing
many small files (files less than 4 MB) can cause free-space fragmentation problems. This can cause large
allocations to fail with an ENOSPC error condition because the file system does not contain 32 contiguous
disk addresses.

Disk address format

JFS fragment support requires fragment-level addressability. As a result, disk addresses have a special
format for mapping where the fragments of a logical block reside on the disk. Fragmented and
compressed file systems use the same method for representing disk addresses. Disk addresses are
contained in the i_rdaddr field of the i-nodes or in the indirect blocks. All fragments referenced in a single
address must be contiguous on the disk.

The disk address format consists of the nfrags and addr fields. These fields describe the area of disk
covered by the address:

addr
Indicates which fragment on the disk is the starting fragment

nfrags
Indicates the total number of contiguous fragments not used by the address

For example, if the fragment size for the file system is 512 bytes and the logical block is divided into eight
fragments, the nfrags value is 3, indicating that five fragments are included in the address.

The following examples illustrate possible values for the addr and nfrags fields for different disk
addresses. These values assume a fragment size of 512 bytes, indicating that the logical block is divided
into eight fragments.

Address for a single fragment:

addr: 143

nfrags: 7

This address indicates that the starting location of the data is fragment 143 on the disk. The nfrags value
indicates that the total number of fragments included in the address is one. The nfrags value changes in a
file system that has a fragment size other than 512 bytes. To correctly read the nfrags value, the system,
or any user examining the address, must know the fragment size of the file system.

Address for five fragments:

124 AIX Version 7.2: General programming concepts

addr: 1117

nfrags: 3

In this case, the address starts at fragment number 1117 on the disk and continues for five fragments
(including the starting fragment). Three fragments are remaining, as illustrated by the nfrags value.

The disk addresses are 32 bits in size. The bits are numbered from 0 to 31. The 0 bit is always reserved.
Bits 1 through 3 contain the nfrags field. Bits 4 through 31 contain the addr field.

JFS indirect blocks

The JFS uses the indirect blocks to address the disk space allocated to larger files. Indirect blocks allow
the greatest flexibility for file sizes and the fastest retrieval time. The indirect block is assigned using
the i_rindirect field of the disk i-node. This field allows for the following geometries or methods for
addressing the disk space:

• Direct
• Single indirect
• Double indirect

Each of these methods uses the same disk address format as compressed and fragmented file systems.
Because files larger than 32 KB are allocated fragments of 4096 bytes, the nfrags field for addresses
using the single indirect or double indirect method has a value of 0.

Direct method

When the direct method of disk addressing is used, each of the eight addresses listed in the i_rdaddr field
of the disk i-node points directly to a single allocation of disk fragments. The maximum size of a file using
direct geometry is 32,768 bytes (32KB), or 8 x 4096 bytes. When the file requires more than 32 KB, an
indirect block is used to address the file's disk space.

Single indirect method

The i_rindirect field contains an address that points to either a single indirect block or a double indirect
block. When the single indirect disk-addressing method is used, the i_rindirect field contains the address
of an indirect block containing 1024 addresses. These addresses point to the disk fragments for each
allocation. Using the single indirect block geometry, the file can be up to 4,194,304 bytes (4 MB), or 1024
x 4096 bytes.

Double indirect method

The double indirect disk-addressing method uses the i_rindirect field to point to a double indirect block.
The double indirect block contains 512 addresses that point to indirect blocks, which contain pointers to
the fragment allocations. The largest file size that can be used with the double indirect geometry in a file
system not enabled for large files is 2,147,483,648 bytes (2 GB), or 512(1024 x 4096) bytes.

Note: The maximum file size that the read and write system calls would allow is 2 GB minus 1 (231–1).
When memory map interface is used, 2 GB can be addresed.

File systems enabled for large files allow a maximum file size of slightly less than 64 gigabytes
(68589453312). The first single indirect block contains 4096 byte fragments, and all subsequent single
indirect blocks contain (32 X 4096) byte fragments. The following produces the maximum file size for file
systems enabling large files:

(1 * (1024 * 4096)) + (511 * (1024 * 131072))

The fragment allocation assigned to a directory is divided into records of 512 bytes each and grows in
accordance with the allocation of these records.

Quotas

Disk quotas restrict the amount of file system space that any single user or group can monopolize.

General programming concepts 125

The quotactl subroutine sets limits on both the number of files and the number of disk blocks allocated to
each user or group on a file system. Quotas enforce the following types of limits:
hard

Maximum limit allowed. When a process hits its hard limit, requests for more space fail.
soft

Practical limit. If a process hits the soft limit, a warning is printed to the user's terminal. The warning
is often displayed at login. If the user fails to correct the problem after several login sessions, the soft
limit can become a hard limit.

System warnings are designed to encourage users to heed the soft limit. However, the quota system
allows processes access to the higher hard limit when more resources are temporarily required.

Allocating JFS2 file space
File space allocation is the method by which data is apportioned physical storage space in the operating
system.

The kernel allocates disk space to a file or directory in the form of logical blocks. A logical block refers
to the division of a file or directory contents into 512, 1024, 2048, or 4096 byte units. When a JFS2 file
system is created, the logical block size is specified to be one of 512, 1024, 2048, or 4096 bytes. Logical
blocks are not tangible entities; however, the data in a logical block consumes physical storage space on
the disk. Each file or directory consists of 0 or more logical blocks.

Full and partial logical blocks

A file or directory may contain full or partial logical blocks. A full logical block contains 512, 1024, 2048,
or 4096 bytes of data, depending on the file system block size specified when the JFS2 file system was
created. Partial logical blocks occur when the last logical block of a file or directory contains less than a
file-system block size of data.

For example, a JFS2 file system with a logical block size of 4096 with a file of 8192 bytes is two logical
blocks. The first 4096 bytes reside in the first logical block and the following 4096 bytes reside in the
second logical block. Likewise, a file of 4608 bytes consists of two logical blocks. However, the last logical
block is a partial logical block containing the last 512 bytes of the file's data.

JFS2 File space allocation

The default block size is 4096 bytes. You can specify smaller block sizes with the mkfs command during
a file system's creation. Allowable block sizes are 512, 1024, 2048, and 4096 bytes. You can use only one
block size in a file system.

The kernel allocates disk space so only the last file system block of data receives a partial block
allocation. As the partial block grows beyond the limits of its current allocation, additional blocks are
allocated.

Block reallocation also occurs if data is added to logical blocks that represent file holes. A file hole is an
empty logical block located prior to the last logical block that stores data. (File holes do not occur within
directories.) These empty logical blocks are not allocated blocks. However, as data is added to file holes,
allocation occurs. Each logical block that was not previously allocated disk space is allocated a file system
block of space.

Additional block allocation is not required if existing data in the middle of a file or a directory is
overwritten. The logical block containing the existing data has already been allocated file system blocks.

JFS2 tries to maintain contiguous allocation of a file or directory's logical blocks on the disk. Maintaining
contiguous allocation lessens seek time because the data for a file or directory can be accessed
sequentially and found on the same area of the disk. The disk space required for contiguous allocation
might not be available if another file or directory has already written to it.

The file system uses a bitmap called the block allocation map to record the status of every block in the
file system. When the file system needs to allocate a new block, it refers to the block allocation map to
identify which blocks are available. A block can only be allocated to a single file or directory at a time.

126 AIX Version 7.2: General programming concepts

Extents

An extent is a contiguous variable-length sequence of file system blocks allocated to a JFS2 object as a
unit. Large extents may span multiple allocation groups.

An i-node represents every JFS2 object. I-nodes contain the expected object-specific information such
as time stamps or file type (regular or directory, and so on). They also contain a B+ tree to record the
allocation of extents.

The length and address values are necessary to define an extent. The length is measured in units of the
file system block size. A 24-bit value represents the length of an extent, so an extent can range in size
from 1 to 224 -1 file system blocks. Therefore, the size of the maximum extent depends on the file system
block size. The address is the address of the first block of the extent. The address is also in units of file
system blocks; it is the block offset from the beginning of the file system.

An extent-based file system combined with user-specified file system block size allows JFS2 to not have
separate support for internal fragmentation. You can configure the file system with a small file system
block size, such as 512 bytes, to minimize internal fragmentation for file systems with large numbers of
small-sized files.

In general, the allocation policy for JFS2 tries to maximize contiguous allocation by allowing a minimum
number of extents, with each extent as large and contiguous as possible. This allows for larger I/O
transfer, resulting in improved performance. However, in some cases, this is not always possible.

B+ trees

The B+ tree data structure is used for file layout. The most common operations that JFS2 performs are
reading and writing extents. B+ trees are used to help with performance of these operations.

An extent allocation descriptor (xad_t structure) describes the extent and adds two more fields that are
needed for representing files: an offset field, describing the logical byte address the extent represents,
and a flags field. The xad_t structure is defined in the /usr/include/j2/j2_xtree.h file.

An xad structure describes two abstract ranges:

• The physical range of disk blocks. This starts at file system block number addressXAD(xadp) address
and extends for lengthXAD(xadp) file system blocks.

• The logical range of bytes within a file. This starts at byte number offsetXAD(xadp)*(file system block
size) and extends for lengthXAD(xadp)*(file system block size.)

The physical range and the logical range are both the same number of bytes in length. Note that offset is
stored in units of file system block size (for example, a value of 3) in offset means 3 file system blocks, not
3 bytes. Extents within a file are always aligned on file system block size boundaries.

JFS2 limitation

JFS2 requires contiguous free space of at least a page, or 4 KB, in length when extending files. If you do
not have contiguous free space of at least 4 KB, then the file system does not allow the extension of the
file, even if there is enough available storage space in smaller blocks.

JFS file system layout
A file system is a set of files, directories, and other structures.

File systems maintain information and identify where a file or directory's data is located on the disk. In
addition to files and directories, JFS file systems contain a boot block, a superblock, bitmaps, and one or
more allocation groups. Each file system occupies one logical volume.

JFS boot block

The boot block occupies the first 4096 bytes of the file system, starting at byte offset 0 on the disk. The
boot block is available to start the operating system.

JFS superblock

General programming concepts 127

The superblock is 4096 bytes in size and starts at byte offset 4096 on the disk. The superblock maintains
information about the entire file system and includes the following fields:

• Size of the file system
• Number of data blocks in the file system
• A flag indicating the state of the file system
• Allocation group sizes

JFS allocation bitmaps

The file system contains the following allocation bitmaps:

• The fragment allocation map records the allocation state of each fragment.
• The disk i-node allocation map records the status of each i-node.

JFS fragments

Many file systems have disk blocks or data blocks. These blocks divide the disk into units of equal size to
store the data in a file or directory's logical blocks. The disk block may be further divided into fixed-size
allocation units called fragments. Some systems do not allow fragment allocations to span the boundaries
of the disk block. In other words, a logical block cannot be allocated fragments from different disk blocks.

The journaled file system (JFS), however, provides a view of the file system as a contiguous series of
fragments. JFS fragments are the basic allocation unit and the disk is addressed at the fragment level.
Thus, fragment allocations can span the boundaries of what might otherwise be a disk block. The default
JFS fragment size is 4096 bytes, although you can specify smaller sizes. In addition to containing data for
files and directories, fragments also contain disk addresses and data for indirect blocks.

JFS allocation groups

The set of fragments making up the file system are divided into one or more fixed-sized units of
contiguous fragments. Each unit is an allocation group. The first of these groups begins the file system
and contains a reserved area occupying the first 32 x 4096 bytes of the group. The first 4096 bytes of this
area hold the boot block, and the second 4096 bytes hold the file system superblock.

Each allocation group contains a static number of contiguous disk i-nodes that occupy some of the
group's fragments. These fragments are reserved for the i-nodes at file-system creation and extension
time. For the first allocation group, the disk i-nodes occupy the fragments immediately following the
reserved block area. For subsequent groups, the disk i-nodes are found at the start of each group. Disk
i-nodes are 128 bytes in size and are identified by a unique disk i-node number or i-number. The i-number
maps a disk i-node to its location on the disk or to an i-node within its allocation group.

A file system's fragment allocation group size and the disk i-node allocation group size are specified as
the number of fragments and disk i-nodes that exist in each allocation group. The default allocation group
size is 8 MB, but can be as large as 64 MB. These values are stored in the file system superblock, and they
are set at file system creation.

Allocation groups allow the JFS resource allocation policies to use effective methods for to achieve
optimum file system I/O performance. These allocation policies try to cluster disk blocks and disk i-nodes
for related data to achieve good locality for the disk. Files are often read and written sequentially, and files
within a directory are often accessed together. Also, these allocation policies try to distribute unrelated
data throughout the file system in an attempt to minimize free-space fragmentation.

JFS disk i-nodes

A logical block contains a file or directory's data in units of 4096 bytes. Each logical block is allocated
fragments for the storage of its data. Each file and directory has an i-node that contains access
information such as file type, access permissions, owner's ID, and number of links to that file. These
i-nodes also contain "addresses" for finding the location on the disk where the data for a logical block is
stored.

Each i-node has an array of numbered sections. Each section contains an address for one of the file
or directory's logical blocks. These addresses indicate the starting fragment and the total number of

128 AIX Version 7.2: General programming concepts

fragments included in a single allocation. For example, a file with a size of 4096 bytes has a single
address on the i-node's array. Its 4096 bytes of data are contained in a single logical block. A larger file
with a size of 6144 bytes has two addresses. One address contains the first 4096 bytes and a second
address contains the remaining 2048 bytes (a partial logical block). If a file has a large number of logical
blocks, the i-node does not contain the disk addresses. Instead, the i-node points to an indirect block that
contains the additional addresses.

JFS2 file system layout
A file system is a set of files, directories and other structures.

The file systems maintain information and identify where the data is located on the disk for a file or
directory. In addition to files and directories a JFS2 file system contains a superblock, allocation maps
and one or more allocation groups. Each file system occupies one logical volume.

JFS2 superblock

The superblock is 4096 bytes in size and starts at byte offset 32768 on the disk. The superblock
maintains information about the entire file system and includes the following fields:

• Size of the file system
• Number of data blocks in the file system
• A flag indicating the state of the file system
• Allocation group sizes
• File system block size

JFS2 allocation maps

The file system contains the following allocation maps:

• The i-node allocation map records the location and allocation of all i-nodes in the file system.
• The block allocation map records the allocation state of each file system block.

JFS2 disk i-nodes

A logical block contains a file or directory's data in units of file system blocks. Each logical block is
allocated file system blocks for the storage of its data. Each file and directory has an i-node that contains
access information such as file type, access permissions, owner's ID, and number of links to that file.
These i-nodes also contain a B+ tree for finding the location on the disk where the data for a logical block
is stored.

JFS2 allocation groups

Allocation groups divide the space on a file system into chunks. Allocation groups are used only for
a problem-solving technique in which the most appropriate solution, found by attempting alternative
methods, is selected at successive stages of a program for using in the next step of the program.
Allocation groups allow JFS2 resource-allocation policies to use well-known methods for achieving
optimum I/O performance. First, the allocation policies try to cluster disk blocks and disk i-nodes for
related data to achieve good locality for the disk. Files are often read and written sequentially and the files
within a directory are often accessed together. Second, the allocation policies try to distribute unrelated
data throughout the file system in order to accommodate disk locality.

Allocation groups within a file system are identified by a zero-based allocation group index, the allocation
group number.

Allocation group sizes must be selected that yield allocation groups that are large enough to provide for
contiguous resource allocation over time. Allocation groups are limited to a maximum number of 128
groups. The minimum allocation group size is 8192 file-system blocks.

Partial allocation groups

A file system whose size is not a multiple of the allocation group size will contain a partial allocation
group; the last allocation group of the file system is not fully covered by disk blocks. This partial allocation

General programming concepts 129

group will be treated as a complete allocation group, except that the nonexistent disk blocks will be
marked as allocated in the block allocation map.

Writing programs that access large files
AIX supports files that are larger than 2 gigabytes (2 GB). This section assists programmers in
understanding the implications of large files on their applications and to assist them in modifying their
applications. Application programs can be modified, through programming interfaces, to be aware of large
files. The file system programming interfaces generally are based on the off_t data type.

Implications for existing programs

The 32-bit application environment that all applications used prior to AIX 4.2 remains unchanged.
However, existing application programs cannot handle large files.

For example, the st_size field in the stat structure, which is used to return file sizes, is a signed, 32-bit
long. Therefore, that stat structure cannot be used to return file sizes that are larger than LONG_MAX.
If an application attempts to use the stat subroutine with a file that is larger than LONG_MAX, the stat
subroutine will fail, and errno will be set to EOVERFLOW, indicating that the file size overflows the size
field of the structure being used by the program.

This behavior is significant because existing programs that might not appear to have any impacts as
a result of large files will experience failures in the presence of large files even though the file size is
irrelevant.

The errno EOVERFLOW can also be returned by an lseek pointer and by the fcntl subroutine if the values
that need to be returned are larger than the data type or structure that the program is using. For lseek, if
the resulting offset is larger than LONG_MAX, lseek will fail and errno will be set to EOVERFLOW. For the
fcntl subroutine, if the caller uses F_GETLK and the blocking lock's starting offset or length is larger than
LONG_MAX, the fcntl call will fail, and errno will be set to EOVERFLOW.

Open protection

Many existing application programs could have unexpected behavior, including data corruption, if allowed
to operate on large files. AIX uses an open-protection scheme to protect applications from this class of
failure.

In addition to open protection, a number of other subroutines offer protection by providing an execution
environment, which is identical to the environment under which these programs were developed. If an
application uses the write family of subroutines and the write request crosses the 2 GB boundary, the
write subroutines will transfer data only up to 2 GB minus 1. If the application attempts to write at or
beyond the 2GB -1 boundary, the write subroutines will fail and set errno to EFBIG. The behavior of the
mmap, ftruncate, and fclear subroutines are similar.

The read family of subroutines also participates in the open-protection scheme. If an application
attempts to read a file across the 2 GB threshold, only the data up to 2 GB minus 1 will be read. Reads at
or beyond the 2GB -1 boundary will fail, and errno will be set to EOVERFLOW.

Open protection is implemented by a flag associated with an open file description. The current state of
the flag can be queried with the fcntl subroutine using the F_GETFL command. The flag can be modified
with the fcntl subroutine using the F_SETFL command.

Because open file descriptions are inherited across the exec family of subroutines, application programs
that pass file descriptors that are enabled for large-file access to other programs should consider whether
the receiving program can safely access the large file.

Porting applications to the large file environment

AIX provides two methods for applications to be enabled for large-file access. Application programmers
must decide which approach best suits their needs:

• Define _LARGE_FILES, which carefully redefines all of the relevant data types, structures, and
subroutine names to their large-file enabled counterparts. Defining _LARGE_FILES has the advantage
of maximizing application portability to other platforms because the application is still written to the

130 AIX Version 7.2: General programming concepts

normal POSIX and XPG interfaces. It has the disadvantage of creating some ambiguity in the code
because the size of the various data items cannot be determined from looking at the code.

• Recode the application to explicitly call the large-file enabled subroutines. Recoding the application has
the disadvantages of requiring more effort and reducing application portability. It can be used when
the redefinition effect of _LARGE_FILES would have a considerable negative impact on the program or
when it is desirable to convert only a very small portion of the program.

In either case, the application program must be carefully audited to ensure correct behavior in the new
environment.

Using _LARGE_FILES

In the default compilation environment, the off_t data type is defined as a signed, 32-bit long. If
the application defines _LARGE_FILES before the inclusion of any header files, then the large-file
programming environment is enabled and off_t is defined to be a signed, 64-bit long long. In addition,
all of the subroutines that deal with file sizes or file offsets are redefined to be their large-file enabled
counterparts. Similarly, all of the data structures with embedded file sizes or offsets are redefined.

The following table shows the redefinitions that occur in the _LARGE_FILES environment:

Entity Redefined as Header file

off_t Object long long <sys/types.h>

fpos_t Object long long <sys/types.h>

struct stat Structure struct stat64 <sys/stat.h>

stat Subroutine stat64() <sys/stat.h>

fstat Subroutine fstat64() <sys/stat.h>

lstat Subroutine lstat64() <sys/stat.h>

mmap Subroutine mmap64() <sys/mman.h>

lockf Subroutine lockf64() <sys/lockf.h>

struct flock Structure struct flock64 <sys/flock.h>

open Subroutine open64() <fcntl.h>

creat Subroutine creat64() <fcntl.h>

F_GETLK Command
Parameter

F_GETLK64 <fcntl.h>

F_SETLK Command
Parameter

F_SETLK64 <fcntl.h>

F_SETLKW Command
Parameter

F_SETLKW64 <fcntl.h>

ftw Subroutine ftw64() <ftw.h>

nftw Subroutine nftw64() <ftw.h>

fseeko Subroutine fseeko64() <stdio.h>

ftello Subroutine ftello64() <stdio.h>

fgetpos ubroutine fgetpos64() <stdio.h>

fsetpos Subroutine fsetpos64() <stdio.h>

fopen Subroutine fopen64() <stdio.h>

freopen Subroutine freopen64() <stdio.h>

General programming concepts 131

Entity Redefined as Header file

lseek Subroutine lseek64() <unistd.h>

ftruncate Subroutine ftruncate64() <unistd.h>

truncate Subroutine truncate64() <unistd.h>

fclear Subroutine fclear64() <unistd.h>

pwrite Subroutine pwrite64() <unistd.h>

pread Subroutine pread64() <unistd.h>

struct aiocb Structure struct aiocb64 <sys/aio.h>

aio_read Subroutine aio_read64() <sys/aio.h>

aio_write Subroutine aio_write64() <sys/aio.h>

aio_cancel Subroutine aio_cancel64() <sys/aio.h>

aio_suspend Subroutine aio_suspend64() <sys/aio.h>

aio_return Subroutine aio_return64() <sys/aio.h>

aio_error Subroutine aio_error64() <sys/aio.h>

liocb Structure liocb64 <sys/aio.h>

lio_listio Subroutine lio_listio64() <sys/aio.h>

Using 64-bit file system subroutines

Using the _LARGE_FILES environment may be impractical for some applications due to the far-reaching
implications of changing the size of off_t to 64 bits. If the number of changes is small, it may be more
practical to convert a relatively small part of the application to be large-file enabled. The 64-bit file
system data types, structures, and subroutines are listed below:

<sys/types.h>
typedef long long off64_t;
typedef long long fpos64_t;

<fcntl.h>

extern int open64(const char *, int, ...);
extern int creat64(const char *, mode_t);

#define F_GETLK64
#define F_SETLK64
#define F_SETLKW64

<ftw.h>
extern int ftw64(const char *, int (*)(const char *,const struct stat64 *, int), int);
extern int nftw64(const char *, int (*)(const char *, const struct stat64 *, int,struct FTW *),int, int);

<stdio.h>

extern int fgetpos64(FILE *, fpos64_t *);
extern FILE *fopen64(const char *, const char *);
extern FILE *freopen64(const char *, const char *, FILE *);
extern int fseeko64(FILE *, off64_t, int);
extern int fsetpos64(FILE *, fpos64_t *);
extern off64_t ftello64(FILE *);

<unistd.h>

extern off64_t lseek64(int, off64_t, int);
extern int ftruncate64(int, off64_t);
extern int truncate64(const char *, off64_t);
extern off64_t fclear64(int, off64_t);
extern ssize_t pread64(int, void *, size_t, off64_t);
extern ssize_t pwrite64(int, const void *, size_t, off64_t);
extern int fsync_range64(int, int, off64_t, off64_t);

<sys/flock.h>

struct flock64;

<sys/lockf.h>

132 AIX Version 7.2: General programming concepts

extern int lockf64 (int, int, off64_t);

<sys/mman.h>

extern void *mmap64(void *, size_t, int, int, int, off64_t);

<sys/stat.h>

struct stat64;

extern int stat64(const char *, struct stat64 *);
extern int fstat64(int, struct stat64 *);
extern int lstat64(const char *, struct stat64 *);

<sys/aio.h>

struct aiocb64
int aio_read64(int, struct aiocb64 *):
int aio_write64(int, struct aiocb64 *);
int aio_listio64(int, struct aiocb64 *[],
 int, struct sigevent *);
int aio_cancel64(int, struct aiocb64 *);
int aio_suspend64(int, struct aiocb64 *[]);

struct liocb64
int lio_listio64(int, struct liocb64 *[], int, void *);

Common pitfalls in using the large file environment

Porting of application programs to the large-file environment can expose a number of different problems
in the application. These problems are frequently the result of poor coding practices, which are harmless
in a 32-bit off_t environment, but which can manifest themselves when compiled in a 64-bit off_t
environment. Some of the more common problems and solutions are discussed in this section.

Note: In the following examples, off_t is assumed to be a 64-bit file offset.

Improper use of data types

A common source of problems with application programs is a failure to use the proper data types. If
an application attempts to store file sizes or file offsets in an integer variable, the resulting value will
be truncated and lose significance. To avoid this problem, use the off_t data type to store file sizes and
offsets.

Incorrect:

int file_size;
struct stat s;

file_size = s.st_size;

Better:

off_t file_size;
struct stat s;
file_size = s.st_size;

When you are passing 64-bit integers to functions as arguments or when you are returning 64-bit integers
from functions, both the caller and the called function must agree on the types of the arguments and the
return value.

Passing a 32-bit integer to a function that expects a 64-bit integer causes the called function to
misinterpret the caller's arguments, leading to unexpected behavior. This type of problem is especially
severe if the program passes scalar values to a function that expects to receive a 64-bit integer.

You can avoid problems by using function prototypes carefully. In the code fragments below, fexample()
is a function that takes a 64-bit file offset as a parameter. In the first example, the compiler generates
the normal 32-bit integer function linkage, which would be incorrect because the receiving function
expects 64-bit integer linkage. In the second example, the LL specifier is added, forcing the compiler to
use the proper linkage. In the last example, the function prototype causes the compiler to promote the
scalar value to a 64-bit integer. This is the preferred approach because the source code remains portable
between 32-bit and 64-bit environments.

General programming concepts 133

Incorrect:

fexample(0);

Better:

fexample(0LL);

Best:

\est:

Linking for programmers
A link is a connection between a file name and an i-node (hard link) or between file names (symbolic link).

Linking allows access to an i-node from multiple file names. Directory entries pair file names with i-nodes.
File names are easy for users to identify, and i-nodes contain the real disk addresses of the file's data. A
reference count of all links into an i-node is maintained in the i_nlink field of the i-node. Subroutines that
create and destroy links use file names, not file descriptors. Therefore, it is not necessary to open files
when creating a link.

Processes can access and change the contents of the i-node by any of the linked file names. AIX supports
hard links and symbolic links.

Hard links

Subroutine Description

link Subroutine that creates hard links. The presence of a hard
link guarantees the existence of a file because a hard link
increments the link count in the i_nlink field of the i-node.

unlink Subroutine that releases links. When all hard links to an i-node
are released, the file is no longer accessible.

Hard links must link file names and i-nodes within the same file system because the i-node number is
relative to a single file system. Hard links always refer to a specific file because the directory entry created
by the hard link pairs the new file name to an i-node. The user ID that created the original file owns the
file and retains access mode authority over the file. Otherwise, all hard links are treated equally by the
operating system.

Example: If the /u/tom/bob file is linked to the /u/jack/foo file, the link count in the i_nlink field of
the foo file is 2. Both hard links are equal. If /u/jack/foo is removed, the file continues to exist by the
name /u/tom/bob and can be accessed by users with access to the tom directory. However, the owner of
the file is jack even though /u/jack/foo was removed. The space occupied by the file is charged to jack's
quota account. To change file ownership, use the chown subroutine.

Symbolic links

Symbolic links are implemented as a file that contains a path name by using the symlink command.
When a process encounters a symbolic link, the path contained in the symbolic link is prepended to the
path that the process was searching. If the path name in the symbolic link is an absolute path name, the
process searches from the root directory for the named file. If the path name in the symbolic link does not
begin with a / (slash), the process interprets the rest of the path relative to the position of the symbolic
link. The unlink subroutine also removes symbolic links.

Symbolic links can traverse file systems because they are treated as regular files by the operating system
rather than as part of the file system structure. The presence of a symbolic link does not guarantee the
existence of the target file because a symbolic link has no effect on the i_nlink field of the i-node.

134 AIX Version 7.2: General programming concepts

Subroutine Description

readlink Subroutine that reads the contents of a symbolic link. Many subroutines (including the
open and stat subroutines) follow symbolic paths.

lstat Subroutine created to report on the status of the file containing the symbolic link and
does not follow the link. See the symlink subroutine for a list of subroutines that traverse
symbolic links.

Symbolic links are also called soft links because they link to a file by path name. If the target file is
renamed or removed, the symbolic link cannot resolve.

Example: The symbolic link to /u/joe/foo is a file that contains the literal data /u/joe/foo. When the
owner of the foo file removes this file, subroutine calls made to the symbolic link cannot succeed. If the
file owner then creates a new file named foo in the same directory, the symbolic link leads to the new file.
Therefore, the link is considered soft because it is linked to interchangeable i-nodes.

In the ls -l command listing, an l in the first position indicates a linked file. In the final column of that
listing, the links between files are represented as Path2 -> Path1 (or Newname -> Oldname).

Subroutine Description

unlink Subroutine that removes a directory entry. The Path
parameter in the subroutine identifies the file to be
disconnected. At the completion of the unlink call, the link
count of the i-node is reduced by the value of 1.

remove Subroutine that also removes a file name by calling either the
unlink or rmdir subroutine.

Directory links

Subroutine Description

mkdir Subroutine that creates directory entries for new directories,
which creates hard links to the i-node representing the
directory

Symbolic links are recommended for creating additional links to a directory. Symbolic links do not
interfere with the . and .. directory entries and will maintain the empty, well-formed directory status. The
following illustrates an example of the empty, well-formed directory /u/joe/foo and the i_nlink values.

/u

Values
empty
values

empty
values Directory

68 j o e 0

/u/joe
mkdir ("foo", 0666)

Values
empty
values

empty
values Directory

68 n 0 0 0

 n n 0 0

235 f o o 0

General programming concepts 135

/u/joe/foo

Values
empty
values

empty
values Directory

235 n 0 0 0

68 n n 0 0

i_nlink Values

 i = 68

n_link 3

For i = 68, the n_link value is 3 (/u; /u/joe; /u/joe/foo).

i = 235

n_link 2

For i = 235, the n_link value is 2 (/u/joe; /u/joe/foo).

Using file descriptors
A file descriptor is an unsigned integer used by a process to identify an open file.

The number of file descriptors available to a process is limited by the /OPEN_MAX control in the sys/
limits.h file. The number of file descriptors is also controlled by the ulimit -n flag. The open, pipe, creat,
and fcntl subroutines all generate file descriptors. File descriptors are generally unique to each process,
but they can be shared by child processes created with a fork subroutine or copied by the fcntl, dup, and
dup2 subroutines.

File descriptors are indexes to the file descriptor table in the u_block area maintained by the kernel for
each process. The most common ways for processes to obtain file descriptors are through open or creat
operations or through inheritance from a parent process. When a fork operation occurs, the descriptor
table is copied for the child process, which allows the child process equal access to the files used by the
parent process.

File descriptor tables and system open file tables

The file descriptor and open file table structures track each process' access to a file and ensure data
integrity.

Table Description

file descriptor table Translates an index number (file descriptor) in the table to an open file.
File descriptor tables are created for each process and are located in
the u_block area set aside for that process. Each of the entries in a
file descriptor table has the following fields: the flags area and the file
pointer. There are up to OPEN_MAX file descriptors. The structure of the
file descriptor table is as follows:

struct ufd
{
 struct file *fp;
 int flags;
} *u_ufd

136 AIX Version 7.2: General programming concepts

Table Description

system open file table Contains entries for each open file. A file table entry tracks the current
offset referenced by all read or write operations to the file and the open
mode (O_RDONLY, O_WRONLY, or O_RDWR) of the file.

The open file table structure contains the current I/O offset for the file. The
system treats each read/write operation as an implied seek to the current
offset. Thus if x bytes are read or written, the pointer advances x bytes. The
lseek subroutine can be used to reassign the current offset to a specified
location in files that are randomly accessible. Stream-type files (such as
pipes and sockets) do not use the offset because the data in the file is not
randomly accessible.

Managing file descriptors

Because files can be shared by many users, it is necessary to allow related processes to share a common
offset pointer and have a separate current offset pointer for independent processes that access the same
file. The open file table entry maintains a reference count to track the number of file descriptors assigned
to the file.

Multiple references to a single file can be caused by any of the following:

• A separate process opening the file
• Child processes retaining the file descriptors assigned to the parent process
• The fcntl or dup subroutine creating copies of the file descriptors

Sharing open files

Each open operation creates a system open file table entry. Separate table entries ensure each process
has separate current I/O offsets. Independent offsets protect the integrity of the data.

When a file descriptor is duplicated, two processes then share the same offset and interleaving can occur,
in which bytes are not read or written sequentially.

Duplicating file descriptors

File descriptors can be duplicated between processes in the following ways: the dup or dup2 subroutine,
the fork subroutine, and the fcntl (file descriptor control) subroutine.

dup and dup2 subroutines

The dup subroutine creates a copy of a file descriptor. The duplicate is created at an empty space
in the user file descriptor table that contains the original descriptor. A dup process increments the
reference count in the file table entry by 1 and returns the index number of the file-descriptor where
the copy was placed.

The dup2 subroutine scans for the requested descriptor assignment and closes the requested file
descriptor if it is open. It allows the process to designate which descriptor entry the copy will occupy,
if a specific descriptor-table entry is required.

fork subroutine
The fork subroutine creates a child process that inherits the file descriptors assigned to the parent
process. The child process then execs a new process. Inherited descriptors that had the close-on-
exec flag set by the fcntl subroutine close.

fcntl (file descriptor control) subroutine
The fcntl subroutine manipulates file structure and controls open file descriptors. It can be used to
make the following changes to a descriptor:

• Duplicate a file descriptor (identical to the dup subroutine).
• Get or set the close-on-exec flag.

General programming concepts 137

• Set nonblocking mode for the descriptor.
• Append future writes to the end of the file (O_APPEND).
• Enable the generation of a signal to the process when it is possible to do I/O.
• Set or get the process ID or the group process ID for SIGIO handling.
• Close all file descriptors.

Preset file descriptor values

When the shell runs a program, it opens three files with file descriptors 0, 1, and 2. The default
assignments for these descriptors are as follows:

Descriptor Explanation

0 Represents standard input.

1 Represents standard output.

2 Represents standard error.

These default file descriptors are connected to the terminal, so that if a program reads file descriptor 0
and writes file descriptors 1 and 2, the program collects input from the terminal and sends output to the
terminal. As the program uses other files, file descriptors are assigned in ascending order.

If I/O is redirected using the < (less than) or > (greater than) symbols, the shell's default file descriptor
assignments are changed. For example, the following changes the default assignments for file descriptors
0 and 1 from the terminal to the appropriate files:

prog < FileX > FileY

In this example, file descriptor 0 now refers to FileX and file descriptor 1 refers to FileY. File descriptor
2 has not been changed. The program does not need to know where its input comes from nor where it is
sent, as long as file descriptor 0 represents the input file and 1 and 2 represent output files.

The following sample program illustrates the redirection of standard output:

#include <fcntl.h>
#include <stdio.h>

void redirect_stdout(char *);

main()
{
 printf("Hello world\n"); /*this printf goes to
 * standard output*/
 fflush(stdout);
 redirect_stdout("foo"); /*redirect standard output*/
 printf("Hello to you too, foo\n");
 /*printf goes to file foo */
 fflush(stdout);
}

void
redirect_stdout(char *filename)
{
 int fd;
 if ((fd = open(filename,O_CREAT|O_WRONLY,0666)) < 0)
 /*open a new file */
 {
 perror(filename);
 exit(1);
 }
 close(1); /*close old */
 standard output/
 if (dup(fd) !=1) /*dup new fd to
 standard input/
 {
 fprintf(stderr,"Unexpected dup failure\n");
 exit(1);
 }
 close(fd); /*close original, new fd,*/

138 AIX Version 7.2: General programming concepts

 * no longer needed*/
}

Within the file descriptor table, file descriptor numbers are assigned the lowest descriptor number
available at the time of a request for a descriptor. However, any value can be assigned within the file
descriptor table by using the dup subroutine.

File descriptor resource limit

The number of file descriptors that can be allocated to a process is governed by a resource limit.
The default value is set in the /etc/security/limits file and is typically set at 2000. The limit can be
changed by the ulimit command or the setrlimit subroutine. The maximum size is defined by the constant
OPEN_MAX.

Creating and removing files
This section describes the internal procedures performed by the operating system when creating,
opening, closing, or removing files.

Creating a file

Different subroutines create specific types of files, as follows:

Subroutine Type of File Created

creat Regular

open Regular (when the O_CREAT flag is set)

mknod Regular, first-in-first-out (FIFO), or special

mkfifo Named pipe (FIFO)

pipe Unnamed pipe

socket Sockets

mkdir Directories

symlink Symbolic link

Creating a regular file (creat, open, or mknod subroutines)

You use the creat subroutine to create a file according to the values set in the Pathname and Mode
parameters. If the file named in the Pathname parameter exists and the process has write permission to
the file, the creat subroutine truncates the file. Truncation releases all data blocks and sets the file size to
0. You can also create new, regular files using the open subroutine with the O_CREAT flag.

Files created with the creat, mkfifo, or mknod subroutine take the access permissions set in the Mode
parameter. Regular files created with the open subroutine take their access modes from the O_CREAT flag
Mode parameter. The umask subroutine sets a file-mode creation mask (set of access modes) for new
files created by processes and returns the previous value of the mask.

The permission bits on a newly created file are a result of the reverse of the umask bits ANDed with the
file-creation mode bits set by the creating process. When a new file is created by a process, the operating
system performs the following actions:

• Determines the permissions of the creating process
• Retrieves the appropriate umask value
• Reverses the umask value
• Uses the AND operation to combine the permissions of the creating process with the reverse of the

umask value

Creating a special file (mknod or mkfifo subroutine)

General programming concepts 139

You can use the mknod and mkfifo subroutines to create new special files. The mknod subroutine
handles named pipes (FIFO), ordinary, and device files. It creates an i-node for a file identical to that
created by the creat subroutine. When you use the mknod subroutine, the file-type field is set to indicate
the type of file being created. If the file is a block or character-type device file, the names of the major and
minor devices are written into the i-node.

The mkfifo subroutine is an interface for the mknod subroutine and is used to create named pipes.

Opening a file

The open subroutine is the first step required for a process to access an existing file. The open subroutine
returns a file descriptor. Reading, writing, seeking, duplicating, setting I/O parameters, determining file
status, and closing the file all use the file descriptor returned by the open call. The open subroutine
creates entries for a file in the file descriptor table when assigning file descriptors.

The open subroutine does the following:

• Checks for appropriate permissions that allow the process access to the file.
• Assigns a entry in the file descriptor table for the open file. The open subroutine sets the initial read/

write byte offset to 0, the beginning of the file.

The ioctl or ioctlx subroutines perform control operations on opened special device files.

Closing a file

When a process no longer needs access to the open file, the close subroutine removes the entry for the
file from the table. If more than one file descriptor references the file table entry for the file, the reference
count for the file is decreased by 1, and the close completes. If a file has only 1 reference to it, the file
table entry is freed. Attempts by the process to use the disconnected file descriptor result in errors until
another open subroutine reassigns a value for that file descriptor value. When a process exits, the kernel
examines its active user file descriptors and internally closes each one. This action ensures that all files
close before the process ends.

Removing a file

When a file is no longer needed, you can use the unlink subroutine to remove the specified file from the
directory containing it. If there are multiple hard links to the same file, the unlink subroutine removes the
specified link. If there is only one link, the unlink subroutine removes the file itself. For more information,
see the unlink subroutine.

Working with file I/O
All input and output (I/O) operations use the current file offset information stored in the system file
structure.

The current I/O offset designates a byte offset that is constantly tracked for every open file. The current
I/O offset signals a read or write process where to begin operations in the file. The open subroutine resets
it to 0. The pointer can be set or changed using the lseek subroutine.

Manipulating the current offset
Read and write operations can access a file sequentially because the current I/O offset of the file tracks
the byte offset of each previous operation. The offset is stored in the system file table.

You can adjust the offset on files that can be randomly accessed, such as regular and special-type files,
using the lseek subroutine.

140 AIX Version 7.2: General programming concepts

Subroutine Description

lseek Allows a process to position the offset at a designated byte. The lseek
subroutine positions the pointer at the byte designated by the Offset
variable. The Offset value can be calculated from the following places in
the file (designated by the value of the Whence variable):
absolute offset

Beginning byte of the file
relative offset

Position of the former pointer
end_relative offset

End of the file

The return value for the lseek subroutine is the current value of the pointer's position in the file. For
example:

cur_off= lseek(fd, 0, SEEK_CUR);

The lseek subroutine is implemented in the file table. All subsequent read and write operations use the
new position of the offset as their starting location.

Note: The offset cannot be changed on pipes or socket-type files.

Subroutine Description

fclear Subroutine that creates an empty space in a file. It sets to zero the
number of bytes designated in the NumberOfBytes variable beginning at
the current offset. The fclear subroutine cannot be used if the O_DEFER
flag was set at the time the file was opened.

Reading a file
This section describes the read subroutines.

Reading a file

Subroutine Description

read Subroutine that copies a specified number of bytes from an open file to a specified buffer.
The copy begins at the point indicated by the current offset. The number of bytes and
buffer are specified by the NBytes and Buffer parameters.

The read subroutine does the following:

1. Ensures that the FileDescriptor parameter is valid and that the process has read permissions. The
subroutine then gets the file table entry specified by the FileDescriptor parameter.

2. Sets a flag in the file to indicate a read operation is in progress. This action locks other processes out of
the file during the operation.

3. Converts the offset byte value and the value of the NBytes variables into a block address.
4. Transfers the contents of the identified block into a storage buffer.
5. Copies the contents of the storage buffer into the area designated by the Buffer variable.
6. Updates the current offset according to the number of bytes actually read. Resetting the offset ensures

that the data is read in sequence by the next read process.
7. Deducts the number of bytes read from the total specified in the NByte variable.
8. Loops until the number of bytes to be read is satisfied.
9. Returns the total number of bytes read.

General programming concepts 141

The cycle completes when the file to be read is empty, the number of bytes requested is met, or a reading
error is encountered during the process.

To avoid an extra iteration in the read loop, start read requests at the beginning of data block boundaries
and to be multiples of the data block size. If a process reads blocks sequentially, the operating system
assumes all subsequent reads will also be sequential.

During the read operation, the i-node is locked. No other processes are allowed to modify the contents of
the file while a read is in progress. However the file is unlocked immediately on completion of the read
operation. If another process changes the file between two read operations, the resulting data is different,
but the integrity of the data structure is maintained.

The following example illustrates how to use the read subroutine to count the number of null bytes in the
foo file:

#include <fcntl.h>
#include <sys/param.h>

main()
{
 int fd;
 int nbytes;
 int nnulls;
 int i;
 char buf[PAGESIZE]; /*A convenient buffer size*/
 nnulls=0;
 if ((fd = open("foo",O_RDONLY)) < 0)
 exit();
 while ((nbytes = read(fd,buf,sizeof(buf))) > 0)
 for (i = 0; i < nbytes; i++)
 if (buf[i] == '\0';
 nnulls++;
 printf("%d nulls found\n", nnulls);
}

Writing a file
This section describes the write subroutines.

Subroutine Description

write Subroutine that adds the amount of data specified in the NBytes variable
from the space designated by the Buffer variable to the file described by
the FileDescriptor variable. It functions similar to the read subroutine. The
byte offset for the write operation is found in the system file table's current
offset.

If you write to a file that does not contain a block corresponding to the byte offset resulting from the write
process, the write subroutine allocates a new block. This new block is added to the i-node information
that defines the file. Adding the new block might allocate more than one block if the underlying file system
needs to add blocks for addressing the file blocks.

During the write operation, the i-node is locked. No other processes are allowed to modify the contents
of the file while a write is in progress. However, the file is unlocked immediately on completion of the
write operation. If another process changes the file between two write operations, the resulting data is
different, but the integrity of the data structure is maintained.

The write subroutine loops in a way similar to the read subroutine, logically writing one block to disk for
each iteration. At each iteration, the process either writes an entire block or only a portion of one. If only a
portion of a data block is required to accomplish an operation, the write subroutine reads the block from
disk to avoid overwriting existing information. If an entire block is required, it does not read the block
because the entire block is overwritten. The write operation proceeds block by block until the number of
bytes designated in the NBytes parameter is written.

Delayed write

142 AIX Version 7.2: General programming concepts

You can designate a delayed write process with the O_DEFER flag. The data is then transferred to disk as
a temporary file. The delayed write feature caches the data in case another process reads or writes the
data sooner. Delayed write saves extra disk operations. Many programs, such as mail and editors, create
temporary files in the /tmp directory and quickly remove them.

When a file is opened with the deferred update (O_DEFER) flag, the data is not written to permanent
storage until a process issues an fsync subroutine call or a process issues a synchronous write to the file
(opened with O_SYNC flag). The fsync subroutine saves all changes in an open file to disk. See the open
subroutine for a description of the O_DEFER and O_SYNC flags.

Truncating files

The truncate or ftruncate subroutines change the length of regular files. The truncating process must
have write permission to the file. The Length variable value indicates the size of the file after the
truncation operation is complete. All measures are relative to the first byte of the file, not the current
offset. If the new length (designated in the Length variable) is less than the previous length, the data
between the two is removed. If the new length is greater than the existing length, zeros are added to
extend the file size. When truncation is complete, full blocks are returned to the file system, and the file
size is updated.

Direct I/O vs. normal cached I/O
Normally, the JFS or JFS2 caches file pages in kernel memory. When the application does a file read
request, if the file page is not in memory, the JFS or JFS2 reads the data from the disk into the file cache,
then copies the data from the file cache to the user's buffer..

For application writes, the data is merely copied from the user's buffer into the cache. The actual writes to
disk are done later.

This type of caching policy can be extremely effective when the cache hit rate is high. It also enables
read-ahead and write-behind policies. Lastly, it makes file writes asynchronous, allowing the application
to continue processing instead of waiting for I/O requests to complete.

Direct I/O is an alternative caching policy that causes the file data to be transferred directly between the
disk and the user's buffer. Direct I/O for files is functionally equivalent to raw I/O for devices. Applications
can use direct I/O on JFS or JFS2 files.

Benefits of direct I/O
The primary benefit of direct I/O is to reduce CPU utilization for file reads and writes by eliminating the
copy from the cache to the user buffer.

This can also be a benefit for file data which has a very poor cache hit rate. If the cache hit rate is low,
then most read requests have to go to the disk. Direct I/O can also benefit applications that must use
synchronous writes because these writes have to go to disk. In both of these cases, CPU usage is reduced
because the data copy is eliminated.

A second benefit of direct I/O is that it allows applications to avoid diluting the effectiveness of caching
of other files. Anytime a file is read or written, that file competes for space in the cache. This situation
may cause other file data to be pushed out of the cache. If the newly cached data has very poor reuse
characteristics, the effectiveness of the cache can be reduced. Direct I/O gives applications the ability to
identify files where the normal caching policies are ineffective, thus releasing more cache space for files
where the policies are effective.

Performance costs of direct I/O

Although direct I/O can reduce CPU usage, using it typically results in the process taking longer to
complete, especially for relatively small requests. This penalty is caused by the fundamental differences
between normal cached I/O and direct I/O.

Direct I/O reads

General programming concepts 143

Every direct I/O read causes a synchronous read from disk; unlike the normal cached I/O policy where
read may be satisfied from the cache. This can result in very poor performance if the data was likely to be
in memory under the normal caching policy.

Direct I/O also bypasses the normal JFS or JFS2 read-ahead algorithms. These algorithms can be
extremely effective for sequential access to files by issuing larger and larger read requests and by
overlapping reads of future blocks with application processing.

Applications can compensate for the loss of JFS or JFS2 read-ahead by issuing larger read requests. At
a minimum, direct I/O readers should issue read requests of at least 128k to match the JFS or JFS2
read-ahead characteristics.

Applications can also simulate JFS or JFS2 read-ahead by issuing asynchronous direct I/O read-ahead
either by use of multiple threads or by using the aio_read subroutine.

Direct I/O writes

Every direct I/O write causes a synchronous write to disk; unlike the normal cached I/O policy where the
data is merely copied and then written to disk later. This fundamental difference can cause a significant
performance penalty for applications that are converted to use direct I/O.

Conflicting file access modes

To avoid consistency issues between programs that use direct I/O and programs that use normal cached
I/O, direct I/O is an exclusive use mode. If there are multiple opens of a file and some of them are
direct and others are not, the file will stay in its normal cached access mode. Only when the file is open
exclusively by direct I/O programs will the file be placed in direct I/O mode.

Similarly, if the file is mapped into virtual memory through the shmat or mmap system calls, the file will
stay in normal cached mode.

The JFS or JFS2 will attempt to move the file into direct I/O mode anytime the last conflicting or
non-direct access is eliminated (either by the close, munmap, or shmdt subroutines). Changing the file
from normal mode to direct I/O mode can be rather expensive because it requires writing all modified
pages to disk and removing all the file's pages from memory.

Enabling applications to use direct I/O

Applications enable direct I/O access to a file by passing the O_DIRECT flag to the open subroutine. This
flag is defined in the fcntl.h file. Applications must be compiled with _ALL_SOURCE enabled to see the
definition of O_DIRECT.

Offset/Length/Address alignment requirements of the target buffer

For direct I/O to work efficiently, the request should be suitably conditioned. Applications can query
the offset, length, and address alignment requirements by using the finfo and ffinfo subroutines. When
the FI_DIOCAP command is used, the finfo and ffinfo subroutines return information in the diocapbuf
structure as described in the sys/finfo.h file. This structure contains the following fields:

dio_offset
Recommended offset alignment for direct I/O writes to files in this file system

dio_max
Recommended maximum write length for direct I/O writes to files in this system

dio_min
Recommended minimum write length for direct I/O writes to files in this file system

dio_align
Recommended buffer alignment for direct I/O writes to files in this file system

Failure to meet these requirements may cause file reads and writes to use the normal cached model and
may cause direct I/O to be disabled for the file. Different file systems may have different requirements, as
the following table illustrates.

144 AIX Version 7.2: General programming concepts

Table 1. File system format

File system format dio_offset dio_max dio_min dio_align

JFS fixed, 4 K blk 4 K 2 MB 4 K 4 K

JFS fragmented 4 K 2 MB 4 K 4 K

JFS compressed n/a n/a n/a n/a

JFS big file 128 K 2 MB 128 K 4 K

JFS2 4 K 4 GB 4 K 4 K

Direct I/O limitations

Direct I/O is not supported for files in a compressed-file file system. Attempts to open these files with
O_DIRECT will be ignored and the files will be accessed with the normal cached I/O methods.

Direct I/O and data I/O integrity completion

Although direct I/O writes are done synchronously, they do not provide synchronized I/O data integrity
completion, as defined by POSIX. Applications that need this feature should use O_DSYNC in addition to
O_DIRECT. O_DSYNC guarantees that all of the data and enough of the metadata (for example, indirect
blocks) have written to the stable store to be able to retrieve the data after a system crash. O_DIRECT
only writes the data; it does not write the metadata.

Working with pipes
Pipes are unnamed objects created to allow two processes to communicate.

One process reads and the other process writes to the pipe file. This unique type of file is also called a
first-in-first-out (FIFO) file. The data blocks of the FIFO are manipulated in a circular queue, maintaining
read and write pointers internally to preserve the FIFO order of data. The PIPE_BUF system variable,
defined in the limits.h file, designates the maximum number of bytes guaranteed to be atomic when
written to a pipe.

The shell uses unnamed pipes to implement command pipelining. Most unnamed pipes are created by the
shell. The | (vertical) symbol represents a pipe between processes. In the following example, the output
of the ls command is printed to the screen:

ls | pr

Pipes are treated as regular files as much is possible. Normally, the current offset information is stored
in the system file table. However, because pipes are shared by processes, the read/write pointers must
be specific to the file, not to the process. File table entries are created by the open subroutine and are
unique to the open process, not to the file. Processes with access to pipes share the access through
common system file table entries.

Using pipe subroutines

The pipe subroutine creates an interprocess channel and returns two file descriptors. File descriptor 0
is opened for reading. File descriptor 1 is opened for writing. The read operation accesses the data on a
FIFO basis. These file descriptors are used with read, write, and close subroutines.

In the following example, a child process is created and sends its process ID back through a pipe:

#include <sys/types.h>
main()
{
 int p[2];
 char buf[80];
 pid_t pid;

 if (pipe(p))
 {
 perror("pipe failed");
 exit(1)'

General programming concepts 145

 }
 if ((pid=fork()) == 0)
 {
 /* in child process */
 close(p[0]); /*close unused read */
 *side of the pipe */
 sprintf(buf,"%d",getpid());
 /*construct data */
 /*to send */
 write(p[1],buf,strlen(buf)+1);
 /*write it out, including
 /*null byte */
 exit(0);
 }
 /*in parent process*/
 close(p[1]); /*close unused write side of pipe */
 read(p[0],buf,sizeof(buf)); /*read the pipe*/
 printf("Child process said: %s/n", buf);
 /*display the result */
 exit(0);
}

If a process reads an empty pipe, the process waits until data arrives. If a process writes to a pipe that
is too full (PIPE_BUF), the process waits until space is available. If the write side of the pipe is closed, a
subsequent read operation to the pipe returns an end-of-file.

Other subroutines that control pipes are the popen and pclose subroutines:
popen

Creates the pipe (using the pipe subroutine) then forks to create a copy of the caller. The child process
decides whether it is supposed to read or write, closes the other side of the pipe, then calls the shell
(using the execl subroutine) to run the desired process.

The parent closes the end of the pipe it did not use. These closes are necessary to make end-of-file
tests work correctly. For example, if a child process intended to read the pipe does not close the write
end of the pipe, it will never see the end of file condition on the pipe, because there is one write
process potentially active.

The conventional way to associate the pipe descriptor with the standard input of a process is:

close(p[1]);
close(0);
dup(p[0]);
close(p[0]);

The close subroutine disconnects file descriptor 0, the standard input. The dup subroutine returns a
duplicate of an already open file descriptor. File descriptors are assigned in ascending order and the
first available one is returned. The effect of the dup subroutine is to copy the file descriptor for the
pipe (read side) to file descriptor 0, thus standard input becomes the read side of the pipe. Finally, the
previous read side is closed. The process is similar for a child process to write from a parent.

pclose
Closes a pipe between the calling program and a shell command to be executed. Use the pclose
subroutine to close any stream opened with the popen subroutine.

The pclose subroutine waits for the associated process to end, then closes and returns the exit
status of the command. This subroutine is preferable to the close subroutine because pclose waits for
child processes to finish before closing the pipe. Equally important, when a process creates several
children, only a bounded number of unfinished child processes can exist, even if some of them have
completed their tasks. Performing the wait allows child processes to complete their tasks.

Synchronous I/O
By default, writes to files in JFS or JFS2 file systems are asynchronous.

However, JFS and JFS2 file systems support the following types of synchronous I/O:

146 AIX Version 7.2: General programming concepts

• Specified by the O_DSYNC open flag. When a file is opened using the O_DSYNC open mode, the write
() system call will not return until the file data and all file system meta-data required to retrieve the file
data are both written to their permanent storage locations.

• Specified by the O_SYNC open flag. In addition to items specified by O_DSYNC, O_SYNC specifies that
the write () system call will not return until all file attributes relative to the I/O are written to their
permanent storage locations, even if the attributes are not required to retrieve the file data.

Before the O_DSYNC open mode existed, AIX applied O_DSYNC semantics to O_SYNC. For binary
compatibility reasons, this behavior still exists. If true O_SYNC behavior is required, then both O_DSYNC
and O_SYNC open flags must be specified. Exporting the XPG_SUS_ENV=ON environment variable also
enables true O_SYNC behavior.

• Specified by the O_RSYNC open flag, and it simply applies the behaviors associated with O_SYNC or
_DSYNC to reads. For files in JFS and JFS2 file systems, only the combination of O_RSYNC | O_SYNC has
meaning, indicating that the read system call will not return until the file's access time is written to its
permanent storage location.

File status
File status information resides in the i-node.

The stat subroutines are used to return information on a file. The stat subroutines report file type, file
owner, access mode, file size, number of links, i-node number, and file access times. These subroutines
write information into a data structure designated by the Buffer variable. The process must have search
permission for the directories in the path to the designated file.

Subroutine Description

stat Subroutine that returns the information about files named by the Path
parameter. If the size of the file cannot be represented in the structure
designated by the Buffer variable, stat will fail with the errno set to
EOVERFLOW.

lstat Subroutine that provides information about a symbolic link, and the stat
subroutine returns information about the file referenced by the link.

fstat Returns information from an open file using the file descriptor.

The statfs, fstafs, and ustat subroutines return status information about a file system.

Subroutine Description

fstatfs Returns the information about the file system that contains the file
associated with the given file descriptor. The structure of the returned
information is described in the /usr/include/sys/statfs.h file for the statfs
and fstatfs subroutines and in the ustat.h file for the ustat subroutine.

statfs Returns information about the file system that contains the file specified by
the Path parameter.

ustat Returns information about a mounted file system designated by the Device
variable. This device identifier is for any given file and can be determined
by examining the st_dev field of the stat structure defined in the /usr/
include/sys/stat.h file. The ustat subroutine is superseded by the statfs
and fstatfs subroutines.

utimes and utime Also affect file status information by changing the file access and
modification time in the i-node.

General programming concepts 147

File accessibility
Every file is created with an access mode. Each access mode grants read, write, or execute permission to
users, the user's group, and all other users.

The access bits on a newly created file are a result of the reverse of the umask bits ANDed with the
file-creation mode bits set by the creating process. When a new file is created by a process, the operating
system performs the following actions:

• Determines the permissions of the creating process
• Retrieves the appropriate umask value
• Reverses the umask value
• Uses the AND operation to combine the permissions of the creating process with the reverse of the

umask value

For example, if an existing file has the 027 permissions bits set, the user is not allowed any permissions.
Write permission is granted to the group. Read, write, and execute access is set for all others. The umask
value of the 027 permissions modes would be 750 (the opposite of the original permissions). When 750
is ANDed with 666 (the file creation mode bits set by the system call that created the file), the actual
permissions for the file are 640. Another representation of this example is:

027 = _ _ _ _ W _ R W X Existing file access mode
750 = R W X R _ X _ _ _ Reverse (umask) of original
 permissions
666 = R W _ R W _ R W _ File creation access mode
ANDED TO
750 = R W X R _ X _ _ _ The umask value
640 = R W _ R _ _ _ _ _ Resulting file access mode

Subroutine Description

access subroutine Investigates and reports on the accessibility mode of the file named in the
Pathname parameter. This subroutine uses the real user ID and the real
group ID instead of the effective user and group ID. Using the real user and
group IDs allows programs with the set-user-ID and set-group-ID access
modes to limit access only to users with proper authorization.

chmod and fchmod
subroutines

Changes file access permissions.

chown subroutine Resets the ownership field of the i-node for the file and clears the previous
owner. The new information is written to the i-node and the process
finishes. The chmod subroutine works in similar fashion, but the permission
mode flags are changed instead of the file ownership.

umask Sets and gets the value of the file creation mask.

In the following example, the user does not have access to the file secrets. However, when the program
special is run and the access mode for the program is set-uID root, the program can access the file.
The program must use the access subroutine to prevent subversion of system security.

$ ls -l
total 0
-r-s--x--x 1 root system 8290 Jun 09 17:07 special
-rw------- 1 root system 1833 Jun 09 17:07 secrets
$ cat secrets
cat: cannot open secrets

The access subroutine must be used by any set-uID or set-gID program to forestall this type of intrusion.
Changing file ownership and access modes are actions that affect the i-node, not the data in the file. To
make these changes, the owner of the process must have root user authority or own the file.

148 AIX Version 7.2: General programming concepts

Creating new file system types
If it is necessary to create a new type of file system, file system helpers and mount helpers must be
created.

This section provides information about the implementation specifics and execution syntax of file system
helpers and mount helpers.

File system helpers

To enable support of multiple file system types, most file system commands do not contain the code
that communicates with individual file systems. Instead, the commands collect parameters, file system
names, and other information not specific to one file system type and then pass this information to a
back-end program. The back end understands specific information about the relevant file system type
and does the detail work of communicating with the file system. Back-end programs used by file system
commands are known as file system helpers and mount helpers.

To determine the appropriate file system helper, the front-end command looks for a helper under the /
sbin/helpers/vfstype/command file, where vfstype matches the file system type found in the /etc/vfs
file and command matches the name of the command being executed. The flags passed to the front-end
command are passed to the file system helper.

One required file system helper that needs to be provided, called fstype, does not match a command
name. This helper is used to identify if a specified logical volume contains a file system of the vfstype of
the helper.

• The helper returns 0 if the logical volume does not contain a file system of its type. A return value of 0
indicates the logical volume does not contain a log.

• The helper returns 1 if the logical volume does contain a file system of its type and the file system does
not need a separate device for a log. A return value of 1 indicates the logical volume does contain a log.

• The helper returns 2 if the logical volume does contain a file system of its type and the file system does
need a separate device for a log. If the -l flag is specified, the fstype helper should check for a log of its
file system type on the specified logical volume.

Obsolete file system helper mechanism

This section describes the obsolete file system helper mechanism that was used on previous versions of
AIX. This mechanism is still available but should not be used anymore.

File system helper operations

The following table lists the possible operations requested of a helper in the /usr/include/fshelp.h file:

Helper operations Value

#define FSHOP_NULL 0

#define FSHOP_CHECK 1

#define FSHOP_CHGSIZ 2

#define FSHOP_FINDATA 3

#define FSHOP_FREE 4

#define FSHOP_MAKE 5

#define FSHOP_REBUILD 6

#define FSHOP_STATFS 7

#define FSHOP_STAT 8

#define FSHOP_USAGE 9

#define FSHOP_NAMEI 10

#define FSHOP_DEBUG 11

General programming concepts 149

However, the JFS file system supports only the following operations:

Operation Value Corresponding Command

#define FSHOP_CHECK 1 fsck

#define FSHOP_CHGSIZ 2 chfs

#define FSHOP_MAKE 5 mkfs

#define FSHOP_STATFS 7 df

#define FSHOP_NAMEI 10 ff

File system helper execution syntax

The execution syntax of the file system helper is as follows:

OpName OpKey FilsysFileDescriptor PipeFileDescriptor Modeflags
DebugLevel OpFlags

OpName
Specifies the arg0 parameter when the program invokes the helper. The value of the OpName field
appears in a list of processes (see the ps command).

OpKey
Corresponds to the available helper operations. Thus, if the OpKey value is 1, the fsck (file system
check) operation is being requested.

FilsysFileDescriptor
Indicates the file descriptor on which the file system has been opened by the program.

PipeFileDescriptor
Indicates the file descriptor of the pipe (see the pipe subroutine) that is open between the original
program and the helper program. This channel allows the helper to communicate with the front-end
program.

Example: The helper sends an indication of its success or failure through the pipe, which can affect
further front-end processing. Also, if the debug level is high enough, the helper can have additional
information to send to the original program.

Modeflags
Provides an indication of how the helper is being invoked and can affect the behavior of the helper,
especially in regard to error reporting. Mode flags are defined in the /usr/include/fshelp.h file:

 Flags Indicator
#define FSHMOD_INTERACT_FLAG "i"
#define FSHMOD_FORCE_FLAG "f"
#define FSHMOD_NONBLOCK_FLAG "n"
#define FSHMOD_PERROR_FLAG "p"
#define FSHMOD_ERRDUMP_FLAG "e"
#define FSHMOD_STANDALONE_FLAG "s"
#define FSHMOD_IGNDEVTYPE_FLAG "I"

Example: The FSHMOD_INTERACT flag indicates whether the command is being run interactively
(determined by testing the isatty subroutine on the standard input). Not every operation uses all (or
any) of these modes.

DebugLevel
Determines the amount of debugging information required: the higher the debugging level, the more
detailed the information returned.

OpFlags
Includes the actual device (or devices) on which the operation is to be performed and any other
options specified by the front end.

150 AIX Version 7.2: General programming concepts

Sample helper invocations

The actual invocation of the file system helper for fsck -fp /user is as follows:

execl("/etc/helpers/v3fshelpers","fshop_check","1","3","5","ifp",
 "0","devices=/dev/lv02,fast,preen,mounted")

In this example:

• The executable execd is /etc/helper/v3fshelpers.
• The name appearing in a listing of processes (ps command) is fshop_check.
• The operation requested is FSHOP_CHECK as represented by the value "1".
• The file system is open on file descriptor "3".
• The pipe through which the helper can send information to the front-end program is open on file

descriptor "5".
• The ModeFlags string is "-ifp", indicating interactive mode plus force and perror modes.
• The DebugLevel is 0, so no extra debugging output is returned to the fsck command.
• The OpFlags string tells the back-end programs which device the operation is to be performed on

(/dev/lv02), the options requested (fast and preen), and notes that the device is mounted. For the
fsck command, no changes will be made because the fsck command does not work on mounted file
systems.

Another example of how file system helpers are invoked uses the mkfs command. To create a JFS file
system on the existing logical volume named /dev/lv02, type the following to create a mount point:

mkfs /junk

If you want to create a file system and know only the device you want to mount it to, type:

mkfs /dev/lv02

In either case, the following file system helper is invoked:

execl ("/etc/helpers/v3fshelpers", "fshop_make", "5", "3", "5", "-ip",\
 "0", "name=/junk,label=/junk,dev=/dev/lv02")

The operation requested is now FSHOP_MAKE. The mode is interactive and perror. The OpFlags
string includes both the mount point and the device.

Mount helpers

The mount command is a front-end program that uses a helper to communicate with specific file systems.
Helper programs for the mount and umount (or unmount) commands are called mount helpers.

Like other file system-specific commands, the mount command collects the parameters and options
given at the command line and interprets that information within the context of the file system
configuration information found in the /etc/filesystems file. Using the information in the /etc/filesystems
file, the command invokes the appropriate mount helper for the type of file system involved. For example,
if the user types the following, the mount command checks the /etc/filesystems file for the stanza that
describes the /test file system.

mount /test

From the /etc/filesystems file, the mount command determines that the /test file system is a remote
NFS mount from the node named host1. The mount command also notes any options associated with
the mount.

An example /etc/filesystems file stanza is as follows:

/test:
 dev = /export
 vfs = nfs

General programming concepts 151

 nodename = host1
 options = ro,fg,hard,intr

The file system type (nfs in our example) determines which mount helper to invoke. The command
compares the file system type to the first fields in the /etc/vfs file. The field that matches will have the
mount helper as its third field.

Mount helper execution syntax

The following is a sample of the execution syntax of the mount helper:

/etc/helpers/nfsmnthelp M 0 host1 /export /test ro,fg,hard,intr

Both the mount and unmount commands have six parameters. The first four parameters are the same for
both commands:
operation

Indicates operation requested of the helper. Values are either M (mount operation), Q (query
operation), or U (unmount operation). The query operation is obsolete.

debuglevel
Gives the numeric parameter for the -D flag. Neither the mount nor the unmount commands support
the -D flag, so the value is 0.

nodename
Names the node for a remote mount or a null string for local mounts. The mount or unmount
commands do not invoke a mount helper if the nodename parameter is null.

object
Names the local or remote device, directory, or file that is being mounted or unmounted. Not all
file systems support all combinations. For example, most remote file systems do not support device
mounts, while most local file systems do not support anything else.

The remaining parameters for the mount command are as follows:
mount point

Names the local directory or file where the object is to be mounted.
options

Lists any file system-specific options, separated by commas. Information for this parameter comes
from the options field of the relevant stanza in the /etc/filesystems file or from the -o Options flag
on the command line (mount -o Options). The mount command also recognizes the -r (read-only) flag
and converts it to the string ro in this field.

The remaining parameters for the unmount command are as follows:

vfsNumber
Gives the unique number that identifies the mount being undone. The unique number is returned by
the vmount call and can be retrieved by calling the mntctl or stat subroutine. For the mount helper,
this parameter is used as the first parameter to the uvmount subroutine call that actually does the
unmount.

flag
Gives the value of the second parameter to the uvmount subroutine. The value is 1 if the unmount
operation is forced using the -f flag (umount -f). Otherwise, the value is 0. Not all file systems support
forced unmounts.

Logical volume programming
The Logical Volume Manager (LVM) consists of the library of LVM subroutines and the logical volume
device driver, described as follows:

• Library of LVM subroutines. These subroutines define volume groups and maintain the logical and
physical volumes of volume groups.

• Logical volume device driver. The logical volume device driver is a pseudo-device driver that processes
all logical I/O. It exists as a layer between the file system and the disk device drivers. The logical

152 AIX Version 7.2: General programming concepts

volume device driver converts a logical address to a physical address, handles mirroring and bad-block
relocation, and then sends the I/O request to the specific disk device driver. Interfaces to the logical
volume device driver are provided by the open, close, read, write, and ioctl subroutines.

For a description of the readx and writex extension parameters and those ioctl operations specific to the
logical volume device driver, see the Kernel Extensions and Device Support Programming Concepts.

For more information about logical volumes, see the Operating system and device management.

Library of logical volume subroutines
LVM subroutines define and maintain the logical and physical volumes of a volume group.

System management commands use these subroutines to perform system management for the logical
and physical volumes of a system. The programming interface for the library of LVM subroutines is
available to provide alternatives to or expand the function of the system management commands for
logical volumes.

Note: The LVM subroutines use the sysconfig system call, which requires root user authority, to query and
update kernel data structures describing a volume group. You must have root user authority to use the
services of the LVM subroutine library.

The following services are available:

Services Description

lvm_querylv Queries a logical volume and returns all pertinent information.

lvm_querypv Queries a physical volume and returns all pertinent information.

lvm_queryvg Queries a volume group and returns pertinent information.

lvm_queryvgs Queries the volume groups of the system and returns information for groups that
are varied online.

J2_CFG_ASSIST ioctl operation
The J2_CFG_ASSIST ioctl operation returns the performance statistics of a JFS2 file system.

The J2_CFG_ASSIST ioctl operation returns a cfg_assist structure, as defined in the /usr/include/sys/
lvdd.h file. The structure contains the following fields:

Field Description

throughput Average throughput of disks under the file system in MB/sec. For supported
storage devices, throughput is obtained from the device; otherwise runtime
throughput of the file system is returned.

latency Average latency of all disks under the file system in milliseconds. For
supported storage devices, throughput is obtained from the device;
otherwise runtime latency of the file system is returned.

flags Flags to be used. For a list of valid flags, see the /usr/include/sys/lvdd.h
file.

vg_max_transfer The maximum transfer size of the volume group (VG), in KB. The
vg_max_transfer field value is the maximum amount of data that can be
transferred in one I/O request to the disks of the volume group.

write_atomicity Write atomicity in bytes. The write_atomicity field value is the largest number
of bytes that are not broken up when they are written on aligned boundaries.

The J2_CFG_ASSIST ioctl operation returns the following parameters only for supported storage devices;
otherwise it returns null values.

General programming concepts 153

Parameter Description

atomicWriteAlignment Required alignment for write atomicity in bytes.

ideal_sequential_read_siz
e

Ideal, sequential, read size of the disks under the file system in KB.

ideal_sequential_write_siz
e

Ideal, sequential, write size of the disks under the file system in KB.

ideal_random_read_size Ideal, random, read size of the disks under the file system in KB.

ideal_random_write_size Ideal, random, write size of the disks under the file system in KB.

stripsize The strip size of the disks under the file system in KB. This is the amount of
data that is contiguous on a single spindle in the raid array.

stripesize The value of the Stripesize parameter is in KB. (Stripesize = stripsize ×
number of spindles in a RAID array - parity.)

parallelism The number of spindles that comprise the RAID device that can be
concurrently read from, or written to, in parallel.

Return values

When you complete this operation, a value of 0 is returned. If the operation fails, a value of -1 is returned
and the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that the copy of the parameter failed.

ENOMEM Indicates that the allocation of the memory failed.

EAGAIN Indicates that the runtime statistics are unavailable for any of the physical
volumes under the file system. Try again after more I/O has been issued to
the file system.

Floating-point exceptions
This topic provides information about floating-point exceptions and how your programs can detect and
handle them.

The Institute of Electrical and Electronics Engineers (IEEE) defines a standard for floating-point
exceptions called the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754). This standard
defines five types of floating-point exception that must be signaled when detected:

• Invalid operation
• Division by zero
• Overflow
• Underflow
• Inexact calculation

When one of these exceptions occurs in a user process, it is signaled either by setting a flag or taking a
trap. By default, the system sets a status flag in the Floating-Point Status and Control registers (FPSCR),
indicating the exception has occurred. Once the status flags are set by an exception, they are cleared
only when the process clears them explicitly or when the process ends. The operating system provides
subroutines to query, set, or clear these flags.

The system can also cause the floating-point exception signal (SIGFPE) to be raised if a floating-point
exception occurs. Because this is not the default behavior, the operating system provides subroutines
to change the state of the process so the signal is enabled. When a floating-point exception raises the
SIGFPE signal, the process terminates and produces a core file if no signal-handler subroutine is present
in the process. Otherwise, the process calls the signal-handler subroutine.

154 AIX Version 7.2: General programming concepts

Floating-point exception subroutines

Floating-point exception subroutines can be used to:

• Change the execution state of the process
• Enable the signaling of exceptions
• Disable exceptions or clear flags
• Determine which exceptions caused the signal
• Test the exception sticky flags

The following subroutines are provided to accomplish these tasks:

Subroutine Task

fp_any_xcp or fp_divbyzero Test the exception sticky flags

fp_enable or fp_enable_all Enable the signaling of exceptions

fp_inexact, fp_invalid_op, fp_iop_convert,
fp_iop_infdinf, fp_iop_infmzr, fp_iop_infsinf,
fp_iop_invcmp, fp_iop_snan, fp_iop_sqrt,
fp_iop_vxsoft, fp_iop_zrdzr, or fp_overflow

Test the exception sticky flags

fp_sh_info Determines which exceptions caused the signal

fp_sh_set_stat Disables exceptions or clear flags

fp_trap Changes the execution state of the process

fp_underflow Tests the exception sticky flags

sigaction Installs signal handler

Floating-point trap handler operation

To generate a trap, a program must change the execution state of the process using the fp_trap
subroutine and enable the exception to be trapped using the fp_enable or fp_enable_all subroutine.

Changing the execution state of the program may slow performance because floating-point trapping
causes the process to execute in serial mode.

When a floating-point trap occurs, the SIGFPE signal is raised. By default, the SIGFPE signal causes the
process to terminate and produce a core file. To change this behavior, the program must establish a signal
handler for this signal. See the sigaction, sigvec, or signal subroutines for more information on signal
handlers.

Exceptions: disabled and enabled comparison

Refer to the following lists for an illustration of the differences between the disabled and enabled
processing states and the subroutines that are used.

Exceptions-disabled model

The following subroutines test exception flags in the disabled processing state:

• fp_any_xcp
• fp_clr_flag
• fp_divbyzero
• fp_inexact
• fp_invalid_op
• fp_iop_convert
• fp_iop_infdinf

General programming concepts 155

• fp_iop_infmzr
• fp_iop_infsi
• fp_iop_invcmp
• fp_iop_snan
• fp_iop_sqrt
• fp_iop_vxsoft
• fp_iop_zrdzr
• fp_overflow
• fp_underflow

Exceptions-enabled model

The following subroutines function in the enabled processing state:

Subroutine Processing state

fp_enable or fp_enable_all Enable the signaling of exceptions

fp_sh_info Determines which exceptions caused the signal

fp_sh_set_stat Disables exceptions or clear flags

fp_trap Changes the execution state of the process

sigaction Installs signal handler

Imprecise trapping modes

Some systems have imprecise trapping modes. This means the hardware can detect a floating-point
exception and deliver an interrupt, but processing may continue while the signal is delivered. As a result,
the instruction address register (IAR) is at a different instruction when the interrupt is delivered.

Imprecise trapping modes cause less performance degradation than precise trapping mode. However,
some recovery operations are not possible, because the operation that caused the exception cannot
be determined or because subsequent instruction may have modified the argument that caused the
exception.

To use imprecise exceptions, a signal handler must be able to determine if a trap was precise or
imprecise.

Precise traps

In a precise trap, the instruction address register (IAR) points to the instruction that caused the trap.
A program can modify the arguments to the instruction and restart it, or fix the result of the operation
and continue with the next instruction. To continue, the IAR must be incremented to point to the next
instruction.

Imprecise traps

In an imprecise trap, the IAR points to an instruction beyond the one that caused the exception. The
instruction to which the IAR points has not been started. To continue execution, the signal handler does
not increment the IAR.

To eliminate ambiguity, the trap_mode field is provided in the fp_sh_info structure. This field specifies
the trapping mode in effect in the user process when the signal handler was entered. This information can
also be determined by examining the Machine Status register (MSR) in the mstsave structure.

The fp_sh_info subroutine allows a floating-point signal handler to determine if the floating-point
exception was precise or imprecise.

Note: Even when precise trapping mode is enabled some floating-point exceptions may be
imprecise (such as operations implemented in software). Similarly, in imprecise trapping mode
some exceptions may be precise.

156 AIX Version 7.2: General programming concepts

When using imprecise exceptions, some parts of your code may require that all floating-point exceptions
are reported before proceeding. The fp_flush_imprecise subroutine is provided to accomplish this. It is
also recommended that the atexit subroutine be used to register the fp_flush_imprecise subroutine to
run at program exit. Running at exit ensures that the program does not exit with unreported imprecise
exceptions.

Hardware-specific subroutines

Some systems have hardware instructions to compute the square root of a floating-point number and
to convert a floating-point number to an integer. Models not having these hardware instructions use
software subroutines to do this. Either method can cause a trap if the invalid operation exception is
enabled. The software subroutines report, through the fp_sh_info subroutine, that an imprecise exception
occurred, because the IAR does not point to a single instruction that can be restarted to retry the
operation.

Example of a floating-point trap handler

/*
 * This code demonstates a working floating-point exception
 * trap handler. The handler simply identifies which
 * floating-point exceptions caused the trap and return.
 * The handler will return the default signal return
 * mechanism longjmp().
 */

#include <signal.h>
#include <setjmp.h>
#include <fpxcp.h>
#include <fptrap.h>
#include <stdlib.h>
#include <stdio.h>

#define EXIT_BAD -1
#define EXIT_GOOD 0

/*
 * Handshaking variable with the signal handler. If zero,
 * then the signal hander returns via the default signal
 * return mechanism; if non-zero, then the signal handler
 * returns via longjmp.
 */
static int fpsigexit;
#define SIGRETURN_EXIT 0
#define LONGJUMP_EXIT 1

static jmp_buf jump_buffer; /* jump buffer */
#define JMP_DEFINED 0 /* setjmp rc on initial call */
#define JMP_FPE 2 /* setjmp rc on return from */
 /* signal handler */

/*
 * The fp_list structure allows text descriptions
 * of each possible trap type to be tied to the mask
 * that identifies it.
 */

typedef struct
 {
 fpflag_t mask;
 char *text;
 } fp_list_t;

/* IEEE required trap types */

fp_list_t
trap_list[] =
 {
 { FP_INVALID, "FP_INVALID"},
 { FP_OVERFLOW, "FP_OVERFLOW"},

General programming concepts 157

 { FP_UNDERFLOW, "FP_UNDERFLOW"},
 { FP_DIV_BY_ZERO, "FP_DIV_BY_ZERO"},
 { FP_INEXACT, "FP_INEXACT"}
 };

/* INEXACT detail list -- this is an system extension */

fp_list_t
detail_list[] =
 {
 { FP_INV_SNAN, "FP_INV_SNAN" } ,
 { FP_INV_ISI, "FP_INV_ISI" } ,
 { FP_INV_IDI, "FP_INV_IDI" } ,
 { FP_INV_ZDZ, "FP_INV_ZDZ" } ,
 { FP_INV_IMZ, "FP_INV_IMZ" } ,
 { FP_INV_CMP, "FP_INV_CMP" } ,
 { FP_INV_SQRT, "FP_INV_SQRT" } ,
 { FP_INV_CVI, "FP_INV_CVI" } ,
 { FP_INV_VXSOFT, "FP_INV_VXSOFT" }
 };

/*
 * the TEST_IT macro is used in main() to raise
 * an exception.
 */

#define TEST_IT(WHAT, RAISE_ARG) \
 { \
 puts(strcat("testing: ", WHAT)); \
 fp_clr_flag(FP_ALL_XCP); \
 fp_raise_xcp(RAISE_ARG); \
 }

/*
 * NAME: my_div
 *
 * FUNCTION: Perform floating-point division.
 *
 */

double
my_div(double x, double y)
 {
 return x / y;
 }

/*
 * NAME: sigfpe_handler
 *
 * FUNCTION: A trap handler that is entered when
 * a floating-point exception occurs. The
 * function determines what exceptions caused
 * the trap, prints this to stdout, and returns
 * to the process which caused the trap.
 *
 * NOTES: This trap handler can return either via the
 * default return mechanism or via longjmp().
 * The global variable fpsigexit determines which.
 *
 * When entered, all floating-point traps are
 * disabled.
 *
 * This sample uses printf(). This should be used
 * with caution since printf() of a floating-
 * point number can cause a trap, and then
 * another printf() of a floating-point number
 * in the signal handler will corrupt the static
 * buffer used for the conversion.
 *
 * OUTPUTS: The type of exception that caused
 * the trap.
 */

158 AIX Version 7.2: General programming concepts

static void
sigfpe_handler(int sig,
 int code,
 struct sigcontext *SCP)
 {
 struct mstsave * state = &SCP->sc_jmpbuf.jmp_context;
 fp_sh_info_t flt_context; /* structure for fp_sh_info()
 /* call */
 int i; /* loop counter */
 extern int fpsigexit; /* global handshaking variable */
 extern jmp_buf jump_buffer /* */

 /*
 * Determine which floating-point exceptions caused
 * the trap. fp_sh_info() is used to build the floating signal
 * handler info structure, then the member
 * flt_context.trap can be examined. First the trap type is
 * compared for the IEEE required traps, and if the trap type
 * is an invalid operation, the detail bits are examined.
 */

 fp_sh_info(SCP, &flt_context, FP_SH_INFO_SIZE);

static void
sigfpe_handler(int sig,
 int code,
 struct sigcontext *SCP)
 {
 struct mstsave * state = &SCP->sc_jmpbuf.jmp_context;
 fp_sh_info_t flt_context; /* structure for fp_sh_info()
 /* call */
 int i; /* loop counter */
 extern int fpsigexit; /* global handshaking variable */
 extern jmp_buf jump_buffer; /* */

 /*
 * Determine which floating-point exceptions caused
 * the trap. fp_sh_info() is used to build the floating signal
 * handler info structure, then the member
 * flt_context.trap can be examined. First the trap type is
 * compared for the IEEE required traps, and if the trap type
 * is an invalid operation, the detail bits are examined.
 */

 fp_sh_info(SCP, &flt_context, FP_SH_INFO_SIZE);

 for (i = 0; i < (sizeof(trap_list) / sizeof(fp_list_t)); i++)
 {
 if (flt_context.trap & trap_list[i].mask)
 (void) printf("Trap caused by %s error\n", trap_list[i].text);
 }

 if (flt_context.trap & FP_INVALID)
 {
 for (i = 0; i < (sizeof(detail_list) / sizeof(fp_list_t)); i++)
 {
 if (flt_context.trap & detail_list[i].mask)
 (void) printf("Type of invalid op is %s\n", detail_list[i].text);
 }
 }

 /* report which trap mode was in effect */

 switch (flt_context.trap_mode)
 {
 case FP_TRAP_OFF:
 puts("Trapping Mode is OFF");
 break;

 case FP_TRAP_SYNC:
 puts("Trapping Mode is SYNC");
 break;

 case FP_TRAP_IMP:
 puts("Trapping Mode is IMP");
 break;

General programming concepts 159

 case FP_TRAP_IMP_REC:
 puts("Trapping Mode is IMP_REC");
 break;

 default:
 puts("ERROR: Invalid trap mode");
 }

 if (fpsigexit == LONGJUMP_EXIT)
 {
 /*
 * Return via longjmp. In this instance there is no need to
 * clear any exceptions or disable traps to prevent
 * recurrence of the exception, because on return the
 * process will have the signal handler's floating-point
 * state.
 */
 longjmp(jump_buffer, JMP_FPE);
 }
 else
 {
 /*
 * Return via default signal handler return mechanism.
 * In this case you must take some action to prevent
 * recurrence of the trap, either by clearing the
 * exception bit in the fpscr or by disabling the trap.
 * In this case, clear the exception bit.
 * The fp_sh_set_stat routine is used to clear
 * the exception bit.
 */

 fp_sh_set_stat(SCP, (flt_context.fpscr & ((fpstat_t) ~flt_context.trap)));

 /*
 * Increment the iar of the process that caused the trap,
 * to prevent re-execution of the instruction.
 * The FP_IAR_STAT bit in flt_context.flags indicates if
 * state->iar points to an instruction that has logically
 * started. If this bit is true, state->iar points to
 * an operation that has started and will cause another
 * exception if it runs again. In this case you want to
 * continue execution and ignore the results of that
 * operation, so the iar is advanced to point to the
 * next instruction. If the bit is false, the iar already
 * points to the next instruction that must run.
 */

 if (flt_context.flags & FP_IAR_STAT)
 {
 puts("Increment IAR");
 state->iar += 4;
 }
 }
 return;
 }

/*
 * NAME: main
 *
 * FUNCTION: Demonstrate the sigfpe_handler trap handler.
 *
 */

int
main(void)
 {
 struct sigaction response;
 struct sigaction old_response;
 extern int fpsigexit;
 extern jmp_buf jump_buffer;
 int jump_rc;
 int trap_mode;
 double arg1, arg2, r;

 /*
 * Set up for floating-point trapping. Do the following:

160 AIX Version 7.2: General programming concepts

 * 1. Clear any existing floating-point exception flags.
 * 2. Set up a SIGFPE signal handler.
 * 3. Place the process in synchronous execution mode.
 * 4. Enable all floating-point traps.
 */

 fp_clr_flag(FP_ALL_XCP);
 (void) sigaction(SIGFPE, NULL, &old_response);
 (void) sigemptyset(&response.sa_mask);
 response.sa_flags = FALSE;
 response.sa_handler = (void (*)(int)) sigfpe_handler;
 (void) sigaction(SIGFPE, &response, NULL);
 fp_enable_all();

 /*
 * Demonstate trap handler return via default signal handler
 * return. The TEST_IT macro will raise the floating-point
 * exception type given in its second argument. Testing
 * is done in this case with precise trapping, because
 * it is supported on all platforms to date.
 */

 trap_mode = fp_trap(FP_TRAP_SYNC);
 if ((trap_mode == FP_TRAP_ERROR) ||
 (trap_mode == FP_TRAP_UNIMPL))
 {
 printf("ERROR: rc from fp_trap is %d\n",
 trap_mode);
 exit(-1);
 }

 (void) printf("Default signal handler return: \n");
 fpsigexit = SIGRETURN_EXIT;

 TEST_IT("div by zero", FP_DIV_BY_ZERO);
 TEST_IT("overflow", FP_OVERFLOW);
 TEST_IT("underflow", FP_UNDERFLOW);
 TEST_IT("inexact", FP_INEXACT);

 TEST_IT("signaling nan", FP_INV_SNAN);
 TEST_IT("INF - INF", FP_INV_ISI);
 TEST_IT("INF / INF", FP_INV_IDI);
 TEST_IT("ZERO / ZERO", FP_INV_ZDZ);
 TEST_IT("INF * ZERO", FP_INV_IMZ);
 TEST_IT("invalid compare", FP_INV_CMP);
 TEST_IT("invalid sqrt", FP_INV_SQRT);
 TEST_IT("invalid coversion", FP_INV_CVI);
 TEST_IT("software request", FP_INV_VXSOFT);

 /*
 * Next, use fp_trap() to determine what the
 * the fastest trapmode available is on
 * this platform.
 */

 trap_mode = fp_trap(FP_TRAP_FASTMODE);
 switch (trap_mode)
 {
 case FP_TRAP_SYNC:
 puts("Fast mode for this platform is PRECISE");
 break;

 case FP_TRAP_OFF:
 puts("This platform dosn't support trapping");
 break;

 case FP_TRAP_IMP:
 puts("Fast mode for this platform is IMPRECISE");
 break;

General programming concepts 161

 case FP_TRAP_IMP_REC:
 puts("Fast mode for this platform is IMPRECISE RECOVERABLE");
 break;

 default:
 printf("Unexpected return code from fp_trap(FP_TRAP_FASTMODE): %d\n",
 trap_mode);
 exit(-2);
 }

 /*
 * if this platform supports imprecise trapping, demonstate this.
 */

 trap_mode = fp_trap(FP_TRAP_IMP);
 if (trap_mode != FP_TRAP_UNIMPL)
 {
 puts("Demonsrate imprecise FP execeptions");
 arg1 = 1.2;
 arg2 = 0.0;
 r = my_div(arg1, arg2);
 fp_flush_imprecise();
 }

 /* demonstate trap handler return via longjmp().
 */

 (void) printf("longjmp return: \n");
 fpsigexit = LONGJUMP_EXIT;
 jump_rc = setjmp(jump_buffer);

 switch (jump_rc)
 {
 case JMP_DEFINED:
 (void) printf("setjmp has been set up; testing ...\n");
 TEST_IT("div by zero", FP_DIV_BY_ZERO);
 break;

 case JMP_FPE:
 (void) printf("back from signal handler\n");
 /*
 * Note that at this point the process has the floating-
 * point status inherited from the trap handler. If the
 * trap hander did not enable trapping (as the example
 * did not) then this process at this point has no traps
 * enabled. We create a floating-point exception to
 * demonstrate that a trap does not occur, then re-enable
 * traps.
 */

 (void) printf("Creating overflow; should not trap\n");
 TEST_IT("Overflow", FP_OVERFLOW);
 fp_enable_all();
 break;

 default:
 (void) printf("unexpected rc from setjmp: %d\n", jump_rc);
 exit(EXIT_BAD);
 }
 exit(EXIT_GOOD);
 }

Related information
fp_clr_flag, fp_set_flag, fp_read_flag, fp_swag
fp_raise_xcp
sigaction, sigvec, snap Command

162 AIX Version 7.2: General programming concepts

Input and output handling
This topic provides an introduction to programming considerations for input and output handling and the
input and output (I/O) handling subroutines.

The I/O library subroutines can send data to or from either devices or files. The system treats devices as if
they were I/O files. For example, you must also open and close a device just as you do a file.

Some of the subroutines use standard input and standard output as their I/O channels. For most of the
subroutines, however, you can specify a different file for the source or destination of the data transfer. For
some subroutines, you can use a file pointer to a structure that contains the name of the file; for others,
you can use a file descriptor (that is, the positive integer assigned to the file when it is opened).

The I/O subroutines stored in the C Library (libc.a) provide stream I/O. To access these stream I/O
subroutines, you must include the stdio.h file by using the following statement:

#include <stdio.h>

Some of the I/O library subroutines are macros defined in a header file and some are object modules of
functions. In many cases, the library contains a macro and a function that do the same type of operation.
Consider the following when deciding whether to use the macro or the function:

• You cannot set a breakpoint for a macro using the dbx program.
• Macros are usually faster than their equivalent functions because the preprocessor replaces the macros

with actual lines of code in the program.
• Macros result in larger object code after being compiled.
• Functions can have side effects to avoid.

The files, commands, and subroutines used in I/O handling provide the following interfaces:

Low-level
The low-level interface provides basic open and close functions for files and devices.

Stream
The stream interface provides read and write I/O for pipes and FIFOs.

Terminal
The terminal interface provides formatted output and buffering.

Asynchronous
The asynchronous interface provides concurrent I/O and processing.

Input Language
The input language interface uses the lex and yacc commands to generate a lexical analyzer and a
parser program for interpreting I/O.

Low-level I/O interfaces

Low-level I/O interfaces are direct entry points into a kernel, providing functions such as opening files,
reading to and writing from files, and closing files.

The line command provides the interface that allows one line from standard input to be read, and the
following subroutines provide other low-level I/O functions:

open, openx, or creat
Prepare a file, or other path object, for reading and writing by means of an assigned file descriptor

read, readx, readv, or readvx
Read from an open file descriptor

write, writex, writev, or writevx
Write to an open file descriptor

close
Relinquish a file descriptor

General programming concepts 163

The open and creat subroutines set up entries in three system tables. A file descriptor indexes the first
table, which functions as a per process data area that can be accessed by read and write subroutines.
Each entry in this table has a pointer to a corresponding entry in the second table.

The second table is a per-system database, or file table, that allows an open file to be shared among
several processes. The entries in this table indicate if the file was open for reading, writing, or as a pipe,
and when the file was closed. There is also an offset to indicate where the next read or write will take
place and a final pointer to indicates entry to the third table, which contains a copy of the file's i-node.

The file table contains entries for every instance of an open or create subroutine on the file, but the
i-node table contains only one entry for each file.

Note: While processing an open or creat subroutine for a special file, the system always calls the device's
open subroutine to allow any special processing (such as rewinding a tape or turning on a data-terminal-
ready modem lead). However, the system uses the close subroutine only when the last process closes
the file (that is, when the i-node table entry is deallocated). This means that a device cannot maintain
or depend on a count of its users unless an exclusive-use device (that prevents a device from being
reopened before its closed) is implemented.

When a read or write operation occurs, the user's arguments and the file table entry are used to set up the
following variables:

• User address of the I/O target area
• Byte count for the transfer
• Current location in the file

If the file referred to is a character-type special file, the appropriate read or write subroutine is called to
transfer data, as well as update the count and current location. Otherwise, the current location is used to
calculate a logical block number in the file.

If the file is an ordinary file, the logical block number must be mapped to a physical block number. A
block-type special file need not be mapped. The resulting physical block number is used to read or write
the appropriate device.

Block device drivers can provide the ability to transfer information directly between the user's core image
and the device in block sizes as large as the caller requests without using buffers. The method involves
setting up a character-type special file corresponding to the raw device and providing read and write
subroutines to create a private, non-shared buffer header with the appropriate information. Separate
open and close subroutines can be provided, and a special-function subroutine can be called for magnetic
tape.

Stream I/O interfaces

Stream I/O interfaces provide data as a stream of bytes that is not interpreted by the system, which
offers more efficient implementation for networking protocols than character I/O processing. No record
boundaries exist when reading and writing using stream I/O. For example, a process reading 100 bytes
from a pipe cannot determine if the process that wrote the data into the pipe did a single write of 100
bytes, or two writes of 50 bytes, or even if the 100 bytes came from two different processes.

Stream I/Os can be pipes or FIFOs (first-in, first-out files). FIFOs are similar to pipes because they allow
the data to flow only one way (left to right). However, a FIFO can be given a name and can be accessed
by unrelated processes, unlike a pipe. FIFOs are sometimes referred to as named pipes. Because it has a
name, a FIFO can be opened using the standard I/O fopen subroutine. To open a pipe, you must call the
pipe subroutine, which returns a file descriptor, and the standard I/O fdopen subroutine to associate an
open file descriptor with a standard I/O stream.

Note: Stream I/O interfaces buffer data at the user level and cannot write the data until the fclose or
fflush Subroutine is performed, which might lead to unexpected results when mixed with file I/O such as
read() or write().

Stream I/O interfaces are accessed through the following subroutines and macros:

fclose
Closes a stream

164 AIX Version 7.2: General programming concepts

feof, ferror, clearerr, or fileno
Check the status of a stream

fflush
Write all currently buffered characters from a stream

fopen, freopen, or fdopen
Open a stream

fread or fwrite
Perform binary input

fseek, rewind, ftell, fgetpos, or fsetpos
Reposition the file pointer of a stream

getc, fgetc, getchar, or getw
Get a character or word from an input stream

gets or fgets
Get a string from a stream

getwc, fgetwc, or getwchar
Get a wide character from an input stream

getws or fgetws
Get a string from a stream

printf, fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf
Print formatted output

putc, putchar, fputc, or putw
Write a character or a word to a stream

puts or fputs
Write a string to a stream

putwc, putwchar, or fputwc
Write a character or a word to a stream

putws or fputws
Write a wide character string to a stream

scanf, fscanf, sscanf, or wsscanf
Convert formatted input

setbuf, setvbuf, setbuffer, or setlinebuf
Assign buffering to a stream

ungetc or ungetwc
Push a character back into the input stream

Terminal I/O interfaces

Terminal I/O interfaces operate between a process and the kernel, providing functions such as buffering
and formatted output. Every terminal and pseudo-terminal has a tty structure that contains the current
process group ID. This field identifies the process group to receive the signals associated with the
terminal. Terminal I/O interfaces can be accessed through the iostat command, which monitors I/O
system device loading, and the uprintfd daemon, which allows kernel messages to be written to the
system console.

Terminal characteristics can be enabled or disabled through the following subroutines:

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed
Get and set input and output baud rates

ioctl
Performs control functions associated with the terminal

termdef
Queries terminal characteristics

General programming concepts 165

tcdrain
Waits for output to complete

tcflow
Performs flow control functions

tcflush
Discards data from the specified queue

tcgetpgrp
Gets foreground process group ID

tcsendbreak
Sends a break on an asynchronous serial data line

tcsetattr
Sets terminal state

ttylock, ttywait, ttyunlock, or ttylocked
Control tty locking functions

ttyname or isatty
Get the name of a terminal

ttyslot
Finds the slot in the utmp file for the current user

Asynchronous I/O interfaces

Asynchronous I/O subroutines allow a process to start an I/O operation and have the subroutine return
immediately after the operation is started or queued. Another subroutine is required to wait for the
operation to complete (or return immediately if the operation is already finished). This means that
a process can overlap its execution with its I/O or overlap I/O between different devices. Although
asynchronous I/O does not significantly improve performance for a process that is reading from a disk file
and writing to another disk file, asynchronous I/O can provide significant performance improvements for
other types of I/O driven programs, such as programs that dump a disk to a magnetic tape or display an
image on an image display.

Although not required, a process that is performing asynchronous I/O can tell the kernel to notify it when
a specified descriptor is ready for I/O (also called signal-driven I/O). When using LEGACY AIO, the kernel
notifies the user process with the SIGIO signal. When using POSIX AIO, the sigevent structure is used by
the programmer to determine which signal for the kernel to use to notify the user process. Signals include
SIGIO, SIGUSR1, and SIGUSR2.

To use asynchronous I/O, a process must perform the following steps:

1. Establish a handler for the SIGIO signal. This step is necessary only if notification by the signal is
requested.

2. Set the process ID or the process group ID to receive the SIGIO signals. This step is necessary only if
notification by the signal is requested.

3. Enable asynchronous I/O. The system administrator usually determines whether asynchronous I/O is
loaded (enabled). Enabling occurs at system startup.

The following asynchronous I/O subroutines are provided:

aio_cancel
Cancels one or more outstanding asynchronous I/O requests

aio_error
Retrieves the error status of an asynchronous I/O request

aio_fsync
Synchronizes asynchronous files.

aio_nwait
Suspends the calling process until a certain number of asynchronous I/O requests are completed.

166 AIX Version 7.2: General programming concepts

aio_read
Reads asynchronously from a file descriptor

aio_return
Retrieves the return status of an asynchronous I/O request

aio_suspend
Suspends the calling process until one or more asynchronous I/O requests is completed

aio_write
Writes asynchronously to a file descriptor

lio_listio
Initiates a list of asynchronous I/O requests with a single call

poll or select
Check I/O status of multiple file descriptors and message queues

For use with the poll subroutine, the following header files are supplied:

poll.h
Defines the structures and flags used by the poll subroutine

aio.h
Defines the structure and flags used by the aio_read, aio_write, and aio_suspend subroutines

Storage protect keys
Storage protect keys provide a mechanism for you to improve the reliability of your programs.

Protect keys apply to memory pages and work at the page level of granularity, similar to the mprotect
subroutine, which can be used to read- or write-protect one or more pages. However, with storage keys
you can mark sections of your data for specific levels of read and write access protection. Protection by
storage keys is a function not only of the data page, but also of the thread attempting access. You can
enable certain well-defined code paths to access data that is unavailable to your larger program, thereby
encapsulating critical program data and protecting it against accidental damage.

Because access to key-protected pages is an attribute of the running thread, this mechanism extends
naturally to multithreaded applications, but with the restriction that these use only 1:1 (or system scope)
pthreads. The mprotect subroutine approach does not work reliably in a multithreaded environment,
because you have to remove protection for all threads when you want to grant access to any thread. You
can use both mechanisms simultaneously, and both are fully enforced; therefore, your program cannot
write to a write-protected page even if a protect key would otherwise allow this.

Protect keys sample uses include:

• Encapsulate your program's private data completely, limiting access to just selected code paths.
• Protect your program's private data from accidental damage by always running with read access

granted, but granting write access only when you intend to modify the data. This can be especially
useful when code in a core engine allows calls out to untrusted code.

• When multiple private keys are available, additional granularity of data protection is possible.

You can simplify debugging by designing your application with key protection in mind. Setting a page's
protect key and setting your active user keyset are both system calls, and therefore relatively expensive
operations. You should design your program so that the frequency of these operations is not excessive.

User protect keys

The following guidelines and considerations apply when using protect keys:

• Pages that are exported read-only from the kernel will continue to be visible to your program. These
pages have a protect key of UKEY_SYSTEM. This protect key is not a protect key that is under your
program's control, but is always accessible by your program.

• All of your program's memory pages initially have the user public key assigned to them. As noted above,
access to key 0 storage is always granted, making this the user public key.

General programming concepts 167

• You can set protect keys only for your normal and shared data. You cannot, for example, protect library
data, low memory shared with the kernel, or program text.

• Depending on the underlying hardware and administrative choice, only a limited number of user private
keys (typically just one) are available. When your program assigns a private key to one or more of its
pages, the data in those pages is no longer available by default. You must explicitly grant read or write
access to this data by surrounding code paths that require access with calls to a new service to manage
your active user keyset.

• The physical hardware likely supports additional protect keys that are not available for use as user
protect keys.

• No special privilege is needed to assign protect keys to a page. The only requirement is current write
access to the page.

• There is no control of execute authority with protect keys.

If your program accesses key protected data in violation of the access rights expressed in its active user
keyset, it receives a SIGSEGV signal, as is already the case for violating read- or write-protected pages.
If you choose to handle this signal, be aware that signal handlers are invoked without access to private
keys. Signal handling code must add any needed access rights to the active user keyset before referencing
key-protected data.

Child processes, created by the fork system call, logically inherit their parent's memory and running
state. This includes the protect key associated with each page, as well as the parent thread's active user
keyset at the time of fork.

Regions protected by user keys

User protect keys can protect pages in the following regions:

• Data region
• Default stack region
• mmaped regions
• Shared memory attached with the shmat() subroutine, except as below
• These categories of pages cannot use protect keys:

– shmated files and pinned shared memory
– Large (nonpageable) pages
– Program text
– Low memory shared read-only with the kernel

System prerequisites for key protection

Storage key protection is a hardware-specific privileged page protection mechanism that is made
available by the AIX kernel for use in application programs. To use this feature, your system must:

• Be running on physical hardware that provides storage key protection
• Be running the 64-bit kernel
• Enable the use of user protect keys

Program prerequisites for key protection

To use user keys, your program must:

• Declare itself user-key aware and determine how many user protect keys are available, if any, with the
ukey_enable subroutine.

• Organize its protected data on page boundaries.
• Assign a private key to each page you want to protect with the ukey_protect subroutine.
• If you protect the malloc'd data, remember to unprotect it before you free it.
• Prepare one or more keysets with the ukeyset_init subroutine.

168 AIX Version 7.2: General programming concepts

• Possibly add the required keys to your keyset with the ukeyset_add_key subroutine, to enable future
read or write accesses as required.

• Make a keyset active with the ukeyset_activate subroutine to grant the access rights defined in a
keyset.

Your program must not:

• Include any M:N (process scope) pthreads
• Be able to have a checkpoint performed on it (for example have CHECKPOINT=yes in the environment)

Note: When a program is user-key aware, it has additional context associated with it to represent its
active user keyset. This can be seen in:

• Signal handlers receiving a ucontext_t structure. The previously active user keyset is in
ucontext_t.__extctx.__ukeys, an array of two ints containing a 64-bit user keyset value

• User context structures compiled with __EXTABI__ defined (used by setcontext, getcontext,
makecontext, swapcontext)

Subroutines

The following new AIX kernel subroutines are provided for using protect keys:

Subroutine Description

sysconf
Use with _SC_AIX_UKEYS to determine the number of user keys
supported (can be called on older versions of AIX)

ukey_enable Enable the user-key aware programming environment for your
process, and report how many user keys are available

ukeyset_init Initialize a user keyset, which will represent a set of access rights to
your private key or keys

ukeyset_add_key Add read or write access, or both for a specified key to a keyset

ukeyset_remove_key Remove or write access, or both for a specified key from a keyset

ukeyset_add_set Add all the access rights in one keyset to another

ukeyset_remove_set Remove all the access rights in one keyset from another

ukeyset_activate Apply the access rights in a keyset to the running thread

ukeyset_ismember Test if a given access right is contained in a keyset

ukey_setjmp Extended form of setjmp that preserves the active keyset (uses a
ukey_jmp_buf structure)

pthread_attr_getukeyset_np Get the keyset attribute of a pthread

pthread_attr_setukeyset_np Set the keyset attribute for a pthread

ukey_protect Set a user protect key for a page-aligned range of user memory

ukey_getkey Retrieve the user protect key for a specified address

Debugging

The dbx command adds limited support for protect keys:

• When debugging a running program:

– The ukeyset subcommand displays the active keyset.
– The ukeyvalue subcommand displays the protect key associated with a given memory location.

• When debugging a core file, the ukeyexcept subcommand reports the active keyset, effective address
of the key exception, and the storage key involved.

General programming concepts 169

Hardware details

The active user keyset in the running context of a key-aware thread parallels the actual hardware
authority mask register (AMR) in format, represented by the ukeyset_t abstract data type. This
information is provided for debugging purposes only. Use only the defined programming services to set up
your active user keyset.

• The AMR is a 64-bit register comprising 32-bit pairs, one pair per key, for a maximum of 32 keys
numbered 0 through 31.

– The first bit of each pair represents write access to the corresponding numbered key.
– Similarly, the second bit of each pair represents read access to the corresponding numbered key.

• A bit value of 0 grants the corresponding access, and a bit value of 1 denies it.
• The bit pair granting access to key 0 is not controlled by your program. User key 0 is the user public key,

and all threads always have full access to data in this key, without regard to your settings in the active
user keyset.

• All the other bit pairs represent user private keys, which, subject to availability, you can use to protect
your data as you see fit.

Sample program

The following is a sample user-key aware program:

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <sys/ukeys.h>
#include <sys/syspest.h>
#include <sys/signal.h>
#include <sys/vminfo.h>

#define ROUND_UP(size,psize) ((size)+(psize)-1 & ~((psize)-1))

/*
 * This is an example skeleton for a user key aware program.
 *
 * The private_data_1 structure will map a malloc'd key protected area
 * which the main program can access freely, while the "untrusted"
 * subroutine will only have read access.
 */
struct private_data_1 {
 int some_data;
};
struct private_data_1 *p1; /* pointer to structure for protected data */

ukeyset_t keyset1RW; /* keyset to give signal handler access */

/*
 * The untrusted function here should successfully read protected data.
 *
 * When the count is 0, it will just return so the caller can write
 * the incremented value back to the protected field.
 *
 * When the count is 1, it will try to update the protected field itself.
 * This should result in a SIGSEGV.
 */
int untrusted(struct private_data_1 *p1) {
 int count = p1->some_data; /* We can read protected data */
 if (count == 1)
 p1->some_data = count; /* But should not be able to write it */
 return count + 1;
}

/*
 * Signal handler to catch the deliberate protection violation in the
 * untrusted function above when count == 1.
 * Note that the handler is entered with NO access to our private data.
 */
void handler(int signo, siginfo_t *sip, void *ucp) {
 printf("siginfo: signo %d code %d\n", sip->si_signo, sip->si_code);
 (void)ukeyset_activate(keyset1RW, UKA_REPLACE_KEYS);
 exit(1);
}

170 AIX Version 7.2: General programming concepts

main() {
 int nkeys;
 int pagesize = 4096; /* hardware data page size */
 int padded_protsize_1; /* page padded size of protected data */
 struct vm_page_info page_info;

 ukey_t key1 = UKEY_PRIVATE1;
 ukeyset_t keyset1W, oldset;
 int rc;
 int count = 0;

 struct sigaction sa;

 /*
 * Attempt to become user key aware.
 */
 nkeys = ukey_enable();
 if (nkeys == -1) {
 perror("ukey_enable");
 exit(1);
 }
 assert(nkeys >= 2);

 /*
 * Determine the data region page size.
 */
 page_info.addr = (long)&p1; /* address in data region */
 rc = vmgetinfo(&page_info, VM_PAGE_INFO, sizeof(struct vm_page_info));

 if (rc)
 perror("vmgetinfo");
 else
 pagesize = page_info.pagesize; /* pick up actual page size */

 /*
 * We need to allocate page aligned, page padded storage
 * for any area that is going to be key protected.
 */
 padded_protsize_1 = ROUND_UP(sizeof(struct private_data_1), pagesize);
 rc = posix_memalign((void **)&p1, pagesize, padded_protsize_1);
 if (rc) {
 perror("posix_memalign");
 exit(1);
 }

 /*
 * Initialize the private data.
 * We can do this before protecting it if we want.
 *
 * Note that the pointer to the private data is in public storage.
 * We only protect the data itself.
 */
 p1->some_data = count;

 /*
 * Construct keysets to use to access the protected structure.
 * Note that these keysets will be in public storage.
 */
 rc = ukeyset_init(&keyset1W, 0);
 if (rc) {
 perror("ukeyset_init");
 exit(1);
 }

 rc = ukeyset_add_key(&keyset1W, key1, UK_WRITE); /* WRITE */
 if (rc) {
 perror("ukeyset_add_key 1W");
 exit(1);
 }

 keyset1RW = keyset1W;
 rc = ukeyset_add_key(&keyset1RW, key1, UK_READ); /* R/W */
 if (rc) {
 perror("ukeyset_add_key 1R");
 exit(1);
 }

 /*
 * Restrict access to the private data by applying a private key
 * to the page(s) containing it.
 */
 rc = ukey_protect(p1, padded_protsize_1, key1);

General programming concepts 171

 if (rc) {
 perror("ukey_protect");
 exit(1);
 }

 /*
 * Allow our general code to reference the private data R/W.
 */
 oldset = ukeyset_activate(keyset1RW, UKA_ADD_KEYS);
 if (oldset == UKSET_INVALID) {
 printf("ukeyset_activate failed\n");
 exit(1);
 }

 /*
 * Set up a signal handler for SIGSEGV, to catch the deliberate
 * key violation in the untrusted code.
 */
 sa.sa_sigaction = handler;
 SIGINITSET(sa.sa_mask);
 sa.sa_flags = SA_SIGINFO;
 rc = sigaction(SIGSEGV, &sa, 0);
 if (rc) {
 perror("sigaction");
 exit(1);
 }

 /*
 * Program's main processing loop.
 */
 while (count < 2) {
 /*
 * When we need to run "untrusted" code, change access
 * to the private data to R/O by removing write access.
 */
 (void)ukeyset_activate(keyset1W, UKA_REMOVE_KEYS);

 /*
 * Call untrusted subroutine here. It can only read
 * the protected data passed to it.
 */
 count = untrusted(p1);

 /*
 * Restore our full access to private data.
 */
 (void)ukeyset_activate(keyset1W, UKA_ADD_KEYS);

 p1->some_data = count;
 }
ukey_protect(p1, padded_protsize_1, UKEY_PUBLIC);
 free(p1);
 exit(0);
}

Large program support
This topic provides information about using the large and very large address-space models to
accommodate programs requiring data areas that are larger than those provided by the default address-
space model.

The large address-space model is available on AIX 4.3 and later. The very large address-space model is
available on AIX 5.1 and later.

Note: This discussion applies only to 32-bit processes.

The virtual address space of a 32-bit process is divided into 16 256-megabyte areas (or segments), each
addressed by a separate hardware register. The operating system refers to segment 2 (virtual addresses
0x20000000-0x2FFFFFFF) as the process-private segment. By default, this segment contains the user
stack and data, including the heap. The process-private segment also contains the u-block of the process,
which is used by the operating system and is not readable by an application.

Because a single segment is used for both user data and stack, their maximum aggregate size is slightly
less than 256 MB. Certain programs, however, require large data areas (initialized or uninitialized), or they

172 AIX Version 7.2: General programming concepts

need to allocate large amounts of memory with the malloc or sbrk subroutine. Programs can be built to
use the large or very large address-space model, allowing them to use up to 2 GB of data.

It is possible to use either the large or very large address-space model with an existing program,
by providing a non-zero maxdata value. The maxdata value is obtained either from the LDR_CNTRL
environment variable or from a field in the executable file. Some programs have dependencies on the
default address-space model, and they will break if they are run using the large address-space model.

Understanding the large address-space model

The large address-space model allows specified programs to use more than 256 MB of data. Other
programs continue to use the default address-space model. To allow a program to use the large address-
space model, specify a non-zero maxdata value. You can specify a non-zero maxdata value either by
using the ld command when you're building the program, or by exporting the LDR_CNTRL environment
variable before executing the program.

When a program using the large address-space model is executed, the operating system reserves as
many 256 MB segments as needed to hold the amount of data specified by the maxdata value. Then,
beginning with segment 3, the program's initialized data is read from the executable file into memory.
The data read begins in segment 3, even if the maxdata value is smaller than 256 MB. With the large
address-space model, a program can have a maximum of 8 segments or 2 GB or 3.25 GB of data
respectively.

In the default address-space model, 12 segments are available for use by the shmat or mmap
subroutines. When the large address-space model is used, the number of segments reserved for data
reduces the number of segments available for the shmat and mmap subroutines. Because the maximum
size of data is 2 GB, at least two segments are always available for the shmat and mmap subroutines.

The user stack remains in segment 2 when the large address-space model is used. As a result, the size of
the stack is limited to slightly less than 256 MB. However, an application can relocate its user stack into a
shared memory segment or into allocated memory.

While the size of initialized data in a program can be large, there is still a restriction on the size of text. In
the executable file for a program, the size of the text section plus the size of the loader section must be
less than 256 MB. This is required so that these sections will fit into a single, read-only segment (segment
1, the TEXT segment). You can use the dump command to examine section sizes.

Understanding the very large address-space model

The very large address-space model enables large data programs in much the same way as the large
address-space model, although there are several differences between them. To allow a program to
use the very large address-space model, you must specify a maxdata value and the dynamic segment
allocation (dsa) property. Use either the ld command or the LDR_CNTRL environment variable to specify a
maxdata value and the DSA option.

If a maxdata value is specified, the very large address-space model follows the large-address space
model in that a program's data is read into memory starting with segment 3, and occupies as many
segments as needed. The remaining data segments, however, are not reserved for the data area at
execution time, but are obtained dynamically. Until a segment is needed for a program's data area, it can
be used by the shmat or mmap subroutines. With the very large address-space model, a program can a
maximum of 13 segments or 3.25 GB of data. Of these 13 segments, 12 segments or 3 GB, are available
for shmat and mmap subroutine purposes.

When a process tries to expand its data area into a new segment, the operation succeeds as long as the
segment is not being used by the shmat or mmap subroutines. A program can call the shmdt or munmap
subroutine to stop using a segment so that the segment can be used for the data area. After a segment
has been used for the data area, however, it can no longer be used for any other purpose, even if the size
of the data area is reduced.

If a maxdata value is not specified (maxdata = 0) with the dsa property, a slight variation from the above
behaviour is achieved. The process will have its data and stack in segment 2, similiar to a regular process.
The process will not have access to the global shared libraries, so all shared libraries used by the process
will be loaded privately. The advantage to running this way is that a process will have all 13 segments
(3.25 GB) available for use by the shmat and mmap subroutines.

General programming concepts 173

To reduce the chances that the shmat or mmap subroutines will use a segment that could be used for the
data area, the operating system uses a different rule for choosing an address to be returned (if a specific
address is not requested). Normally, the shmat or mmap subroutines return an address in the lowest
available segment. When the very large address-space model is used, these subroutines will return an
address in the highest available segment. A request for a specific address will succeed, as long as the
address is not in a segment that has already been used for the data area. This behaviour is followed for all
process that specify the dsa property.

With the very large address-space model, a maxdata value of zero or a value of up to 0xD0000000 can
be specified. If a maxdata value larger than 0xAFFFFFFF is specified, a program will not use globally
loaded shared libraries. Instead, all shared libraries will be loaded privately. This can affect program
performance.

Enabling the large and very large address-space models

The large address space model is used if any non-zero value is specified for the maxdata value, and the
dynamic segment allocation (dsa) property is not specified. The very large address-space model is used if
any maxdata value is given and the dsa property is specified. Use the ld command with the -bmaxdata
flag to specify a maxdata value and to set the dsa property.

Use the following command to link a program that will have the maximum 8 segments reserved for its
data:

cc -bmaxdata:0x80000000 sample.o

To link a program with the very large-address space model enabled on the POWER processor-based
platform, use the following command:

cc -bmaxdata:0xD0000000/dsa sample.o

To link a program with the very large-address space model enabled, use the following command:

cc -bmaxdata:0xD0000000/dsa sample.o

You can cause existing programs to use the large or very large address-space models by specifying the
maxdata value with the LDR_CNTRL environment variable. For example, use the following command to
run the a.out program with 8 segments reserved for the data area:

LDR_CNTRL=MAXDATA=0x80000000 a.out

The following command runs the a.out program using the very large address-space model, allowing the
program's data size to use up to 8 segments for data:

LDR_CNTRL=MAXDATA=0x80000000@DSA a.out

You can also modify an existing program so that it will use the large or very large address-space model.
To set the maxdata value in an existing 32-bit XCOFF program, a.out, to 0x80000000, use the following
command:

/usr/ccs/bin/ldedit -bmaxdata:0x80000000 a.out

If an existing 32-bit XCOFF program, a.out, with a maxdata value of 0x80000000 does not already have
the DSA property, you can add the property with the following command:

/usr/ccs/bin/ldedit -bmaxdata:0x80000000/dsa a.out

You can use the dump command to examine the maxdata value, or to determine whether a program has
the dsa property.

Some programs have dependencies on the default address-space model. These programs terminate if a
non-zero maxdata value has been specified, either by modifying the executable file of the program or by
setting the LDR_CNTRL environment variable.

174 AIX Version 7.2: General programming concepts

Executing programs with large data areas

When you execute a program that uses the large address-space model, the operating system attempts
to modify the soft limit on data size, if necessary, to increase it to match the maxdata value. If the
maxdata value is larger than the current hard limit on data size, either the program will not execute if the
environment variable XPG_SUS_ENV has the value set to ON, or the soft limit will be set to the current
hard limit.

If the maxdata value is smaller than the size of the program's static data, the program will not execute.

After placing the program's initialized and uninitialized data in segments 3 and beyond, the break value
is computed. The break value defines the end of the process's static data and the beginning of its
dynamically allocatable data. Using the malloc, brk or sbrk subroutine, a process can move the break
value to increase the size of the data area.

For example, if the maxdata value specified by a program is 0x68000000, then the maximum break value
is in the middle of segment 9 (0x98000000). The brk subroutine extends the break value across segment
boundaries, but the size of the data area cannot exceed the current soft data limit.

The setrlimit subroutine allows a process to set its soft data limit to any value that does not exceed the
hard data limit. The maximum size of the data area, however, is limited to the original maxdata value,
rounded up to a multiple of 256 MB.

The majority of subroutines are unaffected by large data programs. The shmat and mmap subroutines
are the most affected, because they have fewer segments available for use. If a large data-address model
program forks, the child process inherits the current data resource limits.

Special considerations

Programs with large data spaces require a large amount of paging space. For example, if a program with a
2-GB address space tries to access every page in its address space, the system must have 2 GB of paging
space. The operating system terminates processes when paging space runs low. Programs with large data
spaces are terminated first because they typically consume a large amount of paging space.

Debugging programs using the large data model is no different than debugging other programs. The
dbx command can debug these large programs actively or from a core dump. A full core dump from a
large-data program can be quite large. To avoid truncated core files, be sure the coredump resource limit
is large enough, and make sure that there is enough free space in the file system where your program is
running.

Some application programs might be written in such a way that they rely on characteristics of the default
address space model. These programs might not work if they execute using the large or very large
address-space model. Do not set the LDR_CNTRL environment variable when you run these programs.

Processes using the very large address-space model must make code changes to their programs in order
to move the break value of the address-space in chunks larger than 2 GB. This is a limitation of the sbrk
system call which takes a signed value as the parameter. As a workaround, a program can call sbrk more
than one time to move the break value to the desired position.

Related information
brk
exec
fork
malloc
setrlimit
dd Command
ld Command
XCOFF Object (a.out) File Format

General programming concepts 175

Programming on multiprocessor systems
On a uniprocessor system, threads execute one after another in a time-sliced manner. This contrasts
with a multiprocessor system, where several threads execute at the same time, one on each available
processor. Overall performance can be improved by running different process threads on different
processors. However, an individual program cannot take advantage of multiprocessing, unless it has
multiple threads.

Multiprocessing is not apparent to most users because it is handled completely by the operating system
and the programs it runs. Users can bind their processes (force them to run on a certain processor);
however, this is not required, nor recommended for ordinary use. Even for most programmers, taking
advantage of multiprocessing simply amounts to using multiple threads. On the other hand, kernel
programmers have to deal with several issues when porting or creating code for multiprocessor systems.

Identifying processors
Symmetric multiprocessor (SMP) machines have one or more CPU boards, each of which can
accommodate two processors.

For example, a four-processor machine has two CPU boards, each having two processors. Commands,
subroutines, or messages that refer to processors must use an identification scheme. Processors are
identified by physical and logical numbers, and by Object Data Manager (ODM) processor names and
location codes.

ODM processor names

ODM is a system used to identify various parts throughout a machine, including bus adapters, peripheral
devices such as printers or terminals, disks, memory boards, and processor boards.

ODM assigns numbers to processor boards and processors in order, starting from 0 (zero), and creates
names based on these numbers by adding a prefix cpucard or proc. Thus, the first processor board is
called cpucard0, and the second processor on it is called proc1.

ODM location codes for processors consist of four 2-digit fields, in the form AA-BB-CC-DD, as follows:

Co
de

Description

AA Always 00. It indicates the main unit.

BB Indicates the processor board number. It can be 0P, 0Q, 0R, or 0S, indicating respectively the first,
second, third or fourth processor card.

CC Always 00.

DD Indicates the processor position on the processor board. It can be 00 or 01.

Logical processor numbers

Processors can also be identified using logical numbers, which start with 0 (zero). Only enabled
processors have a logical number.

The logical processor number 0 (zero) identifies the first physical processor in the enabled state; the
logical processor number 1 (one) identifies the second enabled physical processor, and so on. Generally,
all operating system commands and library subroutines use logical numbers to identify processors.

ODM processor states

If a processor functions correctly, it can be enabled or disabled using a software command. A processor
is marked faulty if it has a detected hardware problem. ODM classifies processors using the following
states:

State Description

enabled Processor works and can be used by AIX.

176 AIX Version 7.2: General programming concepts

State Description

disabled Processor works, but cannot be used by AIX.

faulty Processor does not work (a hardware fault was detected).

Controlling processor use
This section describes how to control the use of processors on the multiprocessor system.

On a multiprocessor system, the use of processors can be controlled in the following way:

• A user can force a process or kernel threads to run on a specific processor.

Binding processes and kernel threads

Users may force their processes to run on a given processor; this action is called binding. A
system administrator may bind any process. From the command line, binding is controlled with the
bindprocessor command.

The process itself is not bound, but rather its kernel threads are bound. After kernel threads are bound,
they are always scheduled to run on the chosen processor, unless they are later unbound. When a new
kernel thread is created, it has the same bind properties as its creator.

This situation applies to the initial thread in the new process created by the fork subroutine; the
new thread inherits the bind properties of the thread that called the fork subroutine. When the exec
subroutine is called, bind properties are left unchanged. After a process is bound to a processor, if no
other binding or unbinding action is performed, all child processes will be bound to the same processor.

It is only possible to bind processes to enabled processors using logical processor numbers. To list
available logical processor numbers, use the bindprocessor -q command. For a system with four enabled
processors, this command produces output similar to the following:

The available processors are: 0 1 2 3

Binding may also be controlled within a program using the bindprocessor subroutine, which allows the
programmer to bind a single kernel thread or all kernel threads in a process. The programmer can also
unbind either a single kernel thread or all kernel threads in a process.

Using Dynamic Processor Deallocation
Starting with machine type 7044 model 270, the hardware of all systems with more than two processors
can detect correctable errors, which are gathered by the firmware. These errors are not fatal and, as long
as they remain rare occurrences, can be safely ignored. However, when a pattern of failures seems to be
developing on a specific processor, this pattern may indicate that this component is likely to exhibit an
unrecoverable failure in the near future. This prediction is made by the firmware based-on-failure rates
and threshold analysis.

AIX implements continuous hardware surveillance and regularly polls the firmware for hardware errors.
When the number of processor errors hits a threshold and the firmware recognizes the distinct probability
that this system component will fail, the firmware returns an error report to AIX and logs the error in the
system error log. In addition, on multiprocessor systems, depending on the type of failure, AIX attempts
to stop using the untrustworthy processor and deallocate it. This feature is called dynamic processor
deallocation.

At this point, the firmware flags the processor for persistent deallocation for subsequent reboots, until
service personnel replace the processor.

Potential impact to applications

Processor deallocation is not apparent for the vast majority of applications, including drivers and kernel
extensions. However, you can use AIX published interfaces to determine whether an application or kernel
extension is running on a multiprocessor machine, find out how many processors there are, and bind
threads to specific processors.

General programming concepts 177

The bindprocessor interface for binding processes or threads to processors uses bind CPU numbers. The
bind CPU numbers are in the range [0..N-1] where N is the total number of CPUs. To avoid breaking
applications or kernel extensions that assume no "holes" in the CPU numbering, AIX always makes it
appear for applications as if the CPU is the "last" (highest numbered) bind CPU to be deallocated. For
instance, on an 8-way SMP, the bind CPU numbers are [0..7]. If one processor is deallocated, the total
number of available CPUs becomes 7, and they are numbered [0..6]. Externally, CPU 7 seems to have
disappeared, regardless of which physical processor failed.

Note: In the rest of this description, the term CPU is used for the logical entity and the term processor for
the physical entity.

Applications or kernel extensions using processes/threads binding could potentially be broken if AIX
silently terminated their bound threads or forcibly moved them to another CPU when one of the
processors needs to be deallocated. Dynamic processor deallocation provides programming interfaces
so that those applications and kernel extensions can be notified that a processor deallocation is about
to happen. When these applications and kernel extensions get this notification, they are responsible for
moving their bound threads and associated resources (such as timer request blocks) away form the last
bind CPU ID and adapt themselves to the new CPU configuration.

If, after notification of applications and kernel extensions, some of the threads are still bound to the last
bind CPU ID, the deallocation is aborted. In this case, AIX logs the fact that the deallocation has been
aborted in the error log and continues using the ailing processor. When the processor ultimately fails, it
creates a total system failure. Thus, it is important for applications or kernel extensions that are binding
threads to CPUs to get the notification of an impending processor deallocation, and to act on this notice.

Even in the rare cases where the deallocation cannot go through, dynamic processor deallocation still
gives advanced warning to system administrators. By recording the error in the error log, it gives them
a chance to schedule a maintenance operation on the system to replace the ailing component before a
global system failure occurs.

Flow of events for processor deallocation

The typical flow of events for processor deallocation is as follows:

1. The firmware detects that a recoverable error threshold has been reached by one of the processors.
2. AIX logs the firmware error report in the system error log, and, when executing on a machine

supporting processor deallocation, starts the deallocation process.
3. AIX notifies non-kernel processes and threads bound to the last bind CPU.
4. AIX waits for all the bound threads to move away from the last bind CPU. If threads remain bound,

AIX eventually times out (after ten minutes) and aborts the deallocation. Otherwise, AIX invokes the
previously registered High Availability Event Handlers (HAEHs). An HAEH may return an error that will
abort the deallocation. Otherwise, AIX continues with the deallocation process and ultimately stops
the failing processor.

In case of failure at any point of the deallocation, AIX logs the failure, indicating the reason why the
deallocation was aborted. The system administrator can look at the error log, take corrective action (when
possible) and restart the deallocation. For instance, if the deallocation was aborted because at least
one application did not unbind its bound threads, the system administrator could stop the application(s),
restart the deallocation (which should continue this time) and restart the application.

Programming interfaces dealing with individual processors

The following sections describe available programming interfaces:

Interfaces to determine the number of CPUs on a system

sysconf subroutine

The sysconf subroutine returns a number of processors using the following parameters:

• _SC_NPROCESSORS_CONF: Number of processors configured
• _SC_NPROCESSORS_ONLN: Number of processors online

178 AIX Version 7.2: General programming concepts

The value returned by the sysconf subroutine for _SC_NPROCESSORS_CONF will remain constant
between reboots. Uniprocessor (UP) machines are identified by a 1. Values greater than 1 indicate
multiprocessor (MP) machines. The value returned for the _SC_NPROCESSORS_ONLN parameter will be
the count of active CPUs and will be decremented every time a processor is deallocated.

The _system_configuration.ncpus field identifies the number of CPUs active on a machine. This field is
analogous to the _SC_NPROCESSOR_ONLN parameter.

For code that must recognize how many processors were originally available at boot time, the ncpus_cfg
field is added to the _system_configuration table, which remains constant between reboots.

The CPUs are identified by bind CPU IDs in the range [0..(ncpus-1)]. The processors also have a physical
CPU number that depends on which CPU board they are on, in which order, and so on. The commands and
subroutines dealing with CPU numbers always use bind CPU numbers. To ease the transition to varying
numbers of CPUs, the bind CPU numbers are contiguous numbers in the range [0..(ncpus-1). The effect of
this is that from a user point of view, when a processor deallocation takes place, it always looks like the
highest-numbered ("last") bind CPU is disappearing, regardless of which physical processor failed.

Note: To avoid problems, use the ncpus_cfg variable to determine what the highest possible bind CPU
number is for a particular system.

Interfaces to bind threads to a specific processor

The bindprocessor Command and the bindprocessor programming interface allow you to bind a thread
or a process to a specific CPU, designated by its bind CPU number. Both interfaces will allow you to
bind threads or processes only to active CPUs. Those programs that directly use the bindprocessor
programming interface or are bound externally by a bindprocessor command must be able to handle the
processor deallocation.

The primary problem seen by programs that bind to a processor when a CPU has been deallocated is
that requests to bind to a deallocated processor will fail. Code that issues bindprocessor requests should
always check the return value from those requests.

Interfaces for processor deallocation notification

The notification mechanism is different for user-mode applications having threads bound to the last bind
CPU than it is for kernel extensions.

Notification in user mode

Each thread of a user mode application that is bound to the last bind CPU is sent the SIGCPUFAIL and
SIGRECONFIG signals. These applications need to be modified to catch these signals and dispose of the
threads bound to the last bind CPU (either by unbinding them or by binding them to a different CPU).

Notification in kernel mode

The drivers and kernel extensions that must be notified of an impending processor deallocation must
register a High-Availability Event Handler (HAEH) routine with the kernel. This routine will be called when
a processor deallocation is imminent. An interface is also provided to unregister the HAEH before the
kernel extension is unconfigured or unloaded.

Registering a high-availability event handler

The kernel exports a new function to allow notification of the kernel extensions in case of events that
affect the availability of the system.

The system call is:

int register_HA_handler(ha_handler_ext_t *)

For more information on this system call, see register_HA_handler in Operating system and device
management.

The return value is equal to 0 in case of success. A non-zero value indicates a failure.

General programming concepts 179

The system call argument is a pointer to a structure describing the kernel extension's HAEH. This
structure is defined in a header file, named sys/high_avail.h, as follows:

typedef struct _ha_handler_ext_ {
 int (*_fun)(); /* Function to be invoked */
 long long _data; /* Private data for (*_fun)() */
 char _name[sizeof(long long) + 1];
} ha_handler_ext_t;

The private _data field is provided for the use of the kernel extension if it is needed. Whatever value given
in this field at the time of registration will be passed as a parameter to the registered function when the
field is called due to a CPU predictive failure event.

The _name field is a null-terminated string with a maximum length of 8 characters (not including the null
character terminator) which is used to uniquely identify the kernel extension with the kernel. This name
must be unique among all the registered kernel extensions. This name is listed in the detailed data area
of the CPU_DEALLOC_ABORTED error log entry if the kernel extension returns an error when the HAEH
routine is called by the kernel.

Kernel extensions should register their HAEH only once.

Invocation of the high-availability event handler

The following parameters call the HAEH routine:

• The value of the _data field of the ha_handler_ext_t structure passed to register_HA_handler.
• A pointer to a ha_event_t structure defined in the sys/high_avail.h file as:

typedef struct { /* High-availability related event */
 uint _magic; /* Identifies the kind of the event */
#define HA_CPU_FAIL 0x40505546 /* "CPUF" */
 union {
 struct { /* Predictive processor failure */
 cpu_t dealloc_cpu; /* CPU bind ID of failing processor */
 ushort domain; /* future extension */
 ushort nodeid; /* future extension */
 ushort reserved3; /* future extension */
 uint reserved[4]; /* future extension */
 } _cpu;
 /* ... */ /* Additional kind of events -- */
 /* future extension */
 } _u;
} haeh_event_t;

The function returns one of the following codes, also defined in the sys/high_avail.h file:

#define HA_ACCEPTED 0 /* Positive acknowledgement */
#define HA_REFUSED -1 /* Negative acknowledgement */

If any of the registered extensions does not return HA_ACCEPTED, the deallocation is aborted. The HAEH
routines are called in the process environment and do not need to be pinned.

If a kernel extension depends on the CPU configuration, its HAEH routine must react to the upcoming
CPU deallocation. This reaction is highly application-dependent. To allow AIX to proceed with the
deconfiguration, they must move the threads that are bound to the last bind CPU, if any. Also, if they
have been using timers started from bound threads, those timers will be moved to another CPU as part of
the CPU deallocation. If they have any dependency on these timers being delivered to a specific CPU, they
must take action (such as stopping them) and restart their timer requests when the threads are bound to
a new CPU, for instance.

Canceling the registration of a high-availability event handler

To keep the system coherent and prevent system crashes, the kernel extensions that register an HAEH
must cancel the registration when they are unconfigured and are going to be unloaded. The interface is as
follows:

int unregister_HA_handler(ha_handler_ext_t *)

180 AIX Version 7.2: General programming concepts

This interface returns 0 in case of success. Any non-zero return value indicates an error.

Deallocating a processor in the test environment

To test any of the modifications made in applications or kernel extensions to support this processor
deallocation, use the following command to trigger the deallocation of a CPU designated by its logical CPU
number. The syntax is:

cpu_deallocate cpunum

where:

cpunum is a valid logical CPU number.

You must reboot the system to get the target processor back online. Hence, this command is provided for
test purposes only and is not intended as a system administration tool.

Dynamic memory guarding
AIX systems are designed to be resilient in regards to memory errors. Memory error resilience is the result
of both hardware and operating system-level recoveries.

There are multiple ways to categorize memory errors, but for the purposes of this discussion, memory
errors are classified as recoverable and non-recoverable errors.

Recoverable errors result in data located in specific locations being retrievable, and unrecoverable errors
result in a loss of data from the specific location in question. Unrecoverable errors are typically resolved
by using hardware redundancy in the memory subsystem, or by masking the area in question from use
during boot time of the operating system.

AIX supports resilience as a means of preventing recoverable memory errors from becoming
unrecoverable errors through a technique known as Dynamic Memory Guarding. Dynamic Memory
Guarding is based on support provided by the hardware. Hardware provides mechanisms for the detection
of and recovery from errors (such as memory scrubbing and error correcting circuits (ECC)). Hardware can
provide mechanisms for avoiding future unrecoverable errors as well, including redundant bit steering.

As a complement to these hardware mechanisms, the hardware can inform the operating system about
errors best handled through Dynamic Memory Guarding. This is done by identifying areas of memory to
be deallocated. The AIX operating system uses this information to mask off the memory area in question
and to stop using it. The operating system will move any data currently contained in the memory area in
error to another memory area, and then stop using the memory page that contains the memory location
in error. This memory guarding is done by the operating system without any user intervention and is
transparent to end users and applications.

Creating locking services
Some programmers may want to implement their own high-level locking services instead of using the
standard locking services (mutexes) provided in the threads library.

For example, a database product may already use a set of internally defined services; it can be easier
to adapt these locking services to a new system than to adapt all the internal modules that use these
services.

For this reason, AIX provides atomic locking service primitives that can be used to build higher-level
locking services. To create services that are multiprocessor-safe (like the standard mutex services),
programmers must use the atomic locking services described in this section and not atomic operations
services, such as the compare_and_swap subroutine.

Multiprocessor-safe locking services

Locking services are used to serialize access to resources that may be used concurrently. For example,
locking services can be used for insertions in a linked list, which require several pointer updates. If the
update sequence by one process is interrupted by a second process that tries to access the same list, an
error can occur. A sequence of operations that should not be interrupted is called a critical section.

General programming concepts 181

Locking services use a lock word to indicate the lock status: 0 (zero) can be used for free, and 1 (one) for
busy. Therefore, a service to acquire a lock would do the following:

test the lock word
if the lock is free
 set the lock word to busy
 return SUCCESS
...

Because this sequence of operations (read, test, set) is itself a critical section, special handling is
required. On a uniprocessor system, disabling interrupts during the critical section prevents interruption
by a context switch. But on a multiprocessor system, the hardware must provide a test-and-set primitive,
usually with a special machine instruction. In addition, special processor-dependent synchronization
instructions called import and export fences are used to temporarily block other reads or writes. They
protect against concurrent access by several processors and against the read and write reordering
performed by modern processors and are defined as follows:
Import fences

The import fence is a special machine instruction that delays until all previously issued instructions are
complete. When used in conjunction with a lock, this prevents speculative execution of instructions
until the lock is obtained.

Export fences
The export fence guarantees that the data being protected is visible to all other processors prior to the
lock being released.

To mask this complexity and provide independence from these machine-dependent instructions, the
following subroutines are defined:

_check_lock
Conditionally updates a single word variable atomically, issuing an import fence for multiprocessor
systems. The compare_and_swap subroutine is similar, but it does not issue an import fence and,
therefore, is not usable to implement a lock.

_clear_lock
Atomically writes a single word variable, issuing an export fence for multiprocessor systems.

Kernel programming

For complete details about kernel programming, see Kernel Extensions and Device Support Programming
Concepts. This section highlights the major differences required for multiprocessor systems.

Serialization is often required when accessing certain critical resources. Locking services can be used to
serialize thread access in the process environment, but they will not protect against an access occurring
in the interrupt environment. New or ported code should use the disable_lock and unlock_enable kernel
services, which use simple locks in addition to interrupt control, instead of the i_disable kernel service.
These kernel services can also be used for uniprocessor systems, on which they simply use interrupt
services without locking. For detailed information, see Locking Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Device drivers by default run in a logical uniprocessor environment, in what is called funneled mode. Most
well-written drivers for uniprocessor systems will work without modification in this mode, but must be
carefully examined and modified to benefit from multiprocessing. Finally, kernel services for timers now
have return values because they will not always succeed in a multiprocessor environment. Therefore, new
or ported code must check these return values. For detailed information, see Using Multiprocessor-Safe
Timer Services in Kernel Extensions and Device Support Programming Concepts.

Example of locking services

The multiprocessor-safe locking subroutines can be used to create custom high-level routines
independent of the threads library. The example that follows shows partial implementations of
subroutines similar to the pthread_mutex_lock and pthread_mutex_unlock subroutines in the threads
library:

#include <sys/atomic_op.h> /* for locking primitives */
#define SUCCESS 0

182 AIX Version 7.2: General programming concepts

#define FAILURE -1
#define LOCK_FREE 0
#define LOCK_TAKEN 1

typdef struct {
 atomic_p lock; /* lock word */
 tid_t owner; /* identifies the lock owner */
 ... /* implementation dependent fields */
} my_mutex_t;

...

int my_mutex_lock(my_mutex_t *mutex)
{
tid_t self; /* caller's identifier */

 /*
 Perform various checks:
 is mutex a valid pointer?
 has the mutex been initialized?
 */
 ...

 /* test that the caller does not have the mutex */
 self = thread_self();
 if (mutex->owner == self)
 return FAILURE;

 /*
 Perform a test-and-set primitive in a loop.
 In this implementation, yield the processor if failure.
 Other solutions include: spin (continuously check);
 or yield after a fixed number of checks.
 */
 while (_check_lock(mutex->lock, LOCK_FREE, LOCK_TAKEN))
 yield();

 mutex->owner = self;
 return SUCCESS;
} /* end of my_mutex_lock */

int my_mutex_unlock(my_mutex_t *mutex)
{
 /*
 Perform various checks:
 is mutex a valid pointer?
 has the mutex been initialized?
 */
 ...

 /* test that the caller owns the mutex */
 if (mutex->owner != thread_self())
 return FAILURE;

 _clear_lock(mutex->lock, LOCK_FREE);
 return SUCCESS;
} /* end of my_mutex_unlock */

Related information
Locking Kernel Services
Using Multiprocessor-Safe Timer Services
bindprocessor
compare_and_swap
pthread_mutex_unlock
disable_lock
i_disable
unlock_enable
bindprocessor command

General programming concepts 183

ProbeVue dynamic tracing facility
You can use the ProbeVue dynamic tracing facility for both performance analysis and problem debugging.
ProbeVue uses the Vue programming language to dynamically specify trace points and provide the actions
to run at the specified trace points.

ProbeVue includes the following features:

• No pre-compiled trace hooks. ProbeVue works on unmodified kernel or user applications.
• Trace hooks do not have to be pre-compiled. They are compiled as part of your source programs.

ProbeVue works on unmodified kernel or user applications.
• Trace hooks have no effect (do not exist) until they are dynamically enabled.
• Tracing actions (specified by the instrumentation code) to be issued at a trace hook are provided

dynamically at the time the trace hook is enabled.
• Trace data captured as part of the tracing actions are available for viewing immediately and can be

displayed as terminal output or saved to a file for later viewing.

Note: dbx and Probevue cannot debug a process simultaneously. Sometimes trying to debug a executable
started by ProbeVue might result in dbx process waiting to attach to the process.

ProbeVue concepts
ProbeVue uses tracing actions or probe actions to capture information by writing the current values of
global and context-specific information to a trace buffer.

The information captured is called trace data. The system usually provides facilities to read the data out of
the trace buffer and make it available to the users of the system.

A probe point identifies a point during normal system activity that is capable of being probed. With
dynamic tracing, probe points do not have any probes attached to them unless they are being traced.
Enabling a probe is the operation of attaching a probe to a probe point and disabling a probe is the
operation of removing a probe from a probe point. A probe is triggered or fired when an enabled probe
point is reached during system activity and the tracing actions are performed.

ProbeVue supports the following two broad categories of probe points:

Probe location
A location in user or kernel code where some tracing action is to be performed. Enabled probes at a
probe location fire when any thread running code reaches that location.

Probe event
An event of interest at whose occurrence some tracing action is performed. Probe events do not easily
map to a specific code location. Enabled probes that indicate a probe event are configured to fire
when that event occurs.

ProbeVue also distinguishes probe points by their type. A probe type identifies a set of probe points that
share some common characteristics, for example, probe points that identify the entry and exit of system
calls, or probe points that indicate updates to system statistics. Distinguishing probes by types gives
structure to the wide variety of probe points.

ProbeVue command
The probevue command starts a dynamic tracing session or a ProbeVue session.

The probevue command starts a dynamic tracing session or a ProbeVue session. The probevue command
takes a Vue script as input reading from a file or from the command line and activates a ProbeVue session.
Any trace data that is captured by the ProbeVue session can be printed to the terminal or saved to a
user-specified file as per options passed in the command line.

The ProbeVue session stays active until you type a Ctrl-C on the terminal or an exit action is issued from
the Vue script.

184 AIX Version 7.2: General programming concepts

Each invocation of the probevue command activates a separate dynamic tracing session. Multiple tracing
sessions can be active at one time, but each session presents only the trace data that is captured in that
session. Concurrent sessions are generally unaware of each other.

Running the probevue command is a privileged operation and non-root users needs privileges to initiate a
dynamic tracing session.

Vue programming language
The Vue programming language provides your tracing specifications to ProbeVue.

The Vue programming language provides your tracing specifications to ProbeVue. A Vue script or Vue
program is a program written in Vue. You can use a Vue script for the following purposes:

• Identify the probe points where a probe is to be dynamically enabled.
• Specify the conditions, if any, that must be satisfied to cause a probe to fire.
• Specify the actions issued, including the trace data that you want to capture.

In short, a Vue script tells ProbeVue where to trace, when to trace, and what to trace. Vue scripts should
have a file suffix of ".e" to distinguish them from other file types.

Note that Vue is both a programming and a script language: it is a dedicated dynamic tracing language.
Vue supports a subset of C and scripting syntax that is most beneficial for dynamic tracing purposes.

Elements of C
Vue supports a subset of C.

The following table describes how the support the ProbeVue compiler provides for the specified C
keywords. All C keywords remain restricted in Vue. Use of any of these keywords as variable names
or other symbols is not flagged as a syntax error, however, the behavior of such usage is undefined.

Note: The keywords in the second column can be present in type or structure definitions or function
declarations. The Vue compiler ignores them. However, these keywords must not be applied when
declaring Vue script variables.

Supported
Allowed in header files or in
declaration section Unsupported

char auto break

double const case

else extern continue

enum register default

float static do

if typedef for

int volatile goto

long switch

return while

short

signed

sizeof

struct

union

General programming concepts 185

Supported
Allowed in header files or in
declaration section Unsupported

unsigned

void

The following list describes the set of C features that Vue supports:

Statements
All C statements except for loop and some control flow statements.

Operators
All C unary, binary, and ternary operators except for the comma operator. Operator precedence and
associativity follows C language rules.

Data types
Most legal C-89 defined variable types including all statements and keywords (struct, union, enum,
typedef, and so on) for declaring types subject to the restrictions. This includes the types for kernel or
application variables and parameters.

Note: Vue has its own rules on scope and storage classes.

Type conversions
Implicit type conversions as well as explicit conversions with type casts.

Subroutine
The syntax for calling subroutines and passing parameters to functions. There are, however,
restrictions on what functions can be called.

Variable names
The naming conventions for variables follow C identifier rules. The complete variable specification can
include colons if a variable class name is prefixed to the variable name.

Header files
Header files can be included for explicitly declaring the types of kernel global variables or the
prototypes of functions in applications and the kernel. There are some restrictions on how the header
files are included.

Punctuators
All C punctuators are supported and their rules are enforced. Thus, statements must be separated by
the semicolon (;) character. All C white space rules are followed.

Literals
Representation of strings (using double quotes characters(")), character literals (using single quotes
characters (')), octal and hexadecimal integers, and special characters like the \n and \t escape
sequences.

Comments
C-style and C++-style comments. Comments can appear both inside and outside of a clause. Any line
starting with a # character is ignored. Avoid using the character to indicate a comment line.

Differences from the C language

Vue has a different behavior for some C features. Some restrictions are imposed for maintaining efficiency
or for ensuring that a Vue script can be issued safely inside the kernel and that it does not affect the
probed process.

Loop statements
Loop statements are not accepted by a Vue script. This is a precaution to prevent any Vue probe from
never completing.

Conditional flow statements
Only the "if-else" style control flow statement is accepted by a Vue script. Most conditional logic flow
can be achieved through the proper use of "if" statements. Predicates are a more efficient way to do
high-level conditional logic in a Vue script.

186 AIX Version 7.2: General programming concepts

Return statement
The return statement is accepted by Vue to signal that the execution of the action block is to be ended
immediately. However, the return statement does not take any expressions in Vue, as the Vue action
block has no return values.

Subroutines
Vue scripts do not have access to the functions provided by the AIX system or general user libraries.
There is no support for creating archives (libraries of functions) or user functions callable from within
the probes. Instead, a special internal library is available for you that provide a set of functions
generally useful for dynamic tracing programs.

Floating point
Floating-point variables are not accepted by any clause associated with a kernel probe point. You can
only use floating-point variables in simple assignment statements and as parameters to Vue functions
that print data. Vue language support for floating-point variables is restricted to its capture.

Variable modifications
External variables are not accepted by the left-hand side of an assignment statement, that is, they
cannot be modified in a Vue script.

Header files
Vue does not support an explicit inclusion of the header file in the Vue script itself. Instead, the name
of a header file to be included must be passed through command line arguments to the probevue
command. Any C-preprocessor operators or directives in the header file are ignored. This might cause
unexpected behavior. To avoid this, hand-code the header file or explicitly run the C-preprocessor
directly on the set of relevant header files and generate a post-processed header file for inclusion. You
can include the function prototypes and structure or union definitions in the Vue script itself if they are
inserted at the very beginning before starting any of the probe clauses.

C-preprocessor
C-preprocessor operators, macro definitions, line or pragma directives and pre-defined macro names
are ignored.

Pointer operations
Vue does not accept pointers to script variables. For example, the address of a script variable cannot
be taken. However, the address of a kernel variable can be taken and assigned to a Vue pointer
variable and pointer operations supported using the pointer variable.

Miscellaneous

• Trigraphs are not accepted.
• The comma operator is not accepted.
• Declaration statements cannot contain any initialization.

Vue scripts
Unlike procedures in procedural languages, an action block in Vue does not have an output or return
value.

Unlike procedures in procedural languages, an action block in Vue does not have an output or return
value. It also does not have inherent support for a set of input parameters. On the other hand, the context
data at the point where a probe is entered can be accessed within the action block. For example, the
parameters passed to a function can be referenced within the action block of a Vue clause if the probe
point is at the function's entry point.

Predicates

You must use predicates when execution of clauses at probe points must be performed conditionally.
The predicate section is identified by the presence of the when keyword immediately after the probe
specification section. The predicate itself consists of regular C-style conditional expressions with the
enclosing parentheses.

A predicate has the following format:

General programming concepts 187

 when (<condition>)

For example:

when (__pid == 1678)

Vue script example

The following script is an example of a Vue script:

/* Global variables are auto-initialized to zero */ [1]

 int count; /[2]
 /*
 * File: count.e
 *
 * Count number of times the read or write system call is entered
 * by process with Id 400
 */

 @@BEGIN
 {
 printf("Start probing\n");
 }

 @@syscall:*:read:entry, @@syscall:*:write:entry [3]
 when (__pid == 400)[4]

 {[5]

 count++;
 /* Print a message for every 20 system calls */
 if (count % 20 == 0)
 printf("Total read/writes so far: %d\n", count);
 /* Exit when we exceed 100 system calls */
 if (count > 100)
 exit();
 } [6]

 /* print some statistics at exit */
 @@END
 {
 printf("Terminating probe after %d system calls.\n", count);
 }

The following superscripts used in the above example identify the different elements of a Vue script:

1. Comments
2. (Optional) Declaration section
3. Probe specification
4. (Optional) Predicate
5. Start of action block
6. End of action block

You can start this simple script by issuing the following command. Note that this example displays some
sample output.

probevue count.e
 Total read/writes so far: 20
 Total read/writes so far: 40
 Total read/writes so far: 60
 ...
 ...

Running the probevue command requires privileges. To issue the above command successfully, you must
have logged in as the superuser or been granted privileges to probe system calls made by any process in
the system.

188 AIX Version 7.2: General programming concepts

Probe point specification
A probe point specification consists of one or more probe point tuples.

Each probe point tuple identifies a code location whose execution or an event whose occurrence must
trigger the probe actions. Multiple probe points can be associated with the same set of probe actions and
the predicate, if any, by providing a comma-separated list of probe tuples at the top of the Vue clause.

The following are some of the probe types that are supported:

• User function entry probes (or uft probes)
• System call entry or exit probes (or syscall probes)
• Probes that fire at specific time intervals (or interval probes)

For a complete list of probe types that are supported, refer the probe manager section.

The probe point tuple is an ordered list of fields that are separated by colons that uniquely identify a
probe point. It has the following general format, although the location field is usually present only if the
probe point is a probe location.

@@ <probetype>:
<one or more probetype-specific fields separated by colons>:<location>

The probe manager defines the acceptable values for the probe-type specific fields in the probe point
tuple and the length of the probe tuple. However, the following general rules are followed by all probe
managers when defining probe point tuples:

• Each probe point tuple is at least a 3-tuple, that is, it has a minimum of 3 fields.
• The first field always identifies the probe type and thus its probe manager.
• For probe managers that support process-specific tracing, the second field must be a process ID.
• For probe managers that support function entry or exit probes, the location field (the last field) must use

the entry or exit keyword.
• Fields are separated by the colon (:) symbol.
• An asterisk or the "*" symbol for a field in the probe point tuple indicates that it matches any possible

value for that field. For example, the syscall probe manager allows for system calls of a specific process
or for all processes to be probed. In the first case, the second field must be the process ID of the
process to be probed. In the latter case, when all processes are to be probed, the second field must be
the "*" symbol. A second use of the asterisk symbol for a field is to allow for finer-grained probes in the
future while maintaining binary compatibility with existing scripts. For example, the uft probe manager
currently requires the third field to be an asterisk. In the future, it can support a module name as the
third field to limit probes to only functions defined in that module.

• Maximum length of the probe specification is 1023 characters.

For example:

@@uft:34568:*:foo:entry
Probe at entry into any function called foo in process with ID = 34568. The asterisk in the third field
indicates that the foo function is to be probed if it exists in any module of the process.

@@syscall:*:read:exit
Probe at exit of the read system call. The asterisk indicates that the read system call for all processes
are to be probed.

@@interval:*:clock:500
Probe to fire every 500 milliseconds (wall clock time). The asterisk is a placeholder for supporting
finer probe points in the future.

The process ID for a process is often not known at the time the Vue script is written. Vue provides a
simple method to avoid having to hard-code a process ID in the second field of the probe specification or
anywhere in a Vue script (for example, in the predicate section).

General programming concepts 189

A single Vue script can contain probe points from multiple processes in user space and in the kernel. Any
trace output generated is always displayed in time order.

In addition to regular probe points defined by probe managers, Vue supports two special probe points.
Each Vue script can contain a @@BEGIN probe point to indicate any action that needs to be issued before
enabling any probes and an @@END probe point to indicate any action to be issued after the tracing has
been terminated.

Action block

The action block identifies the trace actions to be performed when the associated probe point is triggered.
Supported actions are not restricted to capturing and formatting of trace data but the full power of the
Vue language can be employed.

An action block in Vue is similar to a procedure in procedural languages. It consists of a sequence of
statements that are issued in order. The flow of execution is essentially sequential. The only exceptions
are that conditional execution is possible using the "if-else" statement and control can be returned from
the action block using the "return" statement. Vue also supports an exit function that terminates the
entire script and ends the tracing session. There are no constructs for looping in Vue and C language
statements, so "for", "do", "goto", and so on, are not supported.

Unlike procedures in procedural languages, an action block in Vue does not have an output or return
value. It also does not have inherent support for a set of input parameters. On the other hand, the context
data at the point where a probe is entered can be accessed within the action block. For example, the
parameters passed to a function can be referenced within the action block of a Vue clause if the probe
point is at the function's entry point.

Predicates

You must use predicates when execution of clauses at probe points must be performed conditionally.
The predicate section is identified by the presence of the when keyword immediately after the probe
specification section. The predicate itself consists of regular C-style conditional expressions with the
enclosing parentheses.

A predicate has the following format:

 when (<condition>)

For example:

when (__pid == 1678)

ProveVue variables
The Vue language supports most of the traditional C data types, namely those recognized by the C-89
specification. In addition, Vue includes some extensions to make powerful dynamic tracing programs be
written easily.

Vue supports variables with three different scope rules:

• Variables that are local to one action block only
• Variables that have global scope
• Variables that have thread-local scope

In addition, Vue can access variables with external scope like global variables in the kernel or user data in
an application being probed.

In general, variables need to be declared before their first use in the script, although Vue also supports a
very limited form of implicit type recognition. Variable declaration statements inside an action block must
appear before any of the executable statements. They cannot be inside nested blocks like within an if
statement. In some cases, you can declare variables outside any of the action blocks, but in this case, all
such declarations must appear before the first action block.

Variable classes

190 AIX Version 7.2: General programming concepts

Vue supports several classes of variables with varying rules on scope, on how they are initialized, on
whether they can be updated or not and on how their types are determined. As in the C language, any
declaration statement for a variable must textually precede its first use in the script.

Vue provides special type qualifiers that are added to the declaration statement to indicate the class of
the variables being declared. For example, the __global keyword is a class qualifier that you can include
in the declaration statement to specify that the variables being declared have "global" class.

In the following example, both foo and bar are declared to be variables of global class:

__global int foo, bar;

Vue also supports implicit recognition of the type of a variable based on its first usage in the script. In
this case, there is no declaration statement, but the class of the variable can still be provided by directly
attaching a class qualifier to the variable as follows on its first textual reference in the script:

global:count = 5; /* First reference to variable count in the script */

In the preceding example, the global: keyword is a qualifier that specifies the count variable to be
a variable of global class. This variable will also implicitly be assigned the int type because the first
reference to it is an assignment expression whose right hand side is an integer constant.

Note: You need to use the __global keyword when specifying the class qualifier with the declaration
statement, but the global: keyword when defining it at the first use of the variable in the script. The syntax
rules are similar for the other class qualifiers supported by Vue.

Automatic class variables
An automatic variable is clause-specific and is similar to an automatic or stack variable in C. It has scope
only within the action block portion of the clause where it is defined or used and is recreated for each
invocation of the action block. Automatic variables are always undefined at the start of an action block
and must be initialized through an assignment statement before you can use them in an expression or in
any other executable statement.

An automatic variable is identified by using the auto: prefix, for example auto:lticks indicates an
automatic variable. You can also declare automatic variables using the __auto declaration statement in
which case the auto: prefix can be omitted.

You cannot use automatic class variables in the predicate section of a Vue clause.

The following script is an example of the __auto declaration statement:

 __auto int i; /* Explicit declaration */
 auto:j = 0; /* Implicit declaration */

Thread-local class variables
A thread-local variable is instantiated per traced thread the first time it issues an action block that assigns
a value to the variable. Once created, the thread-local variable exists as long as the Vue script is active
and the traced thread does not exit. The value of the thread-local variable is thread-specific and retained
across executions of any of the clauses of the same program. In other words, variables of this class are
visible everywhere within the Vue script. However, each thread that issues the Vue script obtains its own
copy of these variables and the variables in each such copy are accessible and modifiable anywhere
within the script only by the thread that instantiated them.

A thread-local variable is distinguished by using the thread: prefix. For example, thread:count
indicates a thread-local variable. You can also declare thread-local variables using the __thread
declaration statement in which case the thread: prefix can be omitted with the following one exception.

You can use a thread-local variable in the predicate section of a Vue clause even before it is instantiated.
Predicates with un-instantiated thread-local variables are always evaluated to a value of FALSE. When
used in the predicate section, the thread: prefix must always be included to identify it as a thread-local
variable.

General programming concepts 191

The following script is an example of the __thread declaration statement:

 __thread int i; /* Explicit declaration */
 thread:j = 0; /* Implicit declaration */

Note: Although you can declare thread-locals inside the @@BEGIN and @@END probes, any other
references to them in these special probes can produce undefined behavior. A declaration statement by
itself does not cause the thread-local variable to be instantiated.

Global class variables
Variables of global class have global scope and are visible everywhere within a Vue script. You can use a
global variable in one or more clauses of a Vue script. They can also be declared at the beginning textually
before the first clause for clarity. Global variables are initialized to zero or NULL as appropriate.

All variables in a Vue script are by default assigned global class, unless an explicit non-global class
specifier is prefixed to the declaration. You can also explicitly declare global variables by using the
__global class specifier when declaring a variable. List variables are, by definition, always created as
variables of global class.

Reads and updates of global variables are not serialized unless they are of the list type. There are no
guarantees on data races when probes are issued simultaneously. Global variables, which are not of the
list type, are useful for collecting profiling and other statistics.

You can use global variables in the predicate section of a Vue clause.

The following scripts are examples for initializing and using global variables:

int wcount; /* Global variable declared before first clause */

 @@BEGIN
 {
 int f_count; /* Global variable declared inside @@BEGIN */
 __global int z_count; /* Global variable declared with __global prefix */

 f_count = 12;
 }

 @@syscall:*:read:entry
 when (z_count == 0)
 {
 int m_count; /* Global variable declared inside a probe */
 m_count += f_count; /* f_count already declared in earlier probe */
 printf("m_count = %d\n", m_count);
 if (wcount == 1)
 exit();
 }

 @@syscall:*:write:entry
 {
 m_count++; /* m_count already declared in earlier probe */

 }

 @@syscall:*:write:exit
 {
 wcount = 1; /* w_count declared globally */
 }

Kernel global class variables

In ProbeVue, a privileged user can access kernel global variables inside the action block of any Vue
clause, even for probe points in user space like the uft probe points. Before using or referring to the kernel
variable in the Vue script, you must explicitly declare it using the __kernel declaration statement. Only
variables exported by the kernel, that is, only those are present in the export list of /unix are accessible.

192 AIX Version 7.2: General programming concepts

Kernel variables cannot appear in the predicate section of a clause. Kernel variables are always treated as
read-only variables in a Vue script. Any attempt to write to a kernel variable either causes a syntax error or
fail later with a script abort message.

For an example of how kernel variables can be declared and used in a Vue script.

Access only pinned kernel variables. If the page containing the kernel variable is not in memory (has been
paged out), ProbeVue returns a value of zero for that variable.

You can access integral type kernel variables and kernel variables that are structures or unions and even
pointers. Further, you can also refer to the member names of kernel structures and unions in a Vue
script. Kernel arrays can also be accessed but there is no support for copying kernel character data into a
ProbeVue string.

Useful kernel variables
The following table lists a few examples of useful kernel variables that can be accessed from within a
Vue script. Be careful when using them in a Vue script because although not likely, the names of these
variables or their meanings can change across different releases of AIX. All these kernel variables are
pinned in memory and exported from the kernel.

Kernel variable Description Associated header files

struct system_configuration
_system_configuration

System configuration structure. sys/systemcfg.h

struct var v Base kernel tunable (and other)
parameters.

sys/var.h

struct timestruc_t tod Memory-mapped time of day
clock. Seconds and nanoseconds
since Epoch.

sys/time.h

cpu_t high_cpuid Highest logical CPU ID ever online. sys/encap.h

struct vminfo vmminfo Data structure that contains the
information shown by the vmstat
command.

sys/vminfo.h

time_t lbolt Number of ticks since last boot. sys/time.h

char spurr_version Identifies if current system
supports the SPURR register 0=No
SPURR, 1=CPUs have SPURR.

sys/sysinfo.h

struct utsname utsname System name structure that
includes the operating system
name, node name, release level,
and so on.

sys/utsname.h

Entry class variables

Clauses associated with a probe point that is at the entry location point of a system call or a user function
can access the arguments passed to the system call or function being probed.

Probes at entry location points are supported by the system call and the user function tracing probe
managers. For example, the read system call takes three arguments: a file descriptor ID, a pointer to a
user buffer, and a value for the number of bytes of data to be read. The values of these three arguments
can be accessed if the probe specification is @@syscall:*:read:entry, which specifies a probe at the read
system call entry point.

Parameters to functions are referenced using the special built-in entry class variable names __arg1,
__arg2, __arg3, ... up to the number of arguments passed to the function. For example, in the clause

General programming concepts 193

associated with the read system call entry point, __arg1 refers to the value of file descriptor id parameter,
__arg2 refers to the value of the buffer pointer parameter, and __arg3 to the size of the data to be read.

Note: When one or more probe point tuples are specified, then __arg <x> variables are not allowed in the
Action Block and will result in error as shown in the example below.

@@syscall:*:read:entry,@@syscall:*:write:entry
{
 char *argument;
 argument=__arg2; -> Not Allowed.
}

Probevue would exit with the following error message: arg builtin cannot be used. No defined function.

Use of entry class variables in a Vue clause is legal only if the C-style declaration of the function being
probed, specifically the data type of the parameters being passed to the function, are also provided in the
Vue script. This must appear textually before the first Vue clause that references the entry clause. Place
the declaration textually before any Vue clause at the top of the Vue script.

The following script is an example of using entry class variables:

 int read(int fd, char *buf, unsigned long size);

 @@syscall:*:read:entry
 {
 printf("Number of bytes to read = %d\n", __arg3);
 }

Note: In the preceding example, the definition of the read system call function specified in the script does
not exactly match what is given in the /usr/include/unistd.h file, but it works just as well.

A second requirement is that the probe specification associated with the clause identify a unique probe
point. Entry class variables cannot be used in a Vue clause that has multiple probe points specified in
the probe specification irrespective of whether the functions being probed are the same or have similar
function prototypes. The following script is an illegal script and will cause the ProbeVue compiler to fail
with a syntax error since the probe specification includes two probe points:

 int read(int fd, char *buf, unsigned long size);
 int write(int fd, char *buf, unsigned long size);

 @@syscall:*:read:entry, @@syscall:*:write:entry
 {
 /* Cannot use __arg3 in here, as this clause has multiple probe
 * points associated with it. This script will fail with a
 * syntax error in the compilation phase of the probevue command.
 */
 printf("Number of bytes to read/write = %d\n", __arg3);
 }

The following modified script can work:

 int read(int fd, char *buf, unsigned long size);
 int write(int fd, char *buf, unsigned long size);

 @@syscall:*:read:entry
 {
 printf("Number of bytes to read = %d\n", __arg3);
 }
 @@syscall:*:write:entry
 {
 printf("Number of bytes to write = %d\n", __arg3);
 }

Exit class variables

Clauses associated with a probe point that is at the exit location points of a system call or user function
can access the return value of the system call or user function.

194 AIX Version 7.2: General programming concepts

There is only one exit class variable that is defined by the Vue language. This is the return value from a
function or a system call, which can be accessed by using the special built-in variable name __rv.

Probes at exit location points are supported by the system call probe manager. For example, the read
system call returns the actual number of bytes read or an error return code of -1. This returned value
can be accessed at the @@syscall:*:read:exit probe point, which identifies all exit points from the read
system call.

Similar to entry class variables, the use of exit class variables in a Vue clause is legal only if the probe
specification associated with the clause identifies a unique probe point. Thus, __rv cannot be used in a
Vue clause that has multiple probe points specified in the probe specification. Furthermore, the C-style
declaration of the function being probed, specifically the data type of the return value, must be explicitly
provided in the Vue script. In fact, it is an error to specify a function declaration without providing its
return type.

You can use exit class variables in the predicate section of a clause.

The following script is an illegal script and will cause the ProbeVue compiler to fail with a syntax error
since the return type of the read function is not specified:

/* Bad example. */

 int read(int fd, char *buf, unsigned long size);

 @@syscall:*:read:exit
 when (__rv > 0)
 {
 /* Entered on read success: return value = # of bytes read */
 printf("Number of bytes read = %d\n", __rv);
 }

The following modified script can work:

/* Good example. */

 int read(int fd, char *buf, unsigned long size);

 @@syscall:*:read:exit
 when (__rv > 0)
 {
 /* Entered on read success: return value = # of bytes read */
 printf("Number of bytes read = %d\n", __rv);
 }

Built-in class variables

In addition to the special built-in variables, __arg1 through __arg32 and __rv, Vue also defines a set
of general-purpose built-in variables. These general-purpose built-in variables are discussed in more
detail in this section and some probe manager specific built-in variables are discussed in their respective
probe manager section. Built-in class variables are functions, but are treated as variables by ProbeVue.
Therefore, you can use these built-in variables in the predicate section of a Vue clause.

The following built-in variables are supported in Vue:

__tid
Thread ID of traced thread.

__pid
Process ID of traced thread.

__ppid
Parent process ID of traced thread.

__pgid
Process group ID of traced thread.

__pname
Process name of traced thread.

General programming concepts 195

__uid, __euid
Real and effective user ID of traced thread.

__trcid
Process ID of tracing process (that is, of the probevue command)

__errno
Current errno value for the traced thread.

__kernelmode
Current executable mode: is either 1 (in kernel mode) or 0 (in user mode).

__r3, ..., __r10
General purpose register values (for function parameters or return values).

__curthread
Current thread.

__curproc
Current process.

__ublock
User area of the current process.

__mst
Built-in variable to access the hardware register content of the current thread's machine state save
area (MST).

__stat
Built-in variable to provides access to the system statistics for various AIX® kernel components.

The following script is an example using built-in variables:

 @@syscall:*:read:entry
 {
 printf("Thread ID:%d, Process ID:%d, Parent Process ID:%d\n",
 __tid, __pid, __ppid);
 printf("Process Group ID: %d\n", __pgid);
 printf("Process name = %s\n", __pname);

 printf("Real UID=%d, Effective UID=%d\n", __uid, __euid);S

 printf("probevue command process ID = %d\n", __trcid);

 printf("Errno = %d\n", __errno);
 printf("Mode = %s\n", __kernelmode == 1 ? "kernel" : "user");

 printf("Current values of GPRs: r3=0x%016llx, r4=0x%016llx, r5=0x%016llx\n",
 __r3, __r4, __r5);
 printf(" r6=0x%016llx, r7=0x%016llx, r8=0x%016llx\n",
 __r6, __r7, __r8);
 printf(" r9=0x%016llx, r10=0x%016llx\n",
 __r9, __r10);
 }

__curthread built-in variable
__curthread is a special built-in using which the user can access some of the thread related information
for the current thread. The information can be accessed using the ->operator on the __curthread built-in.
This built-in cannot be used in systrace, BEGIN and END probes. Also it can be used in interval probes
only if PID is mentioned. This built-in will basically provide functionality similar to getthrds/getthrds64
but only limited to the current thread. The data that can be accessed are

tid
Thread ID

threadstate
State of the thread

pid
Process ID

196 AIX Version 7.2: General programming concepts

policy
Scheduling Policy

pri
Priority

cpuusage
CPU Usage

cpuid
Processor to which the current thread is bound to

sigmask
Signal blocked on the thread

lockcount
Number of kernel lock taken by the thread

ptid
The pthread identifier of this thread (0 if it is a kernel thread, 1 if it is a single-threaded application)

homecpu
Home CPU of a thread.

homesrad
Home srad of a thread

Usage Example

Tid of the current thread can be accessed using __curthread->tid.

__curproc built-in variable
__curproc is a special built-in using which the user can access some of the process related information
for the current process. The information can be accessed using the ->operator on the __curproc built-in.
This built-in cannot be used in systrace, BEGIN and END probes. Also, it can be used in interval probes
only if PID is mentioned. This built-in will basically provide functionality similar to getproc but only
limited to the current process. The data that can be accessed are

pid
Process ID.

ppid
Parent Process ID

pgid
Process Group ID

uid
Real user ID

suid
Saved user ID

pri
Priority

nice
Nice value

cpu
Processor usage

adspace
Process Address Space

majflt
I/O Page Fault

minflt
Non I/O Page Fault

General programming concepts 197

size
Size of image in pages

sigpend
Signals pending on the process

sigignore
Signals ignored by the process

sigcatch
Signals being caught by the process

forktime
Creation time of the process

threadcount
No of threads in the process

cwd
Current working directory. If a free page fault context is not available or the per-CPU computation
stack size is less than 96 KB, or in a probe where a page fault is not allowed (for example, interval
probe), then this built-in returns a null string

Usage Example

Parent process id of the current process can be accessed using __curproc->ppid.

__ublock built-in variable
__ublock is a special built-in using which the user can access some of the process related information for
the current process. This built-in cannot be used in systrace, BEGIN and END probes. Also it can be used
in interval probes only if PID is mentioned. The information can be accessed using the ->operator on the
__ublock built-in. The data that can be accessed are

text
Start of text

tsize
Text size (bytes)

data
Start of Data

sdata
Current Data Size (bytes)

mdata
Maximum data size (bytes)

stack
Start of stack

stkmax
Stack Max (bytes)

euid
Effective user id

uid
Real user id

egid
Effective group id

gid
Real group id

utime
Process User resource usage time in seconds

198 AIX Version 7.2: General programming concepts

stime
Process System resource usage time in seconds

maxfd
Max fd value in user

is64u
Set to 1, if in context of a 64-bit process

Usage Example

Start of the text for the current process can be accessed using __ublock->text.

__mst built-in variable
__mst is a special built-in variable in which you can access hardware register content of the current
thread. This built-in variable cannot be used in the systrace, BEGIN, and END probes. Also, this built-in
variable can be used in the interval probes only if PID is mentioned. The information can be accessed
using the -> operator on the __ublock built-in. The registers that can be accessed follow:

r1-r10
General purpose register r1 to r10

r14-r31
General purpose register r14 to r31

iar
Instruction address register

lr
Link register

isisr
Set if in interrupt or exception context.

Usage Example

To access the lr value in a probe, use the following command:

__mst->lr

__stat built-in variable
This built-in variable provides access to the system statistics for various AIX kernel components by using
the Vue script. The system statistic are provided as running counters that can be accessed from any probe
point of any ProbeVue script. A new probe point is not added to support the system statistics. To access
system statistics, you must have aix.ras.probevue.trace kernel tracing privileges.

System statistics are useful for the following reasons:

• Statistics can be accessed without turning on a system trace or a component trace.
• Only required fields can be displayed. This is not possible by using the current statistics commands. You

can avoid copying a large amount of data by accessing fields directly from the kernel structures.
• The system statistics is now available in the Vue scripts to easily complete the arithmetic logical

operation. For example, you can use ProbeVue to add the number of operations across two disks.

The Vue built-in __stat variable allows statistics to be retrieved both at the global level and the individual
component level. Data is provided as running counters and Vue scripts require access to the counters
periodically. You can save the values that you need, and compute delta values to get the required results.
You can access system statistics for the following reasons:

• To write a simple statistic tool by using the Vue script without calling the C/C++ API to print out the
delta value for the counters every second or at an interval that is requested by the user.

– To monitor counter value in case if the delta value exceeds threshold. When the value exceeds the
threshold, a script logs the message.

General programming concepts 199

– To use the Vue script to log a message when the actual value of the counter, which is not a delta
value, exceeds the threshold value (for example, the maximum service time of a disk).

There are different modes that are provided by the built in __stat variable to access statistics from the
source. The source of the system statistic is obtained from different system components. The statistics
access modes follow.
Synchronous mode access

ProbeVue provides a direct access to the system statistics when the Vue script is run. This type of
direct access is a live data access. By default, ProbeVue selects a live data access, if it is available.
Every statistic might not be accessed in this mode because components do not provide the direct
access or direct access is not possible in the current thread.

Asynchronous or Cached mode
Data is periodically gathered from source and cached in the ProbeVue. The Vue script uses a cache to
access the data. A cache refresh interval is tuned at the single session or at all session level. Every
source component provides a method to access statistics in asynchronous mode. In such cases, you
can provide access to all statistics in cached mode by using the fetch_stats_async_only tunable.
Cached mode is used when you cannot live data or you want to monitor the system where live data is
not required.

Examples

1. The following example prints the number of I/O transfers for a disk named hdisk9 every second:

@@interval:*:clock:1000
{
 printf("Number of transfers = %lld\n", __stat.io.disk.hdisk9->transfers);
}

2. The following example displays the units of service time is microseconds:

@@syscall:*:read:exit
{
 rdservtime = __stat.io.disk.hdisk10->rd_service_time;
 printf(“rdservtime=%lld microseconds\n”, rdservtime);
}

__stat built-in syntax

The general syntax for using the __stat built-in expressions is as
follows: __stat.<level1_keyword>[.<level2_keyword>.....][.<inst1_keyword>....]-
><fieldname>

Pre-defined levels and instances for the Storage IO Statistics are shown in the following table:

Table 2. Predefined level and instances

Built-in Level 0 Level 1 Instance 0 Instance 1 Fields Names

__stat io disk hdisk[0...n] • See Table 4 on page 201

hdisk[0...n] path[0...n] • See Table 5 on page 202

__stat io adapter vscsi[0....n] • See Table 6 on page 202

• See Table 7 on page 203

__stat io adapter fcs[0...n] • See Table 8 on page 204

Pre-defined levels and instances for the Network Statistics are shown in the following table:

Table 3. Predefined level and instances

Built-in Level 0 Level 1 Level 2 Instance 0 Fields Names

__stat net adapter ent[0...n] • See Table 9 on page 206

__stat net interface en[0....n] • See Table 10 on page 209

200 AIX Version 7.2: General programming concepts

Table 3. Predefined level and instances (continued)

Built-in Level 0 Level 1 Level 2 Instance 0 Fields Names

__stat net protocol ip • See Table 11 on page 211

__stat net protocol ipv6 • See Table 12 on page 214

__stat net protocol tcp • See Table 13 on page 216

__stat net protocol udp • See Table 14 on page 221

__stat net protocol icmp • See Table 15 on page 222

__stat net protocol icmpv6 • See Table 16 on page 223

__stat net protocol igmp • See Table 17 on page 226

__stat net protocol arp • See Table 18 on page 227

SCSI Disk I/O statistics
The following table displays the supported field names for the Small Computer System Interface
(SCSI) disk I/O statistics. These fields are specific to the disk instances. They can be accessed
as __stat.io.disk.<hdisk0...n>->fieldname. The following statistics can be accessed in
synchronous mode and asynchronous mode.

Table 4. SCSI disk I/O statistics

Vue script field name Data type Description

name String[32] Disk name

block_size unsigned long long Disk block size in bytes

transfers unsigned long long Number of transfers to or from
disk

rd_block_count unsigned long long Number of disk blocks read

rd_service_time unsigned long long Total read service name
or receive service time in
microseconds.

rd_min_service_time unsigned long long Minimum read service time in
microseconds.

rd_max_service_time unsigned long long Maximum read service time in
microseconds.

rd_timeouts unsigned long long Number of read timeouts

rd_failures unsigned long long Number of read failures

wr_block_count unsigned long long Number of blocks written

wr_service_time unsigned long long Total write service time in
microseconds.

wr_min_service_time unsigned long long Minimum write service time in
microseconds.

wr_max_service_time unsigned long long Maximum write service time in
microseconds.

wr_timeouts unsigned long long Number of write timeouts

wr_failures unsigned long long Number of write timeouts

General programming concepts 201

Table 4. SCSI disk I/O statistics (continued)

Vue script field name Data type Description

wait_queue_depth unsigned long long Driver wait queue depth

accum_wait_queue_time unsigned long long Accumulated wait queuing time
in microseconds

min_wait_queue_time unsigned long long Minimum wait queue time in
microseconds.

max_wait_queue_time unsigned long long Maximum wait queue time in
microseconds.

num_queue_full unsigned long long Number of in-flight queue full
count

SCSI disk path I/O statistics

The following table displays the supported field names for the Small Computer System Interface (SCSI)
disk path I/O statistics. These fields are specific to the disk and path instances. They can be accessed
as __stat.io.disk.<hdisk0...n>.path[0...n]->fieldname. The following statistics can be
accessed in synchronous mode and the asynchronous mode.

Note: The SCSI disk path I/O statistics supports only the IBM® multi-path driver (MPIO).

Table 5. SCSI disk path I/O statistics

Vue script field name Data type Description

name String[32] Disk name

block_size unsigned long long Disk block size in bytes

transfers unsigned long long Number of transfers to or from
disk

rd_block_count unsigned long long Number of disk blocks read

wr_block_count unsigned long long Number of blocks written

vSCSI client I/O statistics
The following table displays the supported field names for the virtual SCSI (vSCSI) client I/O
statistics. These fields are specific to the vSCSI client instances. They can be accessed as
__stat.io.adapter.<vscsi0...n>->fieldname. The following statistics can be accessed in the
synchronous mode and the asynchronous mode.

Table 6. vSCSI client I/O statistics

Vue script field name Data type Description

name String[32] Device name

transfers unsigned long long Number of transfers to or from
device

rd_block_count unsigned long long Number of blocks read

rd_service_time unsigned long long Total read or receive service time
in microseconds.

rd_min_service_time unsigned long long Minimum read service time in
microseconds.

202 AIX Version 7.2: General programming concepts

Table 6. vSCSI client I/O statistics (continued)

Vue script field name Data type Description

rd_max_service_time unsigned long long Maximum write service time in
microseconds.

wr_block_count unsigned long long Number of blocks written

wr_service_time unsigned long long Total write service time in
microseconds.

wr_min_service_time unsigned long long Minimum write service time in
microseconds.

wr_max_service_time unsigned long long Maximum write service time in
microseconds.

wait_queue_depth unsigned long long Wait queue depth for the driver

accum_wait_queue_time unsigned long long Accumulated wait queuing time
in microseconds.

min_wait_queue_time unsigned long long Minimum wait queue time in
microseconds.

max_wait_queue_time unsigned long long Maximum wait queue time in
microseconds.

num_queue_full unsigned long long Number of in flight queue full
count

vSCSI client driver statistics
The following table displays the supported field names for the virtual SCSI (vSCSI) client driver
statistics. These fields are specific to the vSCSI client instances. They can be accessed as
_stat.io.adapter.<vscsi[0...n]>->fieldname. The following statistics can be accessed in the
synchronous mode and the asynchronous mode.

Table 7. vSCSI client driver statistics

Vue script field name Data type Description

no_dma_failures unsigned char Number of times system failed
to send a I/O command due
to insufficient Direct Memory
Space (DMA). For example,
DMA_NORES

no_cmd_elem_failures unsigned char Number of times system failed to
send a I/O command because of
no free command element with
the client driver.

num_ping_timeouts unsigned char Number of times the client
driver's ping request to that
mapped Virtual I/O Server (VIOS)
failed.

num_bad_mad unsigned char Number of times system failed to
process a management datagram
because of the adapter is not in
an active state.

General programming concepts 203

Table 7. vSCSI client driver statistics (continued)

Vue script field name Data type Description

num_hcall_drops unsigned char Number of times system failed
to send a command to host
CRQ (on VIOS), because the
command-response queue (CRQ)
is full. For example, the
H_SEND_CRQ() parameter failed
with the H_DROPPED parameter.

Fiber Channel driver statistics
The following table displays the supported field names for the Fiber Channel driver statistics.
These fields are specific to the Fiber Channel device instances. The syntax of the Vue statement
is __stat.io.adapter.fcs[0...n]->fieldname. The following statistics are accessible only in
asynchronous mode.

Table 8. Fiber Channel driver statistics

Vue script field name Data type Description

secs_since_last_reset unsigned long long Time in seconds since last reset

tx_frames unsigned long long Number of frames transmitted

tx_words unsigned long long Fibre channel kbytes transmitted

rx_frames unsigned long long Number of frames received

rx_words unsigned long long Fibre channel kbytes received

lip_count unsigned long long Count of Loop Initiation Primitive
(LIP) events on Fibre Channel
Arbitrated Loop (FC-AL)

nos_count unsigned long long Count of No Operating System
(NOS) events

error_frames unsigned long long Number of frames received with
the cyclic redundancy check
(CRC) error or discard frames.
Each adapter has different field
assigning this field.

lost_frames unsigned long long Number of lost frames

link_fail_count unsigned long long Count of link failures

sync_loss_count unsigned long long Count of loss of sync

sig_loss_count unsigned long long Count of loss of signal

prim_seq_proto_errcount unsigned long long Count of primitive sequence
errors

inval_words_received unsigned long long Count of invalid transmission
words received

inval_crc_count unsigned long long Count of CRC errors in a received
frames

num_interrupts unsigned integer Total number of interrupts

204 AIX Version 7.2: General programming concepts

Table 8. Fiber Channel driver statistics (continued)

Vue script field name Data type Description

num_spurious_interrupts unsigned integer Total number of spurious
interrupts.

elastic_buf_overrun_errcount unsigned integer Number of times the link
interface exceeds the elastic
buffer overrun.

in_reqs unsigned long long Input requests

out_reqs unsigned long long Output requests

ctrl_reqs unsigned long long Control requests

in_bytes unsigned long long Input bytes

out_bytes unsigned long long Output bytes

no_dma_resource_count unsigned long long Count of DMA failures due to no
DMA resources available

no_adap_elems_count unsigned long long Count of failure to allocate an
adapter command element due
to no more command element
available

no_cmd_resource_count unsigned long long Count of failure to allocate a
command due to no command
resources available

adap_num_active_cmds unsigned integer Number of active commands in
the adapter driver

adap_active_high_wmark unsigned integer High water mark of active
requests in adapter driver

adap_num_pending_cmds unsigned integer Number of pending commands in
the adapter driver

adap_pending_high_wmark unsigned integer High water mark of pending
requests in adapter driver

adap_heldoff_num_cmds unsigned integer Number of commands in the
adapter driver held off queue

adap_heldoff_high_wmark unsigned integer High water mark of number of
commands in the adapter driver
held off queue

proto_num_active_cmds unsigned integer Number of active commands in
SCSI-FC driver

proto_active_high_wmark unsigned integer High water mark of active
requests in SCSI-FC driver

proto_num_pending_cmds unsigned integer Number of pending commands in
SCSI-FC driver

proto_pending_high_wmark unsigned integer High water mark of pending
requests in SCSI-FC driver

General programming concepts 205

Network device driver statistics
The following table shows the supported field name for the network device driver statistics. These
fields are specific to the network device instances. Network device driver statistics can be accessed as
"__stat.net.adapter.<ent0...n>->fieldname"

Table 9. Network device driver statistics

Vue script field name Data type Description

Field access type
(Asynchronously
or Both)

flags unsigned int Adapter flag values. This field can have following values:

• NDD_UP

• NDD_BROADCAST

• NDD_DEBUG

• NDD_RUNNING

• NDD_SIMPLEX

• NDD_DEAD

• NDD_LIMBO

• NDD_PROMISC

• NDD_ALTADDRS

• NDD_MULTICAST

• NDD_DETACHED

• NDD_64BIT

• NDD_HIGHFUNC_QOS

• NDD_MEDFUNC_QOS

• NDD_MINFUNC_QOS

• NDD_QOS

• NDD_CHECKSUM_OFFLOAD

• NDD_PSEG

• NDD_ETHERCHANNEL

• NDD_VLAN

• NDD_SPECFLAGS

These values are available as symbolic constants.

both

max_mtu unsigned int Maximum transmission unit. both

min_mtu unsigned int Minimum transmission unit. both

type unsigned int Interface types. This field can have following values:

• NDD_ETHER

• NDD_ISO88023

• NDD_ISO88024

• NDD_ISO88025

• NDD_ISO88026

These values are available as symbolic constant.

Note: Not all possible interface type values are defined,
and hence there might be other options present in the
value.

both

physaddr mac_addr_t Physical or MAC address. both

206 AIX Version 7.2: General programming concepts

Table 9. Network device driver statistics (continued)

Vue script field name Data type Description

Field access type
(Asynchronously
or Both)

adapter_type unsigned int Extension of the flag field. This field can have following
values:

• NDD_2_SEA

• NDD_2_VIOENT

• NDD_2_VASI

• NDD_2_HEA

• NDD_2_IPV6_LSO

• NDD_2_IPV6_CSO

• NDD_2_IPV6_PARTIAL_CSO

• NDD_2_IPV4_PARTIAL_CSO

• NDD_2_LARGE_RECEIVE

• NDD_2_ARPINPUT

• NDD_2_ECHAN_ELEM

• NDD_2_SEA_ELEM,

• NDD_2_ROCE

• NDD_2_VIRTUAL_PORT

• NDD_2_PHYS_LINK_UP

• NDD_2_VNIC

These values are available as symbolic constants.

Note: Not all possible extension of flag field values
are defined, and hence there might be other options
present in the value.

both

vlan_id unsigned int Virtual LAN (VLAN) identifier (Bits 0 - 11 are used for
VLAN ID).

both

vlan_pri unsigned int VLAN priority (Bits 13 - 15 are used for VLAN priority). both

alias String[16] Name of the network adapter alias. Asynchronously

nobufs unsigned long long Number of times network buffers (MBUFs) were not
available to the device driver.

Asynchronously

tx_packets unsigned long long Number of packets transmitted successfully by the
network device.

Asynchronously

tx_bytes unsigned long long Number of bytes transmitted successfully by the
network device.

Asynchronously

tx_interrupts unsigned long long Number of transmit interrupts received by the driver
from the adapter.

Asynchronously

tx_errors unsigned long long Number of transmit errors on the network device. This
is a counter for unsuccessful transmissions due to
hardware or network errors.

Asynchronously

tx_packets_dropped unsigned long long Number of times packet dropped at the time of data
transmission. The number of packets are accepted by
device driver for transmission which were not given to
the device.

Asynchronously

tx_queue_overflow unsigned long long The number of outgoing packets that have overflowed
the software transmit queue.

Asynchronously

tx_queue_size unsigned long long The maximum number of outgoing packets queued to
the software transmit queue.

Asynchronously

tx_queue_len unsigned long long The number of pending outgoing packets on the current
software and hardware transmit queues.

Asynchronously

tx_broadcast_packets unsigned long long The number of broadcast packets transmitted. Asynchronously

tx_multicast_packets unsigned long long The number of multicast packets transmitted. Asynchronously

tx_carrier_sense unsigned long long The number of unsuccessful transmissions due to no
carrier sense error.

Asynchronously

tx_DMA_underrun unsigned long long The number of unsuccessful transmissions due to direct
memory access (DMA) underrun error.

Asynchronously

General programming concepts 207

Table 9. Network device driver statistics (continued)

Vue script field name Data type Description

Field access type
(Asynchronously
or Both)

tx_lost_CTS_errors unsigned long long The number of unsuccessful transmissions due to loss
of the Clear-to-Send signal error.

Asynchronously

tx_timeout_errors unsigned long long The number of unsuccessful transmissions due to
timeout errors reported by the network adapter.

Asynchronously

tx_max_collision_errors unsigned long long The number of unsuccessful transmissions due to
many collisions of transmitted packets. In this case,
the number of collisions of transmitted packets
encountered exceeds the number of retries on the
network adapter.

Asynchronously

tx_late_collision_errors unsigned long long The number of unsuccessful transmissions due to the
late collision error.

Asynchronously

tx_deferred unsigned long long The number of packets that are deferred for
transmission.

Asynchronously

tx_hw_q_len unsigned long long The number of outgoing packets that currently exist on
the hardware transmit queue.

Asynchronously

tx_sw_q_len unsigned long long The number of outgoing packets that currently exist on
the software transmit queue.

Asynchronously

tx_single_collision_count unsigned long long Number of single collision errors at transmission. Asynchronously

tx_multiple_collision_count unsigned long long Number of multiple collision errors at transmission. Asynchronously

sqe_test unsigned long long The number of Signal Quality Error (SQE) tests
performed successfully during transmission.

Asynchronously

ucast_pkts_reqs unsigned long long Number of outbound unicast packets requested by the
network device.

Asynchronously

mcast_pkts_reqs unsigned long long Number of outbound multicast packets requested by
the network device.

Asynchronously

bcast_pkts_reqs unsigned long long Number of outbound broadcast packets requested by
the network device.

Asynchronously

rx_packets unsigned long long Number of packets received successfully by the
network device.

Asynchronously

rx_bytes unsigned long long Number of bytes received successfully by the network
device.

Asynchronously

rx_interrupts unsigned long long Number of receive interrupts received by the driver from
the adapter.

Asynchronously

rx_errors unsigned long long The number of input errors encountered on this device.
This is a counter for unsuccessful reception due to
hardware or network errors.

Asynchronously

rx_packets_dropped unsigned long long Number of times packet dropped at the time of data
reception. The number of packets received by the
device driver from this device which were not given to a
network demuxer.

Asynchronously

rx_bad_packets unsigned long long The number of bad packets received by the device
driver.

Asynchronously

rx_broadcast_packets unsigned long long Number of broadcast packets received. Asynchronously

rx_multicast_packets unsigned long long Number of multicast packets received. Asynchronously

rx_noresource_errors unsigned long long The number of incoming packets dropped by the
hardware due to the no resource error.

Asynchronously

rx_alignment_errors unsigned long long The number of incoming packets with the alignment
errors.

Asynchronously

rx_DMA_overrun unsigned long long The number of incoming packets with the DMA overrun
errors.

Asynchronously

rx_CRC_errors unsigned long long The number of incoming packets with the checksum
error.

Asynchronously

rstart_cnt unsigned long long Number of times the adapter error recovery performed. Asynchronously

208 AIX Version 7.2: General programming concepts

Table 9. Network device driver statistics (continued)

Vue script field name Data type Description

Field access type
(Asynchronously
or Both)

rx_collision_errors unsigned long long The number of incoming packets with collision errors
during the reception.

Asynchronously

rx_packet_tooshort_errors unsigned long long The number of incoming packets with the length error
indicating that the packet size is less than the Ethernet
minimum packet size.

Asynchronously

rx_packet_toolong_errors unsigned long long The number of incoming packets with the length error
indicating that the packet size is bigger than the
Ethernet maximum packet size.

Asynchronously

rx_packets_discardedbyadapter unsigned long long The number of incoming packets dropped by the
adapter for any other reasons.

Asynchronously

rx_start unsigned long long The number of times that the receiver on the adapter
has been started.

Asynchronously

Network interface based statistics
The following table shows the supported field name for the network interface based statistics. These
fields are specific to the network interface instances. The network interface based statistics can be
accessed in synchronous and asynchronous modes. The Network interface based statistics can be
accessed as "__stat.net.interface.<en0...n>->fieldname"

Table 10. Network interface based statistics

Vue script field name Data type Description

mtu unsigned long
long

Maximum transmission unit. The maximum size of
packets in bytes, that are transmitted using the
interface.

flags unsigned long
long

Interface flag. This flag can have following values:

• IFF_UP
• IFF_BROADCAST
• IFF_DEBUG
• IFF_LOOPBACK
• IFF_POINTOPOINT
• IFF_VIPA
• IFF_NOTRAILERS
• IFF_RUNNING
• IFF_PROMISC
• IFF_NOARP

These values are available as symbolic constants.

Note: Not all possible interface flag values are
defined, and hence there might be other options
present in the value.

General programming concepts 209

Table 10. Network interface based statistics (continued)

Vue script field name Data type Description

type unsigned int Interface type. This field can have following values:

• IFT_ETHER
• IFT_IB
• IFT_LOOP
• IFT_FDDI
• IFT_ISO88023
• IFT_ATM
• IFT_OTHER
• IFT_TUNNEL

These values are available as symbolic constants.

Note: Not all possible interface flag values are
defined, and hence there might be other options
present in the value.

ipackets unsigned long
long

The number of packets received on this network
interface.

ibytes unsigned long
long

The number of bytes received on this network
interface.

ierrors unsigned long
long

The number of input errors. For example, malformed
packets, checksum errors, or insufficient buffer
space in the device driver.

opackets unsigned long
long

The number of packets transmitted on this network
interface.

obytes unsigned long
long

The number of bytes transmitted on this network
interface.

oerrors unsigned long
long

The number of output errors. For example, a fault in
the local host connection or adapter output queue
overrun.

collisions unsigned long
long

The number of packet collisions detected on carrier
sense multiple access (CSMA) interfaces.

if_arpdrops unsigned long
long

Dropped because no Address Resolution Protocol
(ARP) response.

if_iqdrops unsigned long
long

Number of times packet dropped at the time of data
reception on this network interface.

index unsigned int Interface index number.

tx_mcasts unsigned long
long

The number of multicast packets transmitted on this
network interface.

rx_mcasts unsigned long
long

The number of multicast packets received on this
network interface.

no_proto unsigned long
long

Unsupported protocol.

bitrate unsigned int Bitrate as the rate at which data is sent on the wire.

210 AIX Version 7.2: General programming concepts

Table 10. Network interface based statistics (continued)

Vue script field name Data type Description

dev_num unsigned long
long

Device Number.

options unsigned int Options field. This field can have following values:

• IFO_FLUSH
• IFO_HIGHFUNC_QOS
• IFO_MEDFUNC_QOS
• IFO_MINFUNC_QOS
• IFO_QOS
• IFO_THREAD
• IFO_LARGESEND
• IFO_PKTCHAIN
• IFO_AACCT
• IFO_MONITOR
• IFO_VIRTUAL_ETHERNET
• IFO_CSO_IPV6
• IFO_LSO_IPV6
• IFO_PARTIAL_CSO_IPV6
• IFO_PARTIAL_CSO_IPV4
• IFO_RNIC
• IFO_FIRSTALIAS
• IFO_PSEUDO_CLUSTER

These values are available as symbolic constants.

Note: Not all possible interface option values are
defined, and hence there might be other options
present in the value.

Network protocol based statistics
Network protocol based statistics

The following table shows the supported field name for the network protocol based statistics.
These fields are specific to the specified network protocol. They can be accessed as
“__stat.net.protocol.<protocol name>->fieldname". For example, the IPv4 protocol specific
statistics can be accessed as “__stat.net.protocol.ip->fieldname". These statistics can be
accessed in synchronous and asynchronous modes.

The IPv4 protocol based statistics can be accessed as "__stat.net.protocol.ip->fieldname"

Table 11. Network protocol based statistics (IPv4)

Vue script field name Data type Description

ipackets unsigned long long Total number of IP packets received.

rx_bytes unsigned long long Total number of bytes received in IP
datagrams.

tx_bytes unsigned long long Total number of IP data bytes transmitted.

General programming concepts 211

Table 11. Network protocol based statistics (IPv4) (continued)

Vue script field name Data type Description

bad_cksum unsigned long long The number of IP packets with bad header
checksum.

shorts_pkts unsigned long long The buffer holding the IP packet has less bytes
than the represented bytes in the total length
field of the IP header (Total length includes IP
header length + data).

small_pkts unsigned long long The buffer holding IP packet has less bytes
than the represented bytes in IPv4 header
length field.

bad_hdr_len unsigned long long The number of IP packets with bad IP headers.
IP packets header length field has incorrect
length (IP header length is smaller than
minimum IP packet size).

bad_data_len unsigned long long The number of IP packets with bad length.
IP packet total length field has less bytes
than IP header length (Total length includes
IP header length + data) or IP data size is
bigger than the maximum supported packet
size (IP_MAXPACKET).

bad_opts unsigned long long The number of IP packets with bad options.

bad_vers unsigned long long The number of IP packets with incorrect
version number.

rx_frags unsigned long long The number of IP fragments received.

frag_drops unsigned long long The number of IP fragments dropped
(duplicate or out of space).

frag_timeout unsigned long long The number of IP fragments dropped after
timeout.

reassembled unsigned long long Total number of IP packets reassembled
successfully.

forward unsigned long long The number of IP packets forwarded.

no_proto unsigned long long The number of unknown or unsupported
protocol packets.

cant_fwd unsigned long long The number of packets that cannot be
forwarded. The packets received from
unreachable destination.

tx_redirect unsigned long long The number of redirects transmitted.

tx_drops unsigned long long The number of output packets dropped due to
unavailability of network buffers (MBUF).

no_route unsigned long long The number of output packets discarded due to
no route.

tx_frags unsigned long long The number of output fragments created.

cant_frag unsigned long long The number of datagrams that cannot be
fragmented. The don't fragment flag is set.

212 AIX Version 7.2: General programming concepts

Table 11. Network protocol based statistics (IPv4) (continued)

Vue script field name Data type Description

fragmented unsigned long long The number of output datagrams fragmented
successfully.

threads_pkts unsigned long long The number of IP packets processed by kernel
(dog) threads.

thread_drops unsigned long long The number of IP packets dropped by kernel
threads because no more packets can be
queued.

iqueueoverflow unsigned long long The number of IP packets dropped because
the socket receive buffer is full.

pmtu_disc unsigned long long The number of successful path Maximum
Transmission Unit (MTU) discovery cycles.

pmtu_redisc unsigned long long The number of path MTU rediscovery cycles
attempted.

pmtu_guesses unsigned long long The number of path MTU discovery guesses or
estimates due to no- response.

pmtu_timeouts unsigned long long The number of path MTU discovery response
timeouts.

pmtu_decs unsigned long long The number of path MTU discovery decreases
detected.

tx_pmtu_pkts unsigned long long The number of path MTU discovery packets
transmitted.

pmtu_nomem unsigned long long The number of path MTU discovery memory
allocation failures.

tx_dgd_pkts unsigned long long The number of dead gateway detection packets
transmitted.

dgd_nomem unsigned long long The number of dead gateway detection (DGD)
packets that are not transmitted due to
allocation failures.

dgd_nogw unsigned long long The number of dead gateway detection (DGD)
gateways that are not added due to allocation
failures.

bad_src unsigned long long The number of packets with illegal source
address.

delivered unsigned long long The number of IP packets consumed.

tx_local unsigned long long Total number of IP packets generated.

tx_raw unsigned long long Total number of RAW IP packets generated.

hdr_errs unsigned long long The number of header errors.

addr_errs unsigned long long The number of datagrams with IP address
errors.

rx_discards unsigned long long The number of input datagrams discarded.

mcast_addr_errs unsigned long long The number of IP multicast packets dropped
due to no receiver.

General programming concepts 213

Table 11. Network protocol based statistics (IPv4) (continued)

Vue script field name Data type Description

rx_mcast_bytes unsigned long long The number of IP multicast bytes received.

tx_mcast_bytes unsigned long long The number of IP multicast bytes transmitted.

rx_mcast_pkts unsigned long long The number of IP multicast datagrams
received.

tx_mcast_pkts unsigned long long The number of IP multicast datagrams
transmitted.

rx_bcast_pkts unsigned long long The number of IP broadcast datagrams
received.

tx_bcast_pkts unsigned long long The number of IP broadcast datagrams
transmitted.

tx_mls_drops unsigned long long The number of outgoing IP packets dropped
due to Multi Level Security (MLS) filters.

rx_mls_drops unsigned long long The number of IP incoming packets dropped
due to MLS filters.

The Internet Protocol version 6 (IPv6) protocol based statistic can be accessed as
"__stat.net.protocol.ipv6->fieldname"

Table 12. Network protocol based statistics (IPv6)

Vue script field name Data type Description

ipackets unsigned long long Total number of IPv6 packets
received.

rx_bytes unsigned long long Total number of bytes received in
IPv6 datagrams.

tx_bytes unsigned long long Total number of IPv6 data bytes
transmitted.

raw_cksum unsigned long long The number of IPv6 packets that
are not delivered due to bad raw
IPv6 checksum.

shorts_pkts unsigned long long The MBUF does not have enough
space to store IPv6 packet (IPv6
header + data).

small_pkts unsigned long long The MBUF does not have enough
space to store the IPv6 header.

rx_nomem unsigned long long The number of times network
buffers (MBUFs) were not
available for input packets.

tx_nomen unsigned long long The number of times network
buffers (MBUFs) were not
available for output packets.

no_proto unsigned long long The number of unknown or
unsupported protocol packets.

214 AIX Version 7.2: General programming concepts

Table 12. Network protocol based statistics (IPv6) (continued)

Vue script field name Data type Description

bad_vers unsigned long long The number of IPv6 packets with
incorrect version number.

rx_frags unsigned long long The number of IPv6 fragments
received.

frag_drops unsigned long long The number of IPv6 fragments
dropped (duplicate or out of
space).

frag_timeout unsigned long long The number of IPv6 fragments
dropped after timeout.

fragmented unsigned long long The number of output datagrams
fragmented successfully.

tx_frags unsigned long long The number of output fragments
created.

reassembled unsigned long long Total number of IPv6 packets
reassembled successfully.

cant_frag unsigned long long The number of datagrams that
cannot be fragmented. The don't
fragment flag is set.

forward unsigned long long The number of IPv6 packets
forwarded.

cant_fwd unsigned long long The number of packets
that cannot be forwarded.
The packets received from
unreachable destination.

bad_src unsigned long long The number of packets with
illegal source address.

tx_drops unsigned long long The number of output packets
dropped due to unavailability of
network buffers (MBUF).

no_route unsigned long long The number of output packets
that are discarded due to no
route.

delivered unsigned long long The number of IPv6 packets
consumed.

tx_local unsigned long long Total number of IPv6 packets
generated.

iqueueoverflow unsigned long long The number of IPv6 packets that
are dropped due to the socket
receive buffer is full.

big_pkts unsigned long long The number of IPv6 packets
that are not forwarded because
packet size is bigger than MTU.

tx_raw unsigned long long Total number of raw IPv6 packets
generated.

General programming concepts 215

Table 12. Network protocol based statistics (IPv6) (continued)

Vue script field name Data type Description

hdr_errs unsigned long long The number of header errors.

addr_errs unsigned long long The number of datagrams with
IPv6 address errors.

rx_discards unsigned long long The number of input datagrams
discarded.

rx_mcast_bytes unsigned long long The number of IPv6 multicast
bytes received.

tx_mcast_bytes unsigned long long The number of IPv6 multicast
bytes transmitted.

rx_mcast_pkts unsigned long long The number of IPv6 multicast
datagrams received.

tx_mcast_pkts unsigned long long The number of IPv6 multicast
datagrams transmitted.

rx_bcast_pkts unsigned long long The number of IPv6 broadcast
datagrams received.

tx_bcast_pkts unsigned long long The number of IPv6 broadcast
datagrams that are transmitted.

tx_mls_drops unsigned long long The number of IPv6 outgoing
packets that are dropped due to
MLS filters.

rx_mls_drops unsigned long long The number of IPv6 incoming
packets that are dropped due to
MLS filters.

The Transmission Control Protocol (TCP) based statistics can be accessed as
"__stat.net.protocol.tcp->fieldname"

Table 13. Network protocol based statistics (TCP)

Vue script field name Data type Description

tx_total unsigned long long Total number of TCP packets
transmitted. This count includes
data and ack packets.

rx_total unsigned long long Total number of TCP packets
received. This count includes
data and ack packets.

opackets unsigned long long The number of TCP data packets
transmitted.

ipackets unsigned long long The number of TCP data packets
received.

tx_bytes unsigned long long The number of TCP data bytes
transmitted.

rx_bytes unsigned long long The number of TCP data bytes
received in sequence.

216 AIX Version 7.2: General programming concepts

Table 13. Network protocol based statistics (TCP) (continued)

Vue script field name Data type Description

rexmit_pkts unsigned long long The number of TCP data packets
re-transmitted.

rexmit_bytes unsigned long long The number of TCP data bytes re-
transmitted.

tx_ack_pkts unsigned long long The number of TCP ACK only
packets transmitted.

rx_ack_pkts unsigned long long The number of TCP ACK only
packets received.

rx_ack_bytes unsigned long long The number of TCP ACK bytes
received.

rx_dup_pkts unsigned long long The number of duplicate-only
TCP packets received.

rx_dup_bytes unsigned long long The number of duplicate-only
TCP bytes received.

rx_part_dup_pkts unsigned long long The number of packets with
some duplicate data (part-
duplicate packets) received.

rx_part_dup_bytes unsigned long long The number of duplicate bytes
received from part-duplicate
packets.

rx_dup_ack_pkts unsigned long long The number of TCP duplicate ACK
packets received.

tx_win_probe unsigned long long The number of TCP window
probe packets transmitted.

rx_win_probe unsigned long long The number of TCP window
probe packets received.

tx_win_update unsigned long long The number of TCP window
update packets transmitted.

rx_win_update unsigned long long The number of TCP window
update packets received.

tx_delay_ack_pkts unsigned long long The number of TCP delayed ACK
packets transmitted.

tx_urg_pkts unsigned long long The number of URG only packets
transmitted.

tx_ctrl_pkts unsigned long long The number of control (SYN|FIN|
RST) packets transmitted.

tx_large_send_pkts unsigned long long The number of large send
packets transmitted.

tx_large_send_bytes unsigned long long The number of bytes transmitted
using large send offload option.

tx_large_send_max unsigned long long Maximum number of bytes that
can be transmitted using large
send offload option.

General programming concepts 217

Table 13. Network protocol based statistics (TCP) (continued)

Vue script field name Data type Description

rx_ack_unsent_data unsigned long long The number of ACKs received for
an unsent data.

rx_out_order_pkts unsigned long long The number of out-of-order
packets received.

rx_out_order_bytes unsigned long long The number of out-of-order bytes
received.

rx_after_close_pkts unsigned long long The number of packets received
after the connection has been
closed.

fast_lo_conns unsigned long long The number of fastpath loopback
connections.

tx_fast_lo_pkts unsigned long long The number of packets
transmitted through fast path
loopback connections.

rx_fast_lo_pkts unsigned long long The number of packets received
through fast path loopback
connections.

tx_fast_lo_bytes unsigned long long The number of bytes transmitted
through fast path loopback
connections.

rx_fast_lo_bytes unsigned long long The number of bytes received
through fast path loopback
connections.

rx_bad_hw_cksum unsigned long long The number of packets received
with bad hardware checksum.

rx_bad_cksum unsigned long long The number of packets discarded
due to bad checksum errors.

rx_bad_off unsigned long long The number of packets discarded
due to bad error offset fields.

rx_short_pkts unsigned long long The number of packets discarded
because packets are short. The
packet size is smaller than
minimum TCP packet size.

rx_queue_ovflow unsigned long long The number of packets discarded
because the listener queue is full.

rx_after_win_pkts unsigned long long The number of packets received
with data that exceeded the
receivers window size.

rx_after_win_bytes unsigned long long The number of bytes received
with data that exceeded the
receivers window size.

initiated unsigned long long The number of requests for TCP
connection.

218 AIX Version 7.2: General programming concepts

Table 13. Network protocol based statistics (TCP) (continued)

Vue script field name Data type Description

accepted unsigned long long The number of TCP connections
accepted.

established unsigned long long The number of TCP connections
established.

closed unsigned long long The number of TCP connections
closed including connections
drop.

dropped unsigned long long The number of TCP connections
dropped.

ecn_conns unsigned long long The number of connections with
Explicit Congestion Notification
(ECN) capability.

ecn_congestion unsigned long long The number of times responded
to ECN.

conn_drops unsigned long long The number of embryonic
connections dropped.

segs_timed unsigned long long The number of times the
segments attempt to update
round trip time (RTT).

rtt_updated unsigned long long The number of times the
segments updated the RTT.

ecnce unsigned long long The number of segments with
congestion experienced(CE) bit
set.

ecnwr unsigned long long The number of segments with
congestion window reduced
(CWR) bit set.

pmtu_resends unsigned long long The number of resends due to
path MTU discovery.

pmtu_halts unsigned long long The number of path MTU
discovery terminations due to
retransmits.

rexmt_timeout unsigned long long The number of retransmit
timeouts.

timeout_drops unsigned long long The number of connections
dropped due to re-transmit
timeouts.

fast_rxmt unsigned long long The number of fast retransmits.

new_reno_rxmt unsigned long long The number of NewReno fast
retransmits.

false_fast_rxmt unsigned long long The number of times false fast
retransmits avoided.

persist_timeouts unsigned long long The number of persist timeouts.

General programming concepts 219

Table 13. Network protocol based statistics (TCP) (continued)

Vue script field name Data type Description

persist_drops unsigned long long The number of connections
dropped due to persist timeouts.

keep_alive_timeout unsigned long long The number of keep alive
timeouts.

keep_alive_probe unsigned long long The number of keep alive probes
transmitted.

keep_alive_drops unsigned long long The number of connections
dropped by keep alive.

delay_ack_syn unsigned long long The number of delayed ACKs for
SYN.

delay_ack_fin unsigned long long The number of delayed ACKs for
FIN.

sack_blocks_upd unsigned long long The number of times Selective
Acknowledgments (SACK) blocks
array is extended.

sack_holes_upd unsigned long long The number of times SACK holes
array is extended.

tx_drops unsigned long long The number of packets dropped
due to memory allocation
failures.

time_wait_reuse unsigned long long Number of times an existing
connection in TIME_WAIT state
was reused for a new outgoing
connection.

send_and_disc unsigned long long The number of send and
disconnects.

spliced_conns unsigned long long The number of TCP spliced
connections.

splice_closed unsigned long long The number of TCP spliced
connections closed.

splice_resets unsigned long long The number of TCP spliced
connections reset.

splice_timeouts unsigned long long The number of TCP spliced
connections timeout.

splice_persist_drops unsigned long long The number of TCP spliced
connections persist timeout.

splice_keep_drops unsigned long long The number of TCP spliced
connections keep alive timeout.

bad_ack_conn_drops unsigned long long The number of connections
dropped due to bad ACKs.

dup_syn_conn_drops unsigned long long The number of connections
dropped due to duplicate SYN
packets .

220 AIX Version 7.2: General programming concepts

Table 13. Network protocol based statistics (TCP) (continued)

Vue script field name Data type Description

auto_cksum_offload unsigned long long The number of connections
where checksum offload was
dynamically disabled.

bad_syn unsigned long long The number of invalid packets
discarded by listeners.

limit_transmit unsigned long long The number of times fast
retransmit assisted by limited
transmit algorithm.

pred_acks unsigned long long The number of times ACK packet
headers correctly predicted.

pred_dat unsigned long long The number of times data packet
headers correctly predicted.

paws_drops unsigned long long The number of segments
dropped due to PAWS.

persist_drops unsigned long long The number of connection drops
in persist state.

fake_syn_drops unsigned long long The number of fake SYN
segments dropped.

fake_rst_drops unsigned long long The number of fake RST
segments dropped.

data_inject_drops unsigned long long The number of data injection
segments dropped.

tr_max_conn_drops unsigned long long Maximum connections dropped
for TCP traffic regulation.

tr_nomem_drops unsigned long long The number of connections
dropped for traffic regulation due
to no memory.

tr_max_per_host unsigned long long Maximum connections per host
dropped for traffic regulation.

The User Datagram Protocol (UDP) based statistics can be accessed as "__stat.net.protocol.udp-
>fieldname"

Table 14. Network protocol based statistics (UDP)

Vue script field name Data type Description

opackets unsigned long long Total number of UDP datagrams
transmitted.

ipackets unsigned long long Total number of UDP datagrams
received.

hdr_drops unsigned long long The number of packets whose
size is smaller than header size.
IP and UDP headers does not
fit into single memory buffer
(MBUF).

General programming concepts 221

Table 14. Network protocol based statistics (UDP) (continued)

Vue script field name Data type Description

bad_cksum unsigned long long The number of UDP packets
received with bad checksum
errors.

bad_len unsigned long long The number of bad length
packets received. The UDP length
specified in the packet is either
bigger than total packet size
specified in IP header or smaller
than size of UDP header.

no_socket unsigned long long The number of packets dropped
due to no socket on the port.

sock_buf_overflow unsigned long long The number of times the socket
buffer overflows.

dgm_no_socket unsigned long long The number of broadcast or
multicast datagrams dropped
due to no socket.

pcb_cache_miss unsigned long long The number of times input
packets missing PCB cache.

The Internet Control Message Protocol (ICMP) based statistics can be accessed as
"__stat.net.protocol.icmp->fieldname"

Table 15. Network protocol based statistics (ICMP)

Vue script field name Data type Description

sent unsigned long long Total number of ICMP packets
transmitted.

received unsigned long long Total number of ICMP packets
received.

errors unsigned long long The number of ICMP errors.

bad_cksum unsigned long long The number of ICMP messages
received with bad checksum
errors.

bad_len unsigned long long The number of ICMP messages
received with bad length.

bad_code unsigned long long The number of ICMP messages
with bad code fields. These
messages have out of range
icmp_code.

old_msg unsigned long long The number of errors not
generated because the old
packet protocol was ICMP.

old_short_msg unsigned long long The number of errors not
generated because old IP packet
was too short.

222 AIX Version 7.2: General programming concepts

Table 15. Network protocol based statistics (ICMP) (continued)

Vue script field name Data type Description

short_msg unsigned long long The ICMP message size is
smaller than minimum length
of ICMP message (packet size
<ICMP_MINLEN).

reflect unsigned long long The number of ICMP message
responses generated.

The ICMPV6 protocol based statistics can be accessed as "__stat.net.protocol.icmpv6-
>fieldname"

Table 16. Network protocol based statistics (ICMPV6)

Vue script field name Data type Description

tx_echo_reply unsigned long long Total number of ICMPv6 echo
replies transmitted.

rx_echo_reply `unsigned long long Total number of ICMPv6 echo
replies received.

errors unsigned long long The number of ICMPv6 errors.

rx_bad_cksum unsigned long long The number of ICMPv6 messages
received with bad checksum
errors.

rx_bad_len unsigned long long The number of ICMPv6 messages
received with bad length.

bad_code unsigned long long The number of ICMPv6 messages
with bad code fields. These
messages have out of range
icmp6_code.

old_msg unsigned long long The number of errors not
generated because the old
packet protocol was ICMPv6.

short_msg unsigned long long The ICMPv6 message size is
smaller than minimum length of
ICMPv6 message (packet size
<ICMP6_MINLEN).

reflect unsigned long long The number of ICMPv6 message
responses generated.

err_rate_limit unsigned long long The number of ICMPv6 errors
beyond error rate limit.

tx_unreach unsigned long long The number of unreachable
messages transmitted.

rx_unreach unsigned long long The number of unreachable
messages received.

tx_big_pkt unsigned long long The number of times big ICMPv6
packets transmitted.

rx_big_pkt unsigned long long The number of times big ICMPv6
packets received.

General programming concepts 223

Table 16. Network protocol based statistics (ICMPV6) (continued)

Vue script field name Data type Description

tx_timxceed unsigned long long The number of times ICMPv6
message sent time exceeded.

rx_timxceed unsigned long long The number of times
ICMPv6 message received time
exceeded.

tx_param_prob unsigned long long The number of times ICMPv6
messages transmitted with
parameter problems.

rx_param_prob unsigned long long The number of times
ICMPv6 messages received with
parameter problems.

tx_echo_req unsigned long long The number of times echo
request messages transmitted.

rx_echo_req unsigned long long The number of times echo
request messages received.

tx_mld_qry unsigned long long The number of times group query
requests transmitted.

rx_mld_qry unsigned long long The number of times group query
requests received.

tx_mld_report unsigned long long The number of times group
reports transmitted.

rx_mld_report unsigned long long The number of times group
reports received.

rx_bad_mld_qry unsigned long long The number of times bad group
queries received.

rx_bad_mld_report unsigned long long The number of times bad group
reports received.

rx_our_mld_report unsigned long long The number of times our group
reports received.

tx_mld_term unsigned long long The number of times group
terminations transmitted.

rx_mld_term unsigned long long The number of times group
terminations received.

rx_bad_mld_term unsigned long long The number of times bad group
terminations received.

tx_redirect unsigned long long The number of times redirects
transmitted.

rx_redirect unsigned long long The number of times redirects
received.

rx_bad_redirect unsigned long long The number of times bad
redirects received.

tx_router_sol unsigned long long The number of times router
solicitations transmitted.

224 AIX Version 7.2: General programming concepts

Table 16. Network protocol based statistics (ICMPV6) (continued)

Vue script field name Data type Description

rx_router_sol unsigned long long The number of times router
solicitations received.

rx_bad_router_sol unsigned long long The number of times bad router
solicitations received.

tx_router_adv unsigned long long The number of times router
advertisements transmitted.

rx_router_adv unsigned long long The number of times router
advertisements received.

rx_bad_router_adv unsigned long long The number of times bad router
advertisements received.

tx_nd_sol unsigned long long The number of times neighbor
solicitations transmitted.

rx_nd_sol unsigned long long The number of times neighbor
solicitations received.

rx_bad_nd_sol unsigned long long The number of times bad
neighbor solicitations received.

tx_nd_adv unsigned long long The number of times neighbor
advertisements transmitted.

rx_nd_adv unsigned long long The number of times neighbor
advertisements received.

rx_bad_nd_adv unsigned long long The number of times
bad neighbor advertisements
received.

tx_router_renum unsigned long long The number of times router re-
numberings transmitted.

rx_router_renum unsigned long long The number of times router re-
numberings received.

tx_haad_req unsigned long long The number of times home
agent address discovery (HAAD)
requests transmitted.

rx_haad_req unsigned long long The number of times HAAD
requests received.

rx_bad_haad_req unsigned long long The number of times bad HAAD
requests received.

tx_haad_reply unsigned long long The number of times HAAD
replies transmitted.

rx_haad_reply unsigned long long The number of times HAAD
replies received.

rx_bad_haad_reply unsigned long long The number of times bad HAAD
replies received.

tx_prefix_sol unsigned long long The number of times prefix
solicitations transmitted.

General programming concepts 225

Table 16. Network protocol based statistics (ICMPV6) (continued)

Vue script field name Data type Description

rx_prefix_sol unsigned long long The number of times prefix
solicitations received.

rx_bad_prefix_sol unsigned long long The number of times bad prefix
solicitations received.

tx_prefix_adv unsigned long long The number of times prefix
advertisements transmitted.

rx_prefix_adv unsigned long long The number of times prefix
advertisements received.

rx_bad_prefix_adv unsigned long long The number of times bad prefix
advertisements received.

no_mobility unsigned long long The number of mobility calls
when not started.

ndp_q_drops unsigned long long The number of held packets
dropped while waiting for ndp to
complete.

The Internet Group Management Protocol (IGMP) based statistics can be accessed as
"__stat.net.protocol.igmp->fieldname"

Table 17. Network protocol based statistics (IGMP)

Vue script field name Data type Description

rx_total unsigned int Total number of IGMP messages
received.

rx_queries unsigned int The number of IGMP
membership queries received.

tx_reports unsigned int The number of IGMP
membership reports transmitted.

rx_reports unsigned int The number of IGMP
membership reports received.

rx_our_reports unsigned int The number of IGMP
membership reports received for
our groups.

rx_bad_cksum unsigned int The number of IGMP messages
received with bad checksum
errors.

rx_short_msg unsigned int The number of IGMP messages
received with few bytes whose
size is smaller than minimum size
of IGMP message.

rx_bad_queries unsigned int The number of IGMP
membership queries received
with invalid fields.

rx_bad_reports unsigned int The number of IGMP
membership reports received
with invalid fields.

226 AIX Version 7.2: General programming concepts

The Address Resolution Protocol (ARP) based statistics can be accessed as
"__stat.net.protocol.arp->fieldname"

Table 18. Network protocol based statistics (ARP)

Vue script field name Data type Description

purged unsigned int The number of ARP packets
purged. When there is no space
in the bucket, remove the oldest
ARP entries from the bucket.

sent unsigned int Total number of ARP packets
transmitted.

Memory statistics
Unlike other statistics providers memory statistics provides statistics that are as accurate as statistics
fetched in synchronous mode but the statistics collection does not involve penalties of fetching the
statistics repetitively during script execution.

Some of the items in memory statistics, such as the number of page faults, change frequently. Therefore,
collecting memory statistics asynchronously produces incorrect information. For example, if you want
to collect memory statistics for a process that fails because of low memory, you can use the interval
between the fork and the exit system calls to collect the statistics. If memory statistics are not
accumulated during the same intervals, the memory statistics do not change.

Memory statistics can be accessed by using the following format:

__stat.mem-><field>

For example, the following command indicates the number of page faults that occurred during a specific
interval:

__stat.mem->page_faults

where __stat represents a statistical item, and mem indicates that the statistics is memory-related
information.

The following independent fields can be used to display different statistical items:

Table 19. ProbeVue fields for memory statistics

Vue script field name Data type Description

page_faults unsigned long long Number of page faults.

page_reclaims unsigned long long Number of page reclamation.

lock_misses unsigned long long Number of lock misses.

back_tracks unsigned long long Number of backtrack operations.

pageins unsigned long long Number of pages that are
paged in during the collection of
memory statistics.

pageouts unsigned long long Number of pages that are paged
out during the collection of
memory statistics.

num_ios unsigned long long Number of I/O start operations.

num_iodone unsigned long long Number of iodone operations.

General programming concepts 227

Table 19. ProbeVue fields for memory statistics (continued)

Vue script field name Data type Description

zerofills unsigned long long Number of zero-filled pages.

exec_fills unsigned long long Number of pages that are filled
with executable files.

page_scans unsigned long long Number of pages that are
examined.

pager_cycles unsigned long long Number of pager clock hand
cycles.

page_steals unsigned long long Number of least recently used
pages that must be included in
the free list.

free_frame_waits unsigned long long Number of page frames that must
be added to the list of available
page frames.

extnd_xpt_waits unsigned long long Number of extend XPT wait
operations.

pending_io_waits unsigned long long Number of pending I/O wait
operations.

CPU statistics
All the CPU-related statistics are grouped into a new level that is called as cpu. All the CPU statistics items
start with __stat.cpu. This statistic item is followed by either CPU instance, for example, cpu0, cpu1
and so on, or a sublevel cpu_total.

Per logical CPU statistics
The per logical CPU statistics provides information about each logical CPU. In Vue script, each statistics is
specified in the following format:

__stat.cpu.cpuX->fieldname

Where cpuX represents a CPU instance, for example, cpu0, cpu1 and fieldname represents the statistics
identifier. These fields are similar to the fields of the perfstat_cpu_total_t structure, which is
defined in the /usr/include/libperfstat.h header file. This header file is part of the AIX perfstat
library.

Table 20. Supported ProbeVue fields for per logical CPU statistics

Vue script field name Data type Description

user unsigned long
long

Raw number of clock ticks that are spent in the user
mode.

sys unsigned long
long

Raw number of clock ticks that are spent in the system
mode.

idle unsigned long
long

Raw number of clock ticks that are spent in the idle mode.

wait unsigned long
long

Raw number of clock ticks that are spent waiting for the
completion of I/O operations.

228 AIX Version 7.2: General programming concepts

Table 20. Supported ProbeVue fields for per logical CPU statistics (continued)

Vue script field name Data type Description

pswitch unsigned long
long

Number of context switches.

syscall unsigned long
long

Number of system calls.

sysread unsigned long
long

Number of read system calls.

syswrite unsigned long
long

Number of write system calls.

sysfork unsigned long
long

Number of fork system calls.

sysexec unsigned long
long

Number of exec system calls.

readch unsigned long
long

Number of characters that are transferred by using read
system calls.

writech unsigned long
long

Number of characters that are transferred by using write
system calls.

bread unsigned long
long

Number of blocks that are read.

bwrite unsigned long
long

Number of blocks that are written.

lread unsigned long
long

Number of logical read requests.

lwrite unsigned long
long

Number of logical write requests.

phread unsigned long
long

Number of physical read operations, that is, read
operations on raw devices.

phwrite unsigned long
long

Number of physical write operations, that is, write
operations on raw devices.

iget unsigned long
long

Number of inode lookup operations.

namei unsigned long
long

Number of vnode lookup operations from a path name.

dirblk unsigned long
long

Number of 512-byte blocks that are read by the directory
search routine to locate an entry for a file.

msg unsigned long
long

Number of Inter Process Communication (IPC) message
operations.

sema unsigned long
long

Number of IPC semaphore operations.

minfaults unsigned long
long

Number of page faults with no I/O.

majfaults unsigned long
long

Number of page faults with disk I/O.

General programming concepts 229

Table 20. Supported ProbeVue fields for per logical CPU statistics (continued)

Vue script field name Data type Description

puser unsigned long
long

Raw number of physical processor ticks in the user mode.

psys unsigned long
long

Raw number of physical processor ticks in the system
mode.

pidle unsigned long
long

Raw number of physical processor ticks spent when the
processor is idle.

pwait unsigned long
long

Raw number of physical processor ticks spent when the
processor is waiting for the I/O operations.

redisp_sd0 unsigned long
long

Number of thread redispatches within the scheduler
affinity domain 0.

redisp_sd1 unsigned long
long

Number of thread redispatches within the scheduler
affinity domain 1.

redisp_sd2 unsigned long
long

Number of thread redispatches within the scheduler
affinity domain 2.

redisp_sd3 unsigned long
long

Number of thread redispatches within the scheduler
affinity domain 3.

redisp_sd4 unsigned long
long

Number of thread redispatches within the scheduler
affinity domain 4.

redisp_sd5 unsigned long
long

Number of thread redispatches within the scheduler
affinity domain 5.

migration_push unsigned long
long

Number of thread migrations from the local run queue to
another queue because of starvation load balancing.

migration_S3grq unsigned long
long

Number of thread migrations from the global run queue to
the local run queue resulting in a move across scheduling
domain 3.

migration_S3pul unsigned long
long

Number of thread migrations from another processor's run
queue resulting in a move across scheduling domain 3.

invol_cswitch unsigned long
long

Number of involuntary thread context switches.

vol_cswitch unsigned long
long

Number of voluntary thread context switches.

runque unsigned long
long

Number of threads in the run queue.

bound unsigned long
long

Number of bound threads.

decrintrs unsigned long
long

Number of decrementer interrupts.

mpcrintrs unsigned long
long

Number of Multi-Processor Communication (MPC) receive
interrupts.

mpcsintrs unsigned long
long

Number of MPC send interrupts.

230 AIX Version 7.2: General programming concepts

Table 20. Supported ProbeVue fields for per logical CPU statistics (continued)

Vue script field name Data type Description

devintrs unsigned long
long

Number of device interrupts.

softintrs unsigned long
long

Number of off-level handlers that are called.

phantintrs unsigned long
long

Number of phantom interrupts.

idle_donated_purr unsigned long
long

Number of idle cycles that are donated by a dedicated
partition that is enabled for donation.

idle_donated_spurr unsigned long
long

Number of idle Scaled Processor Utilization Resource
Register (SPURR) cycles that are donated by a dedicated
partition that is enabled for donation.

busy_donated_purr unsigned long
long

Number of busy cycles that are donated by a dedicated
partition that is enabled for donation.

busy_donated_spurr unsigned long
long

Number of busy SPURR cycles that are donated by a
dedicated partition that is enabled for donation.

idle_stolen_purr unsigned long
long

Number of idle cycles that are stolen by the hypervisor
from a dedicated partition.

idle_stolen_spurr unsigned long
long

Number of idle SPURR cycles that are stolen by the
hypervisor from a dedicated partition.

busy_stolen_purr unsigned long
long

Number of busy cycles that are stolen by the hypervisor
from a dedicated partition.

busy_stolen_spurr unsigned long
long

Number of busy SPURR cycles that are stolen by the
hypervisor from a dedicated partition.

hpi unsigned long
long

Number of hypervisor page-in operations.

puser_spurr unsigned long
long

Number of SPURR cycles that are spent in the user mode.

psys_spurr unsigned long
long

Number of SPURR cycles that are spent in the kernel
mode.

pidle_spurr unsigned long
long

Number of SPURR cycles that are spent in the idle mode.

pwait_spurr unsigned long
long

Number of SPURR cycles that are spent in the wait mode.

spurrflag int This field is set if the CPU is running in the SPURR mode.

localdispatch unsigned long
long

Number of local thread dispatches on the logical CPU.

neardispatch unsigned long
long

Number of near thread dispatches on the logical CPU.

fardispatch unsigned long
long

Number of far thread dispatches on the logical CPU.

cswitches unsigned long
long

Number of context switches.

General programming concepts 231

Table 20. Supported ProbeVue fields for per logical CPU statistics (continued)

Vue script field name Data type Description

state int Indicates whether the CPU is offline or online. A value of
zero for the state field indicates that the CPU is offline
and a non-zero value indicates that the CPU is online.

tb_last unsigned long
long

Last timebase register value read.

vtb_last unsigned long
long

Last virtual timebase value read.

icount_last unsigned long
long

Last instruction count register value read.

Note: The following members require unpinned memory access: pswitch, syscall, sysread,
syswrite, sysfork, sysexec, readch, writech, bread, bwrite, lread, lwrite,
phread, phwrite, iget, namei, dirblk, msg, sema, decrintrs, mpcrintrs,
mpcsintrs, devintrs, softintrs, phantintrs. Because the probes of ProbeVue scripts run
in an environment, where all interrupts are disabled, if the required data is not available in the resident
memory, the members that require unpinned memory access are assigned with 0 values.

Overall statistics for all CPUs
The overall statistics provides cumulative information about all the CPUs in the system. In Vue script,
each statistics is specified by using the following format:

__stat.cpu.cpu_total->fieldname

Where cpu_total represents the predefined sublevel name and fieldname represents the actual
statistics identifier. These fields are similar to the fields of the perfstat_cpu_total_t structure,
which is defined in the /usr/include/libperfstat.h header file. This header file is part of the AIX
perfstat library.

Table 21. Supported ProbeVue fields for overall CPU statistics

Vue script field name Data type Description

ncpus int Number of active logical processors.

ncpus_cfg int Number of configured processors.

description String Description of the processor in the format
<type_official name>. For example, for
POWER7® processor-based systems, the description is
POWERPC_POWER7.

processorHZ unsigned long
long

Speed of the processor that is specified in Hz.

user unsigned long
long

Total number of raw clock ticks that are spent in the user
mode.

sys unsigned long
long

Total number of raw clock ticks that are spent in the system
mode.

idle unsigned long
long

Total number of raw clock ticks that are spent in the idle
mode.

wait unsigned long
long

Total number of raw clock ticks that are spent waiting for
the I/O operations.

232 AIX Version 7.2: General programming concepts

Table 21. Supported ProbeVue fields for overall CPU statistics (continued)

Vue script field name Data type Description

pswitch unsigned long
long

Number of process context switches.

syscall unsigned long
long

Number of system calls.

sysread unsigned long
long

Number of read system calls.

syswrite unsigned long
long

Number of write system calls.

sysfork unsigned long
long

Number of fork system calls.

sysexec unsigned long
long

Number of exec system calls.

readch unsigned long
long

Number of characters that are transferred by using read
system calls.

writech unsigned long
long

Number of characters that are transferred by using write
system calls.

devintrs unsigned long
long

Number of device interrupts.

softintrs unsigned long
long

Number of software interrupts.

lbolt unsigned long
long

Number of clock ticks since last restart of the operating
system.

loadavg1 unsigned long
long

Specifies a value that is equal to the product of
the expression (1<<SBITS) and the average number of
runnable processes during the last 1 minute. The <<
symbol indicates that the left shift operator and SBITS
value is defined in the /usr/include/sys/proc.h
header file.

loadavg5 unsigned long
long

Specifies a value that is equal to the product of
the expression (1<<SBITS) and the average number of
runnable processes during the last 5 minutes. The <<
symbol indicates that the left shift operator and SBITS
value is defined in the /usr/include/sys/proc.h
header file.

loadavg15 unsigned long
long

Specifies a value that is equal to the product of
the expression (1<<SBITS) and the average number of
runnable processes during the last 15 minutes. The <<
symbol indicates that the left shift operator and SBITS
value is defined in the /usr/include/sys/proc.h
header file.

runque unsigned long
long

Length of the run queue, that is, processes that are ready to
run.

swpque unsigned long
long

Length of the swap queue, that is, the number of processes
that are waiting to be paged in.

General programming concepts 233

Table 21. Supported ProbeVue fields for overall CPU statistics (continued)

Vue script field name Data type Description

bread unsigned long
long

Number of blocks read.

bwrite unsigned long
long

Number of block written.

lread unsigned long
long

Number of logical read requests.

lwrite unsigned long
long

Number of logical write requests.

phread unsigned long
long

Number of physical read operations, that is, read
operations on raw devices.

phwrite unsigned long
long

Number of physical write operations, that is, write
operations on raw devices.

runocc unsigned long
long

This field is updated whenever run queue is updated, that
is, the run queue is occupied. This value can be used to
compute the simple average of ready processes.

swpocc unsigned long
long

This field is updated whenever swap queue is updated. For
example, when the swap queue is occupied. This value can
be used to compute the simple average of processes that
are waiting to be paged in.

iget unsigned long
long

Number of inode lookup operations.

namei unsigned long
long

Number of vnode lookup operations from a path name.

dirblk unsigned long
long

Number of 512-byte blocks that are read by the directory
search routine to locate an entry for a file.

msg unsigned long
long

Number of IPC message operations.

sema unsigned long
long

Number of IPC semaphore operations.

rcvint unsigned long
long

Number of tty interrupts that are received by the process.

xmtint unsigned long
long

Number of tty transmit interrupts.

mdmint unsigned long
long

Number of modem interrupts.

tty_rawinch unsigned long
long

Number of raw input characters.

tty_caninch unsigned long
long

Number of canonical input characters.

tty_rawoutch unsigned long
long

Number of raw output characters.

ksched unsigned long
long

Number of kernel processes created.

234 AIX Version 7.2: General programming concepts

Table 21. Supported ProbeVue fields for overall CPU statistics (continued)

Vue script field name Data type Description

koverf unsigned long
long

Number of kernel process creation attempts when the
configuration limit of processes is reached or the user has
forked to the maximum limit.

kexit unsigned long
long

Number of kernel processes that became zombie
processes.

rbread unsigned long
long

Number of remote read operation requests.

rcread unsigned long
long

Number of cached remote read operations.

rbwrt unsigned long
long

Number of remote write operations.

rcwrt unsigned long
long

Number of cached remote write operations.

traps unsigned long
long

Number of traps.

ncpus_high int Index of highest processor online. The index for of the
processor starts from 1 instead of 0.

puser unsigned long
long

Raw number of physical processor ticks in the user mode.

psys unsigned long
long

Raw number of physical processor ticks in the system
mode.

pidle unsigned long
long

Raw number of physical processor ticks in the idle mode.

pwait unsigned long
long

Raw number of physical processor ticks when the
processor is waiting for I/O operations.

decrintrs unsigned long
long

Number of decrementer tick interrupts.

mpcrintrs unsigned long
long

Number of Multi Processor Communication (MPC) receive
interrupts.

mpcsintrs unsigned long
long

Number of MPC send interrupts.

phantintrs unsigned long
long

Number of phantom interrupts that are received by the
partition.

idle_donated_purr unsigned long
long

Number of idle cycles that are donated by a dedicated
partition that is enabled for donation.

idle_donated_spurr unsigned long
long

Number of idle SPURR cycles that are donated by a
dedicated partition that is enabled for donation.

busy_donated_purr unsigned long
long

Number of busy cycles that are donated by a dedicated
partition that is enabled for donation.

busy_donated_spurr unsigned long
long

Number of busy SPURR cycles that are donated by a
dedicated partition that is enabled for donation.

General programming concepts 235

Table 21. Supported ProbeVue fields for overall CPU statistics (continued)

Vue script field name Data type Description

idle_stolen_purr unsigned long
long

Number of idle cycles that are stolen by the hypervisor
from a dedicated partition.

idle_stolen_spurr unsigned long
long

Number of idle SPURR cycles that are stolen by the
hypervisor from a dedicated partition.

busy_stolen_purr unsigned long
long

Number of busy cycles that are stolen by the hypervisor
from a dedicated partition.

busy_stolen_spurr unsigned long
long

Number of busy SPURR cycles that are stolen by the
hypervisor from a dedicated partition.

iowait short Number of processes that are asleep waiting for buffered
I/O operations.

physio short Number of processes that are waiting for raw I/O
operations.

twait unsigned long
long

Number of threads that are waiting for file system direct
IO(DIO) or Concurrent IO (CIO).

hpi unsigned long
long

Number of hypervisor page-in operations.

puser_spurr unsigned long
long

Number of SPURR cycles that are spent in the user mode.

psys_spurr unsigned long
long

Number of SPURR cycles that are spent in the kernel mode.

pidle_spurr unsigned long
long

Number of SPURR cycles that are spent in the idle mode.

pwait_spurr unsigned long
long

Number of SPURR cycles that are spent in the wait mode.

spurrflag int This field is set if the CPU is running in the SPURR mode.

tb_last unsigned long
long

Last timebase register value read.

Note: The following members require unpinned memory access: devintrs, softintrs, loadavg1,
loadavg5, loadavg15, decrintrs, mpcrintrs, mpcsintrs, phantintrs. Because the
probes of Vue scripts execute in an environment, where all interrupts are disabled, if the required data is
not available in the resident memory, the members that require unpinned memory access are assigned
with 0 values.

System statistics behavior
ProbeVue is a long running command and the Vue script is run multiple times. The Vue script might be
referring to devices or resources to print the statistics and those resources and devices can become
temporarily unavailable or permanently unavailable. Thus, ProbeVue system statistics statements have
the following behaviors for different conditions:

236 AIX Version 7.2: General programming concepts

Table 22. ProbeVue system statistics conditions and behaviors

Serial Number Conditions Behavior

1 Resource indicated in the
statement does not exist.

During Vue script validation if ProbeVue does
not find resource specified in the Vue script,
compilation fails.

2 Device or resource is not open/
active.

• ProbeVue will print all zeros for the statistics.
• Device might get opened to run ioctl() function

and then might get closed.

3 Device or resource moved from
active state to inactive state.

ProbeVue will print zeros or stale data.

4 Device gets closed during run
time.

Same results when resources are moved to
inactive state.

5 Asynchronous fetch API takes
time more than fetch interval set
by user.

ProbeVue will not be able to guarantee the fetch
interval if fetch takes more time than interval.

6 Dynamic LPAR operation
performed during run time and
resource indicated by Vue script
are getting removed.

ProbeVue will print all zeros or stale data.

7 Device statistic fetch call is
blocked due to timeout in device
drivers.

ProbeVue will not be able to provide the guarantee
of fetch interval and user might see the stale data.

Value and type assignment
The classification in the preceding section is one way to view the variables in a Vue script. The variable
classes can be examined from a different perspective, namely how their values are derived.

External variables
Kernel class variables, entry and exit class variables and built-in variables are all external variables.

They exist independent of the ProbeVue framework and derive their values outside the context of any Vue
script. ProbeVue allows the current values of external variables to be made available inside a Vue script.
These variables are always read-only within the context of the Vue script. Any program statements that
attempt to modify the value of an external variable will be flagged by the compiler as an illegal statement.

Although external variables have a pre-defined type, ProbeVue requires explicit declarations of all
external variables, except for the built-in ones, in the Vue script that accesses them. The following table
describes how the types of external variables are determined:

Variable Type

Kernel global class From the __kernel declaration statement of the
kernel variable.

Entry class From the function prototype declaration in the
Vue script. Must specify the data types of each
argument being used in the Vue script.

Return value from kernel functions From the function prototype declaration in the Vue
script. Must provide the type of the return value.

General programming concepts 237

Variable Type

Built-ins These are generally dependent upon the
underlying kernel variable. Their defined types and
the equivalent ProbeVue types are as follows:

Built-in Defined type ProbeVue type

__tid tid_t long long

__pid pid_t long long

__ppid pid_t long long

__pgid pid_t long long

__pname char [32] String [32]

__uid uid_t unsigned int

__euid uid_t unsigned int

__trcid pid_t long long

__errno int int

__kernelmode int int

__r3..__r10 32-bit for 32-bit process

64-bit for 64-bit process

unsigned long

__curthread N/A All the members is long long

__curproc N/A All the members except for cwd
is long long. The cwd member is
of type string.

__ublock N/A All the members is long long

Note: The maximum size of the returned data can be smaller than the size of the type. For example,
process IDs in AIX can fit in a 32-bit integer, while the pid_t data type is a 64-bit integer for 64-bit
processes and the kernel.

Script variables
A script variable is either an automatic, thread-local, or global class variable.

Script variables exist only inside the context of a Vue script and their values are assigned from the script.
Further, they can only be accessed or modified inside the script that defines them.

In general, you must explicitly declare the data type of a script variable through a declaration statement.
However, the compiler can implicitly determine the data type of a program variable in some limited cases
if the first reference to the variable is an assignment operation with the variable on the left-hand side of
the assignment operator.

Implicit type determination for integral types
To be assigned an integral type, the right-hand side of the assignment must be in one of the following
situations:

• A constant number.
• Another variable of integral type including built-in variables. Assigning from a variable whose type is not

known is an error.
• A Vue function that returns an integral type like the diff_time function.

238 AIX Version 7.2: General programming concepts

• Casting the expression on the right-hand side to an integral type, although this might give a warning in
some cases.

• An expression involving any of the preceding situations.

The variable takes its type in addition to its value based on the expression on the right-hand side. In
addition, the class of the variable can be assigned to the variable by prefixing it to the variable. The
following script demonstrates some examples:

/*
 * File: implicit2.e
 * Usage: Demonstrates implicit assignment for integer types
 */

int read(int fd, char *p, long size);

@@BEGIN
{
 count = 404; /* count: int of global class */
 zcount = 2 * (count - 4); /* zcount: int of global class */
 llcount = 33459182089021LL; /* lcount: long long of global class */
 lxcount = 0xF00000000245B20LL; /* xcount: long long of global class */

}

@@syscall:$1:read:entry
{
 __auto probev_timestamp_t ts1, ts2;
 int gsize;
 ts1 = timestamp();
 auto:dcount = llcount - lxcount; /* dcount: long long of auto class */

 auto:mypid = __pid; /* mypid: pid_t (64-bit integer) of automatic class */
 fd = __arg1; /* fd: int of global class */

 /* The following cast will likely cause a compiler warning
 * but can be ignored here
 */
 global:bufaddr = (long)__arg2; /* bufaddr: long of global class */

 gsize = __arg3;
 thread:size = gsize + 400; /* size: int of thread-local class */

 printf("count = %d, zcount = %lld\n", count, zcount);
 printf("llcount = %lld, lxcount = 0x%016llx, diff = %lld\n",
 llcount, lxcount, dcount);
 printf("mypid = %ld, fd = %d, size = %d\n", mypid, fd, size);
 printf("bufaddr = 0x%08x\n", bufaddr);
 ts2 = timestamp();

 auto:diff = diff_time(ts1, ts2, MICROSECONDS); /* diff: int of automatic class */

 printf("Time to execute = %d microseconds\n", diff);

 exit();
}

Note: The presence in the preceding script of a shell positional-like parameter, namely the $1 symbol
in the @@syscall:$1:read:entry probe specification. The syscall probe manager allows a process ID for
the second field to indicate that the system call probe point must be enabled for a specific process only.
Rather than hard-code a specific process ID, the second field has been set to a shell positional parameter
in this script to permit the actual process ID to be passed as an argument at the time the script is
issued. The probevue command replaces any shell positional parameters in the script with the respective
arguments passed on the command line.

Assuming that you are probing a process that has process ID 250000, the following script shows an
example of running the implicit2.e script.

probevue implicit2.e 250000
WRN-100: Line:29 Column:26 Incompatible cast
count = 404, zcount = 800
llcount = 33459182089021, lxcount = 0x0f00000000245b20, diff = -1080830451389212643
mypid = 250000, fd = 10, size = 4496
bufaddr = 0x20033c00
Time to execute = 11 microseconds

General programming concepts 239

In the preceding example, the $1 symbol in the script is automatically replaced with "250000", thus
restricting the read system call entry probe point to the process with process ID equal to 250000.

Implicit type determination for string type
To be assigned a string type, the right-hand side of the assignment must be in one of the following
situations:

• A string literal that is a sequence of characters within double quotation mark.
• Another variable of type string including built-in variables.
• A Vue function that returns a string like the et_userstring function.
• An expression involving any of the preceding situations.

The following example demonstrates implicit string type assignment:

/*
 * File: implicit3.e
 * Usage: Demonstrates implicit assignment for string types
 */

int write(int fd, char *p, long size);

@@BEGIN
{
 s1 = "Write system call:\n";
}

@@syscall:$1:write:entry
{
 String s2[40];

 wbuf = get_userstring(__arg2, __arg3);

 s2 = s1;

 zbuf = s2;

 pstring = zbuf + wbuf;

 printf("%s\n", pstring);
}

@@syscall:$1:write:exit
{
 ename = __pname;
 printf("Exec name = %s\n", ename);
 exit();
}

A process ID must be passed as an argument to the script when issuing it to replace the $1 shell
positional parameter variable.

Implicit type determination for list type
To be assigned a list type, the right-hand side of the assignment must be the list() function. list() function
is supported from any clause.

Data models for 32-bit and 64-bit processes
AIX supports two development environments: the 32-bit and the 64-bit development environments.

Compilers on AIX offer the following two programming models:

ILP32
ILP32, acronym for integer, long, and pointer 32, is the 32-bit programming environment in AIX. The
ILP32 data model provides a 32-bit address space with a theoretical memory limit of 4 GB.

240 AIX Version 7.2: General programming concepts

LP64
LP64, acronym for long, and pointer 64, is the 64-bit programming environment on AIX. With the
exception of data type size and alignments, LP64 supports the same programming features as the
ILP32 model and is backward compatible with the most widely used int data type.

Accordingly, a program on AIX can be compiled to run as either a 32-bit program or a 64-bit program.
The same Vue script can be issued for a process running in 32-bit or 64-bit mode. As per the data model
specification, an external variable of type long accessed in a Vue script must be treated as 4 bytes long
when the probed (or traced) process is a 32-bit process. The same variable must be treated as 8 bytes
long when the probed process is a 64-bit process. The layout and size of a structure or union, which
contains members that are pointers or long variables, will depend upon whether it is being viewed from
the perspectives of a 32-bit process or a 64-bit process. To avoid confusion, Vue provides semantic rules
for handling the two different data models in a logical and consistent manner based on the variable's
class.

Size-invariant variable types
int, short, char and long long are size-invariant variable types.

They always have the same size whether in 32-bit mode or 64-bit mode irrespective of the class of the
declared variable.

Type Size

long long 8

int 4

short 2

char 1

Size-variant variable types
The size-variant variable types have both a 32-bit mode and a 64-bit mode.

Size variant data types are listed below:

Type 32-bit size 64-bit size

long 4 8

Pointer types 4 8

In the preceding table, a pointer type refers to types like char *, int *, struct foo *, unsigned long *, and
so on.

The following semantic rules apply for variables that are defined with any of the preceding types, that is,
for "longs" and "pointers". The rules apply whether the variables are members of a structure or union, or
whether they are declared as individual variables:

Automatic class
The mode of the variable will depend upon the probed process's mode (32 or 64).

Thread-local class
The mode of the variable will depend upon the probed process's mode (32 or 64).

Global class
The variable is always treated as being in 64-bit mode irrespective of the probed process's mode. This
allows the variable to be used safely by both 32-bit and 64-bit processes without losing any data.

Kernel global class
Kernel variables that are longs or pointers are always 64-bit mode as the only supported kernel for
AIX 6.1 and beyond is the 64-bit kernel.

General programming concepts 241

Entry class
If a long or pointer type is defined in the function prototype for any of the parameters to the function,
the modes of the corresponding entry class variables (__arg1 through __arg32) will depend upon the
mode of the probed process (32 or 64).

Exit class
If a long or pointer type is defined in the function prototype as the type of the return value of the
function, the mode of the exit class variable (__rv) will depend upon the mode of the probed process
(32 or 64).

Built-in class
These variables generally have a size-invariant type with the exception of the __r3 through __r10
built-ins that are defined as having an unsigned long type and hence are 32-bit long for 32-processes
and 64-bit long for 64-bit processes.

The @@BEGIN and @@END probes are always issued in 64-bit mode.

Data types in Vue

The Vue language accepts three special data types in addition to the traditional C-89 data types.

Data types derived from the C language
Data types derived from the C language

The Vue language supports most of the data types defined in the C-89 specification. They include the
signed and unsigned versions of the integral data types: char, short, int, long and long long. A "plain"
char is treated as unsigned while the other integral types, if unqualified, are treated as signed. This
matches the implementation of C on PowerPC. The Vue language also supports the floating types: float
and double. In addition to these basic types of the C language, Vue also supports derived types like the
array, structure, union and pointer types, the enumeration type and some incomplete types like void.

Floating types
You can only use a floating point type in simple assignment expressions and as arguments for
functions like printf. In particular, you cannot use floating-point variables as operands of any unary or
binary operators other than the assignment operator.

Pointer types
You can use pointers to dereference kernel or application data. However, you cannot declare pointers
to Vue script variables or take their addresses.

Character arrays
You cannot use a character array as a string as in C, but must use the string data type.

Incomplete types
You cannot use array types of unknown size.

Bit-field types
The Vue compiler ignores bit-field declarations and the layout of structure or union types that contain
members, which are bit-fields, is undefined.

ILP32 and LP64 data models
Generally, a C program can be compiled in either 32-bit mode where it follows the ILP32 data model
or in 64-bit mode where it follows the LP64 model. Because the same Vue clause can be issued by
both 32-bit and 64-bit processes, Vue internally supports both models at the same time.

Range and bucket data type
Range and bucket data type

The range data type in Vue is designed to handle the distribution of data points for certain defined
ranges. Each range of the variable defined of the range data type displays the count of the number of
elements within the corresponding range value. The range data type will support Integral and String types
of ranges. The distribution of range values for integral ranges can be the power of two distributions or a
linear distribution. An example of linear and power of two distributions of range values follow:

242 AIX Version 7.2: General programming concepts

Linear distribution:

Range Count

0 - 5 2

5 - 10 4

10 - 15 1

Others 20

Power of 2 distribution:

Range Count

1 - 2 2

2 - 4 9

4 - 8 2005

8 - 16 4

16 - 32 1999

32 - 64 7

Others 5

The previous distributions indicates the count of the number of elements greater than or equal to the
lower bound of the range and less than the upper bound of the range value. For example, in the power of
two distributions, the count of data starting from 4 and lesser than 8 is 2005. The count of the value that
does not come under the defined ranges is displayed in the Others range.

Example of string ranges

Example:

Range Count

Read, write, open 87

Close, foo1 3

foo2 1

Others 51

In the previous example, the distribution indicates the number of times a particular string occurs within
the range values. In this example, read, write, and open has been called 87 times.

Declaration and initialization of the range data type:

The range data type can be declared by using the range_t keyword. For example, the following
declaration in the Vue script defines two range data type variables:

range_t T1, T2; // T1 and T2 are of Range data type variables.

The set_range and the add_range routines are used initialize the integral and string ranges for any
particular range data type variables.

Initializing integral range data type: The set_range routine will be used to initialize the integral
ranges. The syntax of the set_range differs for linear and power of two distributions of range values. The
syntax of the set_range routine for linear distribution follows:

void set_range(range_t range_data, LINEAR, int min, int max, int step);

Example:

set_range(T1, LINEAR, 0, 100, 10);

General programming concepts 243

In the previous example, the set_range routine initializes the range data T1. The range data T1 has the
linear distribution of values. The lower bound of T1 is 0 and the upper bound is 100. The size of each
range is 10. The distribution for the previous example will look like the following:

Range Count

0 - 10 ...

10 - 20 ...

20 - 30 ...

... ...

... ...

90 - 100 ...

The syntax for the initialization of the power of 2 distribution follows:

set_range(range_t range_data, POWER, 2);

Example:

set_range(T2, POWER, 2);

In this example the routine initializes the range data type T2 as the power of 2 distribution range type.

Initializing the string range data type: The add_range routine initializes the string range data type.

Sytax:

void add_range(range_t range_data , String S1, String S2, ..., String Sn);

Example:

add_range(T1, “read”, “write”, “open”);

This routine add the strings read, write and open to a single slot of range_t data T1. Another
add_range on the same range_t data T1 adds the strings to the next slot.

add_range(T1, “close”, “func1”, “func2”);

This routine adds the strings close, func1 and func2 to the range_t data T1 in the next slot.

Note: The range_t range data type is a special data type for Vue, which only can be used to store as
a value inside an associative array. For any other operations (such as arithmetic, logical, bitwise, and
relational) on the range_t data type, they will fail and error out.

Notes: This information discusses various uses and initialization routines of the range_t data type.

1. Declaration of the range_t data type can be done only in the @@BEGIN clause.
2. Initialization of the set_range routine can be used only inside the @@BEGIN clause.
3. A range data type whose range values are integral can be initialized only once. The same variable

cannot be initialized twice.

Example:

set_range(T1, LINEAR, 0, 50, 5); // Valid syntax
 set_range(T1, LINERA, 10, 100, 10); // Error, cannot initialize an already
 // initialized T1.
 set_range(T1, POWER, 2); // Error, T1 has already initialized.
 add_range(T1, “read”, “write”); // Error, T1 has already initialized.

4. The parameters of min, max and step are integral constants for set_range routine.

Storing and printing the range data type:

244 AIX Version 7.2: General programming concepts

The range data type can be stored in an associative array as a value by using the qrange routine. The
qrange routine finds the slot number whose frequency and count need to be incremental.

Example:

For this example, T1 is a range_t data type whose range values are of the integral type.

qrange(aso[“read”], T1, time_spent);

In this example, the qrange routine finds the slot number in which the time_spent fails and the count for
that slot number are incremented for the associative aso array corresponding to the read key.

In the following example, the T2 is a range_t data type and range values are of the string type.

qrange(aso[“function usage”], T2,get_function());

In this example, qrangeroutine finds the slot number in which the function passed as the third argument
fails and increments the count for that slot for aso associative array corresponding to the function usage
key.

Notes:

1. For any ASO, only one range_t type variable can be stored as a value. Using qrange for two different
types of range_t variable type for the same ASO will fail.

Example:

qrange(aso[“read”], T1,time_spent); // Correct syntax.
qrange(aso[“read”], T2,time_spent); // Error. Two different range_t types
 // cannot be used for the same ASO.

The quantize and lquantize functions of the associative array whose value type is range_t shows
the visual quantization of frequency and count of ranges.

2. While printing the string range a maximum of 40 characters (including the comma) can be printed for a
particular slot. If the strings in a slot have more than 40 characters, the string range is truncated and is
printed with the last 3 characters as dots(…).

Examples of range data type and the qrange routine:

@@BEGIN
{
 __thread start ;
 range_t T1;
 set_range(T1, LINEAR, 0, 150, 10) ;
}
@@syscall :$__CPID :read :entry
{
 thread :tracing = 1 ;
 start = timestamp() ;
}
@@syscall :$__CPID :read :exit
 when(thread :tracing == 1)
{
 __auto long time_spent;
 currtime = timestamp() ;
 time_spent = diff_time(start, currtime, MICROSECONDS);
 qrange(aso[“read”], T1, time_spent);
}
@@END
{
 print(aso);
 quantize(aso);
}

Expected output for this example:

Key Value

Read Range count
 0-11 4
 10-20 6

General programming concepts 245

 60-70 7
 Others 32

Key Value

Read Range count
 0-10 4 ===
 10-20 6 ====
 60-70 7 =====
 Others 32 ================

Stack trace type
Stack trace type

A variable of type stktrace_t is used to hold the return value from the ProbeVue function get_stktrace,
which returns the current stack trace. The stack trace returned is the stack trace of the current thread.
This variable can also be stored in an associative array either as a key or as a value. The stktrace_t type
is an abstract data type, and this variable cannot be used directly with the standard C uninary or binary
operators. Internally, this variable is an array of unsigned longs.

Vue supports the following characteristics and operations for the stack trace type variables:

Declaration of stack trace type variable

A variable can be declared to be of type stack trace by declaring it as follows in the script:

 stktrace_t st; // st is a stktrace_t variable.
 st = get_stktrace(5); // Get the stack trace up to five levels.
 a_st[0] = get_stktrace(-1); // Get the stack trace up to the extent possible and
 // store in the associative array a_st as value.

The qualifiers signed, unsigned, register, static, auto, thread, kernel, and const are not supported for the
stktrace_t type variables.

Assignment operation

The assignment (=) operator allows a stktrace_t type variable to be assigned to another stktrace_t type
variable. The original values in the target stktrace_t variables are destroyed. No type casting is allowed
from or to the stktrace_t variable types. In the following example, the content of the stack trace t1 is
assigned to t2.

 stktrace_t t1, t2; // Declares two stack trace variables.
 t1 = get_stktrace(); // Get the current stack trace in t1.
 t2 = t1 ; // Get the content of t1 into t2.

Comparison operation

Only equality (==) and inequality (! =) operators are allowed for the stktrace_t variables. The result
of theses operator is either True(1) or False(0) based on the entire entries of the stktrace_t variables.
Comparisons of individual entries of stktrace_t variables are not allowed. No other comparison operators
(>=, >, < or =<) are allowed for the stktrace_t type variables.

 if(t1 == t2) // comparing two stktrace_t type variables.
 printf(“Entries are similar”);
 else
 printf(“Entries are not similar”);

Printing stack trace type variable

The stktrace_t variable can be printed by using the %t or %T format specifiers in the printf function of
Vue. The output is the symbolic stack trace of the thread that is saved in the variable. The symbol with
the address (symbol plus address) are printed only when the thread that corresponds to the stktrace_t
variable is in the running state and when the %t format specifier is used to print the stack trace;
otherwise only the stack trace as the address is printed for the variable.

The stktrace_t type variable stored in associative array either as key or value can be printed with print
function of associative array. Addresses with symbol (symbol name + offset) is printed if thread that

246 AIX Version 7.2: General programming concepts

corresponds to the stktrace_t type stored in the associative array is running; otherwise only addresses
is printed. When you set the STKTRC_NO_SYM flag in the set_aso_print_options() function, this variable
prints raw addresses of the running thread.

 stktrace_t t1;
 t1 = get_stktrace (5);
 printf (“%t”, t1); // Displays the stack trace stored in variable t1.
 printf (“%T”, t1); // Displays the stack trace stored in variable t1 with raw
addresses.
 a[__tid] = t1; // Store t1 as value in an associative array a.
 print(a) ; // Print associative array a, whose value
 // type is
stktrace_t variable.

Limitations for stack trace type variable

• The array of the stktrace_t variable cannot be declared.
• The stktrace_t variables cannot be used as a member of a struct or a union.
• Access of any individual entry of the stack trace is not allowed.
• The operations (assignment, comparison, and printing) of the stktrace_t type variables is not supported

in the systrace probe.

Special data types
In addition to the traditional C-89 data types, the Vue language also accepts seven special data types.

String type
The string data type is a representation of string literals. Unlike in C, the string is a basic data type in Vue

Having a string type avoids some of the confusion in C which does not support a string type but permits
a string to be represented both by a pointer to a char type and by a character array. You can explicitly
declare a string variable by using the string declaration statement. Explicitly declared string variables
must also specify the maximum string length (similar to how character arrays are declared in C). Unlike C,
strings in Vue are not explicitly terminated by a null character and you do not need to reserve space for it.

 String s[40]; /* Defines a string 's' of length 40 */
 s = "probevue";

Further, any string literal written in C-style with enclosing double-quotes is automatically assigned a string
data type. Vue automatically converts an external variable that is declared as a C-style character data
type (char * or char[]) to the string data type as needed.

You can use the following operators for the string data type:

• The concatenation operator: "+" .
• The assignment operator: "=" .
• Relative operators for comparing strings: "==", "!=", ">", ">=", "<" and "<=".

You can set a string variable to the empty string by assigning "" to it as the following example:

s = ""; /* Sets s to an empty string */

Unlike the C language, a pair of adjacent string literals is not concatenated automatically. The
concatenation operator (+) must be explicitly applied as in the following example:

String s[12];

 // s = "abc" "def";
 /* ERROR: Commented out as this will result in a syntax error */
 s = "abc" + "def"; /* Correct way to concatenate strings */

Vue supports several functions that accept a string data type as a parameter or return a value that has a
string data type.

General programming concepts 247

List type
A variable of type list collects a set of integral type values. The list type is an abstract data type and you
cannot use a list variable directly with the standard C unary or binary operators.

You can use the following operations for the list type:

• A constructor function, list() to create a new list variable if its not defined before, if the variable is
already defined - it should be cleared.

• A concatenation function, append to add an item to the list or to join two lists together.
• The "=" operator that allows a list to be assigned to another.
• A set of aggregation functions that operate on a list variable and return a scalar (integer) value like sum,

avg, min, max and so on.

Although, you can use a list variable to collect any integral value, the values are always saved as 64-bit
signed integers.

The list() function returns a new empty new list which must be assigned to a variable of list type. This will
create a new variable of type list if the list variable on the left-hand side of the assignment operator had
not been previously assigned to a list. It may also be assigned to an existing list variable in which case,
any values collected in the target list are discarded. Further, a variable can be declared to be of type list by
declaring it as follows anywhere in the Vue script:

 __list l_opens;

The effect of this is as if the list() function was invoked in the @@BEGIN probe and the return value
assigned to this list variable.

The following example creates a new list variable called l_opens:

l_opens = list();

The list function can be invoked from any clause. If you specify an existing list name when invoking the
list function, the existing list is cleared.

You can use theappend() function to add a value to a list variable. Each call to the append function adds
a new value to the set of values already saved in the list variable. The following example shows how the
size of the list variable grows with each call to the append function:

 append(l_opens, n_opens1); /* l_opens = {n_opens1} */
 append(l_opens, n_opens2); /* l_opens = {n_opens1, n_opens2} */
 append(l_opens, n_opens3); /* l_opens = {n_opens1, n_opens2, n_opens3} */
 append(l_opens, n_opens4); /* l_opens = {n_opens1, n_opens2, n_opens3, n_opens4} */

The second parameter to the append() function can also be a variable of type list which will append all
its values to the target list specified by the first parameter. So append can also be used to join two lists.

In the following example, the contents of list b are added to list a:

a=list()
b=list()
append(a,b)

Note: The value added to the list must be a parameter of integral or list type and it is an error if any of the
variables n_opens1 -n_opens4 do not have an integral type. Any types that are smaller than a long long
(like a short or an int) are automatically promoted to the long long type.

You can also use append to join two lists. The first argument is the target list and the second is the list
source list. In the following example, the contents of list b are added to list a:

a=list()
b=list()
append(a,b)

The append() function has no return value.

248 AIX Version 7.2: General programming concepts

A list can be assigned to another list using the assignment operator. The original values in the target list
are destroyed. In the following example, the contents of the l_opens2 list are lost (the items are removed)
and the contents of the l_opens list are copied over to the l_opens2 list.

 l_opens2 = list();
 append(l_opens2, n_opens5);

 l_opens2 = l_opens;
 /* l_opens and l_opens2 => {n_opens1, n_opens2, n_opens3, n_opens4} */

The aggregation functions can be applied on a list variable as shown in the following examples:

 /* below we assume n_opens1=4, n_opens2=6, n_opens3=2 and n_opens4 = 4
 * at the time they were added to the l_opens list variable
 */
 x = avg(l_opens); /* this will set x to 4 */
 y = min(l_opens); /* this will set y to 2 */
 z = sum(l_opens); /* this will set z to 16 */
 a = count(l_opens) /* this will set a to 4 */

A list variable is useful when accurate aggregate values need to be recorded. List variables are updated
atomically, so use them only when required, as they are less efficient than regular variables.

Associative array type
An associative array is a map or look-up table consisting of a collection of keys and their associated
values. There is a one-to-one mapping between a set of keys and values. Associative arrays are supported
by Perl, ksh93, and several other languages.

In Vue, each mapping is from one or more keys (dimensions) to a single value. Associative Array keys can
have the following types

• integral
• floating point
• string
• timestamp
• stacktrace
• path
• MAC address
• IP address

Associative Array value can have the following types

• integral
• floating point
• string
• timestamp
• stacktrace
• path
• MAC address
• IP address
• list
• range

Associative arrays are abstract data types in Vue.Following actions can be performed on associative array
data types.

• Binding keys to a value:

General programming concepts 249

If the instance of the keys does not already exist, this action adds a key or set of keys along with the
associated value to the associative array. Otherwise, this action replaces the associated old value with
the new value. Keys that are not bound have a default value of 0 for the numerical type, empty string
value for the string type, or a NULL value for other key types.

Following example explains binding keys to a value

/* single key dimension */
count["ksh"] = 1;
/* multiple key dimensions */
var[0][“a”][2.5] = 1;
var[1][“a”][3.5] = 2;

The very first use of an associative array variable sets the type of the keys, the key dimension size and
the type of the value. It must remain the same throughout the other places in the Vue script.

For a key in ASO, you can bind a LIST value by completing the following different actions:

1. By assigning a LIST variable:

 assoc_array["ksh"]=ll /* copies ll list into associative array */
 assoc_array["ksh"]=assoc_array["abc"]; /* copies a list in ASO to another list in ASO.
 Here the value type of assoc_array is LIST */

2. By assigning an empty list returned by list() constructor function:

assoc_array["ksh"]=list(); /* assigns an empty list */

3. By appending a list or integral value

append(assoc_array["ksh"], 5); /* integral value 5 is appended to the list in ASO */
append(assoc_array["ksh"], ll); /* appends the contents of LIST variable ll to the list in ASO*/
append(assoc_array["ksh"], assoc_array["abc"]); /* appends the contents of list in ASO to another list
in ASO */

• Unbinding a key or a set of keys and deleting the associated value: The delete() function is used to
remove keys and binding values from the associative array. An unbound key is assigned a value of 0 or
an empty string.

Following example explains how to use delete function for unbinding a key

delete(count, "ksh");
delete(var, 0, “a”, 2.5);

The first argument is the name of the associative array variable. The array variable name must be
followed by N comma separated keys, where N is the key dimension size. If you want to only delete
an associated value on the basis of key dimensions other than N, you can specify ANY for that key
dimension. For example, to delete all the elements that have the string “a” as the second dimension,
enter the following command.

delete(var, ANY, “a”, ANY);

All of the keys in delete() function can be specified as ANY, in which case, all elements of the
associative array will be deleted. This function returns 0 if matching elements are found and are
deleted. Otherwise, the delete() function returns a value of 1.

• Finding the value for a set of keys: This operation looks up values that are bound to a single key or
multiple keys.

total = count["ksh"] + count["csh"];
prod = var[0][“a”][2.5] * var[1][“a”][3.5];

A LIST value for a key can be retrieved by indexing the associative array with the key. All LIST functions,
sum(), min(), max(), count(), and avg(), can be used on a List in an Associative array. You can also
assign a list in associative array to a LIST variable.

250 AIX Version 7.2: General programming concepts

Example:

/* copies associative array list into list variable "ll" */
ll=assoc_array["ksh"];
/* prints the sum of all elements of list in associative array indexed with ksh" */
printf("sum of assoc_array %d\n",sum(assoc_array["ksh"]));
/* prints the minimum value */
printf("min of assoc_array %d\n",min(assoc_array["ksh"]));
/* prints the maximum value */
printf("max of assoc_array %d\n",max(assoc_array["ksh"]));
/* prints the number of values in list */
printf("count of assoc_array %d\n",count(assoc_array["ksh"]));
/* prints average value of the list */
printf("avg of assoc_array %d\n",avg(assoc_array["ksh"]));

• Checking whether a key or set of keys exists: The exists() function checks whether the associative
array has any element that corresponds to the given keys. The exists() function returns a value 1 if an
element is found and the function returns 0 if an element is not found.

Following code block checks whether a key or set of keys exist.

if (exists(count, "ksh"))
 printf("Number of ksh calls = %d\n", count["ksh"]);
if (exists(var, 0, “a”, 2.5))
 printf(“Found value = %d\n”, var[0][“a”][2.5]);

If you specify ANY keyword for a particular key dimension, the dimension becomes insignificant for
search operation. All keys in the exists() function can be specified as ANY, in which case, the
exists() function will check if the Associative Array has any element or not.

my_key = “a”;
if (exists(var, ANY, my_key, ANY))
 printf(“Found element with second key as %s \n”, my_key);

• Increment and decrement operation: This operation can be used to increment or decrement the
associative array values. To use this operation, you must specify an integer as the value type for the key.
The following examples show the usage of the increment and decrement operation:

1. printf(“Incremented value = %d\n”, ++count[“ksh”]);
2. printf(“Incremented value = %d\n”, count[“ksh”]++);
3. printf(“Decremented value = %d\n”, --count[“ksh”]);
4. printf (“Decremented value = %d\n”, count[“ksh”]--);

In example 1, the value that corresponds to ksh key, incremented and the incremented value is printed.

In example 2, the value that corresponds to ksh is first printed and then the value is incremented.
The decrement operation works the same way. However, the increment or decrement operation can be
performed only on associative arrays whose value type is integer. The increment or decrement operation
can also be used as an aggregator, where the value type of the associative array by default is set as
integer. For example, on encountering statement, a[100]++ the first time, associative array a is created
with the integer key type and the integer value type. The value stored for key 100 is 1. However,
for a[100]--, -1 would be stored as the value for key 100. On encountering subsequent increment or
decrement operations for the same associative array a increment and decrement operations is performed
on the value for the specified key.

The increment and decrement behavior is exactly the same for associative arrays with more than one key
dimension:

++var[0][“a”][2.5];
var[0][“a”][2.5]++;
--var[1][“a”][3.5];
var[1][“a”][3.5]--;

• Printing contents of an associative array: This operation prints the key and associated value of the
elements for an associative array. You can specify the following print options:

General programming concepts 251

Associative array print option Description Possible Values Default value

num-of-entries Specifies to print the first number
of key-value pairs.

n>=0. (If 0, all the entries are
displayed.)

0

sort-type Specifies the sorting order. SORT_TYPE_ASCEND,
SORT_TYPE_DESCEND

SORT_TYPE_ASCEND

sort-by Specifies whether to sort based on
key or value.

SORT_BY_KEY, SORT_BY_VALUE SORT_BY_KEY

list-value Specifies which LIST attribute to
sort or quantize when the value
of the associative array is the list
type

USE_LIST_SUM,
USE_LIST_MIN,
USE_LIST_MAX,
USE_LIST_COUNT,
USE_LIST_AVG

USE_LIST_AVG

sort-key-index Specifies the key index
(dimension), based on which the
output will be sorted.

-1 or k, where 0 <= k <
number_of_keys

0

stack-raw Specifies to print the stack trace in
RAW address format.

STKTRC_NO_SYM 0

When the sort-by flag is SORT_BY_KEY, SORT_BY_VALUE and the key (given by sort-key-index) and
value pair is of a type where sorting cannot be done, then the num-of-entries option and other print
options are applied to the printing of the individual key and value pair, if applicable. For example, if the
sorting is by range type, the num-of-entries option, and the other print options are reserved for slots of
each range.

The default associative array print options can be changed by using the
set_aso_print_options()function in the BEGIN probe.

Example:

set_aso_print_options (10, SORT_TYPE_DESCEND|SORT_BY_VALUE);

As shown in the example, multiple flags can be provided by inserting a vertical bar symbol
between them.

Note: The sort-key-index option cannot be set by the set_aso_print_options() function
because it cannot be generalized for associative arrays of different key dimension sizes.

The print() function prints the keys and associated value for all elements or a subset of elements of
the associative array by using the default print options. To override the default print options, you must
use additional arguments in the print() function. For more information about the print() function,
see the Vue functions topic.

The print() function prints the key and value pairs of the associative array by using the default print
options. If you want to view the associative array contents in a different format, he will provide the
num-of-entries option and the print option flags as additional parameters to the print() function.

Example:

/* uses default print options to display the contents of associative array ‘count’ */
print(count);
/* prints the first 10 entries of sorted associative array ‘count’.
Default sort-by and sort-type options are used */
print(count, 10);
/* sorts the associative array ‘count’ in descending order of values and
displays the first 10 entries of ‘count’ */
print(count, 10, SORT_BY_VALUE|SORT_TYPE_DESCEND);

/* print elements which have first key as 0 */
print(var[0][ANY][ANY]);

• The clear() routine is used to clear the keys and associated values for elements of the associative
array. The clear() routine is also used to reset the value of the associated array key without clearing
the keys. If the clear() subroutine successfully clear one or more elements, it returns a 0, and the
subroutine returns 1 when no elements are cleared.

clear(count); // count is an associative array.

252 AIX Version 7.2: General programming concepts

The previous routine with only one argument of the associative array type clears all the key pairs
present in the associative array count. After the previous clear operation, the associative array count is
empty.

clear(count, RESET_VALUE); // count is an associative array.
clear(var); // var is an associative array with three key dimensions

The previous clear routine resets the value of all the key pairs in the associative array without clearing
the key. The following default value is reset based on the type of value of the associative array:

To clear elements with specific keys, you must specify the keys in the first argument. Also, to ignore any
particular key dimension (all values of that particular key dimension match), you can specify ANY. If the
keys are specified, all the key dimensions of the associative array must be specified as either genuine
values of the matching key type or ANY.

clear(var[ANY][“a”][ANY]); // clear all elements with second key as “a”

You can specify a second parameter in the clear() routine as RESET_VALUE. If you specify
RESET_VALUE , the keys of the associative array are retained and only the values are reset.

clear(count, RESET_VALUE);
clear(var[0][ANY][ANY], RESET_VALUE);

The RESET_VALUE is dependent on type of the value. The following table displays the data types and
default values to which the data type is reset:

Type Default value

Integral types (int, long, short, long long) 0

LIST Empty

Foat and double 0.0000000

String Empty

stktrace_t Empty

probev_timestamp_t 0

path_t Empty

mac_addr_t 0

ip_addr_t 0

• The Quantizeoperation prints the keys and values of the given associative array in a graphical format
based on the linear scaling of the values.

quantize(count);

count is an associative array, and it prints out the following contents:

key value
1 1 ========
2 2 =========
3 3 ==========
4 4 ===========
5 5 ============
6 6 =============

Similar to print() function, you can provide quantize() function print options to override the default
print options.

Example:

General programming concepts 253

/* sorts the associative array ‘count’ in descending order of values and displays
the first 10 entries of ‘count’ in graphical format*/
quantize(count, 10, _BY_VALUE|SORT_TYPE_DESCEND);

For associative arrays with multi-dimensional keys, keys can be specified in the first argument to restrict
specific elements:

quantize(var[0][ANY][ANY]); //quantize elements with first key as 0

• Lquantize on associative array: This operation prints the keys and values of the given associative array
in graphical format based on the logarithmic scaling of the values.

lquantize (count);

Where count is an associative array would print out the following contents :

key value
500 500 ====
1000 1000 ====
2000 2000 =====
4000 4000 =====
8000 8000 ======
16000 16000 ======
32000 32000 =======
64000 64000 =======

Similar to print() function, you can provide with lquantize() function print options to override the
default print options.

Example:

/* sorts the associative array ‘count’ in descending order of values, and displays
the first 10 entries of ‘count’ in graphical
format based on the logarithmic value*/
lquantize(count, 10, _BY_VALUE|SORT_TYPE_DESCEND);

For associative arrays with multi-dimensional keys, keys can be provided in the first argument to restrict
to specific elements:

lquantize(var[0][ANY][ANY]); //lquantize elements with first key as 0

The following example show how to use an associative array:

Example:

Trace all the alloc- related calls and store the entry
Time in ‘entry_time’ associative array
#
@@uft:$__CPID:*:"/alloc/":entry
{
 entry_time[get_function()]=timestamp();
}
#
At exit, first check if entry for this function was traced
If so, delete the entry time from ‘entry_time’ associative array
To ensure that next time no action is taken on exit if entry was not traced.

@@uft:$__CPID:*:"/alloc/":exit
{
 func =get_function();
 if(exists(entry_time, func))
 {
 append(time_taken[func],
 diff_time(timestamp(),entry_time[func],MICROSECONDS));
 delete(entry_time, func);
 }
}
#
Print the list attributes sum, min, max, count, and avg time taken in every
Alloc function.
#
@@syscall:$__CPID:exit:entry
{
 print(time_taken);
 exit();
}

254 AIX Version 7.2: General programming concepts

Note: With this way, you need not define multiple list variables explicitly and still get the complete
functions of the list with help of associative arrays.

Timestamp data type
A variable of type probev_timestamp_t holds the return value from the timestamp ProbeVue function,
which returns a timestamp in internal AIX format.

The probev_timestamp_t type variable can be later passed as a parameter into the diff_time function
that returns the difference between two timestamps. This data type can also be stored in an associative
array either as a key or as a value.

Although the ProbeVue compiler does not type check when you use a long data type instead of the
probev_timestamp_t data type for storing timestamps, if possible, avoid this usage.

The following operations are acceptable for a variable of the probev_timestamp_t type:

• Can be explicitly initialized to zero.

Note: A timestamp variable of global class or thread-local class is initialized to zero on start of the
ProbeVue session.

• Can be compared against zero. Timestamp values returned by the timestamp function are always
greater than zero.

• Can be compared against another timestamp variable. A later timestamp is guaranteed to be larger than
an earlier timestamp.

• Can be passed as a parameter to the diff_time function.
• Can be printed using the printf or trace function.

File path data type
A variable of type path_t can be used to hold the value of __file->path (refer to __file built in for I/O
probe manager) or function fd_path(). Only local or global variables of type path_t are supported.
A variable of this type can also be the key or value in an associative Array.

Declaration of file path variable

path_t pth; // global variable of type path_t
auto:pth2 = fd_path(fd); // store in a local path_t variable
my_aso[__file->fname] = __file->path; // store in associative array

The signed, unsigned, register, static, thread, and kernel qualifiers are not supported for the path_t type
variables.

Assignment operation

The assignment (=) operator allows one path_t variable to be assigned to another path_t variable. The
original value of the variable is overwritten.

In the following example, after the assignment, p1 and p2 refer to the same file path:

path_t p1, p2;
p1 = fd_path(fd); // fd is a valid file descriptor value
p2 = p1;

Comparison operation

Only equality (==) and inequality (!=) operators are allowed for the path_t variables. The result of the
equality operator is true (1) if both represent the same absolute file path or false (0) otherwise.

The inequality operator is the exact compliment of this behavior. No other comparison operators (>=, >, <,
or =<) are allowed for the path_t type variables.

Printing file path type variables

A path_t type variable can be printed with “%p” format specifier in the printf() function.

General programming concepts 255

This printing of file path involves a time-consuming file search operation in the corresponding file system.
Hence, it must be judiciously used in Vue scripts.

Note: For transient files, which might no longer exist when the printf() message, can get printed; a null
string is printed as file path.

An associative array that has the path_t type variables as key or value (or both) can be printed by using
the print() function.

printf(“file path=[%p]\n”, __file->path);
my_aso[0] = fd_path(fd); // fd is valid file descriptor value
print(my_aso);

Limitations file path type variables

• Array of the path_t variables cannot be declared.
• The path_t variables cannot be used as members of struct or union.
• A pointer to the path_t variable is not allowed.
• Typecasting of the path_t variable to any other type or typecasting any other type to the path_t type

is not allowed.
• No arithmetic operator (+, -, *, /, ++, --, and so on) can be used with the path_t type variable.

MAC address data type
A variable of type mac_addr_t is used to hold the value of MAC address. The MAC address data type is an
abstract data type and you cannot use it directly with standard C unary or binary operators.

Only local or global variables of type mac_addr_t are supported.

A variable of this type can also be stored in an associate array either as a key or as a value.

Vue supports the following characteristics and operations for the MAC address type variables:

Declaration of MAC address variable

mac_addr_t
m1; //
 global variable of type
__auto mac_addr_t m2; // auto variable of type
m2 = __etherhdr->src_addr; // store source MAC address in a local
variable
mac_aso[“src_mac_addr”] = __etherhdr->src_addr ; // store in an associative array.

The signed, unsigned, register, static, thread, and kernel qualifiers are not supported for the mac_addr_t
type variables.

Assignment operation

The assignment (=) operator allows a mac_addr_t type variable to be assigned to another mac_addr_t
type variable. The original values of the variable is overwritten. No typecasting is allowed from or to the
mac_addr_t variable types.

In the following example, the content of the mac_addr_t m1 is assigned to m2.

mac_addr_t m1, m2; // Declares two MAC address variables.
m1 = __etherhdr->src_addr; // Get the source MAC address of the packet in m1.
m2 = m1 ; // Get the content of m1 into m2.

Comparison operation

Only equality (==) and inequality (!=) operators are allowed for the mac_addr_t variables. The result of
the equality operator is True (1) if both contains the same MAC address values or False (0) otherwise.

256 AIX Version 7.2: General programming concepts

The inequality operator is the exact compliment of this behavior. No other comparison operators (>=, >, <,
or =<) are allowed for the mac_addr_t type variables.

if (m1 == m2) // comparing two mac_addr_t type variables.
printf(“Mac addresses are equal”); else printf(“Mac addresses are not equal”);

Printing MAC address type variables

A mac_addr_t type variable can be printed with “%M” format specifier in the printf() function of Vue. An
associative array that has mac_addr_t type variables as key or value (or both) can be printed by using
the print() function.

printf(“ Source MAC address=[%M]\n”, __etherhdr->src_addr);
mac_aso[“src_mac_address”] = __etherhdr->src_addr ; // Store source MAC address as value in an associative array mac_aso.
print(mac_aso);

Limitations for MAC address type variable

• The array of the mac_addr_t variable cannot be declared.
• The mac_addr_t variables cannot be used as a member of a struct or a union.
• Pointer to mac_addr_t variable is not allowed.
• Typecasting of mac_addr_t variable to any other type or typecasting any other type to mac_addr_t type

is not allowed.
• No arithmetic operator (+, -, *, /, ++, -- etc) can be used with mac_addr_t type variable.

IP address data type
This is an abstract data type and cannot be used directly with standard C unary or binary operators. Only
local or global variables of type ip_addr_t are supported. A variable of this type can also be stored in an
associate array either as a key or as a value.

Vue supports the following characteristics and operations for the IP address type variables:

Declaration of IP address variable

ip_addr_t i1; // global variable of type ip_addr_t
__auto ip_addr_t i2; // auto variable of type
ip_addr_t i2 = __ip4hdr->src_addr; // store source IP address in a local ip_addr_t
variable.
ip_aso[“src_ip_addr”] = __ip4hdr->src_addr; // store in an associative array.

The qualifiers signed, unsigned, register, static, thread and kernel are not supported for the ip_addr_t type
variables.

Assignment operation

The assignment (=) operator allows a ip_addr_t type variable to be assigned to another ip_addr_t type
variable and also it allows constant IP address or hostname to be assigned to ip_addr_t type variable. The
original values of the variable is overwritten. No type casting is allowed from or to the ip_addr_t variable
types.

In the following example, the content of the ip_addr_t i1 is assigned to i2.

ip_addr_t i1, i2; // Declares two IP address variables.
ip_addr_t i3, i4, i5; // Declares three IP address variables.
i1 = __ip4hdr->src_addr; // Get the source IP address of the packet in i1.
i2 = i1 ; // Get the content of i1 into i2.
i3 = “10.10.10.1”; // Assign the constant IPv4 address to i3 variable.
i4 = “fe80::2c0c:33ff:fe48:f903”; // Assign the Ipv6 address to i4 variable.
i5 = “example.com”; // Assign the hostname to i5 variable.
 // Get the content of i1 into i2.

Comparison operation

Only equality (==) and inequality (! =) operators are allowed for ip_addr_t types variables. The comparison
allowed only between two ip_addr_t type variables and with constant string type (IP address or
hostnames are provided in double quotes “192.168.1.1” or “example.com").

General programming concepts 257

The result of the equality operator is True (1) if both contains the same IP address type (IPV4 or IPV6)
and values. or False (0) otherwise. The inequality operator is the exact compliment of that. No other
comparison operators (>=, >, < or =<) are allowed for the ip_addr_t type variables.

if(i1 == i2) // comparing two ip_addr_t type variables.
 //IP address
string
printf(“IP addresses are equal”);
else printf(“IP addresses are not equal”);
or
if(i1 == “192.168.1.1”) // comparing ip_addr_t type variable and constant string.
 printf(“IP addresses are equal”);
else printf(“IP addresses are not equal”);
or
if (i1 = “example.com”) // comparing ip_addr_t type variable and constant
 //IP address string
printf(“IP addresses are equal”);
else printf(“IP addresses are not equal”);

Printing IP address type variables

A ip_addr_t type variable can be printed with “%I” format specifier to print IP address in dotted decimal
or hex format and “%H” format specifier to print hostname in the printf() function of Vue. This printing
hostname involves a time consuming dns lookup operation. Hence it should be judiciously used in VUE
scripts.

Note: When user uses the format specifier “%H” to print host name for IP address which may not exists in
dns, for those IP addresses, it prints the IP addresses in dotted decimal/hex format instead of hostname.

An associative array that has ip_addr_t type variables as key or value (or both) can be printed using the
print() function.

printf(“ Source IP address=[%I]\n”, __ip4hdr->src_addr);
ip_aso[“src_ip_address”] = __ip4hdr->src_addr ; // Store source IP address as value in an associative array
print(ip_aso);

Limitations for IP address type variable

• The array of the ip_addr_t variable cannot be declared.
• Pointer to ip_addr_t variable is not allowed.
• Typecasting of ip_addr_t variable to any other type or typecasting any other type to ip_addr_t type is not

allowed.
• No arithmetic operator (+, -, *, /, ++, -- etc) can be used with ip_addr_t type variable.

net_info_t data type
The net_info_t variable is structure or composite variable that is used to hold the network four
tuples (local and remote IP addresses and port numbers) information from the specific socket descriptor
through the sockfd_netinfo Vue function.

The members of net_info_t structure are accessed like any other user-defined structure in Vue script.
The net_info_t type is an abstract data type and this variable cannot be used directly with standard
C unary or binary operators. This variable is a structure containing 4 tuple information. This variable
elements can be accessed by using the “.” operator like C structure elements.

Elements of the net_info_t data type are as follow:

net_info_t
{
 int local_port;
 int remote_port;
 ip_addr_t local_addr;
 ip_addr_t remote_addr;
};

Vue supports the following characteristics and operations for the net_info_t type variables:

Declaration of net_info_t type variable

net_info_t n1,n2
// n1 is variable of type net_info_t
sockfd_netinfo(fd, n1);
// fd is socket descriptor and n1 contains network
// four tuple information from sockfd_netinfo Vue function.

258 AIX Version 7.2: General programming concepts

n2.local_addr = __ip4hdr->src_addr;
n2.remote_addr = __ip4hdr->dst_addr;
n1.local_port = __tcphdr->src_port;
n1.remote_port = __tcphdr->dst_port;

The signed, unsigned, register, static, thread, local, global, and kernel qualifiers are not supported for the
net_info_t type variables.

Limitations for net_info_t type variable

• Structure and union member variable cannot be supported.
• Pointer to the net_info_t variable cannot be declared.
• This variable is not supported in associative array.
• The array of the net_info_t variable cannot be declared.
• Typecasting of the net_info_t variable to any other type or typecasting any other type to
net_info_t type is not allowed.

• Arithmetic operator (+, -, *, /, ++, --, and so on) cannot be used with net_info_t type variable.

Vue library functions
Unlike programs written in C or in FORTRAN, or in a native language, scripts written in Vue do not
have access to the subroutines provided by the AIX system libraries or any user libraries. However, Vue
supports its own special internal library of functions useful for dynamic tracing programs.

Tracing-specific functions
get_function

Returns the name of the function that encloses the current probe. When the get_function function
is called from interval, systrace, BEGIN, and END clause, the function returns an empty string.

timestamp
Returns the current timestamp.

diff_time
Finds the difference between two time stamps in microseconds or milliseconds.

Trace capture functions
printf

Formats and prints values of variables and expressions.
trace

Prints data without formatting.
stktrace

Formats and prints the stack trace.
List functions

list
Instantiates a list variable.

append
Appends a new item to list.

sum, max, min, avg, count
Aggregation functions that can be applied to a list variable.

C-library functions
atoi, strstr

Standard string functions.
Functions to support tentative tracing

start_tentative, end_tentative
Indicators for start and end of tentative tracing.

commit_tentative, discard_tentative
Commits or discards tentative trace data.

General programming concepts 259

Miscellaneous functions
exit

Terminates the Vue script.
get_userstring

Reads string (or data) from user memory.
ptree

Prints the process tree of the probed process.

You can apply the Vue string functions only on variables of string type and not on a pointer variable.
Standard string functions like strcpy, strcat, and so on are not necessary in Vue, because they are
supported through the language syntax itself.

The ProbeVue compiler validates the data types of the parameters passed to Vue functions.

For printf function, validation is done to check whether there is an argument supplied in the printf
function for each format specifier given in the format string. The total number of format specifiers and the
total number of arguments passed to the printf function should be equal. In addition to this, validation
is also done to match whether the type of the argument passed is compatible with the actual type
mentioned as format specifier in the format string. If these checks fail, the Probevue throws an error
message.

For example,

printf(“hello world %s, %d\n”, str);

would throw up an error message from the compiler as no argument is passed for %d. Similarly,

Printf(“The total count of elements is %d\n”, str);

also throws an error message as the format specified is %d whereas the argument passed, str variable is
a string.

Other Features Functions

However, when given as

printf (“The total count of elements is %lld\n”, i);

Where i is a variable of type int, no error message is thrown because the variable i is a compatible type
for the format specifier requested. Hence, no exact type checking is done; however, compatible type
checking is.

You cannot put functions in the predicate section of a Vue clause.

Predicates
You cannot use predicates when execution of clauses at probe points must be performed conditionally.
The predicate section is identified by the presence of the when keyword immediately after the probe
specification section. The predicate itself consists of regular C-style conditional expressions with the
enclosing parentheses.

There are some restrictions on the expressions inside the predicate section:

• Kernel class variables are not permitted in the predicate.
• Automatic class variables are not permitted in the predicate.
• Floating-point type variables are not permitted in the predicate.
• Vue functions are not permitted inside a predicate.
• Side effects are not permitted inside a predicate and so the = assignment operator and its derivatives

like +=, |=, and so on are not permitted.
• The ninth and higher parameters passed to a function (the entry class variables __arg9, __arg10, and

so on) are not permitted in the predicate.

260 AIX Version 7.2: General programming concepts

Conditional execution of specific actions within a clause is possible by using the if ... else statement
which works like the analogous statement in C. However, if the entire clause is to be issued conditionally,
it is preferable to use predicates instead because ProbeVue is designed to optimize execution of
predicates.

Note: When a probe point can fire for more than one process, using thread-local variables inside the
predicate is an excellent way to reduce the overall performance impact of enabling the probe. Putting
conditional checks inside a predicate is preferable to using the if statement.

The following script uses thread-local variables inside predicates to efficiently detect when a particular
character string is written to a specific file. It also shows an example of using the if statement within
the action block of a clause with a predicate. Both the file name and character string are passed as
parameters to the script using shell positional parameters.

/*
 * Filename : chkfilewrite.e
 *
 * Capture when someone writes a particular word to a specific file
 * takes 2 arguments: filename and word
 *
 * assumes file name is < 128
 *
 * Usage: probevue chkfilewrite.e \"<filename>\" \"<string>\"
 *
 * The backslashes above are necessary to prevent shell
 * from stripping the double quotation mark.
 */

int open(char *fname, int m, int p);
int write(int fd, char *s, int size);

@@syscall:*:open:entry
{
 __auto String fname[128];

 fname = get_userstring(__arg1, -1);

 if (fname == $1)
 thread:opening = 1;
}

@@syscall:*:open:exit
 when (thread:opening == 1)
{
 thread:fd = __rv;
 thread:opening = 0;

}

@@syscall:*:write:entry
 when (thread:fd == __arg1)
{
 __auto String buf[128];

 if (__arg3 < 128)
 buf = get_userstring(__arg2, __arg3);
 else
 buf = get_userstring(__arg2, 128);

 if (strstr(buf, $2)) {
 printf("%d wrote word to file.\n", __pid);
 exit();
 }
}

To run this program to check when someone writes the string "Error" to the foo.log file, you can issue the
following command:

probevue chkfilewrite.e \"foo.log\" \"Error\"

Note: You can enhance the preceding script by adding a close probe to detect when the file is closed to
prevent the script from catching the word after the original file is closed and a new one is opened and the
same file descriptor number is reused.

General programming concepts 261

Symbolic constants
Vue supports some pre-defined symbolic constants, which are commonly used in AIX programming.
These constants are treated as keywords in Vue. During compilation, the constants are replaced by
their definitions in system header files. Probe manager-specific symbolic constants are explained in their
respective sections. Following are the generic symbolic constants.

AF_INET
This specifies the address family of type IPv4. This ensures that the data is of IPV4 type.

AF_INET6
This specifies the address family of type IPv6. This ensures that the data is of IPV6 type.

NULL
To set pointer types to a NULL or zero value. You cannot use NULL to set a String variable to the empty
string.

Error numbers or "errno" names
These are the standard error names like EPERM, EAGAIN, ESRCH, ENOENT, and so on, specified by
the POSIX and ANSI standards and defined in the /usr/include/sys/errno.h header file.

The following script traces when the bind system call fails with errno set to EADDRINUSE (address
already in use).

/*
 * File: bind.e
 */

/*
 * Okay to use void for parameters since we are not planning to
 * access them in this script.
 */
int bind(void);

@@syscall:*:bind:exit
 when (__rv == -1)
{
 /*
 * The following check could also be moved to the predicate,
 * although it may not buy a lot because we are already in an
 * error path that should be executed only rarely
 */
 if (__errno == EADDRINUSE)
 /* This check could also be moved to the predicate */
 printf("%d failed with EADDRINUSE for bind() call.\n", __pid);
}

Signal names
These are the standard signal names like SIGSEGV, SIGHUP, SIGILL, SIGABRT, and so on, specified
by the ANSI standards and defined in the /usr/include/sys/signal.h header file.

The following script shows how to debug "who" killed a particular process by sending it a specific
signal.

/*
 * File: signal.e
 *
 * Who sent SIGKILL to my process ?
 */

/* Process IDs are < 2^32, so using an 'int' here instead of pid_t is
 * good enough
 */
int kill(int pid, int signo);

@@syscall:*:kill:entry
 when (__arg1 == $1 && __arg2 == SIGKILL)
{
 /* Trace sender of SIGKILL */
 printf("Stack trace of %s: (PID = %d)\n", __pname, __pid);
 stktrace(PRINT_SYMBOLS|GET_USER_TRACE, -1);
 exit();
}

262 AIX Version 7.2: General programming concepts

FUNCTION_ENTRY
Identifies if a probe point is a function entry point. Used with the get_location_point function.

FUNCTION_EXIT
Identifies if a probe point is a function exit point. Used with the get_location_point function.

Header files
You can specify multiple header files on the command line either by separating the header files with a
comma (with no spaces between the comma and the file names) or by specifying each one separately
with the -I flag. The following two examples are equivalent:

probevue -I myheader.i,myheader2.i myscript.e
probevue -I myheader.i -I myheader2.i myscript.e

C++ header file can be included for struct/class definitions and allows a probevue script to access struct/
class data fields through a pointer. All C++ header files can be listed using #include directives between
##C++ and ##Vue directive in the ProbeVue script. For using this option IBM C++ compiler must be
installed on the system. Another option to include C++ header file is to first preprocess the C++ header
file with –P option of probevue and then include the preprocessed file with –I option of probevue. With
–P option probevue will generate the out file with same name as input C++ header file with a .Vue suffix.

The advantage of using –I option for preprocessed C++ header file is that IBM C++ compiler need not be
installed on the system.

You can run the following command to preprocess C++ header file.

probevue –P myheader.h

Note: To run the above command IBM C++ compiler is a pre-requisite.

The above command will generate a file called myheader.Vue. This file can be further shipped to another
system and can be used to probe C++ application by including with –I option of probevue. While using the
shipped preprocessed C++ header file the systems environment should be same for system being used
for generating preprocessed C++ header file and system being used to include preprocessed header file
with –I option of probevue for probing C++ application.

The C++ header file which is either being used for precompilation with –P option or being included
between ##C++ and ##Vue should have .h extension for including standard Input/Output C++ header
file. For including IOstream header use #include<iostream.h> instead of #include<iostream>.

You can run the following command for a C++ executable named cpp_executable and the script named
myscript.e to probe the C++ application.

probevue –I myheader.Vue –X cpp_executable myscript.e

Note: To run the above command IBM C++ compiler is a not a pre-requisite.

Supported shell elements
The Vue language syntax includes support for shell variables identified by the $ prefix like exported shell
variables and positional parameters (arguments to the script).

Vue shell variables can appear anywhere in the Vue script. They can be part of the probe specification,
be used in predicates or within statements in action blocks. However, unlike in a shell script, they are not
expanded if used within double quoted strings.

The arguments passed from the command line to the script are referenced within the script as $1, $2, $3,
and so on. Consider the following Vue script:

/* Program name: myscript.e */
 @@syscall:*:read:entry
 when (__pid == $1)

 {

General programming concepts 263

 int count;
 count++;
 }

In the following example, the process ID of the process running the myprog program replaces $1 in the
preceding script. It assumes that the prgrep shell program, which prints the process ID given the process
name, is used to invoke the Vue script.

probevue myscript.e `prgrep myprog`

Environment variables exported from the shell can also be referenced in the script using the $ operator.
Consider the following Vue script:

/* Program name: myscript2.e */
 @@syscall:*:read:entry
 when (__pid == $PID)

 {
 int count;
 count++;
 }

 /* program to be traced has a function called 'foo' */

 @@uft:$PID:*:foo:entry
 {
 printf("Read system call was invoked %d times\n", count);
 }

In the following example, 3243 replaces $PID in the preceding script:

PID=3423 probevue myscript2.e

If an environment variable needs to be recognized as a string inside the ProbeVue script, the value of the
environment variable must include the enclosing double quotation mark that identify it as a string. For
example, the following script captures trace output when a specific file is opened in the system:

/* Program name: stringshell.e */
 int open(char *path, int oflag);
 @@syscall:*:open:entry
 {
 String s[40];
 s = get_userstring(__arg1, -1);
 if (s == $FILE_NAME) {
 printf("pid %d (uid %d) opened %s\n",__pid,__uid, s);
 exit();
 }
 }

The script expects that $FILE_NAME is the name of an exported shell environment variable, which
includes the double quotation mark in its value. The following script is an example:

 export FILE_NAME=\"/etc/passwd\"
 probevue stringshell.e

If the value of an existing environment variable that does not have double quotation mark is required in a
script, then a new environment variable will need to be constructed using double quotation mark around
the existing environment variable. The following script is an example:

 export FILE_NAME=\"$HOME\"
 probevue stringshell.e

Vue supports two special environment variables which are useful when the process to be probed is
started by the probevue command itself using the -X flag. The $__CPID environment variable indicates
the process ID of the child process created by the probevue command, and the $__CTID environment
variable indicates its thread ID. The -X flag is useful to probe short-lived processes especially for
debugging purposes.

264 AIX Version 7.2: General programming concepts

A Vue script can be executed directly (like a shell script) by setting the first line to the following script:

#!/usr/bin/probevue

The probevue command can also read the Vue script from standard input like the shell does. This can be
accomplished by omitting the script filename from the command line. This is useful to test short scripts.

Vue does not support special shell parameters such as $$ and $@ which are created internally by the
shell.

Trace capture facilities

ProbeVue supports comprehensive trace capture facilities. The basic trace capture action is provided
through the printf function that can be invoked from any probe as part of the action block. The Vue
version of printf function is equipped with most of the power of the C library version. A second trace
capture function is the trace function. The trace function accepts a single variable as a parameter and
copies its value in printable hexadecimal format to the trace buffer. This function is particularly useful for
dumping the contents of strings and structures. The stktrace function is another trace capture function
which captures the stack trace of the traced thread at the current probe point.

In addition to the values of internal script variables, external variables like kernel global variables,
context-specific data like parameters to the function being probed, return values from a function, and
so on can also be captured and displayed through these trace capture functions.

The trace reporter always displays trace data in order of time of occurrence and thus the data captured
from different CPUs are internally sorted before they are output.

Tentative tracing

Tentative tracing permits intelligent filtering of data and will reduce the actual amount of trace data that
is presented to you and which you need to analyze. This has the excellent side effect of preventing buffer
overflow problems if you can ensure that the tentatively collected data be discarded or committed early.

The following script is an example of using tentative tracing functions to capture trace data only when
necessary:

/*
 * File: tentative.e
 *
 * Print details when write system call takes longer than a
 * specified number of microseconds
 *
 * Usage: probevue tentative.e <processID> <microseconds>
 */
int write(int fd, char *buf, int size);

@@BEGIN
{
 probev_timestamp_t ts1, ts2;
}

@@syscall:$1:write:entry
{
 __auto String buf[256];

 if (__arg3 < 256)
 buf = get_userstring(buf, __arg3);
 else
 buf = get_userstring(buf, 256);

 start_tentative("write");

 /* print out all the data associated with the write */
 stktrace(PRINT_SYMBOLS|GET_USER_TRACE, -1);

 printf("fd = %d, size = %d\n", __arg1, __arg3);

 /* Prints 256 bytes of buf, even though size may be < 256 */
 trace(buf);

 end_tentative("write");

General programming concepts 265

 /* Get timestamp for when we entered write: do this at the end of
 * the probe to reduce probe effect
 */
 ts1 = timestamp();
}

/* If we started probing in the middle of write, ts1 will be zero,
 * ignore that case with a predicate
 */
@@syscall:$1:write:exit
 when (ts1 != 0)
{
 /* diff_time() may return up to a 64-bit value, but we
 * use an int here since we don't expect the difference to
 * larger than a few hundred microseconds at the most.
 */
 int micros;

 /* Get timestamp for when we exited write: do this at the beginning of
 * the probe to reduce probe effect
 */
 ts2 = timestamp();

 micros = diff_time(ts1, ts2, MICROSECONDS);

 start_tentative("write");
 printf("Return value from write = %d\n", __rv);
 end_tentative("write");

 if (micros > $2) {
 /* Can mix normal trace with tentative also */
 printf("Time to write = %d, limit =%d micro seconds\n",
 micros, $2);
 commit_tentative("write");
 exit();
 }
 else
 discard_tentative("write");
}

Running ProbeVue
Dynamic tracing is only allowed for users with privileges or for the superuser.

Authorizations and privileges

This is unlike the static tracing facilities in AIX, which enforce relatively limited privilege checking. There
is a reason for requiring privileges to run the probevue command. A Vue script can potentially produce
more severe impacts on system performance than a static tracing facility like AIX system trace. This is
because probe points for system trace are pre-defined and restricted. ProbeVue can potentially support
many more probe points and the probe locations can potentially be defined almost anywhere. Further,
ProbeVue trace actions at a probe point can take much longer to issue than the system trace actions at a
probe point since those are limited to explicit data capture.

In addition, ProbeVue allows you to trace processes and read kernel global variables, both of which need
to be controlled to prevent security exposures. A ProbeVue session can also consume a lot of pinned
memory and restricting usage of ProbeVue to users with privilege reduces the risk of denial of service
attacks. ProbeVue also allows administrators to control the memory usage of ProbeVue sessions through
the SMIT interface.

Privileges for dynamic tracing are obtained differently depending upon whether role-based access control
(RBAC) is enabled or not. Please refer to the AIX man pages for more information about enabling and
disabling RBAC.

Note that in legacy or RBAC-disabled mode, there are no authorizations. Regular users cannot acquire
privileges to run the probevue command to start a dynamic tracing session or run the probevctrl
command to administer ProbeVue. Only the superuser can have privileges for both these functions. Do not
disable RBAC when using ProbeVue unless you prefer to restrict this facility to root users only.

RBAC-enabled mode

266 AIX Version 7.2: General programming concepts

Privileges in an RBAC system are obtained through authorizations. An authorization is a text string
associated with security-related functions or commands. Authorizations provide the mechanism to grant
rights to you to perform privileged actions. Only a user with sufficient authorization can issue the
probevue command and start a dynamic tracing session.

aix.ras.probevue.trace.user.self
This authorization allows you to trace their applications in user space. The user ID of the process
to be traced must be equal to the real user ID of the user invoking the probevue command.
This authorization allows you to enable probe points provided by the uft probe manager for your
processes. However, the effective, real and saved user IDs of the process to be traced must be equal.
Thus, you cannot trace setuid programs with just this authorization.

aix.ras.probevue.trace.user
This authorization allows you to trace any application in user space including setuid programs
and applications started by the superuser. Be careful when handing out this authorization. This
authorization allows you to issue the probevue command and enable probe points provided by the uft
probe manager for any process on the system.

aix.ras.probevue.trace.syscall.self
This authorization allows you to trace system calls made by their applications. The effective, real and
saved user IDs of the process making the system call must be the same and equal to the real user
ID of the user invoking the probevue command. This authorization allows you to enable probe points
provided by the syscall probe manager for your processes. The second field of the probe specification
must indicate the process ID for a process started by you.

aix.ras.probevue.trace.syscall
This authorization allows you to trace system calls made by any application on the system including
setuid programs and applications started by the superuser. Be careful when handing out this
authorization. This authorization allows you to issue the probevue command and enable probe points
provided by the syscall probe manager for any process. The second field of the probe specification can
either be set to a process ID to probe a specific process or to * to probe all processes.

aix.ras.probevue.trace
This authorization allows you to trace the entire system and includes all the authorizations defined
in the preceding sections. You can also access and read kernel variables when running the probevue
command, trace system trace events by using the systrace probe manager and trace the CPU bound
probes by using the interval probe manager. Be careful while using this authorization.

aix.ras.probevue.manage
This authorization allows you to administer ProbeVue. This includes changing the values of the
different ProbeVue parameters, starting or stopping ProbeVue and viewing details of dynamic tracing
sessions of all users when running the probevctrl command. Without this authorization, you can use
the probevctrl command to view session data for dynamic tracing sessions started by you or view the
current values for ProbeVue parameters.

aix.ras.probevue.rase
This authorization allows you to access to a highly privileged set of "RAS events" Vue functions which
can produce system and LMT trace records, create live dumps, and even lead to the system abend.
This privilege must be very carefully controlled.

aix.ras.probevue
This authorization grants all dynamic tracing privileges and is equivalent to all the preceding
authorizations combined.

The superuser (or root) has all these authorizations assigned by default. Other users will need to have
authorizations assigned to them by first creating a role with a set of authorizations and assigning the role
to the user. The user will also need to switch roles to a role that has the required authorizations defined
for dynamic tracing before invoking the probevue command. The following script is an example of how
to provide user "joe" authorization to enable user space and system call probes for processes started by
"joe".

 mkrole authorizations=
 "aix.ras.probevue.trace.user.self,aix.ras.probevue.trace.syscall.self"
 apptrace

General programming concepts 267

 chuser roles=apptrace joe
 setkst -t roleTR

ng command:

swrole apptrace

Note: The interval probe manager does not have a specific authorization associated with it. You can
enable interval probe points if you have any of the aix.ras.probevue.trace* authorizations.

ProbeVue privileges

The privileges that are available for ProbeVue are listed in the following table. A description of each
privilege and the authorizations that map to that privilege is provided. Privileges form a hierarchy where
the parent privilege contains all of the rights that are associated with the privileges of its children, but it
can include additional privileges also.

Table 23. ProbeVue privileges

Privilege Description Authorizations
Associated
command

PV_PROBEVUE_
TRC_USER_SELF

Allows a process to
enable dynamic user
space probe points on
another process with the
same real user ID.

aix.ras.probevue.trace.user.self

aix.ras.probevue.trace.user

aix.ras.probevue.trace

aix.ras.probevue

probevue

PV_PROBEVUE_
TRC_USER

Allows a process
to enable dynamic
user space probe
points. Includes
the PV_PROBEVUE_
TRC_USER_SELF privilege.

aix.ras.probevue.trace.user

aix.ras.probevue.trace

aix.ras.probevue

probevue

PV_PROBEVUE_
TRC_SYSCALL_SELF

Allows a process to
enable dynamic system
call probe points on
another process with the
same real user ID.

aix.ras.probevue.trace.syscall.self

aix.ras.probevue.trace.syscall

aix.ras.probevue.trace

aix.ras.probevue

probevue

PV_PROBEVUE_
TRC_SYSCALL

Allows a process
to enable dynamic
system call space
probe points. Includes
the PV_PROBEVUE_
TRC_SYSCALL_

SELF privilege.

aix.ras.probevue.trace.syscall

aix.ras.probevue.trace

aix.ras.probevue

probevue

PV_PROBEVUE
_TRC_KERNEL

Allows a process to
access kernel data when
dynamic tracing.

aix.ras.probevue.trace

aix.ras.probevue

probevue

268 AIX Version 7.2: General programming concepts

Table 23. ProbeVue privileges (continued)

Privilege Description Authorizations
Associated
command

PV_PROBEVUE_
MANAGE

Allows a process to
administer ProbeVue.

aix.ras.probevue.manage

aix.ras.probevue

probevctrl

PV_PROBEVUE_ RASE Authorizes the use of the
restricted "RAS events"
functions.

aix.ras.probevue.rase

aix.ras.probevue

probevue

PV_PROBEVUE_ Equivalent to all the
preceding privileges
(PV_PROBEVUE_*)
combined.

aix.ras.probevue probevue

probevctrl

ProbeVue parameters

AIX provides a set of parameters that you can use to tune ProbeVue or the ProbeVue framework. The
parameters allow you to specify both global limits on resource usage by the ProbeVue framework and to
specify resource usage for individual users.

Note: Probe managers are not contained within the ProbeVue framework and hence these limits do not
apply them.

All ProbeVue parameters can be modified through the SMIT interface (use the "smit probevue" fast path)
or directly through the probevctrl command. ProbeVue can be stopped if there are no active dynamic
tracing sessions and it can be restarted after stopping it without requiring a reboot. ProbeVue can fail to
stop if any sessions that used thread-local variables had been previously active.

The following table summarizes the parameters defined for dynamic tracing sessions. In the description,
a privileged user refers to the superuser or a user with the aix.ras.probevue.trace authorization and a
non-privileged user is one who does not have this authorization.

General programming concepts 269

Table 24. Parameters for dynamic tracing session

Description as
in SMIT

Maximum
value

Initial high
configuration
value

Initial low
configuration
value

Minimum value Associated
command

MAX pinned
memory for
ProbeVue
framework

64 GB 10% of
available
memory or the
maximum
value,
whichever is
smaller.

16 MB 3 MB Maximum
pinned memory
in MB that is
allocated for
ProbeVue data
structures,
including per-
CPU stacks and
per-CPU local
table regions
and by all
dynamic tracing
sessions. It
does not
include any
memory
allocated by
Probe
Managers.

Note: Although,
this parameter
can be modified
at any time, the
value takes
effect only the
next time
ProbeVue is
started.

Default per-
CPU trace
buffer size

256 MB 128 KB 8 KB 4 KB Default size in
KB of per-CPU
trace buffer.
Two trace
buffers are
allocated per
CPU for each
dynamic tracing
session by
ProbeVue, one
active and used
by the writer or
the Vue
program when
it captures
trace data and
one inactive
and used by the
reader or the
trace consumer.

270 AIX Version 7.2: General programming concepts

Table 24. Parameters for dynamic tracing session (continued)

Description as
in SMIT

Maximum
value

Initial high
configuration
value

Initial low
configuration
value

Minimum value Associated
command

For example, on
an 8-way with
per-CPU trace
buffer size set
to 16 KB, the
total memory
consumed by
the trace
buffers for a
ProbeVue
session is 256
KB. You can
specify a
different buffer
size (larger or
smaller) when
you start the
probevue
command until
it is within the
session
memory limits.

MAX pinned
memory for
regular user
sessions

64 GB 2 MB 2 MB 0 MB Maximum
pinned memory
allocated for a
non-privileged
user ProbeVue
session
including
memory for the
per-CPU trace
buffers. A value
of 0 effectively
disables all
non-privileged
users.
Privileged users
have no limits
on the memory
used by their
ProbeVue
sessions.
However, they
are still limited
by the
maximum
pinned memory
allowed for the
ProbeVue
framework.

General programming concepts 271

Table 24. Parameters for dynamic tracing session (continued)

Description as
in SMIT

Maximum
value

Initial high
configuration
value

Initial low
configuration
value

Minimum value Associated
command

MIN trace
buffer read rate
for regular user

5000 ms 100 ms 100 ms 10 ms The minimum
period, in
milliseconds,
that a non-
privileged user
can request the
trace consumer
to check for
trace data. This
value is
internally
rounded to the
next highest
multiple of 10
milliseconds.
Privileged users
are not limited
by this
parameter, but
the fastest read
rate that they
can specify is
10
milliseconds.

Default trace
buffer read rate

5000 ms 100 ms 100 ms 10 ms The default
period in
milliseconds
that the in-
memory trace
buffers are
checked for
trace data by
the trace
consumer. You
can specify a
different read
rate (larger or
smaller) when
starting the
probevue
command until
it is larger than
the minimum
buffer read
rate.

272 AIX Version 7.2: General programming concepts

Table 24. Parameters for dynamic tracing session (continued)

Description as
in SMIT

Maximum
value

Initial high
configuration
value

Initial low
configuration
value

Minimum value Associated
command

MAX concurrent
sessions for
regular user

8 1 1 0 Number of
concurrent
ProbeVue
sessions
allowed for a
non-privileged
user. A value of
zero effectively
disables all
non-privileged
users.

Size of per-CPU
computation
stack

256 KB 20 KB 12 KB 8 KB The size of the
per-CPU
computation
stack used by
ProbeVue when
issuing the Vue
script. The
value is
rounded to the
next highest
multiple of 8
KB. ProbeVue
allocates a
single stack
per-CPU for all
ProbeVue
sessions. The
memory
consumed for
the stacks is
not included in
the per-session
limits.

General programming concepts 273

Table 24. Parameters for dynamic tracing session (continued)

Description as
in SMIT

Maximum
value

Initial high
configuration
value

Initial low
configuration
value

Minimum value Associated
command

Note: Although,
this parameter
can be modified
at any time, the
value takes
effect only after
AIX kernel boot
image is rebuilt
and rebooted.
You have to
configure
ProbeVue stack
to use 96K
virtual memory
to get the
current
directory
listing.

Size of per-CPU
local table size

256 KB 32 KB 4 KB 4 KB The size of the
per-CPU local
table used by
ProbeVue for
saving variables
of automatic
class and for
saving
temporary
variables.
ProbeVue uses
half of this area
for automatic
variables and
the remaining
half for saving
temporary
variables.

274 AIX Version 7.2: General programming concepts

Table 24. Parameters for dynamic tracing session (continued)

Description as
in SMIT

Maximum
value

Initial high
configuration
value

Initial low
configuration
value

Minimum value Associated
command

The value is
always rounded
to the next
highest
multiple of 4
KB. ProbeVue
allocates a
single local
table and a
single
temporary
table per-CPU
used by all
ProbeVue
sessions. The
memory
consumed for
the local tables
is not included
in the per-
session limits.

Note: Although,
this parameter
can be modified
at any time, the
value takes
effect only the
next time
ProbeVue is
started.

MIN interval
allowed in an
interval probe

N/A 1 1 Minimum timer
interval, in
milliseconds,
allowed for
global root user
in interval
probes.

General programming concepts 275

Table 24. Parameters for dynamic tracing session (continued)

Description as
in SMIT

Maximum
value

Initial high
configuration
value

Initial low
configuration
value

Minimum value Associated
command

Number of
threads to be
traced

N/A 32 32 1 Maximum
number of
threads that a
ProbeVue
session can
support when it
has thread-
local variables.
The ProbeVue
framework
allocates the
thread-local
variables to the
maximum
number of
threads that are
specified with
this attribute, at
the start of the
session. If more
than the
specified
number of
threads hit the
probe that has
a thread-local
variable, the
ProbeVue
session is
abruptly
stopped.

276 AIX Version 7.2: General programming concepts

Table 24. Parameters for dynamic tracing session (continued)

Description as
in SMIT

Maximum
value

Initial high
configuration
value

Initial low
configuration
value

Minimum value Associated
command

Number of page
faults to be
handled

1024 0 0 0 Number of page
fault contexts
for handling
page faults for
the entire
framework. A
page fault
context
includes stack
and local table
for saving
automatic class
variables and
temporary
variables. A
page fault
context is
required to
access the
paged-out data.
If there are no
page fault
context that is
free at the time
of a page fault,
ProbeVue does
not fetch the
paged-out data.

Maximum
probe
execution time
for systrace
probes when
fired in
interrupt
context

N/A 0 0 0 This number
limits the
maximum time,
in milliseconds,
a systrace
probe
executing in
interrupt
context can
take. By
default, the
value is zero,
which means
the systrace
probe can any
time.

General programming concepts 277

Table 24. Parameters for dynamic tracing session (continued)

Description as
in SMIT

Maximum
value

Initial high
configuration
value

Initial low
configuration
value

Minimum value Associated
command

Maximum
probe
execution time
for io probes
when fired in
interrupt
context

N/A 0 0 0 This number
limits the
maximum time,
in milliseconds,
an io probe
executing in
interrupt
context can
take. By
default, the
value is zero,
which means it
can any time

Maximum
probe
execution time
for sysproc
probes when
fired in
interrupt
context

N/A 0 0 0 This number
limits the
maximum time,
in milliseconds,
a sysproc probe
executing in
interrupt
context can
take. By
default, the
value is zero,
which means it
can any time.

Maximum
probe
execution time
for network
probes when
fired in
interrupt
context

N/A 0 0 0 This number
limits the
maximum time,
in milliseconds,
a network
probe
executing in
interrupt
context can
take. By
default, the
value is zero,
which means it
can any time.

278 AIX Version 7.2: General programming concepts

Table 24. Parameters for dynamic tracing session (continued)

Description as
in SMIT

Maximum
value

Initial high
configuration
value

Initial low
configuration
value

Minimum value Associated
command

Max network
buffer size

64 KB 64 bytes 96 bytes 96 bytes This value is a
pre-allocated
buffer size (in
bytes) used by
network probe
manager for bpf
probe points.
This value is
allocated when
the first bpf
probe is
enabled and
exists in the
system till the
last bpf probe is
disabled. When
the last bpf
probe type is
disabled, this
buffer is
released. This
buffer is used
to copy the
data when
packet data is
spanned across
multiple packet
buffers.

Asynchronous
statistics fetch
interval, in
milliseconds

NA 1000
milliseconds (1
second)

1000
milliseconds (1
second)

100
milliseconds

The interval, in
milliseconds, to
fetch the
asynchronous
statistics. This
value is global
and is
applicable to all
ProbeVue
sessions.

Fetch statistics
in
asynchronous
mode only

NA No No NA Specifies
ProbeVue that
statistics must
be fetched in an
asynchronous
mode even if
synchronous
mode is
available.

General programming concepts 279

Table 24. Parameters for dynamic tracing session (continued)

Description as
in SMIT

Maximum
value

Initial high
configuration
value

Initial low
configuration
value

Minimum value Associated
command

Maximum
probe
execution time
for CPU bound
interval probes
when fired in
interrupt
context.

60 seconds 60 seconds 100
milliseconds

100
milliseconds

This number
limits the
maximum time,
in milliseconds,
a CPU bound
interval probe
executing in
interrupt
context can
take. By
default, the
value is 60secs.

Profiling ProbeVue Session

The ProbeVue framework provides a profiling facility that can be turned on or off to estimate the impact
of enabled probes on the application. This facility accumulates the time taken by probe actions when they
are started and reports when requested or when the session ends.

The profiling report displays the probe string and the time taken by the action corresponding to that probe
string. The time that is consumed by the probe action is maintained as a list where the data collected is
total, minimum, maximum, and average time taken by probe action. Profiling data also displays number of
times that the probe action was timed. When you are looking up the profile for multiple functions through
one probe string (by using regular expression or * in place of function name), profiling data provides an
accumulated data of probes started for all such functions. It does not provide timing details for functions
that are probed separately but only per-probe action.

The BEGIN and END probe actions are not profiled with this facility. These profiling details are session-
specific details. You can enable probevue session profiling along with session start by using the
probevue command or probevctrl command.

For more information, see the probevue and probevctrl commands.

Sample programs

Example 1

The following canonical "Hello World" program prints "Hello World" into the trace buffer and exits:

#!/usr/bin/probevue

 /* Hello World in probevue */
 /* Program name: hello.e */

 @@BEGIN
 {
 printf("Hello World\n");
 exit();
 }

Example 2

The following "Hello World" program prints "Hello World" when you types Ctrl-C on the keyboard:

#!/usr/bin/probevue

 /* Hello World 2 in probevue */
 /* Program name: hello2.e */

 @@END
 {

280 AIX Version 7.2: General programming concepts

 printf("Hello World\n");
 }

Example 3

The following program shows how to use thread-local variables. This Vue script counts the number of
bytes written to a particular file. It assumes that the processes are single-threaded or those threads that
open files are the same ones that write to them. It also assumes that all write operations are successful.
The script can be terminated at any time and you can obtain the current count of bytes written by typing
Ctrl-C on the terminal.

#!/usr/bin/probevue

 /* Program name: countbytes.e */
 int open(char * Path, int OFlag, int mode);
 int write(int fd, char * buf, int sz);
 int done;

 @@syscall:*:open:entry
 when (done != 0)
 {
 if (get_userstring(__arg1, -1) == "/tmp/foo") {
 thread:trace = 1;
 done = 1;
 }
 }

 @@syscall:*:open:exit
 when (thread:trace)
 {
 thread:fd = __rv;
 }

 @@syscall:*:write:entry
 when (thread:trace && __arg1 == thread:fd)
 {
 bytes += __arg3; /* number of bytes is third arg */
 }

 @@END
 {
 printf("Bytes written = %d\n", bytes);
 }

Example 4

The following tentative tracing program shows how to trace the arguments passed to the read system call
only if it returns zero bytes when reading the foo.data file:

#!/usr/bin/probevue
 /* File: ttrace.e */
 /* Example of tentative tracing */
 /* Capture parameters to read system call only if read fails */
 int open (char* Path, int OFlag , int mode);
 int read (int fd, char * buf, int sz);

 @@syscall:*:open:entry
 {
 filename = get_userstring(__arg1, -1);
 if (filename == "foo.data") {
 thread:open = 1;
 start_tentative("read");
 printf("File foo.data opened\n");
 }
 }

 @@syscall:*:open:exit
 when (thread:open == 1)
 {
 thread:fd = __rv;
 start_tentative("read");
 printf("fd = %d\n", thread:fd);
 thread:open = 0;
 }

 @@syscall:*:read:entry
 when (__arg1 == thread:fd)

General programming concepts 281

 {
 start_tentative("read");
 printf("Read fd = %d, input buffer = 0x%08x, bytes = %d,",
 __arg1, __arg2, __arg3);
 end_tentative("read");
 thread:read = 1;
 }

 @@syscall:*:read:exit
 when (thread:read == 1)
 {
 if (__rv < 0) {
 /* The printf below, even though non-tentative, is only
 * executed in error cases and merges with the
 * previously printed tentative data
 */
 printf(" errno = %d\n", __errno);
 commit_tentative("read");
 }
 else
 discard_tentative("read");
 thread:read = 0;
 }

A possible output if the read failed because a bad address (say 0x1000) was passed as input buffer
pointer could look like the following output:

#probevue ttrace.e
File foo.data opened
fd = 4
Read fd = 4, input buffer = 0x00001000, bytes = 256, errno = 14

Example 5

The following Vue script prints the values of some kernel variables and exits immediately. Pay attention to
the exit function in the @@BEGIN probe:

/* File: kernel.e */
/* Example of accessing kernel variables */
/* System configuration structure from /usr/include/sys/systemcfg.h */
struct system_configuration {
 int architecture; /* processor architecture */
 int implementation; /* processor implementation */
 int version; /* processor version */
 int width; /* width (32 || 64) */
 int ncpus; /* 1 = UP, n = n-way MP */
 int cache_attrib; /* L1 cache attributes (bit flags) */
 /* bit 0/1 meaning */
 /* -------------------------------------*/
 /* 31 no cache / cache present */
 /* 30 separate I and D / combined */
 int icache_size; /* size of L1 instruction cache */
 int dcache_size; /* size of L1 data cache */
 int icache_asc; /* L1 instruction cache associativity */
 int dcache_asc; /* L1 data cache associativity */
 int icache_block; /* L1 instruction cache block size */
 int dcache_block; /* L1 data cache block size */
 int icache_line; /* L1 instruction cache line size */
 int dcache_line; /* L1 data cache line size */
 int L2_cache_size; /* size of L2 cache, 0 = No L2 cache */
 int L2_cache_asc; /* L2 cache associativity */
 int tlb_attrib; /* TLB attributes (bit flags) */
 /* bit 0/1 meaning */
 /* -------------------------------------*/
 /* 31 no TLB / TLB present */
 /* 30 separate I and D / combined */
 int itlb_size; /* entries in instruction TLB */
 int dtlb_size; /* entries in data TLB */
 int itlb_asc; /* instruction tlb associativity */
 int dtlb_asc; /* data tlb associativity */
 int resv_size; /* size of reservation */
 int priv_lck_cnt; /* spin lock count in supevisor mode */
 int prob_lck_cnt; /* spin lock count in problem state */
 int rtc_type; /* RTC type */
 int virt_alias; /* 1 if hardware aliasing is supported */
 int cach_cong; /* number of page bits for cache synonym */
 int model_arch; /* used by system for model determination */
 int model_impl; /* used by system for model determination */

282 AIX Version 7.2: General programming concepts

 int Xint; /* used by system for time base conversion */
 int Xfrac; /* used by system for time base conversion */
 int kernel; /* kernel attributes */
 /* bit 0/1 meaning */
 /* ---*/
 /* 31 32-bit kernel / 64-bit kernel */
 /* 30 non-LPAR / LPAR */
 /* 29 old 64bit ABI / 64bit Large ABI */
 /* 28 non-NUMA / NUMA */
 /* 27 UP / MP */
 /* 26 no DR CPU add / DR CPU add support */
 /* 25 no DR CPU rm / DR CPU rm support */
 /* 24 no DR MEM add / DR MEM add support */
 /* 23 no DR MEM rm / DR MEM rm support */
 /* 22 kernel keys disabled / enabled */
 /* 21 no recovery / recovery enabled */
 /* 20 non-MLS / MLS enabled */
 long long physmem; /* bytes of OS available memory */
 int slb_attr; /* SLB attributes */
 /* bit 0/1 meaning */
 /* ---*/
 /* 31 Software Managed */
 int slb_size; /* size of slb (0 = no slb) */
 int original_ncpus; /* original number of CPUs */
 int max_ncpus; /* max cpus supported by this AIX image */
 long long maxrealaddr; /* max supported real memory address +1 */
 long long original_entitled_capacity;
 /* configured entitled processor capacity */
 /* at boot required by cross-partition LPAR */
 /* tools. */
 long long entitled_capacity; /* entitled processor capacity */
 long long dispatch_wheel; /* Dispatch wheel time period (TB units) */
 int capacity_increment; /* delta by which capacity can change */
 int variable_capacity_weight; /* priority weight for idle capacity*/
 /* distribution */
 int splpar_status; /* State of SPLPAR enablement */
 /* 0x1 => 1=SPLPAR capable; 0=not */
 /* 0x2 => SPLPAR enabled 0=dedicated; */
 /* 1=shared */
 int smt_status; /* State of SMT enablement */
 /* 0x1 = SMT Capable 0=no/1=yes */
 /* 0x2 = SMT Enabled 0=no/1=yes */
 /* 0x4 = SMT threads bound true 0=no/1=yes */
 int smt_threads; /* Number of SMT Threads per Physical CPU */
 int vmx_version; /* RPA defined VMX version, 0=none/disabled */
 long long sys_lmbsize; /* Size of an LMB on this system. */
 int num_xcpus; /* Number of exclusive cpus on line */
 signed char errchecklevel;/* Kernel error checking level */
 char pad[3]; /* pad to word boundary */
 int dfp_version; /* RPA defined DFP version, 0=none/disabled */
 /* if MSbit is set, DFP is emulated */
};

__kernel struct system_configuration _system_configuration;

@@BEGIN
{
 String s[40];
 int j;
 __kernel int max_sdl; /* Atomic RAD system decomposition level */
 __kernel long lbolt; /* Ticks since boot */

 printf("No. of online CPUs\t\t= %d\n", _system_configuration.ncpus);

 /* Print SMT status */
 printf("SMT status\t\t\t=");
 if (_system_configuration.smt_status == 0)
 printf(" None");
 else {
 if (_system_configuration.smt_status & 0x01)
 printf(" Capable");
 if (_system_configuration.smt_status & 0x02)
 printf(" Enabled");
 if (_system_configuration.smt_status & 0x04)
 printf(" BoundThreads");
 }
 printf("\n");

 /* Print error checking level */
 if (_system_configuration.errchecklevel == 1)
 s = "Minimal";
 else if (_system_configuration.errchecklevel == 3)

General programming concepts 283

 s = "Normal";
 else if (_system_configuration.errchecklevel == 7)
 s = "Detail";
 else if (_system_configuration.errchecklevel == 9)
 s = "Maximal";
 printf("Error checking level\t\t= %s\n",s);

 printf("Atomic RAD system detail level\t= %d\n", max_sdl);

 /* Long in the kernel is 64-bit, so we use %lld below */
 printf("Number of ticks since boot\t= %lld\n", lbolt);

 exit();
}

The following output is a possible output when you run the preceding script on a Power 5 dedicated
partition with default kernel attributes:

probevue kernel.e
No. of online CPUs = 4
SMT status = Capable Enabled BoundThreads
Error checking level = Normal
Atomic RAD system detail level = 2
Number of ticks since boot = 34855934

Probe managers
Probe managers are not part of the basic ProbeVue framework. Probe managers enable probe points that
can be used by ProbeVue for dynamic tracing.

Probe managers generally support a set of probe points that belong to some common domain and share
some common feature or attribute that distinguishes them from other probe points. Probe points are
useful at points where control flow changes significantly, at points of state change or at other points of
significant interest. Probe managers are careful to select probe points only in locations that are safe to
instrument.

Probe managers can choose to define their own distinct rules for the probe specifications within the
common style that must be followed for all probe specifications.

ProbeVue supports the following probe managers:

System call probe manager
The syscall probe manager supports probes at the entry and exit of well-defined and documented base
AIX system calls. These are the system calls that have the same interface at the libc.a (or C library) entry
point and in the kernel entry point. Either the system call is a pass-through (the C library simply imports
the symbol from the kernel and the exports it with no code in the library) or there is trivial code for the
interface inside the library.

The syscall probe manager accepts a 4-tuple probe specification in one of the following formats:

• syscall:*:<system_call_name>:entry

• syscall:*:<system_call_name>:exit

where the system_call_name field is to be substituted by the actual system call name. These indicate that
a probe be placed at the entry and exit of system calls. Assigning the * to the second field indicates that
the probe will be fired for all processes.

Note: Different privileges are required for enabling system call probes. Probing every process in the
system requires higher privileges than probing your own processes.

Additionally, the syscall probe manager also accepts a 4-tuple probe specification in one of the following
formats:

• syscall:<process_ID>:<system_call_name>:entry

284 AIX Version 7.2: General programming concepts

• syscall:<process_ID>:<system_call_name>:exit

where a process ID can be specified as the second field of the probe specification to support probing of
specific processes.

The system call names accepted by the syscall probe manager are the names of the libc.a interfaces
and not the kernel's internal system call names. For example, the read subroutine is exported by libc.a,
but the actual system call name or kernel entry point is kread. The syscall probe manager will internally
translate a libc interface to its kernel entry point and enable the probe at entry into the kread kernel
routine. Because of this, if multiple C library interfaces invoke the kread routine, the probe pointfires for
those interfaces also. Generally, this is not a problem because for most of the system calls supported by
the syscall probe manager, there is a 1-to-1 mapping between the libc interface and the kernel routine.

For each syscall probe, there is an equivalent probe point in the library code provided by the uft probe
manager. The uft probe manager does support all library interfaces (unless it is a passthrough interface
and there is no code for the call or references to it in the library at all) including those not supported by
the syscall probe manager. However, the syscall probe manager has two advantages:

• The syscall probe manager can probe every process in the system by specifying asterisk as the second
field.

• The syscall probe manager is more efficient than the uft probe manager because it does not need to
switch from user mode to kernel mode and back to run the probe actions.

For more information about the full list of system calls supported by the syscall probe manager see
ProbeVue.

UFT probe manager
The uft or the user function tracing probe manager supports probing user space functions that are visible
in the XCOFF symbol table of a process. The uft probe manager supports probe points that are at entry
and exit points of functions whose source is a C or FORTRAN language text file even though the symbol
table can contain symbols whose sources are from a language other than C or FORTRAN.

The tracing of Java™ applications in a way identical to the existing tracing mechanism from the users point
of view and the JVM is one that performs most of the real tasks on behalf of Probevue.

The uft probe manager accepts a 5-tuple probe specification in the following format:

uft:<processID>:*:<function_name>:<entry|exit>

Note: The uft probe manager requires the process ID for the process to be traced and the complete
function name of the function at whose entry or exit point the probe is to be placed.

PID or program name

Specifies process ID of the process to be traced or the name of the program (name of the executable
file) to be probed. You can provide the process ID or the name of the executable file in double quotes
("/usr/bin/test") or in single quotes('/usr/bin/test') or as a file path (/usr/bin/test) .
You can provide the absolute path or the relative path of the executable file. You can also provide the
hard link or the symbolic link to the executable file as a value to the program name parameter. The
following examples show different ways to specify the second tuple probe specification.

Examples

@@uft:123450 :*: foo :entry
@@uft : /usr/bin/test:* :foo:entry
@@uft:./test:*:foo:entry
@@uftxlc++:/usr/bin/test:*:foo:exit
@@uftxlc++:"/usr/bin/testxxx":*:foo:exit
@@uft :"/usr/bin/xxx":* :foo:entry
@@uft:'/home/xxx/test':*:func1:entry

General programming concepts 285

If /usr/bin/test is the executable file and /testln is the soft link to the /usr/bin/test file
(/testln ->/usr/bin/test), run the following command to probe all processes that were started
by running the /usr/bin/test executable file or the /testln soft link for that user.

@@uft:/testln:*:foo:entry

Note: At a time a user can trace an executable by using one session only.

When the third field is set to *, the UFT probe manager searches the function in all of the modules loaded
into the process address space including the main executable and shared modules. This implies that if a
program contains more than one C function with this name (for example, functions with static class that
are contained in different object modules), then probes will be applied to the entry point of every one of
these functions.

If a function name in a specific module needs to be probed, the module name needs to be specified in the
third field. The probe specification syntax to provide the library module name is illustrated below:

Function foo in any module
@@uft:<pid>:*:foo:entry
Function foo in any module in any archive named libc.a
@@uft:<pid>:libc.a:foo:entry
Function foo in the shr.o module in any archive named libc.a
@@uft:<pid>:libc.a(shr.o):foo:entry

The function name in the fourth tuple can be specified as an Extended Regular Expression (ERE). The ERE
should be enclosed between "/ and /" like "/<ERE>/".

When the function name is specified as an ERE, all the functions matching the specified regular
expression in the specified module is probed.

 /* Probe entry of all libc.a functions starting with “malloc” word */
@@uft:$__CPID:libc.a: “/^malloc.*/”:entry
/* Probe exit of all functions in the executable a.out */
@@uft:$__CPID:a.out:”/.*/”:exit

In the entry probes, where a function name is specified as a regular expression, individual arguments
cannot be accessed. However, probevue function print_args can be used to print the function name and
its arguments. The argument values is printed based on the argument type information available in the
traceback table of the function.

In the exit probes, where a function name is specified as a regular expression, return value cannot be
accessed.

Probevue supports enabling probes in more than one process at the same time. However, you will need
privileges even for probing processes that belong to you.

Probevue enforces a restriction that prevents processes with user-space probes from being debugged
using the ptrace or procfs based APIs.

As indicated above, the uft probe manager supports probes in shared modules like shared library
modules. The following script shows an example that traces mutex activity by enabling probes in the
thread library's mutex lock and unlock subroutines.

/* pthreadlocks.e */
/* Trace pthread mutex activity for a given multithreaded process */
/* The following defines are from /usr/include/sys/types.h */

typedef long long pid_t;
typedef long long thread_t;

typedef struct {
 int __pt_mutexattr_status;
 int __pt_mutexattr_pshared;
 int __pt_mutexattr_type;
} pthread_mutexattr_t;

typedef struct __thrq_elt thrq_elt_t;

286 AIX Version 7.2: General programming concepts

struct __thrq_elt {
 thrq_elt_t *__thrq_next;
 thrq_elt_t *__thrq_prev;
};

typedef volatile unsigned char _simplelock_t;

typedef struct __lwp_mutex {
 char __wanted;
 _simplelock_t __lock;
} lwp_mutex_t;

typedef struct {
 lwp_mutex_t __m_lmutex;
 lwp_mutex_t __m_sync_lock;
 int __m_type;
 thrq_elt_t __m_sleepq;
 int __filler[2];
} mutex_t;

typedef struct {
 mutex_t __pt_mutex_mutex;
 pid_t __pt_mutex_pid;
 thread_t __pt_mutex_owner;
 int __pt_mutex_depth;
 pthread_mutexattr_t __pt_mutex_attr;
} pthread_mutex_t;

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

@@uft:$__CPID:*:pthread_mutex_lock:entry
{
 printf("thread %d: mutex 0x%08x locked\n", __tid, __arg1);
}

@@uft:$__CPID:*:pthread_mutex_unlock:entry
{
 printf("thread %d: mutex 0x%08x unlocked\n", __tid, __arg1);
}

• User has to map the Fortran data types to ProbeVue data types and use the same in the script. The
mapping of Fortran basic data types to ProbeVue data types is listed in the below table.

Table 25. Fortran to ProveVue data types mapping

Fortran data-type ProbeVue data-type

INTEGER * 2 short

INTEGER * 4 int/long

INTEGER * 8 long long

REAL float

DOUBLE PRECISION double

COMPLEX No equivalent basic data type. This needs to be mapped to a structure as shown
below:

typedef struct complex {
float a;
float b;
} COMPLEX;

LOGICAL int (The Fortran standard requires logical variables to be the same size as INTEGER/
REAL variables)

CHARACTER char

BYTE signed char

• Fortran passes IN scalar arguments of internal procedures by value, and other arguments by reference.
Arguments passed by reference should be accessed with copy_userdata(). More information on
argument association in fortran can be found in the Argument association topic.

• Routine names in a Fortran program is case in-sensitive. But, while specifying them in a ProbeVue
script, they should be in lower-case .

General programming concepts 287

https://www.ibm.com/docs/en/openxl-fortran-aix/17.1.0?topic=procedures-argument-association

The following sample script illustrates how to map Fortran data types to ProbeVue data types:

/* cmp_calc.e */
/* Trace fortran routines
cmp_calc(COMPLEX, INTEGER) and
cmplxd(void) */

typedef struct complex{
 float a;
 float b;
 } COMPLEX;

typedef int INTEGER;

/* arguments are indicated to be of pointer type as they are passed by reference */
void cmp_calc(COMPLEX *, INTEGER *);
void cmplxd();

@@uft:$__CPID:*:cmplxd:entry
{
printf("In cmplxd entry \n");
}

@@uft:$__CPID:*:cmp_calc:entry
{
COMPLEX c;
int i;
copy_userdata(__arg1, c);
copy_userdata(__arg2, i);
printf("%10.7f+j%9.7f %d \n", c.a,c.b,i);
}

• Fortran stores arrays in column-major form, whereas ProbeVue stores in row-major form and the below
script shows how users can retrieve the array elements.

/* array.e*/
/* ProbeVue script to probe fortran program array.f */

void displayarray(int **, int, int);
@@uft:$__CPID:*:displayarray:entry
{
int a[5][4]; /* row and column sizes are interchanged */
copy_userdata(__arg1, a);
/* to print the first row */
printf("%d %d %d \n”, a[0][0], a[1][0], a[2][0]);
/* to print the second row */
printf(“%d %d %d\n", a[0][1], a[1][1], a[2][1]);
}

/* Fortran program array.f */

PROGRAM ARRAY_PGM
IMPLICIT NONE
INTEGER, DIMENSION(1:4,1:5) :: Array
INTEGER :: RowSize, ColumnSize
CALL ReadArray(Array, RowSize, ColumnSize)
CALL DisplayArray(Array, RowSize, ColumnSize)
CONTAINS
SUBROUTINE ReadArray(Array, Rows, Columns)
IMPLICIT NONE
INTEGER, DIMENSION(1:,1:), INTENT(OUT) :: Array
INTEGER, INTENT(OUT) :: Rows, Columns
INTEGER :: i, j
READ(*,*) Rows, Columns
DO i = 1, Rows
READ(*,*) (Array(i,j), j=1, Columns)
END DO
END SUBROUTINE ReadArray
SUBROUTINE DisplayArray(Array, Rows, Columns)
IMPLICIT NONE
INTEGER, DIMENSION(1:,1:), INTENT(IN) :: Array
INTEGER, INTENT(IN) :: Rows, Columns
INTEGER :: i, j
DO i = 1, Rows
WRITE(*,*) (Array(i,j), j=1, Columns)
END DO
END SUBROUTINE DisplayArray
END PROGRAM ARRAY_PGM

288 AIX Version 7.2: General programming concepts

• Intrinsic or built-in functions cannot be probed with ProbeVue . All FORTRAN routines as listed in
the XCOFF symbol table of the executable/linked libraries can be probed. ProbeVue uses the XCOFF
symbol table to identify the location of these routines. However, the prototype for the routine has to be
provided by the user and ProbeVue tries to access the arguments according to the prototype provided.
For routines where the compiler mangles the routine names, the mangled name should be provided.
Since Vue is a C-style language, user should ensure that the FORTRAN function/subroutine prototype
is appropriately mapped to C language style function prototype. Please refer to the linkage conventions
for argument passing and function return values in the Passing data from one language to another topic.
The below example illustrates this:

/* Fortran program ext_op.f */
/* Operator “*” is extended for rational multiplication */
MODULE rational_arithmetic
IMPLICIT NONE
 TYPE RATNUM
 INTEGER :: num, den
 END TYPE RATNUM
 INTERFACE OPERATOR (*)
 MODULE PROCEDURE rat_rat, int_rat, rat_int
 END INTERFACE
 CONTAINS
 FUNCTION rat_rat(l,r) ! rat * rat
 TYPE(RATNUM), INTENT(IN) :: l,r
 TYPE(RATNUM) :: val,rat_rat
 val.num=l.num*r.num
 val.den=l.den*r.den
 rat_rat=val
 END FUNCTION rat_rat
 FUNCTION int_rat(l,r) ! int * rat
 INTEGER, INTENT(IN) :: l
 TYPE(RATNUM), INTENT(IN) :: r
 TYPE(RATNUM) :: val,int_rat
 val.num=l*r.num
 val.den=r.den
 int_rat=val
 END FUNCTION int_rat
 FUNCTION rat_int(l,r) ! rat * int
 TYPE(RATNUM), INTENT(IN) :: l
 INTEGER, INTENT(IN) :: r
 TYPE(RATNUM) :: val,rat_int
 val.num=l.num*r
 val.den=l.den
 rat_int=val
 END FUNCTION rat_int
END MODULE rational_arithmetic
PROGRAM Main1
Use rational_arithmetic
IMPLICIT NONE
 TYPE(RATNUM) :: l,r,l1
 l.num=10
 l.den=11
 r.num=3
 r.den=4
 L1=l*r
END PROGRAM Main1

/* ext_op.e */
/* ProbeVue script to probe routine that gets called when “*”
 is used to multiply rational numbers in ext_op.f */

struct rat
{
 int num;
 int den;
};
struct rat rat;
void __rational_arithmetic_NMOD_rat_rat(struct rat*,
 struct rat*,struct rat*);
/* Note that the mangled function name is provided. */
/* Also, the structure to be returned is sent in the buffer whose address is provided as the first
argument. */
/* The first explicit parameter is in the second argument. */
@@BEGIN
{
 struct rat* rat3;
}
@@uft:$__CPID:*:__rational_arithmetic_NMOD_rat_rat:entry
{
 struct rat rat1,rat2;
 copy_userdata((struct rat *)__arg2,rat1);
 copy_userdata((struct rat *)__arg3,rat2);
 rat3=__arg1;
 /* The address of the buffer where the returned structure will be stored is saved at the function
entry */
 printf("Argument Passed rat_rat = %d:%d,%d:%d\n",rat1.num,rat1.den,rat2.num,rat2.den);
}
@@uft:$__CPID:*:__rational_arithmetic_NMOD_rat_rat:exit

General programming concepts 289

http://www.ibm.com/support/knowledgecenter/SS3KZ4_9.0.0/com.ibm.xlf111.bg.doc/xlfopg/interlang-passdata.htm

{
 struct rat rrat;
 copy_userdata((struct rat *)rat3,rrat);
 /* The saved buffer address is used to fetch the returned structure */
 printf("Return from rat_rat = %d:%d\n",rrat.num,rrat.den);
 exit();
}

• ProbeVue won’t support direct inclusion of Fortran header files in the script. However, a mapping of
Fortran data types to ProbeVue data types can be provided in a ProbeVue header file and included with
the “-I’’ option.

Related concepts
Java applications probe manager

C++ applications probe manager
C++ Probe Manager supports probing of C++ applications in a way identical to C probe managers. Support
for "uft" style entry/exit probes on any C++ function, including member, overloaded, operator, and
template functions in the core executable. A function entry/exit probe in C++ must use the @@uftxlc++
probe manager.

All tuples in the @@uftxlc++ style probe specifications have the same usage and format as for the @@uft
style probe strings, with the exception of the function name. Because C++ allows a single function name
to be overloaded, the function name specified in the probe string may have to include the function's
argument types to uniquely identify the function being probed.

For example:

@@uftxlc++:12345:*:"foobar(int, char *)":entry

@@uftxlc++:/usr/test:*:"foobar(int, char *)":entry

Note: The return type is missing from the above probe string because it does not take part in the name
mangling algorithm for regular functions. In case of a template function, the user must specify an explicit
template instantiation to probe on and must also specify the return type of the template instantiation:

@@uftxlc++:12345:*:void foobar<int>(int, char *):entry

Note: The probe strings must use quotes around the function name as specified in above two examples
and the probevue command will signal an error if the quotes are missing. The quotes are not only because
of the colon ":" but also because of the comma ",".The comma operator is used for separating multiple
probes on the same line and without the quotes it takes precedence. This results in very strange error
messages for the user.

When probing a class member function or a function defined in a namespace, the fully qualified function
name must be used in the probe string. To avoid any ambiguity between the single colon (:) tuple
separator in probe strings and the double colon (::) scope resolution operator in a fully qualified C++
name, the entire function name tuple in the probe string must be quoted.

@@uftxlc++:12345:*:"Foo::bar(int)":entry

Limitations:

1. Access to data fields that are inherited from a virtual base class is not supported.
2. Template classes are not supported and must not be included in the C++ header.
3. Pointers to members are not supported.
4. To probe a class with the class definition, an object of the class is instantiated in the header file either

as a global object or in a dummy function.

Example:

290 AIX Version 7.2: General programming concepts

Below is c++ application

#include "header.cc"
main()
{
int i = 10;
incr_num(i);
float a = 3.14;
incr_num(a);
char ch = 'A';
incr_num(ch);
double d = 1.11;
incr_num(d);
}

Content of the "header.cc"

cat header.cc
#include <iostream.h>
template <class T>
T incr_num(T a)
{
return (++a);
}
int dummy()
{
int i=10,j=20;
incr_num(i);
float a=3.14;
incr_num(a);
char ch ='A',dh='Z';
incr_num(ch);
double d=1.1,e=1.11;
incr_num(d);
return 0;
}

Content of the Vue script vue_cpp.e

##C++
#include "header.cc"
##Vue
@@uftxlc++:$__CPID:*:"incr_num<int>(int)":entry
{
printf("Hello1_%d\n",__arg1);
}
@@uftxlc++:$__CPID:*:"incr_num < float > (float)" :entry
{
printf("Hello2_%f\n",__arg1);
}
@@uftxlc++:$__CPID:*:"incr_num < char > (char)":entry
{
printf("Hello3_%c\n",__arg1);
}
@@uftxlc++:$__CPID:*:"incr_num < double > (double)":entry
{
printf("Hello4_%lf\n",__arg1);
exit();
}

Execution :

/usr/vacpp/bin/xlC app.c++
probevue -X ./a.out vue_cpp.e
Hello1_10
Hello2_3.140000
Hello3_A
Hello4_1.110000

The function prototype in the fourth tuple can be specified as an Extended Regular Expression (ERE). The
ERE should be enclosed between ‘”/’ and ‘/”’ like "/<ERE>/". When function prototype is specified as an
ERE, all the functions matching the specified regular expression in the specified module will be probed.

/* Probe entry of all the C++ functions in the executable a.out */
@@uftxlc++:$__CPID:a.out:”/.*/”:entry

General programming concepts 291

/* Probe exit of all the C++ functions with ‘foo’ word in it */
@@uftxlc++:$__CPID:*:”/foo/”:exit

In the entry probes, where a function name is specified as a regular expression, individual arguments
cannot be accessed. However, probevue function print_args() can be used to print the function name and
its arguments. The argument values is printed based on the argument type information available in the
traceback table of the function.

In the exit probes, where a function name is specified as a regular expression, return value cannot be
accessed.

Java applications probe manager
Java Probe Manager (JPM) supports probing of Java applications in a way identical to C and C++ probe
managers. A single Vue script should be able to trace multiple java applications at the same time by using
different process IDs of the JVMs. The same script can be used to probe syscalls or C/C++ applications
along with Java applications and can use other probe managers.

Like uft (user function tracing) probe manager java probe manager also accepts 5-tuple probe
specification in the following format:

uftjava :< process_ID> :*:< _qualified_function_name >: entry

Where the second tuple is the process ID of JVM process corresponding to the Java application that is
being traced.

Third field: reserved for future use.

Fourth field: where the java method needs to be specified.

This name is a completely qualified name as used in java applications like Mypackage.Myclass.Mymethod.

Some of the restrictions that may apply are

• Only pure java methods can be probed, Native (shared library calls) or encrypted codes are not
traceable.

• Only entry probes are supported.
• Can support only JVM v 1.5 and above that supports JVMTI interface.
• At any given point of time, no two Probevue sessions can probe the same Java application with

@@uftjava.
• Polymorphic/Overloaded methods are not supported.
• Tracing/accessing external variables with same name as any of the Probevue keywords or built-in

names are not supported. This may need those external symbols (Java application variable names) to
be renamed.

• Accessing arrays of java applications is not supported in this release.
• Accessing arrays of java applications is not supported in this release.
• get_function () built-in for java language is not supported in this release.

Note: In case of tracing non static methods, argument number starts with __arg2 like non static methods
of C++. The __arg1 is used for self reference (this pointer).

Data Access: The action blocks of java probes can access the following data similar to existing behavior.

• Action block can access global, local and kernel script variables.
• Action block can access method arguments (Entry class variables) of primitive types.
• Action block can access the built-in variables.
• Action block can access Java application variables through fully qualified names, only static (class

members).

x = some_package.app.class.var_x; //Access static/class member.

292 AIX Version 7.2: General programming concepts

• Accessing java application primitive types variables is supported; they must be converted/promoted/
casted implicitly without losing value to equivalent types in Vue language. But the actual memory usage
(size) may differ from that of Java language.

The functions supported in the context of Java probe manager are listed in the following table:

Table 26. Supported functions by Java probe manager

Function Description

stktrace() Provides the Stack trace of the Java application
(running thread) that is being traced.

copy_userdata() Copy data from java application into script variables.

get_probe() Returns the probe string.

get_stktrace Returns the runtime stack trace.

get_location_point() Returns the current probe location.

get_userstring() Copy string data from java application.

exit() exits from the probevue trace session.

Changes to Probevue command:

Table 27. probevue command change

Command Description

-X option This option can be used (along with -A option) to
launch Java application, in the current release the
user has to manually pass an additional optional
string agentlib:probevuejava along with all the other
options that are needed to run the java application.

For Example:

probevue -X /usr/java5/bin/java -A -agentlib:probevuejava myjavaapp myscript.e

When running the 64 bit JVM, we have to use "agentlib:probevuejava64" as in:

probevue -X /usr/java5_64/bin/java -A -agentlib:probevuejava64 myjavaapp myscript.e
where myjavaapp is the java class of myjavaapp.java application

Example ExtendedClass.java Source:

class BaseClass
{
 static int i=10;

 public static void test(int x)
 {
 i += x;
 }
}

public class ExtendedClass extends BaseClass
{
 public static void test(int x, String msg)
 {
 i += x;
 System.out.print("Java: " + msg + "\n\n");
 BaseClass.test(x);
 }

 public static void main(String[] args)
 {
 BaseClass.test(5);
 ExtendedClass.test(10, "hello");

General programming concepts 293

 }
}

Example test.e script for above Java application:

@@uftjava:$__CPID:*:"BaseClass.test":entry
{
 printf("BaseClass.i: %d\n", BaseClass.i);
 printf("BaseClass.test: %d\n", __arg1);
 stktrace(0, -1);
 printf("\n");
}

@@uftjava:$__CPID:*:"ExtendedClass.test":entry
{
 printf("BaseClass.i: %d\n", BaseClass.i);
 printf("ExtendedClass.test: %d, %s\n", __arg1, __arg2);
 stktrace(0, -1);
 printf("\n");
}

Example ProbeVue session with above script:

probevue -X /usr/java5/jre/bin/java \
-A "-agentlib:probevuejava ExtendedClass" test.e
Java: hello

BaseClass.i: 10
BaseClass.test: 5
BaseClass.test()+0
ExtendedClass.main()+1

BaseClass.i: 15
ExtendedClass.test: 10, hello
ExtendedClass.test()+0
ExtendedClass.main()+8

BaseClass.i: 25
BaseClass.test: 10
BaseClass.test()+0
ExtendedClass.test()+39
ExtendedClass.main()+8

Related concepts
UFT probe manager

Interval probe manager
The interval probe manager provides probe points that fire at a user-defined time-interval. The probe
points are not located in kernel or application code, but instead are based on wall clock time interval
based probe events.

The interval probe manager is useful for summarizing statistics collected over an interval of time. It
accepts a 4-tuple or a 5-tuple probe specification in the following format:

@@interval:*:clock:<# milliseconds>:[*|cpu_ids]

The interval probe manager will filter probe events by process ID if it is provided in the second field.
Assigning the * to the second field indicates that the probe will be fired for all processes. Further, the only
value supported by the interval probe manager for the third field is the clock keyword that identifies the
probe specification as being for a wall clock probe. The fourth field, that is the <# milliseconds> field,
identifies the number of milliseconds between firings of the probe. The interval probe manager requires
that the value for this field consist only of digits 0-9.

The fifth field, <cpu_ids> identifies CPU IDs of the CPUs on which the probe occurs. The value of this field
must be specified in the range of CPU IDs, or * or individual CPU IDs. The process ID specified in the
second tuple and the CPU ID specified in the fifth tuple are mutually exclusive. Hence, the interval probe
manager filters the probe events either by the specified process ID in tuple 2 running on any CPU or filters
events for all the processes running on the specified CPUs. The minimum supported clock value is 100
milliseconds. Only one CPU bound interval probe per logical CPU in the system. This is an optional field.

294 AIX Version 7.2: General programming concepts

For interval probes without process Id, intervals should be exactly divisible by 100. Thus, probe events
that are apart by 100ms, 200ms, 300ms, and so on, are allowed in non-profiling interval probes. For
interval probes with process Id specified, intervals should be greater or equal to minimum interval
allowed for global root user or exactly divisible by 10 for other users. Thus, probe events that are apart by
10ms, 20ms, 30ms, and so on, are allowed for normal users in profiling interval probes. Only one profiling
interval probe can be active for a process.

Examples for Interval probe specification for CPU bound probes are listed below:

1. To get the context information, run the user defined ProbeVue clause on all CPUs (Specifying “*” in the
cpu_ids field denotes all the CPUs).

@@interval:*:clock:100:*

2. To get the context information for CPUs in the range 10 to 20 (Specify the format as x-y, where x=10
and y=20 for the range of CPUs).

@@interval:*:clock:100:10-20

3. To get the context information for CPUs 10 and 12 (Specify the format with the ‘|’ (pipe) symbol which
separates each CPU IDs. This format is used to specify more than one CPU ID.

@@interval:*:clock:100:10|12

4. To get the context information for set of CPUs 10 and 12-20.

@@interval:*:clock:100:10|12-20

Note: User can provide either “*” or set of CPUIDs.

Note: The interval probe manager does not guarantee that a probe will be fired exactly the number of
milliseconds apart as indicated by value of the fourth field. Higher-priority interrupts and code that runs
after disabling all interrupts can cause the probe to fire later than the specification.

The interval probe manager requires only basic dynamic tracing privileges. The interval probe manager
enforces the following limits on the number of probes it supports to prevent malicious users from running
the kernel out of memory by creating huge numbers of interval probes.

Table 28. Limits specified by the interval probe manager

Interval Count

Maximum number of interval probes per user 32

Maximum number of interval probes in system 1024

The interval probe manager does not support the following functions. If used inside an interval manager
probe point, these functions will generate an empty string or zero as output.

• get_function
• get_probe
• get_location_point

When process ID is not specified, an interval probe can trigger in the context of any process depending
upon when the probe fires since the probe event is based on wall clock time. Because of this, the
ProbeVue framework does not allow the use of any of the following functions inside the interval probe
manager's action block to prevent unauthorized access to a process's internal data. This security violation
is caught only in the kernel. The Vue script will successfully compile but the session will fail to initialize.

• stktrace
• get_userstring

These functions provide no value when used from the probe manager. Even if you are the root user, you
cannot call these functions inside the interval probe manager.

General programming concepts 295

When the process ID is specified, the interval probe is triggered for all the threads within the process
at the specified time interval. As the probe is fired in the context of the process, stktrace() function and
__pname built-in is allowed inside the interval probe manager’s action block, unlike when process ID is
not specified.

System trace probe manager

The system trace probe manager provides probe points wherever existing system trace hooks to trace
channel zero (system event channel) occur, both within the kernel and within applications. To use this
probe manager, you must have the kernel access privilege, and not be running in a WPAR.

The system trace probe manager accepts a 3-tuple probe specification in the following format:

@@systrace:*:<hookid>

where the hookid argument specifies the ID for the specific system trace hook of interest. The hookid
argument consists of 4 hex digits typically of the form hhh0. For example, to specify the hookid argument
for the fork system call, specify 1390. See the /usr/include/sys/trchkid.h file for examples, such as
HKWD_SYSC_FORK. The entries in this file are hook words, where the hookid value is in the upper
halfword. Because hook words can be arbitrary, no validation of the hookid argument beyond checking
that it is a valid hex string of up to 4 hex digits is performed. It is not an error to specify a hookid value that
never occurs.

As a convenience, you can specify the hookid argument with fewer than 4 hex digits. In this case, first a
trailing zero is assumed, and then additional leading zeroes as necessary to implicitly define the required
4 digits. For example, you can use 139 as an abbreviation of 1390. Similarly, 0100, 010, and 10 all specify
the same hookid value, taken from HKWD_USER1.

You can specify the hookid argument with the * wildcard character. This will probe all system tracing,
with likely unacceptable performance implications. Hence, such a specification must be used only when
absolutely necessary.

The second tuple is reserved, and must be specified as an asterisk, as shown.

Only system trace events that actually occur and record system trace data trigger probes. In particular,
a system trace probe can only occur when system trace is active. The systrace probe manager is an
event-based probe manager. Hence, probe name, function name, and location point are not available. As
the hookword is passed to the script, this is not a significant restriction.

A non-root user is limited to at most 64 systrace probes simultaneously enabled. No more than 128
explicit systrace probes can be enabled system-wide.

ProbeVue built-in register variables allow access to the data traced. You cannot use the __arg* variables
for this purpose. There are two general styles for system tracing.

The following style is for the trchook(64)/utrchook(64) (or the equivalent TRCHKLx macros in C) hooks:

• __r3 contains the 16 bit hookid.
• __r4 contains the subhookid.
• __r5 contains traced data word D1.
• __r6 contains traced data word D2.
• __r7 contains traced data word D3.
• __r8 contains traced data word D4.
• __r9 contains traced data word D5.

Not all trace hooks contain all 5 data words. Undefined data words from a given trace hook will appear as
zero. The Vue clause for a given hook ID must know exactly what and how much data its hook ID traces.

If the trace record was produced by one of the functions in the trcgen or trcgent family, use the following
style:

• __r3 contains the 16 bit hookid.

296 AIX Version 7.2: General programming concepts

• __r4 contains the subhookid.
• __r5 contains traced data word D1.
• __r6 contains the length of the traced data.
• __r7 contains the address of the traced data.

The following script shows a simple example of the systrace probe manager:

 @@systrace:*:1390
 {
 if (__r4 == 0) { /* normal fork is traced with subhookid zero */
 printf(“HKWD_SYSC_FORK: %d forks child %d\n”, __pid, __r5);
 exit();
 }
 }

Systrace probe manager is independent of the system trace function and can trace hook locations even
if the system trace function is not in an active state. You can turn on the system trace function when a
ProbeVue session is active.

Systrace probe manager uses AIX operating systems kernel to facilitate some of its constructs. Tracking
hooks that are currently used by ProbeVue will adversely affect AIX reliability. Therefore, some ProbeVue
constructs cannot be used when you trace such hook IDs. The following table displays the exception of
the constructs:

Note: The following constructs are ignored if you want to trace all hooks by using the @@systrace:*:*
specification. You might not be able to display stack trace if the AIX kernel prohibits generating an
exception in the environment where a hook is located. The ability of ProbeVue to display stack traces is
determined at run time.

Table 29. Trace-hook construct

Number Trace-Hook Construct

1 HKWD_KERN_HCALL ALL

2 HKWD_KERN_SLIH Associative array, range, stktrace variable,
__stat

3 HKWD_KERN_LOCK Associative array, range, stktrace variable,
__stat

4 HKWD_KERN_UNLOCK Associative array, range, stktrace variable,
__stat

5 HKWD_KERN_DISABLEMENT ALL

6 HKWD_KERN_DISPATCH __ublock, stktrace, get_stktrace, __pname,
__execname, __errno

7 HKWD_KERN_DISPATCH_SRAD __ublock, stktrace, get_stktrace, __pname,
__execname, __errno

8 HKWD_KERN_DISP_AFFIN __ublock, stktrace, get_stktrace, __pname,
__execname, __errno

9 HKWD_KERN_UNDISP __ublock, stktrace, get_stktrace, __pname,
__execname, __errno

10 HKWD_KERN_IDLE __ublock, stktrace, get_stktrace, __pname,
__execname, __errno

11 HKWD_KERN_FLIH Associative array, range, stktrace variable,
__stat

General programming concepts 297

Table 29. Trace-hook construct (continued)

Number Trace-Hook Construct

12 HKWD_KERN_RESUME Associative array, range, stktrace variable,
__stat

13 HKWD_KERN_VPM Associative array, range, stktrace variable,
__stat

14 HKWD_PM_NOTIFY Associative array, range, stktrace variable,
__stat

With the appropriate privilege, a Vue script can generate system trace records by using the reliability,
availability, and serviceability (RAS) events Vue functions. However, the Systrace probe manager does not
detect trace records generated from a Vue script.

Extended system call probe manager (syscallx)
The syscallx probe manager, on the other hand, allows all base system calls to be traced. Base system
calls is the set of system calls exported by the kernel and base kernel extensions, which are available
immediately after boot-up. System calls that are exported from kernel extensions that may loaded later
are not supported. Either a specific system call or all system calls can be specified through the probe
point tuple. However, unlike the syscall probe manager, the third field of the probe point tuple for the
syscallx must identify the actual kernel entry point function. The syscallx probe manager also limit probes
to fire in a specific process if the process ID is specified as the second field of the probe point tuple.

The following are some examples:

/* Probe point tuple to probe the read system call entry for all processes */
@@syscallx:*:kread:entry

/* Probe point tuple to probe the fork system call exit for process with ID 434 */
@@syscallx:434:kfork:exit

/* Probe point tuple to probe entry for all base system calls */
@@syscallx:*:*:entry

/* Probe point tuple to probe exit for all base system calls for process 744 */
@@syscallx:744:*:exit

System calls supported by the syscall probe manager

The following table lists the system calls supported by the syscall probe manager along with the actual
entry name in the kernel.

Note: The kernel entry name is provided here only for documentation purposes. The kernel entry names
can change between releases or even after a service update.

Table 30. System calls supported by the syscall probe manager

System call name Kernel entry name

absinterval absinterval

accept accept1

bind bind

close close

creat creat

execve execve

298 AIX Version 7.2: General programming concepts

Table 30. System calls supported by the syscall probe manager (continued)

System call name Kernel entry name

exit _exit

fork kfork

getgidx getgidx

getgroups getgroups

getinterval getinterval

getpeername getpeername

getpid _getpid

getppid _getppid

getpri _getpri

getpriority _getpriority

getsockname getsockname

getsockopt getsockopt

getuidx getuidx

incinterval incinterval

kill kill

listen listen

lseek klseek

mknod mknod

mmap mmap

mq_close mq_close

mq_getattr mq_getattr

mq_notify mq_notify

mq_open mq_open

mq_receive mq_receive

mq_send mq_send

mq_setattr mq_setattr

mq_unlink mq_unlink

msgctl msgctl

msgget msgget

msgrcv __msgrcv

msgsnd __msgsnd

nsleep _nsleep

open kopen

pause _pause

General programming concepts 299

Table 30. System calls supported by the syscall probe manager (continued)

System call name Kernel entry name

pipe pipe

plock plock

poll _poll

read kread

reboot reboot

recv _erecv

recvfrom _enrecvfrom

recvmsg _erecvmsg

select _select

sem_close _sem_close

sem_destroy sem_destroy

sem_getvalue sem_getvalue

sem_init sem_init

sem_open _sem_open

sem_post sem_post

sem_unlink sem_unlink

sem_wait _sem_wait

semctl semctl

semget semget

semop __semop

semtimedop __semtimedop

send _esend

sendmsg _esendmsg

sendto _esendto

setpri _setpri

setpriority _setpriority

setsockopt setsockopt

setuidx setuidx

shmat shmat

shmctl shmctl

shmdt shmdt

shmget shmget

shutdown shutdown

sigaction _sigaction

300 AIX Version 7.2: General programming concepts

Table 30. System calls supported by the syscall probe manager (continued)

System call name Kernel entry name

sigpending _sigpending

sigprocmask sigprocmask

sigsuspend _sigsuspend

socket socket

socketpair socketpair

stat statx

waitpid kwaitpid

write kwrite

Running in a WPAR

Workload partitions or WPARs are virtualized operating system environments within a single instance of
the AIX operating system. The WPAR environment is somewhat different from the standard AIX operating
system environment.

Dynamic tracing is supported in the WPAR environment. By default, when creating a WPAR, only the
PV_PROBEVUE_TRC_USER_SELF and the PV_PROBEVUE_TRC_USER privileges are assigned to the
WPAR and the superuser (root) on a WPAR system will be granted these privileges. An admin user
from the global partition can change the value of the default WPAR privilege set or can explicitly assign
additional privileges when creating the WPAR.

Privileges on WPAR have generally the same meanings as on a global partition. Be careful when
assigning PV_PROBEVUE_TRC_KERNEL or the PV_PROBEVUE_TRC_MANAGE to a WPAR. Any user
with PV_PROBEVUE_TRC_KERNEL privilege can access global kernel variables while a user with
PV_PROBEVUE_TRC_MANAGE privilege can change the values of ProbeVue parameters or shutdown
ProbeVue. These changes affect all users even those in other partitions.

When you issue the probevue command in a WPAR, processes running in other WPARs or in the global
partition are not visible to it. Because of this, you can only probe processes in your same WPAR. The
probevue command will fail if the probe specification contains a process ID that is outside its partition.
The PV_PROBEVUE_TRC_USER and PV_PROBEVUE_TRC_SYSCALL privileges in a WPAR only allow you
to probe user space functions or system calls of processes that are in your WPAR. When probing system
calls, the second field of the syscall probe specification must be set to a valid WPAR-visible process ID.
Assigning the value * to the second field is not supported.

When a ProbeVue session is initiated in a mobile WPAR, it temporarily switches the WPAR to a non-
checkpointable state. After the ProbeVue session terminates, the WPAR is checkpointable again.

I/O probe manager
I/O probe manager provides capabilities to trace I/O operation events in various layers of AIX I/O stack.
Use the syscall probe manager to trace application I/O request that is triggered by a read/write system
call. Use I/O probe manager to probe further into the syscall layer.

Use I/O probe manager to analyze response time of I/O operations of a block device that segregates the
service time and queuing delay.

The following layers are supported:

• Logical File System (LFS)
• Virtual File System (VFS)
• Enhanced Journaled File Systems (JFS2)
• Logical Volume Manager (LVM)

General programming concepts 301

• Small Computer System Interface (SCSI) disk driver
• Generic block devices

The primary use cases for I/O probe manager are as follows:

• Identify the following patterns of I/O usage of a device. Valid devices can be a disk, logical volume, or
volume group, or file system (type or mount path) in a specified time period:

– I/O operation count
– Size of I/O operations
– Type of I/O operation (read/write)
– Sequential or random nature of I/O

• Get process or thread-wise usage information of a file system (type or mount path), logical volume,
volume group, or disk.

• Get an end-to-end mapping of I/O flow among various layers (wherever possible).
• Monitor a specific I/O resource usage. For example:

– Trace any write operations of the /etc/password file.
– Trace read operation on block 0 of the hdisk0 device.
– Trace when a new logical volume is opened in root volume group (rootvg).

• For Multipath I/O (MPIO) disks, get path-specific information by the following actions:

– Get path-wise usage and response time information.
– Identify path switching or path failure.

• For I/O errors, get more details about the error in disk driver layer.

Probe specification

I/O probes must be specified in the following format in Vue script:

@@io:sub_type:io_event:operation_type:filter[|filter …]

This specification consists of five tuples that are separated by colon (:). The first tuple is always @@io.

Probe sub type

The second tuple signifies the sub type of the probe that indicates the layer of AIX I/O stack that contains
the probe. This tuple can have one of the following values:

Table 31. Second tuple for probes

Second tuple (sub type) Description

disk This probe starts for disk driver events. Currently,
the I/O probe manager supports only the
scsidisk driver.

lvm This probe starts for Logical Volume Manager (LVM)
events.

bdev This probe starts for any block I/O device. Disk,
CD-ROM, diskette are examples of block devices.
This sub type is used only when no other sub type
is applicable. For example, if a block device is not a
disk, volume group, or logical volume, this sub type
is applicable.

jfs2 This probe starts for JFS2 file system events.

vfs This probe starts for any read/write operation on a
file.

302 AIX Version 7.2: General programming concepts

Note: The second tuple cannot have a value of asterisk (*).

For a disk type of second tuple, the third tuple can have the following values:

Table 32. Disk second tuple: Third tuple values

Sub type (Second
tuple)

I/O event
(Third
Tuple)

Description

disk entry This probe starts whenever disk driver receives an I/O request to
process.

iostart This probe starts when the disk driver picks up an I/O request from its
ready queue and sends it down to lower layer (for example, adapter
driver). A single original I/O request to disk driver can send multiple
command requests (some might be driver-related task management
command requests) to lower layer. However, sometimes the driver can
combine multiple original requests and send a single request to lower
layer.

iodone This probe starts when the lower layer (for example, adapter driver)
returns an I/O request (successful or failed) to disk driver.

exit This probe starts when disk driver returns an I/O request (successful
or failed) to its upper layer.

Note: The members of the following built-in values are available in the probes that are mentioned for the
probe sub type: __iobuf, __diskinfo, __diskcmd (only in disk:iostart and disk:iodone), and
__iopath (only in disk:iostart and disk:iodone).

For every entry, a corresponding exit probe is defined that has the same __iobuf->bufid value
available at both the probe points. The entry event can be followed by multiple iostart events, but
at least one of them must have the same __iobuf->bufid value. Every iostart event has a matching
iodone event that has the same __iobuf->child_bufid value.

For an LVM type of second tuple, the third tuple can have the following values:

Table 33. LVM second tuple: Third tuple values

Sub type (second
tuple)

I/O event (third tuple) Description

lvm entry This probe starts whenever the LVM layer receives
an I/O request to process.

iostart This probe starts when LVM picks an I/O request
from its ready queue and sends down to the lower
layer (usually the disk driver).

iodone This probe starts when the lower layer (for
example, disk driver) returns an I/O request
(successful or failed) to LVM.

exit This probe starts when LVM returns an I/O request
(successful or failed) to its upper layer.

Note: The members of the following built-ins values are available in the probes that are mentioned for
LVM: __iobuf, __lvol, and __volgrp. Every entry has a corresponding exit probe, which has the same
__iobuf->bufid value available at both the probe points.

The entry event can be followed by multiple iostart events, but at least one of them has the
same __iobuf->bufid value. Every iostart event has a matching iodone event that has the same
__iobuf->child_bufid value.

General programming concepts 303

For generic block device probes, the third tuple can have the following values:

Table 34. Generic block device second tuple: Third tuple values

Sub type (second tuple) I/O event (third tuple) Description

bdev iostart This probe gets fired when any
block I/O (for example, disk,
logical volume, CD-ROM) device
is initiated. It happens when the
AIX devstrat kernel service is
called by any code.

iodone This probe gets fired when a
block I/O request completion
happens, when the AIX iodone
kernel service is called by any
code.

Note: The members of the following built-in values are available in the probes that are mentioned in bdev:
__iobuf. Every iostart event has a matching iodone event that has the same __iobuf->bufid
value.

For JFS2 file system probes, the third tuple can have the following values:

Table 35. JFS2 second tuple: Third tuple values

Sub type (second tuple) I/O event (third tuple) Description

jfs2 buf_map This probe starts when a logical
file extent gets mapped to an
I/O buffer and is sent to the
underlying logical volume.

Note: The members of the following built-in values are available in the probe that is mentioned for JFS2
file system probes: __j2info.

For Virtual file system (VFS) probes, the third tuple can have the following values:

Table 36. VFS second tuple: Third tuple values

Sub type (second
tuple)

I/O event (third
tuple)

Description

vfs entry This probe starts when any read/write operation on a file
is initiated.

exit This probe starts when any read/write operation on a file
is completed (whether success or failure).

Note: The members of the following built-in are available in the probe that is mentioned in VFS probes:
__file.

For the same thread, every entry is followed by an exit event that has the same __file->inode_id
value.

Probe operation type

The fourth tuple indicates the type of I/O operation that is specified by the probe. The fourth tuple can
have one of the following values:

304 AIX Version 7.2: General programming concepts

Table 37. Fourth tuple for I/O operation

Fourth tuple Description

read The probe starts for only the read operation.

write The probe starts for only the write operation.

* The probe starts for both read and write
operations.

Probe filter

The fifth tuple is the filter tuple that helps in filtering more specific probes according to the requirement.
The possible values are subtype dependent. Multiple values can be specified separated by | character,
and the probe starts if it matches any of those filters. If the value of the fifth tuple is *, no filtering occurs
and the probe starts if other tuples match. If multiple selectors are specified, and one of them is *, it is
equivalent to the whole tuple value of *.

For disk probes, the fifth tuple can have the following values:

Table 38. Disk filter tuple

Filter (fifth tuple) Description

Disk name. For example, hdisk0 The probe action is run only for the particular disk.

Disk type. Allowed symbols: FC, ISCSI, VSCSI, SAS The probe action is run only for disks with
matching type. The meanings of the symbols are
as follows:

• FC: Fibre Channel disk
• ISCSI: iSCSI disk
• VSCSI: Virtual SCSI disk (on VIOS client)
• SAS: Serial Attached SCSI disks

Note: The disk name and disk type can be combined as filters. For example, the following probe starts for
either hdisk0 or any other FC disk (at disk entry event, for both read/write operation type)

@@io:disk:entry:*:hdisk0|FC

For Logical Volume Manager (LVM) probes, the fifth tuple can have the following values:

Table 39. LVM filter tuple

Filter (fifth Tuple) Description

Logical volume name, for example hd5,
lg_dumplv

The probe action is run only for the particular
logical volume.

Volume group name, for example rootvg The probe action is run only for those logical
volumes that belong to a particular volume group.

The following probe starts for any logical volume that belongs to either root volume group (rootvg), or test
volume group (testvg) (at iostart event, for write operation only):

@@io:lvm:iostart:write:rootvg|testvg

For generic block device probes, fifth tuple can have following values:

General programming concepts 305

Table 40. Generic block device filter tuple

Filter (fifth tuple) Description

Block device name, for example: hdisk0, hd5,
cd0

The probe action is run only for the particular block
device.

Consider the following examples for generic block device probes:

@@io:bdev:iostart:*:cd0

@@io:bdev:iodone:read:hdisk3|hdisk5

For JFS2 file system probes, the fifth tuple can have following values:

Table 41. JFS2 filter tuple

Filter (fifth tuple) Description

File system mount path, for example: /usr The probe action is run only for the file system
with the particular mount path. It must be a JFS2
file system, otherwiseProbeVue rejects that probe
specification.

Consider following examples for the JFS2 file system probes:

@@io:jfs2:buf_map:*:/usr|/tmp

For Virtual file system (VFS) probes, the fifth tuple can have following values:

Table 42. VFS filter tuple

Filter (fifth Tuple) Description

File system mount path. For example, /tmp The probe action is run for files that belong to the
file system.

File system type. The allowed symbols are JFS2,
NAMEFS, NFS, JFS, CDROM, PROCFS, SFS,
CACHEFS, NFS3, AUTOFS, POOLFS, VXFS,
VXODM, UDF, NFS4, RFS4, CIFS, PMEMFS,
AHAFS, STNFS, ASMFS

The probe action is run for files of the particular
file system. The symbols correspond to the AIX file
systems defined in the exported header file sys/
vmount.h.

Consider the following examples for the Virtual file system (VFS) probes:

@@io:vfs:entry:read:JFS2

@@io:vfs:exit:*:/usr|JFS

I/O probe related built-in variables for Vue scripts

__iobuf built-in variable

You can use the special __iobuf built-in variable to access various information about the I/O buffer that
is employed in the current I/O operation. It is accessible in probes of sub types: disk, lvm, and bdev. Its
member elements can be accessed by using the __iobuf->member syntax.

Note: Whenever the actual value cannot be obtained, the value that is marked as Invalid Value is
returned. This value is returned because of one of the following reasons:

• Page fault context is required, but the current probevctrl tunable value, num_pagefaults, is either
0 or not sufficient.

• The memory location that is containing the value is paged out.
• Any other severe system error such as invalid pointer or corrupted memory.

__iobuf built-in variable has the following members:

306 AIX Version 7.2: General programming concepts

Table 43. The __iobuf built-in variable members

Member name Type Description Invalid Value

blknum unsigned long long Starting block number of
the I/O request.

0xFFFFFFFFFFFFFFFF

bcount unsigned long long Requested number of
bytes in the I/O
operation.

0xFFFFFFFFFFFFFFFF

bflags unsigned long long The flags that are
associated with the I/O
operation. The following
symbols are available:
B_READ, B_ASYNC,
B_ERROR. The symbols
can be used along with
the bflags value to see
whether it is set. For
example, if (__iobuf-
>bflags & B_READ) is
true, then it is a read
operation.

Note: There is no
B_WRITE flag. If the
B_READ flag is not set, it
is considered to be write
operation.

0

devnum unsigned long long The device number of
the target device that
is associated with the
I/O operation. It has the
device major number
and minor number that
is embedded in it.

0

major_num int The major number of the
target device of the I/O
operation.

-1

minor_num int The minor number of the
target device of the I/O
operation.

-1

error int In case of any error
in the I/O operation,
this value is the error
number. This value is
defined in the exported
errno.h header file.

-1

General programming concepts 307

Table 43. The __iobuf built-in variable members (continued)

Member name Type Description Invalid Value

residue unsigned long long The remaining number
of bytes from the
original request that
might not be read or
written. On the I/O
completion events, this
value is ideally zero.
But for read operation,
a nonzero value might
mean that you are trying
to read more than what
is available, which is
acceptable. This value
is considered only when
error value is nonzero.

0xFFFFFFFFFFFFFFFF

bufid unsigned long long A unique number that is
associated with the I/O
request. While the I/O
is in progress, the bufid
value uniquely identifies
the I/O request in all
the events of a particular
sub type. For example,
in disk: entry,
disk: iostart,
disk: iodone,
and disk:exit. If
the __iobuf->bufid
matches, it is the same
I/O request at various
stages).

0

parent_bufid unsigned long long If the value is not 0,
this value provides the
bufid of the upper layer
buffer that is associated
with this I/O request.
You can now link the
current I/O operation
with the upper layer I/O
request. For example, in
a disk I/O request, the
corresponding LVM I/O
can be determined.

Note: The parent_bufid
field is not set in all
code paths, and hence
it is not always useful.
Use the child_bufid field
to link I/O requests
between two adjacent
layers.

0

308 AIX Version 7.2: General programming concepts

Table 43. The __iobuf built-in variable members (continued)

Member name Type Description Invalid Value

child_bufid unsigned long long If the value is not 0,
this value provides the
bufid of the new I/O
request that is sent to
the lower layer. The
best events to record
are disk:iostart,
lvm:iostart, and
bdev:iostart. You
can identify the I/O
in the lower adjacent
layer by matching the
__iobuf->bufid value
to this child_bufid
value. For example,
in lvm:iostart, you
can record the
__iobuf->child_buf
value. Then, in
disk:entry, you can
match it with __iobuf-
>bufid to identify
the corresponding I/O
request.

0

__file built-in variable

You can use the __file special built-in variable to get various information about file operation. It
is available in probes of sub type VFS. Its member elements can be accessed by using the __file-
>member syntax.

Note: Whenever the actual value cannot be obtained, the value that is marked as invalid is returned. The
invalid value is returned because of one of the following reasons:

• Page fault context is required, but the current probevctrl tunable value num_pagefaults is either 0
or not sufficient.

• The memory location, which contains the value, is paged out.
• Any other severe system error such as invalid pointer, or corrupted memory.

The __file built-in variable has the following members:

General programming concepts 309

Table 44. The __file built-in variable members

Member name Type Description Invalid Value

f_type int Specifies the type of the
file. It can match one
of the following built-in
constant values:

• F_REG (regular file)
• F_DIR (directory)
• F_BLK (block device
file)

• F_CHR (character
device file)

• F_LNK (file link)
• F_SOCK (socket)

Note: The value might
not match any of
the built-in constants
because the list does
not include every
possible file type, but
only the most useful
ones.

-1

310 AIX Version 7.2: General programming concepts

Table 44. The __file built-in variable members (continued)

Member name Type Description Invalid Value

fs_type int Specifies the type of
the file system to
which this file belongs.
It can match one of
the following built-in
constant values:

• FS_JFS2
• FS_NAMEFS
• FS_NFS
• FS_JFS
• FS_CDROM
• FS_PROCFS
• FS_SFS
• FS_CACHEFS
• FS_NFS3
• FS_AUTOFS
• FS_POOLFS
• FS_VXFS
• FS_VXODM
• FS_UDF
• FS_NFS4
• FS_RFS4
• FS_CIFS
• FS_PMEMFS
• FS_AHAFS
• FS_STNFS
• FS_ASMFS

The built-in constants
corresponds to the
AIX file system types
defined in the exported
sys/vmount.h header
file.

-1

mount_path char * Specifies the path where
the associated file
system is mounted.

null string

devnum unsigned long long Specifies the device
number of the
associated block device
of the file. Both
the major and minor
numbers are embedded
in it. If there is no
associated block device,
then it is 0.

0

General programming concepts 311

Table 44. The __file built-in variable members (continued)

Member name Type Description Invalid Value

major_num int Specifies the major
number of the
associated block device
of the file.

-1

minor_num int Specifies the minor
number of the
associated block device
of the file.

-1

offset unsigned long long Specifies the current
read/write byte offset of
the file.

0xFFFFFFFFFFFFFFFF

rw_mode int Specifies the read/write
mode of the file. It
matches one of the
built-in constant values:
F_READ or F_WRITE.

-1

byte_count unsigned long long At vfs: entry event,
byte_count provides
the byte count of
the read or write
request. At vfs: exit
event, it provides the
number of bytes that
remained unfulfilled. For
example, the difference
of this value between
these two events
determines how many
bytes were processed in
the operation.

0xFFFFFFFFFFFFFFFF

fname char * Specifies the name of
the file (only base name,
not path).

null string

inode_id unsigned long long Specifies a system-wide
unique number that is
associated with the file.

Note: It is different from
file inode number.

0

path path_t (new data type in
VUE)

Specifies the complete
file path. It can
be printed by using
printf() and the
format specifier %p.

null string as file path

312 AIX Version 7.2: General programming concepts

Table 44. The __file built-in variable members (continued)

Member name Type Description Invalid Value

error int If the read/write
operation failed, the
error number as
defined in the exported
errno.h header file. If
there is no error, it is 0.

-1

__lvol built-in variable

You can use the __lvol special built-in variable to get various information about the logical volume in an
LVM operation. It is available in probes of sub type lvm. Its member elements can be accessed by using
the __lvol->member syntax.

Note: Whenever the actual value cannot be obtained, the value, which is marked as Invalid Value, is
returned. There might be following reasons for getting this invalid value:

• Page fault context is required, but the current probevctrl tunable value num_pagefaults is either 0
or not sufficient.

• The memory location that contains the value is paged out.
• Any other severe system error such as invalid pointer or corrupted memory.

__lvol built variable in has following members:

Table 45. The __lvol built-in variable members

Member name Type Description Invalid Value

name char * The name of the logical
volume.

null string

devnum unsigned long long The device number of
the logical volume. It
has both major number
and minor number that
is embedded in it.

0

major_num int The major number of the
logical volume.

-1

minor_num int The minor number of the
logical volume.

-1

General programming concepts 313

Table 45. The __lvol built-in variable members (continued)

Member name Type Description Invalid Value

lv_options unsigned int The options that are
related to the logical
volume. The following
values are defined as
built-in constants:

• LV_RDONLY (read-only
logical volume)

• LV_NOMWC (no mirror
write consistency
checking)

• LV_ACTIVE_MWC
(active mirror write
consistency)

• LV_PASSIVE_MWC
(passive mirror write
consistency)

• LV_SERIALIZE_IO (I/O
is serialized)

• LV_DMPDEV (This LV is
a dump device)

You can check whether
one of these values
is set by having
condition such as
__lvol->lv_options
& LV_RDONLY.

Note: All possible values
are not defined, and
hence other options
might be available in the
value.

0xFFFFFFFF

__volgrp built-in variable

You can use __volgrp special built-in variable to get various information about the volume group in an
LVM operation. It is available in probes of sub type lvm. Its member elements can be accessed by using
the __volgrp->member syntax.

Note: Whenever the actual value cannot be obtained, the value that is marked as Invalid Value is
returned. The value could be invalid because of the following reasons:

• Page fault context is required, but the current probevctrl tunable value num_pagefaults is either 0
or not sufficient.

• The memory location that contains the value is paged out.
• Any other severe system error such as invalid pointer or corrupted memory.

__volgrp built-in variable has following members:

314 AIX Version 7.2: General programming concepts

Table 46. The __volgrp built-in variable members

Member name Type Description Invalid Value

name char * The name of the volume
group.

null string

devnum unsigned long long The device number of
the volume group. It
has major number and
minor number that is
embedded in it.

0

major_num int The major number of the
volume group.

-1

minor_num int The minor number of the
volume group.

Note: For volume group,
AIX always assigns 0 as
the minor number.

-1

num_open_lvs int The number of open
logical volumes that
belong to this volume
group.

-1

__diskinfo built-in variable

You can use the __diskinfo special built-in variable to get various information about the disk in a disk
I/O operation. It is available in probes of sub type disk. Its member elements can be accessed by using
the __diskinfo->member syntax.

Note: Whenever the actual value cannot be obtained, the value that is marked as “Invalid Value” is
returned. There might be following reasons for getting this value:

• Page fault context is required, but the current probevctrl tunable value num_pagefaults is either 0
or not sufficient.

• The memory location that contains the value is paged out.
• Any other severe system error such as invalid pointer or corrupted memory.

__diskinfo built-in variable has following members:

Table 47. The __diskinfo built-in variable members

Member name Type Description Invalid Value

name char * The name of the disk. null string.

devnum unsigned long long The device number
of the disk. It has
major number and
minor number that are
embedded in it.

0

major_num int The major number of the
disk.

-1

minor_num int The minor number of the
disk.

-1

lun_id unsigned long long The Logical Unit Number
(LUN) for the disk.

0xFFFFFFFFFFFFFFFF

General programming concepts 315

Table 47. The __diskinfo built-in variable members (continued)

Member name Type Description Invalid Value

transport_type int The transport type of the
disk. It can match one
of the following built-in
constant values:

• T_FC (Fibre Channel)
• T_ISCSI (iSCSI)
• T_VSCSI (Virtual SCSI)
• T_SAS (Serial Attached

SCSI)

-1

queue_depth int The queue depth
of the disk. It
indicates how many
maximum simultaneous
I/O requests that the
disk driver can pass on
to the lower layer (for
example, adapter). If
the number of incoming
I/O requests is more
than queue_depth, the
request is handled
differently. The extra
request is handled by
the disk driver in its wait
queue until lower layer
responds to at least one
of the outstanding I/O
requests.

-1

cmds_out int Number of outstanding
I/O command requests
to the lower layer (for
example, adapter).

-1

path_count int Number of MPIO paths
of the disk (Only if the
disk is MPIO capable,
else it is 0).

-1

316 AIX Version 7.2: General programming concepts

Table 47. The __diskinfo built-in variable members (continued)

Member name Type Description Invalid Value

reserve_policy int The SCSI reservation
policy of the disk.
It matches one of
the following built-in
constant values:

• DK_NO_RESERVE
(no_reserve)

• DK_SINGLE_PATH
(single_path)

• DK_PR_EXCLUSIVE
(PR_exclusive)

• DK_PR_SHARED
(PR_shared)

Refer to AIX MPIO
documentation to know
more about the
reservation policies.

-1

scsi_flags int The SCSI flags of
the disk. The following
built-in flag values are
defined:

• SC_AUTOSENSE_ENA
BLED (On error, target
sends sense data in
the response. Initiator
needs not send
request sense
command.)

• SC_NACA_1_ENABLE
D (Normal ACA is
enabled and the target
goes to ACA state if it
is returning check
condition.)

• SC_64BIT_IDS (64-bit
SCSI ID and logical
unit number(LUN)

• SC_LUN_RESET_ENAB
LED (LUN reset
command can be
sent.)

• SC_PRIORITY_SUP
(Device supports I/O
priority.)

0

General programming concepts 317

Table 47. The __diskinfo built-in variable members (continued)

Member name Type Description Invalid Value

• SC_CACHE_HINT_SUP
(Device supports
cache hints.)

• SC_QUEUE_UNTAGGE
D (Device supports
queuing of untagged
commands.)

Note: All flag values are
not defined, hence other
flags present might be
available in the value.

0

__diskcmd built-in variable

You can use the __diskcmd special built-in variable to get various information about the SCSI I/O
command for the current operation. It is available in probes of sub type disk (but only iostart and
iodone events). Its member elements can be accessed by using syntax __diskcmd->member.

Note: Whenever the actual value cannot be obtained, the value that is marked as “Invalid Value” is
returned. There might be following reasons for getting value:

• Page fault context is required, but the current probevctrl tunable value num_pagefaults is either 0
or not sufficient.

• The memory location that contains the value is paged out.
• Any other severe system error such as invalid pointer or corrupted memory.

__diskcmd built-in variable has following members:

318 AIX Version 7.2: General programming concepts

Table 48. The __diskcmd built-in variable members

Member name Type Description

cmd_type int The type of the SCSI command
(both type and subtype are
merged together). The following
built-in constant values are
available as command type:

• DK_BUF (normal I/O read/
write)

• DK_IOCTL (ioctl)
• DK_REQSNS (Request sense)
• DK_TGT_LUN_RST (target or

LUN reset)
• DK_TUR (Test unit ready)
• DK_INQUIRY (Inquiry)
• DK_RESERVE (SCSI-2

RESERVE, 6-byte version)
• DK_RELEASE (SCSI-2

RELEASE, 6-byte version)
• DK_RESERVE_10 (SCSI-2

RESERVE, 10-byte version)
• DK_RELEASE_10 (SCSI-2

RELEASE, 10-byte version)
• DK_PR_RESERVE (SCSI-3

Persistent Reserve, RESERVE)
• DK_PR_RELEASE (SCSI-3

Persistent Reserve, RELEASE)
• DK_PR_CLEAR (SCSI-3

Persistent Reserve, CLEAR)

• DK_PR_PREEMPT (SCSI-3
Persistent Reserve, PREEMPT)

• DK_PR_PREEMPT_ABORT
(SCSI-3 Persistent Reserve,
PREEMPT AND ABORT)

• DK_READCAP (READ
CAPACITY, 10-byte version)

• DK_READCAP16 (READ
CAPACITY, 16-byte version)

Note: The built-in constants
are bit position values and
hence their presence must
be checked by using ‘&’
operator (the ‘==’ operator must
not be used). For example:
__diskcmd->cmd_type &
DK_IOCTL.

General programming concepts 319

Table 48. The __diskcmd built-in variable members (continued)

Member name Type Description

retry_count int It indicates whether the I/O
command is retried after any
failure.

Note: The value of 1 means that
it is the first attempt. Any larger
value indicates actual retrials.

path_switch_count int It indicates how many times
the path was changed for this
particular I/O operation (usually
indicates some I/O path failure,
either transient or permanent).

status_validity int In case of any error, this
value indicates whether it
is a SCSI error or adapter
error. It can match one of
the following built-in constant
values: SC_SCSI_ERROR or
SC_ADAPTER_ERROR. If there is
no error, then it is 0.

320 AIX Version 7.2: General programming concepts

Table 48. The __diskcmd built-in variable members (continued)

Member name Type Description

scsi_status int If the status_validity field is set to
SC_SCSI_ERROR, this field gives
more details about the error. It
can match one of the built-in
constant values:

• SC_GOOD_STATUS (Task is
completed successfully)

• SC_CHECK_CONDITION (Some
error, sense data provides more
information)

• SC_BUSY_STATUS (LUN is busy,
cannot accept command)

• SC_RESERVATION_CONFLICT
(Violation of existing SCSI
reservation.)

• SC_COMMAND_TERMINATED
(The device ended the
command.)

• SC_QUEUE_FULL (The device
queue is full.)

• SC_ACA_ACTIVE (The device is
in Auto Contingent Allegiance
state.)

• SC_TASK_ABORTED (The
device stopped the command.)

Note: All possible values are not
defined. Hence, SC_SCSI_ERROR
can have a value that might
not match any of the built-in
values. You can look up the
corresponding SCSI command
response code.

General programming concepts 321

Table 48. The __diskcmd built-in variable members (continued)

Member name Type Description

adapter_status int If the status_validity field is set to
SC_ADAPTER_ERROR, this field
provides more information about
the error. It can match one of
the following built-in constant
values:

• ADAP_HOST_IO_BUS_ERR
(Host I/O bus error)

• ADAP_TRANSPORT_FAULT
(transport layer error)

• ADAP_CMD_TIMEOUT (I/O
command was timed out)

• ADAP_NO_DEVICE_RESPONSE
(no response from the device)

• ADAP_HDW_FAILURE (adapter
hardware failure)

• ADAP_SFW_FAILURE (adapter
microcode failure)

• ADAP_TRANSPORT_RESET
(adapter detected an external
SCSI bus reset)

• ADAP_TRANSPORT_BUSY
(transport layer is busy)

• ADAP_TRANSPORT_DEAD
(transport layer is inoperative)

• ADAP_TRANSPORT_MIGRATED
(transport layer is migrated)

• ADAP_FUSE_OR_TERMINAL_P
WR (adapter blown fuse or bad
electrical termination)

__iopath built-in variable

You can use the __iopath special built-in variable to get various information about the I/O path for the
current operation. It is available in probes of sub type disk for iostart and iodone events only. Its
member elements can be accessed by using the __iopath->member syntax .

Note: Whenever the actual value cannot be obtained, the value, which is marked as Invalid Value, is
returned. There might be following reasons for getting this value:

• Page fault context is required, but the current probevctrl tunable value num_pagefaults is either 0
or not sufficient.

• The memory location that contains the value is paged out.
• Any other severe system error such as invalid pointer or corrupted memory.

__iopath has following members:

322 AIX Version 7.2: General programming concepts

Table 49. The __iopath built-in variable members

Member name Type Description Invalid Value

path_id int The ID of the current
path (starting from 0).

-1

scsi_id unsigned long long The SCSI ID of the target
on this path.

0xFFFFFFFFFFFFFFFF

lun_id unsigned long long The Logical Unit Number
(LUN) on this path.

0xFFFFFFFFFFFFFFFF

ww_name unsigned long long The worldwide name of
the target port on this
path.

0

cmds_out int The number of I/O
commands outstanding
on this path.

-1

__j2info built-in variable

The __j2info is a special built-in variable that you can use to get various information about JFS2 file
system operation. It is available in probes of sub type jfs2. Its member elements can be accessed by
using the __j2info->member syntax.

Note: Whenever the actual value cannot be obtained, the value, which is marked as Invalid Value is
returned. There might be following reasons for getting this value:

• Page fault context is required, but the current probevctrl tunable value num_pagefaults is either 0
or not sufficient.

• The memory location that contains the value is paged out.
• Any other severe system error such as invalid pointer or corrupted memory.

__j2info has the following members:

Table 50. The __j2info built-in variable members

Member name Type Description Invalid Value

inode_id unsigned long long A system-wide unique
number that is
associated with the file
of current operation.

Note: It is different from
the file inode number.

0

f_type int Type of the file.
The __file->f_type
description provides
possible values.

-1

mount_path char * The path where the file
system is mounted.

null string.

devnum unsigned long long The device number of
the underlying block
device of the file
system. It has both
major number and minor
number embedded.

0

General programming concepts 323

Table 50. The __j2info built-in variable members (continued)

Member name Type Description Invalid Value

major_num int The major number of the
underlying block device
of the file system.

-1

minor_num int The minor number of the
underlying block device
of the file system.

-1

l_blknum unsigned long long The logical block
number for this file
operation.

0xFFFFFFFFFFFFFFFF

l_bcount unsigned long long The requested byte
count between the
logical blocks in this
operation.

0xFFFFFFFFFFFFFFFF

child_bufid unsigned long long The bufid of the I/O
request buffer that is
sent down to the lower
layer (for example, LVM).
In that layer, it appears
as __iobuf->bufid.

0

child_blknum unsigned long long The block number of the
I/O request buffer that is
sent down to the lower
layer (for example, LVM).
In that layer, it appears
as __iobuf->blknum.

0xFFFFFFFFFFFFFFFF

child_bcount unsigned long long The byte count of the
I/O request buffer that is
sent down to the lower
layer (for example, LVM).
In that layer, it appears
as __iobuf->bcount.

0xFFFFFFFFFFFFFFFF

child_bflags unsigned long long The flags of the I/O
request buffer that is
sent down to the lower
layer (for example, LVM).
In that layer, it appears
as __iobuf->bflags.

0

Example scripts for I/O probe manager

1. Script to trace any write operation to the /etc/passwd file:

int write(int, char *, int);
@@BEGIN {
 target_inodeid = fpath_inodeid("/etc/passwd");
}
@@syscall:*:write:entry {
 if (fd_inodeid(__arg1) == target_inodeid) {
 printf("write on /etc/passwd: timestamp=%A, pid=%lld, pname=[%s],
uid=%lld\n",
 timestamp(), __pid, __pname, __uid);
 }
}

324 AIX Version 7.2: General programming concepts

If the scripts is in a VUE file, names etc_passwd.e. The script can be run as:
probevue etc_passwd.e
In another terminal, if the user (root) runs:
mkuser user1
Then probevue displays an output similar to the following example:
write on /etc/passwd: timestamp=Mar/03/15 16:10:07, pid=14221508, pname=[mkuser], uid=0

2. Script to find the maximum and minimum I/O operation time for a disk (for example, hdisk0) in a
period. Also, find the block number, requested byte count, time of operation and type of operation
(read or write) corresponding to the maximum or minimum time.

long long min_time, max_time;
@@BEGIN {
 min_time = max_time = 0;
}
@@io:disk:entry:*:hdisk0 {
 ts_entry[__iobuf->bufid] = (long long)timestamp();
}
@@io:disk:exit:*:hdisk0 {
 if (ts_entry[__iobuf->bufid]) { /* only if we recorded entry time */
 ts_now = timestamp();
 op_type = (__iobuf->bflags & B_READ) ? "READ" : "WRITE";
 dt = (long long)diff_time(ts_entry[__iobuf->bufid], ts_now, MICROSECONDS);
 if (min_time == 0 || dt < min_time) {
 min_time = dt;
 min_blknum = __iobuf->blknum;
 min_bcount = __iobuf->bcount;
 min_ts = ts_now;
 min_optype = op_type;
 }
 if (max_time == 0 || dt > max_time) {
 max_time = dt;
 max_blknum = __iobuf->blknum;
 max_bcount = __iobuf->bcount;
 max_ts = ts_now;
 max_optype = op_type;
 }
 ts_entry[__iobuf->bufid] = 0;
 }
}
@@END {
 printf("Maximum and minimum IO operation time for [hdisk0]:\n");
 printf("Max: %lld usec, block=%lld, byte count=%lld, operation=%s, time of
operation=[%A]\n",
 max_time, max_blknum, max_bcount, max_optype, max_ts);
 printf("Min: %lld usec, block=%lld, byte count=%lld, operation=%s, time of
operation=[%A]\n",
 min_time, min_blknum, min_bcount, min_optype, min_ts);
}

Let this script be in a VUE file named disk_min_max_time.e. It can be executed as:
probevue disk_min_max_time.e
Let there be some IO activity on hdisk0 (dd command can be used).
Then after a few minutes, if the above command is terminated (by pressing CTRL-C), then it will print output similar to:
^CMaximum and minimum IO operation time for [hdisk0]:
Max: 48174 usec, block=6927976, byte count=4096, operation=READ, time of operation=[Mar/04/15 03:31:07]
Min: 133 usec, block=6843288, byte count=4096, operation=READ, time of operation=[Mar/04/15 03:31:03]

Network probe manager
Network probe manager tracks incoming and outgoing network packets in a system (packet information
as interpret by the bpf module in AIX). Probe specification allows the user to specify Berkeley Packet
Filter (BPF) filters, similar to tcpdump filter expression for granular tracking.

You can use built-in variables to collect packet header and payload information for Internet protocols.
For example, Ethernet, Internet Protocol Version 4/Version 6 (IPv4/v6), Transmission Control Protocol
(TCP), User Datagram Protocol (UDP), Internet Control Message Protocol (ICMP), Internet Group Message
Protocol (IGMP), and Address Resolution Protocol (ARP) protocols.

Network probe manager reports critical protocol-specific events (TCP state changes, round-trip times,
retransmissions, UDP buffer overflows).

The network probe manager addresses following primary use cases:

General programming concepts 325

• Provide the following packet-specific information according to the bpf module based on IP address and
ports:

– Track the incoming and outgoing bytes for a connection.
– Use following built-ins to gather protocol header and payload information.

- TCP flags (SYN, FIN), TCP sequence and acknowledgment number.
- IPv4/IPv6 (IP addresses, protocol types: tcp, udp, icmp, igmp, and so on).
- ICMP (packet type: ECHO REQUEST, ECHO RESPONSE, and so on).

• Provide access to complete RAW network packet for probe script processing.
• Report the following protocol-related events:

– Track TCP sender and receiver buffer full events.
– TCP connection state changes from SYN-SENT state to ESTABLISHED state or from ESTABLISHED

state to CLOSE state.
– Monitor delta time between state changes (for example, time that is taken from SYN-SENT state to

ESTABLISHED state).
– Identify the listener (connection information) that discarded connections because the listener's

queue is full.
– Identify retransmissions (second and further retransmission for a packet) for TCP connections.
– Identify the UDP socket that dropped packets because of insufficient receiving buffer.

Probe specification

Probe specification for network probe manager contains three or five tuples that are separated by :
(colon). First tuple is always @@net.

Network probe manager supports two major categories of specifications: One category gathers packet-
specific information and another category gathers protocol-specific information.

• Format to gather packet specific information:

@@net:bpf:<interface1>|<interface 2>|…..:<protocol>:<Filter>
• Format to gather protocol specific information

@@net:tcp:<event_name>

@@net:udp:<event_name>

Probe sub type

The second tuple signifies the sub type of the probe that indicates which layer of AIX network stack
contains the probe. This tuple can have one of the following values (it cannot be *):

Table 51. Second tuple specification for probe sub type

Second Tuple (sub type) Description

bpf This probe starts at network interface layer when a
packet matches the specific filter.

tcp This probe starts for TCP protocol-specific events.

udp This probe starts for UDP protocol-specific events.

Probe network event or gather network packet information

The third tuple is specific to particular sub type (specified in second tuple). It cannot have a value of *.

bpf-based probes

The specification contains 5 tuples for bpf-based probes that are described in the following table:

326 AIX Version 7.2: General programming concepts

Table 52. bpf-based probes: Tuple specification

Second tuple (Sub type) Subsequent tuples Description

bpf Third tuple: interface names This tuple specifies an interface
or a list of interfaces for which
the packet information can be
captured. Possible values are
enX (for example, en0,en1) and
lo0. The * value is not supported
for this tuple. You can specify one
or more interfaces at a time by
using | as delimiter.

Fourth tuple: protocol This tuple specifies the network
protocol to start the probe.
Possible values are ether,
arp, rarp, ipv4, ipv6,
tcp, udp, icmp4, icmp6
and igmp. Protocol-specific built-
ins are populated for access
in Vue script. For example, a
protocol value of ipv4 populates
__ip4hdr built-ins.

The * value for this tuple
indicates that the probe starts for
all protocol types that match the
specified filter. When the protocol
is *, none of the built-in values
that are supported by network
probe manager are available to
Vue scripts. You can access the
raw packet data of requested
size by using the Vue function
copy_kdata () and map to
corresponding protocol headers.

Note: Specifying * as a value
can be performance intensive
as the probe is started for all
incoming and outgoing packets
on the specified interfaces that
match the filter. There are also
copies involved when the packet
information is spanned across
multiple packet buffers.

bpf Fifth tuple: bpf filter string This tuple specifies the bpf filter
expression (filter expressions as
specified in tcpdump command).
Filter expression must be
provided in the double quotation
marks. Filter expression and
protocol that is specified in the
fourth tuple must be compatible.
The * value is not supported in
this tuple.

Examples

General programming concepts 327

1. Specification format to access the built-in variables that are related to Ethernet header (__etherhdr),
IP header(__ip4hdr) or (__ip6hdr), and TCP header (__tcphdr) information from the Vue script
when interface en0 receives or sends packet on port 23 (filter string ” port 23”):

@@net:bpf:en0:tcp:“port 23”

2. Specification format to access the built-in variables related to Ethernet header(__etherhdr), IP
header(__ip4hdr or __ip6hdr), and UDP header (__udphdr) information from the Vue script when
system receives or sends packet from host example.com (filter string “example.com”) on en0 and en1
interfaces:

@@net:bpf:en0|en1:udp:“host example.com”

3. Specification format to access the raw packet information when system receives or sends packet from
or to "host example.com":

@@net:bpf:en1:*:“host example.com”

Note: Each bpf probe specification uses a bpf device. These devices are shared by ProbeVue, tcpdump,
and any other application that uses the libpcap or bpf services for packet capture and injection. The
number of bpf probes depends on the number of available bpf devices in the system.

When a bpf probe is started, the __mdata variable contains the raw packet data. You can access the
raw data of requested size by using the Vue function copy_kdata () and map to the ether_header, ip
header, and so on. Use the following structures to find out the header and payload data information.

Example

VUE script to access the raw packet data when the “*” is specified as the protocol.

 /* Define the ether header structure */
struct ether_header {
 char ether_dhost[6];
 char ether_shost[6];
 short ether_type;
};

/* ProbeVue script to access and interpret the data from RAW packet */

@@net:bpf:en0:*:"port 23"
{
 /* define the script local variables */
 __auto struct ether_header eth;
 __auto char *mb;

 /* __mdata contains the address of packet data */
 mb =(char *) __mdata;
 printf("Network probevue\n");

 /*
 * Use already available “copy_kdata(…)” VUE function to copy data of
 * requested size (size of ether_header) from mbuf data pointer to eth
 * (ether_header) variable.
 */
 copy_kdata (mb, eth);
 printf("Ether Type from raw data :%x\n",eth.ether_type);

}

TCP probes

The specification contains three tuples for TCP probes as described in the following table:

328 AIX Version 7.2: General programming concepts

Table 53. TCP probes: Tuple specification

Second tuple (Sub type) Events (Third tuple)

The * value is not supported in
this tuple.

Description

tcp state_change This probe is started whenever
the TCP state changes.

send_buf_full This probe is started whenever
the send buffer full event occurs.

recv_buf_full This probe is started whenever
the receive buffer full event
occurs.

retransmit This probe is started whenever
the re-transmission of packet
happens for TCP connection.

listen_q_full This probe is started whenever a
server (listener socket) discards
the new connection requests due
to listener’s queue being full.

__proto_info built-in variable provides the TCP connection (four tuple) information (local IP, remote IP,
local port, and remote port) whenever the TCP-related event occurs. Remote port and IP address contains
a value of NULL for the listen_q_full event.

Example

Probe specifications for TCP protocol state changes:

@@net:tcp:state_change

udp probes

For udp probes the specification contains three tuples as described in the following table:

Table 54. udp second tuple: Third tuple values

Second tuple (Sub type) Events (third tuple)

The * value is not supported in
this tuple.

Description

udp sock_recv_buf_overflow This probe is started whenever
the datagram or the UDP socket’s
receive buffer overflows.

The __proto_info built-in variable provides the UDP protocol related data (source IP and destination IP
addresses, source and destination port numbers) whenever socket receive buffer overflow event occurs.

@@net:udp:sock_recv_buf_overflow

Example

Probe specifications for UDP socket’s receive buffer overflow:

@@net:udp:sock_recv_buf_overflow

Network probe-related built-in variables for Vue scripts

General programming concepts 329

Network related events can be probed using following built-in variables.

__etherhdr built-in variable

The __etherhdr variable is a special built-in variable to get ether header information from filtered packet.
This built-in variable is available when you probe the packet information at interface layer with any one
of these protocols: “ether”, “ipv4”, “ipv6”, “tcp”, “udp”, “icmp4”, icmp6”, “igmp”, “arp”, and “rarp”. This
variable is available in probes of sub type bpf. Its member elements can be accessed by using the syntax
__etherhdr->member.

The __etherhdr built-in value has the following members:

Table 55. The __etherhdr built-in variable members

Member name Type Description

src_addr mac_addr_t Source MAC address.

The data type mac_addr_t is used
to store the MAC address. Use
format specifier “M” to print the
MAC address.

dst_addr mac_addr_t Destination MAC address.

The data type mac_addr_t is used
to store the MAC address. Use
format specifier “M” to print the
MAC address.

ether_type unsigned short This name indicates the protocol
encapsulated in the payload of an
Ethernet frame. Protocols can be
IPv4, IPv6, ARP, and REVARP.

It can match one of the following
built-in constant values for
ether_type:

• ETHERTYPE_IP
• ETHERTYPE_IPV6
• ETHERTYPE_ARP
• ETHERTYPE_REVARP

Refer the header
files /usr/include/
netinet/if_ether.h
and /usr/include/netinet/
if_ether6.h for ether_type
values.

Note: The __etherhdr built-in variable is applicable only for Ethernet interfaces and not for loopback
interfaces.

__ip4hdr built-in variable

The __ip4hdr variable is a special built-in variable to get the IPv4 header information from filtered packet.
This variable is available when you probe the packet information at interface layer with any one of the
protocols: “ipv4”,“tcp”, “udp”, “icmp4”, and “igmp”. And, it has valid data when IP version is IPv4. This
variable is available in probes of sub type bpf. Its member elements can be accessed by using the syntax
__ip4hdr->member.

This built-in variable has the following members:

330 AIX Version 7.2: General programming concepts

Table 56. The __ip4hdr built-in variable members

Member name Type Description

src_addr ip_addr_t Source IP address.

The data type ip_addr_t is used to
store the IP address. Use format
specifier “I” to print the IP
address in dotted decimal format
and use format specifier “H” to
print the host name. Host name
printing is a costly operation.

dst_addr ip_addr_t Destination IP address.

The data type ip_addr_t is used to
store the IP address. Use format
specifier “I” to print the IP
address in dotted decimal format
and use format specifier “H”
to print host name. Host name
printing is a costly operation.

protocol unsigned short This member name indicates the
protocol that is used in the
data portion of the IP datagram.
Protocols can be TCP, UDP, ICMP,
IGMP, FRAGMENTED, and so on.

It can match one of the following
built-in constant values for
protocol.

IPPROTO_HOPOPTS,
IPPROTO_ICMP,
IPPROTO_IGMP,
IPPROTO_TCP,
IPPROTO_UDP,
IPPROTO_ROUTING,
IPPROTO_FRAGMENT,
IPPROTO_NONE,
IPPROTO_LOCAL

Refer the header file /usr/
include/netinet/in.h for
protocol values.

ttl unsigned short Time to live or hop limit.

cksum unsigned short IP header checksum.

id unsigned short Identification number. This
member is used for uniquely
identifying the group of
fragments of a single IP
datagram.

total_len unsigned short Total length. This value is entire
packet (fragment) size, including
IP header and data in bytes.

hdr_len unsigned short Size of the IP header.

General programming concepts 331

Table 56. The __ip4hdr built-in variable members (continued)

Member name Type Description

tos unsigned short Type of service.

frag_offset unsigned short Fragment offset.

This value specifies the offset
of particular fragment, relative
to beginning of the original un
fragmented IP datagram. The
first fragment has an offset of
zero.

It can match one of the built-
in constant frag_offset flag
values. The flag values must
be bitwise and with the built-in
constant flag value to validate the
presence of the particular flag:

• IP_DF (No fragment flag)
• IP_MF (more fragments flag)

Refer the header file /usr/
include/netinet/ip.h for
flag values.

__ip6hdr built-in variable

The __ip6hdr variable is a special built-in variable to get the IPv6 header information from filtered packet.
This variable is available when user probes the packet information at interface layer. This variable with
any one of the protocols (“ipv6”, “tcp”, “udp” and “icmp6”) has valid data when IP version is IPv6. This
variable is available in probes of sub type bpf. Its member elements can be accessed by using the syntax
__ip6hdr->member.

This built-in variable has the following members:

Table 57. The __ip6hdr built-in variable members

Member name Type Description

src_addr ip_addr_t Source IP address.

The data type ip_addr_t is used to
store the IP address. Use format
specifier “I” to print the IP
address and use format specifier
“H” to print the host name.
Host name printing is a costly
operation.

dst_addr ip_addr_t Destination IP address.

The data type ip_addr_t is used to
store the IP address. Use format
specifier “I” to print the IP
address and use format specifier
“H” to print host name. Host
name printing is costly operation.

332 AIX Version 7.2: General programming concepts

Table 57. The __ip6hdr built-in variable members (continued)

Member name Type Description

protocol unsigned short This value indicates the protocol
that is used in the data portion
of the IP datagram. Protocols can
be TCP, UDP, and ICMPV6, and so
on.

It can match one of the following
built-in constant values for
protocol:

IPPROTO_TCP,IPPROTO_UDP,
IPPROTO_ROUTING,
IPPROTO_ICMPV6,
IPPROTO_NONE,
IPPROTO_DSTOPTS,
IPPROTO_LOCAL

Refer the header file /usr/
include/netinet/in.h for
protocol values.

hop_limit unsigned short Hop limit (time to live).

total_len unsigned short Total length (payload length). The
size of the payload including any
extension headers.

next_hdr unsigned short Specifies the type of the
next header. This field usually
specifies the transport layer
protocol that is used by
a packet's payload. When
extension headers are present in
the packet, this field indicates
which extension header follows.
The values are shared with those
used for the IPv4 protocol field.

flow_label unsigned int Flow label.

traffic_class unsigned int Traffic class.

__tcphdr built-in variable

The __tcphdr variable is a special built-in variable to get the tcp header information from filtered packet.
This variable is available when you probe the packet information at interface layer with tcp protocol.
It is available in probes of sub type bpf. Its member elements can be accessed by using the syntax
__tcphdr->member.

The __tcphdr built-in variable has the following members:

Table 58. The __tcphdr built-in variable members

Member name Type Description

src_port unsigned short Source port of the packet.

dst_port unsigned short Destination port of the packet.

General programming concepts 333

Table 58. The __tcphdr built-in variable members (continued)

Member name Type Description

flags unsigned short These values are the control
bits and are set to indicate
the communication of control
information. 1 bit for each flag.

It can match one of the built-
in constant flag values. The flag
values must be bitwise and with
the built-in constant flag value
to validate the presence of the
particular flag.

• TH_FIN (No more data from
sender)

• TH_SYN (request to establish
the connection)

• TH_RST (Reset the connection)
• TH_PUSH (Push function. Asks

to push the buffered data to the
receiving application)

• TH_ACK (Indicates that
this packet contains
acknowledgment)

• TH_URG (Indicates that the
urgent pointer field is
significant)

Refer TCP documentation for
detailed information about these
flags and refer the header
file /usr/include/netinet/
tcp.h for flag values.

seq_num unsigned int Sequence number.

ack_num unsigned int Acknowledgment number.

hdr_len unsigned int TCP header length information

cksum unsigned short Checksum.

window unsigned short Window size.

urg_ptr unsigned short Urgent pointer.

__udphdr built-in variable

The __udphdr is a special built-in variable that is used to get the udp header information from filtered
packet. This built-in is available when user probes the packet information at interface layer with udp as
protocol. It is available in probes of sub type bpf. Its member elements can be accessed by using the
syntax __udphdr->member.

__udphdr built-in variable has the following members:

334 AIX Version 7.2: General programming concepts

Table 59. The __udphdr built-in variable members

Member name Type Description

src_port unsigned short Source port of the packet.

dst_port unsigned short Destination port of the packet.

length unsigned short UDP header and data length
information.

cksum unsigned short Checksum.

__icmp built-in variable

The __icmp is a special built-in variable that is used to get the icmp header information from filtered
packet. This built-in is available when user probes the packet information at interface layer with icmp
protocol. It is available in probes of sub type bpf. Its member elements can be accessed by using the
syntax __icmp->member.

This built-in variable has the following members:

Table 60. The __icmp built-in variable members

Member name Type Description

type unsigned short Type of ICMP message.

For example: 0 - echo reply, 8 - echo request,
3 - destination unreachable. Look in for all
the types. For more information, refer to the
standard network documentation.

It can match one of the following built-in
constant values for of ICMP message types:

ICMP_ECHOREPLY,
ICMP_UNREACH
ICMP_SOURCEQUENCH,
ICMP_REDIRECT,
ICMP_ECHO,
ICMP_TIMXCEED,
ICMP_PARAMPROB,
ICMP_TSTAMP,
ICMP_TSTAMPREPLY,
ICMP_IREQ,
ICMP_IREQREPLY,
ICMP_MASKREQ,
ICMP_MASKREPLY

Refer the header file /usr/include/
netinet/ip_icmp.h for protocol values.

Note: All possible message type values are not
defined, and hence there can be other options
present in the value.

General programming concepts 335

Table 60. The __icmp built-in variable members (continued)

Member name Type Description

code unsigned short Subtype of ICMP message.

For each type of message, several different
codes and subtypes are defined. For example,
no route to destination, communication
with destination administratively prohibited,
not a neighbor, address unreachable, port
unreachable. For more information, refer to the
standard network documentation.

It can match one of the following built-in
constant values for ICMP sub types:

ICMP_UNREACH_NET ICMP_UNREACH_HOST
ICMP_UNREACH_PROTOCOL
ICMP_UNREACH_PORT
ICMP_UNREACH_NEEDFRAG
ICMP_UNREACH_SRCFAIL
ICMP_UNREACH_NET_ADMIN_PROHIBITED
ICMP_UNREACH_HOST_ADMIN_PROHIBITED

Subtype values for type 4

The subtype values for type 4 are as follows:

ICMP_REDIRECT_NET
ICMP_REDIRECT_HOST
ICMP_REDIRECT_TOSNET
ICMP_REDIRECT_TOSHOST

Subtype values for type 6

The subtype values for type 6 are as follows:

ICMP_TIMXCEED_INTRANS
ICMP_TIMXCEED_REASS

Subtype values for type 7

The subtype values for type 7 are as follows:

ICMP_PARAMPROB_PTR

ICMP_PARAMPROB_MISSING

Refer the header file /usr/include/netinet/
ip_icmp.h for message subtype values.

Note: Not all possible message sub types values
are defined, and hence there might be other
options present in the message sub type value.

cksum unsigned short Checksum.

__icmp6 built-in variable

__icmp6 is a special built-in variable that is used to get the icmpv6 header information from filtered
packet. This is available when user probes the packet information at interface layer with icmp6 protocol.
It is available in probes of sub type bpf. Member elements of this built-in variable can be accessed using
syntax “__icmp6->member”.

__icmp6 has the following members:

336 AIX Version 7.2: General programming concepts

Table 61. The __icmp6 built-in variable members

Member name Type Description

type unsigned short Type of ICMPV6 message.

This specifies the type of
message, which determines the
format of the remaining data.

It can match one of the following
built-in constant values for
ICMPV6 types.

ICMP6_DST_UNREACH
ICMP6_PACKET_TOO_BIG
ICMP6_TIME_EXCEEDED
ICMP6_PARAM_PROB
ICMP6_INFOMSG_MASK
ICMP6_ECHO_REQUEST
ICMP6_ECHO_REPLY

Refer the header file /usr/
include/netinet/icmp6.h
for protocol values.

Note: Not all possible message
type values are defined, and
hence there might be other
options present in the value.

code unsigned short Subtype of ICMPV6 message.

This value depends on the
message type. It provides
an extra level of message
granularity.

It can match one of the following
built-in constant values for
ICMPV6 sub types.

ICMP6_DST_UNREACH_NOROUTE
ICMP6_DST_UNREACH_ADMIN
ICMP6_DST_UNREACH_ADDR
ICMP6_DST_UNREACH_BEYONDSCOP
E
ICMP6_DST_UNREACH_NOPORT

Refer the header file /usr/
include/netinet/icmp6.h
for message subtype values.

Note: Not all possible message
sub type values are defined,
and hence there might be other
options present in the value.

cksum unsigned short Checksum.

__igmp built-in variable

__igmp is a special built-in variable that is used to get the igmp header information from filtered packet.
This is available when user probes the packet information at interface layer with igmp protocol. This
is available in probes of sub type bpf. Its member elements can be accessed using syntax “__igmp-
>member”.

General programming concepts 337

__igmp built-in has the following members:

Table 62. The __igmp built-in variable members

Member name Type Description

type unsigned short Type of IGMP message.

For example: Membership
Query (0x11), Membership
Report (IGMPv1: 0x12,
IGMPv2: 0x16, IGMPv3:
0x22), Leave Group (0x17)
For more information, refer
to the standard or Network
documentation.

It can match one of the following
built-in constant values for IGMP
Message types.

IGMP_HOST_MEMBERSHIP_QUERY
IGMP_HOST_MEMBERSHIP_REPORT
IGMP_DVMRP
IGMP_HOST_NEW_MEMBERSHIP_REP
ORT
IGMP_HOST_LEAVE_MESSAGE
IGMP_HOST_V3_MEMBERSHIP_REPO
RT
IGMP_MTRACE
IGMP_MTRACE_RESP
IGMP_MAX_HOST_REPORT_DELAY

Refer the header file /usr/
include/netinet/igmp.h for
protocol values.

Note: Not all possible message
type values are defined, and
hence there could be other
options present in the value.

code unsigned short Subtype of IGMP type.

It can match one of the following
built-in constant values for IGMP
Message subtypes.

Subtype values for type no 3.

DVMPP_PROBE 1
DVMRP_REPORT 2
DVMRP_ASK_NEIGHBORS 3
DVMRP_ASK_NEIGHBORS2 4
DVMRP_NEIGHBORS 5
DVMRP_NEIGHBORS2 6
DVMRP_PRUNE 7
DVMRP_GRAFT 8
DVMRP_GRAFT_ACK 9
DVMRP_INFO_REQUEST 10
DVMRP_INFO_REPLY 11

Note: Not all possible message
sub type values are defined,
and hence there could be other
options present in the value.

338 AIX Version 7.2: General programming concepts

Table 62. The __igmp built-in variable members (continued)

Member name Type Description

cksum unsigned short IGMP Checksum value.

group_addr ip_addr_t Group address that is reported or
queried.

This address is the multicast
address that is queried when
you are sending a Group-Specific
or Group-and-Source-Specific
Query. The field has a value of
zero when you are sending a
General Query.

The data type ip_addr_t is used to
store the group IP address. Use
format specifier “I” to print the
IP address.

__arphdr built-in variable

The __arphdr variable is a special built-in variable that is used to get the arphdr header information from
filtered packet. This variable is available when user probes the packet information at interface layer with
arp or rarp protocol. It is available in probes of sub type bpf.The __arphdr member elements can be
accessed by using the syntax __arphdr->member.

The __arphdr built-in variable has following members:

Table 63. The __arphdr built-in variable members

Member name Type Description

hw_addr_type unsigned short Format of the hardware address
type. This field identifies the
specific data-link protocol that is
being used.

It can match one of the following
built-in constant values for data
link protocol:

ARPHRD_ETHER,
ARPHRD_802_5,
ARPHRD_802_3, and
ARPHRD_FDDI

Refer the header file /usr/
include/net/if_arp.h for
protocol values.

General programming concepts 339

Table 63. The __arphdr built-in variable members (continued)

Member name Type Description

protocol_type unsigned short Format of the protocol address
type. This field identifies the
specific network protocol that is
being used.

It can match one of the following
built-in constant values for
network protocol:

SNAP_TYPE_IP,
SNAP_TYPE_AP,
SNAP_TYPE_ARP,
VLAN_TAG_TYPE

Refer the header file /usr/
include/net/nd_lan.h for
the protocol values.

hdr_len unsigned short Mac or hardware address length.

proto_len unsigned short Protocol or IP address length.

operation unsigned short Specifies the operation that the
sender is performing: 1 for
request, 2 for reply.

It can match one of the following
built-in constant values for
network protocol:

ARPOP_REQUEST,
ARPOP_REPLY

Refer the header file /usr/
include/net/if_arp.h for
protocol values.

src_mac_addr mac_addr_t Sender or source MAC address.

Sender hardware or mac address
is stored in mac_addr_t data
type. The format specifier “%M”
is used to print sender MAC or
hardware address.

dst_mac_addr mac_addr_t Target or Destination MAC
address.

Target hardware or MAC address
is stored in mac_addr_t data
type. The format specifier “%M”
is used to print target MAC or
hardware address.

340 AIX Version 7.2: General programming concepts

Table 63. The __arphdr built-in variable members (continued)

Member name Type Description

src_ip ip_addr_t Source or sender IP address.

Sender IP address is stored in
ip_addr_t data type.

The format specifier “%I” is used
to print sender IP address.

dst_ip ip_addr_t Target or Destination IP address.

Target IP address is stored in
ip_addr_t data type.

The format specifier “%I” is used
to print target IP address.

Example

Vue script to probe packet header information for packets received or sent over port 23. Provides the
source and destination node information and also tcp header length information

@@net:bpf:en0:tcp:"port 23"
{
 printf("src_addr:%I and dst_addr:%I\n",__ip4hdr->src_addr,__ip4hdr->dst_addr);
 printf("src port:%d\n",__tcphdr->src_port);
 printf("dst port:%d\n",__tcphdr->dst_port);
 printf("tcp hdr_len:%d\n",__tcphdr->hdr_len);
}

Output:
probevue bpf_tcp.e
src_addr:10.10.10.12 and dst_addr:10.10.18.231
src port:48401
dst port:23
tcp hdr_len:20
..................
.................

__proto_info built-in variable

The __proto_info variable is a special built-in variable that is used to get the protocol (source and
destination IP addresses and ports) information for TCP or UDP events. The __proto_info variable is
available in probes of sub type tcp or udp. Its member elements can be accessed by using the syntax
__proto_info->member.

The __proto_info built-in variable has the following members:

Table 64. The __proto_info built-in variable members

Member name Type Description

local_port unsigned short Local port

remote_port unsigned short Remote port

local_addr ip_addr_t Local address

remote_addr ip_addr_t Remote address

Additional information for TCP-specific events

The TCP state change events are described in the following table:

General programming concepts 341

Table 65. TCP state change events

Name Type Description

__prev_state short Previous state information for
connection.

__cur_state short Present state information for
connection.

It can match one of the following
built-in constant values for TCP
states:

• TCPS_ESTABLISHED
(connection established)

• TPCS_CLOSED (Connection
closed)

• TPCS_LISTEN (Listening for
connection)

• TPCS_SYN_SENT (Sent SYN to
remote end)

• TCPS_SYN_RECEIVED
(Received SYN from remote
end)

• TCPS_CLOSE_WAIT (Received
Fin, waiting for close)

• TCPS_FIN_WAIT_1 (are closed,
sent fin)

• TCPS_CLOSING (closed
exchanged FIN, await FIN ACK)

• TCPS_LAST_ACK (Had Fin and
close , Await FIN ACK)

• TCPS_FIN_WAIT_2 (are
closed , Fin is Acked)

• TCPS_TIME_WAIT (in 2*msl
quiet wait after close)

The values are defined
in exported header
file /usr/include/netinet/
tcp_fsm.h.

Example:

The following Vue script provides state change information for a particular connection:

@@net:tcp:state_change
when(__proto_info->local_addr ==”10.10.10.1” and __proto_info->remote_addr == 10.10.10.2”
 and __proto_info->local_port =”8000” and __proto_info->remote_port =”9000”)
{
 printf(“Previous state:%d and current_state:%d\n”,__prev_state,__cur_state);
}

TCP retransmit event

342 AIX Version 7.2: General programming concepts

Table 66. TCP retransmit event

Name Type Description

__nth_retransmit unsigned short Nth retransmission

Examples

1. Following example Identifies the listener which has discarded connections due to listener's queue is
full.

@@net:tcp:listen_q_full
{
 printf(“Listener IP address:%I and Port number is:%d\n”,__proto_info->local_addr, __proto_info->local_port);
}

2. Following example Identifies connection which drop packets due to socket buffer overflows

@@net:udp:sock_recv_buf_overflow
{
 printf("Connection information which drops packet due to socket buffer overflows:\n");
 printf("Local IP address:%I and Remote IP address:%I\n",__proto_info->local_addr,__proto_info->remote_addr);
 printf("local port :%d and remote port:%d\n",__proto_info->local_port, __proto_info->remote_port);
 }

3. Identify retransmissions (second & further retransmission for a packet) for TCP connections for
particular connection.

@@net:tcp:retransmit
when (__proto_info->local_addr == "10.10.10.1" &&
 __proto_info->remote_addr == "10.10.10.2" &&
__proto_info->local_port == "4000" &&
 __proto_info->remote_port == "5000")
{
 printf(" %d th re-transmition for this connection\n", _nth_retransmit);
}

4. Identify the connection information whenever sender buffer full event occurs .

@@net:tcp:send_buf_full
{
 printf("Connection information whenever send buffer full event occurs:\n");
 printf("Local IP address:%I and Remote IP address:%I\n",__proto_info->local_addr,__proto_info->remote_addr);
 printf("local port :%d and remote port:%d\n",__proto_info->local_port, __proto_info->remote_port);
 }

Sysproc probe manager
The sysproc probe manager provides an infrastructure to users and administrators to dynamically trace
process or thread related data without knowing internals of sysproc subsystem.

The aspects of sysproc subsystem for a user or administrator is divided into the following main
categories:

• Process (or thread) creation or termination
• Signal generation and delivery
• Scheduler and dispatcher events
• DR and CPU binding events

Process (or thread) creation or termination
Information related to how a process or thread is created and destroyed is required to a system
administrator to administer the resources of the system. The sysproc probe manager addresses the
following important use-cases:

• Did a process exit naturally or because of an error?
• When a process or thread got created or terminated or exceed?
• How long did a process run?

General programming concepts 343

• Track events when a thread receives or returns from an exception.

Signal generation and delivery
Signals decide the current state of a processor thread in a system. To understand misbehaving process or
threads an administrator uses the state of signals and the current state of processes due to these signals.
The important use-cases under signal generation and delivery category (but not limited) addressed by
this probe manager follow:

• Signal source and signal information for a specific target.
• Signal delivery of asynchronous signals.
• Trace signal clears.
• Trace events when a signal handler other than default is installed.
• Signal target and signal information for a specific source.
• Trace signal handler entry or exit.

Scheduler and dispatcher events
Scheduler and dispatcher dictate how a process or thread runs in the system. Administrator analyzes
system performance by using dynamic trace scheduler or dispatcher subsystem.

The dynamic trace scheduler or dispatcher subsystem helps discover the reasons for retention of threads.

Following are the important use-cases under scheduler and dispatcher events category (but not limited)
addressed by sysproc probe manager.

• Trace thread or threads that are enqueued or dequeued from the run queue.
• Trace events when any thread in the system is preempted.
• Trace when a thread is being put to sleep over an event.
• Trace when a sleeping thread is being woken up.
• Track dispatches latency of a thread.
• Track virtual processor folding events.
• Trace change in any kernel thread priority.

Dynamic Reconfiguration (DR), and CPU binding events
This class of probes offer dynamic tracing capabilities to a user who tracks resources bound to a process.

Some of important use-cases (but not limited) under this category that is addressed by DR and CPU
binding events probe manager follow:

• Track when a thread binding changes from one CPU to another.
• Track when the resources are attached or detached to a process.
• Track CPU binding events.
• Track start or end of a DR event.

Probe specification
The following format must be used in a Vue script to probe sysproc events:

@@sysproc:<sysproc_event>:<pid/tid/*>

First tuple @@sysproc indicates that this probe is specific to sysproc events.

Second tuple specifies the event to be probed.

Third tuple acts as a filter to isolate events that are specified through second tuple based on process or
kernel thread id.

344 AIX Version 7.2: General programming concepts

Note: Use of process or kernel thread id as filter in sysproc probes does not guarantee the event to occur
in process or thread context. Sysproc probe manager uses process or thread id only as a filter. These
events might be useful from a process or thread perspective despite the execution context of the probe
event.

Signal send event, where either the process that is sending the signal or the one receiving it, can be
useful. The following information specifies the appropriate filters for such probe events.

Probe points (events of interest)
A brief description of all events that can be probed through the sysproc probe manager is mentioned in
the following table:

Table 67. Sysproc probe events

Probe (sysproc_event) Description

forkfail Track failures in fork interface.

execfail Track failures in exec interface.

execpass Track exec success.

exit Track exit of a process.

threadcreate Track creation of a kernel thread.

threadterminate Track termination of a kernel thread.

threadexcept Track process exceptions.

sendsig Track signal sent to a process by external sources.

sigqueue Tracks signals queued to a process

sigdispose Tracks signal disposals.

sigaction Track signal handler installations and
reinstallations

sighandlestart Track when a signal handler is about to be called.

sighandlefinish Track when a signal handler completion

changepriority Track when priority of a process changes

onreadyq Track when a kernel thread gets on a ready queue.

offreadyq Track when a kernel thread is moved out of ready
queue.

dispatch Track when the system dispatcher is called to
schedule a thread

oncpu Track when a kernel thread acquires CPU.

offcpu Track when a kernel thread relinquishes CPU.

blockthread Track when a thread is blocked from getting CPU.

foldcpu Track folding of a CPU core.

bindprocessor Track event when a process/thread is bound to a
CPU

changecpu Track events when a kernel thread changes CPU
temporarily

General programming concepts 345

Table 67. Sysproc probe events (continued)

Probe (sysproc_event) Description

resourceattach Track events when a resource is attached to
another

resourcedetach Track events when a resource is detached from
another

drphasestart Track when a drphase is getting initiated

drphasefinish Track when a drphase completes

Method to access data at a probe-point
ProbeVue allows data access through built-in variables.

Built-ins values are of three types categorized based on accessibility:

1. Accessible at any probe point, irrespective of the probe manager. For example: __curthread.
2. Accessible throughout probes of a specific probe manager.
3. Accessible only at defined probes (events of interest)

The sysproc probe manager allows access of data through built-ins of type (1) and (3). The following table
is used to indicate accessibility of built-ins of type (1). Special built-ins that are provided for sysproc probe
manager are of type long long.

Following are the list of built values of type (1).

• __trcid
• __errno__kernelmode
• __arg1 to __arg7
• __curthread
• __curproc
• __mst
• __tid
• __pid
• __ppid
• __pgid
• __uid
• __euid
• __ublock
• __execname
• __pname

The built-in variables are also classified as context specific and context independent. Context-specific
built-ins provide data based on the execution context of the probe.

AIX kernel operates in thread or interrupt context. Context-specific probes produce correct result when
probe is started at thread or process context.

Results that are obtained from context-specific built-ins in interrupt execution context might be
unexpected. Context-independent built-ins do not depend on the execution context and can be accessed
safely irrespective of probe execution environment.

346 AIX Version 7.2: General programming concepts

Table 68. Context specific and independent built-in variables

Context specific built-in variables Context independent built-in variables

__curthread __trcid

__curproc __errno

__tid __kernelmode

__pid __arg1 to __arg7

__ppid __mst

__pgid

__uid

__euid

__ublock

__pname

__execname

Probe points
Probe points are the specific events for which a probe is fired. Following are the list of probe points.

forkfail

The forkfail probe starts when fork fails. This probe determines the reasons of fork failure.

Syntax: @@sysproc:forkfail:<pid/tid/*>

Special built-in supported

__forkfailinfo
{
fail_reason;
}

The fail_reasonvariable has one of the following values:

Table 69. fail_reason probe: Failure reasons

Reason Description

FAILED_RLIMIT Failed due to rlimit limitations

FAILED_ALLOCATIONS Failed due to internal resource allocations

FAILED_LOADER Failed at a loader stage

FAILED_PROCDUP Failed at procdup

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid, __ublock, __execname, __pname.

Execution environment

Runs in process environment.

Example

General programming concepts 347

Following example shows how to monitor all fork failures because of rlimit in the system.

@@BEGIN
{
 x = 0;
}

@@sysproc:forkfail:*
 when (__forkfailinfo->fail_reason == FAILED_RLIMIT)
{
 printf ("process %s with pid %llu failed to fork a child\n",__pname,__pid);
 x++;
}

@@END
{

 printf ("Found %d failures during this vue session\n",x);
}

execfail

The execfail probe starts when a exec function call fails. Use the execfail probe to determine
the reasons for the failure.

Syntax: @@sysproc:execfail:<pid/tid/*>

Table 70. execfail probe: Failure reasons

Reason Description

FAILED_PRIVILEGES New process failed to acquire or inherit privileges

FAILED_COPYINSTR New process failed to copy instruction

FAILED_V_USERACC New process failed to discard v_useracc regions

FAILED_CLEARDATA Failed during clearing data for new process

FAILED_PROCSEG Failed to establish process private segment

FAILED_CH64 Failed to convert to a 64-bit process

FAILED_MEMATT Failed to attach to a memory resource set

FAILED_SRAD Failed to attach to a srad

FAILED_MSGBUF Error message buffer length is zero

FAILED_ERRBUF Failed to allocate error message buffer

FAILED_ENVAR Failed to allocate environment variables

FAILED_CPYSTR Copy string error

FAILED_ERRBUFCPY Failed to copy the error messages from
errmsg_buf

FAILED_TOOLNGENV Env too long for allocated memory

FAILED_USRSTK Failed to setup user stack

FAILED_CPYARG Failed to copy arglist to stack

FAILED_INITPTRACE Failed to init ptrace

Note: 64 is added to error value if loader error is encountered.

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid, __ublock, __execname, __pname.

348 AIX Version 7.2: General programming concepts

Execution environment

Runs in process environment.

exit

This probe starts when a process exits. Exit is also a system call manager and is traced through
system call probe manager. Probing exit system call through sysproc probe manager explains nature
and reasons of exit. It also explains reasons for a user thread termination in kernel space and not
returned to user space.

Syntax: @@sysproc:forkfail:<pid/tid/*>

A program can exit because of the following reasons:

• On reaching a terminal condition when a user space program cannot proceed further.
• On receiving a terminal signal.

Special built-in supported

__exitinfo{
 signo;
 returnval;
 iscore;
}

Where, signo value signifies the signal number that caused process termination, returnval is the value
that is returned by exit. Nonzero signo is valid only if the program is stopped by a signal.

The iscore variable is set when a core is generated as a result of process exit.

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid, __ublock, __execname, __pname.

Execution Environment

Runs in process environment.

Example

Following example explains how to probe exit event

echo '@@sysproc:exit:* { printf (" %s %llu %llu\n", __pname, __pid,__exitinfo->returnval);}' |
probevue

Which will produce an output similar to the following.

 ksh 5833042 0
 telnetd 7405958 1
 dumpctrl 7405960 0
 setmaps 7275006 0
 termdef 7274752 0
 hostname 7274754 0
 id 8257976 0
 id 8257978 0
 uname 8257980 0
 expr 8257982 1

threadcreate

threadcreate probe starts when a thread is created successfully.

Syntax: @@sysproc:threadcreate:<pid/tid/*>

Note: The specified pid or tid must be the process or thread ID of the process or thread that created
the thread.

General programming concepts 349

Special built-in supported

__threadcreateinfo
{
 tid;
 pri;
 policy;
}

where tid indicates the thread id of new thread that is created, and priority is the priority of the
thread. Policy denotes the thread scheduling policy of the thread.

Table 71. Policy values for the threadcreate probe

Policy Description

SCHED_OTHER default AIX scheduling policy

SCHED_FIFO first in-first out scheduling policy

SCHED_RR round robin scheduling policy

SCHED_LOCAL local thread scope scheduling policy

SCHED_GLOBAL global thread scope scheduling policy

SCHED_FIFO2 FIFO with RQHEAD after short sleep

SCHED_FIFO3 FIFO with RQHEAD all the time

SCHED_FIFO4 FIFO with weak preempt

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid, __ublock, __execname, __pname.

Execution environment

Runs in process environment (user or kproc).

Example

To continuously print all processes in the system creating a thread printing process name, creating
process id , id of the newly created thread and creation time-stamp.

echo '@@sysproc:threadcreate:*
{ printf ("%s %llu %llu %A\n",__pname,__pid,__threadcreateinfo->tid,timestamp());}' |
probevue

An output similar to the following example is displayed.

nfssync_kproc 5439964 23921151 Feb/22/15 09:22:38
nfssync_kproc 5439964 24052201 Feb/22/15 09:22:38
nfssync_kproc 5439964 23920897 Feb/22/15 09:22:38
nfssync_kproc 5439964 22479285 Feb/22/15 09:22:55
nfssync_kproc 5439964 23920899 Feb/22/15 09:22:55
nfssync_kproc 5439964 22479287 Feb/22/15 09:22:55

threadterminate

The probe strarts for a thread which is terminated.

Syntax: @@sysproc:threadterminate:<pid/tid/*>

Note: Specified process ID or thread ID must be corresponding to the process or thread currently
getting stopped.

Special built-ins supported

None.

350 AIX Version 7.2: General programming concepts

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

Runs in process environment (user or kproc).

Example

To continuously print all processes in the system terminating a thread printing process name, creating
process id , id of the newly created thread and creation time-stamp.

echo '@@sysproc:threadterminate:* { printf ("%s %llu %llu %A\n",__pname,__pid,__tid,timestamp());}' | probevue

An output similar to the following sample is displayed:

nfssync_kproc 5439964 23855555 Feb/22/15 09:59:30
nfssync_kproc 5439964 21758249 Feb/22/15 09:59:30
nfssync_kproc 5439964 23855557 Feb/22/15 09:59:30

threadexcept

This probe starts when a program exception occurs. A program exception is generated when system
detects a condition in which a program cannot continue normally. Some exceptions are fatal (illegal
instruction) while some can be recovered (address space change).

Syntax: @@sysproc:threadexcept:<pid/tid/*>

Special built-ins supported

__threadexceptinfo
{
 pid;
 tid;
 exception;
 excpt_address
}

where pid denotes process ID of the process that received exception, tid is the thread ID of the
kernel thread that received exception, excpt_address is address that caused this exception while
exception can assume one of the values as denoted in the table.

Table 72. Exception values for the threadexcept probe

Exception Description

EXCEPT_FLOAT Floating point exception

EXCEPT_INV_OP Invalid op-code

EXCEPT_PRIV_OP Privileged op in user mode

EXCEPT_TRAP Trap instruction

EXCEPT_ALIGN Code or data alignment

EXCEPT_INV_ADDR Invalid address

EXCEPT_PROT Protection

EXCEPT_IO Synchronous I/O

EXCEPT_IO_IOCC I/O exception from IOCC

EXCEPT_IO_SGA I/O exception from SGA

EXCEPT_IO_SLA I/O exception from SLA

General programming concepts 351

Table 72. Exception values for the threadexcept probe (continued)

Exception Description

EXCEPT_IO_SCU I/O exception from SCU

EXCEPT_EOF Reference beyond end-of-file (mmap)

EXCEPT_FLOAT_IMPRECISE Imprecise floating point exception

EXCEPT_ESTALE_I Stale text segment exception

EXCEPT_ESTALE_D Stale data segment exception

EXCEPT_PT_WATCHP Hit ptrace watchpoint

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

Runs in process or interrupt environment.

Note: Since this probe can start in an interrupt context, built-ins variables like __pid, __tid that
depend upon the execution context might not indicate the process or thread id. Special built-in
members for this probe guarantee correct process or thread id intended for the process or thread.

Example

Following example shows trace program exceptions generated by a prove event being traced by a
debugger.

cat threadexcept.e
@@sysproc:threadexcept:*
{
 printf ("PID = %llu TID= %llu EXCEPTION=%llu ADDRESS = %llu\n ",__threadexceptinfo->pid,__threadexceptinfo-
>tid,__threadexceptinfo-
>exception,__threadexceptinfo->excpt_address);
}

Run a debugging session on a program compiled with debugging support

dbx a.out
Type 'help' for help.
Core file "core" is older than current program (ignored)
reading symbolic information ...
(dbx) stop in main
[1] stop in main
(dbx) r
[1] stopped in main at line 5
 5 int a=5;

An output similar to the following sample is displayed:

PID = 6816134 TID= 24052015 EXCEPTION=131 ADDRESS = 268436372

sendsig

This probe is started when a signal is sent to a process through external sources (other process ,
process from user space, from kernel streams or Interrupt context)

Syntax:@@sysproc:sendsig:<pid/*>

__dispatchinfo{
 cpuid; <- cpu id

 oldpid; <- pid of the thread currently running
 oldtid; <- thread id of the thread currently running
 oldpriority; <- priority of the thread currenly running
 newpid; <- pid of the new process process selected for running
 newtid; <- thread id of the thread selected for running
 newpriority; <-priority of the thread selected for running
}

352 AIX Version 7.2: General programming concepts

where pid id the process identifier of the target process receiving the signal. This probe does not allow
specifying a thread identifier to filter results specific to a thread.

Special built-ins

_sigsendinfo{
 tpid; ← target pid
 spid; ← source pid
 signo; ← signal sent
}

where tpid is the target source process identifier, spid identifies source of the signal. The spid
is non-zero when signal is sent from user space or process context. Source process identifier is 0 if
signal is sent from an exception or interrupt context. Signal number information is contained in signo.

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

Runs in process or interrupt environment.

Note: Since this probe can start in an interrupt context, it is possible that built-ins like __pid, __tid,
which depend upon thread execution context might not indicate the process or thread id of interest.
Special built-in members for this probe guarantee correct process or thread id intended for the
process or thread.

When this probe starts in process context, built-in members that depend on execution context point
to source process. built-in members like __pid, __tid, and __curthread provide information
regarding the source process.

.

Example

To continuously print signal source signal target and signal number of all signals.

echo '@@sysproc:sendsig:* {printf ("Source=%llu Target=%llu sig=%llu\n",__sigsendinfo->spid,__sigsendinfo->tpid,__sigsendinfo->signo);}' |
probevue

An output similar to the following sample is displayed:

Source=0 Target=6619618 sig=14
Source=0 Target=8257944 sig=20
Source=0 Target=8257944 sig=20

sigqueue

This probe starts when a queued signal is being sent to the process.

Syntax:@@sysproc:sigqueue:<pid/*>

Special built-ins

_sigsendinfo{
 tpid; ← target pid
 spid; ← source pid preprocess.cp
 signo; ← signal sent
}

Since posix signals are queued to a process, specifying thread identifier is not allowed in this probe.

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

This probe starts in the context of the sending process. Hence, context-based built-ins refer to the
sending process in this probe event.

General programming concepts 353

Execution environment

This probe runs in process context.

Example

echo '@@sysproc:sigqueue:*{printf ("%llu %llu %llu\n",__sigsendinfo->spid,__sigsendinfo->tpid,__sigsendinfo->signo);}' | probevue

An output similar to the following sample is displayed:

8258004 6095294 31
sigdispose
Syntax : @@sysproc:sigdispose:<pid/tid/*>

Probe starts when a signal is disposed to a target process. Specify process ID of the process which
received this signal in the sysprobe specification to filter this probe.

Special built-ins

__sigdisposeinfo{
 tpid; ← target pid
 ttid; ← target tid
 signo; ← signal whose action is being taken.
 fatal; ← will be set if the process is going to be killed as part of signal
action
}

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

This probe can start from process or interrupt context. If started from interrupt context, this probe
might not provide required value for context-based built-ins.

Example

Continuously print process identifier, thread identifier, signal number and indicate if this signal
disposal will result in termination of the process for all processes in the system.

cat sigdispose.e

@@sysproc:sigdispose:*
{
 printf ("%llu %llu %llu %llu\n",__sigdisposeinfo->tpid,__sigdisposeinfo->ttid, __sigdisposeinfo->signo,__sigdisposeinfo->fatal);
}

An output similar to the following sample is displayed:

5964064 20840935 14 0
1 65539 14 0
4719084 19530213 14 0

sigaction

Syntax:@@sysproc:sigaction:<pid/tid/*>

This probe starts when a signal handler is installed or replaced.

Special built-ins

__sigactioninfo{
 old_sighandle; ← old signal handler function address
 new_sighandle; ←new signal handler function address
 signo; ← Signal number
 rpid; ← requester's pid
}

354 AIX Version 7.2: General programming concepts

old_sighandle will be 0 if a signal handler is installed for the first time.

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

This probe starts in process environment.

Note: AIX kernel ensures that only one signal is delivered to a process or thread at a time. Another
signal to that process or thread is only sent when signal delivery is finished.

Example

To track the beginning and finish of all signals in a system:

@@sysproc:sighandlestart:*
{

 signal[__tid] = __sighandlestartinfo->signo;
 printf ("Signal handler at address 0x%x invoked for thread id %llu to handle signal %llu\n",__sighandlestartinfo-
>sighandle,__curthread->tid,__sighandlestartinfo->signo);
}

@@sysproc:sighandlefinish:*
{

 printf ("Signal handler completed for thread id %llu for signal %llu\n",__curthread->tid,signal[__tid]);
 delete (signal,__tid);
}

An output similar to the following sample can be displayed:

Signal handler at address 0x20001d58 invoked for thread id 19923365 to handle signal 20
Signal handler completed for thread id 19923365 for signal 20
Signal handler at address 0x10003400 invoked for thread id 20840935 to handle signal 14
Signal handler completed for thread id 20840935 for signal 14
Signal handler at address 0x10002930 invoked for thread id 19530213 to handle signal 14
Signal handler completed for thread id 19530213 for signal 14
Signal handler at address 0x300275d8 invoked for thread id 22348227 to handle signal 14
Signal handler completed for thread id 22348227 for signal 14
Signal handler at address 0x20001a3c invoked for thread id 65539 to handle signal 14
Signal handler completed for thread id 65539 for signal 14

sighandlefinish

This probe starts at signal handler completion.

Syntax: @@sysproc:sighandlestart:<pid/tid/*>

Special built-ins supported: None.

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

Runs in process environment. Protected, context switch is not allowed on executing CPU.

changepriority

This probe starts when the priority of a process is being changed. This event is not a scheduler or
dispatcher-enforced.

Syntax: @@sysproc:changepriority:<pid/tid/*>

Note: The priority change might also be unsuccessful; success of priority change is not guaranteed.

Special built-ins supported

__chpriorityinfo{
 pid;
 old_priority; <- current priority

General programming concepts 355

 new_priority; <- new scheduling priority of the thread.
}

Execution Environment

This probe runs in process environment.

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid, __ublock, __execname, __pname.

Example

To track all processes whose priority is being changed:

echo '@@sysproc:changepriority:* { printf ("%s priority changing from %llu to %llu\n",__pname,__chpriorityinfo->old_priority,__chpriorityinfo-
>new_priority);}' | probevue

An output similar to the following sample is displayed:

xmgc priority changing from 60 to 17
xmgc priority changing from 17 to 60
xmgc priority changing from 60 to 17
xmgc priority changing from 17 to 60
xmgc priority changing from 60 to 17

offreadyq

This probe starts when a thread is removed from a system run queue.

Syntax:@@sysproc:offreadyq:<pid/tid/*>

Special built-ins supported

__readyprocinfo{
 pid; <- process id of thread becoming ready
 tid; <- Thread id.
 priority; <- priority of the thread
}

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

Runs in process or interrupt environment.

Use case: Trace time taken by a thread that is performing I/O operation to get back to ready queue.

@@BEGIN
{
 printf (" Pid Tid Time Delta\n");
}

@@sysproc:offreadyq :*
{
 ready[__tid] = timestamp();
 printf ("offreadyq: %llu %llu %W\n",__readyprocinfo->pid,__readyprocinfo->tid,ready[__tid]);
}

@@sysproc:onreadyq :*
{

 if (diff_time(ready[__tid],0,MICROSECONDS))
 {
 auto:diff = diff_time (ready[__tid],timestamp(),MICROSECONDS);
 printf ("onreadyq : %llu %llu %W %llu\n",__readyprocinfo->pid,__readyprocinfo->tid,ready[__tid],diff);
 delete (ready,__tid);
 }
}

An output similar to the following sample is displayed:

356 AIX Version 7.2: General programming concepts

 Pid Tid Time Delta
offreadyq: 7799280 20709717 5s 679697µs
onreadyq : 7799280 20709717 5s 679697µs 6
offreadyq: 7799280 20709717 5s 908716µs
onreadyq : 7799280 20709717 5s 908716µs 3
offreadyq: 7799280 20709717 6s 680186µs
onreadyq : 7799280 20709717 6s 680186µs 5
offreadyq: 7799280 20709717 6s 710720µs
onreadyq : 7799280 20709717 6s 710720µs 4
offreadyq: 7799280 20709717 6s 800720µs
onreadyq : 7799280 20709717 6s 800720µs 2
offreadyq: 7799280 20709717 6s 882231µs
onreadyq : 7799280 20709717 6s 882231µs 2
offreadyq: 7799280 20709717 6s 962313µs
onreadyq : 7799280 20709717 6s 962313µs 2
offreadyq: 7799280 20709717 6s 980311µs
onreadyq : 7799280 20709717 6s 980311µs 2

onreadyq

This probe starts when a thread is enqueued to system ready queue or its position in ready queue is
modified.

Syntax:@@sysproc:offreadyq:<pid/tid/*>

Special built-ins supported

__readyprocinfo{
 pid; <- process id of thread becoming ready
 tid; <- Thread id.
 priority; <- priority of the thread
}

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

Runs in process or interrupt environment.

dispatch

This probe starts when system dispatcher is called to select a thread to run on a specific CPU.

Syntax:@@sysproc:dispatch:<pid/tid/*>

Special built-in supported

__dispatchinfo{
 cpuid; <- CPU where selected thread will run.
 oldpid; <- pid of the thread currently running
 oldtid; <- thread id of the thread currently running
 oldpriority; <- priority of the thread currenly running
 newpid; <- pid of the new process process selected for running
 newtid; <- thread id of the thread selected for running
 newpriority; <-priority of the thread selected for running
}

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

Runs in interrupt environment only.

Example

print process thread id of old and selected thread on CPU '0' with dispatch time relative to start of the script

General programming concepts 357

echo '@@sysproc:dispatch:* when (__cpuid == 0){printf ("%llu %llu %W\n",__dispatchinfo->oldtid,__dispatchinfo->newtid,timestamp());}' |
probevue

An output similar to the following example is displayed:

24641983 20709717 0s 48126µs
20709717 23593357 0s 48164µs
23593357 20709717 0s 48185µs
20709717 23593357 0s 48214µs
23593357 20709717 0s 48230µs
20709717 23593357 0s 48288µs
23593357 261 0s 48303µs
261 20709717 0s 48399µs

Example II

Time spent on CPU '0' by threads in between dispatch event.

@@BEGIN
{
 printf ("Thread cpu Time-Spent\n");
}

@@sysproc:dispatch:* when (__cpuid == $1)
{
 if (savetime[__cpuid] != 0)
 auto:diff = diff_time (savetime[__cpuid],timestamp(),MICROSECONDS);
 else
 diff = 0;
 savetime[__cpuid] = timestamp();
 printf ("%llu %llu %llu\n",__dispatchinfo->oldtid,__dispatchinfo->cpuid,diff);
}

probevue cputime.e 6
Thread cpu Time-Spent
3146085 6 0
3146085 6 9995
3146085 6 10002
3146085 6 10008
3146085 6 99988
3146085 6 100006
3146085 6 99995
3146085 6 99989
3146085 6 100010
3146085 6 100001
3146085 6 100000
3146085 6 99998

As can be observed thread 3146085 is being re-dispatched on the CPU at an interval of 1sec in
absence of any other thread competing for this CPU.

oncpu

This probe starts when a new process or thread acquires CPU.

Syntax:@@sysproc:oncpu:<pid/tid/*>

Where pid is process identifier and tid is thread identifier of process or thread that is acquiring the
CPU.

Special built-ins supported

__dispatchinfo{
 cpuid; <- CPU where selected thread will run.
 newpid; <- pid of the new process process selected for running
 newtid; <- thread id of the thread selected for running
 newpriority; <-priority of the thread selected for running
}

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

Runs in interrupt environment only.

358 AIX Version 7.2: General programming concepts

Example

To print time spent by threads of sysncd on all CPU's
#!/usr/bin/probevue

@@BEGIN

{

 printf ("PROCESSID THREADID CPU TIME\n");

}

@@sysproc:oncpu:$1

{

 savetime[__cpuid] = timestamp();

}

@@sysproc:offcpu:$1

{

 if (savetime[__cpuid] != 0)

 auto:diff = diff_time (savetime[__cpuid],timestamp(),MICROSECONDS);

 else

 diff = 0;

 printf ("%llu %llu %llu %llu\n",

 __dispatchinfo->oldpid,

 __dispatchinfo->oldtid,

 __dispatchinfo->cpuid,

 diff);

}

cputime.e `ps aux|grep syncd| grep -v grep| cut -f 6 -d " "`

An output similar to the following example is displayed:

3735998 18612541 0 2
3735998 15663427 0 1
3735998 15073557 0 1
3735998 18743617 0 1
3735998 18874693 0 1
3735998 18809155 0 15
3735998 18940231 0 20
3735998 18547003 0 1
3735998 19267921 0 1
3735998 19071307 0 17
3735998 18678079 0 1
3735998 18481465 0 1
3735998 19202383 0 15
3735998 19005769 0 1
3735998 19136845 0 19
3735998 6160689 0 190

offcpu

This probe starts when a process or thread is dispatched from a CPU.

Syntax:@@sysproc:dispatch:<pid/tid/*>

General programming concepts 359

Special built-ins supported

__dispatchinfo{
 cpuid; <- CPU where selected thread will run.
 newpid; <- pid of the new process process selected for running
 newtid; <- thread id of the thread selected for running
 newpriority; <-priority of the thread selected for running
}

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

Runs in interrupt environment only.

blockthread

This probe starts when a thread is blocked from running on a CPU. Blocking is a form of sleeping when
a thread sleeps without holding any resources.

Syntax: @@sysproc:blockthread:*

Special built-ins supported

__sleepinfo{
 pid;
 tid;
 waitchan; <-- wait channel of this sleep.
}

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

Runs in interrupt environment only.

foldcpu

This probe starts when a CPU core is about to be folded. This probe does not happen in process
context and must not be filtered with a pid or tid.

Syntax: @@sysproc:foldcpu:*

Special built-ins supported

__foldcpuinfo{
 cpuid; <- logical cpu id which triggers core folding
 gpcores; <- general purpose (unfolded, non-exclusive) cores available.
}

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7.

Example:

To track all CPU folding events in the system:

__foldcpuinfo{
 cpuid; <- logical cpu id which triggers core folding
 gpcores; <- general purpose (unfolded, non-exclusive) cores available.
}

360 AIX Version 7.2: General programming concepts

bindprocessor

Syntax: @@sysproc:bindprocessor:<pid/tid/*>

This probe starts when a thread or process is bound to a CPU. Bindprocessor is a permanent event
and must not be confused with temporary CPU switches.

Special built-ins supported

__bindprocessorinfo{
 ispid <- 1 if cpu is bound to process; 0 for a thread
 id; <- thread or process id.

 cpuid;

};

Other supported built-ins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

Runs in process environment.

changecpu

This probe starts when a thread changes CPU temporarily. This event is more likely to be captured
during CPU funneling events or intentional jumps of some kproc events to perform CPU related tasks
(the xmgc process jumps to all CPUs to manage kernel heaps) special built-ins.

Syntax: @@sysproc:changecpu:*>

Special built-ins supported

__changecpuinfo
{
 oldcpuid; <-source CPU
 newcpuid; <- target CPU
 pid;
 tid; <-Thread id
}

Other supported builtins

__errno__kernelmode, __arg1 to __arg7, __curthread, __curproc, __mst, __tid, __pid,
__ppid, __pgid, __uid, __euid.

Execution environment

Runs in process environment.

Example

@@sysproc:changecpu:*

{
printf ("changecpu PID=%llu TID=%llu old_cpuid=%d new_cpuid= %d \n",
__changecpuinfo->pid,__changecpuinfo->tid,__changecpuinfo->oldcpuid,__changecpuinfo-
>newcpuid);

}

An output similar to the following example is displayed:

General programming concepts 361

changecpu PID=852254 TID=1769787 old_cpuid=26 new_cpuid= 27

changecpu PID=852254 TID=1769787 old_cpuid=-1 new_cpuid= 0

changecpu PID=852254 TID=1769787 old_cpuid=0 new_cpuid= 1

changecpu PID=852254 TID=1769787 old_cpuid=1 new_cpuid= 2

resourceattach

This probe is fired when a resource is attached to another resource in the system.

Syntax: @@sysproc:resourceattach:*>

Special built-ins supported

__srcresourceinfo{
 type;
 subtype;
 id; <- resource type identifier
 offset; <-offset if a memory resource
 length; <- length if a memory resource
 policy;
}
__tgtresourceinfo{
 type;
 subtype;
 id; <- resource type identifier
 offset; <-offset if a memory resource
 length; <- length if a memory resource
 policy;
}

Where type and subtype could be have one of the following values.

Table 73. The resourceattach probe: type and subtype values

Resource type Description

R_NADA Nothing - invalid specification

R_PROCESS Process

R_RSET Resource set

R_SUBRANGE Memory range

R_SHM Shared Memory

R_FILDES File identified by an open file

R_THREAD Thread

R_SRADID SRAD identifier

R_PROCMEM Process Memory

Other supported builtins

__errno__kernelmode, __arg1 to __arg7, __mst.

Execution environment

Runs in process environment.

resourcedetach

This probe is fired when a resource is detached from another resource in the system.

Syntax: @@sysproc:resourcedetach:*>

362 AIX Version 7.2: General programming concepts

Special built-ins supported

__srcresourceinfo{
 type;
 subtype;
 id; <- resource type identifier
 offset; <-offset if a memory resource
 length; <- length if a memory resource
 policy;
}

__tgtresourceinfo{
 type;
 subtype;
 id; <- resource type identifier
 offset; <-offset if a memory resource
 length; <- length if a memory resource
 policy;
}

Where type and subtype could be have one of the following values.

Table 74. The resourcedetach probe: type and subtype values

Resource type Description

R_NADA Nothing - invalid specification

R_PROCESS Process

R_RSET Resource set

R_SUBRANGE Memory range

R_SHM Shared Memory

R_FILDES File identified by an open file

R_THREAD Thread

R_SRADID SRAD identifier

R_PROCMEM Process Memory

Other supported builtins

__errno__kernelmode, __arg1 to __arg7, __mst, __tid, __pname.

Execution environment

Runs in process environment.

drphasestart

This probe is fired when a dr handler is about to be called.

Syntax: @@sysproc:drphasestart:*

Special built-ins supported

__drphaseinfo{
 dr_operation; ← dr operation
 dr_flags;
 dr_phase;
 handler_rc; ← always 0 in drphasestart
}

dr_operation can have one of the following values:

• DR operation
• DR_RM_MEM_OPER

General programming concepts 363

• DR_ADD_MEM_OPER
• DR_RM_CPU_OPER
• DR_ADD_CPU_OPER
• DR_CPU_SPARE_OPER
• DR_RM_CAP_OPER
• DR_ADD_CAP_OPER
• DR_RM_RESMEM_OPER
• DR_PMIG_OPER
• DR_WMIG_OPER
• DR_WMIG_CHECKPOINT_OPER
• DR_WMIG_RESTART_OPER
• DR_SOFT_RES_CHANGES_OPER
• DR_ADD_MEM_CAP_OPER
• DR_RM_MEM_CAP_OPER
• DR_CPU_AFFINITY_REFRESH_OPER
• DR_AME_FACTOR_OPER
• DR_PHIB_OPER
• DR_ACC_OPER
• DR_CHLMB_OPER
• DR_ADD_RESMEM_OPER

dr flags can be a combination of the following values:

• Flag
• DRP_FORCE
• DRP_RPDP
• DRP_DOIT_SUCCESS
• DRP_PRE_REGISTERED
• DRP_CPU DRP_MEM DRP_SPARE
• DRP_ENT_CAP
• DRP_VAR_WGT
• DRP_RESERVE
• DRP_PMIG DRP_WMIG
• DRP_WMIG_CHECKPOINT
• DRP_WMIG_RESTART
• DRP_SOFT_RES_CHANGES
• DRP_MEM_ENT_CAP
• DRP_MEM_VAR_WGT
• DRP_CPU_AFFINITY_REFRESH
• DRP_AME_FACTOR
• DRP_PHIB
• DRP_ACC_UPDATE
• DRP_CHLMB

Other supported builtins

__errno__kernelmode, __arg1 to __arg7, __tid

364 AIX Version 7.2: General programming concepts

Execution environment

Runs in process or interrupt environment.

Example

Shell scripts for ProbeVue
Shell scripts are useful when running ProbeVue.

The following are useful shell scripts:

sprobevue

Shell script that wraps all arguments in double quotes:

#!/usr/bin/ksh
#
sprobevue:
#
Simple helper function for probevue
Wraps arguments to probevue in double quotes
#
Usage: sprobevue <probevue flags> <script> <args>
Doesn't support the -c and -A flags of probevue
#

usage()
{
 echo "Usage: sprobevue <probevue flags> <script> <args>" >&2
 echo " Doesn't support the -c and -A flags of probevue" >&2
 exit 1
}

CMD=probevue
Generate command to execute

while getopts 'c:A:I:s:o:t:X:' zargs
do
 case $zargs in
 I|s|o|t|X) CMD="$CMD -$zargs $OPTARG" ;;
 ?) usage
 esac
done

shift $(($OPTIND -1))

if [-n "$1"]
then
 CMD="$CMD $1"
 shift
fi

for i
do
 CMD="$CMD \"$i\""
done

Execute command
$CMD

prgrep

Shell script that prints process ID given process name:

#/usr/bin/ksh
#
prgrep:
#
Simple helper function for probevue
Prints all process IDs with given process name
#
Need options to print only one process
to print process belong to a certain UID

#
Usage: prgrep <process_name>
prgrep -p <processID>

General programming concepts 365

usage()
{
 echo "Usage: prgrep <process_name>" >&2
 echo " prgrep -p <process_ID>" >&2
 exit 1
}

[-z "$1"] && usage

if [$1 = "-p"]
then
 [-z "$2"] && usage
 pid=$2
 export pid
 ps -e | awk 'BEGIN {pid = ENVIRON["pid"]} {if ($1 == pid) print $4}'
else
 pname=$1
 export pname
 ps -e | awk 'BEGIN {pname = ENVIRON["pname"]} {if ($4 == pname) print $1}'
fi

ProbeVue error messages
As described earlier, running the probevue command requires privilege. If an ordinary user tries running
the probevue command, the RBAC framework detects this and fails the execution of the command
immediately.

$ probevue kernel.e
ksh: probevue: 0403-006 Execute permission denied.

The Authorizations and privileges section of the Running ProbeVue describes how to enable non-root
users with the authorizations and privileges to issue the probevue command.

The ProbeVue compiler, which is built-in to the probevue command, prints detailed error messages
during the compilation phase when it detects any syntax errors, semantic errors or type incompatibility
errors. Consider the following script:

/* Syntax error example:
 * syntaxbug.e
 */
@@BEGIN
{
 int i, j, k;

 i = 4;
 j = 22;

 k = i _ z;

 printf("k = %d\n", k);

 exit();
}

The preceding script has a syntax error on line 11 at column 15, the assignment statement. Instead of a
minus symbol (-) or an underscore symbol (_) was typed by mistake. On running the script, the ProbeVue
compiler catches this error and generates an error message:

probevue syntaxbug.e
syntaxbug.e: token between line 11: column 15 and line11: column 15: , expected
instead of this token

The ProbeVue compiler also invokes internal system calls to check if the probe specifications in the Vue
script are valid. A common error is to pass an invalid process ID or the process ID of an exited process

366 AIX Version 7.2: General programming concepts

in the probe point tuple. Another common error is to forget to pass a process ID as an argument on the
command line when the script expects one. Consider the following script:

/* simpleprobe.e
 */
@@syscall:$1:read:entry
{
 printf("In read system call: thread ID = %d\n", __tid);
 exit();
}

The preceding script requires a process ID as an argument to replace the '$1' variable in the probe point
tuple at line 3. The kernel will return an error if you tries to probe a process that has exited or does not
exist. It also fails if the process ID indicates a kernel process or the init process. Further, you cannot probe
a process that does not belong to you unless you have the required privileges to probe another user's
processes. You can use the prgrep command with the -p flag to print the process name given a process
ID.

Note: This command produces an empty output if the specified process ID does not exist.

probevue simpleprobe.e 233
probevue: The process does not exist.
ERR-19: Line:3 Column:3 Invalid probe string
prgrep -p 232
#
probevue simpleprobe.e 1
ERR-19: Line:3 Column:3 Invalid probe string
prgrep -p 1
init
probevue simpleprobe.e
ERR-19: Line:3 Column:3 Invalid probe string

The probevue command can also detect if an unprivileged user tries to access kernel variables. Consider
the kernel.e script from the sample programs section. The following example session shows what
happens if you try running this as an unprivileged user:

$ probevue kernel.e
ERR-56: Line:93 Column:39 No authority to access kernel variable
ERR-56: Line:99 Column:23 No authority to access kernel variable
ERR-56: Line:100 Column:24 No authority to access kernel variable
ERR-56: Line:101 Column:25 No authority to access kernel variable
ERR-56: Line:102 Column:24 No authority to access kernel variable
ERR-102: Line:140 Column:13 Operation not allowed
ERR-46: Line:140 Column:9 Invalid Assignment, Type mismatch

After the Vue script has been compiled successfully, the probevue command invokes a system call to
start a new ProbeVue session passing the intermediate code generated by the compiler. The system call
will fail if the ProbeVue framework fails to initialize a new ProbeVue session. There can be several reasons
for this. For example, starting the new session can cause memory resources for the user to exceed the
administrator-specified limits. The session can need more memory resources than allowed for a single
session. There can be unauthorized functions used in the interval probe manager. One of the processes
being probed can have exited after the compilation phase checks were made. When the session cannot be
started, the kernel fails the system call returning a unique 64-bit error.

The ProbeVue framework can abort a successfully started and active ProbeVue session if a severe or
unrecoverable error is encountered while issuing the probe actions. Possible errors include exceeding
session or user memory limits (memory requirements for thread-local variables and list variables can
grow as the session progresses), exceeding temporary string or stack area limits, accessing out-of-array
indexes, attempting to divide by zero, and so on. In all cases, the kernel will return a unique 64-bit error
number while terminating the session.

When the session is failed whether at start or after it has been successfully started, the probevue
command prints a generic error message including the unique 64-bit error number in hexadecimal format
and exits. The following chart provides the meaning of some common 64-bit errors that could be returned
by the kernel:

General programming concepts 367

Kernel error Meaning Occurs at

0xEEEE00008C285034 Out of memory while allocating
primary trace buffers.

Session start

0xEEEE00008C285035 Out of memory while allocating
secondary trace buffers.

Session start

0xEEEE00008C52002B Out of memory while allocating
storage for probe specification
strings.

Session start

0xEEEE000096284122 Out of memory while allocating
storage for thread-local storage.

Session start

0xEEEE000081284049 Use of user-space access functions
in the interval probe manager.

Session start

0xEEEE0000D3520022 Number of sessions limit for
regular users.

Session start

0xEEEE000096284131 Illegal address passed to the
get_userstring function.

Executing probe action

0xEEEE00008C520145 Maximum thread limit hit for
thread local variables.

Executing probe action

RAS events functions
The "RAS events" functions are a privileged set of Vue functions provided for very specialized system or
application debugging purposes.

The "RAS events" functions are a privileged set of Vue functions provided for very specialized system
or application debugging purposes. They are not intended for general use. They provide system tracing
and dumping facilities. Many of these functions are "pass through" functions that allow a Vue script to
directly invoke kernel services, and hence there are risks involved with using them. You need special
privileges to successfully invoke these functions in your Vue script: you must either be root or have the
aix.ras.probevue.rase authorization.

To avoid the risk of these functions, pass the -K flag to the probevue command. Otherwise, these
functions simply disappear from the Vue language completely.

Generating a trace record
The Vue functions for generating system trace (and LMT trace) records have the syntax that is similar to
the kernel interfaces that are invoked by the Vue functions.

There are some restrictions as follows:

• If system trace is not started, or the hookid value is not being captured by system trace, these
operations do not produce system trace records (LMT tracing to the common buffer for TRCHKLx traces
will still be attempted, but LMT might also be disabled).

• You cannot generate a trace record from within a @@systrace Vue clause. Calls to the tracing functions
only generate the LMT common buffer trace records for TRCHKLx traces in this case, assuming that LMT
is enabled.

• You cannot probe these ProbeVue-generated trace events; only kernel and application generated
tracing can be probed.

• You must be privileged, either as root or with the aix.ras.probevue.rase authorization.

The following Vue functions exist for writing system trace records. All data words are of type long long
integers:

TRCHKL0(hookID)
Trace with no data words.

368 AIX Version 7.2: General programming concepts

TRCHKL1(hookID, D1)
Trace with 1 data word.

TRCHKL2(hookID, D1,D2)
Trace with 2 data words.

TRCHKL3(hookID, D1,D2,D3)
Trace with 3 data words.

TRCHKL4(hookID, D1,D2,D3,D4)
Trace with 4 data words.

TRCHKL5(hookID, D1,D2,D3,D4,D5)
Trace with 5 data words.

void trcgenk(int channel, int hook_ID, unsigned long long data_word, int length, untyped buffer)
Trace a buffer.

These trace functions always append a timestamp to the event data. The hookid parameter to these
functions is of the form 0xhhhh0000. This does not mean that the hookid value is required to be a
constant, it just indicates how a hookid value is formed.

Note: Obsolete 12-bit hookid values will use the leftmost three hex digits, and the 4th digit will be zero.

With the trcgenk kernel service, the buffer parameter is a pointer to length bytes of data to trace, at most
4096 bytes. The buffer parameter can be an external variable like a kernel or application pointer to pinned
data, or a script variable like a Vue string or structure instance. The "untyped" specification is a shorthand
for this.

Note: The trcgenk kernel service only traces to the system trace, not to the LMT trace buffers.

You can use a non-zero channel number, but you must ensure that the specified channel is enabled for
tracing. The return value from the trace command that started the trace of interest can be passed to the
Vue script for this purpose. Using a disabled channel will result in no tracing.

These tracing functions do not return a value.

Stopping the trace

To freeze the system trace as soon as possible after a required event has occurred, you can use void
trcoff() in a Vue script. This function disables channel zero tracing immediately. You must still stop the
trace in the normal way, with the trcstop command external to ProbeVue, in order for trace processing to
be completed normally.

You can immediately stop LMT and component traces so that ongoing tracing does not wrap data of
interest. The corresponding resuming functions are needed because there is no command line equivalent
available to restart these traces. There are following new Vue functions:

void mtrcsuspend()
void ctsuspend()
void mtrcresume()
void ctresume()

The ctsuspend routine stops all component tracing. You cannot use this routine for selective trace stop by
component. It stops component trace only, not any other tracing that the CT_HOOKx macros might have
requested, such as system and LMT trace recording.

You must use these trace control functions with caution, as there is no serialization of the kernel tracing
code being affected. You must manually ensure that only one script or command will be affecting tracing
at a time.

Stopping the system

You can terminate the system and take a full dump using the following routine:

void abend(long long code, long long data_word, ...)

General programming concepts 369

This routine is similar to the abend kernel service, except that only up to 7 data parameters (which will be
loaded into registers r3 through up to r10) are accepted here.

Untyped parameters

In function prototypes to follow, some parameters of the equivalent kernel functions are typed
ambiguously. The Vue compiler generally performs type checking on all parameters passed to a Vue
function, but the parameters designated as having an "untyped" type are exempted from type checking.
For example, an optional string might be passed as NULL when using these kernel services directly in
the kernel, but if the Vue function was defined as taking a parameter of type String, a NULL cannot
be accepted. To avoid the inconvenience of having to pass an empty string instead and to let the Vue
functions take the same parameters as the following kernel interface, these functions have been defined
as taking untyped parameters. An untyped parameter provides us with the liberty of passing NULL
instead of a real Vue string, but be careful when specifying values for "untyped" parameters, because the
compiler will accept any type for the parameter.

Note: There is really no "untyped" variable specification in the Vue language. It is just used as a shorthand
notation.

Related information
trcgenk Kernel Service
Macros for recording trace events

Taking a live dump
For creating the kernel live dump, ProbeVue services are used and the ProbeVue services are similar the
corresponding kernel services.

An exception to this general similarity is the ldmp_parms structure, which is not exposed at the script
level. Instead, the ldmp_setupparms built-in function owns a private instance of this structure, which is
allocated and returned to the caller indirectly as a 64 bit cookie which must be passed to subsequent live
dump services in its place. Only one session can use the private structure at a time. You can use the other
live dump services to resemble the syntax of their kernel counterparts. Because of this hidden allocation
(as well as hidden allocations made by the kernel live dump services themselves), it is necessary to call
either the ldmp_freeparms kernel service or the livedump kernel service once the ldmp_setupparms
kernel service has been called and returned successfully. Otherwise, the current session will continue to
own the private structure, causing all future ldmp_setupparms calls to fail. After the private structure
has been released, it can no longer be used by its former owner without another ldmp_setupparms call.
Do not use the LDT_POST flag with the ldmp_setupparms kernel service, as that implies an unsupported
future reference to the hidden structure.

The typical live dump application must hold the hidden structure for only a very brief interval, typically
within a single probevue clause. The hidden structure is owned by the session, and can actually be used
by any Vue clause in that session. The framework will release the private structure, and other kernel
resources, with the ldmp_freeparms kernel service automatically when the ProbeVue session terminates.

As the ldmp_parms structure elements are not visible to ProbeVue, those that require or permit
initialization by the caller are set using extra parameters passed to the ProbeVue version of the
ldmp_setupparms kernel service instead.

long long ldmp_setupparms(String symptom,required symptom string
untyped title, dump title string or NULL
untyped prefix, dump file name prefix string or NULL
untyped func, failing function name string or NULL
long long errcode, error code
int flags, dump characteristics
int prio) dump priority

The preceding ldmp_setupparms Vue function is an interface to the kernel service of the same name,
except that the ldmp_parms structure is not visible to the calling Vue script. The value returned must
be passed to the other live dump services as a substitute for the pointer to an ldmp_parms structure,
although it is typed as a 64 bit integer.

370 AIX Version 7.2: General programming concepts

The symptom string is a required String operand, while the title, prefix, and func strings are optional. Pass
either a String or NULL for these three parameters. All String values must be local to the Vue script.
The flags and prio parameters can be zero, or values from the kernel header file sys/livedump.h. The
appropriate integer constants must be used here, although there is an alternative.

The following values are useful values for the flags parameter:

 LDT_ONEPASS 0x02 limit dump to one pass
 LDT_NOADDCOMPS 0x08 components can’t be added by callbacks
 LDT_NOLOG 0x10 no error is to be logged
 LDT_FORCE 0x20 force this dump

Because the dump will be taken from ProbeVue’s disabled internal environment, it must be a serialized,
synchronous, one pass dump.

The following values are acceptable values for the prio parameter:

 LDPP_INFO 1 informational dump
 LDPP_CRITICAL 7 critical dump (this is the default)

If zero is specified for the prio parameter, LDPP_CRITICAL is defaulted by the ldmp_setupparms kernel
service. Only a non-zero value will be stored in the hidden ldmp_parms structure to override this.

The return value upon success will be a positive cookie representing the ownership of the hidden
ldmp_parms structure.

On any failure, the return value will be negative as follows:

Value Description

EINVAL_EVM_
COOKIE

Indicates that the private ldmp_parms structure is not available.

EINVAL_EVM_
STRING

Indicates that a String valued parameter is not valid.

All of the subsequently described Vue functions return failure indications in a similar fashion, with a
negative kernel error number:

Value Description

EINVAL_EVM_
COOKIE

Indicates that the caller did not correctly specify a cookie showing ownership of
the private ldmp_parms structure.

EINVAL_EVM_
STRING

Indicates that a String valued parameter is not valid.

EINVAL_EVM_
EXTID

Indicates that the extid parameter is not supported, and must be zero.

Other kernel error numbers can be passed back by the following kernel services:

long long ldmp_freeparms (long long cookie)
After the ldmp_setupparms kernel service has returned successfully, the internal ldmp_parms
structure has been allocated to the running Vue script. You must free this resource, plus other
kernel-internal resources allocated by the services that add components to your dump, by either
taking the dump by calling the livedump kernel service, or by calling the ldmp_freeparms kernel
service. This releases the internal ldmp_parms structure for future use.

long long livedump (long long cookie)
After the ldmp_setupparms kernel service and at least one of the various services that add
components (and pseudo-components) to a dump have been called, the dump is requested by the
livedump service. This service produces the actual live dump in the /var/adm/ras/livedump file
according to the specifications provided through the ldmp_setupparms kernel service and the other
live dump services invoked. The cookie parameter is the cookie returned by the initial call to the

General programming concepts 371

ldmp_setupparms kernel service. The return value will be zero if the dump was successfully taken,
EINVAL_EVM_COOKIE if the cookie is not valid, and another kernel error number if an error occurs
during kernel livedump processing.

long long dmp_compspec(long long flags, DCF_xxx flags defined in sys/dump.h untyped comp,
component to be added (by ras_block_t, name, alias, and so on.) long long cookie, cookie returned
by ldmp_setupparms long long extid, not supported – must be zero untyped p1, first possible
component parameter ...); additional component parameters

You can add any component that supports live dump to the live dump by calling this service, which is
identical in function to the kernel service with the same name except the following situations:

• The extid parameter, which allows a dmp_extid_t (long) to be returned in the kernel programming
environment, is unsupported and must be zero. EINVAL_EVM_EXTID will be returned otherwise.
There is no way to pass a pointer to ProbeVue memory to receive this value, which might then be
used with the dmp_compext kernel service, which is therefore also not supported in ProbeVue.
Instead, you can call the dmp_compspec service multiple times.

• The kernel service allows any number of parameters p1, p2, and so on where an additional NULL
parameter must follow the last actual one to terminate the parameter list. The Vue function only
accepts at most four parameters of p1, p2, and so on. The last must still be zero to tell the kernel
service how many of these parameters there are, so in effect you can specify only up to 3 interesting
values. The interface will automatically force the parameter following the last one of up to 3 variable
parameters to zero, to ensure that this rule is followed.

• The comp parameter can be a long, a kernel ras_block_t address, or a String as appropriate. The
type is not checked.

• The kernel #define flag values are not part of ProbeVue.

long long ras_block_lookup(String path)
This function locates the ras_block_t corresponding to the component path name parameter. This can
be useful for calling the dmp_ct kernel service, which requires such an address, if you cannot more
easily find the address in a kernel variable.

The return value from this function is either the kernel address of the requested ras_block_t, or NULL
if the ras_block_t cannot be found.

The following functions are all simple "pass through" functions that allow a Vue script to directly invoke
the corresponding kernel services. Some of the parameter lists have unused members for compatibility
with the kernel, so you can use the kernel documentation directly. The value 0 must be passed for
parameters shown as unused. You can use these services in the same way as their kernel counterparts,
except that the address of an ldmp_parms structure is replaced by the cookie returned from the
ldmp_setupparms kernel service.

As always, a negative return value indicates an error. This can be a kernel error number from the following
kernel service, or from the interface routines if the cookie or a string is incorrect. The following interfaces
provide most of the flexibility available to kernel or kernel extension driven live dumps.

long long dmp_context (long long flags,DCF_xxx flags from dump.h
long long cookie, cookie returned by ldmp_setupparms
long long name, unused by this function
long long ctx_type, DMP_CTX_xxx flags from dump.h untyped p2)
parameter dependent on ctx_type (NULL, mst addr, cpuid, tid)

long long dmp_ct(long long flags, DCF_xxx flags from dump.h
long long cookie, cookie returned by ldmp_setupparms
long long name, unused by this function
untyped rasb, component’s ras_block_t pointer
long long size) amount of CT buffer to dump or 0 for all

long long dmp_eaddr(long long flags, DCF_xxx flags from dump.h
long long cookie, cookie returned by ldmp_setupparms
String name, cdt name
untyped addr, first address to dump
long long size) number of bytes to dump

372 AIX Version 7.2: General programming concepts

long long dmp_errbuf(long long flags, DCF_xxx flags from dump.h
long long cookie, cookie returned by ldmp_setupparms
long long name, unused by this function
long long erridx, 0 for global error log, or wpar id
long long p2) unused

long long dmp_mtrc(long long flags, DCF_xxx flags from dump.h
long long cookie, cookie returned by ldmp_setupparms
long long name, unused by this function
long long com_size, amount of LMT common data to dump
long long rare_size)amount of LMT rare data to dump

long long dmp_pid(long long flags, DCF_xxx flags from dump.h
long long cookie, cookie returned by ldmp_setupparms
long long name, unused by this function
long long pid, id of process to dump
long long p2) unused

long long dmp_systrace (long long flags, DCF_xxx flags from dump.h
long long cookie, cookie returned by ldmp_setupparms
long long name, unused by this function
long long size, amount to dump
long long p2) unused

long long dmp_tid(long long flags, DCF_xxx flags from dump.h
long long cookie, cookie returned by ldmp_setupparms
long long name, unused by this function
long long tid, id of thread to dump
long long p2) unused

Note: You must call the ldmp_freeparms kernel service after any failure in the preceding routines,
assuming you then want to abandon the dump.

The following script is an example that takes a very small, simple live dump. The kernel symbol dc_data
exports a structure from the kernel, whose actual shape and contents are of no importance to this
example.

_kernel struct {int i1; int i2; int i3; int i4;} dc_data;

@@BEGIN
{
 long long ldmp_parms;
 long long rc;

 rc = ldmp_setupparms("dc_data dump",
 "My Sample Dump", /* dump title */
 "pvdump", /* dump path prefix */
 NULL, /* no function name */
 0x1122334455667788LL, /* error code */
 0x10, /* LDT_NOLOG flag */
 0); /* default dump prio */
 printf("ldmp_setupparms rc = %016llx\n", rc);
 if (rc < 0) {
 exit();
 }

 ldmp_parms = rc; /* cookie for other livedump functions */

 /*
 * Add 16 bytes of kernel data to sample dump.
 * Note that "dc_data" passes the structure's address.
 */
 rc = dmp_eaddr(0, ldmp_parms, "dc_data", dc_data, sizeof(dc_data));
 if (rc) {
 printf("dump_eaddr failed: %llx\n", rc);
 ldmp_freeparms(ldmp_parms);
 exit();
 }

 /*
 * Take the sample live dump.
 */
 rc = livedump(ldmp_parms);
 if (rc) {

General programming concepts 373

 printf("livedump failed: %llx\n", rc);
 }

 exit();
}

Using #define symbols for live dump flags

The following sample shell script, probe.dump, can be useful if you prefer to use the actual defined
symbols for live dump flags rather than manually substituting from the header files. It captures the
relevant definitions from the livedump.h and dump.h files, and uses the C preprocessor to substitute
values for you before passing your script to ProbeVue. Your script must comply with the following rules:

• Must not begin with a #!/usr/bin/probevue comment.
• Must not use symbols beginning with LDPP_, LDT_, DCF_, or DMP_ in conflict with the definitions in the

header files.

Do not create files named pvdump.*, as the following script will overwrite them.

#!/bin/ksh
#
Helper script for Vue scripts that need to pick up
the values of the various flags used by livedump.
#
The Vue script $1
must not contain a "#!/usr/bin/probevue" comment because
the C preprocessor doesn't like it.

sed -n \
 -e '/(/d' \
 -e '/^#define LDPP_/p' \
 -e '/^#define LDT_/p' \
 -e '/^#define DCF_/p' \
 -e '/^#define DMP_CTX_/p' \
 /usr/include/sys/dump.h \
 /usr/include/sys/livedump.h \
 > pvdump.h

echo “#include \”pvdump.h\”” > pvdump.c
cat $1 >> pvdump.c
cc -P pvdump.c
/usr/bin/probevue –K pvdump.i
rm pvdump.[cih]

Related information
livedump Kernel Service

Vue functions
There are many Vue functions. For example, you can use Vue functions to append values to a list,
generate a runtime stack trace, and return the sum of all elements in a list.

The Vue language supports the following list of functions:

Function Description

add_range Initialize the string range data type.

append Appends a value to a list.

atoi Returns the integer value of a string.

avg Returns the average of all the elements in a list.

commitdiscard Commits or discards the data in a tentative trace buffer.

convert_ip4_addr Converts the IPv4 address (data) into the ProbeVue data-type
ip_addr_t format.

374 AIX Version 7.2: General programming concepts

Function Description

convert_ip6_addr Converts the IPv6 address (data) into the ProbeVue data-type
ip_addr_t format.

copy_kdata Copies data from kernel memory into a Vue script variable.

copy_userdata Copies data from user memory into a Vue script variable.

count Returns the count of the number of elements in a list.

diff_time Returns the difference between two timestamps.

eprintf Formats and prints data to the standard error.

exit Terminates the Vue script.

fd_fname Get the file name for a specific file descriptor.

fd_fstype Get the file system type for a specific file descriptor.

fd_ftype Get the file type for a specific file descriptor.

fd_inodeid Get the inode ID for a specific file descriptor.

fd_mpath Get the mount path of the file system for a specific file
descriptor.

fd_path Get the absolute file path for a specific file descriptor.

fpath_inodeid Get the inode ID for a specific file path.

get_function Returns the name of the function that is being probed.

get_kstring Copies data from kernel memory into a String variable.

get_location_point Returns the current probe location point.

get_probe Returns the current probe point specification.

get_stktrace Returns the runtime stack trace.

get_kbytes Copies at most number of bytes of data specified, from kernel
memory into a Vue script variable.

get_ubytes Copies at most number of bytes of data specified, from user
memory into a Vue script variable.

get_userstring Copies data from user memory.

list Creates and returns a new empty list.

group_output_start Start output grouping for the clause that this function belongs
to.

group_output_end End output grouping for the clause that this function belongs to.

lquantize Quantizes associative array values logarithmically and prints the
key-value pairs in a graphical format.

max Returns the maximum of all the elements in a list.

min Returns the minimum of all the elements in a list.

args Prints the name of the function being probed and its arguments

print Prints the key-value pairs in an associative array

printf Formats and copies data to the trace buffer.

General programming concepts 375

Function Description

ptree Prints the process tree for the probed process

quantize Quantizes associative array values linearly and prints the key-
value pairs in a graphical format.

qrange Finds the slot number of the range and adds it to the Associative
array.

round_trip_time Gets the smoothed round trip time for TCP connection for the
specified socket descriptor.

set_aso_print_options Specifies the sort-type, sort-by, and the list-value flags.

set_date_format Updates the date format.

set_range Initialize the linear and power range type.

sockfd_netinfo Get the local and remote ports and IP addresses information for
a specific socket descriptor.

startend_tentative Indicates the start and the end of a tentative tracing section.

stktrace Generates and prints a runtime stack trace.

strstr Return a string inside another string.

sum Returns the sum of all the elements in a list.

timestamp Returns the current timestamp.

trace Copies raw data to the trace buffer as hexadecimal characters.

add_range
Purpose

Initializes the string range data type and adds strings in a slot.
Syntax

add_range(range_t range_data, String S1, String S2, ..., String Sn);

Description
This routine initializes the range_data as a string range data type and also adds all the strings
passed as arguments to the routine in one slot. If this routine is called the first time for a range data
type, strings will be added in first slot. Otherwise, strings are added in the next slot.

Parameters
range_data

A range_t data type.
S1, S2,...

Strings to be added to the range_data parameter.

append
Purpose

Appends a value to a list.
Syntax

void append (List listvar, long long val);

376 AIX Version 7.2: General programming concepts

Description

The append function is the only list concatenation function available in Vue. It appends the value
specified by the second parameter to the list variable specified by the first parameter. Each call to the
append function adds a new value to the set of values already saved in the list variable and the size of
the list variable grows. The append function also accepts another list as an argument, allowing you to
join two lists.

Note: The value added to the list must be a parameter of integral or list type or this will result in a
syntax error. The ProbeVue compiler will accept parameters that have any of the C-89 integer data
types including both signed and unsigned types. No casts are needed.

The append function has no return value.

For more information about the list data type, see “List type” on page 248. The preceding list section
has an example script that uses the append function.

Parameters

Parameters Description

listvar Specifies a variable of type list.

val Specifies a value or list to be appended.

atoi
Purpose

Returns the integer value of a string.
Syntax

int atoi(String str);

Description

The atoi function returns the integer whose value is represented by the string specified by the str
parameter. It reads the string up to the first character that is not a numerical digit (0-9) and translates
the scanned characters into the equivalent integer. Leading white-space characters are ignored, and
an optional sign indicator can precede the digits.

The atoi function is useful in converting strings back to integers when running the sprobevue shell
script that wraps double-quotes around all arguments. The following script is an example that
captures a process forking faster than expected.

/* File: ffork.e
 *
 * Usage: sprobevue ffork.e processname delta
 *
 * Traces whenever a specified process is forking faster than
 * the "delta" value passed. Specify a process name and the time
 * in milliseconds as parameters.
 */

/* Ignore other parameters to execve */
int execve(char *path);

@@BEGIN
{
 int done;
 int pid;

 pname = $1; /* name of process we are monitoring */

 /*
 * Since sprobevue is used, need to extract the integer value
 * from the string (double quotes around the delta).
 */
 delta = atoi($2); /* minimum delta in millisecs between forks */
 printf("pname = %s, delta = %d\n", pname, delta);
}

General programming concepts 377

@@syscall:*:execve:entry
 when (done == 0)
{
 __auto String exec[128];
 __thread int myproc;

 /* Find process being 'exec'ed */
 exec = get_userstring(__arg1, 128);

 /* Got it. Set a thread-local and reset 'done' so that we
 * avoid entering this probe from now on.
 */
 if (exec == pname) {
 pid = __pid;
 myproc = 1;
 done = 1;
 printf("Process name = %s, pid = %d\n", __pname, pid);
 }
}

@@syscall:*:fork:entry
 when (thread:myproc == 1)
{
 /* old_ts is initialized to zero */
 probev_timestamp_t old_ts, new_ts;
 unsigned long long interval;

 /* Get current time stamp */
 new_ts = timestamp();

 /* Find time from last fork */
 if (old_ts != 0) {
 interval = diff_time(old_ts, new_ts, MILLISECONDS);

 /* if below the specified limit, trace that */
 if (interval < delta)
 printf("%s (%ld) forking too fast (%d milliseconds)\n",
 pname, __pid, interval);
 }

 /* Save current fork timestamp */
 old_ts = new_ts;
}

@@syscall:*:exit:entry
 when (__pid == pid)
{
 /* Catch process exit and terminate ourselves */
 printf("Process '%s' exited.\n", pname);
 exit();
}

Parameter

Parameters Description

str Specifies the string to be converted.

avg
Purpose

Returns the average of all the elements in a list.
Syntax

long long avg (List listvar);

Description

The avg function returns the average of all the elements that have been appended to the list variable
specified by the listvar parameter.

378 AIX Version 7.2: General programming concepts

Parameter

Parameters Description

listvar Specifies a variable of type list.

commit_tentative, discard_tentative
Purpose

Commits or discards the data in a tentative trace buffer.
Syntax

void commit_tentative(String bufID);
void discard_tentative(String bufID);

Description

The commit_tentative function commits the trace data associated with the tentative trace buffer
identified by the bufID parameter. This saves the data and makes it available to the trace consumer.

The discard_tentative function discards all the data in the tentative trace buffer indicated by the
bufID parameter. This frees up the space in the trace buffers occupied by the tentative trace data.

When tentative trace data is being saved along with regular trace data, erstwhile tentative, but
later committed trace data and regular trace data will be made available to the trace consumer in
timestamp order. Thus, it is a good idea to commit or discard tentative data at the earliest opportunity
to free up the trace buffers.

All tentative trace data that has not been committed is discarded when the ProbeVue session ends.

The “Tentative tracing” on page 265 topic describes tentative tracing in more detail and includes an
example Vue script that uses tentative tracing.

Parameter

Parameters Description

bufID Specifies a string constant that indicates the tentative trace buffer ID.

convert_ip4_addr
Purpose

Converts the IPV4 address (data) into ProbeVue IP address data-type format.
Syntax

ip_addr_t convert_ip4_addr (unsigned int ipv4_data);
Description

The convert_ip4_addr function converts the IPv4 address in the in_addr structure defined in
the /usr/include/netinet/in.h file to ProbeVue IP address data-type ip_addr_t. This function returns
the converted ip_addr_t value.

Parameters
ipv4_data

Specifies the ipv4 address data that needs to be converted into the ip_addr_t format.

convert_ip6_addr
Purpose

Converts the IPv6 address (data) into ProbeVue IP address data-type format.
Syntax

ip_addr_t convert_ip6_addr (int *ipv6_data);

General programming concepts 379

Description
The convert_ip6_addr function converts the IPv6 address in the in6_addr structure defined in
the /usr/include/netinet/in.h file to ProbeVue IP address data-type of type ip_addr_t. This function
returns the converted ip_addr_t value.

Parameters
ipv6_data

Specifies the ipv6 address data that needs to be converted into the ip_addr_t format.

The following script is an example that prints the information about to whom the probed process is
sending the data.

/* Declare the Function prototype */
int sendto(int s, char * uap_buf, int len, int flags, char * uap_to, int tolen);

typedef unsigned int in_addr_t;

/* Structure Declarations */

/* Declare the in_addr structure */
struct in_addr {
 in_addr_t s_addr;
};

/* Declare the sockaddr_in structure */
struct sockaddr_in {
 unsigned char sin_len;
 unsigned char sin_family;
 unsigned short sin_port;
 struct in_addr sin_addr;
 unsigned char sin_zero[8];
};
/* Declare the in6_addr structure */
struct in6_addr {
 union {
 int s6_addr32[4];
 unsigned short s6_addr16[8];
 unsigned char s6_addr8[16];
 } s6_addr;
};
/* Declare the sockaddr_in6 structure */
struct sockaddr_in6 {
 unsigned char sin6_len;
 unsigned char sin6_family;
 unsigned short sin6_port;
 unsigned int sin6_flowinfo;
 struct in6_addr sin6_addr;
 unsigned int sin6_scope_id; /* set of interfaces for a scope */
};

/* Print the information about to whom it is sending data */
@@syscall:*:sendto:entry
{
 struct sockaddr_in6 in6;
 struct sockaddr_in in4;
 ip_addr_t ip;

 /* Copy the arg5 data into sockaddr_storage variable */
 /* using copy_userdata() Vue function */
 copy_userdata(__arg5, in4);

 /*
 * Verify whether the destination address is IPv4 or IPv6 and based on that call the
 * corresponding IPv4 or IPV6 conversion routine.
 */
 if (in4.sin_family == AF_INET)
 {
 /* Copy the ipv4 data into sockaddr_in structure using copy_userdata routine
*/
 copy_userdata(__arg5, in4);

 /* Convert Ipv4 data into ip_addr_t format */
 ip = convert_ip4_addr(in4.sin_addr.s_addr);

 /* Print the destination address and hostname using %H and %I format
specifier */
 printf("It is sending the data to node %H(%I)\n",ip,ip);

380 AIX Version 7.2: General programming concepts

 }
 else if(in4.sin_family == AF_INET6)
 {
 /* Copy the ipv6 data into sockaddr_in6 structure using copy_userdata routine
*/
 copy_userdata(__arg5, in6);

 /* Convert Ipv6 data into ip_addr_t format */
 ip = convert_ip6_addr(in6.sin6_addr.s6_addr.s6_addr32);

 /* Print the destination address and hostname using %H and %I format
specifier */
 printf("It is sending the data to node %H(%I)\n", ip,ip);
 }
}

count
Purpose

Returns the number of elements in a list.
Syntax

long long count (List listvar);

Description

The count function returns the number of elements that have been appended to the list variable
specified by the listvar parameter.

For more information about the list data type, see Data types in Vue. The preceding list section has an
example script that uses the count function.

Parameter

Parameters Description

listvar Specifies a variable of type list.

copy_kdata
Purpose

Copies data from kernel memory into a Vue script variable.
Syntax

void copy_kdata(<type> *kaddr,<type>svar);

Description

The copy_kdata function reads data from the kernel memory into a Vue script variable. The variable
might be of any of C-89 types that are supported by Vue except for pointer types. The length that is
copied is equal to the size of the variable. For example, 4 bytes are copied if the target Vue script
variable is of the type int, 8 bytes are copied if it is of type long long, and 48 bytes are copied if it is an
array of 12 integers or int[12].

Data in kernel space must be copied before it can be used in expressions or passed as parameters to a
Vue function.

If an exception occurs while the process is running this function, for example, when a bad kernel
address is passed to the function, the ProbeVue session is aborted with an error message.

Parameter
kaddr

Specifies the address of the kernel space data.

General programming concepts 381

svar
Specifies the script variable in which kernel data is copied. The script variable type can be of the
type kernel data.

copy_userdata
Purpose

Copies data from user memory into a Vue script variable.
Syntax

void copy_userdata(<type> *uaddr,<type>svar);

Description

The copy_userdata function reads data from user memory into a Vue script variable. The variable
might be of any of the C-89 types that are supported by Vue . The length that is copied is equal to the
size of the variable type. For example, 4 bytes are copied if the target Vue script variable is of the type
int, 8 bytes are copied if it is of type long long, and 48 bytes are copied if it is an array of 12 integers or
int[12].

Data in user space must be copied in before it can be used in expressions or passed as parameters to
a Vue function.

If an exception occurs while the process is running this function, as for example when a bad user
address is passed to the function, the ProbeVue session is aborted with an error message.

Parameter
uaddr

Specifies the address of the user space data.
svar

Specifies the script variable in which user data is copied. The script variable type must be of the
type user data.

diff_time
Purpose

Returns the difference between two timestamps.
Syntax

unsigned long long diff_time(probev_timestamp_t ts1, probev_timestamp_t ts2, intformat);

Description

The diff_time function returns the time difference between two timestamps that were recorded using
the timestamp function. This function can return time difference in microseconds or milliseconds as
specified by the format parameter.

The get_location_point and list sections have example scripts that use the diff_time function.

Parameter

Parameters Description

ts1 Indicates the earlier timestamp.

ts2 Indicates the later timestamp.

382 AIX Version 7.2: General programming concepts

Parameters Description

format Sets to one of the following values:
MILLISECONDS

Returns the time difference to the closest millisecond.
MICROSECONDS

Returns the time difference to the closest microsecond.
You cannot pass a variable for this parameter.

eprintf
Purpose

Formats and prints data to the standard error.
Syntax

void eprintf (String format[, data, ...]);

Description

The eprintf function is similar to printf function except that the output is sent to the standard error.
The eprintf function converts, formats, and copies the data parameter values to the trace buffer
under the control of the format parameter. As indicated by the syntax, a varying list of arguments
can be passed as data parameters to the eprintf function. Vue supports all the conversion specifiers
supported by the printf subroutine that is provided by the C library except for the %p conversion
specifier.

The eprintf function cannot be used to print variables of list type. However, a variable of string
type can be printed by using the %s conversion specifier. A variable of probev_timestamp_t
type is printed in numerical form by using the %lld or %16llx specifier. A variable of type
probev_timestamp_t is printed in the date format by using the %A or %W specifier.

Parameter
format

One string that contains plain characters that are directly copied to the trace buffer without any
change. Another or more conversion specifiers that provide indication on how to format the data
parameters.

data
Specifies zero or more arguments that correspond to the conversion specifiers in the format
parameter.

Note: Tentative tracing is not allowed with the eprintf function.

exit
Purpose

Terminates the Vue script.
Syntax

void exit();

Description

The exit function terminates the Vue script. This disables all the probes enabled in the dynamic
tracing session, discards any tentative trace data, issues the actions indicated in @@END probe and
flushes all the captured trace data to the trace consumer. After the trace consumer prints any output
traced in the @@END probe, the tracing session is terminated and the probevue process exits.

General programming concepts 383

The same effect can be obtained by typing a Ctrl-C on the terminal where the probevue command
was issued if it is running as the foreground task. Alternatively, you can directly send a SIGINT to the
probevue process using the kill command or the kill system call.

The list section has an example script that uses the exit function. The atoi section has an example
script for how to exit at the same time as the process that you are probing terminates.

Parameter
The exit function does not take any parameters, unlike the exit subroutine that is provided by the C
library.

fd_fname
Purpose

Returns the file name for a particular file descriptor.
Syntax

char * fd_fname(int fd);

Description

This function gets the name of the file for a specific file descriptor. This returns the same value as that
of the __file->fname (refer to __file built-in of I/O probe manager) for the same file.

Note: This function requires the num_pagefaults tunable value of the probevctrl command to be
greater than 0. If it is 0 (or insufficient), then this function returns a null string as the file name.

Parameters
fd

File or socket descriptor value

fd_fstype
Purpose

Returns the file system type for a particular file descriptor.
Syntax

int fd_fstype(int fd);

Description
This function gets the type of the file system that the file of the specific file descriptor belongs to. It
returns the same values as that of __file->fs_type (refer to __file built-in of I/O probe manager).

Note: This function requires the num_pagefaults tunable of probevctrl command to be greater
than 0. If it is 0 (or insufficient), then this function returns -1 as the type of the file system.

Parameters
fd

File descriptor value

fd_ftype
Purpose

Returns the file type for a specific file descriptor.
Syntax

int fd_ftype(int fd);

Description

This function gets the file type for a specific file descriptor. It returns the same values as that of
__file->f_type (refer to __file built-in of I/O probe manager).

384 AIX Version 7.2: General programming concepts

Note: This function requires the num_pagefaults tunable of probevctrl command to be greater
than 0. If it is 0 (or insufficient), then this function returns -1 as the file type.

Parameters
fd

File descriptor value

fd_inodeid
Purpose

Returns the inode ID for a specific file descriptor.
Syntax

unsigned long long fd_inodeid(int fd);

Description

This function returns the inode ID for the file that is related to a specific file descriptor. The inode ID is
a system-wide unique unsigned long long value (it is different from the file system inode number
and can change value if the system is rebooted). This value matches with the value that is returned by
the fpath_inodeid() function for the same file.

Note: This function requires the num_pagefaults tunable of probevctrl command to be greater
than 0. If it is 0 (or insufficient), then this function returns 0 as the inode ID.

Parameters
fd

File descriptor value

fd_mpath
Purpose

Get the mount path of the file system for a specific file descriptor.
Syntax

char * fd_mpath(int fd);

Description

This function gets mount path of the file system that the file of a specific file descriptor belongs
to. It returns the same value as that of __file->mount_path (refer to __file built-in of I/O probe
manager) for the same file.

Note: This function requires the num_pagefaults tunable of probevctrl command to be greater
than 0. If it is 0 (or not sufficient), then this function returns a null string as the mount path.

Parameters
fd

File descriptor value

fd_path
Purpose

Returns the absolute path of the file for a specific file descriptor.
Syntax

path_t fd_path(int fd);

General programming concepts 385

Description

This function returns the absolute path of the file for a specific file descriptor. The return value is of
type path_t. It returns the same value as that of __file->path (refer to __file built-in of I/O probe
manager) for the same file.

Note: This function requires the num_pagefaults tunable of probevctrl command to be greater
than 0. If it is 0 (or insufficient), then this function returns null path, which when printed with the
printf(%p) funciton prints a null string.

Parameters
fd

File descriptor value

fpath_inodeid
Purpose

Returns the inode ID for a specific file path.
Syntax

unsigned long long fpath_inodeid(String file_path);

Description

This function returns the inode ID for a specific file path. The inode ID is a system-wide unique
unsigned long long value (it is different from the file system inode number and can change value if the
system is restarted). If the file path does not exist, then the Vue script is rejected by the probevue
command. The inode ID value remains the same as provided by the __file->inode_id in vfs probe
events for the same file (refer to __file built-in of I/O probe manager).

Note: This function can be used anywhere in a Vue script (wherever Vue functions are allowed).

Parameters
file_path

A double-quoted literal string that represents an existing file. For example, "/usr/lib/boot/
unix_64". It cannot be a variable.

get_function
Purpose

Returns the name of the function that encloses the current probe. When the get_function function is
called from interval, systrace, BEGIN, and END clause, the function returns an empty string.

Syntax

String get_function ();

Description

The get_function function returns the name of the probed function, that is the function that encloses
the current probe point. Generally, the name of the probed function is the probe point tuple field that
precedes the location field.

The preceding get_probe section has an example script that uses the get_function function.

The get_function function returns an empty string when called from the interval probe manager.

Parameters

The get_function function does not take any parameters.

386 AIX Version 7.2: General programming concepts

get_kstring
Purpose

Copies data from kernel memory into a String variable.
Syntax

String get_kstring(char *kaddr,int len);

Description

The get_kstring function reads data in kernel memory into a variable of type String.

Strings in kernel space must be copied in before they can be used in expressions or passed as
parameters to a Vue function.

The target of the get_kstring function must always be a variable of type String. If a value of -1 is
specified for the len parameter, data is copied from kernel memory until a NULL byte is read (NULL
bytes are used to stop text strings in the C language). If the length of the string is larger than the
declared size of the target String variable, only the string characters up to the size of the variable is
copied to it. However, the string in its entirety that is until a NULL byte is read it is initially copied
into the temporary string buffer area. Users of the function must be careful that the kernel address
points to a NULL-terminated string to avoid temporary string buffer area overflows, which cause the
ProbeVue session to be stopped.

The maximum length of the string to be read in from kernel memory can be fixed by specifying a
non-negative value for the len parameter. In this case, the copy proceeds until either a NULL byte is
read or the specified number of bytes are read. This feature allows long strings in kernel memory to
be copied more safely as the copy is limited by the value of the len parameter and does not cause
ProbeVue's internal temporary string buffer to overflow.

If an exception occurs when this function is running, as for example when a bad kernel address is
passed to the function, the ProbeVue session is aborted with an error message.

Parameters
addr

Specifies the address of the kernel space data.
len

Specifies the number of bytes of the kernel data to be copied. A value of -1 indicates that the
kernel data be treated as a "C" string and the copy to continue until a null byte (the '\0' character)
is read. Be careful when you specify a -1 as the value of the len parameter.

get_location_point
Purpose

Returns the current probe location point.
Syntax

int get_location_point ();

Description

The get_location_point function returns the current probe location point as an offset from the
enclosing function entry point. Specifically, it will return FUNCTION_ENTRY or zero if the probe point
is at the entry point of the function and FUNCTION_EXIT or -1 if it is at any exit point; else, it returns
the actual address offset.

The following script shows an example of using the get_location_point function:

@@syscall:$1:read:entry, @@syscall:$1:read:exit
 {
 probev_timestamp_t ts1, ts2;
 int diff;

General programming concepts 387

 if (get_location_point() == FUNCTION_ENTRY)
 ts1 = timestamp();
 else if (get_location_point() == FUNCTION_EXIT) {
 ts2 = timestamp();
 diff = diff_time(ts1, ts2, MICROSECONDS);
 printf("Time for read system call = %d\n", diff);
 }
 }

This function is not supported when called from the interval probe manager.

Parameters

The get_location_point function does not take any parameters.

get_probe
Purpose

Returns the current probe point specification.
Syntax

String get_probe ();

Description

The get_probe function returns the internal representation of the current probe point specification.
When saved internally, the probe point does not include the initial @@ prefix or the process ID, if any.

The following script shows an example of using the get_probe function:

#cat get_probe.e
 @@uft:312678:*:run_prog:entry
 {
 printf("function '%s' probe '%s'\n", get_function(), get_probe());
 }

 #probevue get_probe.e
 function 'run_prog' probe 'uft:*:*:run_prog:entry'

Parameters

The get_probe function does not take any parameters.

get_stktrace
Purpose

Returns current stack trace.
Syntax

stktrace_t get_stktrace(int level);

Description

The get_stktrace function returns stack trace of the current thread. This stack trace is either stored
in a stktrace_t type variable or printed when you use the %t or %T specifier in the ProbeVue built-in
printf function. The level parameter indicates the number of levels up to which the stack trace is to be
printed. The behavior of the get_stktrace function that is used inside the printf function is similar to
the stktrace built-in function. The only difference, is that the symbol with address is printed when the
%t specifier is used for the running thread, otherwise raw address is printed. Also, it prints the whole
CPU stack by traversing all the machine states.

The following script shows an example of using the get_stktrace function:

t1 = get_stktrace(3) // Returns the current stack trace & stores in
stktrace_t
 // type variable t1.
printf('%t\n', get_stktrace(4)); // Prints the current stack trace up to level

388 AIX Version 7.2: General programming concepts

4.
 // Prints symbol with addresses.

printf(“%T\n”, get_stktrace(4)); // Prints the current stack trace up to level 4
 // Prints raw addresses.

Parameters

Parameters Description

level Indicates the number of levels up to which the stack trace is to be saved in
the stktrace_t type variable. A value of -1 indicates that the stack back chain is
to be traversed to the extent possible. The default value of 0 tracks back to 2
levels and saves 2 entries. Any other positive integer value decides the number
of levels to be saved in variable. The max value of level can be 240.

Note: If entries from multiple msts are printed, the mst boundary is separated
by a line that consists of '-' character. This line is also considered 1 level. It
means that the entries that are printed are the level parameter that is provided
minus the number of separator lines (unless the level parameter is -1).

get_ubytes
Purpose

Copies at most len number of bytes of data, from user memory into aVue script variable.
Syntax

int get_ubytes(void *src, char *dest, int len);

Description

The get_ubytes function reads len number of bytes of data from user memory into a Vue script
variable. The variable can be of character pointer type. The length of the data that is copied is equal to
the len parameter passed to this function or size of the destination Vue variable. If the len value is
larger than the size of the destination Vue variable, length of the data that is copied is equal to the size
of the destination variable. Data in user space must be copied to a Vue variable before the data can be
used in expressions or passed as parameters to a Vue function.

Return value

The get_ubytes function returns the total number of bytes that were successfully copied and the
function returns -1 on failure. If an exception occurs when the function is running, for example, if a
bad user address is passed to the function, the ProbeVue session is ended with an error message.

get_kbytes
Purpose

Copies at most len number of bytes of data from kernel memory into a Vue script variable.
Syntax

int get_kbytes(void *src, char *dest, int len);

Description

The get_kdata function reads len number of bytes of data from kernel memory into a Vue script
variable. The variable can be of character pointer type. The length of that data that is copied is equal
to the len parameter passed to this function or size of the destination Vue variable. If the len value is
larger than the size of the destination Vue variable, length of the data that is copied is equal to the size
of the destination variable. Data in user space must be copied to a Vue variable before the data can be
used in expressions or passed as parameters to a Vue function.

General programming concepts 389

Return values

The get_kbytes function returns the total number of bytes that were successfully copied and the
function returns -1 on failure. If an exception occurs when the function is running, for example, if a
bad kernel address is passed to the function, the ProbeVue session is ended with an error message.

get_userstring
Purpose

Copies data from user memory.
Syntax

String get_userstring(char * addr, int len);

Description

The get_userstring function reads data in user memory into a variable of type String.

Data in user space must be copied in before you can use it in expressions or pass it as parameters
to a Vue function. The target of the get_userstring function is generally a variable of type String. If a
value of -1 is specified for the len parameter, data will be copied from user memory until a NULL byte
is read (NULL bytes are used to terminate text strings in the C language). If the length of the string
is larger than the declared size of the target String variable, only the string characters up to the size
of the variable will be copied to it. However, the string in its entirety, that is until a NULL byte is read
will initially need to be copied into the temporary string buffer area. Users of the function need to be
careful that the user address points to a NULL-terminated string to avoid temporary string buffer area
overflows which can cause the ProbeVue session to be aborted.

The actual length of the string to be read in from user memory can be fixed by specifying a value
for the len parameter. In this case, the copy continues till either a NULL byte is read or the specified
number of bytes are read. This feature allows non-string type data to be copied into a String variable,
which can be printed out later by using the trace function.

Note: Vue does not treat a NULL byte as a string terminator, so real strings must not generally be
copied in with this mechanism.

This function is only allowed in user space probes (like the uft probe type) or probes provided by the
syscall probe manager. If a page fault occurs while copying the data, the copy operation is terminated
and the String variable will contain only the data that was successfully copied. If an exception occurs
while issuing this function, as for example when a bad user address is passed to the function, the
ProbeVue session is aborted with an error message.

“ProbeVue dynamic tracing facility” on page 184 has an example script that uses the get_userstring
function.

Note: You can modify the data type of the target of the copy operation using casts, although this will
generate a warning message from the compiler. Thus, you can use the get_userstring function to copy
not only strings, but also data laid out as structures and in other data formats from user space into
ProbeVue space. The following script is an example of how to do this kind of data manipulation:

/* File: string2int.e
 *
 * Reads an integer passed in a pointer using get_userstring()
 *
 */
int get_file_sizep(int *fd);

@@BEGIN
{

 int i;
}

@@uft:$1:*:get_file_sizep:entry
{
 i = *(int *)(get_userstring(__arg1, 4));

390 AIX Version 7.2: General programming concepts

 printf("fd = %d\n", i);
}

Note: The target of the copy operation must be a String variable whose declared length is large
enough to accept the copied in data or the ProbeVue session can be aborted. The get_userstring will
accept any value for the size of the data to be copied in, but the maximum length that can be copied is
limited by the memory limits of the ProbeVue session.

Parameters

Parameters Description

addr Specifies the address of the user space data.

len Specifies the number of bytes of the user data to be copied. A value of -1
indicates that the user data must be considered as a string of characters
and the copy operation must continue until a null byte is read (until the '\0'
character is read). Use caution while specifying -1 as the value of the len
parameter.

group_output_start
Purpose

Group the output of the clause to which this function belongs.
Syntax

void group_output_start();
Description

The group_output_start() function groups the output of a clause. Output messages that are
generated by the VUE statements of a clause after the group_output_start() function call and
before the group_output_end() function call are not interleaved by messages that are generated
from clauses that might be running simultaneously in other CPUs.

group_output_end
Purpose

End grouping the output of the clause to which this function belongs.
Syntax

void group_output_end();

Description

Stops grouping of the output of the clause. Any subsequent VUE statements, if any, will not
have a grouped ouput and can be interleaved by output messages from clauses that are running
simultaneously in other CPUs. Call to the group_output_end() function must be preceded by
a group_output_start() call. After the group_output_start() function is called, calling the
group_output_end() function is optional. If the group_output_end() function is not called then
the output is grouped till the end of clause.

list
Purpose

Creates and returns an empty list.
Syntax

List list ();

General programming concepts 391

Description

The list function is the constructor function for the list data type. It returns an empty list and
auto-declares the target to be a list data type. There is no explicit way to declare a variable to be a list
data type. A list variable is always created as a variable of global class.

The list function can be invoked from any clause. If you specify an existing list name when invoking
the list function, the existing list is cleared.

A list variable can be used to collect values that are of integral type. Any value stored in the list is
automatically promoted to a long long (or 64-bit integer) data type.

The following script shows an example of using the list function. It assumes that the sprobevue shell
program, which encloses double quotes around each argument, invokes the Vue script.

/* File: list.e
 *
 * Collect execution time for read system call statistics
 *
 * Usage: sprobevue list.e <-s|-d>
 *
 * Pass -s for summary and -d for detailed information
 */

int read(int fd, void *buf, int n);

@@BEGIN
{
 String s[10];
 int detail;
 times = list(); /* declare and create a list */

 /* Check for parameters */
 s = $1;
 if (s == "-d")
 detail = 1;
 else if (s == "-s")
 detail = 0;
 else {
 printf("Usage: sprobevue list.e <-s|-d>\n");
 exit();
 }
}

@@syscall:*:read:entry
{
 /*
 * Save entry time in a thread-local to ensure that
 * in the read:exit probe point we can access our thread's value for
 * entry timestamp. If we use a global, then the variable can be
 * overlaid by the next thread to enter read and this can give
 * wrong values when we try to find the difference at read:exit
 * time since we use this later value instead of the original value.
 */

 __thread probev_timestamp_t t1;
 t1 = timestamp();
}

@@syscall:*:read:exit
 when (thread:t1 != 0)
{
 __auto t2;
 __auto long difft;

 /* Get exit time */
 t2 = timestamp();
 difft = diff_time(t1, t2, MICROSECONDS);

 /* Append read time to list */
 append(times, difft);

 /* print detail data if "-d" was passed to script */
 if (detail)
 printf("%s (%ld) read time = %d micros\n", __pname, __pid, difft);
}

@@interval:*:clock:10000

392 AIX Version 7.2: General programming concepts

{
 /* Print statistics every 10 seconds */
 printf("Read calls so far = %d, total time = %d, max time = %d, " +
 "min = %d, avg = %d\n",
 count(times),
 sum(times),
 max(times),
 min(times),
 avg(times));
}

Parameters

The list function does not take any parameters.

lquantize
Purpose

Prints the keys and associated values of an associative array in graphical format by quantizing the
values in logarithmic scale.

Syntax

void lquantize(aso-name ,int num-of-entries, int flags, sort_key_ind)

Description

This function displays the entries of an associative array in a graphical format based on the
logarithmic value of the values of the associative array. If you want to print only elements having
particular set of keys, the keys can be specified along with the associative array variable name in the
first argument. To restrict only a certain dimension keys and allow any value for other keys in, the ANY
keyword can be used. For example see the refer print() function section.

The first parameter is required and all other parameters are optional. If you do not specify optional
parameters, then default print options are used.

Parameters
aso-name

The name of the associative array variable that you want to print. You can also specify keys for all
dimensions in brackets. You can use the ANY keyword to match all keys in a key dimension.

num-of-entries
Specifies how many entries to print. This parameter is optional. Specify 0 to display all the entries.
If no value is specified, the default print option for the session is used. Any negative value is
equivalent to 0.

flags
Specifies the sort-type, sort-by and list-value flags. This parameter is optional. Flags sort-type,
sort-by and list-value are described under the Associative Array Type section. If you specify 0, the
default print option for the session is used.

sort_key_ind
The index of the key (key dimension) using which the output is sorted. If you specify -1, the first
key is used for sorting. If the first key is not a sortable type, the output is not sorted.

max
Purpose

Returns the maximum of all the elements in a list.
Syntax

long long max (List listvar);

General programming concepts 393

Description

The max function returns the maximum of all the elements that have been appended to the list
variable specified by the listvar parameter.

For more information about the list data type, refer the “ProbeVue dynamic tracing facility” on page
184 topic. The preceding listvar section has an example script that uses the max function.

Parameters

listvar: Specifies a variable of type list.

min
Purpose

Returns the minimum of all the elements in a list.
Syntax

long long min (List listvar);

Description

The min function returns the minimum of all the elements that have been appended to the list
variable specified by the listvar parameter.

The preceding listvar section has an example script that uses the min function.

Parameters

listvar: Specifies a variable of type list.

print_args
Purpose

Prints current function and its argument values.
Syntax

void print_args();

Description

The print_args function prints the function name followed by comma separated function arguments
enclosed in round brackets. The argument values are printed based on the argument type information
available in the traceback table of the function. This routine is allowed in entry probes of uft/uftxlc++
and syscall/syscallx probes. This is useful in probes where the probe location is specified as a regular
expression.

Parameters

The print_args function does not take any parameters.

Note: The print_args routine do not generate any output, if the traceback table of the routine has
been paged out, and no free page fault context is available. The number of page faults to be handled
can be increased using the probevctrl command, and the script can be retried.

print
Purpose

Prints the keys and associated values of an associative array.
Syntax

void print (aso-name , int num-of-entires , int flags, int sort_key_ind);

394 AIX Version 7.2: General programming concepts

Description

This function prints the elements of the associative array specified by the variable aso-name. To print
only elements that have a particular set of keys, you can specify the keys with the associative array
variable name in the first argument. To restrict only a certain dimension keys and allow any value for
all other keys, use the ANY keyword.

Example

print(aso_var[0][ANY][ANY]); // print all elements having first key as 0 (other keys can
be anything)
print(aso_var[ANY][ANY][ANY]); // print all; equivalent to print(aso_var);

The first parameter is required and all other parameters are optional. If you do not specify optional
parameters, the default print options are used.

Note: Tentative tracing is not allowed with the print function.

For associative arrays with multi-dimensional keys, the keys are printed as a '|' separated list and the
value is printed on the same line. If a key produces multi-line output, key is printed in a separate line
and the value is printed in a new line. The following example displays a script that has an associative
array with 3 key dimensions types of int and a value type of integer:

aso1[0][“a”][2.5] = 100;
aso1[1][“b”][3.5] = 101;
print(aso1);
The output from previous print() function follows:
[key1 | key2 | key3] | value
0 | a | 2.5000000 | 100
1 | b | 3.5000000 | 101

The following example uses an associative array with two key dimensions of type int and
stktrace_t has a value type of string:

aso2[0][get_stktrace(-1)] = “abc”;
print(aso2);

The output from print() function above will be similar to:
[key1 | key2] | value
0
 |
 0x100001b8
 0x10003328
 0x1000166c
 0x10000c30
 .read+0x288
 sc_entry_etrc_point+0x4
 .kread+0x0
 |
 abc

Parameters
aso-name

The name of the associative array variable that you want to print. You can also specify keys for all
dimensions in brackets. You can use the ANY keyword to match all keys in a key dimension.

num-of-entires
Specifies how many entries to print. This parameter is optional. Specify 0 to display all the entries.
If no value is specified, the default print option for the session is used. Any negative value is
equivalent to 0.

flags
Specifies the sort-type, sort-by and the list-value flags. This parameter is optional. Flags sort-type,
sort-by and list-value are described under the Associative Array Type section. If you specify 0, the
default print option for the session is used.

General programming concepts 395

sort_key_ind
The key index (key dimension) is used for sorting the output. If you specify -1, the first key is used
for sorting. If the first key is not a sortable type, then sorting of output is not sorted.

printf
Purpose

Formats and copies data to the trace buffer.
Syntax

void printf (String format[, data, ...]);

Description

The printf function converts, formats, and copies the data parameter values to the trace buffer
under the control of the format parameter. As indicated by the syntax, a varying list of arguments
can be passed as data parameters to the printf function. Vue supports all the conversion specifiers
supported by the printf subroutine provided by the C library except for the %p conversion specifier.

Apart from the C library's printf() specifiers, Vue language supports two more specifiers: %A and
%W.

%A
Prints the probev_timestamp_t 't' in the default date format. This format can be changed by
using the set_date_format() function.

%W
prints the probev_timestamp_t 't', in seconds and microseconds, relative to the start of the
probevue session.

%p
prints the string corresponding to the absolute file path of the specified path_t value.

%M
prints the MAC address of the specified mac_addr_t value.

%I
prints the IP address in dotted decimal format for ipv4 address and dotted hex format for IPV6
address of the specified ip_addr_t value

%H
prints the host name in string or dotted decimal or hex format of the specified ip_addr_t value.

Note: If IP address is resolved by Domain Name System (DNS), the printf function displays
corresponding host name. Otherwise, it displays the IP address in dotted decimal or hex format.

The printf function cannot be used to print variables of type list. However, a variable of type string
can be printed by using the %s conversion specifier. A variable of type probev_timestamp_t type is
printed in numerical form by using the %lld or %16llx specifier. probev_timestamp_t is printed in
the date format by using the %A or %W specifier.

The following script demonstrates some examples of using the printf function:

@@BEGIN
{
 String s[128];
 int i;
 float f;
 f = 2.3;

 s = "Test: %d, float = %f\n";
 i = 44;

 printf(s, i, f);

 s = "Note:";
 printf("%s Value of i (left justified) = %-12d and right-justified = %12d\n",
 s, i, i);

396 AIX Version 7.2: General programming concepts

 printf("With a long format string that may span multiple lines, you " +
 "can use the '+' operator to concatenate the strings " +
 "in multiple lines into a single string: 0x%08x\n", i);

 exit();
}

Parameters
format

A string that contains plain characters that are directly copied to the trace buffer without any
change and one or more conversion specifiers that provide indication on how to format the data
parameters.

data
Specifies zero or more arguments that correspond to the conversion specifiers in the format
parameter.

ptree
Purpose

To print the process tree for the probed process.
Syntax

void ptree (int depth);

Description

The ptree function prints the process tree for the probed process. This functions prints both the
parent and child hierarchy. The depth passed as a parameter can help in controlling the depth of child
processes that need to be printed. This function cannot be used in BEGIN or END or systrace probes.
Also, this function can be used in the interval probes only if the PID is specified.

Note: This function is not immediately executed in kernel when it is called from a probe, but instead it
is scheduled to run later in the user space. Hence, if the process tree changes in between, the output
of the ptree function might not match the tree structure when the function was actually called.

Sample output

The sample output of the process tree follows as:

PID CMD

1 init
 |
 V
 3342460 srcmstr
 |
 V
 3539052 inetd
 |
 V
 7667750 telnetd
 |
 V
 6881336 ksh
 |
 V
 5112038 probevue
 |
 V
 7930038 tree <=======
 6553782 |\--tree
 4849828 |\--tree
 6422756 |\--tree
 3408074 |\--tree
 5963846 |\--tree
 7864392 |\--tree
 7799006 |\--tree

General programming concepts 397

Parameters

Parameters Description

depth Specifies the maximum depth that the ptree function traverses while printing
the children information for the process. If -1 is passed, it prints all the
children of the process.

quantize
Purpose

Prints the keys and associated values of an associative array in graphical format by quantizing the
values in linear scale.

Syntax

void quantize (aso-name, int num-of-entries, int flags, int sort_key_ind)

Description

This function displays the entries of an associative array in a graphical format based on the linear
value of the values of the associative array. To print only elements that have a particular set of keys,
the keys can be used with the variable name of the associative array in the first argument. To restrict
only a certain dimension keys and allow all keys in the remaining dimensions, you can use the ANY
keyword.

Apart from the first parameter, the others are optional parameters. If these optional parameters are
not given, then default print options are used.

Parameters
aso-name

The name of the associative array variable that you want to print. You can also specify keys for all
dimensions in brackets. You can use the ANY keyword to match all keys in a key dimension.

num-of-entries

Specifies how many entries to print. This parameter is optional. Specify 0 to display all the entries.
If no value is specified, the default print option for the session is used. Any negative value is
equivalent to 0.

flags
Specifies the sort-type, sort-by and list-value flags. This parameter is optional. Flags sort-type,
sort-by and list-value are described under the Associative Array Type section. If you specify 0, the
default print option for the session is used.

sort_key_ind

The index of the key (key dimension) using which the output is sorted. If you specify -1, the first
key is used for sorting. If the first key is not a sortable type, then output is not sorted.

qrange
Purpose

This routine gets the slot number for ranges and adds the range data type as value type for an
associative array.

Syntax

void qrange(aso[key], range_t range_data, int value);
void qrange(aso[key], range_t range_data, String value);

Description

The qrange routine can find the slot number for both integral and String range types. If the range
type is Integral type, then the third argument type should be an integer otherwise for the String range

398 AIX Version 7.2: General programming concepts

data type, the third argument should be a String type. The qrange routine will find the slot number
where the passed value falls. The count for that slot number will be increased for the range type
stored in an associative array as a value.

Parameters
aso[key]

An associative array with specified key.
range_data

A range_t data type.
value

value can be either integer or can be of String type.

round_trip_time
Purpose

Returns the smoothed round-trip time for TCP connection for a specific socket descriptor.
Syntax

int round_trip_time(int sock_fd);

Description

The round_trip_time function gets the smoothed round-trip time (srtt) for a specific socket
descriptor. It provides the valid round-trip value for stream socket descriptor and returns -1 as a
smooth round-trip time value for invalid or non-stream sock descriptor. This function is available only
in uft and syscall probe managers.

Note: This function requires the num_pagefaults tunable value of probevctrl command to be
greater than 0. If it is 0, then this function returns -1 as the round-trip time.

Parameters
fd

File or socket descriptor value.

set_aso_print_options
Purpose

Changes the default print options for associative arrays.
Syntax

void set_aso_print_options(int num-of-entries, int flags);

Description

The set_aso_print_options() function changes the default print options for associative arrays. The
print options that can be provided by the user and their initial values are listed under the Associative
Array type section. This function is allowed only in BEGIN probe.

Parameters
num-of-entries

Specifies to print the first 'n' key or value pairs. If it is 0, all the entries are displayed.
flags

Specifies the sort-type, sort-by, list-value and stack-raw flags. These flags are described under
the Associative Array Type section. These parameters are optional.

set_range
Purpose

Initializes the linear and power range type data.

General programming concepts 399

Syntax

void set_range(range_t range_data, LINEAR, int min, int max, int step);
void set_range(range_t range_data, POWER, 2);

Description

There are two different variants of set_range. To initialize a range data as a linear range the flag
LINEAR with min, max and step will be passed as arguments. For initialize a Power range the flag
POWER with two will be passed as arguments. This routine will initialize the range type either as
Linear or as Power based on arguments passed. The linear range type data will be initialized with the
min, max and step value passed, while power range type data will be initialized the power value as 2.

Parameters

Parameters (for Linear range type):

range_data
A range_t data type.

LINEAR
An integer consistent flag indicating that distribution of range_data is linear.

min
Indicates the lower bound of range_data.

max
Indicates the upper bound of range_data.

step
Indicates the size of the specified range of the value for each row of range_data. The type of min,
max & step can be only integral (int, short, long, long, long). No other types will be allowed.

Parameters (for Power range type):

range_data
A range_t data type.

POWER
A integer constant flag indicating that the distribution of values is a POWER distribution.
A constant indicating the value of power. As of now only power of two is supported.

set_date_format
Purpose

Updates the date format that is used for printing the probev_timestamp_t data type.
Syntax

void set_date_format(String s);

Description

Updates the date format.

This function supports all the conversion specifiers that are supported by the C library's s
strftime() for the date format. Any specifier, which is not supported by strftime(), is invalid
and default format is used.

Default format
MM:DD:YYYY hh:mm:ss TZ

MM
Month of the year as a decimal number (01 to 12).

DD
Day of the month as a decimal number (01 to 31).

400 AIX Version 7.2: General programming concepts

YYYY
Year as a decimal number (for example, 1989).

hh
24-hour clock hour as a decimal number (00 to 23).

mm
Minutes of the hour as a decimal number (00 to 59).

ss
Seconds of the minute as a decimal number (00 to 59).

TZ
Time-zone name if one can be determined (for example, CDT).

Note: The set_date_format() function is called only in the @@ BEGIN probe. Constant string must
be passed as format.

Parameters
S - string that holds the date format.

sockfd_netinfo
Purpose

Gets the local and remote ports and IP addresses information for a specific socket descriptor.
Syntax

void sockfd_netinfo(int sock_fd, net_info_t ninfo);

Description

The sockfd_netinfo function gets the local IP address, remote IP address, local port number, and
remote port number information for input socket descriptor. This function gets the valid local and
remote port numbers and IP addresses information for valid socket descriptor. It gets 0 for invalid
descriptor or if the descriptor is a not of socket type.

Note: This function requires the num_pagefaults tunable value of probevctrl command to be
greater than 0 and preferably 2 or more. If it is 0, then this function gets the invalid (0) as local and
remote ports and IP addresses information.

Parameters
fd

File or socket descriptor value.
ninfo

Specifies the script variable net_info_t in which network four tuples (local and remote IP
addresses and port numbers) information for a specific file descriptor is copied.

start_tentative, end_tentative
Purpose

Indicates the start and the end of a tentative tracing section.
Syntax

void start_tentative(String bufID);
void end_tentative(String bufID);

Description

These functions indicate the start and end of a tentative tracing section within a Vue clause. Trace
data generated by trace output functions enclosed within the tentative tracing section is saved on
a tentative basis until a commit_tentative or a discard_tentative function is called to commit or
discard this data. The end_tentative function is optional and if it is not specified, the end of the Vue
clause is implicitly assumed to indicate the end of the tentative tracing section.

General programming concepts 401

The generated tentative trace data is identified by the bufID parameter, which needs to be a string
constant or literal and not a variable. Tentative trace data can be collected under different IDs
simultaneously which can then each be committed or discarded as a separate block . ProbeVue
supports up to 16 tentative trace buffers in the same dynamic tracing session, so up to 16 different
trace IDs can be used in a Vue script. A single Vue clause can contain more than one tentative tracing
section with different IDs.

Parameters
bufID

Specifies a string constant that indicates the tentative trace buffer ID.

stktrace
Purpose

Generates and prints a runtime stack trace.
Syntax

void stktrace (int flags, int levels);

Description

The stktrace function prints the stack trace at the current probe point. By default, the stack trace is
generated in compact form with only call chain addresses for only up to two levels. You can use the
flags and the levels parameters to modify the format and contents of the stack trace. ProbeVue cannot
read paged out data, so the stack trace is truncated if a page fault is encountered when accessing the
stack.

The stktrace function does not return any values.

Parameters

Parameters Description

flags Either sets to 0 to specify default behavior or specifies one or more of the
following flags:
PRINT_SYMBOLS

Prints symbol names instead of addresses.
GET_USER_TRACE

By default, the stack trace is stopped at the system call boundary if the
probe location is in kernel space. This flag indicates to trace all the way
into user space also up to the number of levels specified by the levels
parameter.

GET_ALL_MSTS
By default, the stack trace is collected for only one context (machine state)
where the probe was started. If this flag is specified, then stack trace is
printed for all the chained contexts for that CPU.

If you want to pass multiple flags, the different flags must be 'or'ed using
the OR operator, that is the '|' operator. You cannot pass a variable for this
parameter.

levels Indicates the number of levels up to which the stack trace is to be printed. A
value of -1 indicates that the stack back chain is to be traversed to the extent
possible. Default value of 0 tracks back to 2 levels.

Note: If entries from multiple msts are printed, the mst boundary is separated
by a line that consists of '-' character. This line is also considered 1 level. It
means that the entries that are printed are the level parameter that is provided
minus the number of separator lines (unless the level parameter is -1).

402 AIX Version 7.2: General programming concepts

strstr
Purpose

Return a string inside another string.
Syntax

String strstr(String s1, String s2);

Description

The strstr function finds the first occurrence of the string specified by the s2 parameter in the
string specified by the s1 parameter and returns a new string that contains the characters in the s1
parameter starting from this location. Neither the s1 parameter nor the s2 parameter are modified by
this operation. If the sequence of characters specified by the s2 parameter does not appear even once
in the s1 parameter, then this function returns an empty string.

Note: This function's behavior is not the same as the strstr subroutine in the C library.

Parameters

Parameters Description

s1 Specifies the string within which to search.

s2 Specifies the string to be searched for

sum
Purpose

Returns the sum of all the elements in a list.
Syntax

long long sum (List listvar);

Description
The sum function returns the sum of all the elements that have been appended to the list variable
specified by the listvar parameter.

Parameters
listvar

Specifies a variable of type list.

timestamp
Purpose

Returns the current timestamp.
Syntax

probev_timestamp_t timestamp();

Description

The timestamp function returns the current timestamp in the probev_timestamp_t abstract data
type. Although abstract, the value has the following properties:

• It returns an equal or close value when called simultaneously from different CPUs.
• If the timestamp function is invoked twice and the second call can be architecturally guaranteed to

have happened later in time, the value returned for the second call is greater than or equal to the
value returned by the first call (provided the system has not been rebooted in between the calls).

There is no relationship between the values returned by the timestamp function on two different
systems. Although the compiler will let you treat the returned value as a 64-bit integer, doing so can
introduce compatibility problems.

General programming concepts 403

Note: The lbolt kernel variable, whose value indicates the number of ticks since boot-up, or the time
kernel variable whose value indicates the number of seconds since epoch (Jan 1, 1970) can both be
used instead of this function if a lower-resolution timestamp is acceptable.

typedef long long time_t;
 __kernel time_t lbolt; /* number of ticks since last boot */
 __kernel time_t time; /* memory mapped time in secs since epoch */

Parameters
The timestamp function does not take any parameters.

trace
Purpose

Copies raw data to the trace buffer in hexadecimal format.
Syntax

void trace (data);

Description

The trace function takes a single parameter which must be a variable. The trace function does not
accept expressions.

The trace function copies the value of the passed-in argument to the trace buffer. The argument
can be of any data type and the size of the data copied to the trace buffer is based on its innate
size. Thus, four bytes are copied for an integer argument, four or eight bytes for pointers (depending
upon whether the execution is in 32-bit or 64-bit mode) and the size of the structure for arguments
of type struct. For a variable of type String, the number of bytes copied over is the declared string
length (which is not the same as the length of the string contained in the variable). A variable of type
probev_timestamp_t is at least 8 bytes long.

The trace reporter displays the hexadecimal data written by the trace function in groups of four
characters without any additional formatting.

Note: The trace function also accepts a variable of type list as a parameter, but the output is not
useful in this case.

Parameter
data

Data argument to be copied to trace buffer.

Process attributes
You can obtain attributes of a process different than the running context in AIX 7.2 TL3. ProbeVue
provides the following interfaces to access the attributes.
get_proc(<process identifier>, PROCESS_ATTRIBUTE_NAME, <variable>);

process identifier
The process identifier of the process for which you are collecting attribute information about.

PROCESS_ATTRIBUTE_NAME
The process attribute name of the process for which you are collecting attribute information
about.

variable
The ProbeVue variable that holds the results of the operation.

get_thread(<thread identifier>, THREAD_ATTRIBUTE_NAME, <variable>);
thread identifier

The thread identifier of the thread whose attributes are requested.

404 AIX Version 7.2: General programming concepts

THREAD_ATTRIBUTE_NAME
The thread attribute name of the thread for which you are collecting attributes about.

variable
The ProbeVue variable that holds the results of the operation.

get_ublock(<process/thread identifier>, UBLOCK_ATTRIBUTE_NAME,<variable>);
process/thread identifier

The process/thread identifier.
UBLOCK_ATTRIBUTE_NAME

The ublock attribute name.
The ProbeVue variable which holds the results of the operation.

get_cwd(<process> identifier , <variable>);
process identifier

The process identifier.
variable

The ProbeVue variable that holds the results of the operation.
The ProbeVue variable must be of type string with length greater than or equal to 1024.

Note: All ublock attributes are of type string except for the CWD attribute. All other attributes are of type
long long.

Return values

These interfaces return 0 when successful and the following error codes during error scenarios.

SL No. Error Description

1 ERR_INTR_UBLOCK_ACCESS Ublock cannot be accessed in the current
environment.

2 ERR_INTR_CWD_ACCESS CWD cannot be accessed in this
environment.

3 ERR_INVALID_PROC Invalid process identifier provided

4 ERR_INVALID_THREAD Invalid thread identifier provided

5 ERR_PROC_INVALID_STATE Process is in an invalid state

6 ERR_THREAD_INVALID_STATE Thread is in an invalid state

7 ERR_VMATTACH Error encountered while attaching a VM
segment

8 ERR_INVALID_STORAGE Invalid storage provided

9 ERR_INVALID_ATTR Invalid attribute requested

10 ERR_SHORT_STRING String provided is short

11 ERR_GET_PATH Error encountered while accessing PATH

12 ERR_INSUFF_SORAGE Internal EVM storage is insufficient

Notes:

• get_ublock and get_cwd are not allowed in the Java interval probe manager or the system trace
probe manager.

• get_proc and get_thread are not allowed in the Java Probe Manager (JPM).

Process attributes

You can use the following process attributes to access the interfaces.

General programming concepts 405

Table 75.

process_attribute_name Description

PID Process identifier

PPID Parent process identifier

PGID Process froup identifier

PUID Real user identifier

SUID Saved user identifier

PRI Process priority

NICE Process Nice Value

CPU Processor Usage

ADSPACE Process Address space

MAJFLT I/O Page fault

MINFLT Non-I/O page fault

SIZE Size of image in pages

SIGPEND Signals pending in the process

SIGIGNORE Signals ignored by the process

SIGCATCH Signals being caught by the process

FORKTIME Creation time of the process

Thread attributes

You can use the following thread attributes to access the interfaces.

Table 76.

thread_attribute_name Description

TPID Process identifier

POLICY Thread scheduling policy

TPRI Thread priority

CPUUSAGE CPU usage by thread

CPUID CPU identifier where thread is running

SIGMASK Signals blocked on the thread

LOCKCOUNT Number of kernel locks taken by the thread

PTID Pthread identifier of the thread

HOMESRAD HOMESRAD of the thread

HOMECPU HOMECPU of the thread

ublock attributes

You can use the following ublock attributes to access the interfaces.

406 AIX Version 7.2: General programming concepts

Table 77.

ublock attribute name Description

TEXT Start of process text

TSIZE Text size of the process

DATA Start of the data for a process

SDATA Current data size

MDATA Maximum data size of the process

STACK Start of STACK

STKMAX Maximum size of stack

EUID Effective user identifier

UUID Real user identifier

EGID Effective group identifier

GID Group identifier

UTIME Process user resource usage time in seconds

STIME Process system resource usage time in seconds

MAXFD MAX FD value in user

IS64U Is a 64-bit process.

Multithreaded programming
This section provides guidelines for writing multithreaded programs using the threads library
(libpthreads.a).

The AIX threads library is based on the X/Open Portability Guide Issue 5 standard. For this reason, the
following information presents the threads library as the AIX implementation of the XPG5 standard.

Parallel programming uses the benefits of multiprocessor systems, while maintaining a full binary
compatibility with existing uniprocessor systems. The parallel programming facilities are based on the
concept of threads.

The advantages of using parallel programming instead of serial programming techniques are as follows:

• Parallel programming can improve the performance of a program.
• Some common software models are well-suited to parallel-programming techniques.

Traditionally, multiple single-threaded processes have been used to achieve parallelism, but some
programs can benefit from a finer level of parallelism. Multithreaded processes offer parallelism within a
process and share many of the concepts involved in programming multiple single-threaded processes.

The following information introduces threads and the associated programming facilities. It also discusses
general topics concerning parallel programming:

Note: In this topic collection, the word thread used alone refers to user threads. This also applies to
user-mode environment programming references, but not to topics related to kernel programming.

General programming concepts 407

Understanding threads and processes
A thread is an independent flow of control that operates within the same address space as other
independent flows of controls within a process.

Traditionally, thread and process characteristics are grouped into a single entity called a process. In other
operating systems, threads are sometimes called lightweight processes, or the meaning of the word thread
is sometimes slightly different.

The following sections discuss the differences between a thread and a process.

In traditional single-threaded process systems, a process has a set of properties. In multithreaded
systems, these properties are divided between processes and threads.

Threads have some limitations and cannot be used for some special purposes that require multi-
processed programs.

Related concepts
Contention scope and concurrency level
The contention scope of a user thread defines how it is mapped to a kernel thread
Process duplication and termination
Because all processes have at least one thread, creating (that is, duplicating) and terminating a process
implies the creation and the termination of threads.

Process properties
A process in a multithreaded system is the changeable entity.

It must be considered as an execution frame. It has traditional process attributes, such as:

• Process ID, process group ID, user ID, and group ID
• Environment
• Working directory

A process also provides a common address space and common system resources, as follows:

• File descriptors
• Signal actions
• Shared libraries
• Inter-process communication tools (such as message queues, pipes, semaphores, or shared memory)

Thread properties
A thread is the schedulable entity.

It has only those properties that are required to ensure its independent control of flow. These include the
following properties:

• Stack
• Scheduling properties (such as policy or priority)
• Set of pending and blocked signals
• Some thread-specific data

An example of thread-specific data is the errno error indicator. In multithreaded systems, errno is no
longer a global variable, but usually a subroutine returning a thread-specific errno value. Some other
systems may provide other implementations of errno.

Threads within a process must not be considered as a group of processes. All threads share the same
address space. This means that two pointers having the same value in two threads refer to the same
data. Also, if any thread changes one of the shared system resources, all threads within the process are
affected. For example, if a thread closes a file, the file is closed for all threads.

408 AIX Version 7.2: General programming concepts

Initial thread
When a process is created, one thread is automatically created. This thread is called the initial thread.

It ensures the compatibility between the old processes with a unique implicit thread and the new
multithreaded processes. The initial thread has some special properties, not visible to the programmer,
that ensure binary compatibility between the old single-threaded programs and the multithreaded
operating system. It is also the initial thread that executes the main routine in multithreaded programs.

Modularity
Programs are often modeled as a number of distinct parts interacting with each other to produce a
desired result or service.

A program can be implemented as a single, complex entity that performs multiple functions among the
different parts of the program. A more simple solution consists of implementing several entities, each
entity performing a part of the program and sharing resources with other entities.

By using multiple entities, a program can be separated according to its distinct activities, each having
an associated entity. These entities do not have to know anything about the other parts of the program
except when they exchange information. In these cases, they must synchronize with each other to ensure
data integrity.

Threads are well-suited entities for modular programming. Threads provide simple data sharing (all
threads within a process share the same address space) and powerful synchronization facilities, such as
mutexes (mutual exclusion locks) and condition variables.

Software models
This section describes the different software models.

All these models lead to modular programs. Models may also be combined to efficiently solve complex
tasks.

These models can apply to either traditional multi-process solutions, or to single process multi-thread
solutions, on multithreaded systems. In the following descriptions, the word entity refers to either a
single-threaded process or to a single thread in a multithreaded process.

The following common software models can easily be implemented with threads:

Controller/Worker Model
In the controller/worker (sometimes called boss/worker) model, a controller entity receives one or more
requests, then creates worker entities to execute them. Typically, the controller controls the number of
workers and what each worker does. A worker runs independently of other workers.

An example of this model is a print job spooler controlling a set of printers. The spooler's role is to ensure
that the print requests received are handled in a timely fashion. When the spooler receives a request, the
controller entity chooses a printer and causes a worker to print the job on the printer. Each worker prints
one job at a time on a printer, while it also handles flow control and other printing details. The spooler
may support job cancellation or other features that require the controller to cancel worker entities or
reassign jobs.

Divide-and-Conquer Models
In the divide-and-conquer (sometimes called simultaneous computation or work crew) model, one or
more entities perform the same tasks in parallel. There is no master entity; all entities run in parallel
independently.

An example of a divide-and-conquer model is a parallelized grep command implementation, which could
be done as follows. The grep command first establishes a pool of files to be scanned. It then creates a
number of entities. Each entity takes a different file from the pool and searches for the pattern, sending

General programming concepts 409

the results to a common output device. When an entity completes its file search, it obtains another file
from the pool or stops if the pool is empty.

Producer/Consumer Models
The producer/consumer (sometimes called pipelining) model is typified by a production line. An item
proceeds from raw components to a final item in a series of stages.

Usually a single worker at each stage modifies the item and passes it on to the next stage. In software
terms, an AIX command pipe, such as the cpio command, is an example of this model.

For example, a reader entity reads raw data from standard input and passes it to the processor entity,
which processes the data and passes it to the writer entity, which writes it to standard output. Parallel
programming allows the activities to be performed concurrently: the writer entity may output some
processed data while the reader entity gets more raw data.

Kernel Threads and User Threads
A kernel thread is the schedulable entity, which means that the system scheduler handles kernel threads.

These threads, known by the system scheduler, are strongly implementation-dependent. To facilitate the
writing of portable programs, libraries provide user threads.

A kernel thread is a kernel entity, like processes and interrupt handlers; it is the entity handled by the
system scheduler. A kernel thread runs within a process, but can be referenced by any other thread
in the system. The programmer has no direct control over these threads, unless you are writing kernel
extensions or device drivers. For more information about kernel programming, see Kernel Extensions and
Device Support Programming Concepts.

A user thread is an entity used by programmers to handle multiple flows of controls within a program.
The API for handling user threads is provided by the threads library. A user thread only exists within
a process; a user thread in process A cannot reference a user thread in process B. The library uses a
proprietary interface to handle kernel threads for executing user threads. The user threads API, unlike the
kernel threads interface, is part of a POSIX-standards compliant portable-programming model. Thus, a
multithreaded program developed on an AIX system can easily be ported to other systems.

On other systems, user threads are simply called threads, and lightweight process refers to kernel threads.

Thread models and virtual processors
User threads are mapped to kernel threads by the threads library. The way this mapping is done is called
the thread model.

There are three possible thread models, corresponding to three different ways to map user threads to
kernel threads.

• M:1 model
• 1:1 model
• M:N model

The mapping of user threads to kernel threads is done using virtual processors. A virtual processor (VP) is
a library entity that is usually implicit. For a user thread, the VP behaves like a CPU. In the library, the VP is
a kernel thread or a structure bound to a kernel thread.

In the M:1 model, all user threads are mapped to one kernel thread; all user threads run on one VP. The
mapping is handled by a library scheduler. All user-threads programming facilities are completely handled
by the library. This model can be used on any system, especially on traditional single-threaded systems.

In the 1:1 model, each user thread is mapped to one kernel thread; each user thread runs on one VP. Most
of the user threads programming facilities are directly handled by the kernel threads. This model is the
default model.

410 AIX Version 7.2: General programming concepts

In the M:N model, all user threads are mapped to a pool of kernel threads; all user threads run on a pool
of virtual processors. A user thread may be bound to a specific VP, as in the 1:1 model. All unbound user
threads share the remaining VPs. This is the most efficient and most complex thread model; the user
threads programming facilities are shared between the threads library and the kernel threads. This model
can be set by setting the AIXTHREAD_SCOPE environment variable to P.

Threads Library API
This section provides general information about the threads library API.

Although the following information is not required for writing multithreaded programs, it can help the
programmer understand the threads library API.

Object-Oriented Interface
The threads library API provides an object-oriented interface. The programmer manipulates opaque
objects using pointers or other universal identifiers.

This ensures the portability of multithreaded programs between systems that implement the threads
library and also allows implementation changes between two releases of AIX, necessitating only that
programs be recompiled. Although some definitions of data types may be found in the threads library
header file (pthread.h), programs should not rely on these implementation-dependent definitions to
directly handle the contents of structures. The regular threads library subroutines must always be used to
manipulate the objects.

The threads library essentially uses the following kinds of objects (opaque data types): threads, mutexes,
rwlocks, and condition variables. These objects have attributes that specify the object properties. When
creating an object, the attributes must be specified. In the threads library, these creation attributes are
themselves objects, called threads attributes objects.

The following pairs of objects are manipulated by the threads library:

• Threads and thread-attributes objects
• Mutexes and mutex-attributes objects
• Condition variables and condition-attributes objects
• Read-write locks

An attributes object is created with attributes having default values. Attributes can then be individually
modified by using subroutines. This ensures that a multithreaded program will not be affected by the
introduction of new attributes or by changes in the implementation of an attribute. An attributes object
can thus be used to create one or several objects, and then destroyed without affecting objects created
with the attributes object.

Using an attributes object also allows the use of object classes. One attributes object may be defined for
each object class. Creating an instance of an object class is done by creating the object using the class
attributes object.

Naming Convention for the Threads Library
The identifiers used by the threads library follow a strict naming convention. All identifiers of the threads
library begin with pthread_.

User programs should not use this prefix for private identifiers. This prefix is followed by a component
name. The following components are defined in the threads library:

Component Description

pthread_ Threads themselves and miscellaneous subroutines

pthread_attr Thread attributes objects

pthread_cond Condition variables

General programming concepts 411

Component Description

pthread_condattr Condition attributes objects

pthread_key Thread-specific data keys

pthread_mutex Mutexes

pthread_mutexattr Mutex attributes objects

Data type identifiers end with _t. Subroutine and macro names end with an _ (underscore), followed by a
name identifying the action performed by the subroutine or the macro. For example, pthread_attr_init is
a threads library identifier (pthread_) that concerns thread attributes objects (attr) and is an initialization
subroutine (_init).

Explicit macro identifiers are in uppercase letters. Some subroutines may, however, be implemented as
macros, although their names are in lowercase letters.

pthread implementation files
This section describes the pthread implementation files.

The following AIX files provide the implementation of pthreads:

Implementaion Description

/usr/include/pthread.h C/C++ header with most pthread definitions.

/usr/include/sched.h C/C++ header with some scheduling definitions.

/usr/include/unistd.h C/C++ header with pthread_atfork() definition.

/usr/include/sys/limits.h C/C++ header with some pthread definitions.

/usr/include/sys/pthdebug.h C/C++ header with most pthread debug
definitions.

/usr/include/sys/sched.h C/C++ header with some scheduling definitions.

/usr/include/sys/signal.h C/C++ header with pthread_kill() and
pthread_sigmask() definitions.

/usr/include/sys/types.h C/C++ header with some pthread definitions.

/usr/lib/libpthreads.a 32-bit/64-bit library providing UNIX98 and
POSIX 1003.1c pthreads.

/usr/lib/libpthreads_compat.a 32-bit only library providing POSIX 1003.1c
Draft 7 pthreads.

/usr/lib/profiled/libpthreads.a Profiled 32-bit/64-bit library providing UNIX98
and POSIX 1003.1c pthreads.

/usr/lib/profiled/libpthreads_compat.a Profiled 32-bit only library providing POSIX
1003.1c Draft 7 pthreads.

Threadsafe and threaded libraries in AIX
This section describes the thread libraries in the AIX.

By default, all applications are now considered "threaded," even though most are of the case "single
threaded." These threadsafe libraries are as follows:

Threadsafe libraries

libbsd.a libc.a libm.a

412 AIX Version 7.2: General programming concepts

Threadsafe libraries

libsvid.a libtli.a libxti.a

libnetsvc.a

POSIX threads libraries

The following POSIX threads libraries are available:
libpthreads.a POSIX threads library

The libpthreads.a library is based on the POSIX 1003.1c industry standard for a portable user
threads API. Any program written for use with a POSIX thread library can be ported for use with
another POSIX threads library; only the performance and very few subroutines of the threads library
are implementation-dependent. To enhance the portability of the threads library, the POSIX standard
made the implementation of several programming facilities optional. For more information about
checking the POSIX options, see Threads Library Options.

libpthreads_compat.a POSIX draft 7 threads library
AIX provides binary compatibility for existing multi-threads applications that were coded to Draft 7 of
the POSIX thread standard. These applications will run without relinking. The libpthreads_compat.a
library is provided only for compatibility with earlier versions of applications written by using the
Draft 7 of the POSIX Thread Standard. All new applications must use the libpthreads.a library, which
supports both 32-bit and 64-bit applications. The libpthreads_compat.a library supports only 32-bit
applications. Beginning with AIX 5.1, the libpthreads.a library supports the Single UNIX Specification,
Version 2, which includes the final POSIX 1003.1c Pthread Standard.

Related concepts
Benefits of threads
Multithreaded programs can improve performance compared to traditional parallel programs that use
multiple processes. Furthermore, improved performance can be obtained on multiprocessor systems
using threads.
Threads library options
This section describes special attributes of threads, mutexes, and condition variables.
Developing multithreaded programs
Developing multithreaded programs is similar to developing programs with multiple processes.
Developing programs also consists of compiling and debugging the code.

Creating threads
Thread creation differs from process creation in that no parent-child relation exists between threads.

All threads, except the initial thread automatically created when a process is created, are on the same
hierarchical level. A thread does not maintain a list of created threads, nor does it know the thread that
created it.

When creating a thread, an entry-point routine and an argument must be specified. Every thread has an
entry-point routine with one argument. The same entry-point routine may be used by several threads.

A thread has attributes, which specify the characteristics of the thread. To control thread attributes, a
thread attributes object must be defined before creating the thread.

Thread attributes Oobject

The thread attributes are stored in an opaque object, the thread attributes object, used when creating the
thread. It contains several attributes, depending on the implementation of POSIX options. The object is
accessed through a variable of type pthread_attr_t. In AIX, the pthread_attr_t data type is a pointer to a
structure; on other systems, it may be a structure or another data type.

Creating and destroying the thread attributes object

o

General programming concepts 413

The thread attributes object is initialized to default values by the pthread_attr_init subroutine.
The attributes are handled by subroutines. The thread attributes object is destroyed by the
pthread_attr_destroy subroutine. This subroutine can release storage dynamically allocated by the
pthread_attr_init subroutine, depending on the implementation of the threads library.

In the following example, a thread attributes object is created and initialized with default values, then
used and finally destroyed:

pthread_attr_t attributes;
 /* the attributes object is created */
...
if (!pthread_attr_init(&attributes)) {
 /* the attributes object is initialized */
 ...
 /* using the attributes object */
 ...
 pthread_attr_destroy(&attributes);
 /* the attributes object is destroyed */
}

The same attributes object can be used to create several threads. It can also be modified between two
thread creations. When the threads are created, the attributes object can be destroyed without affecting
the threads created with it.

Detachstate attribute

The following attribute is always defined:

Detachstate
Specifies the detached state of a thread.

The value of the attribute is returned by the pthread_attr_getdetachstate subroutine; it can be set by the
pthread_attr_setdetachstate subroutine. Possible values for this attributes are the following symbolic
constants:

PTHREAD_CREATE_DETACHED
Specifies that the thread will be created in the detached state

PTHREAD_CREATE_JOINABLE
Specifies that the thread will be created in the joinable state

The default value is PTHREAD_CREATE_JOINABLE.

If you create a thread in the joinable state, you must call the pthread_join subroutine with the thread.
Otherwise, you may run out of storage space when creating new threads, because each thread takes up
a significant amount of memory. For more information on the pthread_join subroutine, see Calling the
pthread_join Subroutine.

Other threads attributes

AIX also defines the following attributes, which are intended for advanced programs and may require
special execution privilege to take effect. Most programs operate correctly with the default settings. The
use of the following attributes is explained in Using the inheritsched Attribute.

Contention Scope
Specifies the contention scope of a thread

Inheritsched
Specifies the inheritance of scheduling properties of a thread

Schedparam
Specifies the scheduling parameters of a thread

Schedpolicy
Specifies the scheduling policy of a thread

The use of the following stack attributes is explained in Stack Attributes.

Stacksize
Specifies the size of the thread's stack

414 AIX Version 7.2: General programming concepts

Stackaddr
Specifies the address of the thread's stack

Guardsize
Specifies the size of the guard area of the thread's stack

Creating a thread using the pthread_create subroutine

A thread is created by calling the pthread_create subroutine. This subroutine creates a new thread and
makes it runnable.

Using the thread attributes object

When calling the pthread_create subroutine, you may specify a thread attributes object. If you specify a
NULL pointer, the created thread will have the default attributes. Thus, the following code fragment:

pthread_t thread;
pthread_attr_t attr;
...
pthread_attr_init(&attr);
pthread_create(&thread, &attr, init_routine, NULL);
pthread_attr_destroy(&attr);

is equivalent to the following:

pthread_t thread;
...
pthread_create(&thread, NULL, init_routine, NULL);

Entry point routine

When calling the pthread_create subroutine, you must specify an entry-point routine. This routine,
provided by your program, is similar to the main routine for the process. It is the first user routine
executed by the new thread. When the thread returns from this routine, the thread is automatically
terminated.

The entry-point routine has one parameter, a void pointer, specified when calling the pthread_create
subroutine. You may specify a pointer to some data, such as a string or a structure. The creating thread
(the one calling the pthread_create subroutine) and the created thread must agree upon the actual type
of this pointer.

The entry-point routine returns a void pointer. After the thread termination, this pointer is stored by
the threads library unless the thread is detached. For more information about using this pointer, see
Returning Information from a Thread.

Returned information

The pthread_create subroutine returns the thread ID of the new thread. The caller can use this thread ID
to perform various operations on the thread.

Depending on the scheduling parameters of both threads, the new thread may start running
before the call to the pthread_create subroutine returns. It may even happen that, when the
pthread_create subroutine returns, the new thread has already terminated. The thread ID returned by
the pthread_create subroutine through the thread parameter is then already invalid. It is, therefore,
important to check for the ESRCH error code returned by threads library subroutines using a thread ID as
a parameter.

If the pthread_create subroutine is unsuccessful, no new thread is created, the thread ID in the thread
parameter is invalid, and the appropriate error code is returned. For more information, see Example of a
Multi-Threaded Program.

Handling Thread IDs

The thread ID of a newly created thread is returned to the creating thread through the thread parameter.
The current thread ID is returned by the pthread_self subroutine.

A thread ID is an opaque object; its type is pthread_t. In AIX, the pthread_t data type is an integer. On
other systems, it may be a structure, a pointer, or any other data type.

General programming concepts 415

To enhance the portability of programs using the threads library, the thread ID should always be
handled as an opaque object. For this reason, thread IDs should be compared using the pthread_equal
subroutine. Never use the C equality operator (==), because the pthread_t data type may be neither an
arithmetic type nor a pointer.

Related concepts
Developing multithreaded programs
Developing multithreaded programs is similar to developing programs with multiple processes.
Developing programs also consists of compiling and debugging the code.

Terminating threads
A thread automatically terminates when it returns from its entry-point routine.

A thread can also explicitly terminate itself or terminate any other thread in the process, using a
mechanism called cancelation. Because all threads share the same data space, a thread must perform
cleanup operations at termination time; the threads library provides cleanup handlers for this purpose.

Exiting a thread

A process can exit at any time when a thread calls the exit subroutine. Similarly, a thread can exit at any
time by calling the pthread_exit subroutine.

Calling the exit subroutine terminates the entire process, including all its threads. In a multithreaded
program, the exit subroutine should only be used when the entire process needs to be terminated; for
example, in the case of an unrecoverable error. The pthread_exit subroutine should be preferred, even for
exiting the initial thread.

Calling the pthread_exit subroutine terminates the calling thread. The status parameter is saved by the
library and can be further used when joining the terminated thread. Calling the pthread_exit subroutine
is similar, but not identical, to returning from the thread's initial routine. The result of returning from the
thread's initial routine depends on the thread:

• Returning from the initial thread implicitly calls the exit subroutine, thus terminating all the threads in
the process.

• Returning from another thread implicitly calls the pthread_exit subroutine. The return value has the
same role as the status parameter of the pthread_exit subroutine.

To avoid implicitly calling the exit subroutine, to use the pthread_exit subroutine to exit a thread.

Exiting the initial thread (for example, by calling the pthread_exit subroutine from the main routine) does
not terminate the process. It terminates only the initial thread. If the initial thread is terminated, the
process will be terminated when the last thread in it terminates. In this case, the process return code is 0.

The following program displays exactly 10 messages in each language. This is accomplished by calling
the pthread_exit subroutine in the main routine after creating the two threads, and creating a loop in the
Thread routine.

#include <pthread.h> /* include file for pthreads - the 1st */
#include <stdio.h> /* include file for printf() */

void *Thread(void *string)

{
 int i;

 for (i=0; i<10; i++)
 printf("%s\n", (char *)string);
 pthread_exit(NULL);
}

int main()
{
 char *e_str = "Hello!";
 char *f_str = "Bonjour !";

 pthread_t e_th;
 pthread_t f_th;

416 AIX Version 7.2: General programming concepts

 int rc;

 rc = pthread_create(&e_th, NULL, Thread, (void *)e_str);
 if (rc)
 exit(-1);
 rc = pthread_create(&f_th, NULL, Thread, (void *)f_str);
 if (rc)
 exit(-1);
 pthread_exit(NULL);
}

The pthread_exit subroutine releases any thread-specific data, including the thread's stack. Any data
allocated on the stack becomes invalid, because the stack is freed and the corresponding memory may
be reused by another thread. Therefore, thread synchronization objects (mutexes and condition variables)
allocated on a thread's stack must be destroyed before the thread calls the pthread_exit subroutine.

Unlike the exit subroutine, the pthread_exit subroutine does not clean up system resources shared
among threads. For example, files are not closed by the pthread_exit subroutine, because they may be
used by other threads.

Canceling a thread

The thread cancelation mechanism allows a thread to terminate the execution of any other thread
in the process in a controlled manner. The target thread (that is, the one that is being canceled)
can hold cancelation requests pending in a number of ways and perform application-specific cleanup
processing when the notice of cancelation is acted upon. When canceled, the thread implicitly calls the
pthread_exit((void *)-1) subroutine.

The cancelation of a thread is requested by calling the pthread_cancel subroutine. When the call returns,
the request has been registered, but the thread may still be running. The call to the pthread_cancel
subroutine is unsuccessful only when the specified thread ID is not valid.

Cancelability state and type

The cancelability state and type of a thread determines the action taken upon receipt of a cancelation
request. Each thread controls its own cancelability state and type with the pthread_setcancelstate and
pthread_setcanceltype subroutines.

The following possible cancelability states and cancelability types lead to three possible cases, as shown
in the following table.

Cancelability State Cancelability Type Resulting Case

Disabled Any (the type is ignored) Disabled cancelability

Enabled Deferred Deferred cancelability

Enabled Asynchronous Asynchronous cancelability

The possible cases are described as follows:

• Disabled cancelability. Any cancelation request is set pending, until the cancelability state is changed or
the thread is terminated in another way.

A thread should disable cancelability only when performing operations that cannot be interrupted. For
example, if a thread is performing some complex file-save operations (such as an indexed database)
and is canceled during the operation, the files may be left in an inconsistent state. To avoid this, the
thread should disable cancelability during the file save operations.

• Deferred cancelability. Any cancelation request is set pending, until the thread reaches the next
cancelation point. It is the default cancelability state.

This cancelability state ensures that a thread can be cancelled, but limits the cancelation to specific
moments in the thread's execution, called cancelation points. A thread canceled on a cancelation point
leaves the system in a safe state; however, user data may be inconsistent or locks may be held by the
canceled thread. To avoid these situations, use cleanup handlers or disable cancelability within critical
regions. For more information, see Using Cleanup Handlers .

General programming concepts 417

• Asynchronous cancelability. Any cancelation request is acted upon immediately.

A thread that is asynchronously canceled while holding resources may leave the process, or even
the system, in a state from which it is difficult or impossible to recover. For more information about
async-cancel safety, see Async-Cancel Safety.

Async-cancel safety

A function is said to be async-cancel safe if it is written so that calling the function with asynchronous
cancelability enabled does not cause any resource to be corrupted, even if a cancelation request is
delivered at any arbitrary instruction.

Any function that gets a resource as a side effect cannot be made async-cancel safe. For example, if
the malloc subroutine is called with asynchronous cancelability enabled, it might acquire the resource
successfully, but as it was returning to the caller, it could act on a cancelation request. In such a case, the
program would have no way of knowing whether the resource was acquired or not.

For this reason, most library routines cannot be considered async-cancel safe. It is recommended that
you use asynchronous cancelability only if you are sure only to perform operations that do not hold
resources and only to call library routines that are async-cancel safe.

The following subroutines are async-cancel safe; they ensure that cancelation will be handled correctly,
even if asynchronous cancelability is enabled:

• pthread_cancel
• pthread_setcancelstate
• pthread_setcanceltype

An alternative to asynchronous cancelability is to use deferred cancelability and to add explicit
cancelation points by calling the pthread_testcancel subroutine.

Cancelation points

Cancelation points are points inside of certain subroutines where a thread must act on any pending
cancelation request if deferred cancelability is enabled. All of these subroutines may block the calling
thread or compute indefinitely.

An explicit cancelation point can also be created by calling the pthread_testcancel subroutine. This
subroutine simply creates a cancelation point. If deferred cancelability is enabled, and if a cancelation
request is pending, the request is acted upon and the thread is terminated. Otherwise, the subroutine
simply returns.

Other cancelation points occur when calling the following subroutines:

• pthread_cond_wait
• pthread_cond_timedwait
• pthread_join

The pthread_mutex_lock and pthread_mutex_trylock subroutines do not provide a cancelation point.
If they did, all functions calling these subroutines (and many functions do) would provide a cancelation
point. Having too many cancelation points makes programming very difficult, requiring either lots of
disabling and restoring of cancelability or extra effort in trying to arrange for reliable cleanup at every
possible place. For more information about these subroutines, see Using Mutexes.

Cancelation points occur when a thread is executing the following functions:

Function

aio_suspend close

creat fcntl

fsync getmsg

getpmsg lockf

418 AIX Version 7.2: General programming concepts

Function

mq_receive mq_send

msgrcv msgsnd

msync nanosleep

open pause

poll pread

pthread_cond_timedwait pthread_cond_wait

pthread_join pthread_testcancel

putpmsg pwrite

read readv

select sem_wait

sigpause sigsuspend

sigtimedwait sigwait

sigwaitinfo sleep

system tcdrain

usleep wait

wait3 waitid

waitpid write

writev

A cancelation point can also occur when a thread is executing the following functions:

Function Function Function

catclose catgets catopen

closedir closelog ctermid

dbm_close dbm_delete dbm_fetch

dbm_nextkey dbm_open dbm_store

dlclose dlopen endgrent

endpwent fwprintf fwrite

fwscanf getc getc_unlocked

getchar getchar_unlocked getcwd

getdate getgrent getgrgid

getgrgid_r getgrnam getgrnam_r

getlogin getlogin_r popen

printf putc putc_unlocked

putchar putchar_unlocked puts

pututxline putw putwc

putwchar readdir readdir_r

remove rename rewind

endutxent fclose fcntl

General programming concepts 419

Function Function Function

fflush fgetc fgetpos

fgets fgetwc fgetws

fopen fprintf fputc

fputs getpwent getpwnam

getpwnam_r getpwuid getpwuid_r

gets getutxent getutxid

getutxline getw getwc

getwchar getwd rewinddir

scanf seekdir semop

setgrent setpwent setutxent

strerror syslog tmpfile

tmpnam ttyname ttyname_r

fputwc fputws fread

freopen fscanf fseek

fseeko fsetpos ftell

ftello ftw glob

iconv_close iconv_open ioctl

lseek mkstemp nftw

opendir openlog pclose

perror ungetc ungetwc

unlink vfprintf vfwprintf

vprintf vwprintf wprintf

wscanf

The side effects of acting upon a cancelation request while suspended during a call of a function is the
same as the side effects that may be seen in a single-threaded program when a call to a function is
interrupted by a signal and the given function returns [EINTR]. Any such side effects occur before any
cancelation cleanup handlers are called.

Whenever a thread has cancelability enabled and a cancelation request has been made with that thread
as the target and the thread calls the pthread_testcancel subroutine, the cancelation request is acted
upon before the pthread_testcancel subroutine returns. If a thread has cancelability enabled and the
thread has an asynchronous cancelation request pending and the thread is suspended at a cancelation
point waiting for an event to occur, the cancelation request will be acted upon. However, if the thread
is suspended at a cancelation point and the event that it is waiting for occurs before the cancelation
request is acted upon, the sequence of events determines whether the cancelation request is acted upon
or whether the request remains pending and the thread resumes normal execution.

Cancelation example

In the following example, both "writer" threads are canceled after 10 seconds, and after they have written
their message at least five times.

#include <pthread.h> /* include file for pthreads - the 1st */
#include <stdio.h> /* include file for printf() */
#include <unistd.h> /* include file for sleep() */

420 AIX Version 7.2: General programming concepts

void *Thread(void *string)
{
 int i;
 int o_state;

 /* disables cancelability */
 pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &o_state);

 /* writes five messages */
 for (i=0; i<5; i++)
 printf("%s\n", (char *)string);

 /* restores cancelability */
 pthread_setcancelstate(o_state, &o_state);

 /* writes further */
 while (1)
 printf("%s\n", (char *)string);
 pthread_exit(NULL);
}

int main()
{
 char *e_str = "Hello!";
 char *f_str = "Bonjour !";

 pthread_t e_th;
 pthread_t f_th;

 int rc;

 /* creates both threads */
 rc = pthread_create(&e_th, NULL, Thread, (void *)e_str);
 if (rc)
 return -1;
 rc = pthread_create(&f_th, NULL, Thread, (void *)f_str);
 if (rc)
 return -1;

 /* sleeps a while */
 sleep(10);

 /* requests cancelation */
 pthread_cancel(e_th);
 pthread_cancel(f_th);

 /* sleeps a bit more */
 sleep(10);
 pthread_exit(NULL);
}

Timer and sleep subroutines

Timer routines execute in the context of the calling thread. Thus, if a timer expires, the watchdog timer
function is called in the thread's context. When a process or thread goes to sleep, it relinquishes the
processor. In a multithreaded process, only the calling thread is put to sleep.

Using cleanup handlers

Cleanup handlers provide a portable mechanism for releasing resources and restoring invariants when a
thread terminates.

Calling cleanup handlers

Cleanup handlers are specific to each thread. A thread can have several cleanup handlers; they are stored
in a thread-specific LIFO (last-in, first-out) stack. Cleanup handlers are all called in the following cases:

• The thread returns from its entry-point routine.
• The thread calls the pthread_exit subroutine.
• The thread acts on a cancelation request.

General programming concepts 421

A cleanup handler is pushed onto the cleanup stack by the pthread_cleanup_push subroutine. The
pthread_cleanup_pop subroutine pops the topmost cleanup handler from the stack and optionally
executes it. Use this subroutine when the cleanup handler is no longer needed.

The cleanup handler is a user-defined routine. It has one parameter, a void pointer, specified when calling
the pthread_cleanup_push subroutine. You can specify a pointer to some data that the cleanup handler
needs to perform its operation.

In the following example, a buffer is allocated for performing some operation. With deferred cancelability
enabled, the operation can be stopped at any cancelation point. In that case, a cleanup handler is
established to release the buffer.

/* the cleanup handler */

cleaner(void *buffer)

{
 free(buffer);
}

/* fragment of another routine */
...
myBuf = malloc(1000);
if (myBuf != NULL) {

 pthread_cleanup_push(cleaner, myBuf);

 /*
 * perform any operation using the buffer,
 * including calls to other functions
 * and cancelation points
 */

 /* pops the handler and frees the buffer in one call */
 pthread_cleanup_pop(1);
}

Using deferred cancelability ensures that the thread will not act on any cancelation request between
the buffer allocation and the registration of the cleanup handler, because neither the malloc subroutine
nor the pthread_cleanup_push subroutine provides any cancelation point. When popping the cleanup
handler, the handler is executed, releasing the buffer. More complex programs may not execute the
handler when popping it, because the cleanup handler should be thought of as an "emergency exit" for
the protected portion of code.

Balancing the push and pop operations

The pthread_cleanup_push and pthread_cleanup_pop subroutines should always appear in pairs within
the same lexical scope; that is, within the same function and the same statement block. They can be
thought of as left and right parentheses enclosing a protected portion of code.

The reason for this rule is that on some systems these subroutines are implemented as macros. The
pthread_cleanup_push subroutine is implemented as a left brace, followed by other statements:

#define pthread_cleanup_push(rtm,arg) { \
 /* other statements */

The pthread_cleanup_pop subroutine is implemented as a right brace, following other statements:

#define pthread_cleanup_pop(ex) \
 /* other statements */ \
}

Adhere to the balancing rule for the pthread_cleanup_push and pthread_cleanup_pop subroutines to
avoid compiler errors or unexpected behavior of your programs when porting to other systems.

In AIX, the pthread_cleanup_push and pthread_cleanup_pop subroutines are library routines, and
can be unbalanced within the same statement block. However, they must be balanced in the program,
because the cleanup handlers are stacked.

422 AIX Version 7.2: General programming concepts

Subroutine Description

pthread_attr_destroy Deletes a thread attributes object.

pthread_attr_getdetachstate Returns the value of the detachstate attribute of a thread
attributes object.

pthread_attr_init Creates a thread attributes object and initializes it with
default values.

pthread_cancel Requests the cancelation of a thread.

pthread_cleanup_pop Removes, and optionally executes, the routine at the top
of the calling thread's cleanup stack.

pthread_cleanup_push Pushes a routine onto the calling thread's cleanup stack.

pthread_create Creates a new thread, initializes its attributes, and
makes it runnable.

pthread_equal Compares two thread IDs.

pthread_exit Terminates the calling thread.

pthread_self Returns the calling thread's ID.

pthread_setcancelstate Sets the calling thread's cancelability state.

pthread_setcanceltype Sets the calling thread's cancelability type.

pthread_testcancel Creates a cancelation point in the calling thread.

Related concepts
One-time initializations
Some C libraries are designed for dynamic initialization, in which the global initialization for the library is
performed when the first procedure in the library is called.

Synchronization overview
One main benefit of using threads is the ease of using synchronization facilities.

To effectively interact, threads must synchronize their activities. This includes:

• Implicit communication through the modification of shared data
• Explicit communication by informing each other of events that have occurred

More complex synchronization objects can be built using the primitive objects.

The threads library provides the following synchronization mechanisms:Although primitive, these
powerful mechanisms can be used to build more complex mechanisms.

The threads library provides the following synchronization mechanisms:

• Mutexes (See Using Mutexes)
• Condition variables (See Using Condition Variables)
• Read-write locks (See Using Read-Write Locks)
• Joins (See Joining Threads)

Although primitive, these powerful mechanisms can be used to build more complex mechanisms.

Related concepts
Creating complex synchronization objects

General programming concepts 423

The subroutines provided in the threads library can be used as primitives to build more complex
synchronization objects.

Using mutexes
A mutex is a mutual exclusion lock. Only one thread can hold the lock.

Mutexes are used to protect data or other resources from concurrent access. A mutex has attributes,
which specify the characteristics of the mutex.

Mutex attributes object

Like threads, mutexes are created with the help of an attributes object. The mutex attributes object is an
abstract object, containing several attributes, depending on the implementation of POSIX options. It is
accessed through a variable of type pthread_mutexattr_t. In AIX, the pthread_mutexattr_t data type is a
pointer; on other systems, it may be a structure or another data type.

Creating and destroying the mutex attributes object

The mutex attributes object is initialized to default values by the pthread_mutexattr_init subroutine.
The attributes are handled by subroutines. The thread attributes object is destroyed by the
pthread_mutexattr_destroy subroutine. This subroutine may release storage dynamically allocated by
the pthread_mutexattr_init subroutine, depending on the implementation of the threads library.

In the following example, a mutex attributes object is created and initialized with default values, then
used and finally destroyed:

pthread_mutexattr_t attributes;
 /* the attributes object is created */
...
if (!pthread_mutexattr_init(&attributes)) {
 /* the attributes object is initialized */
 ...
 /* using the attributes object */
 ...
 pthread_mutexattr_destroy(&attributes);
 /* the attributes object is destroyed */
}

The same attributes object can be used to create several mutexes. It can also be modified between mutex
creations. When the mutexes are created, the attributes object can be destroyed without affecting the
mutexes created with it.

Mutex attributes

The following mutex attributes are defined:

Attribute Description

Protocol Specifies the protocol used to prevent priority inversions for a mutex. This
attribute depends on either the priority inheritance or the priority protection
POSIX option.

Process-shared Specifies the process sharing of a mutex. This attribute depends on the process
sharing POSIX option.

For more information on these attributes, see Threads Library Options and Synchronization Scheduling.

Creating and destroying mutexes

A mutex is created by calling the pthread_mutex_init subroutine. You may specify a mutex attributes
object. If you specify a NULL pointer, the mutex will have the default attributes. Thus, the following code
fragment:

pthread_mutex_t mutex;
pthread_mutexattr_t attr;
...
pthread_mutexattr_init(&attr);

424 AIX Version 7.2: General programming concepts

pthread_mutex_init(&mutex, &attr);
pthread_mutexattr_destroy(&attr);

is equivalent to the following:

pthread_mutex_t mutex;
...
pthread_mutex_init(&mutex, NULL);

The ID of the created mutex is returned to the calling thread through the mutex parameter. The mutex ID
is an opaque object; its type is pthread_mutex_t. In AIX, the pthread_mutex_t data type is a structure;
on other systems, it might be a pointer or another data type.

A mutex must be created once. However, avoid calling the pthread_mutex_init subroutine more than
once with the same mutex parameter (for example, in two threads concurrently executing the same code).
Ensuring the uniqueness of a mutex creation can be done in the following ways:

• Calling the pthread_mutex_init subroutine prior to the creation of other threads that will use this
mutex; for example, in the initial thread.

• Calling the pthread_mutex_init subroutine within a one time initialization routine. For more
information, see One-Time Initializations.

• Using a static mutex initialized by the PTHREAD_MUTEX_INITIALIZER static initialization macro; the
mutex will have default attributes.

After the mutex is no longer needed, destroy it by calling the pthread_mutex_destroy subroutine.
This subroutine may reclaim any storage allocated by the pthread_mutex_init subroutine. After having
destroyed a mutex, the same pthread_mutex_t variable can be reused to create another mutex. For
example, the following code fragment is valid, although not very practical:

pthread_mutex_t mutex;
...
for (i = 0; i < 10; i++) {

 /* creates a mutex */
 pthread_mutex_init(&mutex, NULL);

 /* uses the mutex */

 /* destroys the mutex */
 pthread_mutex_destroy(&mutex);
}

Like any system resource that can be shared among threads, a mutex allocated on a thread's stack must
be destroyed before the thread is terminated. The threads library maintains a linked list of mutexes. Thus,
if the stack where a mutex is allocated is freed, the list will be corrupted.

Types of mutexes

The type of mutex determines how the mutex behaves when it is operated on. The following types of
mutexes exist:
PTHREAD_MUTEX_DEFAULT or PTHREAD_MUTEX_NORMAL

Results in a deadlock if the same pthread tries to lock it a second time using the pthread_mutex_lock
subroutine without first unlocking it. This is the default type.

PTHREAD_MUTEX_ERRORCHECK
Avoids deadlocks by returning a non-zero value if the same thread attempts to lock the same mutex
more than once without first unlocking the mutex.

PTHREAD_MUTEX_RECURSIVE
Allows the same pthread to recursively lock the mutex using the pthread_mutex_lock subroutine
without resulting in a deadlock or getting a non-zero return value from pthread_mutex_lock. The
same pthread has to call the pthread_mutex_unlock subroutine the same number of times as it
called pthread_mutex_lock subroutine in order to unlock the mutex for other pthreads to use.

When a mutex attribute is first created, it has a default type of PTHREAD_MUTEX_NORMAL. After
creating the mutex, the type can be changed using the pthread_mutexattr_settype API library call.

General programming concepts 425

The following is an example of creating and using a recursive mutex type:

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&mutex, &attr);

struct {
 int a;
 int b;
 int c;
} A;

f()
{
 pthread_mutex_lock(&mutex);
 A.a++;
 g();
 A.c = 0;
 pthread_mutex_unlock(&mutex);
}

g()
{
 pthread_mutex_lock(&mutex);
 A.b += A.a;
 pthread_mutex_unlock(&mutex);
}

Locking and unlocking mutexes

A mutex is a simple lock, having two states: locked and unlocked. When it is created, a mutex is unlocked.
The pthread_mutex_lock subroutine locks the specified mutex under the following conditions:

• If the mutex is unlocked, the subroutine locks it.
• If the mutex is already locked by another thread, the subroutine blocks the calling thread until the

mutex is unlocked.
• If the mutex is already locked by the calling thread, the subroutine might block forever or return an error

depending on the type of mutex.

The pthread_mutex_trylock subroutine acts like the pthread_mutex_lock subroutine without blocking
the calling thread under the following conditions:

• If the mutex is unlocked, the subroutine locks it.
• If the mutex is already locked by any thread, the subroutine returns an error.

The thread that locked a mutex is often called the owner of the mutex.

The pthread_mutex_unlock subroutine resets the specified mutex to the unlocked state if it is owned by
the calling mutex under the following conditions:

• If the mutex was already unlocked, the subroutine returns an error.
• If the mutex was owned by the calling thread, the subroutine unlocks the mutex.
• If the mutex was owned by another thread, the subroutine might return an error or unlock the mutex

depending on the type of mutex. Unlocking the mutex is not recommended because mutexes are
usually locked and unlocked by the same pthread.

Because locking does not provide a cancelation point, a thread blocked while waiting for a mutex cannot
be canceled. Therefore, it is recommended that you use mutexes only for short periods of time, as in
instances where you are protecting data from concurrent access. For more information, see Cancelation
Points and Canceling a Thread.

Protecting data with mutexes

Mutexes are intended to serve either as a low-level primitive from which other thread synchronization
functions can be built or as a data protection lock. For more information about implementing long locks
and writer-priority readers/writers locks see “Using mutexes” on page 424.

426 AIX Version 7.2: General programming concepts

Mutex usage example

Mutexes can be used to protect data from concurrent access. For example, a database application may
create several threads to handle several requests concurrently. The database itself is protected by a
mutex called db_mutex. For example:

/* the initial thread */
pthread_mutex_t mutex;
int i;
...
pthread_mutex_init(&mutex, NULL); /* creates the mutex */
for (i = 0; i < num_req; i++) /* loop to create threads */
 pthread_create(th + i, NULL, rtn, &mutex);
... /* waits end of session */
pthread_mutex_destroy(&mutex); /* destroys the mutex */
...

/* the request handling thread */
... /* waits for a request */
pthread_mutex_lock(&db_mutex); /* locks the database */
... /* handles the request */
pthread_mutex_unlock(&db_mutex); /* unlocks the database */
...

The initial thread creates the mutex and all the request-handling threads. The mutex is passed to the
thread using the parameter of the thread's entry point routine. In a real program, the address of the mutex
may be a field of a more complex data structure passed to the created thread.

Avoiding Deadlocks

There are a number of ways that a multithreaded application can deadlock. Following are some examples:

• A mutex created with the default type, PTHREAD_MUTEX_NORMAL, cannot be relocked by the same
pthread without resulting in a deadlock.

• An application can deadlock when locking mutexes in reverse order. For example, the following code
fragment can produce a deadlock between threads A and B.

/* Thread A */
pthread_mutex_lock(&mutex1);
pthread_mutex_lock(&mutex2);

/* Thread B */
pthread_mutex_lock(&mutex2);
pthread_mutex_lock(&mutex1);

• An application can deadlock in what is called resource deadlock. For example:

struct {
 pthread_mutex_t mutex;
 char *buf;
 } A;

struct {
 pthread_mutex_t mutex;
 char *buf;
 } B;

struct {
 pthread_mutex_t mutex;
 char *buf;
 } C;

use_all_buffers()
{
 pthread_mutex_lock(&A.mutex);
 /* use buffer A */

 pthread_mutex_lock(&B.mutex);
 /* use buffers B */

 pthread_mutex_lock(&C.mutex);
 /* use buffer C */

 /* All done */
 pthread_mutex_unlock(&C.mutex);

General programming concepts 427

 pthread_mutex_unlock(&B.mutex);
 pthread_mutex_unlock(&A.mutex);
}

use_buffer_a()
{
 pthread_mutex_lock(&A.mutex);
 /* use buffer A */
 pthread_mutex_unlock(&A.mutex);
}

functionB()
{
 pthread_mutex_lock(&B.mutex);
 /* use buffer B */
 if (..some condition)
 {
 use_buffer_a();
 }
 pthread_mutex_unlock(&B.mutex);
}

/* Thread A */
use_all_buffers();

/* Thread B */
functionB();

This application has two threads, thread A and thread B. Thread B starts to run first, then thread
A starts shortly thereafter. If thread A executes use_all_buffers() and successfully locks A.mutex, it
will then block when it tries to lock B.mutex, because thread B has already locked it. While thread B
executes functionB and some_condition occurs while thread A is blocked, thread B will now also
block trying to acquire A.mutex, which is already locked by thread A. This results in a deadlock.

The solution to this deadlock is for each thread to acquire all the resource locks that it needs before
using the resources. If it cannot acquire the locks, it must release them and start again.

Mutexes and race conditions

Mutual exclusion locks (mutexes) can prevent data inconsistencies due to race conditions. A race
condition often occurs when two or more threads must perform operations on the same memory area, but
the results of computations depends on the order in which these operations are performed.

Consider, for example, a single counter, X, that is incremented by two threads, A and B. If X is originally
1, then by the time threads A and B increment the counter, X should be 3. Both threads are independent
entities and have no synchronization between them. Although the C statement X++ looks simple enough
to be atomic, the generated assembly code may not be, as shown in the following pseudo-assembler
code:

move X, REG
inc REG
move REG, X

If both threads in the previous example are executed concurrently on two CPUs, or if the scheduling
makes the threads alternatively execute on each instruction, the following steps may occur:

1. Thread A executes the first instruction and puts X, which is 1, into the thread A register. Then thread
B executes and puts X, which is 1, into the thread B register. The following example illustrates the
resulting registers and the contents of memory X.

Thread A Register = 1
Thread B Register = 1
Memory X = 1

2. Thread A executes the second instruction and increments the content of its register to 2. Then thread
B increments its register to 2. Nothing is moved to memory X, so memory X stays the same. The
following example illustrates the resulting registers and the contents of memory X.

Thread A Register = 2
Thread B Register = 2
Memory X = 1

428 AIX Version 7.2: General programming concepts

3. Thread A moves the content of its register, which is now 2, into memory X. Then thread B moves
the content of its register, which is also 2, into memory X, overwriting thread A's value. The following
example illustrates the resulting registers and the contents of memory X.

Thread A Register = 2
Thread B Register = 2
Memory X = 2

In most cases, thread A and thread B execute the three instructions one after the other, and the
result would be 3, as expected. Race conditions are usually difficult to discover, because they occur
intermittently.

To avoid this race condition, each thread should lock the data before accessing the counter and updating
memory X. For example, if thread A takes a lock and updates the counter, it leaves memory X with a value
of 2. After thread A releases the lock, thread B takes the lock and updates the counter, taking 2 as its
initial value for X and increment it to 3, the expected result.

Using condition variables
Condition variables allow threads to wait until some event or condition has occurred.

A condition variable has attributes that specify the characteristics of the condition. Typically, a program
uses the following objects:

• A boolean variable, indicating whether the condition is met
• A mutex to serialize the access to the boolean variable
• A condition variable to wait for the condition

Using a condition variable requires some effort from the programmer. However, condition variables allow
the implementation of powerful and efficient synchronization mechanisms. For more information about
implementing long locks and semaphores with condition variables, see Creating Complex Synchronization
Objects.

When a thread is terminated, its storage may not be reclaimed, depending on an attribute of the thread.
Such threads can be joined by other threads and return information to them. A thread that wants to join
another thread is blocked until the target thread terminates. This joint mechanism is a specific case of
condition-variable usage, the condition is the thread termination.

Condition attributes object

Like threads and mutexes, condition variables are created with the help of an attributes object. The
condition attributes object is an abstract object, containing at most one attribute, depending on the
implementation of POSIX options. It is accessed through a variable of type pthread_condattr_t. In AIX,
the pthread_condattr_t data type is a pointer; on other systems, it may be a structure or another data
type.

Creating and destroying the condition attributes object

The condition attributes object is initialized to default values by the pthread_condattr_init
subroutine. The attribute is handled by subroutines. The thread attributes object is destroyed by the
pthread_condattr_destroy subroutine. This subroutine can release storage dynamically allocated by the
pthread_condattr_init subroutine, depending on the implementation of the threads library.

In the following example, a condition attributes object is created and initialized with default values, then
used and finally destroyed:

pthread_condattr_t attributes;
 /* the attributes object is created */
...
if (!pthread_condattr_init(&attributes)) {
 /* the attributes object is initialized */
 ...
 /* using the attributes object */
 ...
 pthread_condattr_destroy(&attributes);

General programming concepts 429

 /* the attributes object is destroyed */
}

The same attributes object can be used to create several condition variables. It can also be modified
between two condition variable creations. When the condition variables are created, the attributes object
can be destroyed without affecting the condition variables created with it.

Condition attribute

The following condition attribute is supported:

Process-shared
Specifies the process sharing of a condition variable. This attribute depends on the process sharing
POSIX option.

Creating and destroying condition variables

A condition variable is created by calling the pthread_cond_init subroutine. You may specify a condition
attributes object. If you specify a NULL pointer, the condition variable will have the default attributes.
Thus, the following code fragment:

pthread_cond_t cond;
pthread_condattr_t attr;
...
pthread_condattr_init(&attr);
pthread_cond_init(&cond, &attr);
pthread_condattr_destroy(&attr);

is equivalent to the following:

pthread_cond_t cond;
...
pthread_cond_init(&cond, NULL);

The ID of the created condition variable is returned to the calling thread through the condition parameter.
The condition ID is an opaque object; its type is pthread_cond_t. In AIX, the pthread_cond_t data type is
a structure; on other systems, it may be a pointer or another data type.

A condition variable must be created once. Avoid calling the pthread_cond_init subroutine more than
once with the same condition parameter (for example, in two threads concurrently executing the same
code). Ensuring the uniqueness of a newly created condition variable can be done in the following ways:

• Calling the pthread_cond_init subroutine prior to the creation of other threads that will use this
variable; for example, in the initial thread.

• Calling the pthread_cond_init subroutine within a one-time initialization routine. For more information,
see One-Time Initializations.

• Using a static condition variable initialized by the PTHREAD_COND_INITIALIZER static initialization
macro; the condition variable will have default attributes.

After the condition variable is no longer needed, destroy it by calling the pthread_cond_destroy
subroutine. This subroutine may reclaim any storage allocated by the pthread_cond_init subroutine.
After having destroyed a condition variable, the same pthread_cond_t variable can be reused to create
another condition. For example, the following code fragment is valid, although not very practical:

pthread_cond_t cond;
...
for (i = 0; i < 10; i++) {

 /* creates a condition variable */
 pthread_cond_init(&cond, NULL);

 /* uses the condition variable */

 /* destroys the condition */
 pthread_cond_destroy(&cond);
}

430 AIX Version 7.2: General programming concepts

Like any system resource that can be shared among threads, a condition variable allocated on a thread's
stack must be destroyed before the thread is terminated. The threads library maintains a linked list of
condition variables; thus, if the stack where a mutex is allocated is freed, the list will be corrupted.

Using condition variables

A condition variable must always be used together with a mutex. A given condition variable can have only
one mutex associated with it, but a mutex can be used for more than one condition variable. It is possible
to bundle into a structure the condition, the mutex, and the condition variable, as shown in the following
code fragment:

struct condition_bundle_t {
 int condition_predicate;
 pthread_mutex_t condition_lock;
 pthread_cond_t condition_variable;
};

Waiting for a condition

The mutex protecting the condition must be locked before waiting for the condition. A thread can wait
for a condition to be signaled by calling the pthread_cond_wait or pthread_cond_timedwait subroutine.
The subroutine atomically unlocks the mutex and blocks the calling thread until the condition is signaled.
When the call returns, the mutex is locked again.

The pthread_cond_wait subroutine blocks the thread indefinitely. If the condition is never signaled,
the thread never wakes up. Because the pthread_cond_wait subroutine provides a cancelation point,
the only way to exit this deadlock is to cancel the blocked thread, if cancelability is enabled. For more
information, see Canceling a Thread.

The pthread_cond_timedwait subroutine blocks the thread only for a given period of time. This
subroutine has an extra parameter, timeout, specifying an absolute date where the sleep must end.
The timeout parameter is a pointer to a timespec structure. This data type is also called timestruc_t. It
contains the following fields:

tv_sec
A long unsigned integer, specifying seconds

tv_nsec
A long integer, specifying nanoseconds

Typically, the pthread_cond_timedwait subroutine is used in the following manner:

struct timespec timeout;
...
time(&timeout.tv_sec);
timeout.tv_sec += MAXIMUM_SLEEP_DURATION;
pthread_cond_timedwait(&cond, &mutex, &timeout);

The timeout parameter specifies an absolute date. The previous code fragment shows how to specify a
duration rather than an absolute date.

To use the pthread_cond_timedwait subroutine with an absolute date, you can use the mktime
subroutine to calculate the value of the tv_sec field of the timespec structure. In the following example,
the thread waits for the condition until 08:00 January 1, 2001, local time:

struct tm date;
time_t seconds;
struct timespec timeout;
...

date.tm_sec = 0;
date.tm_min = 0;
date.tm_hour = 8;
date.tm_mday = 1;
date.tm_mon = 0; /* the range is 0-11 */
date.tm_year = 101; /* 0 is 1900 */
date.tm_wday = 1; /* this field can be omitted -
 but it will really be a Monday! */
date.tm_yday = 0; /* first day of the year */
date.tm_isdst = daylight;

General programming concepts 431

 /* daylight is an external variable - we are assuming
 that Daylight Saving Time will still be used... */

seconds = mktime(&date);

timeout.tv_sec = (unsigned long)seconds;
timeout.tv_nsec = 0L;

pthread_cond_timedwait(&cond, &mutex, &timeout);

The pthread_cond_timedwait subroutine also provides a cancellation point, although the sleep is not
indefinite. Thus, a sleeping thread can be canceled, whether or not the sleep has a timeout.

Signaling a condition

A condition can be signaled by calling either the pthread_cond_signal or the pthread_cond_broadcast
subroutine.

The pthread_cond_signal subroutine wakes up at least one thread that is currently blocked on the
specified condition. The awoken thread is chosen according to the scheduling policy; it is the thread
with the most-favored scheduling priority (see Scheduling Policy and Priority). It may happen on
multiprocessor systems, or some non-AIX systems, that more than one thread is awakened. Do not
assume that this subroutine wakes up exactly one thread.

The pthread_cond_broadcast subroutine wakes up every thread that is currently blocked on the
specified condition. However, a thread can start waiting on the same condition just after the call to the
subroutine returns.

A call to these routines always succeeds, unless an invalid cond parameter is specified. This does not
mean that a thread has been awakened. Furthermore, signaling a condition is not remembered by the
library. For example, consider a condition C. No thread is waiting on this condition. At time t, thread 1
signals the condition C. The call is successful although no thread is awakened. At time t+1, thread 2 calls
the pthread_cond_wait subroutine with C as cond parameter. Thread 2 is blocked. If no other thread
signals C, thread 2 may wait until the process terminates.

You can avoid this kind of deadlock by checking the EBUSY error code returned by the
pthread_cond_destroy subroutine when destroying the condition variable, as in the following code
fragment:

The pthread_yield subroutine gives the opportunity to another thread to be scheduled; for example, one
of the awoken threads. For more information about the pthread_yield subroutine.

The pthread_cond_wait and the pthread_cond_broadcast subroutines must not be used within a signal
handler. To provide a convenient way for a thread to await a signal, the threads library provides the
sigwait subroutine. For more information about the sigwait subroutine. For more information about the
sigwait subroutine, see Signal Management.

Synchronizing threads with condition variables

while (pthread_cond_destroy(&cond) == EBUSY) {
 pthread_cond_broadcast(&cond);
 pthread_yield();
}

Condition variables are used to wait until a particular condition predicate becomes true. This condition
predicate is set by another thread, usually the one that signals the condition.

Condition wait semantics

A condition predicate must be protected by a mutex. When waiting for a condition, the wait subroutine
(either the pthread_cond_wait or pthread_cond_timedwait subroutine) atomically unlocks the mutex
and blocks the thread. When the condition is signaled, the mutex is relocked and the wait subroutine
returns. It is important to note that when the subroutine returns without error, the predicate may still be
false.

The reason is that more than one thread may be awoken: either a thread called the
pthread_cond_broadcast subroutine, or an unavoidable race between two processors simultaneously

432 AIX Version 7.2: General programming concepts

woke two threads. The first thread locking the mutex will block all other awoken threads in the wait
subroutine until the mutex is unlocked by the program. Thus, the predicate may have changed when the
second thread gets the mutex and returns from the wait subroutine.

In general, whenever a condition wait returns, the thread should reevaluate the predicate to determine
whether it can safely proceed, should wait again, or should declare a timeout. A return from the wait
subroutine does not imply that the predicate is either true or false.

It is recommended that a condition wait be enclosed in a "while loop" that checks the predicate. Basic
implementation of a condition wait is shown in the following code fragment:

pthread_mutex_lock(&condition_lock);
while (condition_predicate == 0)
 pthread_cond_wait(&condition_variable, &condition_lock);
...
pthread_mutex_unlock(&condition_lock);

Timed wait semantics

When the pthread_cond_timedwait subroutine returns with the timeout error, the predicate may be true,
due to another unavoidable race between the expiration of the timeout and the predicate state change.

Just as for non-timed wait, the thread should reevaluate the predicate when a timeout occurred to
determine whether it should declare a timeout or should proceed anyway. It is recommended that you
carefully check all possible cases when the pthread_cond_timedwait subroutine returns. The following
code fragment shows how such checking could be implemented in a robust program:

int result = CONTINUE_LOOP;

pthread_mutex_lock(&condition_lock);
while (result == CONTINUE_LOOP) {
 switch (pthread_cond_timedwait(&condition_variable,
 &condition_lock, &timeout)) {

 case 0:
 if (condition_predicate)
 result = PROCEED;
 break;

 case ETIMEDOUT:
 result = condition_predicate ? PROCEED : TIMEOUT;
 break;

 default:
 result = ERROR;
 break;
 }
}

...
pthread_mutex_unlock(&condition_lock);

The result variable can be used to choose an action. The statements preceding the unlocking of the
mutex should be done as soon as possible because a mutex should not be held for long periods of time.

Specifying an absolute date in the timeout parameter allows easy implementation of real-time behavior.
An absolute timeout need not be recomputed if it is used multiple times in a loop, such as that enclosing
a condition wait. For cases where the system clock is advanced discontinuously by an operator, using an
absolute timeout ensures that the timed wait will end as soon as the system time specifies a date later
than the timeout parameter.

Condition variables usage example

The following example provides the source code for a synchronization point routine. A synchronization
point is a given point in a program where different threads must wait until all threads (or at least a certain
number of threads) have reached that point.

A synchronization point can simply be implemented by a counter, which is protected by a lock, and a
condition variable. Each thread takes the lock, increments the counter, and waits for the condition to be

General programming concepts 433

signaled if the counter did not reach its maximum. Otherwise, the condition is broadcast, and all threads
can proceed. The last thread that calls the routine broadcasts the condition.

#define SYNC_MAX_COUNT 10

void SynchronizationPoint()
{
 /* use static variables to ensure initialization */
 static mutex_t sync_lock = PTHREAD_MUTEX_INITIALIZER;
 static cond_t sync_cond = PTHREAD_COND_INITIALIZER;
 static int sync_count = 0;

 /* lock the access to the count */
 pthread_mutex_lock(&sync_lock);

 /* increment the counter */
 sync_count++;

 /* check if we should wait or not */
 if (sync_count < SYNC_MAX_COUNT)

 /* wait for the others */
 pthread_cond_wait(&sync_cond, &sync_lock);

 else

 /* broadcast that everybody reached the point */
 pthread_cond_broadcast(&sync_cond);

 /* unlocks the mutex - otherwise only one thread
 will be able to return from the routine! */
 pthread_mutex_unlock(&sync_lock);
}

This routine has some limitations: it can be used only once, and the number of threads that call the
routine is coded by a symbolic constant. However, this example shows a basic usage of condition
variables. For more complex usage examples. For more complex usage examples, see Creating Complex
Synchronization Objects.

Related concepts
Joining threads
Joining a thread means waiting for it to terminate, which can be seen as a specific usage of condition
variables.

Using read/write locks
In many situations, data is read more often than it is modified or written.

In these cases, you can allow threads to read concurrently while holding the lock and allow only one
thread to hold the lock when data is modified. A multiple-reader single-writer lock (or read/write lock)
does this. A read/write lock is acquired either for reading or writing, and then is released. The thread that
acquires the read-write lock must be the one that releases it.

Read/write attributes object
The pthread_rwlockattr_init subroutine initializes a read-write lock attributes object (attr). The
default value for all attributes is defined by the implementation. Unexpected results can occur if the
pthread_rwlockattr_init subroutine specifies an already-initialized read/write lock attributes object.

The following examples illustrate how to call the pthread_rwlockattr_init subroutine with the attr object:

pthread_rwlockattr_t attr;

and:

pthread_rwlockattr_init(&attr);

434 AIX Version 7.2: General programming concepts

After a read/write lock attributes object is used to initialize one or more read/write locks, any function that
affects the attributes object (including destruction) does not affect any previously initialized read/write
locks.

The pthread_rwlockattr_destroy subroutine destroys a read/write lock attributes object. Unexpected
results can occur if the object is used before it is reinitialized by another call to the
pthread_rwlockattr_init subroutine. An implementation can cause the pthread_rwlockattr_destroy
subroutine to set the object referenced by the attr object to an invalid value.

Creating and Destroying Read/Write Locks
The pthread_rwlock_init subroutine initializes the read/write lock referenced by the rwlock object with
the attributes referenced by the attr object. If the attr object is NULL, the default read/write lock
attributes are used; the effect is the same as passing the address of a default read-write lock attributes
object. Upon successful initialization, the state of the read/write lock becomes initialized and unlocked.
After initialized, the lock can be used any number of times without being reinitialized. Unexpected results
can occur if the call to the pthread_rwlock_init subroutine is called specifying an already initialized
read/write lock, or if a read/write lock is used without first being initialized.

If the pthread_rwlock_init subroutine fails, the rwlock object is not initialized and the contents are
undefined.

The pthread_rwlock_destroy subroutine destroys the read/write lock object referenced by the rwlock
object and releases any resources used by the lock. Unexpected results can occur in any of the following
situations:

• If the lock is used before it is reinitialized by another call to the pthread_rwlock_init subroutine.
• An implementation can cause the pthread_rwlock_destroy subroutine to set the object referenced by

the rwlock object to an invalid value. Unexpected results can occur if pthread_rwlock_destroy is called
when any thread holds the rwlock object.

• Attempting to destroy an uninitialized read/write lock results in unexpected results. A destroyed read/
write lock object can be reinitialized by using the pthread_rwlock_init subroutine. Unexpected results
can occur if the read/write lock object is referenced after it has been destroyed.

In cases where default read/write lock attributes are appropriate, use the
PTHREAD_RWLOCK_INITIALIZER macro to initialize read/write locks that are statically allocated. For
example:

pthread_rwlock_t rwlock1 = PTHREAD_RWLOCK_INITIALIZER;

The effect is similar to dynamic initialization by using a call to the pthread_rwlock_init subroutine with
the attr parameter specified as NULL, except that no error checks are performed. For example:

pthread_rwlock_init(&rwlock2, NULL);

The following example illustrates how to use the pthread_rwlock_init subroutine with the attr parameter
initialized. For an example of how to initialize the attr parameter, see Read-Write Attributes Object.

pthread_rwlock_init(&rwlock, &attr);

Locking a read/write lock object for reading
The pthread_rwlock_rdlock subroutine applies a read lock to the read/write lock referenced by the
rwlock object. The calling thread acquires the read lock if a writer does not hold the lock and if no writers
are blocked on the lock. It is unspecified whether the calling thread acquires the lock when a writer does
not hold the lock and there are writers waiting for the lock. If a writer holds the lock, the calling thread
will not acquire the read lock. If the read lock is not acquired, the calling thread does not return from the
pthread_rwlock_rdlock call until it can acquire the lock. Results are undefined if the calling thread holds
a write lock on the rwlock object at the time the call is made.

General programming concepts 435

A thread can hold multiple concurrent read locks on the rwlock object (that is, successfully call the
pthread_rwlock_rdlock subroutine n times). If so, the thread must perform matching unlocks (that is, it
must call the pthread_rwlock_unlock subroutine n times).

The pthread_rwlock_tryrdlock subroutine applies a read lock similar to the pthread_rwlock_rdlock
subroutine with the exception that the subroutine fails if any thread holds a write lock on the rwlock
object or if writers are blocked on the rwlock object. Results are undefined if any of these functions are
called with an uninitialized read/write lock.

If a signal is delivered to a thread waiting for a read/write lock for reading, upon return from the signal
handler, the thread resumes waiting for the read/write lock for reading as if it was not interrupted.

Locking a read/write lock object for writing
The pthread_rwlock_wrlock subroutine applies a write lock to the read/write lock referenced by
the rwlock object. The calling thread acquires the write lock if no other thread (reader or writer)
holds the read/write lock on the rwlock object. Otherwise, the thread does not return from the
pthread_rwlock_wrlock call until it can acquire the lock. Results are undefined if the calling thread
holds the read/write lock (whether a read or write lock) at the time the call is made.

The pthread_rwlock_trywrlock subroutine applies a write lock similar to the pthread_rwlock_wrlock
subroutine, with the exception that the function fails if any thread currently holds rwlock for reading or
writing. Results are undefined if any of these functions are called with an uninitialized read/write lock.

If a signal is delivered to a thread waiting for a read/write lock for writing, upon return from the signal
handler, the thread resumes waiting for the read/write lock for writing as if it was not interrupted.

Preferring a writer-thread over a reader-thread
The pthread_rwlock_attr_setfavorwriters_np subroutine can be used by an application to
initialize the attributes of a read/write lock. You can specify the pthread library to prioritize the scheduling
of the threads that requires the read/write lock in write mode. When the pthread library schedules the
writer-threads (threads that write data) to get the read/write lock in write mode, the pthread library does
not support recursion by threads that are holding a the read/write lock in read mode. Unexpected results
can occur when the threads hold a read/write lock in the read mode more than once.

The pthread_rwlock_attr_getfavorwriters_np subroutine returns the current preference that is
set in the read/write lock attribute structure. By default, the reader-threads are prioritized over writer-
threads to get a read/write lock.

Sample read/write lock programs
The following sample programs demonstrate how to use locking subroutines. To run these programs, you
need the check.h file and makefile.

check.h file:

#include stdio.h
#include stdio.h
#include stdio.h
#include stdio.h

/* Simple function to check the return code and exit the program
 if the function call failed
 */
static void compResults(char *string, int rc) {
 if (rc) {
 printf("Error on : %s, rc=%d",
 string, rc);
 exit(EXIT_FAILURE);
 }
 return;
}

436 AIX Version 7.2: General programming concepts

Make file:

CC_R = xlc_r

TARGETS = test01 test02 test03

OBJS = test01.o test02.o test03.o

SRCS = $(OBJS:.o=.c)

$(TARGETS): $(OBJS)
 $(CC_R) -o $@ $@.o

clean:
 rm $(OBJS) $(TARGETS)

run:
 test01
 test02
 test03

Single-thread example
The following example uses the pthread_rwlock_tryrdlock subroutine with a single thread. For an
example of using the pthread_rwlock_tryrdlock subroutine with multiple threads, see Multiple-Thread
Example.

Example: test01.c

#define _MULTI_THREADED
#include pthread.h
#include stdio.h
#include "check.h"

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

void *rdlockThread(void *arg)
{
 int rc;
 int count=0;

 printf("Entered thread, getting read lock with mp wait\n");
 Retry:
 rc = pthread_rwlock_tryrdlock(&rwlock);
 if (rc == EBUSY) {
 if (count >= 10) {
 printf("Retried too many times, failure!\n");

 exit(EXIT_FAILURE);
 }
 ++count;
 printf("Could not get lock, do other work, then RETRY...\n");
 sleep(1);
 goto Retry;
 }
 compResults("pthread_rwlock_tryrdlock() 1\n", rc);

 sleep(2);

 printf("unlock the read lock\n");
 rc = pthread_rwlock_unlock(&rwlock);
 compResults("pthread_rwlock_unlock()\n", rc);

 printf("Secondary thread complete\n");
 return NULL;
}

int main(int argc, char **argv)
{
 int rc=0;
 pthread_t thread;

 printf("Enter test case - %s\n", argv[0]);

 printf("Main, get the write lock\n");
 rc = pthread_rwlock_wrlock(&rwlock);
 compResults("pthread_rwlock_wrlock()\n", rc);

General programming concepts 437

 printf("Main, create the try read lock thread\n");
 rc = pthread_create(&thread, NULL, rdlockThread, NULL);
 compResults("pthread_create\n", rc);

 printf("Main, wait a bit holding the write lock\n");
 sleep(5);

 printf("Main, Now unlock the write lock\n");
 rc = pthread_rwlock_unlock(&rwlock);
 compResults("pthread_rwlock_unlock()\n", rc);

 printf("Main, wait for the thread to end\n");
 rc = pthread_join(thread, NULL);
 compResults("pthread_join\n", rc);

 rc = pthread_rwlock_destroy(&rwlock);
 compResults("pthread_rwlock_destroy()\n", rc);
 printf("Main completed\n");
 return 0;
}

The output for this sample program will be similar to the following:

Enter test case - ./test01
Main, get the write lock
Main, create the try read lock thread
Main, wait a bit holding the write lock

Entered thread, getting read lock with mp wait
Could not get lock, do other work, then RETRY...
Could not get lock, do other work, then RETRY...
Could not get lock, do other work, then RETRY...
Could not get lock, do other work, then RETRY...
Could not get lock, do other work, then RETRY...
Main, Now unlock the write lock
Main, wait for the thread to end
unlock the read lock
Secondary thread complete
Main completed

Multiple-thread example
The following example uses the pthread_rwlock_tryrdlock subroutine with multiple threads. For an
example of using the pthread_rwlock_tryrdlock subroutine with a single thread, see Single-Thread
Example.

Example: test02.c

#define _MULTI_THREADED
#include pthread.h
#include stdio.h
#include "check.h"

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

void *wrlockThread(void *arg)
{
 int rc;
 int count=0;

 printf("%.8x: Entered thread, getting write lock\n",
 pthread_self());
 Retry:
 rc = pthread_rwlock_trywrlock(&rwlock);
 if (rc == EBUSY) {
 if (count >= 10) {
 printf("%.8x: Retried too many times, failure!\n",
 pthread_self());
 exit(EXIT_FAILURE);
 }

 ++count;
 printf("%.8x: Go off an do other work, then RETRY...\n",
 pthread_self());
 sleep(1);
 goto Retry;

438 AIX Version 7.2: General programming concepts

 }
 compResults("pthread_rwlock_trywrlock() 1\n", rc);
 printf("%.8x: Got the write lock\n", pthread_self());

 sleep(2);

 printf("%.8x: Unlock the write lock\n",
 pthread_self());
 rc = pthread_rwlock_unlock(&rwlock);
 compResults("pthread_rwlock_unlock()\n", rc);

 printf("%.8x: Secondary thread complete\n",
 pthread_self());
 return NULL;
}

int main(int argc, char **argv)
{
 int rc=0;
 pthread_t thread, thread2;

 printf("Enter test case - %s\n", argv[0]);

 printf("Main, get the write lock\n");
 rc = pthread_rwlock_wrlock(&rwlock);
 compResults("pthread_rwlock_wrlock()\n", rc);

 printf("Main, create the timed write lock threads\n");
 rc = pthread_create(&thread, NULL, wrlockThread, NULL);
 compResults("pthread_create\n", rc);

 rc = pthread_create(&thread2, NULL, wrlockThread, NULL);
 compResults("pthread_create\n", rc);

 printf("Main, wait a bit holding this write lock\n");
 sleep(1);

 printf("Main, Now unlock the write lock\n");
 rc = pthread_rwlock_unlock(&rwlock);
 compResults("pthread_rwlock_unlock()\n", rc);

 printf("Main, wait for the threads to end\n");
 rc = pthread_join(thread, NULL);
 compResults("pthread_join\n", rc);

 rc = pthread_join(thread2, NULL);
 compResults("pthread_join\n", rc);

 rc = pthread_rwlock_destroy(&rwlock);
 compResults("pthread_rwlock_destroy()\n", rc);
 printf("Main completed\n");
 return 0;
}

The output for this sample program will be similar to the following:

Enter test case - ./test02
Main, get the write lock
Main, create the timed write lock threads
Main, wait a bit holding this write lock
00000102: Entered thread, getting write lock
00000102: Go off an do other work, then RETRY...
00000203: Entered thread, getting write lock
00000203: Go off an do other work, then RETRY...
Main, Now unlock the write lock
Main, wait for the threads to end
00000102: Got the write lock
00000203: Go off an do other work, then RETRY...
00000203: Go off an do other work, then RETRY...
00000102: Unlock the write lock
00000102: Secondary thread complete
00000203: Got the write lock
00000203: Unlock the write lock
00000203: Secondary thread complete
Main completed

General programming concepts 439

Read/write read-lock example
The following example uses the pthread_rwlock_rdlock subroutine to implement read/write read locks:

Example: test03.c

#define _MULTI_THREADED
#include pthread.h
#include stdio.h
#include "check.h"

pthread_rwlock_t rwlock;

void *rdlockThread(void *arg)
{
 int rc;

 printf("Entered thread, getting read lock\n");
 rc = pthread_rwlock_rdlock(&rwlock);
 compResults("pthread_rwlock_rdlock()\n", rc);
 printf("got the rwlock read lock\n");

 sleep(5);

 printf("unlock the read lock\n");
 rc = pthread_rwlock_unlock(&rwlock);
 compResults("pthread_rwlock_unlock()\n", rc);
 printf("Secondary thread unlocked\n");
 return NULL;
}

void *wrlockThread(void *arg)
{
 int rc;

 printf("Entered thread, getting write lock\n");
 rc = pthread_rwlock_wrlock(&rwlock);
 compResults("pthread_rwlock_wrlock()\n", rc);

 printf("Got the rwlock write lock, now unlock\n");
 rc = pthread_rwlock_unlock(&rwlock);
 compResults("pthread_rwlock_unlock()\n", rc);
 printf("Secondary thread unlocked\n");
 return NULL;
}

int main(int argc, char **argv)
{
 int rc=0;
 pthread_t thread, thread1;

 printf("Enter test case - %s\n", argv[0]);

 printf("Main, initialize the read write lock\n");
 rc = pthread_rwlock_init(&rwlock, NULL);
 compResults("pthread_rwlock_init()\n", rc);

 printf("Main, grab a read lock\n");
 rc = pthread_rwlock_rdlock(&rwlock);
 compResults("pthread_rwlock_rdlock()\n",rc);

 printf("Main, grab the same read lock again\n");
 rc = pthread_rwlock_rdlock(&rwlock);
 compResults("pthread_rwlock_rdlock() second\n", rc);

 printf("Main, create the read lock thread\n");
 rc = pthread_create(&thread, NULL, rdlockThread, NULL);
 compResults("pthread_create\n", rc);

 printf("Main - unlock the first read lock\n");
 rc = pthread_rwlock_unlock(&rwlock);
 compResults("pthread_rwlock_unlock()\n", rc);

 printf("Main, create the write lock thread\n");
 rc = pthread_create(&thread1, NULL, wrlockThread, NULL);
 compResults("pthread_create\n", rc);

 sleep(5);

440 AIX Version 7.2: General programming concepts

 printf("Main - unlock the second read lock\n");
 rc = pthread_rwlock_unlock(&rwlock);
 compResults("pthread_rwlock_unlock()\n", rc);

 printf("Main, wait for the threads\n");
 rc = pthread_join(thread, NULL);
 compResults("pthread_join\n", rc);

 rc = pthread_join(thread1, NULL);
 compResults("pthread_join\n", rc);

 rc = pthread_rwlock_destroy(&rwlock);
 compResults("pthread_rwlock_destroy()\n", rc);

 printf("Main completed\n");
 return 0;
}

The output for this sample program will be similar to the following:

$./test03
Enter test case - ./test03
Main, initialize the read write lock
Main, grab a read lock
Main, grab the same read lock again
Main, create the read lock thread
Main - unlock the first read lock
Main, create the write lock thread
Entered thread, getting read lock
got the rwlock read lock
Entered thread, getting write lock
Main - unlock the second read lock
Main, wait for the threads
unlock the read lock
Secondary thread unlocked
Got the rwlock write lock, now unlock
Secondary thread unlocked
Main completed

Joining threads
Joining a thread means waiting for it to terminate, which can be seen as a specific usage of condition
variables.

Waiting for a thread

Using the pthread_join subroutine alows a thread to wait for another thread to terminate. More complex
conditions, such as waiting for multiple threads to terminate, can be implemented by using condition
variables.

Calling the pthread_join subroutine

The pthread_join subroutine blocks the calling thread until the specified thread terminates. The target
thread (the thread whose termination is awaited) must not be detached. If the target thread is already
terminated, but not detached, the pthread_join subroutine returns immediately. After a target thread has
been joined, it is automatically detached, and its storage can be reclaimed.

The following table indicates the possible cases when a thread calls the pthread_join subroutine,
depending on the state and the detachstate attribute of the target thread.

Target State Undetached target Detached target

Target is still running The caller is blocked until the
target is terminated.

The call returns immediately,
indicating an error.

Target is terminated The call returns immediately,
indicating a successful
completion.

Multiple joins

General programming concepts 441

Several threads can join the same target thread, if the target is not detached. The success of this
operation depends on the order of the calls to the pthread_join subroutine and the moment when the
target thread terminates.

• Any call to the pthread_join subroutine occurring before the target thread's termination blocks the
calling thread.

• When the target thread terminates, all blocked threads are awoken, and the target thread is
automatically detached.

• Any call to the pthread_join subroutine occurring after the target thread's termination will fail, because
the thread is detached by the previous join.

• If no thread called the pthread_join subroutine before the target thread's termination, the first call
to the pthread_join subroutine will return immediately, indicating a successful completion, and any
further call will fail.

Join example

In the following example, the program ends after exactly five messages display in each language. This is
done by blocking the initial thread until the "writer" threads exit.

#include <pthread.h> /* include file for pthreads - the 1st */
#include <stdio.h> /* include file for printf() */

void *Thread(void *string)
{
 int i;

 /* writes five messages and exits */
 for (i=0; i<5; i++)
 printf("%s\n", (char *)string);
 pthread_exit(NULL);
}

int main()
{
 char *e_str = "Hello!";
 char *f_str = "Bonjour !";

 pthread_attr_t attr;
 pthread_t e_th;
 pthread_t f_th;

 int rc;

 /* creates the right attribute */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr,
 PTHREAD_CREATE_UNDETACHED);

 /* creates both threads */
 rc = pthread_create(&e_th, &attr, Thread, (void *)e_str);
 if (rc)
 exit(-1);
 rc = pthread_create(&f_th, &attr, Thread, (void *)f_str);
 if (rc)
 exit(-1);
 pthread_attr_destroy(&attr);

 /* joins the threads */
 pthread_join(e_th, NULL);
 pthread_join(f_th, NULL);

 pthread_exit(NULL);
}

A thread cannot join itself because a deadlock would occur and it is detected by the library. However, two
threads may try to join each other. They will deadlock, but this situation is not detected by the library.

Returning information from a thread

The pthread_join subroutine also allows a thread to return information to another thread. When a thread
calls the pthread_exit subroutine or when it returns from its entry-point routine, it returns a pointer (see

442 AIX Version 7.2: General programming concepts

Exiting a Thread). This pointer is stored as long as the thread is not detached, and the pthread_join
subroutine can return it.

For example, a multithreaded grep command may choose the implementation in the following example.
In this example, the initial thread creates one thread per file to scan, each thread having the same entry
point routine. The initial thread then waits for all threads to be terminated. Each "scanning" thread stores
the found lines in a dynamically allocated buffer and returns a pointer to this buffer. The initial thread
prints each buffer and releases it.

/* "scanning" thread */
...
buffer = malloc(...);
 /* finds the search pattern in the file
 and stores the lines in the buffer */
return (buffer);

/* initial thread */
...
for (/* each created thread */) {
 void *buf;
 pthread_join(thread, &buf);
 if (buf != NULL) {
 /* print all the lines in the buffer,
 preceded by the filename of the thread */
 free(buf);
 }
}
...

If the target thread is canceled, the pthread_join subroutine returns a value of -1 cast into a pointer (see
Canceling a Thread). Because -1 cannot be a pointer value, getting -1 as returned pointer from a thread
means that the thread was canceled.

The returned pointer can point to any kind of data. The pointer must still be valid after the thread was
terminated and its storage reclaimed. Therefore, avoid returning a value, because the destructor routine is
called when the thread's storage is reclaimed.

Returning a pointer to dynamically allocated storage to several threads needs special consideration.
Consider the following code fragment:

void *returned_data;
...
pthread_join(target_thread, &returned_data);
/* retrieves information from returned_data */
free(returned_data);

The returned_data pointer is freed when it is executed by only one thread. If several threads execute
the above code fragment concurrently, the returned_data pointer is freed several times; a situation that
must be avoided. To prevent this, use a mutex-protected flag to signal that the returned_data pointer was
freed. The following line from the previous example:

free(returned_data);

would be replaced by the following lines, where a mutex can be used for locking the access to the critical
region (assuming the flag variable is initially 0):

/* lock - entering a critical region, no other thread should
 run this portion of code concurrently */
if (!flag) {
 free(returned_data);
 flag = 1;
}
/* unlock - exiting the critical region */

Locking access to the critical region ensures that the returned_data pointer is freed only once.

When returning a pointer to dynamically allocated storage to several threads all executing different code,
you must ensure that exactly one thread frees the pointer.

General programming concepts 443

Related concepts
Using condition variables
Condition variables allow threads to wait until some event or condition has occurred.
Thread-specific data
Many applications require that certain data be maintained on a per-thread basis across function calls.

Scheduling threads
Threads can be scheduled, and the threads library provides several facilities to handle and control the
scheduling of threads.

It also provides facilities to control the scheduling of threads during synchronization operations such as
locking a mutex. Each thread has its own set of scheduling parameters. These parameters can be set
using the thread attributes object before the thread is created. The parameters can also be dynamically
set during the thread's execution.

Controlling the scheduling of a thread can be a complicated task. Because the scheduler handles all
threads system wide, the scheduling parameters of a thread interact with those of all other threads in the
process and in the other processes. The following facilities are the first to be used if you want to control
the scheduling of a thread.

The threads library allows the programmer to control the execution scheduling of the threads in the
following ways:

• By setting scheduling attributes when creating a thread
• By dynamically changing the scheduling attributes of a created thread
• By defining the effect of a mutex on the thread's scheduling when creating a mutex (known as

synchronization scheduling)
• By dynamically changing the scheduling of a thread during synchronization operations (known as

synchronization scheduling)

Scheduling parameters

A thread has the following scheduling parameters:

Parameter Description

scope The contention scope of a thread is defined by the thread model used in the threads
library.

policy The scheduling policy of a thread defines how the scheduler treats the thread after it gains
control of the CPU.

priority The scheduling priority of a thread defines the relative importance of the work being done
by each thread.

The scheduling parameters can be set before the thread's creation or during the thread's execution.
In general, controlling the scheduling parameters of threads is important only for threads that are CPU-
intensive. Thus, the threads library provides default values that are sufficient for most cases.

Using the inheritsched attribute

The inheritsched attribute of the thread attributes object specifies how the thread's scheduling attributes
will be defined. The following values are valid:

Values Description

PTHREAD_INHERIT_SCHED Specifies that the new thread will get the scheduling attributes
(schedpolicy and schedparam attributes) of its creating thread.
Scheduling attributes defined in the attributes object are ignored.

PTHREAD_EXPLICIT_SCHED Specifies that the new thread will get the scheduling attributes
defined in this attributes object.

444 AIX Version 7.2: General programming concepts

The default value of the inheritsched attribute is PTHREAD_INHERIT_SCHED. The attribute is set by
calling the pthread_attr_setinheritsched subroutine. The current value of the attribute is returned by
calling the pthread_attr_getinheritsched subroutine.

To set the scheduling attributes of a thread in the thread attributes object, the inheritsched attribute
must first be set to PTHREAD_EXPLICIT_SCHED. Otherwise, the attributes-object scheduling attributes
are ignored.

Scheduling policy and priority

The threads library provides the following scheduling policies:

Library Description

SCHED_FIFO First-in first-out (FIFO) scheduling. Each thread has a fixed priority; when multiple
threads have the same priority level, they run to completion in FIFO order.

SCHED_RR Round-robin (RR) scheduling. Each thread has a fixed priority; when multiple threads
have the same priority level, they run for a fixed time slice in FIFO order.

SCHED_OTHER Default AIX scheduling. Each thread has an initial priority that is dynamically
modified by the scheduler, according to the thread's activity; thread execution is
time-sliced. On other systems, this scheduling policy may be different.

In versions of AIX prior to 5.3, changing the priority of a thread when setting its scheduling policy to
SCHED_OTHER is not permitted. In this case, the kernel directly manages the priority, and the only legal
value that can be passed to the pthread_setschedparam subroutine is the DEFAULT_PRIO value. The
DEFAULT_PRIO value is defined in pthread.h file as 1, and any other passed values are ignored.

Beginning with AIX 5.3, you can change the priority of a thread when you set its scheduling policy to
SCHED_OTHER. The legal values that can be passed to the pthread_setschedparam subroutine are from
40 to 80, however, only privileged users can set a priority greater than 60. A priority in the range of 1 to 39
provides the same priority as that of 40, and a priority in the range of 81 to 127 provides the same priority
as that of 80.

Note: In AIX, the kernel inverts the priority levels. For the AIX kernel, the priority is in the range from 0
to 127, where 0 is the most favored priority and 127 the least favored priority. Commands, such as the ps
command, report the kernel priority.

The threads library handles the priority through a sched_param structure, defined in the sys/sched.h
header file. This structure contains the following fields:

Fields Description

sched_priority Specifies the priority.

sched_policy This field is ignored by the threads library. Do not use.

Setting the scheduling policy and priority at creation time

The scheduling policy can be set when creating a thread by setting the schedpolicy attribute of the
thread attributes object. The pthread_attr_setschedpolicy subroutine sets the scheduling policy to one
of the previously defined scheduling policies. The current value of the schedpolicy attribute of a thread
attributes object can be obtained by using the pthread_attr_getschedpolicy subroutine.

The scheduling priority can be set at creation time of a thread by setting the schedparam attribute of the
thread attributes object. The pthread_attr_setschedparam subroutine sets the value of the schedparam
attribute, copying the value of the specified structure. The pthread_attr_getschedparam subroutine gets
the schedparam attribute.

In the following code fragment, a thread is created with the round-robin scheduling policy, using a priority
level of 3:

sched_param schedparam;

schedparam.sched_priority = 3;

General programming concepts 445

pthread_attr_init(&attr);
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(&attr, SCHED_RR);
pthread_attr_setschedparam(&attr, &schedparam);

pthread_create(&thread, &attr, &start_routine, &args);
pthread_attr_destroy(&attr);

For more information about the inheritsched attribute, see Using the inheritsched Attribute.

Setting the scheduling attributes at execution time

The pthread_getschedparam subroutine returns the schedpolicy and schedparam attributes of a
thread. These attributes can be set by calling the pthread_setschedparam subroutine. If the target
thread is currently running on a processor, the new scheduling policy and priority will be implemented the
next time the thread is scheduled. If the target thread is not running, it can be scheduled immediately at
the end of the subroutine call.

For example, consider a thread T that is currently running with round-robin policy at the moment the
schedpolicy attribute of T is changed to FIFO. T will run until the end of its time slice, at which time its
scheduling attributes are then re-evaluated. If no threads have higher priority, T will be rescheduled, even
before other threads having the same priority. Consider a second example where a low-priority thread
is not running. If this thread's priority is raised by another thread calling the pthread_setschedparam
subroutine, the target thread will be scheduled immediately if it is the highest priority runnable thread.

Note: Both subroutines use a policy parameter and a sched_param structure. Although this structure
contains a sched_policy field, programs should not use it. The subroutines use the policy parameter to
pass the scheduling policy, and the subroutines then ignore the sched_policy field.

Scheduling-policy considerations

Applications should use the default scheduling policy, unless a specific application requires the use of a
fixed-priority scheduling policy. Consider the following points about using the nondefault policies:

• Using the round-robin policy ensures that all threads having the same priority level will be scheduled
equally, regardless of their activity. This can be useful in programs where threads must read sensors or
write actuators.

• Using the FIFO policy should be done with great care. A thread running with FIFO policy runs to
completion, unless it is blocked by some calls, such as performing input and output operations. A
high-priority FIFO thread may not be preempted and can affect the global performance of the system.
For example, threads doing intensive calculations, such as inverting a large matrix, should never run
with FIFO policy.

The setting of scheduling policy and priority is also influenced by the contention scope of threads. Using
the FIFO or the round-robin policy may not always be allowed.

sched_yield subroutine

The sched_yield subroutine is the equivalent for threads of the yield subroutine. The sched_yield
subroutine forces the calling thread to relinquish the use of its processor and gives other threads an
opportunity to be scheduled. The next scheduled thread may belong to the same process as the calling
thread or to another process. Do not use the yield subroutine in a multithreaded program.

The interface pthread_yield subroutine is not available in Single UNIX Specification, Version 2.

Related concepts
Synchronization scheduling
Programmers can control the execution scheduling of threads when there are constraints, especially time
constraints, that require certain threads to be executed faster than other ones.
List of scheduling subroutines
This section lists scheduling subroutines.
Developing multithreaded programs

446 AIX Version 7.2: General programming concepts

Developing multithreaded programs is similar to developing programs with multiple processes.
Developing programs also consists of compiling and debugging the code.

List of scheduling subroutines
This section lists scheduling subroutines.

Subroutine Description

pthread_attr_getschedparam Returns the value of the schedparam attribute of a thread
attributes object.

pthread_attr_setschedparam Sets the value of the schedparam attribute of a thread
attributes object.

pthread_getschedparam Returns the value of the schedpolicy and schedparam
attributes of a thread.

sched_yield Forces the calling thread to relinquish use of its processor.

Related concepts
Scheduling threads
Threads can be scheduled, and the threads library provides several facilities to handle and control the
scheduling of threads.

Contention scope and concurrency level
The contention scope of a user thread defines how it is mapped to a kernel thread

. The threads library defines the following contention scopes:
PTHREAD_SCOPE_PROCESS

Process contention scope, sometimes called local contention scope. Specifies that the thread will
be scheduled against all other local contention scope threads in the process. A process-contention-
scope user thread is a user thread that shares a kernel thread with other process-contention-scope
user threads in the process. All user threads in an M:1 thread model have process contention scope.

PTHREAD_SCOPE_SYSTEM
System contention scope, sometimes called global contention scope. Specifies that the thread will be
scheduled against all other threads in the system and is directly mapped to one kernel thread. All user
threads in a 1:1 thread model have system contention scope.

In an M:N thread model, user threads can have either system or process contention scope. Therefore, an
M:N thread model is often referred as a mixed-scope model.

The concurrency level is a property of M:N threads libraries. It defines the number of virtual processors
used to run the process-contention scope user threads. This number cannot exceed the number of
process-contention-scope user threads and is usually dynamically set by the threads library. The system
also sets a limit to the number of available kernel threads.

Setting the contention scope

The contention scope can only be set before a thread is created by setting the contention-scope attribute
of a thread attributes object. The pthread_attr_setscope subroutine sets the value of the attribute; the
pthread_attr_getscope returns it.

The contention scope is only meaningful in a mixed-scope M:N library implementation. A
TestImplementation routine could be written as follows:

int TestImplementation()
{
 pthread_attr_t a;
 int result;

 pthread_attr_init(&a);
 switch (pthread_attr_setscope(&a, PTHREAD_SCOPE_PROCESS))
 {

General programming concepts 447

 case 0: result = LIB_MN; break;
 case ENOTSUP: result = LIB_11; break;
 case ENOSYS: result = NO_PRIO_OPTION; break;
 default: result = ERROR; break;
 }

 pthread_attr_destroy(&a);
 return result;
}

Impacts of contention scope on scheduling

The contention scope of a thread influences its scheduling. Each contention-scope thread is bound to one
kernel thread. Thus, changing the scheduling policy and priority of a global user thread results in changing
the scheduling policy and priority of the underlying kernel thread.

In AIX, only kernel threads with root authority can use a fixed-priority scheduling policy (FIFO or round-
robin). The following code will always return the EPERM error code if the calling thread has system
contention scope but does not have root authority. This code would not fail, if the calling thread had
process contention scope.

schedparam.sched_priority = 3;
pthread_setschedparam(pthread_self(), SCHED_FIFO, schedparam);

Note: Root authority is not required to control the scheduling parameters of user threads having process
contention scope.

Local user threads can set any scheduling policy and priority, within the valid range of values. However,
two threads having the same scheduling policy and priority but having different contention scope will not
be scheduled in the same way. Threads having process contention scope are executed by kernel threads
whose scheduling parameters are set by the library.

Related concepts
Understanding threads and processes
A thread is an independent flow of control that operates within the same address space as other
independent flows of controls within a process.

Synchronization scheduling
Programmers can control the execution scheduling of threads when there are constraints, especially time
constraints, that require certain threads to be executed faster than other ones.

Synchronization objects, such as mutexes, may block even high-priority threads. In some cases,
undesirable behavior, known as priority inversion, may occur. The threads library provides the mutex
protocols facility to avoid priority inversions.

Synchronization scheduling defines how the execution scheduling, especially the priority, of a thread is
modified by holding a mutex. This allows custom-defined behavior and avoids priority inversions. It is
useful when using complex locking schemes. Some implementations of the threads library do not provide
synchronization scheduling.

Priority inversion

Priority inversion occurs when a low-priority thread holds a mutex, blocking a high-priority thread. Due to
its low priority, the mutex owner may hold the mutex for an unbounded duration. As a result, it becomes
impossible to guarantee thread deadlines.

The following example illustrates a typical priority inversion. In this example, the case of a uniprocessor
system is considered. Priority inversions also occur on multiprocessor systems in a similar way.

448 AIX Version 7.2: General programming concepts

In our example, a mutex M is used to protect some common data. Thread A has a priority level of 100 and
is scheduled very often. Thread B has a priority level of 20 and is a background thread. Other threads in
the process have priority levels near 60. A code fragment from thread A is as follows:

pthread_mutex_lock(&M); /* 1 */
...
pthread_mutex_unlock(&M);

A code fragment from thread B is as follows:

pthread_mutex_lock(&M); /* 2 */
...
fprintf(...); /* 3 */
...
pthread_mutex_unlock(&M);

Consider the following execution chronology. Thread B is scheduled and executes line 2. While executing
line 3, thread B is preempted by thread A. Thread A executes line 1 and is blocked, because the mutex M
is held by thread B. Thus, other threads in the process are scheduled. Because thread B has a very low
priority, it may not be rescheduled for a long period, blocking thread A, although thread A has a very high
priority.

Mutex protocols

To avoid priority inversions, the following mutex protocols are provided by the threads library:

Priority inheritance protocol
Sometimes called basic priority inheritance protocol. In the priority inheritance protocol, the mutex
holder inherits the priority of the highest-priority blocked thread. When a thread tries to lock a mutex
using this protocol and is blocked, the mutex owner temporarily receives the blocked thread's priority,
if that priority is higher than the owner's. It recovers its original priority when it unlocks the mutex.

Priority protection protocol
Sometimes called priority ceiling protocol emulation. In the priority protection protocol, each mutex
has a priority ceiling. It is a priority level within the valid range of priorities. When a thread owns a
mutex, it temporarily receives the mutex priority ceiling, if the ceiling is higher than its own priority.
It recovers its original priority when it unlocks the mutex. The priority ceiling should have the value
of the highest priority of all threads that may lock the mutex. Otherwise, priority inversions or even
deadlocks may occur, and the protocol would be inefficient.

Both protocols increase the priority of a thread holding a specific mutex, so that deadlines can be
guaranteed. Furthermore, when correctly used, mutex protocols can prevent mutual deadlocks. Mutex
protocols are individually assigned to mutexes.

Choosing a mutex protocol

The choice of a mutex protocol is made by setting attributes when creating a mutex. The mutex protocol
is controlled through the protocol attribute. This attribute can be set in the mutex attributes object
by using the pthread_mutexattr_getprotocol and pthread_mutexattr_setprotocol subroutines. The
protocol attribute can have one of the following values:

Value Description

PTHREAD_PRIO_DEFAULT No value

PTHREAD_PRIO_NONE Denotes no protocol.

PTHREAD_PRIO_INHERIT Denotes the priority inheritance protocol.

PTHREAD_PRIO_PROTECT Denotes the priority protection protocol.

Note: The behavior of PTHREAD_PRIO_DEFAULT is the same as the PTHREAD_PRIO_INHERIT
attribute. With reference to the mutex locking, the threads acting with the default attribute will
temporarily boost the priority of a mutex holder when a user is locked and has a higher priority than
the owner. Therefore, there are only three behaviors that are possible, although there are four values for
the possible priority in the attribute structure.

General programming concepts 449

The priority protection protocol uses one additional attribute: the prioceiling attribute.
This attribute contains the priority ceiling of the mutex. The prioceiling attribute can be
controlled in the mutex attributes object, by using the pthread_mutexattr_getprioceiling and
pthread_mutexattr_setprioceiling subroutines.

The prioceiling attribute of a mutex can also be dynamically controlled by using the
pthread_mutex_getprioceiling and pthread_mutex_setprioceiling subroutines. When dynamically
changing the priority ceiling of a mutex, the mutex is locked by the library; it should not be held by
the thread calling the pthread_mutex_setprioceiling subroutine to avoid a deadlock. Dynamically setting
the priority ceiling of a mutex can be useful when increasing the priority of a thread.

The implementation of mutex protocols is optional. Each protocol is a POSIX option.

Inheritance or protection

Both protocols are similar and result in promoting the priority of the thread holding the mutex. If both
protocols are available, programmers must choose a protocol. The choice depends on whether the
priorities of the threads that will lock the mutex are available to the programmer who is creating the
mutex. Typically, mutexes defined by a library and used by application threads will use the inheritance
protocol, whereas mutexes created within the application program will use the protection protocol.

In performance-critical programs, performance considerations may also influence the choice. In most
implementations, especially in AIX, changing the priority of a thread results in making a system call.
Therefore, the two mutex protocols differ in the amount of system calls they generate, as follows:

• Using the inheritance protocol, a system call is made each time a thread is blocked when trying to lock
the mutex.

• Using the protection protocol, one system call is always made each time the mutex is locked by a
thread.

In most performance-critical programs, the inheritance protocol should be chosen, because mutexes are
low contention objects. Mutexes are not held for long periods of time; thus, it is not likely that threads are
blocked when trying to lock them.

Related concepts
Scheduling threads
Threads can be scheduled, and the threads library provides several facilities to handle and control the
scheduling of threads.

List of synchronization subroutines
This section lists synchronization subroutines.

pthread_mutex_destroy
Deletes a mutex.

pthread_mutex_init
Initializes a mutex and sets its attributes.

PTHREAD_MUTEX_INITIALIZER
Initializes a static mutex with default attributes.

pthread_mutex_lock or pthread_mutex_trylock
Locks a mutex.

pthread_mutex_unlock
Unlocks a mutex.

pthread_mutexattr_destroy
Deletes a mutex attributes object.

pthread_mutexattr_init
Creates a mutex attributes object and initializes it with default values.

pthread_cond_destroy
Deletes a condition variable.

450 AIX Version 7.2: General programming concepts

pthread_cond_init
Initializes a condition variable and sets its attributes.

PTHREAD_COND_INITIALIZER
Initializes a static condition variable with default attributes.

pthread_cond_signal or pthread_cond_broadcast
Unblocks one or more threads blocked on a condition.

pthread_cond_wait or pthread_cond_timedwait
Blocks the calling thread on a condition.

pthread_condattr_destroy
Deletes a condition attributes object.

pthread_condattr_init
Creates a condition attributes object and initializes it with default values.

One-time initializations
Some C libraries are designed for dynamic initialization, in which the global initialization for the library is
performed when the first procedure in the library is called.

In a single-threaded program, this is usually implemented using a static variable whose value is checked
on entry to each routine, as in the following code fragment:

static int isInitialized = 0;
extern void Initialize();

int function()
{
 if (isInitialized == 0) {
 Initialize();
 isInitialized = 1;
 }
 ...
}

For dynamic library initialization in a multithreaded program, a simple initialization flag is not sufficient.
This flag must be protected against modification by multiple threads simultaneously calling a library
function. Protecting the flag requires the use of a mutex; however, mutexes must be initialized before they
are used. Ensuring that the mutex is only initialized once requires a recursive solution to this problem.

To keep the same structure in a multithreaded program, use the pthread_once subroutine. Otherwise,
library initialization must be accomplished by an explicit call to a library exported initialization function
prior to any use of the library. The pthread_once subroutine also provides an alternative for initializing
mutexes and condition variables.

One-time initialization object

The uniqueness of the initialization is ensured by the one-time initialization object. It is a variable
having the pthread_once_t data type. In AIX and most other implementations of the threads library,
the pthread_once_t data type is a structure.

A one-time initialization object is typically a global variable. It must be initialized with the
PTHREAD_ONCE_INIT macro, as in the following example:

static pthread_once_t once_block = PTHREAD_ONCE_INIT;

The initialization can also be done in the initial thread or in any other thread. Several one-time
initialization objects can be used in the same program. The only requirement is that the one-time
initialization object be initialized with the macro.

One-time initialization routine

The pthread_once subroutine calls the specified initialization routine associated with the specified one-
time initialization object if it is the first time it is called; otherwise, it does nothing. The same initialization

General programming concepts 451

routine must always be used with the same one-time initialization object. The initialization routine must
have the following prototype:

void init_routine();

The pthread_once subroutine does not provide a cancelation point. However, the initialization routine
may provide cancelation points, and, if cancelability is enabled, the first thread calling the pthread_once
subroutine may be canceled during the execution of the initialization routine. In this case, the routine is
not considered as executed, and the next call to the pthread_once subroutine would result in recalling
the initialization routine.

It is recommended to use cleanup handlers in one-time initialization routines, especially when performing
non-idempotent operations, such as opening a file, locking a mutex, or allocating memory.

One-time initialization routines can be used for initializing mutexes or condition variables or to
perform dynamic initialization. In a multithreaded library, the code fragment shown above (void
init_routine();) would be written as follows:

static pthread_once_t once_block = PTHREAD_ONCE_INIT;
extern void Initialize();

int function()
{
 pthread_once(&once_block, Initialize);
 ...
}

Related concepts
Terminating threads
A thread automatically terminates when it returns from its entry-point routine.
Thread-specific data
Many applications require that certain data be maintained on a per-thread basis across function calls.
Related reference
Writing reentrant and threadsafe code
In single-threaded processes, only one flow of control exists. The code executed by these processes
thus need not be reentrant or threadsafe. In multithreaded programs, the same functions and the same
resources may be accessed concurrently by several flows of control.

Thread-specific data
Many applications require that certain data be maintained on a per-thread basis across function calls.

For example, a multithreaded grep command using one thread for each file must have thread-specific file
handlers and list of found strings. The thread-specific data interface is provided by the threads library to
meet these needs.

Thread-specific data may be viewed as a two-dimensional array of values, with keys serving as the
row index and thread IDs as the column index. A thread-specific data key is an opaque object, of the
pthread_key_t data type. The same key can be used by all threads in a process. Although all threads
use the same key, they set and access different thread-specific data values associated with that key.
Thread-specific data are void pointers, which allows referencing any kind of data, such as dynamically
allocated strings or structures.

In the following figure, thread T2 has a thread-specific data value of 12 associated with the key K3.
Thread T4 has the value of 2 associated with the same key.

Keys T1 Thread T2 Thread T3 Thread T4 Thread

K1 6 56 4 1

K2 87 21 0 9

K3 23 12 61 2

452 AIX Version 7.2: General programming concepts

Keys T1 Thread T2 Thread T3 Thread T4 Thread

K4 11 76 47 88

Creating and destroying keys

Thread-specific data keys must be created before being used. Their values can be automatically
destroyed when the corresponding threads terminate. A key can also be destroyed upon request to
reclaim its storage.

Key creation

A thread-specific data key is created by calling the pthread_key_create subroutine. This subroutine
returns a key. The thread-specific data is set to a value of NULL for all threads, including threads not yet
created.

For example, consider two threads A and B. Thread A performs the following operations in chronological
order:

1. Create a thread-specific data key K.

Threads A and B can use the key K. The value for both threads is NULL.
2. Create a thread C.

Thread C can also use the key K. The value for thread C is NULL.

The number of thread-specific data keys is limited to 450 per process. This number can be retrieved by
the PTHREAD_KEYS_MAX symbolic constant.

The pthread_key_create subroutine must be called only once. Otherwise, two different keys are created.
For example, consider the following code fragment:

/* a global variable */
static pthread_key_t theKey;

/* thread A */
...
pthread_key_create(&theKey, NULL); /* call 1 */
...

/* thread B */
...
pthread_key_create(&theKey, NULL); /* call 2 */
...

In our example, threads A and B run concurrently, but call 1 happens before call 2. Call 1 will create a key
K1 and store it in the theKey variable. Call 2 will create another key K2, and store it also in the theKey
variable, thus overriding K1. As a result, thread A will use K2, assuming it is K1. This situation should be
avoided for the following reasons:

• Key K1 is lost, thus its storage will never be reclaimed until the process terminates. Because the
number of keys is limited, you may not have enough keys.

• If thread A stores a thread-specific data using the theKey variable before call 2, the data will be bound
to key K1. After call 2, the theKey variable contains K2; if thread A then tries to fetch its thread-specific
data, it would always get NULL.

Ensuring that keys are created uniquely can be done in the following ways:

• Using the one-time initialization facility.
• Creating the key before the threads that will use it. This is often possible, for example, when using a

pool of threads with thread-specific data to perform similar operations. This pool of threads is usually
created by one thread, the initial (or another "driver") thread.

It is the programmer's responsibility to ensure the uniqueness of key creation. The threads library
provides no way to check if a key has been created more than once.

Destructor routine

General programming concepts 453

A destructor routine may be associated with each thread-specific data key. Whenever a thread is
terminated, if there is non-NULL, thread-specific data for this thread bound to any key, the destructor
routine associated with that key is called. This allows dynamically allocated thread-specific data to be
automatically freed when the thread is terminated. The destructor routine has one parameter, the value of
the thread-specific data.

For example, a thread-specific data key may be used for dynamically allocated buffers. A destructor
routine should be provided to ensure that when the thread terminates the buffer is freed, the free
subroutine can be used as follows:

pthread_key_create(&key, free);

More complex destructors may be used. If a multithreaded grep command, using a thread per file to scan,
has thread-specific data to store a structure containing a work buffer and the thread's file descriptor, the
destructor routine may be as follows:

typedef struct {
 FILE *stream;
 char *buffer;
} data_t;
...

void destructor(void *data)
{
 fclose(((data_t *)data)->stream);
 free(((data_t *)data)->buffer);
 free(data);
 *data = NULL;
}

Destructor calls can be repeated up to four times.

Key destruction

A thread-specific data key can be destroyed by calling the pthread_key_delete subroutine. The
pthread_key_delete subroutine does not actually call the destructor routine for each thread having data.
After a data key is destroyed, it can be reused by another call to the pthread_key_create subroutine.
Thus, the pthread_key_delete subroutine is useful especially when using many data keys. For example, in
the following code fragment, the loop would never end:

/* bad example - do not write such code! */
pthread_key_t key;

while (pthread_key_create(&key, NULL))
 pthread_key_delete(key);

Using thread-specific data

Thread-specific data is accessed using the pthread_getspecific and pthread_setspecific subroutines.
The pthread_getspecific subroutine reads the value bound to the specified key and is specific to the
calling thread; the pthread_setspecific subroutine sets the value.

Setting successive values

The value bound to a specific key should be a pointer, which can point to any kind of data. Thread-specific
data is typically used for dynamically allocated storage, as in the following code fragment:

private_data = malloc(...);
pthread_setspecific(key, private_data);

When setting a value, the previous value is lost. For example, in the following code fragment, the value of
the old pointer is lost, and the storage it pointed to may not be recoverable:

pthread_setspecific(key, old);
...
pthread_setspecific(key, new);

454 AIX Version 7.2: General programming concepts

It is the programmer's responsibility to retrieve the old thread-specific data value to reclaim storage
before setting the new value. For example, it is possible to implement a swap_specific routine in the
following manner:

int swap_specific(pthread_key_t key, void **old_pt, void *new)
{
 *old_pt = pthread_getspecific(key);
 if (*old_pt == NULL)
 return -1;
 else
 return pthread_setspecific(key, new);
}

Such a routine does not exist in the threads library because it is not always necessary to retrieve the
previous value of thread-specific data. Such a case occurs, for example, when thread-specific data are
pointers to specific locations in a memory pool allocated by the initial thread.

Using destructor routines

When using dynamically allocated thread-specific data, the programmer must provide a destructor
routine when calling the pthread_key_create subroutine. The programmer must also ensure that, when
releasing the storage allocated for thread-specific data, the pointer is set to NULL. Otherwise, the
destructor routine might be called with an illegal parameter. For example:

pthread_key_create(&key, free);
...

...
private_data = malloc(...);
pthread_setspecific(key, private_data);
...

/* bad example! */
...
pthread_getspecific(key, &data);
free(data);
...

When the thread terminates, the destructor routine is called for its thread-specific data. Because the
value is a pointer to already released memory, an error can occur. To correct this, the following code
fragment should be substituted:

/* better example! */
...
pthread_getspecific(key, &data);
free(data);
pthread_setspecific(key, NULL);
...

When the thread terminates, the destructor routine is not called, because there is no thread-specific data.

Using non-pointer values

Although it is possible to store values that are not pointers, it is not recommended for the following
reasons:

• Casting a pointer into a scalar type may not be portable.
• The NULL pointer value is implementation-dependent; several systems assign the NULL pointer a

non-zero value.

If you are sure that your program will never be ported to another system, you may use integer values for
thread-specific data.

Related concepts
Joining threads
Joining a thread means waiting for it to terminate, which can be seen as a specific usage of condition
variables.
One-time initializations

General programming concepts 455

Some C libraries are designed for dynamic initialization, in which the global initialization for the library is
performed when the first procedure in the library is called.
Creating complex synchronization objects
The subroutines provided in the threads library can be used as primitives to build more complex
synchronization objects.
List of threads-processes interactions subroutines
This section lists threads-processes interactions subroutines.

Creating complex synchronization objects
The subroutines provided in the threads library can be used as primitives to build more complex
synchronization objects.

Long Locks

The mutexes provided by the threads library are low-contention objects and should not be held for a very
long time. Long locks are implemented with mutexes and condition variables, so that a long lock can be
held for a long time without affecting the performance of the program. Long locks should not be used if
cancelability is enabled.

A long lock has the long_lock_t data type. It must be initialized by the long_lock_init routine.
The long_lock, long_trylock, and long_unlock subroutine performs similar operations to the
pthread_mutex_lock, pthread_mutex_trylock, and pthread_mutex_unlock subroutine.

The following example shows a typical use of condition variables. In this example, the lock owner is not
checked. As a result, any thread can unlock any lock. Error handling and cancelation handling are not
performed.

typedef struct {
 pthread_mutex_t lock;
 pthread_cond_t cond;
 int free;
 int wanted;
} long_lock_t;

void long_lock_init(long_lock_t *ll)
{
 pthread_mutex_init(&ll->lock, NULL);
 pthread_cond_init(&ll->cond);
 ll->free = 1;
 ll->wanted = 0;
}

void long_lock_destroy(long_lock_t *ll)
{
 pthread_mutex_destroy(&ll->lock);
 pthread_cond_destroy(&ll->cond);
}

void long_lock(long_lock_t *ll)
{
 pthread_mutex_lock(&ll->lock);
 ll->wanted++;
 while(!ll->free)
 pthread_cond_wait(&ll->cond);
 ll->wanted--;
 ll->free = 0;
 pthread_mutex_unlock(&ll->lock);
}

int long_trylock(long_lock_t *ll)
{
 int got_the_lock;

 pthread_mutex_lock(&ll->lock);
 got_the_lock = ll->free;
 if (got_the_lock)
 ll->free = 0;
 pthread_mutex_unlock(&ll->lock);
 return got_the_lock;
}

456 AIX Version 7.2: General programming concepts

void long_unlock(long_lock_t *ll)
{
 pthread_mutex_lock(&ll->lock);
 ll->free = 1;
 if (ll->wanted)
 pthread_cond_signal(&ll->cond);
 pthread_mutex_unlock(&ll->lock);
}

Semaphores

Traditional semaphores in UNIX systems are interprocess-synchronization facilities. For specific usage,
you can implement interthread semaphores.

A semaphore has the sema_t data type. It must be initialized by the sema_init routine and destroyed
with the sema_destroy routine. The semaphore wait and semaphore post operations are respectively
performed by the sema_p and sema_v routines.

In the following basic implementation, error handling is not performed, but cancelations are properly
handled with cleanup handlers whenever required:

typedef struct {
 pthread_mutex_t lock;
 pthread_cond_t cond;
 int count;
} sema_t;

void sema_init(sema_t *sem)
{
 pthread_mutex_init(&sem->lock, NULL);
 pthread_cond_init(&sem->cond, NULL);
 sem->count = 1;
}

void sema_destroy(sema_t *sem)
{
 pthread_mutex_destroy(&sem->lock);
 pthread_cond_destroy(&sem->cond);
}

void p_operation_cleanup(void *arg)
{
 sema_t *sem;

 sem = (sema_t *)arg;
 pthread_mutex_unlock(&sem->lock);
}

void sema_p(sema_t *sem)
{
 pthread_mutex_lock(&sem->lock);
 pthread_cleanup_push(p_operation_cleanup, sem);
 while (sem->count <= 0)
 pthread_cond_wait(&sem->cond, &sem->lock);
 sem->count--;
 /*
 * Note that the pthread_cleanup_pop subroutine will
 * execute the p_operation_cleanup routine
 */
 pthread_cleanup_pop(1);
}

void sema_v(sema_t *sem)
{
 pthread_mutex_lock(&sem->lock);
 if (sem->count <=0)
 pthread_cond_signal(&sem->cond);
 sem->count++;
 pthread_mutex_unlock(&sem->lock);
}

The counter specifies the number of users that are allowed to use the semaphore. It is never strictly
negative; thus, it does not specify the number of waiting users, as for traditional semaphores. This
implementation provides a typical solution to the multiple wakeup problem on the pthread_cond_wait

General programming concepts 457

subroutine. The semaphore wait operation is cancelable, because the pthread_cond_wait subroutine
provides a cancelation point.

Write-Priority Read/Write Locks

A write-priority read/write lock provides multiple threads with simultaneous read-only access to a
protected resource, and a single thread with write access to the resource while excluding reads. When
a writer releases a lock, other waiting writers will get the lock before any waiting reader. Write-priority
read/write locks are usually used to protect resources that are more often read than written.

A write-priority read/write lock has the rwlock_t data type. It must be initialized by the rwlock_init
routine. The rwlock_lock_read routine locks the lock for a reader (multiple readers are allowed), the
rwlock_unlock_read routine unlocks it. The rwlock_lock_write routine locks the lock for a writer, the
rwlock_unlock_write routine unlocks it. The proper unlocking routine (for the reader or for the writer)
must be called.

In the following example, the lock owner is not checked. As a result, any thread can unlock any
lock. Routines, such as the pthread_mutex_trylock subroutine, are missing and error handling is not
performed, but cancelations are properly handled with cleanup handlers whenever required.

typedef struct {
 pthread_mutex_t lock;
 pthread_cond_t rcond;
 pthread_cond_t wcond;
 int lock_count; /* < 0 .. held by writer */
 /* > 0 .. held by lock_count readers */
 /* = 0 .. held by nobody */
 int waiting_writers; /* count of wating writers */
} rwlock_t;

void rwlock_init(rwlock_t *rwl)
{
 pthread_mutex_init(&rwl->lock, NULL);
 pthread_cond_init(&rwl->wcond, NULL);
 pthread_cond_init(&rwl->rcond, NULL);
 rwl->lock_count = 0;
 rwl->waiting_writers = 0;
}

void waiting_reader_cleanup(void *arg)
{
 rwlock_t *rwl;

 rwl = (rwlock_t *)arg;
 pthread_mutex_unlock(&rwl->lock);
}

void rwlock_lock_read(rwlock_t *rwl)
{
 pthread_mutex_lock(&rwl->lock);
 pthread_cleanup_push(waiting_reader_cleanup, rwl);
 while ((rwl->lock_count < 0) && (rwl->waiting_writers))
 pthread_cond_wait(&rwl->rcond, &rwl->lock);
 rwl->lock_count++;
 /*
 * Note that the pthread_cleanup_pop subroutine will
 * execute the waiting_reader_cleanup routine
 */
 pthread_cleanup_pop(1);
}

void rwlock_unlock_read(rwlock_t *rwl)
{
 pthread_mutex_lock(&rwl->lock);
 rwl->lock_count--;
 if (!rwl->lock_count)
 pthread_cond_signal(&rwl->wcond);
 pthread_mutex_unlock(&rwl->lock);
}

void waiting_writer_cleanup(void *arg)
{
 rwlock_t *rwl;

 rwl = (rwlock_t *)arg;
 rwl->waiting_writers--;

458 AIX Version 7.2: General programming concepts

 if ((!rwl->waiting_writers) && (rwl->lock_count >= 0))
 /*
 * This only happens if we have been canceled
 */
 pthread_cond_broadcast(&rwl->wcond);
 pthread_mutex_unlock(&rwl->lock);
}

void rwlock_lock_write(rwlock_t *rwl)
{
 pthread_mutex_lock(&rwl->lock);
 rwl->waiting_writers++;
 pthread_cleanup_push(waiting_writer_cleanup, rwl);
 while (rwl->lock_count)
 pthread_cond_wait(&rwl->wcond, &rwl->lock);
 rwl->lock_count = -1;
 /*
 * Note that the pthread_cleanup_pop subroutine will
 * execute the waiting_writer_cleanup routine
 */
 pthread_cleanup_pop(1);
}

void rwlock_unlock_write(rwlock_t *rwl)
{
 pthread_mutex_lock(&rwl->lock);
 l->lock_count = 0;
 if (!rwl->wating_writers)
 pthread_cond_broadcast(&rwl->rcond);
 else
 pthread_cond_signal(&rwl->wcond);
 pthread_mutex_unlock(&rwl->lock);
}

Readers are counted only. When the count reaches zero, a waiting writer may take the lock. Only one
writer can hold the lock. When the lock is released by a writer, another writer is awakened, if there is one.
Otherwise, all waiting readers are awakened.

The locking routines are cancelable, because they call the pthread_cond_wait subroutine. Cleanup
handlers are therefore registered before calling the subroutine.

Related concepts
Thread-specific data
Many applications require that certain data be maintained on a per-thread basis across function calls.
Synchronization overview
One main benefit of using threads is the ease of using synchronization facilities.
List of threads-processes interactions subroutines
This section lists threads-processes interactions subroutines.

Signal management
Signals in multithreaded processes are an extension of signals in traditional single-threaded programs.

Signal management in multithreaded processes is shared by the process and thread levels, and consists
of the following:

• Per-process signal handlers
• Per-thread signal masks
• Single delivery of each signal

Signal handlers and signal masks

Signal handlers are maintained at process level. It is strongly recommended to use the sigwait subroutine
when waiting for signals. The sigaction subroutine is not recommended because the list of signal
handlers is maintained at process level and any thread within the process might change it. If two threads
set a signal handler on the same signal, the last thread that called the sigaction subroutine overrides the
setting of the previous thread call; and in most cases, the order in which threads are scheduled cannot be
predicted.

General programming concepts 459

Signal masks are maintained at thread level. Each thread can have its own set of signals that will
be blocked from delivery. The sigthreadmask subroutine must be used to get and set the calling
thread's signal mask. The sigprocmask subroutine must not be used in multithreaded programs; because
unexpected behavior might result.

The pthread_sigmask subroutine is very similar to the sigprocmask subroutine. The parameters and
usage of both subroutines are identical. When porting existing code to support the threads library, you can
replace the sigprocmask subroutine with the pthread_sigmask subroutine.

Signal generation

Signals generated by some action attributable to a particular thread, such as a hardware fault, are sent to
the thread that caused the signal to be generated. Signals generated in association with a process ID, a
process group ID, or an asynchronous event (such as terminal activity) are sent to the process.

• The pthread_kill subroutine sends a signal to a thread. Because thread IDs identify threads within a
process, this subroutine can only send signals to threads within the same process.

• The kill subroutine (and thus the kill command) sends a signal to a process. A thread can send a Signal
signal to its process by executing the following call:

kill(getpid(), Signal);

• The raise subroutine cannot be used to send a signal to the calling thread's process. The raise
subroutine sends a signal to the calling thread, as in the following call:

pthread_kill(pthread_self(), Signal);

This ensures that the signal is sent to the caller of the raise subroutine. Thus, library routines written for
single-threaded programs can easily be ported to a multithreaded system, because the raise subroutine
is usually intended to send the signal to the caller.

• The alarm subroutine requests that a signal be sent later to the process, and alarm states are
maintained at process level. Thus, the last thread that called the alarm subroutine overrides the
settings of other threads in the process. In a multithreaded program, the SIGALRM signal is not
necessarily delivered to the thread that called the alarm subroutine. The calling thread might even be
terminated; and therefore, it cannot receive the signal.

Handling signals

Signal handlers are called within the thread to which the signal is delivered. The following limitations to
signal handlers are introduced by the threads library:

• Signal handlers might call the longjmp or siglongjmp subroutine only if the corresponding call to the
setjmp or sigsetjmp subroutine is performed in the same thread.

Usually, a program that wants to wait for a signal installs a signal handler that calls the longjmp
subroutine to continue execution at the point where the corresponding setjmp subroutine is called. This
cannot be done in a multithreaded program, because the signal might be delivered to a thread other
than the one that called the setjmp subroutine, thus causing the handler to be executed by the wrong
thread.

Note: Using longjmp from a signal handler can result in undefined behavior.
• No pthread routines can be called from a signal handler. Calling a pthread routine from a signal handler

can lead to an application deadlock.

To allow a thread to wait for asynchronously generated signals, the threads library provides the sigwait
subroutine. The sigwait subroutine blocks the calling thread until one of the awaited signals is sent to
the process or to the thread. There must not be a signal handler installed on the awaited signal using the
sigwait subroutine.

460 AIX Version 7.2: General programming concepts

Typically, programs might create a dedicated thread to wait for asynchronously generated signals. Such a
thread loops on a sigwait subroutine call and handles the signals. It is recommended that such a thread
block all the signals. The following code fragment gives an example of such a signal-waiter thread:

#include <pthread.h>
#include <signal.h>

static pthread_mutex_t mutex;
sigset_t set;
static int sig_cond = 0;

void *run_me(void *id)
{
 int sig;
 int err;
 sigset_t sigs;
 sigset_t oldSigSet;
 sigfillset(&sigs);
 sigthreadmask(SIG_BLOCK, &sigs, &oldSigSet);

 err = sigwait(&set, &sig);

 if(err)
 {
 /* do error code */
 }
 else
 {
 printf("SIGINT caught\n");
 pthread_mutex_lock(&mutex);
 sig_cond = 1;
 pthread_mutex_unlock(&mutex);
 }

 return;
}

main()
{
 pthread_t tid;

 sigemptyset(&set);
 sigaddset(&set, SIGINT);
 pthread_sigmask(SIG_BLOCK, &set, 0);

 pthread_mutex_init(&mutex, NULL);

 pthread_create(&tid, NULL, run_me, (void *)1);

 while(1)
 {
 sleep(1);
 /* or so something here */

 pthread_mutex_lock(&mutex);
 if(sig_cond)
 {
 /* do exit stuff */
 return;
 }
 pthread_mutex_unlock(&mutex);

 }

}

If more than one thread called the sigwait subroutine, exactly one call returns when a matching signal is
sent. Which thread is awakened cannot be predicted. If a thread is going to do sigwait as well as handling
of some other signals for which it is not doing sigwait, the user-defined signal handlers need to block the
sigwaiter signals for the proper handling. Note that the sigwait subroutine provides a cancellation point.

Because a dedicated thread is not a real signal handler, it might signal a condition to any other thread. It
is possible to implement a sigwait_multiple routine that would awaken all threads waiting for a specific
signal. Each caller of the sigwait_multiple routine registers a set of signals. The caller then waits on
a condition variable. A single thread calls the sigwait subroutine on the union of all registered signals.
When the call to the sigwait subroutine returns, the appropriate state is set and condition variables are

General programming concepts 461

broadcasted. New callers to the sigwait_multiple subroutine cause the pending sigwait subroutine call
to be canceled and reissued to update the set of signals being waited for.

Signal delivery

A signal is delivered to a thread, unless its action is set to ignore. The following rules govern signal
delivery in a multithreaded process:

• A signal whose action is set to terminate, stop, or continue the target thread or process respectively
terminates, stops, or continues the entire process (and thus all of its threads). Single-threaded
programs can thus be rewritten as multithreaded programs without changing their externally visible
signal behavior.

For example, consider a multithreaded user command, such as the grep command. A user can start the
command in his favorite shell and then decide to stop it by sending a signal with the kill command. The
signal should stop the entire process running the grep command.

• Signals generated for a specific thread, using the pthread_kill or the raise subroutines, are delivered to
that thread. If the thread has blocked the signal from delivery, the signal is set pending on the thread
until the signal is unblocked from delivery. If the thread is terminated before the signal delivery, the
signal will be ignored.

• Signals generated for a process, using the kill subroutine for example, are delivered to exactly one
thread in the process. If one or more threads called the sigwait subroutine, the signal is delivered to
exactly one of these threads. Otherwise, the signal is delivered to exactly one thread that did not block
the signal from delivery. If no thread matches these conditions, the signal is set pending on the process
until a thread calls the sigwait subroutine specifying this signal or a thread unblocks the signal from
delivery.

If the action associated with a pending signal (on a thread or on a process) is set to ignore, the signal is
ignored.

Related concepts
Process duplication and termination
Because all processes have at least one thread, creating (that is, duplicating) and terminating a process
implies the creation and the termination of threads.

List of threads-processes interactions subroutines
This section lists threads-processes interactions subroutines.

Subroutine Description

alarm Causes a signal to be sent to the calling process after a
specified timeout.

kill or killpg Sends a signal to a process or a group of processes.

pthread_atfork Registers fork cleanup handlers.

pthread_kill Sends a signal to the specified thread.

pthread_sigmask Sets the signal mask of a thread.

raise Sends a signal to the executing thread.

sigaction, sigvec, or signal Specifies the action to take upon delivery of a signal.

sigsuspend or sigpause Atomically changes the set of blocked signals and
waits for a signal.

sigthreadmask Sets the signal mask of a thread.

sigwait Blocks the calling thread until a specified signal is
received.

462 AIX Version 7.2: General programming concepts

Related concepts
Thread-specific data
Many applications require that certain data be maintained on a per-thread basis across function calls.
Creating complex synchronization objects
The subroutines provided in the threads library can be used as primitives to build more complex
synchronization objects.
Process duplication and termination
Because all processes have at least one thread, creating (that is, duplicating) and terminating a process
implies the creation and the termination of threads.

Process duplication and termination
Because all processes have at least one thread, creating (that is, duplicating) and terminating a process
implies the creation and the termination of threads.

This section describes the interactions between threads and processes when duplicating and terminating
a process.

Forking

Programmers call the fork subroutine in the following cases:

• To create a new flow of control within the same program. AIX creates a new process.
• To create a new process running a different program. In this case, the call to the fork subroutine is soon

followed by a call to one of the exec subroutines.

In a multithreaded program, the first use of the fork subroutine, creating new flows of control, is provided
by the pthread_create subroutine. The fork subroutine should thus be used only to run new programs.

The fork subroutine duplicates the parent process, but duplicates only the calling thread; the child
process is a single-threaded process. The calling thread of the parent process becomes the initial thread
of the child process; it may not be the initial thread of the parent process. Thus, if the initial thread of the
child process returns from its entry-point routine, the child process terminates.

When duplicating the parent process, the fork subroutine also duplicates all the synchronization
variables, including their state. Thus, for example, mutexes may be held by threads that no longer exist in
the child process and any associated resource may be inconsistent.

It is strongly recommended that the fork subroutine be used only to run new programs, and to call one of
the exec subroutines as soon as possible after the call to the fork subroutine in the child process.

Fork handlers

The preceding forking rule does not address the needs of multithreaded libraries. Application programs
may not be aware that a multithreaded library is in use and will call any number of library routines
between the fork and the exec subroutines, just as they always have. Indeed, they may be old single-
threaded programs and cannot, therefore, be expected to obey new restrictions imposed by the threads
library.

On the other hand, multithreaded libraries need a way to protect their internal state during a fork in case
a routine is called later in the child process. The problem arises especially in multithreaded input/output
libraries, which are almost sure to be invoked between the fork and the exec subroutines to affect input/
output redirection.

The pthread_atfork subroutine provides a way for multithreaded libraries to protect themselves from
innocent application programs that call the fork subroutine. It also provides multithreaded application
programs with a standard mechanism for protecting themselves from calls to the fork subroutine in a
library routine or the application itself.

The pthread_atfork subroutine registers fork handlers to be called before and after the call to the fork
subroutine. The fork handlers are executed in the thread that called the fork subroutine. The following
fork handlers exist:

General programming concepts 463

Subroutin
e

Description

Prepare The prepare fork handler is called just before the processing of the fork subroutine begins.

Parent The parent fork handler is called just after the processing of the fork subroutine is
completed in the parent process.

Child The child fork handler is called just after the processing of the fork subroutine is completed
in the child process.

Process termination

The prepare fork handlers are called in last-in first-out (LIFO) order, whereas the parent and child fork
handlers are called in first-in first-out (FIFO) order. This allows programs to preserve any desired locking
order.

When a process terminates, by calling the exit, atexit, or _exit subroutine either explicitly or implicitly,
all threads within the process are terminated. Neither the cleanup handlers nor the thread-specific data
destructors are called.

Note: The unatexit subroutine unregisters functions that were previously registered by the atexit
subroutine. If the referenced function is found, it is removed from the list of functions that are called at
normal program termination.

The reason for this behavior is that there is no state to leave clean and no thread-specific storage to
reclaim, because the whole process terminates, including all the threads, and all the process storage is
reclaimed, including all thread-specific storage.

Related concepts
Understanding threads and processes
A thread is an independent flow of control that operates within the same address space as other
independent flows of controls within a process.
Signal management
Signals in multithreaded processes are an extension of signals in traditional single-threaded programs.
List of threads-processes interactions subroutines
This section lists threads-processes interactions subroutines.

Threads library options
This section describes special attributes of threads, mutexes, and condition variables.

The POSIX standard for the threads library specifies the implementation of some parts as optional. All
subroutines defined by the threads library API are always available. Depending on the available options,
some subroutines may not be implemented. Unimplemented subroutines can be called by applications,
but they always return the ENOSYS error code.

Stack attributes

A stack is allocated for each thread. Stack management is implementation-dependent. Thus, the
following information applies only to AIX, although similar features may exist on other systems.

The stack is dynamically allocated when the thread is created. Using advanced thread attributes, it is
possible for the user to control the stack size and address of the stack. The following information does not
apply to the initial thread, which is created by the system.

Stack size

The stack size option enables the control of the stacksize attribute of a thread attributes object. This
attribute specifies the minimum stack size to be used for the created thread.

The stacksize attribute is defined in AIX. The following attribute and subroutines are available when the
option is implemented:

464 AIX Version 7.2: General programming concepts

• The stacksize attribute of the thread attributes object
• The pthread_attr_getstacksize returns the value of the attribute
• and pthread_attr_setstacksize subroutines sets the value

The default value of the stacksize attribute is 96 KB. The minimum value of the stacksize attribute is 16
KB. If the assigned value is less than the minimum value, the minimum value is allocated.

In the AIX implementation of the threads library, a chunk of data, called user thread area, is allocated for
each created thread. The area is divided into the following sections:

• A red zone, which is both read-protected and write-protected for stack overflow detection. There is no
red zone in programs that use large pages.

• A default stack.
• A pthread structure.
• A thread structure.
• A thread attribute structure.

Note: The user thread area described here has no relationship to the uthread structure used in the AIX
kernel. The user thread area is accessed only in user mode and is exclusively handled by the threads
library, whereas the uthread structure only exists within the kernel environment.

Stack address POSIX option

The stack address option enables the control of the stackaddr attribute of a thread attributes object. This
attribute specifies the location of storage to be used for the created thread's stack.

The following attribute and subroutines are available when the option is implemented:

• The stackaddr attribute of the thread attributes object specifies the address of the stack that will be
allocated for a thread.

• The pthread_attr_getstackaddr subroutine returns the value of the attribute.
• and pthread_attr_setstackaddr subroutine sets the value.

If no stack address is specified, the stack is allocated by the system at an arbitrary address. If you must
have the stack at a known location, you can use the stackaddr attribute. For example, if you need a very
large stack, you can set its address to an unused segment, guaranteeing that the allocation will succeed.

If a stack address is specified when calling the pthread_create subroutine, the system attempts to
allocate the stack at the given address. If it fails, the pthread_create subroutine returns EINVAL.
Because the pthread_attr_setstackaddr subroutine does not actually allocate the stack, it only returns
an error if the specified stack address exceeds the addressing space.

Priority scheduling POSIX option

The priority scheduling option enables the control of execution scheduling at thread level. When this
option is disabled, all threads within a process share the scheduling properties of the process. When this
option is enabled, each thread has its own scheduling properties. For local contention scope threads,
the scheduling properties are handled at process level by a library scheduler, while for global contention
scope threads, the scheduling properties are handled at system level by the kernel scheduler.

The folowing attributes and subroutines are available when the option is implemented:

• The inheritsched attribute of the thread attributes object
• The schedparam attribute of the thread attributes object and the thread
• The schedpolicy attribute of the thread attributes objects and the thread
• The contention-scope attribute of the thread attributes objects and the thread
• The pthread_attr_getschedparam and pthread_attr_setschedparam subroutines
• The pthread_getschedparam subroutine

Checking the availability of an option

General programming concepts 465

Options can be checked at compile time or at run time. Portable programs should check the availability of
options before using them, so that they need not be rewritten when ported to other systems.

Compile-time checking

When an option is not available, you can stop the compilation, as in the following example:

#ifndef _POSIX_THREAD_ATTR_STACKSIZE
#error "The stack size POSIX option is required"
#endif

The pthread.h header file also defines the following symbols that can be used by other header files or by
programs:
_POSIX_REENTRANT_FUNCTIONS

Denotes that reentrant functions are required
_POSIX_THREADS

Denotes the implementation of the threads library

Run-time checking

The sysconf subroutine can be used to get the availability of options on the system where the program is
executed. This is useful when porting programs between systems that have a binary compatibility, such as
two versions of AIX.

The following list indicates the symbols that are associated with each option and that must be used
for the Name parameter of the sysconf subroutine. The symbolic constants are defined in the unistd.h
header file.

Stack address
_SC_THREAD_ATTR_STACKADDR

Stack size
_SC_THREAD_ATTR_STACKSIZE

Priority scheduling
_SC_THREAD_PRIORITY_SCHEDULING

Priority inheritance
_SC_THREAD_PRIO_INHERIT

Priority protection
_SC_THREAD_PRIO_PROTECT

Process sharing
_SC_THREAD_PROCESS_SHARED

To check the general options, use the sysconf subroutine with the following Name parameter values:
_SC_REENTRANT_FUNCTIONS

Denotes that reentrant functions are required.
_SC_THREADS

Denotes the implementation of the threads library.

Process sharing

AIX and most UNIX systems allow several processes to share a common data space, known as
shared memory.The process-sharing attributes for condition variables and mutexes are meant to allow
these objects to be allocated in shared memory to support synchronization among threads belonging
to different processes. However, because there is no industry-standard interface for shared memory
management, the process-sharing POSIX option is not implemented in the AIX threads library.

Threads data types

The following data types are defined for the threads library. The definition of these data types can vary
between systems:

466 AIX Version 7.2: General programming concepts

pthread_t
Identifies a thread

pthread_attr_t
Identifies a thread attributes object

pthread_cond_t
Identifies a condition variable

pthread_condattr_t
Identifies a condition attributes object

pthread_key_t
Identifies a thread-specific data key

pthread_mutex_t
Identifies a mutex

pthread_mutexattr_t
Identifies a mutex attributes object

pthread_once_t
Identifies a one-time initialization object

Limits and Default Values

The threads library has some implementation-dependent limits and default values. These limits and
default values can be retrieved by symbolic constants to enhance the portability of programs:

• The maximum number of threads per process is 512. The maximum number of threads can be retrieved
at compilation time using the PTHREAD_THREADS_MAX symbolic constant defined in the pthread.h
header file. If an application is compiled with the -D_LARGE_THREADS flag, the maximum number of
threads per process is 32767.

• The minimum stack size for a thread is 8 K. The default stack size is 96 KB. This number can
be retrieved at compilation time using the PTHREAD_STACK_MIN symbolic constant defined in the
pthread.h header file.

Note: The maximum stack size is 256 MB, the size of a segment. This limit is indicated by the
PTHREAD_STACK_MAX symbolic constant in the pthread.h header file.

• The maximum number of thread-specific data keys is limited to 508. This number can be retrieved at
compilation time using the PTHREAD_KEYS_MAX symbolic constant defined in the pthread.h header
file.

Default attribute values

The default values for the thread attributes object are defined in the pthread.h header file by the
following symbolic constants:

• The default value for the DEFAULT_DETACHSTATE symbolic constant is
PTHREAD_CREATE_DETACHED, which specifies the default value for the detachstate attribute.

• The default value for the DEFAULT_JOINABLE symbolic constant is PTHREAD_CREATE_JOINABLE,
which specifies the default value for the joinable state.

• The default value for the DEFAULT_INHERIT symbolic constant is PTHREAD_INHERIT_SCHED, which
specifies the default value for the inheritsched attribute.

• The default value for the DEFAULT_PRIO symbolic constant is 1, which specifies the default value for
the sched_prio field of the schedparam attribute.

• The default value for the DEFAULT_SCHED symbolic constant is SCHED_OTHER, which specifies the
default value for the schedpolicy attribute of a thread attributes object.

• The default value for the DEFAULT_SCOPE symbolic constant is PTHREAD_SCOPE_LOCAL, which
specifies the default value for the contention-scope attribute.

Related concepts
Threadsafe and threaded libraries in AIX

General programming concepts 467

This section describes the thread libraries in the AIX.

List of threads advanced-feature subroutines
This section lists threads advanced-features subroutines.

Subroutine Description

pthread_attr_getstackaddr Returns the value of the stackaddr attribute of a thread
attributes object.

pthread_attr_getstacksize Returns the value of the stacksize attribute of a thread
attributes object.

pthread_attr_setstackaddr Sets the value of the stackaddr attribute of a thread
attributes object.

pthread_attr_setstacksize Sets the value of the stacksize attribute of a thread
attributes object.

pthread_condattr_getpshared Returns the value of the process-shared attribute of a
condition attributes object.

pthread_condattr_setpshared Sets the value of the process-shared attribute of a
condition attributes object.

pthread_getspecific Returns the thread-specific data associated with the
specified key.

pthread_key_create Creates a thread-specific data key.

pthread_key_delete Deletes a thread-specific data key.

pthread_mutexattr_getpshared Returns the value of the process-shared attribute of a
mutex attributes object.

pthread_mutexattr_setpshared Sets the value of the process-shared attribute of a
mutex attributes object.

pthread_once Executes a routine exactly once in a process.

PTHREAD_ONCE_INIT Initializes a one-time synchronization control
structure.

pthread_setspecific Sets the thread-specific data associated with the
specified key.

Supported interfaces
On AIX systems, the _POSIX_THREADS, _POSIX_THREAD_ATTR_STACKADDR,
_POSIX_THREAD_ATTR_STACKSIZE and _POSIX_THREAD_PROCESS_SHARED symbols are always
defined.

Therefore, the following threads interfaces are supported.

POSIX interfaces

The following is a list of POSIX interfaces:

• pthread_atfork
• pthread_attr_destroy
• pthread_attr_getdetachstate
• pthread_attr_getschedparam
• pthread_attr_getstacksize
• pthread_attr_getstackaddr

468 AIX Version 7.2: General programming concepts

• pthread_attr_init
• pthread_attr_setdetachstate
• pthread_attr_setschedparam
• pthread_attr_setstackaddr
• pthread_attr_setstacksize
• pthread_cancel
• pthread_cleanup_pop
• pthread_cleanup_push
• pthread_detach
• pthread_equal
• pthread_exit
• pthread_getspecific
• pthread_join
• pthread_key_create
• pthread_key_delete
• pthread_kill
• pthread_mutex_destroy
• pthread_mutex_init
• pthread_mutex_lock
• pthread_mutex_trylock
• pthread_mutex_unlock
• pthread_mutexattr_destroy
• pthread_mutexattr_getpshared
• pthread_mutexattr_init
• pthread_mutexattr_setpshared
• pthread_once
• pthread_self
• pthread_setcancelstate
• pthread_setcanceltype
• pthread_setspecific
• pthread_sigmask
• pthread_testcancel
• pthread_cond_broadcast
• pthread_cond_destroy
• pthread_cond_init
• pthread_cond_signal
• pthread_cond_timedwait
• pthread_cond_wait
• pthread_condattr_destroy
• pthread_condattr_getpshared
• pthread_condattr_init
• pthread_condattr_setpshared
• pthread_create

General programming concepts 469

• sigwait

Single UNIX Specification, Version 2 Interfaces

The following is a list of Single UNIX Specification, Version 2 interfaces:

• pthread_attr_getguardsize
• pthread_attr_setguardsize
• pthread_getconcurrency
• pthread_mutexattr_gettype
• pthread_mutexattr_settype
• pthread_rwlock_destroy
• pthread_rwlock_init
• pthread_rwlock_rdlock
• pthread_rwlock_tryrdlock
• pthread_rwlock_trywrlock
• pthread_rwlock_unlock
• pthread_rwlock_wrlock
• pthread_rwlockattr_destroy
• pthread_rwlockattr_getpshared
• pthread_rwlockattr_init
• pthread_rwlockattr_setpshared
• pthread_setconcurrency

On AIX systems, _POSIX_THREAD_SAFE_FUNCTIONS symbol is always defined. Therefore, the
following interfaces are always supported:

• asctime_r
• ctime_r
• flockfile
• ftrylockfile
• funlockfile
• getc_unlocked
• getchar_unlocked
• getgrgid_r
• getgrnam_r
• getpwnam_r
• getpwuid_r
• gmtime_r
• localtime_r
• putc_unlocked
• putchar_unlocked
• rand_r
• readdir_r
• strtok_r

AIX does not support the following interfaces; the symbols are provided but they always return an error
and set the errno to ENOSYS:

• pthread_mutex_getprioceiling

470 AIX Version 7.2: General programming concepts

• pthread_mutex_setprioceiling
• pthread_mutexattr_getprioceiling
• pthread_mutexattr_getprotocol
• pthread_mutexattr_setprioceiling
• pthread_mutexattr_setprotocol

Non-threadsafe interfaces

libc.a library (standard functions):

• advance
• asctime
• brk
• catgets
• chroot
• compile
• ctime
• cuserid
• dbm_clearerr
• dbm_close
• dbm_delete
• dbm_error
• dbm_fetch
• dbm_firstkey
• dbm_nextkey
• dbm_open
• dbm_store
• dirname
• drand48
• ecvt
• encrypt
• endgrent
• endpwent
• endutxent
• fcvt
• gamma
• gcvt
• getc_unlocked
• getchar_unlocked
• getdate
• getdtablesize
• getgrent
• getgrgid
• getgrnam
• getlogin
• getopt

General programming concepts 471

• getpagesize
• getpass
• getpwent
• getpwnam
• getpwuid
• getutxent
• getutxid
• getutxline
• getw
• getw
• gmtime
• l64a
• lgamma
• localtime
• lrand48
• mrand48
• nl_langinfo
• ptsname
• putc_unlocked
• putchar_unlocked
• pututxline
• putw
• rand
• random
• readdir
• re_comp
• re_exec
• regcmp
• regex
• sbrk
• setgrent
• setkey
• setpwent
• setutxent
• sigstack
• srand48
• srandom
• step
• strerror
• strtok
• ttyname
• ttyslot
• wait3

472 AIX Version 7.2: General programming concepts

The following AIX interfaces are not threadsafe.

libc.a Library (AIX-specific functions):

• endfsent
• endttyent
• endutent
• getfsent
• getfsfile
• getfsspec
• getfstype
• getttyent
• getttynam
• getutent
• getutid
• getutline
• pututline
• setfsent
• setttyent
• setutent
• utmpname

libbsd.a library:

• timezone

libm.a and libmsaa.a libraries:

• gamma
• lgamma

None of the functions in the following libraries are threadsafe:

• libPW.a
• libblas.a
• libcur.a
• libcurses.a
• libplot.a
• libprint.a

The ctermid and tmpnam interfaces are not threadsafe if they are passed a NULL argument.

In a multi-threaded program it is not recommended to execute setlocale() subroutine simultaneously
from multiple threads if one of the threads calls setlocale() subroutine from within a module-initialization
routine.

Note: Certain subroutines may be implemented as macros on some systems. Avoid using the address of
threads subroutines.

Writing reentrant and threadsafe code
In single-threaded processes, only one flow of control exists. The code executed by these processes
thus need not be reentrant or threadsafe. In multithreaded programs, the same functions and the same
resources may be accessed concurrently by several flows of control.

To protect resource integrity, code written for multithreaded programs must be reentrant and threadsafe.

General programming concepts 473

Reentrance and thread safety are both related to the way that functions handle resources. Reentrance
and thread safety are separate concepts: a function can be either reentrant, threadsafe, both, or neither.

This section provides information about writing reentrant and threadsafe programs. It does not cover the
topic of writing thread-efficient programs. Thread-efficient programs are efficiently parallelized programs.
You must consider thread efficiency during the design of the program. Existing single-threaded programs
can be made thread-efficient, but this requires that they be completely redesigned and rewritten.

Reentrance
A reentrant function does not hold static data over successive calls, nor does it return a pointer to static
data. All data is provided by the caller of the function. A reentrant function must not call non-reentrant
functions.

A non-reentrant function can often, but not always, be identified by its external interface and its usage.
For example, the strtok subroutine is not reentrant, because it holds the string to be broken into tokens.
The ctime subroutine is also not reentrant; it returns a pointer to static data that is overwritten by each
call.

Thread safety
A threadsafe function protects shared resources from concurrent access by locks. Thread safety concerns
only the implementation of a function and does not affect its external interface.

In C language, local variables are dynamically allocated on the stack. Therefore, any function that does
not use static data or other shared resources is trivially threadsafe, as in the following example:

/* threadsafe function */
int diff(int x, int y)
{
 int delta;

 delta = y - x;
 if (delta < 0)
 delta = -delta;

 return delta;
}

The use of global data is thread-unsafe. Global data should be maintained per thread or encapsulated, so
that its access can be serialized. A thread may read an error code corresponding to an error caused by
another thread. In AIX, each thread has its own errno value.

Making a function reentrant
In most cases, non-reentrant functions must be replaced by functions with a modified interface to
be reentrant. Non-reentrant functions cannot be used by multiple threads. Furthermore, it may be
impossible to make a non-reentrant function threadsafe.

Returning data
Many non-reentrant functions return a pointer to static data. This can be avoided in the following ways:

• Returning dynamically allocated data. In this case, it will be the caller's responsibility to free the
storage. The benefit is that the interface does not need to be modified. However, backward compatibility
is not ensured; existing single-threaded programs using the modified functions without changes would
not free the storage, leading to memory leaks.

• Using caller-provided storage. This method is recommended, although the interface must be modified.

For example, a strtoupper function, converting a string to uppercase, could be implemented as in the
following code fragment:

/* non-reentrant function */
char *strtoupper(char *string)

474 AIX Version 7.2: General programming concepts

{
 static char buffer[MAX_STRING_SIZE];
 int index;

 for (index = 0; string[index]; index++)
 buffer[index] = toupper(string[index]);
 buffer[index] = 0

 return buffer;
}

This function is not reentrant (nor threadsafe). To make the function reentrant by returning dynamically
allocated data, the function would be similar to the following code fragment:

/* reentrant function (a poor solution) */
char *strtoupper(char *string)
{
 char *buffer;
 int index;

 /* error-checking should be performed! */
 buffer = malloc(MAX_STRING_SIZE);

 for (index = 0; string[index]; index++)
 buffer[index] = toupper(string[index]);
 buffer[index] = 0

 return buffer;
}

A better solution consists of modifying the interface. The caller must provide the storage for both input
and output strings, as in the following code fragment:

/* reentrant function (a better solution) */
char *strtoupper_r(char *in_str, char *out_str)
{
 int index;

 for (index = 0; in_str[index]; index++)
 out_str[index] = toupper(in_str[index]);
 out_str[index] = 0

 return out_str;
}

Te non-reentrant standard C library subroutines were made reentrant using caller-provided storage.

Keeping data over successive calls
No data should be kept over successive calls, because different threads may successively call the
function. If a function must maintain some data over successive calls, such as a working buffer or a
pointer, the caller should provide this data.

Consider the following example. A function returns the successive lowercase characters of a string. The
string is provided only on the first call, as with the strtok subroutine. The function returns 0 when it
reaches the end of the string. The function could be implemented as in the following code fragment:

/* non-reentrant function */
char lowercase_c(char *string)
{
 static char *buffer;
 static int index;
 char c = 0;

 /* stores the string on first call */
 if (string != NULL) {
 buffer = string;
 index = 0;
 }

 /* searches a lowercase character */
 for (; c = buffer[index]; index++) {
 if (islower(c)) {
 index++;

General programming concepts 475

 break;
 }
 }
 return c;
}

h

This function is not reentrant. To make it reentrant, the static data, the index variable, must be
maintained by the caller. The reentrant version of the function could be implemented as in the following
code fragment:

/* reentrant function */
char reentrant_lowercase_c(char *string, int *p_index)
{
 char c = 0;

 /* no initialization - the caller should have done it */

 /* searches a lowercase character */
 for (; c = string[*p_index]; (*p_index)++) {
 if (islower(c)) {
 (*p_index)++;
 break;
 }
 }
 return c;
}

The interface of the function changed and so did its usage. The caller must provide the string on each call
and must initialize the index to 0 before the first call, as in the following code fragment:

char *my_string;
char my_char;
int my_index;
...
my_index = 0;
while (my_char = reentrant_lowercase_c(my_string, &my_index)) {
 ...
}

Making a function threadsafe
In multithreaded programs, all functions called by multiple threads must be threadsafe. However,
a workaround exists for using thread-unsafe subroutines in multithreaded programs. Non-reentrant
functions usually are thread-unsafe, but making them reentrant often makes them threadsafe, too.

Locking shared resources
Functions that use static data or any other shared resources, such as files or terminals, must serialize
the access to these resources by locks in order to be threadsafe. For example, the following function is
thread-unsafe:

/* thread-unsafe function */
int increment_counter()
{
 static int counter = 0;

 counter++;
 return counter;
}

To be threadsafe, the static variable counter must be protected by a static lock, as in the following
example:

/* pseudo-code threadsafe function */
int increment_counter();
{
 static int counter = 0;
 static lock_type counter_lock = LOCK_INITIALIZER;

476 AIX Version 7.2: General programming concepts

 pthread_mutex_lock(counter_lock);
 counter++;
 pthread_mutex_unlock(counter_lock);
 return counter;
}

In a multithreaded application program using the threads library, mutexes should be used for serializing
shared resources. Independent libraries may need to work outside the context of threads and, thus, use
other kinds of locks.

Workarounds for thread-unsafe functions
It is possible to use a workaround to use thread-unsafe functions called by multiple threads. This can
be useful, especially when using a thread-unsafe library in a multithreaded program, for testing or while
waiting for a threadsafe version of the library to be available. The workaround leads to some overhead,
because it consists of serializing the entire function or even a group of functions. The following are
possible workarounds:

• Use a global lock for the library, and lock it each time you use the library (calling a library routine or
using a library global variable). This solution can create performance bottlenecks because only one
thread can access any part of the library at any given time. The solution in the following pseudocode is
acceptable only if the library is seldom accessed, or as an initial, quickly implemented workaround.

/* this is pseudo code! */

lock(library_lock);
library_call();
unlock(library_lock);

lock(library_lock);
x = library_var;
unlock(library_lock);

• Use a lock for each library component (routine or global variable) or group of components. This
solution is somewhat more complicated to implement than the previous example, but it can improve
performance. Because this workaround should only be used in application programs and not in libraries,
mutexes can be used for locking the library.

/* this is pseudo-code! */

lock(library_moduleA_lock);
library_moduleA_call();
unlock(library_moduleA_lock);

lock(library_moduleB_lock);
x = library_moduleB_var;
unlock(library_moduleB_lock);

Reentrant and threadsafe libraries
Reentrant and threadsafe libraries are useful in a wide range of parallel (and asynchronous) programming
environments, not just within threads. It is a good programming practice to always use and write
reentrant and threadsafe functions.

Using libraries
Several libraries shipped with the AIX Base Operating System are threadsafe. In the current version of
AIX, the following libraries are threadsafe:

• Standard C library (libc.a)
• Berkeley compatibility library (libbsd.a)

Some of the standard C subroutines are non-reentrant, such as the ctime and strtok subroutines. The
reentrant version of the subroutines have the name of the original subroutine with a suffix _r (underscore
followed by the letter r).

General programming concepts 477

When writing multithreaded programs, use the reentrant versions of subroutines instead of the original
version. For example, the following code fragment:

token[0] = strtok(string, separators);
i = 0;
do {
 i++;
 token[i] = strtok(NULL, separators);
} while (token[i] != NULL);

should be replaced in a multithreaded program by the following code fragment:

char *pointer;
...
token[0] = strtok_r(string, separators, &pointer);
i = 0;
do {
 i++;
 token[i] = strtok_r(NULL, separators, &pointer);
} while (token[i] != NULL);

Thread-unsafe libraries may be used by only one thread in a program. Ensure the uniqueness of the
thread using the library; otherwise, the program will have unexpected behavior, or may even stop.

Converting libraries
Consider the following when converting an existing library to a reentrant and threadsafe library. This
information applies only to C language libraries.

• Identify exported global variables. Those variables are usually defined in a header file with the export
keyword. Exported global variables should be encapsulated. The variable should be made private
(defined with the static keyword in the library source code), and access (read and write) subroutines
should be created.

• Identify static variables and other shared resources. Static variables are usually defined with the static
keyword. Locks should be associated with any shared resource. The granularity of the locking, thus
choosing the number of locks, impacts the performance of the library. To initialize the locks, the
one-time initialization facility may be used.

• Identify non-reentrant functions and make them reentrant. For more information, see Making a Function
Reentrant.

• Identify thread-unsafe functions and make them threadsafe. For more information, see Making a
Function threadsafe.

Related concepts
One-time initializations
Some C libraries are designed for dynamic initialization, in which the global initialization for the library is
performed when the first procedure in the library is called.
Related information
admin
cdc
delta
get
prs
sccsdiff
sccsfile

Developing multithreaded programs
Developing multithreaded programs is similar to developing programs with multiple processes.
Developing programs also consists of compiling and debugging the code.

Compiling a multithreaded program

478 AIX Version 7.2: General programming concepts

This section explains how to generate a multithreaded program. It describes the following:

• The required header file
• Invoking the compiler, which is used to generate multithreaded programs.

Header file

All subroutine prototypes, macros, and other definitions for using the threads library are in the pthread.h
header file, which is located in the /usr/include directory. The pthread.h header file must be included in
each source file using the threads library.

The pthread.h header includes the unistd.h header, which provides the following global definitions:

_POSIX_REENTRANT_FUNCTIONS
Specifies that all functions should be reentrant. Several header files use this symbol to define
supplementary reentrant subroutines, such as the localtime_r subroutine.

_POSIX_THREADS
Denotes the POSIX threads API. This symbol is used to check if the POSIX threads API is available.
Macros or subroutines may be defined in different ways, depending on whether the POSIX or some
other threads API is used.

The pthread.h file also includes errno.h, in which the errno global variable is redefined to be thread-
specific. The errno identifier is, therefore, no longer an l-value in a multithreaded program.

Invoking the compiler

When compiling a multithreaded program, invoke the C compiler using one of the following commands:
xlc_r

Invokes the compiler with default language level of ansi
cc_r

Invokes the compiler with default language level of extended

These commands ensure that the adequate options and libraries are used to be compliant with the Single
UNIX Specification, Version 2. The POSIX Threads Specification 1003.1c is a subset of the Single UNIX
Specification, Version 2.

The following libraries are automatically linked with your program when using the xlc_r and cc_r
commands:
libpthreads.a

Threads library
libc.a

Standard C library

For example, the following command compiles the foo.c multithreaded C source file and produces the foo
executable file:

cc_r -o foo foo.c

Invoking the compiler for draft 7 of POSIX 1003.1c

AIX provides source code compatibility for Draft 7 applications. It is recommended that developers port
their threaded application to the latest standard.

When compiling a multithreaded program for Draft 7 support of threads, invoke the C compiler using one
of the following commands:
xlc_r7

Invokes the compiler with default language level of ansi
cc_r7

Invokes the compiler with default language level of extended

The following libraries are automatically linked with your program when using the xlc_r7 and cc_r7
commands:

General programming concepts 479

libpthreads_compat.a
Draft 7 Compatibility Threads library

libpthreads.a
Threads library

libc.a
Standard C library

To achieve source code compatibility, use the compiler directive _AIX_PTHREADS_D7. It is also
necessary to link the libraries in the following order: libpthreads_compat.a, libpthreads.a, and libc.a.
Most users do not need to know this information, because the commands provide the necessary options.
These options are provided for those who do not have the latest AIX compiler.

Porting draft 7 applications to the &Symbol.unixspec;

Differences exist between Draft 7 and the final standard include:

• Minor errno differences. The most prevalent is the use of ESRCH to denote the specified pthread could
not be found. Draft 7 frequently returned EINVAL for this failure.

• The default state when a pthread is created is joinable. This is a significant change because it can result
in a memory leak if ignored.

• The default pthread scheduling parameter is scope.
• The pthread_yield subroutine has been replaced by the sched_yield subroutine.
• The various scheduling policies associated with the mutex locks are slightly different.

Memory requirements of a multithreaded program

AIX supports up to 32768 threads in a single process. Each individual pthread requires some amount of
process address space, so the actual maximum number of pthreads that a process can have depends on
the memory model and the use of process address space, for other purposes. The amount of memory that
a pthread needs includes the stack size and the guard region size, plus some amount for internal use. The
user can control the size of the stack with the pthread_attr_setstacksize subroutine and the size of the
guard region with the pthread_attr_setguardsize subroutine.

Note: The soft limit on stack size imposed by the command ulimit –s applies only to the stack of the
main thread of the application.

The following table indicates the maximum number of pthreads that could be created in a 32-bit process
using a simple program which does nothing other than create pthreads in a loop using the NULL pthread
attribute. In a real program, the actual numbers depend on other memory usage in the program. For a
64-bit process, the ulimit subroutine controls how many threads can be created. Therefore, the big data
model is not necessary and in fact, can decrease the maximum number of threads.

Data Model -bmaxdata Maximum Pthreads

Small Data n/a 1084

Big Data 0x10000000 2169

Big Data 0x20000000 4340

Big Data 0x30000000 6510

Big Data 0x40000000 8681

Big Data 0x50000000 10852

Big Data 0x60000000 13022

Big Data 0x70000000 15193

Big Data 0x80000000 17364

480 AIX Version 7.2: General programming concepts

The NUM_SPAREVP environment variable can be set to control the number of spare virtual processors
that are maintained by the library. It is not necessary to modify this variable. In some circumstances,
applications that use only a few megabytes of memory can reduce memory overhead by setting the
NUM_SPAREVP environment variable to a lower value. Typical settings include the number of CPUs
on the system or the peak number of process threads. Setting this variable does not affect process
performance. The default setting is 256.

Note: The NUM_SPAREVP environment variable is available only in AIX 5.1.

Example of a multithreaded program

The following short multithreaded program displays "Hello!" in both English and French for five seconds.
Compile with cc_r or xlc_r. F

#include <pthread.h> /* include file for pthreads - the 1st */
#include <stdio.h> /* include file for printf() */
#include <unistd.h> /* include file for sleep() */

void *Thread(void *string)
{
 while (1)
 printf("%s\n", (char *)string);
 pthread_exit(NULL);
}

int main()
{
 char *e_str = "Hello!";
 char *f_str = "Bonjour !";

 pthread_t e_th;
 pthread_t f_th;

 int rc;

 rc = pthread_create(&e_th, NULL, Thread, (void *)e_str);
 if (rc)
 exit(-1);
 rc = pthread_create(&f_th, NULL, Thread, (void *)f_str);
 if (rc)
 exit(-1);
 sleep(5);

 /* usually the exit subroutine should not be used
 see below to get more information */
 exit(0);
}

The initial thread (executing the main routine) creates two threads. Both threads have the same entry-
point routine (the Thread routine), but a different parameter. The parameter is a pointer to the string that
will be displayed.

Debugging a multithreaded program

The following tools are available to debug multithreaded programs:

• Application programmers can use the dbx command to perform debugging. Several subcommands are
available for displaying thread-related objects, including attribute, condition, mutex, and thread.

• Kernel programmers can use the kernel debug program to perform debugging on kernel extensions and
device drivers. The kernel debug program provides limited access to user threads, and primarily handles
kernel threads. Several subcommands support multiple kernel threads and processors, including:

– The cpu subcommand, which changes the current processor
– The ppd subcommand, which displays per-processor data structures
– The thread subcommand, which displays thread table entries
– The uthread subcommand, which displays the uthread structure of a thread

For more information on the kernel debug program, see the Kernel Extensions and Device Support
Programming Concepts.

General programming concepts 481

Core File requirements of a multithreaded program

By default, processes do not generate a full core file. If an application must debug data in shared memory
regions, particularly thread stacks, it is necessary to generate a full core dump. To generate full core file
information, run the following command as root user:

 chdev -l sys0 -a fullcore=true

Each individual pthread adds to the size of the generated core file. The amount of core file space that
a pthread needs includes the stack size, which the user can control with the pthread_attr_setstacksize
subroutine. For pthreads created with the NULL pthread attribute, each pthread in a 32-bit process adds
128 KB to the size of the core file, and each pthread in a 64-bit process adds 256 KB to the size of the
core file.

Related concepts
Threadsafe and threaded libraries in AIX
This section describes the thread libraries in the AIX.
Creating threads
Thread creation differs from process creation in that no parent-child relation exists between threads.
Scheduling threads
Threads can be scheduled, and the threads library provides several facilities to handle and control the
scheduling of threads.
Developing multithreaded programs
Developing multithreaded programs is similar to developing programs with multiple processes.
Developing programs also consists of compiling and debugging the code.

Developing multithreaded programs to examine and modify pthread library
objects

The pthread debug library (libpthdebug.a) provides a set of functions that enable application developers
to examine and modify pthread library objects.

This library can be used for both 32-bit applications and 64-bit applications. This library is threadsafe.
The pthread debug library contains a 32-bit shared object and a 64-bit shared object.

The pthread debug library provides applications with access to the pthread library information. This
includes information on pthreads, pthread attributes, mutexes, mutex attributes, condition variables,
condition variable attributes, read/write locks, read/write lock attributes, and information about the state
of the pthread library.

Note: All data (addresses, registers) returned by this library is in 64-bit format both for 64-bit and 32-bit
applications. It is the application's responsibility to convert these values into 32-bit format for 32-bit
applications. When debugging a 32-bit application, the top half of addresses and registers is ignored.

The pthread debug library does not report information on mutexes, mutex attributes, condition variables,
condition variable attributes, read/write locks, and read/write lock attributes that have the pshared value
of PTHREAD_PROCESS_SHARED.

Initialization
The application must initialize a pthread debug library session for each pthreaded process. The
pthdb_sessison_init function must be called from each pthreaded process after the process has been
loaded. The pthread debug library supports one session for a single process. The application must
assign a unique user identifier and pass it to the pthdb_session_init function, which in turn assigns
a unique session identifier that must be passed as the first parameter to all other pthread debug
library functions, except pthdb_session_pthreaded function, in return. Whenever the pthread debug
library invokes a call back function, it will pass the unique application assigned user identifier back to
the application. The pthdb_session_init function checks the list of call back functions provided by the
application, and initializes the session's data structures. Also, this function sets the session flags. An

482 AIX Version 7.2: General programming concepts

appplication must pass the PTHDB_FLAG_SUSPEND flag to the pthdb_session_init Function. See the
pthdb_session_setflags function for a full list of flags.

Call back functions
The pthread debug library uses the call back functions to obtain and write data, as well as to give storage
management to the application. Required call back functions for an application are as follows:
read_data

Retrieves pthread library object information
alloc

Allocates memory in the pthread debug library
realloc

Reallocates memory in the pthread debug library
dealloc

Frees allocated memory in the pthread debug library

Optional call back functions for an application are as follows:
read_regs

Necessary only for the pthdb_pthread_context and pthdb_pthread_setcontext subroutines
write_data

Necessary only for the pthdb_pthread_setcontext subroutine
write_regs

Necessary only for pthdb_pthread_setcontext subroutine

Update function
Each time the application is stopped, after the session has been initialized, it is necessary to call the
pthdb_session_update function. This function sets or resets the lists of pthreads, pthread attributes,
mutexes, mutex attributes, condition variables, condition variable attributes, read/write locks, read/write
lock attributes, pthread specific keys, and active keys. It uses call back functions to manage memory for
the lists.

Context functions
The pthdb_pthread_context function obtains the context information, and the
pthdb_pthread_setcontext function sets the context. The pthdb_pthread_context function obtains the
context information of a pthread from either the kernel or the pthread data structure in the application's
address space. If the pthread is not associated with a kernel thread, the context information saved by the
pthread library is obtained. If a pthread is associated with a kernel thread, the information is obtained
from the application using the call back functions. The application must determine if the kernel thread is
in kernel mode or user mode and then to provide the correct information for that mode.

When a pthread with kernel thread is in kernel mode, you cannot get the full user mode context
because the kernel does not save it in one place. The getthrds function can be used to obtain part
of this information, because it always saves the user mode stack. The application can discover this by
checking the thrdsinfo64.ti_scount structure. If this is non-zero, the user mode stack is available in
the thrdsinfo64.ti_ustk structure. From the user mode stack, it is possible to determine the instruction
address register (IAR) and the call back frames, but not the other register values. The thrdsinfo64
structure is defined in procinfo.h file.

List functions
The pthread debug library maintains lists for pthreads, pthread attributes, mutexes, mutex attributes,
condition variables, condition variables attributes, read/write locks, read/write lock attributes, pthread
specific keys and active keys, each represented by a type-specific handle. The pthdb_object functions
return the next handle in the appropriate list, where object is one of the following: pthread, attr, mutex,

General programming concepts 483

mutexattr, cond, condattr, rwlock, rwlockattr or key. If the list is empty or the end of the list is reached,
PTHDB_INVALID_OBJECT is reported, where OBJECT is one of the following: PTHREAD, ATTR, MUTEX,
MUTEXATTR, COND, CONDATTR, RWLOCK, RWLOCKATTR or KEY.

Field functions
Detailed information about an object can be obtained by using the appropriate object member function,
pthdb_object_field, where object is one of the following: pthread, attr, mutex, mutexattr, cond,
condattr, rwlock, rwlockattr or key and where field is the name of a field of the detailed information
for the object.

Customizing the session
The pthdb_session_setflags function allows the application to change the flags that customize the
session. These flags control the number of registers that are read or written during context operations.

The pthdb_session_flags function obtains the current flags for the session.

Terminating the session
At the end of the session, the session data structures must be deallocated, and the session data must
be deleted. This is accomplished by calling the pthdb_session_destroy function, which uses a call
back function to deallocate the memory. All of the memory allocated by the pthdb_session_init, and
pthdb_session_update functions will be deallocated.

The following example shows how an application can connect to the pthread debug library:

/* includes */

#include <thread.h>
#include <ys/pthdebug.h>

...

int my_read_data(pthdb_user_t user, pthdb_symbol_t symbols[],int count)
{
 int rc;

 rc=memcpy(buf,(void *)addr,len);
 if (rc==NULL) {
 fprintf(stderr,&odq;Error message\n&cdq;);
 return(1);
 }
 return(0);
}
int my_alloc(pthdb_user_t user, size_t len, void **bufp)
{
 *bufp=malloc(len);
 if(!*bufp) {
 fprintf(stderr,&odq;Error message\n&cdq;);
 return(1);
 }
 return(0);
}
int my_realloc(pthdb_user_t user, void *buf, size_t len, void **bufp)
{
 *bufp=realloc(buf,len);
 if(!*bufp) {
 fprintf(stderr,“Error message\n”);
 return(1);
 }
 return(0);
}
int my_dealloc(pthdb_user_t user,void *buf)
{
 free(buf);
 return(0);
}

status()
{
 pthdb_callbacks_t callbacks =

484 AIX Version 7.2: General programming concepts

 { NULL,
 my_read_data,
 NULL,
 NULL,
 NULL,
 my_alloc,
 my_realloc,
 my_dealloc,
 NULL
 };

 ...

 rc=pthread_suspend_others_np();
 if (rc!=0)
 deal with error

 if (not initialized)
 rc=pthdb_session_init(user,exec_mode,PTHDB_SUSPEND|PTHDB_REGS,callbacks,
 &session);
 if (rc!=PTHDB_SUCCESS)
 deal with error

 rc=pthdb_session_update(session);
 if (rc!=PTHDB_SUCCESS)
 deal with error

 retrieve pthread object information using the object list functions and
 the object field functions

 ...

 rc=pthread_continue_others_np();
 if (rc!=0)
 deal with error
}

...

main()
{
 ...
}

Developing multithreaded program debuggers
The pthread debug library (libpthdebug.a) provides a set of functions that allows developers to provide
debug capabilities for applications that use the pthread library.

The pthread debug library is used to debug both 32-bit and 64-bit pthreaded applications. This library
is used to debug targeted debug processes only. It can also be used to examine pthread information
of its own application. This library can be used by a multithreaded debugger to debug a multithreaded
application. Multithreaded debuggers are supported in the libpthreads.a library, which is threadsafe. The
pthread debug library contains a 32-bit shared object and a 64-bit shared object.

Debuggers using the ptrace facility must link to the 32-bit version of the library, because the ptrace facility
is not supported in 64-bit mode. Debuggers using the /proc facility can link to either the 32-bit version or
the 64-bit version of this library.

The pthread debug library provides debuggers with access to pthread library information. This includes
information on pthreads, pthread attributes, mutexes, mutex attributes, condition variables, condition
variable attributes, read/write locks, read/write lock attributes, and information about the state of the
pthread library. This library also provides help with controlling the execution of pthreads.

Note: All data (addresses, registers) returned by this library is in 64-bit format both for 64-bit and 32-bit
applications. It is the debugger's responsibility to convert these values into 32-bit format for 32-bit
applications. When debugging a 32-bit application, the top half of addresses and registers is ignored.

The pthread debug library does not report mutexes, mutex attributes, condition variables, condition
variable attributes, read/write locks, and read/write lock attributes that have the pshared value of
PTHREAD_PROCESS_SHARED.

Initialization

General programming concepts 485

The debugger must initialize a pthread debug library session for each debug process. This cannot be
done until the pthread library has been initialized in the debug process. The pthdb_session_pthreaded
function has been provided to tell the debugger when the pthread library has been initialized in
the debug process. Each time the pthdb_session_pthreaded function is called, it checks to see
if the pthread library has been initialized. If initialized, it returns PTHDB_SUCCESS. Otherwise, it
returns PTHDB_NOT_PTHREADED. In both cases, it returns a function name that can be used to set
a breakpoint for immediate notification that the pthread library has been initialized. Therefore, the
pthdb_session_pthreaded function provides the following methods for determining when the pthread
library has been initialized:

• The debugger calls the function each time the debug process stops, to see if the program that is being
debugged is pthreaded.

• The debugger calls the function once and if the program that is being debugged is not pthreaded, sets a
breakpoint to notify the debugger when the debug process is pthreaded.

After the debug process is pthreaded, the debugger must call the pthdb_session_init function, to
initialize a session for the debug process. The pthread debug library supports one session for a single
debug process. The debugger must assign a unique user identifier and pass it to pthdb_session_init
which in turn will assign a unique session identifier which must be passed as the first parameter to
all other pthread debug library functions, except pthdb_session_pthreaded, in return. Whenever the
pthread debug library invokes a call back function, it will pass the unique debugger assigned user
identifier back to the debugger. The pthdb_session_init function checks the list of call back functions
provided by the debugger, and initializes the session's data structures. Also, this function sets the session
flags.

Call back functions

The pthread debug library uses call back functions to do the following:

• Obtain addresses and data
• Write data
• Give storage management to the debugger
• Aid debugging of the pthread debug library

Update function

Each time the debugger is stopped, after the session has been initialized, it is necessary to call the
pthdb_session_update function. This function sets or resets the lists of pthreads, pthread attributes,
mutexes, mutex attributes, condition variables, condition variable attributes, read/write locks, read/write
lock attributes, pthread specific keys, and active keys. It uses call back functions to manage memory for
the lists.

Hold and unhold functions

Debuggers must support hold and unhold of threads for the following reasons:

• To allow a user to single step a single thread, it must be possible to hold one or more of the other
threads.

• For users to continue through a subset of available threads, it must be possible to hold threads not in
the set.

The following list of functions perform hold and unhold tasks:

• The pthdb_pthread_hold function sets the hold state of a pthread to hold.
• The pthdb_pthread_unhold function sets the hold state of a pthread to unhold.

Note: The pthdb_pthread_hold and pthdb_pthread_unhold functions must always be used, whether
or not a pthread has a kernel thread.

• The pthdb_pthread_holdstate function returns the hold state of the pthread.

486 AIX Version 7.2: General programming concepts

• The pthdb_session_committed function reports the function name of the function that is called after all
of the hold and unhold changes are committed. A breakpoint can be placed at this function to notify the
debugger when the hold and unhold changes have been committed.

• The pthdb_session_stop_tid function informs the pthread debug library, which informs the pthread
library the thread ID (TID) of the thread that stopped the debugger.

• The pthdb_session_commit_tid function returns the list of kernel threads, one kernel thread at a
time, that must be continued to commit the hold and unhold changes. This function must be called
repeatedly, until PTHDB_INVALID_TID is reported. If the list of kernel threads is empty, it is not
necessary to continue any threads for the commit operation.

The debugger can determine when all of the hold and unhold changes have been committed in the
following ways:

• Before the commit operation (continuing all of the tids returned by the pthdb_session_commit_tid
function) is started, the debugger can call the pthdb_session_committed function to get the function
name and set a breakpoint. (This method can be done once for the life of the process.)

• Before the commit operation is started, the debugger calls the pthdb_session_stop_tid function with
the TID of the thread that stopped the debugger. When the commit operation is complete, the pthread
library ensures that the same TID is stopped as before the commit operation.

To hold or unhold pthreads, use the follow the following procedure, before continuing a group of pthreads
or single-stepping a single pthread:

1. Use the pthdb_pthread_hold and pthdb_pthread_unhold functions to set up which pthreads will be
held and which will be unheld.

2. Select the method that will determine when all of the hold and unhold changes have been committed.
3. Use the pthdb_session_commit_tid function to determine the list of TIDs that must be continued to

commit the hold and unhold changes.
4. Continue the TIDs in the previous step and the thread that stopped the debugger.

The pthdb_session_continue_tid function allows the debugger to obtain the list of kernel threads that
must be continued before it proceeds with single-stepping a single pthread or continuing a group of
pthreads. This function must be called repeatedly, until PTHDB_INVALID_TID is reported. If the list of
kernel threads is not empty, the debugger must continue these kernel threads along with the others that it
is explicitly interested in. The debugger is responsible for parking the stop thread and continuing the stop
thread. The stop thread is the thread that caused the debugger to be entered.

Context functions

The pthdb_pthread_context function obtains the context information and the
pthdb_pthread_setcontext function sets the context. The pthdb_pthread_context function obtains the
context information of a pthread from either the kernel or the pthread data structure in the debug
process's address space. If the pthread is not associated with a kernel thread, the context information
saved by the pthread library is obtained. If a pthread is associated with a kernel thread, the information is
obtained from the debugger using call backs. It is the debugger's responsibility to determine if the kernel
thread is in kernel mode or user mode and then to provide the correct information for that mode.

When a pthread with kernel thread is in kernel mode, you cannot get the full user mode context
because the kernel does not save it in one place. The getthrds function can be used to obtain part
of this information, because it always saves the user mode stack. The debugger can discover this by
checking the thrdsinfo64.ti_scount structure. If this is non-zero, the user mode stack is available in the
thrdsinfo64.ti_ustk structure. From user mode stack, it is possible to determine the instruction address
register (IAR) and the call back frames, but not the other register values. The thrdsinfo64 structure is
defined in procinfo.h file.

List functions

The pthread debug library maintains lists for pthreads, pthread attributes, mutexes, mutex attributes,
condition variables, condition variables attributes, read/write locks, read/write lock attributes, pthread
specific keys and active keys, each represented by a type-specific handle. The pthdb_object functions
return the next handle in the appropriate list, where object is one of the following: pthread, attr, mutex,

General programming concepts 487

mutexattr, cond, condattr, rwlock, rwlockattr or key. If the list is empty or the end of the list is reached,
PTHDB_INVALID_object is reported, where object is one of the following: PTHREAD, ATTR, MUTEX,
MUTEXATTR, COND, CONDATTR, RWLOCK, RWLOCKATTR or KEY.

Field Functions

Detailed information about an object can be obtained by using the appropriate object member function,
pthdb_object_field, where object is one of the following: pthread, attr, mutex, mutexattr, cond,
condattr, rwlock, rwlockattr or key and where field is the name of a field of the detailed information
for the object.

Customizing the session

The pthdb_session_setflags function allows the debugger to change the flags that customize the session.
These flags control the number of registers that are read or written to during context operations, and to
control the printing of debug information.

The pthdb_session_flags function obtains the current flags for the session.

Terminating the session

At the end of the debug session, the session data structures must be deallocated, and the session data
must be deleted. This is accomplished by calling the pthdb_session_destroy function, which uses a call
back function to deallocate the memory. All of the memory allocated by the pthdb_session_init and
pthdb_session_update functions will be deallocated.

Example of hold/unhold functions

The following pseudocode example shows how the debugger uses the hold/unhold code:

/* includes */

#include <sys/pthdebug.h>

main()
{
 tid_t stop_tid; /* thread which stopped the process */
 pthdb_user_t user = <unique debugger value>;
 pthdb_session_t session; /* <unique library value> */
 pthdb_callbacks_t callbacks = <callback functions>;
 char *pthreaded_symbol=NULL;
 char *committed_symbol;
 int pthreaded = 0;
 int pthdb_init = 0;
 char *committed_symbol;

 /* fork/exec or attach to the program that is being debugged */

 /* the program that is being debugged uses ptrace()/ptracex() with PT_TRACE_ME */

 while (/* waiting on an event */)
 {
 /* debugger waits on the program that is being debugged */

 if (pthreaded_symbol==NULL) {
 rc = pthdb_session_pthreaded(user, &callbacks, pthreaded_symbol);
 if (rc == PTHDB_NOT_PTHREADED)
 {
 /* set breakpoint at pthreaded_symbol */
 }
 else
 pthreaded=1;
 }
 if (pthreaded == 1 && pthdb_init == 0) {
 rc = pthdb_session_init(user, &session, PEM_32BIT, flags, &callbacks);
 if (rc)
 /* handle error and exit */
 pthdb_init=1;
 }

 rc = pthdb_session_update(session)
 if (rc != PTHDB_SUCCESS)
 /* handle error and exit */

 while (/* accepting debugger commands */)
 {
 switch (/* debugger command */)
 {
 ...
 case DB_HOLD:
 /* regardless of pthread with or without kernel thread */
 rc = pthdb_pthread_hold(session, pthread);

488 AIX Version 7.2: General programming concepts

 if (rc)
 /* handle error and exit */
 case DB_UNHOLD:
 /* regardless of pthread with or without kernel thread */
 rc = pthdb_pthread_unhold(session, pthread);
 if (rc)
 /* handle error and exit */
 case DB_CONTINUE:
 /* unless we have never held threads for the life */
 /* of the process */
 if (pthreaded)
 {
 /* debugger must handle list of any size */
 struct pthread commit_tids;
 int commit_count = 0;
 /* debugger must handle list of any size */
 struct pthread continue_tids;
 int continue_count = 0;

 rc = pthdb_session_committed(session, committed_symbol);
 if (rc != PTHDB_SUCCESS)
 /* handle error */
 /* set break point at committed_symbol */

 /* gather any tids necessary to commit hold/unhold */
 /* operations */
 do
 {
 rc = pthdb_session_commit_tid(session,
 &commit_tids.th[commit_count++]);
 if (rc != PTHDB_SUCCESS)
 /* handle error and exit */
 } while (commit_tids.th[commit_count - 1] != PTHDB_INVALID_TID);

 /* set up thread which stopped the process to be */
 /* parked using the stop_park function*/

 if (commit_count > 0) {
 rc = ptrace(PTT_CONTINUE, stop_tid, stop_park, 0,
 &commit_tids);
 if (rc)
 /* handle error and exit */

 /* wait on process to stop */
 }

 /* gather any tids necessary to continue */
 /* interesting threads */
 do
 {
 rc = pthdb_session_continue_tid(session,
 &continue_tids.th[continue_count++]);
 if (rc != PTHDB_SUCCESS)
 /* handle error and exit */
 } while (continue_tids.th[continue_count - 1] != PTHDB_INVALID_TID);

 /* add interesting threads to continue_tids */

 /* set up thread which stopped the process to be parked */
 /* unless it is an interesting thread */

 rc = ptrace(PTT_CONTINUE, stop_tid, stop_park, 0,
 &continue_tids);
 if (rc)
 /* handle error and exit */
 }
 case DB_EXIT:
 rc = pthdb_session_destroy(session);
 /* other clean up code */
 exit(0);
 ...
 }
 }

 }
 exit(0);
}

Benefits of threads
Multithreaded programs can improve performance compared to traditional parallel programs that use
multiple processes. Furthermore, improved performance can be obtained on multiprocessor systems
using threads.

Managing threads

Managing threads; that is, creating threads and controlling their execution, requires fewer system
resources than managing processes. Creating a thread, for example, only requires the allocation of the

General programming concepts 489

thread's private data area, usually 64 KB, and two system calls. Creating a process is far more expensive,
because the entire parent process addressing space is duplicated.

The threads library API is also easier to use than the library for managing processes. Thread creation
requires only the pthread_create subroutine.

Inter-thread communications

Inter-thread communication is far more efficient and easier to use than inter-process communication.
Because all threads within a process share the same address space, they need not use shared memory.
Protect shared data from concurrent access by using mutexes or other synchronization tools.

Synchronization facilities provided by the threads library ease implementation of flexible and powerful
synchronization tools. These tools can replace traditional inter-process communication facilities, such as
message queues. Pipes can be used as an inter-thread communication path.

Multiprocessor systems

On a multiprocessor system, multiple threads can concurrently run on multiple CPUs. Therefore,
multithreaded programs can run much faster than on a uniprocessor system. They can also be faster
than a program using multiple processes, because threads require fewer resources and generate less
overhead. For example, switching threads in the same process can be faster, especially in the M:N library
model where context switches can often be avoided. Finally, a major advantage of using threads is that a
single multithreaded program will work on a uniprocessor system, but can naturally take advantage of a
multiprocessor system, without recompiling.

Limitations

Multithreaded programming is useful for implementing parallelized algorithms using several independent
entities. However, there are some cases where multiple processes should be used instead of multiple
threads.

Many operating system identifiers, resources, states, or limitations are defined at the process level and,
thus, are shared by all threads in a process. For example, user and group IDs and their associated
permissions are handled at process level. Programs that need to assign different user IDs to their
programming entities need to use multiple processes, instead of a single multithreaded process. Other
examples include file-system attributes, such as the current working directory, and the state and
maximum number of open files. Multithreaded programs may not be appropriate if these attributes are
better handled independently. For example, a multi-processed program can let each process open a large
number of files without interference from other processes.

Related concepts
Threadsafe and threaded libraries in AIX
This section describes the thread libraries in the AIX.

lex and yacc program information
For a program to receive input, either interactively or in a batch environment, you must provide another
program or a routine to receive the input. Complicated input requires additional code to break the input
into pieces that mean something to the program.

You can use the lex and yacc commands to develop this type of input program.

The lex command generates a lexical analyzer program that analyzes input and breaks it into tokens, such
as numbers, letters, or operators. The tokens are defined by grammar rules set up in the lex specification
file. The yacc command generates a parser program that analyzes input using the tokens identified by
the lexical analyzer (generated by the lex command and stored in the lex specification file) and performs
specified actions, such as flagging improper syntax. Together these commands generate a lexical analyzer
and parser program for interpreting input and output handling.

Related information
printf

490 AIX Version 7.2: General programming concepts

ed
ex
sed
yacc

Generating a lexical analyzer with the lex command
The lex command helps write a C language program that can receive and translate character-stream input
into program actions.

To use the lex command, you must supply or write a specification file that contains:

Extended regular expressions
Character patterns that the generated lexical analyzer recognizes.

Action statements
C language program fragments that define how the generated lexical analyzer reacts to extended
regular expressions it recognizes.

The lex command generates a C language program that can analyze an input stream using information
in the specification file. The lex command then stores the output program in a lex.yy.c file. If the output
program recognizes a simple, one-word input structure, you can compile the lex.yy.c output file with the
following command to produce an executable lexical analyzer:

cc lex.yy.c -ll

However, if the lexical analyzer must recognize more complex syntax, you can create a parser program to
use with the output file to ensure proper handling of any input.

You can move a lex.yy.c output file to another system if it has a C compiler that supports the lex library
functions.

The compiled lexical analyzer performs the following functions:

• Reads an input stream of characters.
• Copies the input stream to an output stream.
• Breaks the input stream into smaller strings that match the extended regular expressions in the lex
specification file.

• Executes an action for each extended regular expression that it recognizes. These actions are C
language program fragments in the lex specification file. Each action fragment can call actions or
subroutines outside of itself.

The lexical analyzer generated by the lex command uses an analysis method called a deterministic finite-
state automaton. This method provides for a limited number of conditions in which the lexical analyzer
can exist, along with the rules that determine the state of the lexical analyzer.

The automaton allows the generated lexical analyzer to look ahead more than one or two characters in
an input stream. For example, suppose you define two rules in the lex specification file: one looks for the
string ab and the other looks for the string abcdefg. If the lexical analyzer receives an input string of
abcdefh, it reads characters to the end of the input string before determining that it does not match the
string abcdefg. The lexical analyzer then returns to the rule that looks for the string ab, decides that it
matches part of the input, and begins trying to find another match using the remaining input cdefh.

Compiling the lexical analyzer

To compile a lex program, do the following:

1. Use the lex program to change the specification file into a C language program. The resulting program
is in the lex.yy.c file.

2. Use the cc command with the -ll flag to compile and link the program with a library of lex subroutines.
The resulting executable program is in the a.out file.

General programming concepts 491

For example, if the lex specification file is called lextest, enter the following commands:

lex lextest
cc lex.yy.c -ll

Related concepts
Tools and utilities
This section provides an overview of the tools and utilities that you can use to develop C compiled
language programs.
Creating a parser with the yacc program
The yacc program creates parsers that define and enforce structure for character input to a computer
program.

Using the lex program with the yacc program
You can also use the lex program with a parser generator, such as the yacc command. The yacc command
generates a program, called a parser, that analyzes the construction of more than one-word input.

This parser program operates well with the lexical analyzers that the lex command generates. The
parsers recognize many types of grammar with no regard to context. These parsers need a preprocessor
to recognize input tokens such as the preprocessor that the lex command produces.

The lex program recognizes only extended regular expressions and formats them into character packages
called tokens, as specified by the input file. When using the lex program to make a lexical analyzer for a
parser, the lexical analyzer (created from the lex command) partitions the input stream. The parser (from
the yacc command) assigns structure to the resulting pieces. You can also use other programs along with
the programs generated by either the lex or yacc commands.

A token is the smallest independent unit of meaning as defined by either the parser or the lexical analyzer.
A token can contain data, a language keyword, an identifier, or other parts of a language syntax.

The yacc program looks for a lexical analyzer subroutine named yylex, which is generated by the lex
command. Normally, the default main program in the lex library calls the yylex subroutine. However, if
the yacc command is installed and its main program is used, the yacc program calls the yylex subroutine.
In this case, where the appropriate token value is returned, each lex program rule should end with the
following:

return(token);

The yacc command assigns an integer value to each token defined in the yacc grammar file through a
#define preprocessor statement. The lexical analyzer must have access to these macros to return the
tokens to the parser. Use the yacc -d option to create a y.tab.h file, and include the y.tab.h file in the lex
specification file by adding the following lines to the definition section of the lex specification file:

%{
#include "y.tab.h"
%}

Alternately, you can include the lex.yy.c file in the yacc output file by adding the following line after the
second %% (percent sign, percent sign) delimiter in the yacc grammar file:

#include "lex.yy.c"

The yacc library should be loaded before the lex library to obtain a main program that invokes the yacc
parser. You can generate lex and yacc programs in either order.

492 AIX Version 7.2: General programming concepts

Extended regular expressions in the lex command
Specifying extended regular expressions in a lex specification file is similar to methods used in the sed or
ed commands.

An extended regular expression specifies a set of strings to be matched. The expression contains both
text characters and operator characters. Text characters match the corresponding characters in the
strings being compared. Operator characters specify repetitions, choices, and other features.

Numbers and letters of the alphabet are considered text characters. For example, the extended regular
expression integer matches the string integer, and the expression a57D looks for the string a57D.

Operators

The following list describes how operators are used to specify extended regular expressions:
Character

Matches the character Character.

Example: a matches the literal character a; b matches the literal character b, and c matches the
literal character c.

"String"
Matches the string enclosed within quotes, even if the string includes an operator.

Example: To prevent the lex command from interpreting $ (dollar sign) as an operator, enclose the
symbol in quotes.

\Character or \Digits
Escape character. When preceding a character class operator used in a string, the \ character
indicates that the operator symbol represents a literal character rather than an operator. Valid escape
sequences include:
\a

Alert
\b

Backspace
\f

Form-feed
\n

New line character (Do not use the actual new line character in an expression.)
\r

Return
\t

Tab
\v

Vertical tab
\\

Backslash
\Digits

The character whose encoding is represented by the one-digit, two-digit, or three-digit octal
integer specified by the Digits string.

\xDigits
The character whose encoding is represented by the sequence of hexadecimal characters
specified by the Digits string.

When the \ character precedes a character that is not in the preceding list of escape sequences,
the lex command interprets the character literally.

Example: \c is interpreted as the c character unchanged, and [\^abc] represents the class of
characters that includes the characters ^abc.

General programming concepts 493

Note: Never use \0 or \x0 in the lex command.

[List]
Matches any one character in the enclosed range ([x-y]) or the enclosed list ([xyz]) based on the
locale in which the lex command is invoked. All operator symbols, with the exception of the following,
lose their special meaning within a bracket expression: - (dash), ^ (caret), and \ (backslash).

Example: [abc-f] matches a, b, c, d, e, or f in the en_US locale.

[:Class:]
Matches any of the characters belonging to the character class specified between the [::] delimiters
as defined in the LC_TYPE category in the current locale. The following character class names are
supported in all locales:

alnum cntrl lower space

alpha digit print upper

blank graph punct xdigit

The lex command also recognizes user-defined character class names. The [::] operator is valid
only in a [] expression.

Example: [[:alpha:]] matches any character in the alpha character class in the current locale,
but [:alpha:] matches only the characters :,a,l,p, and h.

[.CollatingSymbol.]
Matches the collating symbol specified within the [..] delimiters as a single character. The [..]
operator is valid only in a [] expression. The collating symbol must be a valid collating symbol for
the current locale.

Example: [[.ch.]] matches c and h together while [ch] matches c or h.

[=CollatingElement=]
Matches the collating element specified within the [==] delimiters and all collating elements
belonging to its equivalence class. The [==] operator is valid only in a [] expression.

Example: If w and v belong to the same equivalence class, [[=w=]] is the same as [wv] and
matches w or v. If w does not belong to an equivalence class, then [[=w=]] matches w only.

[^Character]
Matches any character except the one following the ^ (caret) symbol. The resultant character class
consists solely of single-byte characters. The character following the ^ symbol can be a multibyte
character. However, for this operator to match multibyte characters, you must set %h and %m to
greater than zero in the definitions section.

Example: [^c] matches any character except c.

CollatingElement-CollatingElement
In a character class, indicates a range of characters within the collating sequence defined for the
current locale. Ranges must be in ascending order. The ending range point must collate equal to or
higher than the starting range point. Because the range is based on the collating sequence of the
current locale, a given range may match different characters, depending on the locale in which the lex
command was invoked.

Expression?
Matches either zero or one occurrence of the expression immediately preceding the ? operator.

Example: ab?c matches either ac or abc.

Period character (.)
Matches any character except the new line character. In order for the period character (.) to
match multi-byte characters, %z must be set to greater than 0 in the definitions section of the lex
specification file. If %z is not set, the period character (.) matches single-byte characters only.

494 AIX Version 7.2: General programming concepts

Expression*
Matches zero or more occurrences of the expression immediately preceding the * operator. For
example, a* is any number of consecutive a characters, including zero. The usefulness of matching
zero occurrences is more obvious in complicated expressions.

Example: The expression, [A-Za-z][A-Za-z0-9]* indicates all alphanumeric strings with a leading
alphabetic character, including strings that are only one alphabetic character. You can use this
expression for recognizing identifiers in computer languages.

Expression+
Matches one or more occurrences of the pattern immediately preceding the + operator.

Example: a+ matches one or more instances of a. Also, [a-z]+ matches all strings of lowercase
letters.

Expression|Expression
Indicates a match for the expression that precedes or follows the | (pipe) operator.

Example: ab|cd matches either ab or cd.

(Expression)
Matches the expression in the parentheses. The () (parentheses) operator is used for grouping and
causes the expression within parentheses to be read into the yytext array. A group in parentheses can
be used in place of any single character in any other pattern.

Example: (ab|cd+)?(ef)* matches such strings as abefef, efefef, cdef, or cddd; but not abc,
abcd, or abcdef.

^Expression
Indicates a match only when Expression is at the beginning of the line and the ^ (caret) operator is the
first character in an expression.

Example: ^h matches an h at the beginning of a line.

Expression$
Indicates a match only when Expression is at the end of the line and the $ (dollar sign) operator is the
last character in an expression.

Example: h$ matches an h at the end of a line.

Expression1/Expression2
Indicates a match only if Expression2 immediately follows Expression1. The / (slash) operator reads
only the first expression into the yytext array.

Example: ab/cd matches the string ab, but only if followed by cd, and then reads ab into the yytext
array.

Note: Only one / trailing context operator can be used in a single extended regular expression. The
^ (caret) and $ (dollar sign) operators cannot be used in the same expression with the / operator as
they indicate special cases of trailing context.

{DefinedName}
Matches the name as you defined it in the definitions section.

Example: If you defined D to be numerical digits, {D} matches all numerical digits.

{Number1,Number2}
Matches Number1 to Number2 occurrences of the pattern immediately preceding it. The expressions
{Number} and {Number,} are also allowed and match exactly Number occurrences of the pattern
preceding the expression.

Example: xyz{2,4} matches either xyzxyz, xyzxyzxyz, or xyzxyzxyzxyz. This differs from the +, *
and ? operators in that these operators match only the character immediately preceding them. To
match only the character preceding the interval expression, use the grouping operator. For example,
xy(z{2,4}) matches xyzz, xyzzz or xyzzzz.

General programming concepts 495

<StartCondition>
Executes the associated action only if the lexical analyzer is in the indicated start condition

Example: If being at the beginning of a line is start condition ONE, then the ^ (caret) operator equals
the expression <ONE>.

To use the operator characters as text characters, use one of the escape sequences: " " (double
quotation marks) or \ (backslash). The " " operator indicates that what is enclosed is text. Thus, the
following example matches the string xyz++:

xyz"++"

A portion of a string can be quoted. Quoting an ordinary text character has no effect. For example, the
following expression is equivalent to the previous example:

"xyz++"

To ensure that text is interpreted as text, quote all characters that are not letters or numbers.

Another way to convert an operator character to a text character is to put a \ (backslash) character before
the operator character. For example, the following expression is equivalent to the preceding examples:

xyz\+\+

Related concepts
lex program start conditions
A rule may be associated with any start condition.

Passing code to the generated lex program
The lex command passes C code, unchanged, to the lexical analyzer in the following circumstances:

• Lines beginning with a blank or tab in the definitions section, or at the start of the rules section before
the first rule, are copied into the lexical analyzer. If the entry is in the definitions section, it is copied to
the external declaration area of the lex.yy.c file. If the entry is at the start of the rules section, the entry
is copied to the local declaration area of the yylex subroutine in the lex.yy.c file.

• Lines that lie between delimiter lines containing only %{ (percent sign, left brace) and %} (percent sign,
right brace) either in the definitions section or at the start of the rules section are copied into the lexical
analyzer in the same way as lines beginning with a blank or tab.

• Any lines occurring after the second %% (percent sign, percent sign) delimiter are copied to the lexical
analyzer without format restrictions.

Defining lex substitution strings
You can define string macros that the lex program expands when it generates the lexical analyzer.

Define them before the first %% delimiter in the lex specification file. Any line in this section that begins
in column 1 and that does not lie between %{ and %} defines a lex substitution string. Substitution string
definitions have the following general format:

name translation

where name and translation are separated by at least one blank or tab, and the specified name begins
with a letter. When the lex program finds the string defined by name enclosed in {} (braces) in the rules
part of the specification file, it changes that name to the string defined in translation and deletes the
braces.

For example, to define the names D and E, put the following definitions before the first %% delimiter in the
specification file:

D [0-9]
E [DEde][-+]{D}+

496 AIX Version 7.2: General programming concepts

Then, use these names in the rules section of the specification file to make the rules shorter:

{D}+ printf("integer");
{D}+"."{D}*({E})? |
{D}*"."{D}+({E})? |
{D}+{E} printf("real");

You can also include the following items in the definitions section:

• Character set table
• List of start conditions
• Changes to size of arrays to accommodate larger source programs

lex library
The lex library contains the following subroutines:

Subroutine Description

main() Invokes the lexical analyzer by calling the yylex subroutine.

yywrap() Returns the value 1 when the end of input occurs.

yymore() Appends the next matched string to the current value of the yytext array rather
than replacing the contents of the yytext array.

yyless(int n) Retains n initial characters in the yytext array and returns the remaining
characters to the input stream.

yyreject() Allows the lexical analyzer to match multiple rules for the same input string. (The
yyreject subroutine is called when the special action REJECT is used.)

Some of the lex subroutines can be substituted by user-supplied routines. For example, the lex command
supports user-supplied versions of the main and yywrap subroutines. The library versions of these
routines, provided as a base, are as follows:

main subroutine

#include <stdio.h>
#include <locale.h>
main() {
 setlocale(LC_ALL, "");
 yylex();
 exit(0);
}

yywrap subroutine

yywrap() {
 return(1);
}

The yymore, yyless, and yyreject subroutines are available only through the lex library. However, these
subroutines are required only when used in lex command actions.

Actions taken by the lexical analyzer
When the lexical analyzer matches one of the extended regular expressions in the rules section of the
specification file, it executes the action that corresponds to the extended regular expression. Without
sufficient rules to match all strings in the input stream, the lexical analyzer copies the input to standard
output. Therefore, do not create a rule that only copies the input to the output. The default output can
help find gaps in the rules.

When using the lex command to process input for a parser that the yacc command produces, provide
rules to match all input strings. Those rules must generate output that the yacc command can interpret.

General programming concepts 497

Null action

To ignore the input associated with an extended regular expression, use a ; (C language null statement) as
an action. The following example ignores the three spacing characters (blank, tab, and new lline):

[\t\n] ;

Same as next action

To avoid repeatedly writing the same action, use the | (pipe symbol). This character indicates that the
action for this rule is the same as the action for the next rule. For instance, the previous example that
ignores blank, tab, and new line characters can also be written as follows:

" " |
"\t" |
"\n" ;

The quotation marks that surround \n and \t are not required.

Printing a matched string

To determine what text matched an expression in the rules section of the specification file, you can
include a C language printf subroutine call as one of the actions for that expression. When the lexical
analyzer finds a match in the input stream, the program puts the matched string into the external
character (char) and wide character (wchar_t) arrays, called yytext and yywtext, respectively. For
example, you can use the following rule to print the matched string:

[a-z]+ printf("%s",yytext);

The C language printf subroutine accepts a format argument and data to be printed. In this example, the
arguments to the printf subroutine have the following meanings:

%s
A symbol that converts the data to type string before printing

%S
A symbol that converts the data to wide character string (wchar_t) before printing

yytext
The name of the array containing the data to be printed

yywtext
The name of the array containing the multibyte type (wchar_t) data to be printed

The lex command defines ECHO; as a special action to print the contents of yytext. For example, the
following two rules are equivalent:

[a-z]+ ECHO;
[a-z]+ printf("%s",yytext);

You can change the representation of yytext by using either %array or %pointer in the definitions section
of the lex specification file, as follows:
%array

Defines yytext as a null-terminated character array. This is the default action.
%pointer

Defines yytext as a pointer to a null-terminated character string.

Finding the length of a matched string

To find the number of characters that the lexical analyzer matched for a particular extended regular
expression, use the yyleng or the yywleng external variables.
yyleng

Tracks the number of bytes that are matched.

498 AIX Version 7.2: General programming concepts

yywleng
Tracks the number of wide characters in the matched string. Multibyte characters have a length
greater than 1.

To count both the number of words and the number of characters in words in the input, use the following
action:

[a-zA-Z]+ {words++;chars += yyleng;}

This action totals the number of characters in the words matched and puts that number in chars.

The following expression finds the last character in the string matched:

yytext[yyleng-1]

Matching strings within strings

The lex command partitions the input stream and does not search for all possible matches of each
expression. Each character is accounted for only once. To override this choice and search for items that
may overlap or include each other, use the REJECT action. For example, to count all instances of she and
he, including the instances of he that are included in she, use the following action:

she {s++; REJECT;}
he {h++}
\n |
. ;

After counting the occurrences of she, the lex command rejects the input string and then counts the
occurrences of he. Because he does not include she, a REJECT action is not necessary on he.

Adding results to the yytext array

Typically, the next string from the input stream overwrites the current entry in the yytext array. If you use
the yymore subroutine, the next string from the input stream is added to the end of the current entry in
the yytext array.

For example, the following lexical analyzer looks for strings:

%s instring
%%
<INITIAL>\" { /* start of string */
 BEGIN instring;
 yymore();
 }
<instring>\" { /* end of string */
 printf("matched %s\n", yytext);
 BEGIN INITIAL;
 }
<instring>. {
 yymore();
 }
<instring>\n {
 printf("Error, new line in string\n");
 BEGIN INITIAL;
 }

Even though a string may be recognized by matching several rules, repeated calls to the yymore
subroutine ensure that the yytext array will contain the entire string.

Returning characters to the input stream

To return characters to the input stream, use the following call:

yyless(n)

where n is the number of characters of the current string to keep. Characters in the string beyond this
number are returned to the input stream. The yyless subroutine provides the same type of look-ahead
function that the / (slash) operator uses, but it allows more control over its usage.

General programming concepts 499

Use the yyless subroutine to process text more than once. For example, when parsing a C language
program, an expression such as x=-a is difficult to understand. Does it mean x is equal to minus a, or is
it an older representation of x -= a, which means decrease x by the value of a? To treat this expression
as x is equal to minus a, but print a warning message, use a rule such as the following:

=-[a-zA-Z] {
 printf("Operator (=-) ambiguous\n");
 yyless(yyleng-1);
 ... action for = ...
 }

Input/Output subroutines

The lex program allows a program to use the following input/output (I/O) subroutines:
input()

Returns the next input character
output(c)

Writes the character c on the output
unput(c)

Pushes the character c back onto the input stream to be read later by the input subroutine
winput()

Returns the next multibyte input character
woutput(C)

Writes the multibyte character C back onto the output stream
wunput(C)

Pushes the multibyte character C back onto the input stream to be read by the winput subroutine

The lex program provides these subroutines as macro definitions. The subroutines are coded in the
lex.yy.c file. You can override them and provide other versions.

The winput, wunput, and woutput macros are defined to use the yywinput, yywunput, and yywoutput
subroutines. For compatibility, the yy subroutines subsequently use the input, unput, and output
subroutine to read, replace, and write the necessary number of bytes in a complete multibyte character.

These subroutines define the relationship between external files and internal characters. If you change
the subroutines, change them all in the same way. These subroutines should follow these rules:

• All subroutines must use the same character set.
• The input subroutine must return a value of 0 to indicate end of file.
• Do not change the relationship of the unput subroutine to the input subroutine or the look-ahead

functions will not work.

The lex.yy.c file allows the lexical analyzer to back up a maximum of 200 characters.

To read a file containing nulls, create a different version of the input subroutine. In the normal version of
the input subroutine, the returned value of 0 (from the null characters) indicates the end of file and ends
the input.

Character set

The lexical analyzers that the lex command generates process character I/O through the input, output,
and unput subroutines. Therefore, to return values in the yytext subroutine, the lex command uses the
character representation that these subroutines use. Internally, however, the lex command represents
each character with a small integer. When using the standard library, this integer is the value of the bit
pattern the computer uses to represent the character. Normally, the letter a is represented in the same
form as the character constant a. If you change this interpretation with different I/O subroutines, put a
translation table in the definitions section of the specification file. The translation table begins and ends
with lines that contain only the following entries:

%T

500 AIX Version 7.2: General programming concepts

The translation table contains additional lines that indicate the value associated with each character. For
example:

%T
{integer} {character string}
{integer} {character string}
{integer} {character string}
%T

End-of-file processing

When the lexical analyzer reaches the end of a file, it calls the yywrap library subroutine, which returns
a value of 1 to indicate to the lexical analyzer that it should continue with normal wrap-up at the end of
input.

However, if the lexical analyzer receives input from more than one source, change the yywrap subroutine.
The new function must get the new input and return a value of 0 to the lexical analyzer. A return value of 0
indicates that the program should continue processing.

You can also include code to print summary reports and tables when the lexical analyzer ends in a new
version of the yywrap subroutine. The yywrap subroutine is the only way to force the yylex subroutine to
recognize the end of input.

lex program start conditions
A rule may be associated with any start condition.

However, the lex program recognizes the rule only when in that associated start condition. You can
change the current start condition at any time.

Define start conditions in the definitions section of the specification file by using a line in the following
form:

%Start name1 name2

where name1 and name2 define names that represent conditions. There is no limit to the number of
conditions, and they can appear in any order. You can also shorten the word Start to s or S.

When using a start condition in the rules section of the specification file, enclose the name of the start
condition in <> (less than, greater than) symbols at the beginning of the rule. The following example
defines a rule, expression, that the lex program recognizes only when the lex program is in start
condition name1:

<name1> expression

To put the lex program in a particular start condition, execute the action statement in the action part of a
rule; for instance, BEGIN in the following line:

BEGIN name1;

This statement changes the start condition to name1.

To resume the normal state, enter:

BEGIN 0;

or

BEGIN INITIAL;

where INITIAL is defined to be 0 by the lex program. BEGIN 0; resets the lex program to its initial
condition.

The lex program also supports exclusive start conditions specified with %x (percent sign, lowercase x) or
%X (percent sign, uppercase X) operator followed by a list of exclusive start names in the same format as

General programming concepts 501

regular start conditions. Exclusive start conditions differ from regular start conditions in that rules that do
not begin with a start condition are not active when the lexical analyzer is in an exclusive start state. For
example:

%s one
%x two
%%
abc {printf("matched ");ECHO;BEGIN one;}
<one>def printf("matched ");ECHO;BEGIN two;}
<two>ghi {printf("matched ");ECHO;BEGIN INITIAL;}

In start state one in the preceding example, both abc and def can be matched. In start state two, only
ghi can be matched.

Related concepts
Extended regular expressions in the lex command
Specifying extended regular expressions in a lex specification file is similar to methods used in the sed or
ed commands.

Creating a parser with the yacc program
The yacc program creates parsers that define and enforce structure for character input to a computer
program.

To use this program, you must supply the following inputs:
grammar file

A source file that contains the specifications for the language to recognize. This file also contains the
main, yyerror, and yylex subroutines. You must supply these subroutines.

main
A C language subroutine that, as a minimum, contains a call to the yyparse subroutine generated by
the yacc program. A limited form of this subroutine is available in the yacc library.

yyerror
A C language subroutine to handle errors that can occur during parser operation. A limited form of this
subroutine is available in the yacc library.

yylex
A C language subroutine to perform lexical analysis on the input stream and pass tokens to the parser.
You can use the lex command to generate this lexical analyzer subroutine.

When the yacc command gets a specification, it generates a file of C language functions called y.tab.c.
When compiled using the cc command, these functions form the yyparse subroutine and return an
integer. When called, the yyparse subroutine calls the yylex subroutine to get input tokens. The yylex
subroutine continues providing input until either the parser detects an error or the yylex subroutine
returns an end-marker token to indicate the end of operation. If an error occurs and the yyparse
subroutine cannot recover, it returns a value of 1 to the main subroutine. If it finds the end-marker
token, the yyparse subroutine returns a value of 0 to the main subroutine.

Related concepts
Generating a lexical analyzer with the lex command
The lex command helps write a C language program that can receive and translate character-stream input
into program actions.

The yacc grammar file
To use the yacc command to generate a parser, provide it with a grammar file that describes the input
data stream and what the parser is to do with the data.

The grammar file includes rules describing the input structure, code to be invoked when these rules are
recognized, and a subroutine to do the basic input.

The yacc command uses the information in the grammar file to generate a parser that controls the input
process. This parser calls an input subroutine (the lexical analyzer) to pick up the basic items (called

502 AIX Version 7.2: General programming concepts

tokens) from the input stream. A token is a symbol or name that tells the parser which pattern is being
sent to it by the input subroutine. A nonterminal symbol is the structure that the parser recognizes. The
parser organizes these tokens according to the structure rules in the grammar file. The structure rules are
called grammar rules. When the parser recognizes one of these rules, it executes the user code supplied
for that rule. The user code is called an action. Actions return values and use the values returned by other
actions.

Use the C programming language to write the action code and other subroutines. The yacc command uses
many of the C language syntax conventions for the grammar file.

main and yyerror subroutines

You must provide the main and yyerror subroutines for the parser. To ease the initial effort of using the
yacc command, the yacc library contains simple versions of the main and yyerror subroutines. Include
these subroutines by using the -ly argument to the ld command (or to the cc command). The source code
for the main library program is as follows:

#include <locale.h>
main()
{
 setlocale(LC_ALL, "");
 yyparse();
}

The source code for the yyerror library program is as follows:

#include <stdio.h>
yyerror(s)
 char *s;
{
 fprintf(stderr, "%s\n" ,s);
}

The argument to the yyerror subroutine is a string containing an error message, usually the string syntax
error.

Because these programs are limited, provide more function in these subroutines. For example, keep track
of the input line number and print it along with the message when a syntax error is detected. You may also
want to use the value in the external integer variable yychar. This variable contains the look-ahead token
number at the time the error was detected.

yylex Subroutine

The input subroutine that you supply to the grammar file must be able to do the following:

• Read the input stream.
• Recognize basic patterns in the input stream.
• Pass the patterns to the parser, along with tokens that define the pattern to the parser.

For example, the input subroutine separates an input stream into the tokens of WORD, NUMBER, and
PUNCTUATION, and it receives the following input:

I have 9 turkeys.

The program could choose to pass the following strings and tokens to the parser:

String Token

I WORD

have WORD

9 NUMBER

turkeys WORD

. PUNCTUATION

General programming concepts 503

The parser must contain definitions for the tokens passed to it by the input subroutine. Using the -d
option for the yacc command, it generates a list of tokens in a file called y.tab.h. This list is a set of
#define statements that allow the lexical analyzer (yylex) to use the same tokens as the parser.

Note: To avoid conflict with the parser, do not use subroutine names that begin with the letters yy.

You can use the lex command to generate the input subroutine, or you can write the routine in the C
language.

Using the yacc grammar file
A yacc grammar file consists of the following sections:

• Declarations
• Rules
• Programs

Two adjacent %% (percent sign, percent sign) separate each section of the grammar file. To make the file
easier to read, put the %% on a line by themselves. A complete grammar file looks like the following:

declarations
%%
rules
%%
programs

The declarations section may be empty. If you omit the programs section, omit the second set of %%.
Therefore, the smallest yacc grammar file is as follows:

%%
rules

The yacc command ignores blanks, tabs, and new line characters in the grammar file. Therefore, use
these characters to make the grammar file easier to read. Do not, however, use blanks, tabs or new line
characters in names or reserved symbols.

Using comments

To explain what the program is doing, put comments in the grammar file. You can put comments
anywhere in the grammar file that you can put a name. However, to make the file easier to read, put
the comments on lines by themselves at the beginning of functional blocks of rules. A comment in a
yacc grammar file looks the same as a comment in a C language program. The comment is enclosed
between /* (backslash, asterisk) and */ (asterisk, backslash). For example:

/* This is a comment on a line by itself. */

Using literal strings

A literal string is one or more characters enclosed in '' (single quotes). As in the C language, the \
(backslash) is an escape character within literals, and all the C language escape codes are recognized.
Thus, the yacc command accepts the symbols in the following table:

Symbol Definition

'\a' Alert

'\b' Backspace

'\f' Form-feed

'\n' New line

'\r' Return

'\t' Tab

'\v' Vertical tab

504 AIX Version 7.2: General programming concepts

Symbol Definition

'\'' Single quote (')

'\"' Double quote (")

'\?' Question mark (?)

'\\' Backslash (\)

'\Digits' The character whose encoding is represented by the one-, two-, or three-digit octal
integer specified by the Digits string.

'\xDigits' The character whose encoding is represented by the sequence of hexadecimal
characters specified by the Digits string.

Because its ASCII code is zero, the null character (\0 or 0) must not be used in grammar rules. The yylex
subroutine returns 0 if the null character is used, signifying end of input.

Formatting the grammar file

To help make the yacc grammar file more readable, use the following guidelines:

• Use uppercase letters for token names, and use lowercase letters for nonterminal symbol names.
• Put grammar rules and actions on separate lines to allow changing either one without changing the

other.
• Put all rules with the same left side together. Enter the left side once, and use the vertical bar to begin

the rest of the rules for that left side.
• For each set of rules with the same left side, enter the semicolon once on a line by itself following the

last rule for that left side. You can then add new rules easily.
• Indent rule bodies by two tab stops and action bodies by three tab stops.

Errors in the grammar file

The yacc command cannot produce a parser for all sets of grammar specifications. If the grammar rules
contradict themselves or require matching techniques that are different from what the yacc command
provides, the yacc command will not produce a parser. In most cases, the yacc command provides
messages to indicate the errors. To correct these errors, redesign the rules in the grammar file, or provide
a lexical analyzer (input program to the parser) to recognize the patterns that the yacc command cannot.

yacc grammar file declarations
The declarations section of the yacc grammar file contains the following:

• Declarations for any variables or constants used in other parts of the grammar file
• #include statements to use other files as part of this file (used for library header files)
• Statements that define processing conditions for the generated parser

You can keep semantic information associated with the tokens that are currently on the parse stack in a
user-defined C language union, if the members of the union are associated with the various names in the
grammar file.

A declaration for a variable or constant uses the following syntax of the C programming language:

TypeSpecifier Declarator ;

TypeSpecifier is a data type keyword and Declarator is the name of the variable or constant. Names can
be any length and consist of letters, dots, underscores, and digits. A name cannot begin with a digit.
Uppercase and lowercase letters are distinct.

Terminal (or token) names can be declared using the %token declaration, and nonterminal names can
be declared using the %type declaration. The %type declaration is not required for nonterminal names.
Nonterminal names are defined automatically if they appear on the left side of at least one rule. Without

General programming concepts 505

declaring a name in the declarations section, you can use that name only as a nonterminal symbol. The
#include statements are identical to C language syntax and perform the same function.

The yacc program has a set of keywords that define processing conditions for the generated parser. Each
of the keywords begin with a % (percent sign), which is followed by a token or nonterminal name. These
keywords are as follows:

Keyword Description

%left Identifies tokens that are left-associative with other tokens.

%nonassoc Identifies tokens that are not associative with other tokens.

%right Identifies tokens that are right-associative with other tokens.

%start Identifies a nonterminal name for the start symbol.

%token Identifies the token names that the yacc command accepts. Declares all token names in
the declarations section.

%type Identifies the type of nonterminals. Type-checking is performed when this construct is
present.

%union Identifies the yacc value stack as the union of the various type of values desired. By
default, the values returned are integers. The effect of this construct is to provide the
declaration of YYSTYPE directly from the input.

%{
Code
%}

Copies the specified Code into the code file. This construct can be used to add C
language declarations and definitions to the declarations section.

Note: The %{ (percent sign, left bracket) and %} (percent sign, right bracket) symbols
must appear on lines by themselves.

The %token, %left, %right, and %nonassoc keywords optionally support the name of a C union member (as
defined by %union) called a <Tag> (literal angle brackets surrounding a union member name). The %type
keyword requires a <Tag>. The use of <Tag> specifies that the tokens named on the line are to be of the
same C type as the union member referenced by <Tag>. For example, the following declaration declares
the Name parameter to be a token:

%token [<Tag>] Name [Number] [Name [Number]]...

If <Tag> is present, the C type for all tokens on this line are declared to be of the type referenced by
<Tag>. If a positive integer, Number, follows the Name parameter, that value is assigned to the token.

All of the tokens on the same line have the same precedence level and associativity. The lines appear in
the file in order of increasing precedence or binding strength. For example, the following describes the
precedence and associativity of the four arithmetic operators:

%left '+' '-'
%left '*' '/'

The + (plus sign) and - (minus sign) are left associative and have lower precedence than * (asterisk) and /
(slash), which are also left associative.

Defining global variables

To define variables to be used by some or all actions, as well as by the lexical analyzer, enclose the
declarations for those variables between %{ (percent sign, left bracket) and %} (percent sign, right
bracket) symbols. Declarations enclosed in these symbols are called global variables. For example, to

506 AIX Version 7.2: General programming concepts

make the var variable available to all parts of the complete program, use the following entry in the
declarations section of the grammar file:

%{
int var = 0;
%}

Start conditions

The parser recognizes a special symbol called the start symbol. The start symbol is the name of the rule
in the rules section of the grammar file that describes the most general structure of the language to be
parsed. Because it is the most general structure, the parser starts in its top-down analysis of the input
stream at this point. Declare the start symbol in the declarations section using the %start keyword. If you
do not declare the name of the start symbol, the parser uses the name of the first grammar rule in the
grammar file.

For example, when parsing a C language function, the most general structure for the parser to recognize is
as follows:

main()
{
 code_segment
}

The start symbol points to the rule that describes this structure. All remaining rules in the file describe
ways to identify lower-level structures within the function.

Token numbers

Token numbers are nonnegative integers that represent the names of tokens. If the lexical analyzer
passes the token number to the parser, instead of the actual token name, both programs must agree on
the numbers assigned to the tokens.

You can assign numbers to the tokens used in the yacc grammar file. If you do not assign numbers to the
tokens, the yacc grammar file assigns numbers using the following rules:

• A literal character is the numerical value of the character in the ASCII character set.
• Other names are assigned token numbers starting at 257.

Note: Do not assign a token number of 0. This number is assigned to the endmarker token. You cannot
redefine it.

To assign a number to a token (including literals) in the declarations section of the grammar file, put a
positive integer (not 0) immediately following the token name in the %token line. This integer is the token
number of the name or literal. Each token number must be unique. All lexical analyzers used with the yacc
command must return a 0 or a negative value for a token when they reach the end of their input.

yacc rules
The rules section of the grammar file contains one or more grammar rules. Each rule describes a structure
and gives it a name.

A grammar rule has the following form:

A : BODY;

where A is a nonterminal name, and BODY is a sequence of 0 or more names, literals, and semantic
actions that can optionally be followed by precedence rules. Only the names and literals are required to
form the grammar. Semantic actions and precedence rules are optional. The colon and the semicolon are
required yacc punctuation.

Semantic actions allow you to associate actions to be performed each time that a rule is recognized in
the input process. An action can be an arbitrary C statement, and as such, perform input or output, call
subprograms, or alter external variables. Actions can also refer to the actions of the parser; for example,
shift and reduce.

General programming concepts 507

Precedence rules are defined by the %prec keyword and change the precedence level associated with
a particular grammar rule. The reserved symbol %prec can appear immediately after the body of the
grammar rule and can be followed by a token name or a literal. The construct causes the precedence of
the grammar rule to become that of the token name or literal.

Repeating nonterminal names

If several grammar rules have the same nonterminal name, use the | (pipe symbol) to avoid rewriting
the left side. In addition, use the ; (semicolon) only at the end of all rules joined by pipe symbols. For
example, the following grammar rules:

A : B C D ;
A : E F ;
A : G ;

can be given to the yacc command by using the pipe symbol as follows:

A : B C D
 | E F
 | G
 ;

Using recursion in a grammar file

Recursion is the process of using a function to define itself. In language definitions, these rules normally
take the following form:

rule : EndCase
 | rule EndCase

Therefore, the simplest case of the rule is the EndCase, but rule can also consist of more than one
occurrence of EndCase. The entry in the second line that uses rule in the definition of rule is the
recursion. The parser cycles through the input until the stream is reduced to the final EndCase.

When using recursion in a rule, always put the call to the name of the rule as the leftmost entry in the rule
(as it is in the preceding example). If the call to the name of the rule occurs later in the line, such as in the
following example, the parser may run out of internal stack space and stop.

rule : EndCase
 | EndCase rule

The following example defines the line rule as one or more combinations of a string followed by a
newline character (\n):

lines : line
 | lines line
 ;

line : string '\n'
 ;

Empty string

To indicate a nonterminal symbol that matches the empty string, use a ; (semicolon) by itself in the body
of the rule. To define a symbol empty that matches the empty string, use a rule similar to the following
rule:

empty : ;
 | x;

OR

empty :
 | x
 ;

End-of-input marker

508 AIX Version 7.2: General programming concepts

When the lexical analyzer reaches the end of the input stream, it sends an end-of-input marker to the
parser. This marker is a special token called endmarker, which has a token value of 0. When the parser
receives an end-of-input marker, it checks to see that it has assigned all input to defined grammar rules
and that the processed input forms a complete unit (as defined in the yacc grammar file). If the input is a
complete unit, the parser stops. If the input is not a complete unit, the parser signals an error and stops.

The lexical analyzer must send the end-of-input marker at the appropriate time, such as the end of a file,
or the end of a record.

yacc actions
With each grammar rule, you can specify actions to be performed each time the parser recognizes the rule
in the input stream. An action is a C language statement that does input and output, calls subprograms,
and alters external vectors and variables.

Actions return values and obtain the values returned by previous actions. The lexical analyzer can also
return values for tokens.

Specify an action in the grammar file with one or more statements enclosed in {} (braces). The following
examples are grammar rules with actions:

A : '('B')'
 {
 hello(1, "abc");
 }

AND

XXX : YYY ZZZ
 {
 printf("a message\n");
 flag = 25;
 }

Passing Values between Actions

To get values generated by other actions, an action can use the yacc parameter keywords that begin with
a dollar sign ($1, $2, ...). These keywords refer to the values returned by the components of the right
side of a rule, reading from left to right. For example, if the rule is:

A : B C D ;

then $1 has the value returned by the rule that recognized B, $2 has the value returned by the rule that
recognized C, and $3 the value returned by the rule that recognized D.

To return a value, the action sets the pseudo-variable $$ to some value. For example, the following action
returns a value of 1:

{ $$ = 1;}

By default, the value of a rule is the value of the first element in it ($1). Therefore, you do not need to
provide an action for rules that have the following form:

A : B ;

The following additional yacc parameter keywords beginning with a $ (dollar sign) allow for type-
checking:

• $<Tag>$
• $<Tag>Number

$<Tag>Number imposes on the reference the type of the union member referenced by <Tag>. This
adds .tag to the reference so that the union member identified by Tag is accessed. This construct is
equivalent to specifying $$.Tag or $1.Tag. You can use this construct when you use actions in the
middle of rules where the return type cannot be specified through a %type declaration. If a %type has

General programming concepts 509

been declared for a nonterminal name, do not use the <Tag> construct; the union reference will be done
automatically.

Putting actions in the middle of rules

To get control of the parsing process before a rule is completed, write an action in the middle of a rule. If
this rule returns a value through the $ keywords, actions that follow this rule can use that value. This rule
can also use values returned by actions that precede it. Therefore, the following rule sets x to 1 and y to
the value returned by C. The value of rule A is the value returned by B, following the default rule.

A : B
 {
 $$ =1;
 }
 C
 {
 x = $2;
 y = $3;
 }
 ;

Internally, the yacc command creates a new nonterminal symbol name for the action that occurs in the
middle. It also creates a new rule matching this name to the empty string. Therefore, the yacc command
treats the preceding program as if it were written in the following form:

$ACT : /* empty */
 {
 $$ = 1;
 }
 ;
A : B $ACT C
 {
 x = $2;
 y = $3;
 }
 ;

where $ACT is an empty action.

yacc program error handling
When the parser reads an input stream, that input stream might not match the rules in the grammar file.

The parser detects the problem as early as possible. If there is an error-handling subroutine in the
grammar file, the parser can allow for entering the data again, ignoring the bad data, or initiating a
cleanup and recovery action. When the parser finds an error, for example, it may need to reclaim parse
tree storage, delete or alter symbol table entries, and set switches to avoid generating further output.

When an error occurs, the parser stops unless you provide error-handling subroutines. To continue
processing the input to find more errors, restart the parser at a point in the input stream where the parser
can try to recognize more input. One way to restart the parser when an error occurs is to discard some of
the tokens following the error. Then try to restart the parser at that point in the input stream.

The yacc command uses a special token name, error, for error handling. Put this token in the rules file
at places that an input error might occur so that you can provide a recovery subroutine. If an input error
occurs in this position, the parser executes the action for the error token, rather than the normal action.

The following macros can be placed in yacc actions to assist in error handling:

Macros Description

YYERROR Causes the parser to initiate error handling

YYABORT Causes the parser to return with a value of 1

YYACCEPT Causes the parser to return with a value of 0

YYRECOVERING() Returns a value of 1 if a syntax error has been detected and the parser has not
yet fully recovered

510 AIX Version 7.2: General programming concepts

To prevent a single error from producing many error messages, the parser remains in error state until it
processes three tokens following an error. If another error occurs while the parser is in the error state, the
parser discards the input token and does not produce a message.

For example, a rule of the following form:

stat : error ';'

tells the parser that when there is an error, it should ignore the token and all following tokens until it finds
the next semicolon. All tokens after the error and before the next semicolon are discarded. After finding
the semicolon, the parser reduces this rule and performs any cleanup action associated with it.

Providing for error correction

You can also allow the person entering the input stream in an interactive environment to correct any input
errors by entering a line in the data stream again. The following example shows one way to do this.

input : error '\n'
 {
 printf(" Reenter last line: ");
 }
 input
 {
 $$ = $4;
 }
 ;

However, in this example, the parser stays in the error state for three input tokens following the error. If
the corrected line contains an error in the first three tokens, the parser deletes the tokens and does not
produce a message. To allow for this condition, use the following yacc statement:

yyerrok;

When the parser finds this statement, it leaves the error state and begins processing normally. The
error-recovery example then becomes:

input : error '\n'
 {
 yyerrok;
 printf(" Reenter last line: ");
 }
 input
 {
 $$ = $4;
 }
 ;

Clearing the look-ahead token

The look-ahead token is the next token that the parser examines. When an error occurs, the look-ahead
token becomes the token at which the error was detected. However, if the error recovery action includes
code to find the correct place to start processing again, that code must also change the look-ahead token.
To clear the look-ahead token, include the following statement in the error-recovery action:

yyclearin ;

Parser operation generated by the yacc command
The yacc command converts the grammar file to a C language program.

That program, when compiled and executed, parses the input according to the grammar specification
provided.

The parser is a finite state machine with a stack. The parser can read and remember the look-ahead
token. The current state is always the state at the top of the stack. The states of the finite state machine
are represented by small integers. Initially, the machine is in state 0, the stack contains only 0, and no
look-ahead token has been read.

General programming concepts 511

The machine can perform one of the following actions:

Action Description

shift State The parser pushes the current state onto the stack, makes State the current state,
and clears the look-ahead token.

reduce Rule When the parser finds a string defined by Rule (a rule number) in the input stream,
the parser replaces that string with Rule in the output stream.

accept The parser looks at all input, matches it to the grammar specification, and recognizes
the input as satisfying the highest-level structure (defined by the start symbol). This
action appears only when the look-ahead token is the endmarker and indicates that
the parser has successfully done its job.

error The parser cannot continue processing the input stream and still successfully match
it with any rule defined in the grammar specification. The input tokens that the parser
looked at, together with the look-ahead token, cannot be followed by anything that
would result in valid input. The parser reports an error and attempts to recover the
situation and resume parsing.

The parser performs the following actions during one process step:

1. Based on its current state, the parser decides whether it needs a look-ahead token to determine the
action to be taken. If the parser needs a look-ahead token and does not have one, it calls the yylex
subroutine to obtain the next token.

2. Using the current state, and the look-ahead token if needed, the parser decides on its next action and
carries it out. As a result, states may be pushed onto or popped off the stack, and the look-ahead token
may be processed or left alone.

Shift action

The shift action is the most common action that the parser takes. Whenever the parser does a shift, a
look-ahead token always exists. For example, consider the following grammar specification rule:

IF shift 34

If the parser is in the state that contains this rule and the look-ahead token is IF, the parser:

1. Pushes the current state down on the stack.
2. Makes state 34 the current state (puts it at the top of the stack).
3. Clears the look-ahead token.

Reduce action

The reduce action keeps the stack from growing too large. The parser uses reduce actions after matching
the right side of a rule with the input stream. The parser is then ready to replace the characters in the
input stream with the left side of the rule. The parser may have to use the look-ahead token to decide if
the pattern is a complete match.

Reduce actions are associated with individual grammar rules. Because grammar rules also have small
integer numbers, it is easy to confuse the meanings of the numbers in the two actions, shift and reduce.
For example, the following action refers to grammar rule 18:

. reduce 18

The following action refers to state 34:

IF shift 34

For example, to reduce the following rule, the parser pops off the top three states from the stack:

A : x y z ;

512 AIX Version 7.2: General programming concepts

The number of states popped equals the number of symbols on the right side of the rule. These states are
the ones put on the stack while recognizing x, y, and z. After popping these states, a state is uncovered,
which is the state that the parser was in before beginning to process the rule; that is, the state that
needed to recognize rule A to satisfy its rule. Using this uncovered state and the symbol on the left side of
the rule, the parser performs an action called goto, which is similar to a shift of A. A new state is obtained,
pushed onto the stack, and parsing continues.

The goto action is different from an ordinary shift of a token. The look-ahead token is cleared by a shift but
is not affected by a goto action. When the three states are popped, the uncovered state contains an entry
such as the following:

A goto 20

This entry causes state 20 to be pushed onto the stack and become the current state.

The reduce action is also important in the treatment of user-supplied actions and values. When a rule is
reduced, the parser executes the code that you included in the rule before adjusting the stack. Another
stack running in parallel with the stack holding the states holds the values returned from the lexical
analyzer and the actions. When a shift takes place, the yylval external variable is copied onto the stack
holding the values. After executing the code that you provide, the parser performs the reduction. When
the parser performs the goto action, it copies the yylval external variable onto the value stack. The yacc
keywords that begin with $ refer to the value stack.

Using ambiguous rules in the yacc program
A set of grammar rules is ambiguous if any possible input string can be structured in two or more different
ways.

For example, the following grammar rule states a rule that forms an arithmetic expression by putting two
other expressions together with a minus sign between them.

expr : expr '-' expr

Unfortunately, this grammar rule does not specify how to structure all complex inputs. For example, if the
input is:

expr - expr - expr

a program could structure this input as either left associative:

(expr - expr) - expr

or as right associative:

expr - (expr - expr)

and produce different results.

Parser conflicts

When the parser tries to handle an ambiguous rule, confusion can occur over which of its four actions to
perform when processing the input. The following major types of conflict develop:

Conflict Description

shift/reduce conflict A rule can be evaluated correctly using either a shift action or a
reduce action, but the result is different.

reduce/reduce conflict A rule can be evaluated correctly using one of two different
reduce actions, producing two different actions.

General programming concepts 513

A shift/shift conflict is not possible. The shift/reduce and reduce/reduce conflicts result from a rule
that is not completely stated. For example, using the ambiguous rule stated in the previous section, if the
parser receives the input:

expr - expr - expr

after reading the first three parts, the parser has:

expr - expr

which matches the right side of the preceding grammar rule. The parser can reduce the input by applying
this rule. After applying the rule, the input becomes:

expr

which is the left side of the rule. The parser then reads the final part of the input:

- expr

and reduces it. This produces a left-associative interpretation.

However, the parser can also look ahead in the input stream. If, when the parser receives the first three
parts:

expr - expr

it reads the input stream until it has the next two parts, it then has the following input:

expr - expr - expr

Applying the rule to the rightmost three parts reduces them to expr. The parser then has the expression:

expr - expr

Reducing the expression once more produces a right-associative interpretation.

Therefore, at the point where the parser has read only the first three parts, it can take either of two valid
actions: a shift or a reduce. If the parser has no rule to decide between the two actions, a shift/reduce
conflict results.

A similar situation occurs if the parser can choose between two valid reduce actions, which is called a
reduce/reduce conflict.

How the parser responds to conflicts

When shift/reduce or reduce/reduce conflicts occur, the yacc command produces a parser by selecting
one of the valid steps wherever it has a choice. If you do not provide a rule that makes the choice, the
yacc program uses the following rules:

• In a shift/reduce conflict, choose the shift.
• In a reduce/reduce conflict, reduce by the grammar rule that can be applied at the earliest point in the

input stream.

Using actions within rules can cause conflicts if the action must be performed before the parser is sure
which rule is being recognized. In such cases, the preceding rules result in an incorrect parser. For this
reason, the yacc program reports the number of shift/reduce and reduce/reduce conflicts resolved by
using the preceding rules.

514 AIX Version 7.2: General programming concepts

Turning on debug mode for a parser generated by the yacc command
You can access the debugging code either by invoking the yacc command with the -t option or compiling
the y.tab.c file with -DYYDEBUG.

For normal operation, the yydebug external integer variable is set to 0. However, if you set it to a nonzero
value, the parser generates a description of the input tokens it receives and actions it takes for each token
while parsing an input stream.

Set this variable in one of the following ways:

• Put the following C language statement in the declarations section of the yacc grammar file:

int yydebug = 1;

• Use the dbx program to execute the final parser, and set the variable ON or OFF using dbx commands.

Example program for the lex and yacc programs
This section contains example programs for the lex and yacc commands.

Together, these example programs create a simple, desk-calculator program that performs addition,
subtraction, multiplication, and division operations. This calculator program also allows you to assign
values to variables (each designated by a single, lowercase letter) and then use the variables in
calculations. The files that contain the example lex and yacc programs are as follows:

File Content

calc.lex Specifies the lex command specification file that defines the lexical analysis rules.

calc.yacc Specifies the yacc command grammar file that defines the parsing rules, and calls the
yylex subroutine created by the lex command to provide input.

The following descriptions assume that the calc.lex and calc.yacc example programs are located in your
current directory.

Compiling the example program

To create the desk calculator example program, do the following:

1. Process the yacc grammar file using the -d optional flag (which informs the yacc command to create a
file that defines the tokens used in addition to the C language source code):

yacc -d calc.yacc

2. Use the ls command to verify that the following files were created:
y.tab.c

The C language source file that the yacc command created for the parser
y.tab.h

A header file containing define statements for the tokens used by the parser
3. Process the lex specification file:

lex calc.lex

4. Use the ls command to verify that the following file was created:
lex.yy.c

The C language source file that the lex command created for the lexical analyzer

5. Compile and link the two C language source files:

cc y.tab.c lex.yy.c

6. Use the ls command to verify that the following files were created:

General programming concepts 515

y.tab.o
The object file for the y.tab.c source file

lex.yy.o
The object file for the lex.yy.c source file

a.out
The executable program file

To run the program directly from the a.out file, type:

$ a.out

OR

To move the program to a file with a more descriptive name, as in the following example, and run it, type:

$ mv a.out calculate
$ calculate

In either case, after you start the program, the cursor moves to the line below the $ (command prompt).
Then, enter numbers and operators as you would on a calculator. When you press the Enter key, the
program displays the result of the operation. After you assign a value to a variable, as follows, the cursor
moves to the next line.

m=4 <enter>
_

When you use the variable in subsequent calculations, it will have the assigned value:

m+5 <enter>
9
_

Parser source code

The following example shows the contents of the calc.yacc file. This file has entries in all three sections of
a yacc grammar file: declarations, rules, and programs.

%{
#include<stdio.h>

int regs[26];
int base;

%}

%start list

%union { int a; }

%token DIGIT LETTER

%left '|'
%left '&'
%left '+' '-'
%left '*' '/' '%'
%left UMINUS /*supplies precedence for unary minus */

%% /* beginning of rules section */

list: /*empty */
 |
 list stat '\n'
 |
 list error '\n'
 {
 yyerrok;
 }
 ;
stat: expr
 {

516 AIX Version 7.2: General programming concepts

 printf("%d\n",$1);
 }
 |
 LETTER '=' expr
 {
 regs[$1.a] = $3.a;
 }

 ;

expr: '(' expr ')'
 {
 $$ = $2;
 }
 |
 expr '*' expr
 {

 $$.a = $1.a * $3.a;
 }
 |
 expr '/' expr
 {
 $$.a = $1.a / $3.a;
 }
 |
 expr '%' expr
 {
 $$.a = $1.a % $3.a;
 }
 |
 expr '+' expr
 {
 $$.a = $1.a + $3.a;
 }
 |
 expr '-' expr
 {
 $$.a = $1.a - $3.a;
 }
 |
 expr '&' expr
 {
 $$.a = $1.a & $3.a;
 }
 |
 expr '|' expr
 {
 $$.a = $1.a | $3.a;
 }
 |

 '-' expr %prec UMINUS
 {
 $$.a = -$2.a;
 }
 |
 LETTER
 {
 $$.a = regs[$1.a];
 }

 |
 number
 ;

number: DIGIT
 {
 $$ = $1;
 base = ($1.a==0) ? 8 : 10;
 } |
 number DIGIT
 {
 $$.a = base * $1.a + $2.a;
 }
 ;

%%
main()
{
 return(yyparse());
}

General programming concepts 517

yyerror(s)
char *s;
{
 fprintf(stderr, "%s\n",s);
}

yywrap()
{
 return(1);
}

The file contains the following sections:

• Declarations section. This section contains entries that:

– Include standard I/O header file
– Define global variables
– Define the list rule as the place to start processing
– Define the tokens used by the parser
– Define the operators and their precedence

• Rules section. The rules section defines the rules that parse the input stream.

– %start - Specifies that the whole input should match stat.
– %union - By default, the values returned by actions and the lexical analyzer are integers. yacc

can also support values of other types, including structures. In addition, yacc keeps track of the
types, and inserts appropriate union member names so that the resulting parser will be strictly type
checked. The yacc value stack is declared to be a union of the various types of values desired. The
user declares the union, and associates union member names to each token and nonterminal symbol
having a value. When the value is referenced through a $$ or $n construction, yacc will automatically
insert the appropriate union name, so that no unwanted conversions will take place.

– %type - Makes use of the members of the %union declaration and gives an individual type for the
values associated with each part of the grammar.

– %toksn - Lists the tokens which come from lex tool with their type.
• Programs section. The programs section contains the following subroutines. Because these

subroutines are included in this file, you do not need to use the yacc library when processing this
file.

Subroutine Description

main The required main program that calls the yyparse subroutine to start the program.

yyerror(s) This error-handling subroutine only prints a syntax error message.

yywrap The wrap-up subroutine that returns a value of 1 when the end of input occurs.

Lexical analyzer source code

This file contains include statements for standard input and output, as well as for the y.tab.h file. If you
use the -d flag with the yacc command, the yacc program generates that file from the yacc grammar file
information. The y.tab.h file contains definitions for the tokens that the parser program uses. In addition,
the calc.lex file contains the rules to generate these tokens from the input stream. The following are the
contents of the calc.lex file.

%{

#include <stdio.h>
#include "y.tab.h"
int c;
%}
%%
" " ;
[a-z] {
 c = yytext[0];
 yylval.a = c - 'a';

518 AIX Version 7.2: General programming concepts

 return(LETTER);
 }
[0-9] {
 c = yytext[0];
 yylval.a = c - '0';
 return(DIGIT);
 }
[^a-z0-9\b] {
 c = yytext[0];
 return(c);
 }
%%

make command
This topic provides information about simplifying the recompiling and relinking processes using the make
command.

It allows you to record, once only, specific relationships among files. You can then use the make command
to automatically perform all updating tasks.

In any project, you normally link programs from object files and libraries. Then, after modifying a source
file, you recompile some of the sources and relink the program as often as required. The make command
assists in maintaining a set of programs, usually pertaining to a particular software project, by building
up-to-date versions of programs. The make command is most useful for medium-sized programming
projects. It does not solve the problems of maintaining more than one source version and of describing
large programs (see sccs command).

Using the make command to maintain programs, you can:

• Combine instructions for creating a large program in a single file.
• Define macros to use within the make command description file.
• Use shell commands to define the method of file creation, or use the make command to create many of

the basic types of files.
• Create libraries.

The make command requires a description file, file names, specified rules to inform the make command
how to build many standard types of files, and time stamps of all system files.

Related concepts
Tools and utilities
This section provides an overview of the tools and utilities that you can use to develop C compiled
language programs.

Creating a description file
The make command uses information from a description file, which you create, to build a file containing
the completed program, which is then called a target file.

The description file informs the make command how to build the target file, which files are involved, and
what their relationships are to the other files in the procedure. The description file contains the following
information:

• Target file name
• Parent file names that make up the target file
• Commands that create the target file from the parent files
• Definitions of macros in the description file
• User-specified rules for building target files

By checking the dates of the parent files, themake command determines which files to create to get an
up-to-date copy of the target file. If any parent file was changed more recently than the target file, the
make command creates the files affected by the change, including the target file.

General programming concepts 519

If you name the description file either makefile or Makefile and are working in the directory containing
that description file, type the following to update the first target file and its parent files:

make

Updating occurs regardless of the number of files changed since the last time the make command created
the target file. In most cases, the description file is easy to write and does not change often.

To keep many different description files in the same directory, name them differently. Then, enter:

make -f Desc-File

where Desc-File is the name of the description file.

Format of an entry in the make description file
The general form of an entry is:.

target1 [target2..]:[:] [parent1..][; command]...
[(tab) commands]

Items inside brackets are optional. Targets and parents are file names (strings of letters, numbers,
periods, and slashes). The make command recognizes wildcard characters such as * (asterisk) and ?
(question mark). Each line in the description file that contains a target file name is called a dependency
line. Lines that contain commands must begin with a tab character.

Note: The make command uses the $ (dollar sign) to designate a macro. Do not use that
character in file names of target or parent files, or in commands in the description file unless
you are using a predefined make command macro.

Begin comments in the description file with a # (pound sign). Themake command ignores the # and all
characters that follow it. The make command also ignores blank lines.

Except for comment lines, you can enter lines longer than the line width of the input device. To continue a
line on the next line, put a \ (backslash) at the end of the line to be continued.

Using commands in a make description file
A command is any string of characters except a # (pound sign) or a new-line character. A command can
use a # only if it is in quotation marks.

Commands can appear either after a semicolon on a dependency line or on lines beginning with a tab that
immediately follows a dependency line.

When defining the command sequence for a particular target, specify one command sequence for each
target in the description file, or else separate the command sequences for special sets of dependencies.
Do not do both.

To use one command sequence for every use of the target file, use a single : (colon) following the target
name on the dependency line. For example:

test: dependency list1...
 command list...
 .
 .
 .
test: dependency list2...

defines a target name, test, with a set of parent files and a set of commands to create the file. The target
name, test, can appear in other places in the description file with another dependency list. However, that
name cannot have another command list in the description file. When one of the files that test depends
on changes, the make command runs the commands in that one command list to create the target file
named test.

520 AIX Version 7.2: General programming concepts

To specify more than one set of commands to create a particular target file, enter more than one
dependency definition. Each dependency line must have the target name, followed by :: (two colons),
a dependency list, and a command list that the make command uses if any of the files in the dependency
list changes. For example:

test:: dependency list1...
 command list1...
test:: dependency list2...
 command list2...

defines two separate processes to create the target file, test . If any of the files in dependency
list1 changes, themake command runs command list1. If any of the files in dependency list2
changes, the make command runs command list2. To avoid conflicts, a parent file cannot appear in
both dependency list1 and dependency list2.

Note: The make command passes the commands from each command line to a new shell.
Be careful when using commands that have meaning only within a single shell process; for
example, cd and shell commands. The make command discards these results before running
the commands on the next line.

To group commands together, use the \ (backslash) at the end of a command line. The make command
then continues that command line into the next line in the description file. The shell sends both of these
lines to a single new shell.

Calling the make command from a description file
To nest calls to the make command within a make command description file, include the $(MAKE) macro
in one of the command lines in the file.

If the -n flag is set when the $(MAKE) macro is found, the new copy of the make command does not
execute any of its commands, except another $(MAKE) macro. To use this characteristic to test a set of
description files that describe a program, enter:

make -n

The make command does not perform any of the program operations. However, it does write all of the
steps needed to build the program, including output from lower-level calls to the make command.

Preventing the make command from stopping on errors
The make command normally stops if any program returns a nonzero error code. Some programs return
status that has no meaning.

To prevent the make command from stopping on errors, do any of the following:

• Use the -i flag with the make command on the command line.
• Put the fake target name .IGNORE on a dependency line by itself in the description file.

Because .IGNORE is not a real target file, it is called a fake target. If .IGNORE has prerequisites,
the make command ignores errors associated with them.

• Put a - (minus sign) in the first character position of each line in the description file where themake
command should not stop on errors.

Example of a description file

For example, a program named prog is made by compiling and linking three C language files x.c, y.c,
and z.c. The x.c and y.c files share some declarations in a file named defs. The z.c file does not share
those declarations. The following is an example of a description file, which creates the prog program:

Make prog from 3 object files
prog: x.o y.o z.o
Use the cc program to make prog
 cc x.o y.o z.o -o prog
Make x.o from 2 other files
x.o: x.c defs

General programming concepts 521

Use the cc program to make x.o
 cc -c x.c
Make y.o from 2 other files
y.o: y.c defs
Use the cc program to make y.o
 cc -c y.c
Make z.o from z.c
z.o: z.c
Use the cc program to make z.o
 cc -c z.c

If this file is called makefile, enter the make command to update the prog program after making
changes to any of the source files: x.c, y.c, z.c, or defs.

Simplifying the description file
To make this file simpler, use the internal rules of themake program.

Based on file-system naming conventions, the make command recognizes three .c files corresponding
to the needed .o files. This command can also generate an object from a source file, by issuing a cc -c
command.

Based on these internal rules, the description file becomes:

Make prog from 3 object files
prog: x.o y.o z.o
Use the cc program to make prog
 cc x.o y.o z.o -o prog
Use the file defs and the .c file
when making x.o and y.o
x.o y.o: defs

Internal rules for the make program
The internal rules for the make command are located in a file that looks like a description file.

When the -r flag is specified, the make command does not use the internal rules file. You must supply the
rules to create the files in your description file. The internal-rules file contains a list of file-name suffixes
(such as .o or .a) that the make command understands, and rules that inform the make command how
to create a file with one suffix from a file with another suffix. If you do not change the list, the make
command understands the following suffixes:

Suffi
x

Description

.a Archive library

.C C++ source file

.C\~ Source Code Control System (SCCS) file containing C++ source file

.c C source file

.c~ SCCS file containing C source file

.f FORTRAN source file

.f~ SCCS file containing FORTRAN source file

.h C language header file.

.h~ SCCS file containing C language header file

.l lex source grammar

.l~ SCCS file containing lex source grammar.

.o Object file.

.s Assembler source file.

522 AIX Version 7.2: General programming concepts

Suffi
x

Description

.s~ SCCS file containing assembler source file.

.sh Shell-command source file.

.sh~ SCCS file containing shell-command source file.

.y yacc-c source grammar.

.y~ SCCS file containing yacc-c source grammar.

The list of suffixes is similar to a dependency list in a description file and follows the fake target name
of .SUFFIXES. Because the make command looks at the suffixes list in left-to-right order, the order of the
entries is important.

The make command uses the first entry in the list that satisfies the following equirements:

• The entry matches input and output suffix requirements for the current target and dependency files.
• The entry has a rule assigned to it.

The make command creates the name of the rule from the two suffixes of the files that the rule defines.
For example, the name of the rule to transform a .c file to an .o file is .c.o.

To add more suffixes to the list, add an entry for the fake target name of .SUFFIXES in the description
file. For a .SUFFIXES line without any suffixes following the target name in the description file, the make
command erases the current list. To change the order of the names in the list, erase the current list and
then assign a new set of values to .SUFFIXES.

Example of default rules file
The following example shows a portion of the default rules file:

Define suffixes that make knows.
.SUFFIXES: .o .C .C\~ .c .c~ .f .f~ .y .y~ .l .l~ .s .s~ .sh .sh~ .h .h~ .a
 #Begin macro definitions for
#internal macros
YACC=yacc
YFLAGS=
ASFLAGS=
LEX=lex
LFLAGS=
CC=cc
CCC=xlC
AS=as
CFLAGS=
CCFLAGS=
End macro definitions for
internal macros
Create a .o file from a .c
file with the cc program.
c.o:
 $(CC) $(CFLAGS) -c $<

Create a .o file from
a .s file with the assembler.
s.o:
 (AS)(ASFLAGS) -o $@ $<

.y.o:
Use yacc to create an intermediate file
 $(YACC) $(YFLAGS) $<
Use cc compiler
 $(CC) $(CFLAGS) -c y.tab.c
Erase the intermediate file
 rm y.tab.c
Move to target file
 mv y.tab.o $@.
.y.c:
Use yacc to create an intermediate file
 $(YACC) $(YFLAGS) $<

General programming concepts 523

Move to target file
 mv y.tab.c $@

Single-suffix rules
The make command has a set of single-suffix rules to build source files directly into a target file name that
does not have a suffix (for example, command files).

Themake command also has rules to change the following source files with a suffix to object files without
a suffix:

Command Description

.C: From a C++ language source file

.C\~: From an SCCS C++ language source file

.c: From a C language source file

.c~: From an SCCS C language source file

.sh: From a shell file

.sh~: From an SCCS shell file

For example, if all of the needed source files are in the current directory, to maintain the cat program,
enter:

make cat

Using the make command with archive libraries
The make command has a set of single-suffix rules to build source files directly into a target file name that
does not have a suffix (for example, command files).

The internal rules for changing source files to library files are:

Rule Explanation

.C.a C++ source to archive

.C\~.a SCCS C++ source to archive

.c.a C source to archive

.c~.a SCCS C source to archive

.s~.a SCCS assembler source to archive

.f.a Fortran source to archive

.f~.a SCCS Fortran source to archive

Defining default conditions in a description file
When the make command creates a target file but cannot find commands in the description file or internal
rules to create a file, it looks at the description file for default conditions.

To define the commands that the make command performs in this case, use the .DEFAULT target name in
the description file as follows:

.DEFAULT:
 command
 command
 .
 .
 .

524 AIX Version 7.2: General programming concepts

Because .DEFAULT is not a real target file, it is called a fake target. Use the .DEFAULT fake target name for
an error-recovery routine or for a general procedure to create all files in the command that are not defined
by an internal rule of the make program.

Including other files in a description file
Include files other than the current description file by using the word include as the first word on any line
in the description file.

Follow the word with a blank or a tab, and then the file name for themake command to include in the
operation.

Note: Only one file is supported for each include statement.

For example:

include /home/tom/temp

include /home/tom/sample

directs the make command to read the temp and sample files and the current description file to build the
target file.

When you are using include files, do not use more than 16 levels of nesting.

Defining and using macros in a description file
A macro is a name (or label) to use in place of several other names. It is a way of writing the longer string
of characters by using just one shorter name.

To define a macro:

1. Start a new line with the name of the macro.
2. Follow the name with an = (equal sign).
3. To the right of the = (equal sign), enter the string of characters that the macro name represents.

The macro definition can contain blanks before and after the = (equal sign) without affecting the result.
The macro definition cannot contain a : (colon) or a tab before the = (equal sign).

The following are examples of macro definitions:

Macro -"2" has a value of "xyz"
2 = xyz

Macro "abc" has a value of "-ll -ly"
abc = -ll -ly

Macro "LIBES" has a null value
LIBES =

A macro that is named, but not defined, has the same value as the null string.

Using macros in a description file
After defining a macro in a description file, use the macro in description file commands by putting a $
(dollar sign) before the name of the macro.

If the macro name is longer than one character, put () (parentheses) or { } (braces) around the macro
name. The following are examples of using macros:

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

General programming concepts 525

The last two examples in the previous list have the same effect.

The following fragment shows how to define and use some macros:

OBJECTS is the 3 files x.o, y.o and
z.o (previously compiled)
OBJECTS = x.o y.o z.o
LIBES is the standard library
LIBES = -lc
prog depends on x.o y.o and z.o
prog: $(OBJECTS)
Link and load the 3 files with
the standard library to make prog
 cc $(OBJECTS) $(LIBES) -o prog

The make command that uses this description file links and loads the three object files (x.o, y.o, and
z.o) with the libc.a library.

A macro definition entered on the command line overrides any duplicate macro definitions in the
description file. Therefore, the following command loads the files with the lex (-11) library:

make "LIBES= -ll"

Note: When macros contain blanks and you enter them, on the command line, put " " (double
quotation marks) around the macro. Without the double quotation marks, the shell interprets
the blanks as parameter separators and not as part of the macro.

The make command handles up to 10 levels of nested macro expansion. Based on the definitions in the
following example, the expression $($(macro2)) would evaluate to value1:

macro1=value1

macro2=macro1

The evaluation of a macro occurs each time the macro is referenced. It is not evaluated when it is defined.
If a macro is defined but never used, it will never be evaluated. This is especially important if the macro
is assigned values that will be interpreted by the shell, particularly if the value might change. A variable
declaration such as:

OBJS = 'ls *.o'

could change in value if referenced at different times during the process of building or removing object
files. It does not hold the value of the ls command at the time the OBJS macro is defined.

Internal macros
The make command has built-in macro definitions for use in the description file.

These macros help specify variables in the description file. The make command replaces the macros with
one of the following values:

Macro Value

$@ Name of the current target file

$$@ Label name on the dependency line

$? Names of the files that have changed more recently than the target

$< Parent file name of the out-of-date file that caused a target file to be created

$* Name of the current parent file without the suffix

$% Name of an archive library member

Target file name

526 AIX Version 7.2: General programming concepts

If the $@ macro is in the command sequence in the description file, the make command replaces the
symbol with the full name of the current target file before passing the command to the shell to be run. The
make command replaces the symbol only when it runs commands from the description file to create the
target file.

Label name

If the $$@ macro is on the dependency line in a description file, the make command replaces this symbol
with the label name that is on the left side of the colon in the dependency line. For example, if the
following is included on a dependency line:

cat: $$@.c

The make command translates it to:

cat: cat.c

when the make command evaluates the expression. Use this macro to build a group of files, each of which
has only one source file. For example, to maintain a directory of system commands, use a description file
similar to:

Define macro CMDS as a series
of command names
CMDS = cat dd echo date cc cmp comm ar ld chown
Each command depends on a .c file
$(CMDS): $$@.c
Create the new command set by compiling the out of
date files ($?) to the target file name ($@)
 $(CC) -O $? -o $@

The make command changes the $$(@F) macro to the file part of $@ when it runs. For example, use
this symbol when maintaining the usr/include directory while using a description file in another directory.
That description file is similar to the following:

Define directory name macro INCDIR
INCDIR = /usr/include
Define a group of files in the directory
with the macro name INCLUDES
INCLUDES = \
 $(INCDIR)/stdio.h \
 $(INCDIR)/pwd.h \
 $(INCDIR)/dir.h \
 $(INCDIR)/a.out.h \
Each file in the list depends on a file
of the same name in the current directory
$(INCLUDES): $$(@F)
Copy the younger files from the current
directory to /usr/include
 cp $? $@
Set the target files to read only status
 chmod 0444 $@

The preceding description file creates a file in the /usr/include directory when the corresponding file in
the current directory has been changed.

Changed Files

If the $? macro is in the command sequence in the description file, the make command replaces the
symbol with a list of parent files that have been changed since the target file was last changed. The make
command replaces the symbol only when it runs commands from the description file to create the target
file.

First out-of-date file

If the $< macro is in the command sequence in the description file, the make command replaces the
symbol with the name of the file that started the file creation. The Out-of-Date file name is the name of
the parent file whose timestamp did not match the timestamp of the target file, and therefore caused the
make command to create the target file again.

General programming concepts 527

In addition, use a letter (D or F) after the < (less-than sign) to get either the directory name (D) or the file
name (F) of the first out-of-date file. For example, if the first out-of-date file is:

/home/linda/sample.c

then the make command gives the following values:

$(<D) = /home/linda
$(<F) = sample.c
$< = /home/linda/sample.c

The make command replaces this symbol only when the program runs commands from its internal rules
or from the .DEFAULT list.

Current file-name prefix

If the $* macro is in the command sequence in the description file, the make command replaces the
symbol with the file-name part (without the suffix) of the parent file that the make command is currently
using to generate the target file. For example, if the make command is using the file:

test.c

then the $* macro represents the file name test.

In addition, use a letter (D or F) after the * (asterisk) to get either the directory name (D) or the file name
(F) of the current file.

For example, the make command uses many files (specified either in the description file or in the internal
rules) to create a target file. Only one of those files (the current file) is used at any moment. If that current
file is:

/home/tom/sample.c

then the make command gives the following values for the macros:

$(*D) = /home/tom
$(*F) = sample
$* = /home/tom/sample

The make command replaces this symbol only when running commands from its internal rules (or from
the .DEFAULT list), but not when running commands from a description file.

Archive library member

If the $% macro is in a description file, and the target file is an archive library member, the make
command replaces the macro symbol with the name of the library member. For example, if the target file
is:

lib(file.o)

then themake command replaces the $% macro with the member name file.o.

Changing macro definitions in a command
When macros in the shell commands are defined in the description file, you can change the values that
the make command assigns to the macro.

To change the assignment of the macro, put a : (colon) after the macro name, followed by a replacement
string. The form is as follows:

$(macro:string1=string2)

where string1 is either a suffix or a word to be replaced in the macro definition and string2 is the
replacement suffix or word.

528 AIX Version 7.2: General programming concepts

When the make command reads the macro and begins to assign the values to the macro based on the
macro definition, the command replaces each string1 in the macro definition with a value of string2.
For example, if the description file contains the macro definition:

FILES=test.o sample.o form.o defs

You can replace the form.o file with a new file, input.o, by using the macro in the description-file
commands, as follows:

cc -o $(FILES:form.o=input.o)

You can all replace all the suffixes .o in the macro with .c as follows:

cc -c $(FILES:.o=.c)

The macro values can also be changed using pattern matching replacements of the following form:

$(macro: op%os= np%ns)

Where op is the existing (old) prefix, os is the existing (old) suffix, np is the new prefix, and ns is the new
suffix.

op, os, np and ns can be a string of zero or more characters. The pattern matched by the percent sign
(%) on the left-hand side of the equal-sign, which is a string of zero or more characters, is used with np
and ns to replace the macro value. The percent sign (%) operator can appear any number of times on the
right-hand side of the equal sign (=).

For example:

FOO=abc def
BAR=$(FOO:%=dir1/%.o dir1/%_cltn.o)

sets the value of BAR to dir1/abc.o dir1/abc_cltn.o dir1/def.o dir1/def_cltn.o

Changing the value of a macro in this manner is useful when maintaining archive libraries. For more
information, see the ar command.

Creating a target file with the make command
To create a file containing the completed program called a target file, the make program:

1. Finds the name of the target file in the description file or in the make command
2. Ensures that the files on which the target file depends exist and are up-to-date
3. Determines if the target file is up-to-date with the files on which it depends.

If the target file or one of the parent files is out-of-date, the make command creates the target file using
one of the following:

• Commands from the description file
• Internal rules to create the file (if they apply)
• Default rules from the description file

If all files in the procedure are up-to-date when running the make program, the make command displays
a message to indicate that the file is up-to-date, and then stops. If some files have changed, themake
command builds only those files that are out-of-date. The command does not rebuild files that are already
current.

When the make command runs commands to create a target file, it replaces macros with their values,
writes each command line, and then passes the command to a new copy of the shell.

General programming concepts 529

Using the make command with source code control system files
The source code control system (SCCS) commands and file system is primarily used to control access to a
file, track who altered the file, why it was altered, and what was altered.

An SCCS file is any text file controlled with SCCS commands. Using non-SCCS commands to edit SCCS
files can damage the SCCS files.

All SCCS files use the prefix s. to indicate that the files are SCCS files and not regular text files. The
make command does not recognize references to prefixes of file names. Therefore, do not refer to SCCS
files directly within the make command description file. The make command uses a different suffix, the
~ (tilde), to represent SCCS files. Therefore, .c~.o refers to the rule that transforms an SCCS C language
source file into an object file. The internal rule is:

.c~.o:
 $(GET) $(GFLAGS) -p $< >$*.c
 $(CC) $(CFLAGS) -c $*.c
 -rm -f $*.c

The ~ (tilde) added to any suffix changes the file search into an SCCS file-name search, with the actual
suffix named by the . (period) and all characters up to (but not including) the ~ (tilde). The GFLAGS macro
passes flags to the SCCS to determine which SCCS file version to use.

The make command recognizes the following SCCS suffixes:

Suffi
x

Description

.C\~ C++ source

.c~ c source

.y~ yacc source grammar

.s~ Assembler source

.sh~ Shell

.h~ Header

.f~ FORTRAN

.l~ lex source

The make command has internal rules for changing the following SCCS files:

.C\~.a:

.C\~.c:

.C\~.o:

.c~:

.c~.a:

.c~.c:

.c~.o:

.f~:

.f~.a:

.f~.o:

.f~.f:

.h~.h:

.l~.o:

.s~.a:

530 AIX Version 7.2: General programming concepts

.sh~:

.s~.o:

.y~.c:

.y~.o:

Understanding makefile considerations in Source Code Control Systems
(SCCS)
If you specify a description file, or a file named makefile or Makefile is in the current directory, the make
command does not look for a description file within SCCS.

If a description file is not in the current directory and you enter the make command, the make command
looks for an SCCS file named either s.makefile or s.Makefile. If either of these files is present, the make
command uses a get command to direct SCCS to build the description file from that source file. When the
SCCS generates the description file, the make command uses the file as a normal description file. When
the make command finishes executing, it removes the created description file from the current directory.

Suppressing Default SCCS Retrieval
You can suppress the default SCCS retrieval. The commands for retrieving source files from SCCS can be
specified in the rules for SCCS_GET special target in the description file.

This suppresses the default source retrieval from SCCS.

For example:

SCCS_GET:
 get -p $< > $*.c

Using the make command with non-source code control system (SCCS) files
Start the make command from the directory that contains the description file for the file to create.

The variable name desc-file represents the name of that description file. Then, enter the command:

make -f desc-file

If the name of the description file is makefile or Makefile, you do not have to use the -f flag. Enter
macro definitions, flags, description file names, and target file names along with the make command on
the command line as follows:

make [flags] [macro definitions] [targets]

The make command then examines the command-line entries to determine what to do. First, it looks at
all macro definitions on the command line (entries that are enclosed in quotes and contain equal signs)
and assigns values to them. If the make command finds a definition for a macro on the command line
different from the definition for that macro in the description file, it uses the command-line definition for
the macro.

Next, the make command looks at the flags.

Themake command expects the remaining command-line entries to be the names of target files to be
created. Any shell commands enclosed in back quotes that generate target names are performed by the
make command. Then the make command creates the target files in left-to-right order. Without a target
file name, the make command creates the first target file named in the description file that does not
begin with a period. With more than one description file specified, themake command searches the first
description file for the name of the target file.

General programming concepts 531

Understanding how the make command uses environment variables
Each time the make command runs, it reads the current environment variables and adds them to its
defined macros.

Using the MAKEFLAGS macro or the MFLAGS macro, the user can specify flags to be passed to the make
command. If both are set, the MAKEFLAGS macro overrides the MFLAGS macro. The flags specified
using these variables are passed to the make command along with any command-line options. In the
case of recursive calls to the make command, using the $(MAKE) macro in the description file, the make
command passes all flags with each invocation.

When the make command runs, it assigns macro definitions in the following order:

1. Reads the MAKEFLAGS environment variable.

If the MAKEFLAGS environment variable is not present or null, the make command checks for a
non-null value in the MFLAGS environment variable. If one of these variables has a value, the make
command assumes that each letter in the value is an input flag. The make command uses these flags
(except for the -f, -p, and -d flags, which cannot be set from the MAKEFLAGS or MFLAGS environment
variable) to determine its operating conditions.

2. Reads and sets the input flags from the command line. The command line adds to the previous
settings from the MAKEFLAGS or MFLAGS environment variable.

3. Reads macro definitions from the command line. Themake command ignores any further assignments
to these names.

4. Reads the internal macro definitions.
5. Reads the environment. The make command treats the environment variables as macro definitions and

passes them to other shell programs.

Using the make command in parallel run mode
Normally, the make command runs commands sequentially for only one target at a time, waiting for the
command to finish before running the next.

However, the make command can also run in a parallel run mode, where it can run many concurrent jobs
to build independent targets.

The -j flag tells the make command simultaneously to run independent targets.

If you follow the -j option with an integer, then the integer specifies the maximum number of concurrent
jobs that can be executed to build the targets.

If -j flag is not followed by an integer, then there is no limit on the number of jobs that will be invoked to
build the targets.

If the make command encounters an error while building a target in parallel execution mode, and none of
the methods used to ignore errors are used, then further execution of commands to build that target will
stop, and the make command will wait for child jobs already running to exit before completing.

When you are running more than one job in parallel mode, the output that the jobs generate prints to
the screen a it is produced. This can lead to the confusion of messages from different jobs on the screen
unless you suppress the messages using redirection, or instructing the make command to run silently.

m4 macro processor overview
This topic provides information about the m4 macro processor, which is a front-end processor for any
programming language being used in the operating system environment.

At the beginning of a program, you can define a symbolic name or symbolic constant as a particular string
of characters. You can then use the m4 macro processor to replace unquoted occurrences of the symbolic
name with the corresponding string. Besides replacing one string of text with another, the m4 macro
processor provides the following features:

532 AIX Version 7.2: General programming concepts

• Arithmetic capabilities
• File manipulation
• Conditional macro expansion
• String and substring functions

The m4 macro processor processes strings of letters and digits called tokens. The m4 macro processor
reads each alphanumeric token and determines if it is the name of a macro. The program then replaces
the name of the macro with its defining text, and pushes the resulting string back onto the input to
be rescanned. You can call macros with arguments, in which case the arguments are collected and
substituted into the right places in the defining text before the defining text is rescanned.

The m4 macro processor provides built-in macros such as define. You can also create new macros.
Built-in and user-defined macros work the same way.

Using the m4 macro processor

To use the m4 macro processor, enter the following command:

m4 [file]

The m4 macro processor processes each argument in order. If there are no arguments or if an argument
is - (dash), m4 macro processor reads standard input as its input file. The m4 macro processor writes its
results to standard output. Therefore, to redirect the output to a file for later use, use a command such as
the following:

m4 [file] >outputfile

Creating a user-defined macro

Macro Description

define (MacroName, Replacement) Defines new macro MacroName with a value of
Replacement.

For example, if the following statement is in a program:

define(name, stuff)

The m4 macro processor defines the string name as stuff. When the string name occurs in a program
file, the m4 macro processor replaces it with the string stuff. The string name must be ASCII
alphanumeric and must begin with a letter or underscore. The string stuff is any text, but if the text
contains parentheses, the number of open, or left, parentheses must equal the number of closed, or right,
parentheses. Use the / (slash) character to spread the text for stuff over multiple lines.

The open (left) parenthesis must immediately follow the word define. For example:

define(N, 100)
 . . .
if (i > N)

defines N to be 100 and uses the symbolic constant N in a later if statement.

Macro calls in a program have the following form:

name(arg1,arg2, . . . argn)

A macro name is recognized only if it is surrounded by non-alphanumeric characters. In the following
example, the variable NNN is not related to the defined macro N.

define(N, 100)
 . . .
if (NNN > 100)

General programming concepts 533

You can define macros in terms of other names. For example:

define(N, 100)
define(M, N)

defines both M and N to be 100. If you later change the definition of N and assign it a new value, M retains
the value of 100, not N.

The m4 macro processor expands macro names into their defining text as soon as possible. The string N
is replaced by 100. Then the string M is also replaced by 100. The overall result is the same as using the
following input initially.

define(M, 100)

The order of the definitions can be interchanged as follows:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when the value of M is requested later, the result is the value of N at
that time (because the M is replaced by N, which is replaced by 100).

Using the quote characters

To delay the expansion of the arguments of define, enclose them in quote characters. If you do not
change them, quote characters are ` and ' (left and right single quotes). Any text surrounded by quote
characters is not expanded immediately, but quote characters are removed. The value of a quoted string
is the string with the quote characters removed. If the input is:

define(N, 100)
define(M, `N')

The quote characters around the N are removed as the argument is being collected. The result of using
quote characters is to define M as the string N, not 100. The general rule is that the m4 macro processor
always strips off one level of quote characters whenever it evaluates something. This is true even outside
of macros. To make the word define appear in the output, enter the word in quote characters, as follows:

`define' = 1;

Another example of using quote characters is redefining N. To redefine N, delay the evaluation by putting N
in quote characters. For example:

define(N, 100)
. . .
define(`N', 200)

To prevent problems from occurring, quote the first argument of a macro. For example, the following
fragment does not redefine N:

define(N, 100)
. . .
define(N, 200)

The N in the second definition is replaced by 100. The result is the same as the following statement:

define(100, 200)

The m4 macro processor ignores this statement because it can define only names, not numbers.

Changing the quote characters

Quote characters are normally ` and ' (left or right single quotes). If those characters are not convenient,
change the quote characters with the following built-in macro:

534 AIX Version 7.2: General programming concepts

Macro Description

changequote (l, r) Changes the left and right quote characters to the characters
represented by the l and r variables.

To restore the original quote characters, use changequote without arguments as follows:

changequote

Arguments

The simplest form of macro processing is replacing one string by another (fixed) string. However, macros
can also have arguments, so that you can use the macro in different places with different results. To
indicate where an argument is to be used within the replacement text for a macro (the second argument
of its definition), use the symbol $n to indicate the nth argument. When the macro is used, the m4
macro processor replaces the symbol with the value of the indicated argument. For example, the following
symbol:

$2

Refers to the second argument of a macro. Therefore, if you define a macro called bump as:

define(bump, $1 = $1 + 1)

The m4 macro processor generates code to increment the first argument by 1. The bump(x) statement is
equivalent to x = x + 1.

A macro can have as many arguments as needed. However, you can access only nine arguments using the
$n symbol ($1 through $9). To access arguments past the ninth argument, use the shift macro.

Macro Description

shift (ParameterList) Returns all but the first element of ParameterList to perform a
destructive left shift of the list.

This macro drops the first argument and reassigns the remaining arguments to the $n symbols (second
argument to $1, third argument to $2. . . tenth argument to $9). Using the shift macro more than once
allows access to all arguments used with the macro.

The $0 macro returns the name of the macro. Arguments that are not supplied are replaced by null
strings, so that you can define a macro that concatenates its arguments as follows:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus:

cat(x, y, z)

is the same as:

xyz

Arguments $4 through $9 in this example are null because corresponding arguments were not provided.

The m4 macro processor discards leading unquoted blanks, tabs, or new-line characters in arguments,
but keeps all other white space. Thus:

define(a, b c)

defines a to be b c.

Arguments are separated by commas. Use parentheses to enclose arguments containing commas, so that
the comma does not end the argument. For example:

General programming concepts 535

define(a, (b,c))

has only two arguments. The first argument is a, and the second is (b,c). To use a comma or single
parenthesis, enclose it in quote characters.

Using a predefined m4 macro

The m4 macro processor provides a set of predefined macros. This section explains many of the macros
and their uses.

Removing a macro definition

Macro Description

undefine (`MacroName') Removes the definition of a user-defined or built-in macro
(`MacroName')

For example:

undefine(`N')

removes the definition of N. After you remove a built-in macro with the undefine macro, as follows:

undefine(`define')

You cannot use the definition of the built-in macro again.

Single quotes are required in this case to prevent substitution.

Checking for a defined macro

Macro Description

ifdef (`MacroName', Argument1,
Argument2)

If macro MacroName is defined and is not defined to
zero, returns the value of Argument1. Otherwise, it returns
Argument2.

The ifdef macro permits three arguments. If the first argument is defined, the value of ifdef is the
second argument. If the first argument is not defined, the value of ifdef is the third argument. If there is
no third argument, the value of ifdef is null.

Using integer arithmetic

The m4 macro processor provides the following built-in functions for doing arithmetic on integers only:

Macro Description

incr (Number) Returns the value of Number + 1.

decr (Number) Returns the value of Number - 1.

eval Evaluates an arithmetic expression.

Thus, to define a variable as one more than the Number value, use the following:

define(Number, 100)
define(Number1, `incr(Number)')

This defines Number1 as one more than the current value of Number.

The eval function can evaluate expressions containing the following operators (listed in descending order
of precedence) :

unary + and -
** or ^ (exponentiation)

536 AIX Version 7.2: General programming concepts

* / % (modulus)
+ -
== != < <= > >=
!(not)
& or && (logical AND)
| or || (logical OR)

Use parentheses to group operations where needed. All operands of an expression must be numeric. The
numeric value of a true relation (for example, 1 > 0) is 1, and false is 0. The precision of the eval function
is 32 bits.

For example, define M to be 2==N+1 using the eval function as follows:

define(N, 3)
define(M, `eval(2==N+1)')

Unless the text is very simple, use quote characters around the text that defines a macro

Manipulating files

To merge a new file in the input, use the built-in include function.

Macro Description

include (File) Returns the contents of the file File.

For example:

include(FileName)

inserts the contents of FileName in place of the include command.

A fatal error occurs if the file named in the include macro cannot be accessed. To avoid a fatal error, use
the alternate form, the sinclude macro (silent include).

Macro Description

sinclude (File) Returns the contents of the file File, but does not report an
error if it cannot access File.

The sinclude (silent include) macro does not write a message, but continues if the file named cannot be
accessed.

Redirecting output

The output of the m4 macro processor can be redirected again to temporary files during processing, and
the collected material can be output upon command. The m4 macro processor maintains nine possible
temporary files, numbered 1 through 9. If you use the built-in divert macro.

Macro Description

divert (Number) Changes output stream to the temporary file
Number.

The m4 macro processor writes all output from the program after the divert function at the end of
temporary file, Number. To return the output to the display screen, use either the divert or divert(0)
function, which resumes the normal output process.

The m4 macro processor writes all redirected output to the temporary files in numerical order at the end
of processing. The m4 macro processor discards the output if you redirect the output to a temporary file
other than 0 through 9.

To bring back the data from all temporary files in numerical order, use the built-in undivert macro.

General programming concepts 537

Macro Description

undivert (Number1, Number2...) Appends the contents of the indicated
temporary files to the current temporary
file.

To bring back selected temporary files in a specified order, use the built-in undivert macro with
arguments. When using the undivert macro, the m4 macro processor discards the temporary files that are
recovered and does not search the recovered data for macros.

The value of the undivert macro is not the diverted text.

You can use the divnum macro to determine which temporary file is currently in use.

Macro Description

divnum Returns the value of the currently active
temporary file.

If you do not change the output file with the divert macro, the m4 macro processor puts all output in a
temporary file named 0.

Using system programs in a program

You can run any program in the operating system from a program by using the built-in syscmd macro. For
example, the following statement runs the date program:

syscmd(date)

Using unique file Nnames

Use the built-in maketemp macro to make a unique file name from a program.

Macro Description

maketemp (String...nnnnn...String) Creates a unique file name by replacing
the characters nnnnn in the argument
string with the current process ID.

For example, for the statement:

maketemp(myfilennnnn)

the m4 macro processor returns a string that is myfile concatenated with the process ID. Use this string
to name a temporary file.

Using conditional expressions

Conditional expression evaluation allows process time determination of macro expressions.

Expression Description

ifelse (String1, String2, Argument1, Argument2) If String1 matches String2, returns the
value of Argument1. Otherwise it returns
Argument2.

The built-in ifelse macro performs conditional testing. In the simplest form:

ifelse(a, b, c, d)

compares the two strings a and b.

538 AIX Version 7.2: General programming concepts

If a and b are identical, the built-in ifelse macro returns the string c. If they are not identical, it returns
string d. For example, you can define a macro called compare to compare two strings and return yes if
they are the same, or no if they are different, as follows:

define(compare, `ifelse($1, $2, yes, no)')

The quote characters prevent the evaluation of the ifelse macro from occurring too early. If the fourth
argument is missing, it is treated as empty.

The ifelse macro can have any number of arguments, and therefore, provides a limited form of multiple-
path decision capability. For example:

ifelse(a, b, c, d, e, f, g)

This statement is logically the same as the following fragment:

if(a == b) x = c;
else if(d == e) x = f;
else x = g;
return(x);

If the final argument is omitted, the result is null, so:

ifelse(a, b, c)

is c if a matches b, and null otherwise.

Manipulating strings

The macros in this section allow you to convert input strings into output strings.

Macro Description

len Returns the byte length of the string that makes up its
argument

Thus:

len(abcdef)

is 6, and:

len((a,b))

is 5.

Macro Description

dlen Returns the length of the displayable characters in a string

Characters made up from 2-byte codes are displayed as one character. Thus, if the string contains any
2-byte, international character-support characters, the results of dlen will differ from the results of len.

Macro Description

substr (String, Position, Length) Returns a substring of String that
begins at character number Position
and is Length characters long.

Using input, substr (s, i, n) returns the substring of s that starts at the ith position (origin zero) and is n
characters long. If n is omitted, the rest of the string is returned. For example, the function:

substr(`now is the time',1)

General programming concepts 539

returns the following string:

ow is the time

Macro Description

index (String1, String2) Returns the character position in String1 where String2
starts (starting with character number 0), or -1 if String1
does not contain String2.

As with the built-in substr macro, the origin for strings is 0.

Macro Description

translit (String, Set1, Set2) Searches String for characters that are in Set1. If it
finds any, changes (transliterates) those characters
to corresponding characters in Set2.

It has the general form:

translit(s, f, t)

which modifies s by replacing any character found in f by the corresponding character of t. For example,
the function:

translit(`little', aeiou, 12345)

replaces the vowels by the corresponding digits and returns the following:

l3ttl2

If t is shorter than f, characters that do not have an entry in t are deleted. If t is not present at all,
characters from f are deleted from s. So:

translit(`little', aeiou)

deletes vowels from string little and returns the following:

lttl

Macro Description

dnl Deletes all characters that follow it, up to and including the
new-line character.

Use this macro to get rid of empty lines. For example, the function:

define(N, 100)
define(M, 200)
define(L, 300)

results in a new-line at the end of each line that is not part of the definition. These new-line characters are
passed to the output. To get rid of the new lines, add the built-in dnl macro to each of the lines.

define(N, 100) dnl
define(M, 200) dnl
define(L, 300) dnl

Debugging M4 macros

The macros in this section allow you to report errors and processing information.

540 AIX Version 7.2: General programming concepts

Macro Description

errprint (String) Writes its argument (String) to the standard error file

For example:

errprint (`error')

Macro Description

dumpdef (`MacroName'...) Dumps the current names and
definitions of items named as arguments
(`MacroName'...)

If you do not supply arguments, the dumpdef macro prints all current names and definitions. Remember
to quote the names.

Additional m4 macros

A list of additional m4 macros, with a brief explanation of each, follows:

Macro Description

changecom (l, r) Changes the left and right comment
characters to the characters represented
by the l and r variables.

defn (MacroName) Returns the quoted definition of
MacroName

en (String) Returns the number of characters in
String.

m4exit (Code) Exits m4 macro processor with a return
code of Code.

m4wrap (MacroName) Runs macro MacroName at the end of
m4 macro processor .

popdef (MacroName) Replaces the current definition of
MacroName with the previous definition
saved with the pushdef macro.

pushdef (MacroName, Replacement) Saves the current definition of
MacroName and then defines
MacroName to be Replacement.

sysval Gets the return code from the last use of
the syscmd macro.

traceoff (MacroList) Turns off trace for any macro in
MacroList. If MacroList is null, turns off
all tracing.

traceon (MacroName) Turns on trace for macro MacroName. If
MacroName is null, turns trace on for all
macros.

Object data manager
Object Data Manager (ODM) is a data manager intended for storing system information. Information is
stored and maintained as objects with associated characteristics.

You can also use ODM to manage data for application programs.

General programming concepts 541

System data managed by ODM includes:

• Device configuration information
• Display information for SMIT (menus, selectors, and dialogs)
• Vital product data for installation and update procedures
• Communications configuration information
• System resource information

You can create, add, lock, store, change, get, show, delete, and drop objects and object classes with ODM.
ODM commands provide a command-line interface to these functions. ODM subroutines access these
functions from within an application program.

Some object classes are provided with the system. These object classes are discussed in the
documentation for the specific system products that provide them.

This topic contains the following subtopics:

• ODM Object Classes and Objects Storage
• ODM Descriptor
• ODM Object Searches
• ODM Commands and Subroutines
• ODM Example Code and Output

ODM object classes and object storage

The basic components of ODM are object classes and objects. To manage object classes and objects,
you use the ODM commands and subroutines. Specifically, you use the create and add features of these
interfaces to build object classes and objects for storage and management of your own data.

Term Description

object class A group of objects with the same definition. An
object class comprises one or more descriptors. It
is similar to a table. Each object class you create
with an odmcreate command or odm_create_class
subroutine is stored in a file as a C language
definition of an array of structures.

object A member of an object class. It is an entity that
requires storage and management of data. It is
similar to a logical record in a database.

Each object you add to the object class with an
odmadd command or an odm_add_obj subroutine
is stored as a C language structure in the same file.
You determine the directory in which to store this
file when you create the object class.

An object class is conceptually similar to an array of structures, with each object being a structure that is
an element of the array. Values are associated with the descriptors of an object when the object is added
to an object class. The descriptors of an object and their associated values can be located and changed
with ODM facilities.

The following is an example of manipulating object classes and objects.

1. To create an object class called Fictional_Characters, enter:

class Fictional_Characters {
 char Story_Star[20];
 char Birthday[20];
 short Age;

542 AIX Version 7.2: General programming concepts

 char Friend[20];
};

In this example, the Fictional_Characters object class contains four descriptors: Story_Star,
Birthday, and Friend, which have a descriptor type of character and a 20-character maximum
length; and Age, with a descriptor type of short. To create the object class files required by ODM, you
process this file with the odmcreate command or the odm_create_class subroutine.

2. Once you create an object class, you can add objects to the class using the odmadd command or the
odm_add_obj subroutine. For example, enter the following code with the odmadd command to add
the objects Cinderella and Snow White to the Fictional_Characters object class, along with
values for the descriptors they inherit:

Fictional_Characters:
 Story_Star = "Cinderella"
 Birthday = "Once upon a time"
 Age = 19
 Friend = "mice"

Fictional_Characters:
 Story_Star = "Snow White"
 Birthday = "Once upon a time"
 Age = 18
 Friend = "Fairy Godmother"

The Fictional_Characters table shows a conceptual picture of the Fictional_Characters object
class with the two added objects Cinderella and Snow White.

Table 78. Fictional Characters

Story Star (char) Birthday (char) Age (short) Friend (char)

Cinderella Once upon a time 19 Mice

Snow White Once upon a time 18 Fairy Godmother

Retrieved data for 'Story_Star = "Cinderella"'
 Cinderella:
 Birthday = Once upon a time
 Age = 19
 Friend = Mice

3. After the Fictional_Characters object class is created and the objects Cinderella and Snow
White are added, the retrieved data for 'Story_Star = "Cinderella"' is:

Cinderella:
 Birthday = Once upon a time
 Age = 19
 Friend = mice

Using ODM commands

When using the odmcreate or odmdrop command to create or drop an object class, specify the directory
from which the class definition file will be accessed using one of the following:

1. Store the file in the default directory indicated by $ODMDIR, which is the /etc/objrepos directory.
2. Use the export command to set the ODMDIR environment variable to specify a directory for storage.
3. Use the unset command to unset the ODMDIR environment variable and the cd command to change

the current directory to the one in which you want the object classes stored. Then, run the ODM
commands in that directory. The file defining the object classes will be stored in the current directory.

When using the odmdelete, odmadd, odmchange, odmshow, or odmget command to work with classes
and objects, specify the directory containing the object classes using one of the following:

1. Work with object classes in the default directory indicated by $ODMDIR, which is the /etc/objrepos
directory.

2. Use the export command to set the ODMDIR environment variable to specify the directory.

General programming concepts 543

3. From the command line, use the export command to set the ODMPATH environment variable to a
string containing a colon-separated list of directories to be searched for object classes. For example:

$ export ODMPATH = /usr/lib/objrepos:/tmp/myrepos

The directories in the $ODMPATH are searched only if the directory indicated by $ODMDIR does not
contain the object class.

Creating an object class

Attention: Making changes to files that define system object classes and objects can result
in system problems. Consult your system administrator before using the /usr/lib/objrepos
directory as a storage directory for object classes and objects.

1. Create the definition for one or more object classes in an ASCII file. “ODM example code and output”
on page 553 shows an ASCII file containing several object class definitions.

2. Specify the directory in which the generated object must be stored.

"ODM Object Class and Object Storage" discusses the criteria used at object-class creation time for
determining the directory in which to store generated object classes and objects. Most system object
classes and objects are stored in the /usr/lib/objrepos directory.

Generate an empty object class by running the odmcreate command with the ASCII file of object class
definitions specified as the ClassDescriptionFile input file.

Adding objects to an object class

Attention: Making changes to files that define system object classes and objects can result
in system problems. Consult your system administrator before using the /usr/lib/objrepos
directory as a storage directory for object classes and objects.

1. Create the object class to which the objects will be added. See Creating an Object Class for
instructions on creating an object class.

2. Create the definitions for one or more objects. “ODM example code and output” on page 553 shows
an ASCII file containing several object definitions.

3. Specify the directory which contains the object class in which the generated objects will be stored.

"ODM Object Class and Object Storage" discusses the criteria used at object class creation time for
determining the directory in which to store generated object classes and objects. Most system object
classes and objects are stored in the /usr/lib/objrepos directory.

4. Add objects to an object class by running the odmadd command with the ASCII file of object
definitions specified as the InputFile input file.

Locking object classes

ODM does not implicitly lock object classes or objects. The coordination of locking and unlocking is the
responsibility of the applications accessing the object classes. However, ODM provides the odm_lock and
odm_unlock subroutines to control locking and unlocking object classes by application programs.

Subroutine Description

odm_lock Processes a string that is a path name and can
resolve in an object class file or a directory of
object classes. It returns a lock identifier and sets
a flag to indicate that the specified object class or
classes defined by the path name are in use.

When the odm_lock subroutine sets the lock flag, it does not disable use of the object class by other
processes. If usage collision is a potential problem, an application program should explicitly wait until it is
granted a lock on a class before using the class.

544 AIX Version 7.2: General programming concepts

Another application cannot acquire a lock on the same path name while a lock is in effect. However, a lock
on a directory name does not prevent another application from acquiring a lock on a subdirectory or the
files within that directory.

To unlock a locked object class, use an odm_unlock subroutine called with the lock identifier returned by
the odm_lock subroutine.

Storing object classes and objects

Each object class you create with an odmcreate command or odm_create_class subroutine is stored in
a file as a C language definition of an array of structures. Each object you add to the object class with an
odmadd command or an odm_add_obj subroutine is stored as a C language structure in the same file.

You determine the directory in which to store this file when you create the object class.

Storage methods vary according to whether commands or subroutines are used to create object classes
and objects.

Attention: Making changes to files that define system object classes and objects can result
in system problems. Consult your system administrator before using the /usr/lib/objrepos
directory as a storage directory for object classes and objects.

Using the odm_create_class or odm_add_obj subroutines

The odm_create_class or odm_add_obj subroutine is used to create object classes and objects:

• If there is a specific requirement for your application to store object classes other than specified by
the ODMDIR environment variable, use the odm_set_path subroutine to reset the path. It is strongly
recommended that you use this subroutine to set explicitly the storage path whenever creating object
classes or objects from an application.

OR
• Before running your application, use the set command from the command line to set the ODMDIR

environment variable to specify a directory for storage.

OR
• Store the file in the object repository used to store many of the system object classes, the /usr/lib/

objrepos directory.

ODM Descriptors

An Object Data Manager (ODM) descriptor is conceptually similar to a variable with a name and type.
When an object class is created, its descriptors are defined like variable names with associated ODM
descriptor types. When an object is added to an object class, it gets a copy of all of the descriptors of the
object class. Values are also associated with object descriptors already stated.

ODM supports several descriptor types:

Descriptor Definition

terminal descriptor Defines a character or numerical data type.

link descriptor Defines a relationship between object classes

method descriptor Defines an operation or method for an object

Use the descriptors of an object and their associated values to define criteria for retrieving individual
objects from an object class. Format the selection criteria you pass to ODM as defined in ODM Object
Searches. Do not use the binary terminal descriptor in search criteria because of its arbitrary length.

ODM terminal descriptors

Terminal descriptors define the most primitive data types used by ODM. A terminal descriptor is basically
a variable defined with an ODM terminal descriptor type. The terminal descriptor types provided by ODM
are:

General programming concepts 545

Descriptor Definition

short Specifies a signed 2-byte number.

long Specifies a signed 4-byte number.

ulong Specifies an unsigned 4-byte number.

binary Specifies a fixed-length bit string. The binary terminal
descriptor type is defined by the user at ODM creation
time. The binary terminal descriptor type cannot be
used in selection criteria.

char Specifies a fixed-length, null-terminated string.

vchar Specifies variable-length, null-terminated string. The
vchar terminal descriptor type can be used in
selection criteria.

long64/ODM_LONG_LONG/int64 Specifies a signed 8-byte number.

ulong64/ODM_ULONG_LONG/uint64 Specifies an unsigned 8-byte number.

ODM link descriptor

The ODM link descriptor establishes a relationship between an object in an object class and an object in
another object class. A link descriptor is a variable defined with the ODM link descriptor type.

For example, the following code can be processed by the ODM create facilities to generate the
Friend_Table and Fictional_Characters object classes:

class Friend_Table {
 char Friend_of[20];
 char Friend[20];
};

 class Fictional_Characters {
 char Story_Star[20];
 char Birthday[20];
 short Age;
 link Friend_Table Friend_Table Friend_of Friends_of;
};

The Fictional_Characters object class uses a link descriptor to make the Friends_of descriptors link
to the Friend_Table object class. To resolve the link, the Friends_of descriptor retrieves objects in
the Friend_Table object class with matching data in its Friend_of descriptors. The link descriptor in the
Fictional_Characters object class defines the class being linked to (Friend_Table), the descriptor being
linked to (Friend_of), and the name of the link descriptor (Friends_of) in the Fictional_Characters object
class.

The following code could be used to add objects to the Fictional_Characters and Friend_Table object
classes:

Fictional_Characters:
 Story_Star = "Cinderella"
 Birthday = "Once upon a time"
 Age = 19
 Friends_of = "Cinderella"

Fictional_Characters:
 Story_Star = "Snow White"
 Birthday = "Once upon a time"
 Age = 18
 Friends_of = "Snow White"

Friend_Table:
 Friend_of = "Cinderella"
 Friend = "Fairy Godmother"

546 AIX Version 7.2: General programming concepts

Friend_Table:
 Friend_of = "Cinderella"
 Friend = "mice"

Friend_Table:
 Friend_of = "Snow White"
 Friend = "Sneezy"

Friend_Table:
 Friend_of = "Snow White"
 Friend = "Sleepy"

Friend_Table:
 Friend_of = "Cinderella"
 Friend = "Prince"

Friend_Table:
 Friend_of = "Snow White"
 Friend = "Happy"

The following tables show a conceptual picture of the Fictional_Characters and Friend_Table object
classes, the objects added to the classes, and the link relationship between them.

Story_Star (char) Birthday (char) Age (short) Friends_of (link)

Cinderella Once upon a time 19 Cinderella

Snow White Once upon a time 18 Snow White

Retrieved data for 'Story_Star = "Cinderella"
 Cinderella:
 Birthday = Once upon a time
 Age = 19
 Friends_of = Cinderella
 Friend_of = Cinderella

There is a direct link between the "Friends_of" and "Friend_of" columns of the two tables. The following
table provides a conceptual picture of a link relationship between two object classes.

Friend_of (char) Friend (char)

Cinderella Fairy Godmother

Cinderella mice

Snow White Sneezy

Snow White Sleepy

Cinderella Prince

Snow White Happy

After the Fictional_Characters and Friend_Table object classes are created and the objects are added,
the retrieved data for Story_Star = 'Cinderella' would be:

Cinderella:
 Birthday = Once upon a time
 Age = 19
 Friends_of = Cinderella
 Friend_of = Cinderella

To see the expanded relationship between the linked object classes, use the odmget command on the
Friend_Table object class. The retrieved data for the Friend_of = 'Cinderella' object class would
be:

General programming concepts 547

Friend_Table:
 Friend_Of = "Cinderella"
 Friend = "Fairy Godmother"

Friend_Table:
 Friend_of = "Cinderella"
 Friend= "mice"

Friend_Table:
 Friend_of = "Cinderella"
 Friend = "Prince"

ODM method descriptor

The ODM method descriptor gives the definition of an object class with objects that can have associated
methods or operations. A method descriptor is a variable defined with the ODM method descriptor type.

The operation or method descriptor value for an object is a character string that can be any command,
program, or shell script run by method invocation. A different method or operation can be defined for each
object in an object class. The operations themselves are not part of ODM; they are defined and coded by
the application programmer.

The method for an object is called by a call to the odm_run_method subroutine. The invocation of a
method is a synchronous event, causing ODM operation to pause until the operation is completed.

For example, the following code can be input to the ODM create facilities to generate the
Supporting_Cast_Ratings object class:

class Supporting_Cast_Ratings {
 char Others[20];
 short Dexterity;
 short Speed;
 short Strength;
 method Do_This;
};

In the example, the Do_This descriptor is a method descriptor defined for the Supporting_Cast_Ratings
object class. The value of the method descriptor can be a string specifying a command, program, or shell
script for future invocation by an odm_run_method subroutine.

The following code is an example of how to add objects to the Supporting_Cast_Ratings object class:

Supporting_Cast_Ratings:
 Others = "Sleepy"
 Dexterity = 1
 Speed = 1
 Strength = 3
 Do_This = "echo Sleepy has speed of 1"

Supporting_Cast_Ratings:
 Others = "Fairy Godmother"
 Dexterity = 10
 Speed = 10
 Strength = 10
 Do_This = "odmget -q "Others='Fairy Godmother'" Supporting_Cast_Ratings"

The following table shows a conceptual picture of the Supporting_Cast_Ratings object class with the
Do_This method descriptor and operations associated with individual objects in the class.

Others (char) Dexterity
(short)

Speed
(short)

Stength
(short)

Do_This (method)

Sleepy 1 1 3 echo Sleepy has speed of 1

Fairy Godmother 10 10 10 odmget —q "Others='Fairy
Godmother'"Supporting_Cast_Ratings"

odm_run_method run of Sleepy's method displays
(using echo):
"Sleepy has speed of 1"

548 AIX Version 7.2: General programming concepts

After the Supporting_Cast_Ratings object class is created and the objects are added, an invocation
(by the odm_run_method subroutine) of the method defined for Sleepy would cause the echo command
to display:

Sleepy has speed of 1

ODM object searches

Many ODM routines require that one or more objects in a specified object class be selected for processing.
You can include search criteria in the form of qualifiers when you select objects with certain routines.

qualifier
A null-terminated string parameter on ODM subroutine calls that gives the qualification criteria for the
objects to retrieve

The descriptor names and qualification criteria specified by this parameter determine which objects in the
object class are selected for later processing. Each qualifier contains one or more predicates connected
with logical operators. Each predicate consists of a descriptor name, a comparison operator, and a
constant.

A qualifier with three predicates joined by two logical operators follows:

SUPPNO=30 AND (PARTNO>0 AND PARTNO<101)

In this example, the entire string is considered the qualifier. The three predicates are SUPPNO=30,
PARTNO>0, and PARTNO<101, and the AND logical operator is used to join the predicates. In the first
predicate, SUPPNO is the name of the descriptor in an object, the = (equal sign) is a comparison operator,
and 30 is the constant against which the value of the descriptor is compared.

Each predicate specifies a test applied to a descriptor that is defined for each object in the object class.
The test is a comparison between the value of the descriptor of an object and the specified constant.
The first predicate in the example shows an = (equal to) comparison between the value of a descriptor
(SUPPNO) and a constant (30).

The part of the qualifier within parentheses

PARTNO>0 AND PARTNO<101

contains two predicates joined by the AND logical operator. The PARTNO descriptor is tested for a value
greater than 0 in the first predicate, then tested for a value less than 101 in the second predicate. Then
the two predicates are logically concatenated to determine a value for that part of the qualifier. For
example, if PARTNO is the descriptor name for a part number in a company inventory, then this part of the
qualifier defines a selection for all products with part numbers greater than 0 and less than 101.

In another example, the qualifier:

lname='Smith' AND Company.Dept='099' AND Salary<2500

can be used to select everyone (in ODM, every object) with a last name of Smith who is in Department
099 and has a salary less than $2500. Note that the Dept descriptor name is qualified with its Company
object class to create a unique descriptor.

Descriptor names in ODM predicates

In ODM, a descriptor name is not necessarily unique. You can use a descriptor name in more than one
object class. When this is the case, you specify the object class name along with the descriptor name in a
predicate to create a unique reference to the descriptor.

Comparison operators in ODM predicates

The following are valid comparison operators:

Operator Definition

= Equal to

General programming concepts 549

Operator Definition

!= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

LIKE Similar to; finds patterns in character string data

Comparisons can be made only between compatible data types.

LIKE comparison operator

The LIKE operator enables searching for a pattern within a char descriptor type. For example, the
predicate:

NAME LIKE 'ANNE'

defines a search for the value ANNE in the NAME descriptor in each object in the specified object class. In
this case, the example is equivalent to:

NAME = 'ANNE'

You can also use the LIKE operator with the following pattern-matching characters and conventions:

• Use the ? (question mark) to represent any single character. The predicate example:

NAME LIKE '?A?'

defines a search for any three-character string that has A as a second character in the value of the NAME
descriptor of an object. The descriptor values PAM, DAN, and PAT all satisfy this search criterion.

• Use the * (asterisk) to represent any string of zero or more characters. The predicate example:

NAME LIKE '*ANNE*'

defines a search for any string that contains the value ANNE in the NAME descriptor of an object. The
descriptor values LIZANNE, ANNETTE, and ANNE all satisfy this search criterion.

• Use [] (brackets) to match any of the characters enclosed within the brackets. The predicate example:

NAME LIKE '[ST]*'

defines a search for any descriptor value that begins with S or T in the NAME descriptor of an object.

Use a - (minus sign) to specify a range of characters. The predicate example:

NAME LIKE '[AD-GST]*'

defines a search for any descriptor value that begins with any of the characters A, D, E, F, G, S, or T.
• Use [!] (brackets enclosing an exclamation mark) to match any single character except one of those

enclosed within the brackets. The predicate example:

NAME LIKE '[!ST]*'

defines a search for any descriptor value except those that begin with S or T in the NAME descriptor of an
object.

You can use the pattern-matching characters and conventions in any combination in the string.

Constants in ODM predicates

550 AIX Version 7.2: General programming concepts

The specified constant can be either a numeric constant or a character string constant:

1. Numeric constants in ODM predicates consist of an optional sign followed by a number (with or
without a decimal point), optionally followed by an exponent marked by the letter E or e. If used, the
letter E or e must be followed by an exponent that can be signed.

Some valid numeric constants are:

2 2.545 0.5 -2e5 2.11E0
+4.555e-10 4E0 -10 999 +42

The E0 exponent can be used to specify no exponent.
2. Character string constants must be enclosed in single quotation marks:

'smith' '91'

All character string constants are considered to have a variable length. To represent a single quotation
mark inside a string constant, use two single quotation marks. For example:

'DON''T GO'

is interpreted as:

DON'T GO

AND logical operator for predicates

The AND logical operator can be used with predicates. Use AND or and for the AND logical operator.

The AND logical operator connects two or more predicates. The qualifier example:

predicate1 AND predicate2 AND predicate3

specifies predicate1 logically concatenated with predicate2 followed by the result, which is logically
concatenated with predicate3.

ODM commands and subroutines
You can create, add, change, retrieve, display, delete, and remove objects and object classes with ODM.
You enter ODM commands on the command line.

You can put ODM subroutines in a C language program to handle objects and object classes. An ODM
subroutine returns a value of -1 if the subroutine is unsuccessful. The specific error diagnostic is returned
as the odmerrno external variable (defined in the odmi.h include file). ODM error-diagnostic constants
are also included in the odmi.h include file.

Note: If you are writing a C language program using the subroutines, use option:
-binitfini:__odm_initfini_init:__odm_initfini_fini.

Commands

ODM commands are:

Command Description

odmadd Adds objects to an object class. The odmadd command takes an ASCII stanza file as
input and populates object classes with objects found in the stanza file.

odmchange Changes specific objects in a specified object class.

odmcreate Creates empty object classes. The odmcreate command takes an ASCII file describing
object classes as input and produces C language .h and .c files to be used by the
application accessing objects in those object classes.

odmdelete Removes objects from an object class.

General programming concepts 551

Command Description

odmdrop Removes an entire object class.

odmshow Displays the description of an object class. The odmshow command takes an object
class name as input and puts the object class information into odmcreate command
format.

odmget Retrieves objects from object classes and puts the object information into odmadd
command format.

Subroutines

ODM subroutines are:

Subroutine Description

odm_add_obj Adds a new object to the object class.

odm_change_obj Changes the contents of an object.

odm_close_class Closes an object class.

odm_create_class Creates an empty object class.

odm_err_msg Retrieves a message string.

odm_free_list Frees memory allocated for the odm_get_list subroutine.

odm_get_by_id Retrieves an object by specifying its ID.

odm_get_first Retrieves the first object that matches the specified criteria in an object
class.

odm_get_list Retrieves a list of objects that match the specified criteria in an object class.

odm_get_next Retrieves the next object that matches the specified criteria in an object
class.

odm_get_obj Retrieves an object that matches the specified criteria from an object class.

odm_initialize Initializes an ODM session.

odm_lock Locks an object class or group of classes.

odm_mount_class Retrieves the class symbol structure for the specified object class.

odm_open_class Opens an object class.

odm_rm_by_id Removes an object by specifying its ID.

odm_rm_obj Removes all objects that match the specified criteria from the object class.

odm_run_method Invokes a method for the specified object.

odm_rm_class Removes an object class.

odm_set_path Sets the default path for locating object classes.

odm_unlock Unlocks an object class or group of classes.

odm_terminate Ends an ODM session.

552 AIX Version 7.2: General programming concepts

ODM example code and output
The following Fictional_Characters, Friend_Table, and Enemy_Table Object Classes and Relationships
tables list the object classes and objects created by the example code in this section.

Table 79. Fictional_Characters

Story_Star
(char)

Birthday (char) Age
(short)

Friends_of
(link)

Enemies_of (link) Do_This
(method)

Cinderella Once upon a
time

19 Cinderella Cinderella echo Cleans
House

Snow White Once upon a
time

18 Snow White Snow White echo Cleans
House

Table 80. Friend_Table

Friend_of (char) Friend (char)

Cinderella Fairy Godmother

Cinderella mice

Snow White Sneezy

Snow White Sleepy

Cinderella Prince

Snow White Happy

Table 81. Enemy_Table

Enemy_of (char) Enemy (char)

Cinderella midnight

Cinderella Mean Stepmother

Snow White Mean Stepmother

ODM example input code for creating object classes

The following example code in the MyObjects.cre file creates three object classes when used as an input
file with the odmcreate command:

* MyObjects.cre
* An input file for ODM create utilities.
* Creates three object classes:
* Friend_Table
* Enemy_Table
* Fictional_Characters

class Friend_Table {
 char Friend_of[20];
 char Friend[20];
};

class Enemy_Table {
 char Enemy_of[20];
 char Enemy[20];
};

class Fictional_Characters {
 char Story_Star[20];
 char Birthday[20];

General programming concepts 553

 short Age;
 link Friend_Table Friend_Table Friend_of Friends_of;
 link Enemy_Table Enemy_Table Enemy_of Enemies_of;
 method Do_This;
};

* End of MyObjects.cre input file for ODM create utilities. *

The Fictional_Characters object class contains six descriptors:

• Story_Star and Birthday, each with a descriptor type of char and a 20-character maximum length.
• Age with a descriptor type of short.
• Friends_of and Enemies_of are both from the link class and link to the two previously defined

object classes.

Note: The object class link is repeated twice.
• Do_This with a descriptor type of method.

To generate the object class files required by ODM, the file containing this code must be processed with
the odmcreate command

ODM example output for object class definitions

Processing the code in the MyObjects.cre file with the odmcreate command generates the following
structures in a .h file:

* MyObjects.h
* The file output from ODM processing of the MyObjects.cre input
* file. Defines structures for the three object classes:
* Friend_Table
* Enemy_Table
* Fictional_Characters
#include <odmi.h>

struct Friend_Table {
 long _id; * unique object id within object class *
 long _reserved; * reserved field *
 long _scratch; * extra field for application use *
 char Friend_of[20];
 char Friend[20];
};

#define Friend_Table_Descs 2
extern struct Class Friend_Table_CLASS[];
#define get_Friend_Table_list(a,b,c,d,e) (struct Friend_Table *)odm_get_list (a,b,c,d,e)

struct Enemy_Table {
 long _id;
 long _reserved;
 long _scratch;
 char Enemy_of[20];
 char Enemy[20];
};
#define Enemy_Table_Descs 2
extern struct Class Enemy_Table_CLASS[];
#define get_Enemy_Table_list(a,b,c,d,e) (struct Enemy_Table *)odm_get_list (a,b,c,d,e)

struct Fictional_Characters {
 long _id;
 long _reserved;
 long _scratch;
 char Story_Star[20];
 char Birthday[20];
 short Age;
 struct Friend_Table *Friends_of; * link *
 struct listinfo *Friends_of_info; * link *
 char Friends_of_Lvalue[20]; * link *
 struct Enemy_Table *Enemies_of; * link *
 struct listinfo *Enemies_of_info; * link *
 char Enemies_of_Lvalue[20]; * link *

554 AIX Version 7.2: General programming concepts

 char Do_This[256]; * method *
};

#define Fictional_Characters_Descs 6

extern struct Class Fictional_Characters_CLASS[];
#define get_Fictional_Characters_list(a,b,c,d,e) (struct Fictional_Characters *)odm_get_list
(a,b,c,d,e)

* End of MyObjects.h structure definition file output from ODM * processing.

ODM example code for adding objects to object classes

The following code can be processed by the odmadd command to populate the object classes created by
the processing of the MyObjects.cre input file:

* MyObjects.add
* An input file for ODM add utilities.
* Populates three created object classes:
* Friend_Table
* Enemy_Table
* Fictional_Characters

Fictional_Characters:
Story_Star = "Cinderella" #a comment for the MyObjects.add file.
Birthday = "Once upon a time"
Age = 19
Friends_of = "Cinderella"
Enemies_of = "Cinderella"
Do_This = "echo Cleans house"

Fictional_Characters:
Story_Star = "Snow White"
Birthday = "Once upon a time"
Age = 18
Friends_of = "Snow White"
Enemies_of = "Snow White"
Do_This = "echo Cleans house"

Friend_Table:
Friend_of = "Cinderella"
Friend = "Fairy Godmother"

Friend_Table:
Friend_of = "Cinderella"
Friend = "mice"

Friend_Table:
Friend_of = "Snow White"
Friend = "Sneezy"

Friend_Table:
Friend_of = "Snow White"
Friend = "Sleepy"

Friend_Table:
Friend_of = "Cinderella"
Friend = "Prince"

Friend_Table:
Friend_of = "Snow White"
Friend = "Happy"

Enemy_Table:
Enemy_of = "Cinderella"
Enemy = "midnight"

General programming concepts 555

Enemy_Table:
Enemy_of = "Cinderella"
Enemy = "Mean Stepmother"

Enemy_Table:
Enemy_of = "Snow White"
Enemy = "Mean Stepmother"

* End of MyObjects.add input file for ODM add utilities. *

Note: The * (asterisk) or the # (pound sign) comment in the previous example code will not go
into the object file. If the beginning of the line causes the line to be a comment, the command
does not go in the object file. The comment will be included in the file and treated as a string if it
is included inside the " " (double quotation marks).

Simultaneous multithreading
Simultaneous multithreading is the ability of a single physical processor to simultaneously dispatch
instructions from more than one hardware thread context. Because there are two hardware threads per
physical processor, additional instructions can run at the same time.

Simultaneous multithreading allows you to take advantage of the superscalar nature of the processor
by scheduling two applications at the same time on the same processor. No single application can fully
saturate the processor.

Benefitting from Simultaneous Multithreading

It is primarily beneficial in commercial environments where the speed of an individual transaction is not
as important as the total number of transactions that are performed. Simultaneous multithreading is
expected to increase the throughput of workloads with large or frequently changing working sets, such as
database servers and Web servers.

Workloads that see the greatest simultaneous multithreading benefit are those that have a high Cycles
Per Instruction (CPI) count. These workloads tend to use processor and memory resources poorly. Large
CPIs are usually caused by high cache-miss rates from a large working set. Large commercial workloads
are somewhat dependent upon whether the two hardware threads share instructions or data, or the
hardware threads are completely distinct. Large commercial workloads typically have this characteristic.
Workloads that share instructions or data, including those that run extensively in the operating system or
within a single application, might see increased benefits from simultaneous multithreading.

Workloads that do not benefit much from simultaneous multithreading are those in which the majority of
individual software threads use a large amount of any resource in the processor or memory. For example,
workloads that are floating-point intensive are likely to gain little from simultaneous multithreading and
are the ones most likely to lose performance. These workloads heavily use either the floating-point units
or the memory bandwidth. Workloads with low CPI and low cache miss rates might see a some small
benefit.

Measurements taken on a dedicated partition with commercial workloads indicated a 25%-40% increase
in throughput. Simultaneous multithreading is should help shared processor partition processing. The
extra threads give the partition a boost after simultaneous multithreading is dispatched because the
partition recovers its working set more quickly. Subsequently, the threads perform like they would
in a dedicated partition. Although it might be somewhat counterintuitive, simultaneous multithreading
performs best when the performance of the cache is at its worst.

Setting the mode with the smtctl command

AIX allows you to control the mode of the partition for simultaneous multithreading with the smtctl
command. With this command, you can turn simultaneous multithreading on or off system-wide, either
immediately or the next time the system boots. The simultaneous multithreading mode persists across
system boots. By default, AIX enables simultaneous multithreading.

556 AIX Version 7.2: General programming concepts

The syntax for the smtctl command is as follows:

smtctl [-m { off | on } [{ -boot | -now }]]

Hardware Management Console Configuration for Simultaneous Multithreading

When you configure shared processor partitions at the Hardware Management Console (HMC), you
specify the minimum, desired, and maximum number of virtual processors. For dedicated partitions, you
specify the same type of parameters, but the processor terminology is different. For dedicated partitions,
the processors are always called processors.

Both partitioning models require that you specify a range of processors that control the boot and runtime
assignment of processors to the partition. If possible, the desired processor setting is granted when the
system starts. If this is not possible, the POWER Hypervisor chooses a different value based on the set of
available resources that is greater than, or equal to, the minimum value.

The number of processors specified at the HMC impacts the number of logical processors that AIX
allocates. If the partition is capable of simultaneous multithreading, AIX allocates twice as many logical
processors as the maximum processor value because there are two hardware threads per processor and
AIX configures each hardware thread as a separate logical processor. This allows AIX to enable or disable
simultaneous multithreading without rebooting the partition.

Dynamic Logical Partitioning for Simultaneous Multithreading

While a partition is running, you can change the number of processors that are assigned to a partition
through Dynamic Logical Partitioning (DLPAR) procedures at the HMC. You can add or remove processors
within the constraints of the processor range defined for the partition. When a processor is added to
a partition that is enabled for simultaneous multithreading, AIX starts both hardware threads and two
logical processors are brought online. When a processor is removed from a partition that is enabled
for simultaneous multithreading, AIX stops both hardware threads and two logical processors are taken
offline.

Two DLPAR events are generated when simultaneous multithreading is enabled. One event is generated
for each of the logical processors that is added or removed. The API for DLPAR scripts is based on logical
processors, so the number of DLPAR events parallels the addition and removal of logical processors.
If simultaneous multithreading is not enabled in the partition, there is only one DLPAR event. AIX
automatically translates the DLPAR request that is sent from the HMC into the appropriate number of
DLPAR events presented to DLPAR-aware applications.

Micro-Partitioning® and Simultaneous Multithreading

The POWER Hypervisor™ saves and restores all necessary processor states when preempting or
dispatching virtual processors. For processors that are enabled for simultaneous multithreading, this
means two active thread contexts. Each hardware thread is supported as a separate logical processor by
AIX. For this reason, a dedicated partition that is created with one physical processor is configured by AIX
as a logical 2-way processor. Because this is independent of the partition type, a shared partition with
two virtual processors is configured by AIX as a logical 4-way processor and a shared partition with four
virtual processors is configured by AIX as a logical 8-way processor. Paired threads are always scheduled
together at the same time in the same partition.

Shared processor capacity is always delivered in terms of whole physical processors. Without
simultaneous multithreading, AIX configures a 4-way virtual processor partition with 200 units of
processor entitlement as a 4-way logical processor partition where each logical processor has the power
of 50% of a physical processor. With simultaneous multithreading, the 4-way logical processor partition
becomes an 8-way logical processor partition, where each logical processor has the approximate power
of 25% of a physical processor. However, with simultaneous multithreading, latency concerns normally
associated with a virtual processor's fractional capacity do not apply linearly to the threads. Because both
threads are dispatched together, they are active for the duration of a 50% dispatch window and they
share the underlying physical processor to achieve the logical 25%. This means that each of the logical
processors are able to field interrupts for twice as long as their individual capacities allow.

Hardware thread priorities

General programming concepts 557

The processor allows priorities to be assigned to hardware threads. The difference in priority between
sibling threads determines the ratio of physical processor decode slots allotted to each thread. More
slots provide better thread performance. Normally, AIX maintains sibling threads at the same priority,
but raises or lowers thread priorities in key places to optimize performance. For example, AIX lowers
thread priorities when the thread is doing nonproductive work spinning in the idle loop or on a kernel
lock. Thread priorities are raised when a thread is holding a critical kernel lock. These priority adjustments
do not persist in user mode. AIX does not consider a software thread's dispatching priority when it is
choosing the hardware thread priority.

Work is distributed across all primary threads before work is dispatched to secondary threads. The
performance of a thread is best when its paired thread is idle. Thread affinity is also considered in idle
stealing and in periodic run queue load balancing.

Dynamic logical partitioning
Partitioning your system is similar to partitioning a hard disk drive. When you partition a hard disk drive,
you divide a single physical hard disk drive so that the operating system recognizes it as a number of
separate logical hard disk drives.

On each of these divisions, called partitions, you can install an operating system and use each partition as
you would a separate physical system.

A logical partition (LPAR) is the division of a computer's processors, memory, and hardware resources into
multiple environments so that each environment can be operated independently with its own operating
system and applications. The number of logical partitions that can be created depends on the system.
Typically, partitions are used for different purposes, such as database operation, client/server operations,
Web server operations, test environments, and production environments. Each partition can communicate
with the other partitions as if each partition were a separate machine.

Dynamic logical partitioning (DLPAR) provides the ability to logically attach and detach a managed
system's resources to and from a logical partition's operating system without rebooting. Some of the
features of DLPAR include:

• The Capacity Upgrade on Demand (CUoD) feature of the IBM System p, which allows customer to
activate preinstalled but inactive processors as resource requirements change.

• The Dynamic Processor Deallocation feature of the IBM Power servers, and on some SMP models.
Dynamic Processor Deallocation enables a processor to be taken offline dynamically when an internal
threshold of recoverable errors is exceeded. DLPAR enhances the Dynamic Processor Deallocation
feature by allowing an inactive processor, if one exists, to be substituted for the processor that is
suspected of being defective. This online switch does not affect applications or kernel extensions.

• DLPAR enables cross-partition workload management, which is particularly important for server
consolidation in that it can be used to manage system resources across partitions.

DLPAR requests are built from simple add and remove requests that are directed to logical partitions. The
user can execute these commands as move requests at the Hardware Management Console (HMC), which
manages all DLPAR operations. DLPAR operations are enabled by System p firmware and AIX.

Related information
cpupstat
drmgr
dr_reconfig
reconfig

DLPAR-safe and aware programs
A DLPAR-safe program is one that does not fail as a result of DLPAR operations.

Its performance might suffer when resources are removed and it might not scale with the addition of new
resources, but the program still works as expected In fact, a DLPAR-safe program can prevent a DLPAR
operation from succeeding because it has a dependency that the operating system is obligated to honor.

558 AIX Version 7.2: General programming concepts

A DLPAR-aware program is one that has DLPAR code that is designed to adjust its use of system resources
as the actual capacity of the system varies over time. This can be accomplished in the following ways:

• By regularly polling the system in an attempt to discover changes in the system topology
• By registering application specific code that is notified when a change is occurring to the system

topography

DLPAR-aware programs must be designed, at minimum, to avoid introducing conditions that might cause
DLPAR operations to fail. At maximum, DLPAR-aware programs are concerned with performance and
scalability. This is a much more complicated task because buffers might need to be drained and resized
to maintain expected levels of performance when memory is added or removed. In addition, the number
of threads must be dynamically adjusted to account for changes in the number of online processors.
These thread-based adjustments are not necessarily limited to processor-based decisions. For example,
the best way to reduce memory consumption in Java programs might be to reduce the number of
threads, because this reduces the number of active objects that need to be processed by the Java Virtual
Machine's garbage collector.

Most applications are DLPAR-safe by default.

Making programs DLPAR-safe

The following types of errors, which represent binary compatibility exposures, can be introduced by
DLPAR:

Note: These errors are a result of processor addition.

• If a program has code that is optimized for uniprocessor systems and the number of processors in the
partition is increased from one to two, programs that make runtime checks might take an unexpected
path if a processor is added during one of these checks. Potential problems can also occur in programs
that implement their own locking primitives, but do so using uniprocessor serialization techniques; that
is, the sync and isync instructions are not included. The use of these instructions is also required for
self-modifying and generated code, and are thus necessary on DLPAR-enabled systems. Be sure to
look for uniprocessor-based logic. Programs that make uniprocessor assertions must include logic that
identifies the number of online processors.

Programs can determine the number of online processors by:

– Loading the _system_configuration.ncpus field
– var.v_ncpus
– Using the sysconf system call with the _SC_NPROCESSORS_ONLN flag.

• Programs that index data by processor number typically use the mycpu system call to determine the
identity of the currently executing processor, in order to index into their data structures. The problem
potentially occurs when a new processor is added because the path to the data might not be properly
initialized or allocated. Programs that preallocate processor-based lists using the number of online
CPUs are broken, because this value changes with DLPAR.

Avoid this problem by preallocating processor-based data using the maximum possible number of
processors that can be brought online at the same time. The operating system can be said to be
configured to support a maximum of N processors, not that there are N processors active at any
given time. The maximum number of processors is constant, while the number of online processors
is incremented and decremented as processors are brought online and taken offline. When a partition
is created, the minimum, desired, and maximum numbers of processors are specified. The maximum
value is reflected in the following variables:

– _system_configuration.max_ncpus
– _system_configuration.original_ncpus
– var.v_ncpus_cfg
– sysconf (_SC_NPROCESSORS_CONF)

The _system_configuration.original_ncpus and var.v_ncpus_cfg variables are preexisting variables. On
DLPAR-enabled systems they represent a potential maximum value. On systems not enabled for DLPAR,

General programming concepts 559

the value is dictated by the number of processors that are configured at boot time. Both represent the
conceptual maximum value that can be supported, even though a processor might have been taken
offline by Dynamic Processor Deallocation. The use of these preexisting fields is recommended for
applications that are built on AIX 4.3, because this facilitates the use of the same binary on AIX 4.3
and later. If the application requires runtime initialization of its processor-based data, it can register a
DLPAR handler that is called before a processor is added.

Making programs DLPAR-aware

A DLPAR-aware program is one that is designed to recognize and dynamically adapt to changes in the
system configuration. This code need not subscribe to the DLPAR model of awareness, but can be
structured more generally in the form of a system resource monitor that regularly polls the system
to discover changes in the system configuration. This approach can be used to achieve some limited
performance-related goals, but because it is not tightly integrated with DLPAR, it cannot be effectively
used to manage large-scale changes to the system configuration. For example, the polling model might
not be suitable for a system that supports processor hot plug, because the hot-pluggable unit might be
composed of several processor and memory boards. Nor can it be used to manage application-specific
dependencies, such as processor bindings, that need to be resolved before the DLPAR processor remove
event is started.

The following types of applications can exploit DLPAR technology:

• Applications that are designed to scale with the system configuration, including those:

– That detect the number of online processors or the size of physical memory when the application
starts

– That are externally directed to scale based on an assumed configuration of processors and memory,
which usually translates into the use of a maximum number of threads, maximum buffer sizes, or a
maximum amount of pinned memory

• Applications that are aware of the number of online processors and the total quantity of system
memory, including the following types of applications:

– Performance monitors
– Debugging tools
– System crash tools
– Workload managers
– License managers

Note: Not all license managers are candidates for DLPAR, especially user-based license managers.
• Applications that pin their application data, text, or stack using the plock system call
• Applications that use System V Shared Memory Segments with the PinvOption (SHM_PIN)
• Applications that bind to processors using the bindprocessor system call

Dynamic logical partitioning of large memory pages is not supported. The amount of memory that is
preallocated to the large page pool can have a material impact on the DLPAR capabilities of the partition
regarding memory. A memory region that contains a large page cannot be removed. Therefore, application
developers might want to provide an option to not use large pages.

Making programs DLPAR-aware using DLPAR APIs

Application interfaces are provided to make programs DLPAR-aware. The SIGRECONFIG signal is sent
to the applications at the various phases of dynamic logical partitioning. The DLPAR subsystem defines
check, pre and post phases for a typical operation. Applications can watch for this signal and use the
DLPAR-supported system calls to learn more about the operation in progress and to take any necessary
actions.

Note: When using signals, the application might inadvertently block the signal, or the load on the system
might prevent the thread from running in a timely fashion. In the case of signals, the system will wait a
short period of time, which is a function of the user-specified timeout, and proceed to the next phase.

560 AIX Version 7.2: General programming concepts

It is not appropriate to wait indefinitely because a non-privileged rogue thread could prevent all DLPAR
operations from occurring.

The issue of timely signal delivery can be managed by the application by controlling the signal mask
and scheduling priority. The DLPAR-aware code can be directly incorporated into the algorithm. Also, the
signal handler can be cascaded across multiple shared libraries so that notification can be incorporated in
a more modular way.

To integrate the DLPAR event using APIs, do the following:

1. Catch the SIGRECONFIG signal by using the sigaction system call. The default action is to ignore the
signal.

2. Control the signal mask in at least one of the threads so that the signal can be delivered in real time.
3. Ensure that the scheduling priority for the thread that is to receive the signal is sufficient so that it will

run quickly after the signal has been sent.
4. Run the dr_reconfig system call to obtain the type of resource, type of action, phase of the event, as

well as other information that is relevant to the current request.

Note: The dr_reconfig system call is used inside the signal handler to determine the nature of the
DLPAR request.

Managing an application's DLPAR dependencies
A DLPAR remove request can fail for a variety of reasons. The most common of these is that the resource
is busy, or that there are not enough system resources currently available to complete the request.

In these cases, the resource is left in a normal state as if the DLPAR event never happened.

The primary cause of processor removal failure is processor bindings. The operating system cannot ignore
processor bindings and carry on DLPAR operations or applications might not continue to operate properly.
To ensure that this does not occur, release the binding, establish a new one, or terminate the application.
The specific process or threads that are impacted is a function of the type of binding that is used.

The primary cause of memory removal failure is that there is not enough pinned memory available in
the system to complete the request. This is a system-level issue and is not necessarily the result of a
specific application. If a page in the memory region to be removed has a pinned page, its contents must
be migrated to another pinned page, while atomically maintaining its virtual to physical mappings. The
failure occurs when there is not enough pinnable memory in the system to accommodate the migration of
the pinned data in the region that is being removed. To ensure that this does not occur, lower the level of
pinned memory in the system. This can be accomplished by destroying pinned shared memory segments,
terminating programs that implement the plock system call, or removing the plock on the program.

The primary cause of PCI slot removal failure is that the adapters in the slot are busy. Note that device
dependencies are not tracked. For example, the device dependency might extend from a slot to one of
the following: an adapter, a device, a volume group, a logical volume, a file system, or a file. In this case,
resolve the dependencies manually by stopping the relevant applications, unmounting file systems, and
varying off volume groups.

Related concepts
Processor bindings

General programming concepts 561

Applications can bind to a processor by using the bindprocessor system call. This system call assumes a
processor-numbering scheme starting with zero (0) and ending with N-1, where N is the number of online
CPUs.

Processor bindings
Applications can bind to a processor by using the bindprocessor system call. This system call assumes a
processor-numbering scheme starting with zero (0) and ending with N-1, where N is the number of online
CPUs.

N is determined programmatically by reading the _system_configuration.ncpus system variable. As
processors are added and removed, this variable is incremented and decremented using dynamic logical
partitioning.

Note that the numbering scheme does not include holes. Processors are always added to the Nth position
and removed from the Nth-1 position. The numbering scheme used by the bindprocessor system call
cannot be used to bind to a specific logical processor, because any processor can be removed and this is
not reflected in the numbering scheme, because the Nth-1 CPU is always deallocated. For this reason, the
identifiers used by the bindprocessor system call are called bind CPU IDs.

Changes to the _system_configuration.ncpus system variables have the following implications:

• Applications must be prepared to receive an error from the bindprocessor system call if the last
processor is removed after the applications have read the variable. This error condition was first
introduced by the Dynamic Processor Deallocation (runtime deallocation of defective processors).

• Applications that are designed to scale with the number of processors must reread the
_system_configuration.ncpus system variable when the number of processors changes.

Applications can also bind to a set of processors using a feature of Workload Manager (WLM) called
Software Partitioning. It assumes a numbering scheme that is based on logical CPU IDs, which also start
with zero (0) and end with N-1. However, N in this case is the maximum number of processors that
can be supported architecturally by the partition. The numbering scheme reflects both online and offline
processors.

Therefore, it is important to note the type of binding that is used so that the correct remedy can be
applied when removing a processor. The bindprocessor command can be used to determine the number
of online processors. The ps command can be used to identify the processes and threads that are bound
to the last online processor. After the targets have been identified, the bindprocessor command can be
used again to define new attachments.

WLM-related dependencies can be resolved by identifying the particular software partitions that are
causing problems. To resolve these dependencies, do the following:

Note: The system schedules bound jobs around offline or pending offline processors, so no change is
required if the particular software partition has another online CPU.

1. Use the lsrset command to view the set of software partitions that are used by WLM.
2. Identify these software partitions by using the lsclass command.
3. Identify the set of classes that use these software partitions by using the chclass command.
4. Reclassify the system using the wlmctrl command.

At this point, the new class definitions take effect and the system automatically migrates bound jobs away
from the logical processor that is being removed.

Related concepts
Managing an application's DLPAR dependencies

562 AIX Version 7.2: General programming concepts

A DLPAR remove request can fail for a variety of reasons. The most common of these is that the resource
is busy, or that there are not enough system resources currently available to complete the request.

Integrating the DLPAR operation into the application
The DLPAR operation can be integrated into the application in the following ways:

• Using a script-based approach, where the user installs a set of DLPAR scripts into a directory. These
scripts are invoked while the DLPAR operation is being run. The scripts are designed to externally
reconfigure the application.

• Using the SIGRECONFIG signal, which is used to catch the signal of every process that has registered.
The signal method assumes that the application has been coded to catch the signal, and that the signal
handler will reconfigure the application. The signal handler invokes an interface to determine the nature
of the DLPAR operation.

Both of these methods follow the same high level structure. Either method can be used to provide support
for DLPAR, although only the script-based mechanism can be used to manage DLPAR dependencies
related to Workload Manager software partitions (processor sets). No APIs are associated with Workload
Manager, so the use of a signal handler is not a suitable vehicle for dealing with the Workload Manager-
imposed scheduling constraints. The applications themselves are not Workload Manager-aware. In this
case, the system administrator might want to provide a script that invokes Workload Manager commands
to manage DLPAR interactions with Workload Manager.

The decision of which method to use should be based on how the system or resource-specific logic was
introduced into the application. If the application was externally directed to use a specific number of
threads or to size its buffers, use the script-based approach. If the application is directly aware of the
system configuration and uses this information accordingly, use the signal-based approach.

The DLPAR operation itself is divided into the following phases:

• check phase

The check phase is invoked first and it enables applications to fail the current DLPAR request before any
state in the system is changed. For example, the check phase could be used by a CPU-based license
manager to fail the integration of a new processor if that CPU addition makes the number of processors
in the system exceed the number of licensed processors. It could also be used to preserve the DLPAR
safeness of a program that is not DLPAR-safe. In the latter case, consideration must be given to services
provided by the application, because it might be better to stop the program, complete the request, and
then restart the program.

• pre phase and post phase

The pre phase and post phase are provided to stop the program, complete the request, and then restart
the program.

The system attempts to ensure that all of the check code across the different mediums is executed in its
entirety at the system level before the DLPAR event advances to the next phase.

Actions taken by DLPAR scripts
Application scripts are started for both add and remove operations.

When removing resources, scripts are provided to resolve conditions imposed by the application that
prevent the resource from being removed. The presence of particular processor bindings and the lack of
pinnable memory might cause a remove request to fail. A set of commands is provided to identify these
situations, so that scripts can be written to resolve them.

To identify and resolve the DLPAR dependencies, the following commands can be used:

• The ps command displays bindprocessor attachments and plock system call status at the process level.
• The bindprocessor command displays online processors and makes new attachments.
• The kill command sends signals to processes.
• The ipcs command displays pinned shared-memory segments at the process level.

General programming concepts 563

• The lsrset command displays processor sets.
• The lsclass command displays Workload Manager classes, which might include processor sets.
• The chclass command is used to change class definitions.

Scripts can also be used for scalability and general performance issues. When resources are removed, you
can reduce the number of threads that are used or the size of application buffers. When the resources are
added, you can increase these parameters. You can provide commands that can be used to dynamically
make these adjustments, which can be triggered by these scripts. Install the scripts to start these
commands within the context of the DLPAR operation.

High-level structure of DLPAR scripts

This section provides an overview of the scripts, which can be Perl scripts, shell scripts, or commands.
Application scripts are required to provide the following commands:

• scriptinfo

Identifies the version, date, and vendor of the script. It is called when the script is installed.
• register

Identifies the resources managed by the script. If the script returns the resource name cpu, mem,
capacity, or var_weight, the script is automatically started when DLPAR attempts to reconfigure
processors, memory, entitled capacity, or variable weight. The register command is called when the
script is installed with the DLPAR subsystem.

• usage resource_name

Returns information describing how the resource is being used by the application. The description
should be relevant so that the user can determine whether to install or uninstall the script. It should
identify the software capabilities of the application that are impacted. The usage command is called for
each resource that was identified by the register command.

• checkrelease resource_name

Indicates whether the DLPAR subsystem should continue with the removal of the named resource. A
script might indicate that the resource should not be removed if the application is not DLPAR-aware and
the application is considered critical to the operation of the system.

• prerelease resource_name

Reconfigures, suspends, or terminates the application so that its hold on the named resource is
released.

• postrelease resource_name

Resumes or restarts the application.
• undoprerelease resource_name

Started if an error is encountered and the resource is not released.
• checkacquire resource_name

Indicates whether the DLPAR subsystem should proceed with the resource addition. It might be used
by a license manager to prevent the addition of a new resource, for example cpu, until the resource is
licensed.

• preacquire resource_name

Used to prepare for a resource addition.
• undopreacquire resource_name

Starts if an error is encountered in the preacquire phase or when the event is acted on.
• postacquire resource_name

Resumes or starts the application.
• preaccevent resource_name

564 AIX Version 7.2: General programming concepts

Used to prepare a DLPAR update.
• postaccevent resource_name

Resumes or starts the application.
• undopreaccevent resource_name

Started if an error is encountered in the preaccevent phase or when the event is acted upon.
• pretopolgyupdate resource_name

Used to prepare for a system topology update.
• postopolgyupdate resource_name

Resumes or starts the application.

Installing application scripts using the drmgr command

The drmgr command maintains an internal database of installed-script information. This information is
collected when the system is booted and is refreshed when new scripts are installed or uninstalled. The
information is derived from the scriptinfo, register, and usage commands. The installation of scripts is
supported through in the drmgr command, which copies the named script to the script repository where it
can be later accessed. The default location for this repository is /usr/lib/dr/scripts/all. Within workload
partitions, the default script repository location is /var/dr/scripts. You can specify an alternate location
for this repository. To determine the machine upon which a script is used, specify the target host name
when installing the script.

To specify the location of the base repository, use the following command:

drmgr -R base_directory_path

To install a script, use the following command:

drmgr -i script_name [-f] [-w mins] [-D hostname]

The following flags are defined:

• The -i flag is used to name the script.
• The -f flag must be used to replace a registered script.
• The -w flag is used to specify the number of minutes that the script is expected to execute. This is

provided as an override option to the value specified by the vendor.
• The -D flag is used to register a script to be used on a particular host.

To uninstall a script, use the following command:

drmgr -u script_name [-D hostname]

The following flags are defined:

• The -u flag is used to indicate which script should be uninstalled.
• The -D flag is used to uninstall a script that has been registered for a specific directory.

To display information about scripts that have already been installed, use the following command:

drmgr -l

Naming conventions for scripts

It is suggested that the script names be built from the vendor name and the subsystem that is being
controlled. System administrators should name their scripts with the sysadmin prefix. For example, a
system administrator who wanted to provide a script to control Workload Manager assignments might
name the script sysadmin_wlm.

Script execution environment and input parameters

General programming concepts 565

Scripts are started with the following execution environment:

• Process UID is set to the UID of the script.
• Process GID is set to the GID of the script.
• PATH environment variable is set to the /usr/bin:/etc:/usr/sbin directory.
• LANG environment variable might or might not be set.
• Current working directory is set to /tmp.
• Command arguments and environment variables are used to describe the DLPAR event.

Scripts receive input parameters through command arguments and environment variables, and provide
output by writing name=value pairs to standard output, where name=value pairs are delimited by new
lines. The name is defined to be the name of the return data item that is expected, and value is
the value associated with the data item. Text strings must be enclosed by parentheses; for example,
DR_ERROR="text". All environment variables and name=value pairs must begin with DR_, which is
reserved for communicating with application scripts.

The scripts use DR_ERROR name=value environment variable pair to provide error descriptions.

You can examine the command arguments to the script to determine the phase of the DLPAR operation,
the type of action, and the type of resource that is the subject of the pending DLPAR request. For
example, if the script command arguments are checkrelease mem, then the phase is check, the action
is remove, and the type of resource is memory. The specific resource that is involved can be identified by
examining environment variables.

The following environment variables are set for memory add and remove:

Note: In the following description, one frame is equal to 4 KB.

• DR_FREE_FRAMES=0xFFFFFFFF

The number of free frames currently in the system, in hexadecimal format.
• DR_MEM_SIZE_COMPLETED=n

The number of megabytes that were successfully added or removed, in decimal format.
• DR_MEM_SIZE_REQUEST=n

The size of the memory request in megabytes, in decimal format.
• DR_PINNABLE_FRAMES=0xFFFFFFFF

The total number of pinnable frames currently in the system, in hexadecimal format. This parameter
provides valuable information when removing memory in that it can be used to determine when the
system is approaching the limit of pinnable memory, which is the primary cause of failure for memory
remove requests.

• DR_TOTAL_FRAMES=0xFFFFFFFF

The total number of frames currently in the system, in hexadecimal format.

The following environment variables are set for processor add and remove:

• DR_BCPUID=N

The bind CPU ID of the processor that is being added or removed in decimal format. A bindprocessor
attachment to this processor does not necessarily mean that the attachment has to be undone. This
is only true if it is the Nth processor in the system, because the Nth processor position is the one that
is always removed in a Central Processing Unit (CPU) remove operation. Bind IDs are consecutive in
nature, ranging from 0 to N and are intended to identify only online processors. Use the bindprocessor
command to determine the number of online CPUs.

• DR_LCPUID=N

The logical Central Processor Unit (CPU) ID of the processor that is being added or removed in decimal
format.

The following environment variables are set for Micro-Partitioning.

566 AIX Version 7.2: General programming concepts

DR_CPU_CAPACITY=N
The partition's percentage of shared physical processors.

DR_VAR_WEIGHT=N
The partition's relative priority for determining how to allocate shared pool idle cycles.

DR_CPU_CAPACITY_DELTA=N
The difference between the current value of the partition's percentage of shared physical processors
and the value to which it will be changed when this operation is complete.

DR_VAR_WEIGHT_DELTA=N
The difference between the current value of the partition's variable weight and the value to which it
will be changed when this operation is complete.

The operator can display the information about the current DLPAR request using the detail level
at the HMC to observe events as they occur. This parameter is specified to the script using the
DR_DETAIL_LEVEL=N environment variable, where N can range from 0 to 5. The default value is zero
(0) and signifies no information. A value of one (1) is reserved for the operating system and is used to
present the high-level flow. The remaining levels (2-5) can be used by the scripts to provide information
with the assumption that larger numbers provide greater detail.

Scripts provide detailed data by writing the following name=value pairs to standard output:

name=value pair Description

DR_LOG_ERR=message Logs the message with the syslog level of the LOG_ERR
environment variable.

DR_LOG_WARNING=message Logs the message with the syslog level of the LOG_WARNING
environment variable.

DR_LOG_INFO=message Logs the message with the syslog level of the LOG_INFO
environment variable.

DR_LOG_EMERG=message Logs the message with the syslog level of the LOG_EMERG
environment variable.

DR_LOG_DEBUG=message Logs the message with the syslog level of the LOG_DEBUG
environment variable.

In addition, the operator can also set up a log of information that is preserved by using the syslog facility,
in which case, the above information is routed to that facility as well. You must configure the syslog
facility in this case.

DLPAR script commands

This section describes the script commands for DLPAR:
scriptinfo

Provides information about the installed scripts, such as their creation date and resources.
register

started to collect the list of resources that are managed by the script. The drmgr command uses these
lists to start scripts based on the type of resource that is being reconfigured.

usage
Provides human-readable strings describing the service provided by the named resource. The context
of the message should help the user decide the implications on the application and the services that it
provides when named resource is reconfigured. This command is started when the script is installed,
and the information provided by this command is maintained in an internal database that is used by
the drmgr command. Display the information using the -l list option of the drmgr command.

checkrelease
When removing resources, the drmgr command assesses the impacts of the removal of the resource.
This includes execution of DLPAR scripts that implement the checkrelease command. Each DLPAR
script in turn will be able to evaluate the peculiarities of its application and indicate to the drmgr

General programming concepts 567

command that is using the script's return code whether the resource removal will affect the
associated application. If it finds that the removal of the resource can be done safely, an exit status
of success is returned. If the application is in a state that the resource is critical to its execution and
cannot be reconfigured without interrupting the execution of the application, then the script indicates
that the resource should not be removed by returning an error. When the FORCE option is specified by
the user, which applies to the entire DLPAR operation including its phases, the drmgr command skips
the checkrelease command and begins with the prerelease commands.

prerelease
Before a resource is released, the DLPAR scripts are directed to assist in the release of the named
resource by reducing or eliminating the use of the resource from the application. However, if the script
detects that the resource cannot be released from the application, it should indicate that the resource
will not be removed from the application by returning an error. This does not prevent the system from
attempting to remove the resource in either the forced or non-forced mode of execution, and the
script will be called in the post phase, regardless of the actions or inactions that were taken by the
prerelease command. The actions taken by the operating system are safe. If a resource cannot be
cleanly removed, the operation will fail.

The DLPAR script is expected to internally record the actions that were taken by the prerelease
command, so that they can be restored in the post phase should an error occur. This can also be
managed in post phase if rediscovery is implemented. The application might need to take severe
measures if the force option is specified.

postrelease
After a resource is successfully released, the postrelease command for each installed DLPAR script is
started. Each DLPAR script performs any post processing that is required during this step. Applications
that were halted should be restarted.

The calling program will ignore any errors reported by the postrelease commands, and the operation
will be considered a success, although an indication of any errors that may have occurred will also be
reported to the user. The DR_ERROR environment variable message is provided for this purpose, so
the message should identify the application that was not properly reconfigured.

undoprerelease
After a prerelease command is issued by the drmgr command to the DLPAR script, if the drmgr
command fails to remove or release the resource, it will try to revert to the old state. As part of
this process, the drmgr command will issue the undoprerelease command to the DLPAR script.
The undoprerelease command will only be started if the script was previously called to release the
resource in the current DLPAR request. In this case, the script should undo any actions that were
taken by the prerelease command of the script. To this end, the script might need to document its
actions, or otherwise provide the capability of rediscovering the state of the system and reconfiguring
the application, so that in effect, the DLPAR event never occurred.

checkacquire
This command is the first DLPAR script-based command that is called in the acquire-new-resource
sequence. It is called for each installed script that previously indicated that it supported the particular
type of resource that is being added. One of the primary purposes of the checkacquire phase is to
enable processor-based license managers, which might want to fail the addition of a processor. The
checkacquire command is always started, regardless of the value of the FORCE environment variable,
and the calling program honors the return code of the script. The user cannot force the addition of a
new processor if a script or DLPAR-aware program fails the DLPAR operation in the check phase.

In short, the FORCE environment variable does not really apply to the checkacquire command,
although it does apply to the other phases. In the preacquire phase, it dictates how far the script
should go when reconfiguring the application. The force option can be used by the scripts to control
the policy by which applications are stopped and restarted similar to when a resource is released,
which is mostly a DLPAR-safe issue.

preacquire
Assuming that no errors were reported in the checkacquire phase, the system advances to the
preacquire phase, where the same set of scripts are invoked to prepare for the acquisition of a new
resource, which is supported through the preacquire command. Each of these scripts are called,

568 AIX Version 7.2: General programming concepts

before the system actually attempts to integrate the resource, unless an error was reported and
the FORCE environment variable was not specified by the user. If the FORCE environment variable
was specified, the system proceeds to the integrate stage, regardless of the script's stated return
code. No errors are detected when the FORCE environment variable is specified, because all errors
are avoidable by unconfiguring the application, which is an accepted practice when the FORCE
environment variable is specified. If an error is encountered and the FORCE environment variable is
not specified, the system will proceed to the undopreacquire phase, but only the previously executed
scripts in the current phase are rerun. During this latter phase, the scripts are directed to perform
recovery actions.

undopreacquire
The undopreacquire phase is provided so that the scripts can perform recovery operations. If a script
is called in the undopreacquire phase, it can assume that it successfully completed the preacquire
command.

postacquire
The postacquire command is executed after the resource has been successfully integrated by the
system. Each DLPAR script that was previously called in the check and pre phases is called again. This
command is used to incorporate the new resource into the application. For example, the application
might want to create new threads, expands its buffers, or the application might need to be restarted if
it was previously halted.

checkmigrate
This command is the first DLPAR script-based command that is called in the migration sequence. It
is called for each installed script that previously indicated that it supported the particular type of
resource that is being added. The checkmigrate command is always started, regardless of the value
of the FORCE environment variable, and the calling program honors the return code of the script. The
user cannot force the partition migration if a script or DLPAR-aware program fails the DLPAR operation
in the check phase.

premigrate
Assuming that no errors were reported in the checkmigrate phase, the system advances to the
premigrate phase, where the same set of scripts are started to prepare for partition takes place. Each
of these scripts are called, before the system actually attempts to migrate the partition. Regardless of
the script's stated return code, the system proceeds to the migration stage. If an error is encountered,
the system will proceed to the undopremigrate phase, but only the previously executed scripts in the
current phase are rerun. During this latter phase, the scripts are directed to perform recovery actions.

undopremigrate
The undopremigrate phase is provided so that the scripts can perform recovery operations. If a script
is called in the undopremigrate phase, it can assume that it successfully completed the premigrate
command.

postmigrate
The postmigrate command is executed after the partition has been successfully migrated. Each
DLPAR script that was previously called in the check and pre phases is called again.

pretopologyupdate
The pretopologyupdate command is executed before an action takes place that will affect the
topology of the partition, such as the addition or removal of processors or memory. This command is
meant to inform the scripts a topology action has taken place and can not fail. The system proceeds to
the integrate stage, regardless of the script's stated return code.

posttopologyupdate
The posttopologyupdate command is executed after the partition has been successfully completed
the topology action. Each DLPAR script that was previously called in the pre phase is called again.

checkhibernate
This command is the first DLPAR script-based command that is called in the hibernation sequence.
It is called for each installed script that previously indicated that it supported the particular type of
resource that is being added. The checkhibernate command is always started, regardless of the value
of the FORCE environment variable, and the calling program honors the return code of the script.
The user cannot force the partition hibernation if a script or DLPAR-aware program fails the DLPAR
operation in the check phase.

General programming concepts 569

prehibernate
Assuming that no errors were reported in the checkhibernate phase, the system advances to the
prehibernate phase, where the same set of scripts are started to prepare for partition takes place.
Each of these scripts are called, before the system actually attempts to hibernate the partition.
Regardless of the script's stated return code, the system proceeds to the hibernation stage. If an
error is encountered, the system will proceed to the undohibernate phase, but only the previously
executed scripts in the current phase are rerun. During this latter phase, the scripts are directed to
perform recovery actions.

undohibernate
The undohibernate phase is provided so that the scripts can perform recovery operations. If a
script is called in the checkhibernatephase, it can assume that it successfully completed the
checkhibernate command.

posthibernate
The posthibernate command is executed after the partition has been successfully hibernated. Each
DLPAR script that was previously called in the check and pre phases is called again.

preaccevent
This command is the first DLPAR script-based command that is called in the encryption accelerator
DLPAR sequence. It is called for each installed script that previously indicated that it supported the
particular type of resource that is being added or released. It is unknown at the time of this event
if the following action will be an add or release of the encryption accelerator. That action will be
provided during one of the following post phases.

postaccevent
The postaccevent command is executed after the resource has been successfully processed by the
system. Each DLPAR script that was previously called in the pre phase is called again. This command
is used to incorporate the new resource state into the application.

undoaccevent
The undoaccevent phase is provided so that the scripts can perform recovery operations. If a script is
called in the undoaccevent phase, it successfully completed the preaccevent command.

Making kernel extensions DLPAR-aware
Like applications, most kernel extensions are DLPAR-safe by default.

However, some are sensitive to the system configuration and might need to be registered with the DLPAR
subsystem. Some kernel extensions partition their data along processor lines, create threads based on
the number of online processors, or provide large pinned memory buffer pools. These kernel extensions
must be notified when the system topology changes. The mechanism and the actions that need to be
taken parallel those of DLPAR-aware applications.

Registering reconfiguration handlers

The following kernel services are provided to register and unregister reconfiguration handlers:

#include sys/dr.h

int reconfig_register(int (*handler)(void *, void *, int, dr_info_t *),
 int actions, void * h_arg, ulong *h_token, char *name);

void reconfig_unregister(ulong h_token);

int (*handler)(void *event, void *h_arg, unsigned long long req, void *resource_info);

void reconfig_unregister(ulong h_token);

int reconfig_register_ext (int (*handler)(void *, void *, unsigned long long, dr_info_t *),
unsigned long long actions, void * h_arg, ulong *h_token, char *name);

int (*handler)(void *event, void *h_arg, unsigned long long req, void *resource_info);

kerrno_t reconfig_register_list(int (*handler)(void *, void *, dr_kevent_t, void *),
dr_kevent_t event_list[], size_t list_size, void *h_arg, ulong *h_token, char *name);

570 AIX Version 7.2: General programming concepts

int (*handler)(void *event, void *h_arg, dr_kevent_t event_in_prog, void *resource_info);

Note: You are encouraged to use the kernel service reconfig_register_list. This service supports more
events to be notified to the kernel extensions. The previous kernel services (reconfig_register and
reconfig_register_ext) are limited to 32 and 64 events, respectively, making the kernel extensions using
this service not portable to future systems supporting more than 32 and 64 events.

The parameters for the reconfig_register reconfig_register_ext, and reconfig_register_list subroutines
are as follows:

• The handler parameter is the kernel extension function to be invoked.
• The actions parameter allows the kernel extension to specify which events require notification. For a

list of the events, see the reconfig_register, reconfig_register_ext, and reconfig_unregister kernel
services.

• The h_arg parameter is specified by the kernel extension, remembered by the kernel along with the
function descriptor for the handler, and then passed to the handler when it is invoked. It is not used
directly by the kernel, but is intended to support kernel extensions that manage multiple adapter
instances. In practice, this parameter points to an adapter control block.

• The h_token parameter is an output parameter and is intended to be used when the handler is
unregistered.

• The name parameter is provided for information purposes and can be included within an error log entry
if the driver returns an error. It is provided by the kernel extension and should be limited to 15 ASCII
characters.

• The event_list parameter is an array of dr_kevent_t values for which the kernel extension should be
notified of when they occur. For a list of defined events, see the reconfig_register_list kernel service.

• The list_size parameter is the size of the memory consumed by the event_list parameter.

The reconfig_register and reconfig_register_ext functions return 0 for success, and the appropriate
errno value otherwise.

The reconfig_unregister function is called to remove a previously installed handler.

The reconfig_register, reconfig_register_ext, and reconfig_unregister functions can only be called in
the process environment.

If a kernel extension registers for the pre-phase, it is advisable that it register for the check phase to avoid
partial unconfiguration of the system when removing resources.

Reconfiguration Handlers

The interface to the reconfiguration handler used with the reconfig_register_list kernel service is as
follows:

Int (*handler)(void *event, void *h_arg, dr_kevent_t event_in_prog, void *resource_info);

The parameters to the reconfiguration handler are as follows:

• The event parameter is passed to the handler and is intended to be used only when calling the
reconfig_handler_complete subroutine.

• The h_arg parameter is specified at registration time by the handler.
• The event_in_prog parameter indicates the DLPAR operation performed by the handler. For a list of the

events, see the reconfig_register_list kernel service.
• The resource_info parameter identifies the resource-specific information for the current DLPAR request.

If the request is processor-based, then the resource_info data is provided through a dri_cpu structure.
If the request is memory-based, a dri_mem structure is used. On a Micro-Partitioning partition, if the
request is processor-capacity based, the resource_info data is provided through a dri_cpu_capacity

General programming concepts 571

structure. For more information, and for the format of the dri_cpu_capacity structure, refer to reconfig
Kernel Service.

struct dri_cpu {
 cpu_t lcpu; /* Logical CPU Id of target CPU */
 cpu_t bcpu; /* Bind Id of target CPU */
};

struct dri_mem {
 size64_t req_memsz_change; /* user requested mem size */
 size64_t sys_memsz; /* system mem size at start */
 size64_t act_memsz_change; /* mem added/removed so far */
 rpn64_t sys_free_frames; /* Number of free frames */
 rpn64_t sys_pinnable_frames;/* Number of pinnable frames */
 rpn64_t sys_total_frames; /* Total number of frames */
 unsigned long long lmb_addr; /* start addr of logical memory block */
 size64_t lmb_size; /* Size of logical memory block being added */
};

If the current DLPAR request is migration of a partition, the handler provides resource_info data to the
resource_info data kernel extensions, but the kernel extensions do not need to access the contents of the
resource_info data because this data is not used by the kernel extensions.

Reconfiguration handlers are invoked in the process environment.

Kernel extensions can assume the following:

• Only a single type of resource is being configured or removed at a time.
• Multiple processors will not be specified at the same time. However, kernel extensions should be coded

to support the addition or removal of multiple logical memory blocks. You can initiate a request to add
or remove gigabytes of memory.

The check phase provides the ability for DLPAR-aware applications and kernel extensions to react to the
user's request before it has been applied. Therefore, the check-phase kernel extension handler is invoked
once, even though the request might devolve to multiple logical memory blocks. Unlike the check phase,
the pre-phase, post phase, and post-error phase are applied at the logical memory block level. This
is different for application notification, where the pre-phase, post phase, or alternatively the post-error
phase are invoked once for each user request, regardless of the number of underlying logical memory
blocks. Another difference is that the post-error phase for kernel extensions is used when a specific
logical memory block operation fails, whereas the post-error phase for applications is used when the
operation, which in this case is the entire user request, fails.

In general, during the check phase, the kernel extension examines its state to determine whether it can
comply with the impending DLPAR request. If this operation cannot be managed, or if it would adversely
effect the proper execution of the extension, then the handler returns DR_FAIL. Otherwise the handler
returns DR_SUCCESS.

During the pre-remove phase, kernel extensions attempt to remove any dependencies that they might
have on the designated resource. An example is a driver that maintains per-processor buffer pools. The
driver might mark the associated buffer pool as pending delete, so that new requests are not allocated
from it. In time, the pool is drained and might be freed. Other items that must be considered in the
pre-remove phase are timers and bound threads, which need to be stopped and terminated, respectively.
Alternatively, bound threads can be unbound.

During the post-remove phase, kernel extensions attempt to free any resources through garbage
collection, assuming that the resource was actually removed. If it was not, timers and threads must
be reestablished. The DR_resource_POST_ERROR request is used to signify that an error occurred.

During the pre-add phase, kernel extensions must pre-initialize any data paths that are dependent on the
new resource, so that when the new resource is configured, it is ready to be used. The system does not
guarantee that the resource will not be used prior to the handler being called again in the post phase.

During the post-add phase, kernel extensions can assume that the resource has been properly added and
can be used. This phase is a convenient place to start bound threads, schedule timers, and increase the
size of buffers.

Kernel extensions can also be notified of memory removals or additions on a per-operation basis, much
like applications, by registering for one or more of the _OP_ notification types. This enables a kernel

572 AIX Version 7.2: General programming concepts

extension to modify its resource usage in response to a memory DR operation only once per operation,
rather than once per logical memory block (LMB).

DR_MEM_REMOVE_OP_PRE notification is sent before a memory remove. Reconfiguration handlers
can start adjusting their resources in anticipation of the memory remove at this time.
DR_MEM_REMOVE_OP_POST and DR_MEM_ADD_OP_POST notifications are sent after a memory
remove or add operation, respectively, whether the operation failed or not. If the operation failed,
act_memsz_change is 0.

If possible, within a few seconds, the reconfiguration handlers return DR_SUCCESS to indicate successful
reconfiguration, or DR_FAIL to indicate failure. If more time is required, the handler returns DR_WAIT.

Extended DR handlers

If a kernel extension expects that the operation is likely to take a long time, that is, several seconds, the
handler returns DR_WAIT to the caller, but proceed with the request asynchronously. In the following
case, the handler indicates that it has completed the request by invoking the reconfig_handler_complete
routine.

void reconfig_handler_complete(void *event, int rc);

The event parameter is the same parameter that was passed to the handler when it was invoked by the
kernel. The rc parameter must be set to either DR_SUCCESS or DR_FAIL to indicate the completion
status of the handler.

The reconfig_handler_complete kernel service can be invoked in the process or interrupt environments.

Using the xmemdma kernel service

On systems that are capable of DLPAR, such as the dynamic removal of memory, calls to the xmemdma
kernel service without the XMEM_DR_SAFE flag result in the specified memory being flagged as not
removable. This is done to guarantee the integrity of the system, because the system has no knowledge
of how the caller intends to use the real memory address that was returned. Dynamic memory removal
operations are still possible for other memory, but not for the memory that the xmemdma call specifies.

If the caller is using the real memory address only for informational purposes, such as for trace buffers or
debug information, then the caller can set the XMEM_DR_SAFE flag. This is an indication to the system
that the real memory address can be exposed to the caller without any risk of data corruption. When this
flag is present, the system will still permit the specified memory to be dynamically removed.

If the caller is using the real memory address to perform actual data access, either by turning off data
translation and performing CPU load or store access to the real memory, or by programming direct
memory access (DMA) controllers to target the real memory, the XMEM_DR_SAFE flag must not be set.
If the flag is set, the system's data integrity could be compromised when the memory is dynamically
removed. For information on converting a kernel extension that uses real memory addresses in this way to
be DLPAR-aware, contact your IBM Service Representative.

For more information, see the xmemdma kernel service.

Controlling memory DLPAR notification for applications

Dynamic addition or removal of memory from an LPAR running multiple DLPAR-aware programs can result
in conflict for resources. By default, each program gets notified equally about the resource change. For
example, if 1 GB of memory is removed from an LPAR running two DR-aware programs, then, by default,
each program is notified that 1 GB of memory has been removed. Because the two programs are generally
unaware of each other, both of them will scale down their memory use by 1 GB, leading to inefficiency. A
similar efficiency problem can also occur when new memory is added.

To overcome this problem, AIX allows application scripts to be installed with a percentage factor that
indicates the percentage of the actual memory resource change. The system then notifies the application
in the event of a memory DLPAR. While installing the application scripts using the drmgr command, you
can specify this percentage factor using the DR_MEM_PERCENT name=value pair. The application script
will need to output this name=value pair when it is invoked by the drmgr command with the scriptinfo
subcommand. The value must be an integer between 1 and 100. Any value outside of this range is

General programming concepts 573

ignored, and the default value, which is 100, is used. Additionally, you can also set this name=value pair
as an environment variable at the time of installation. During installation, the value from the environment
variable, if set, will override the value provided by the application script.

Similarly, in applications using the SIGRECONFIG signal handler and dr_reconfig() system call, you
can control the memory DLPAR notification by setting the DR_MEM_PERCENT name=value pair as an
environment variable before the application begins running. This value, however, cannot be changed
without restarting the application.

sed program information
The sed program is a text editor that has similar functions to those of ed, the line editor.

Unlike ed, however, the sed program performs its editing without interacting with the person requesting
the editing.

Manipulating strings with sed
The sed program performs its editing without interacting with the person requesting the editing.

This method of operation allows sed to do the following:

• Edit very large files
• Perform complex editing operations many times without requiring extensive retyping and cursor

positioning (as interactive editors do)
• Perform global changes in one pass through the input.

The editor keeps only a few lines of the file being edited in memory at one time, and does not use
temporary files. Therefore, the file to be edited can be any size as long as there is room for both the input
file and the output file in the file system.

Related concepts
Tools and utilities
This section provides an overview of the tools and utilities that you can use to develop C compiled
language programs.

Starting the editor
The following example description file could maintain themake program.

Each command in the command file must be on a separate line. Once the command file is created, enter
the following command on the command line:

sed -fCommandFile >Output <Input

In this command the parameters mean the following:

Parameter Definition

CommandFile The name of the file containing editing commands.

Output The name of the file to contain the edited output.

Input The name of the file, or files, to be edited.

The sed program then makes the changes and writes the changed information to the output file. The
contents of the input file are not changed.

574 AIX Version 7.2: General programming concepts

How sed works
The sed program is a stream editor that receives its input from standard input, changes that input as
directed by commands in a command file, and writes the resulting stream to standard output.

If you do not provide a command file and do not use any flags with the sed command, the sed program
copies standard input to standard output without change. Input to the program comes from two sources:

Program Description

Input stream A stream of ASCII characters either from one or more files or entered directly from
the keyboard. This stream is the data to be edited.

Commands A set of addresses and associated commands to be performed, in the following
general form:

[Line1 [,Line2]] command [argument]

The parameters Line1 and Line2 are called addresses. Addresses can be either
patterns to match in the input stream, or line numbers in the input stream.

You can also enter editing commands along with the sed command by using the -e flag.

When sed edits, it reads the input stream one line at a time into an area in memory called the pattern
space. When a line of data is in the pattern space, sed reads the command file and tries to match the
addresses in the command file with characters in the pattern space. If it finds an address that matches
something in the pattern space, sed then performs the command associated with that address on the part
of the pattern space that matched the address. The result of that command changes the contents of the
pattern space, and thus becomes the input for all following commands.

When sed has tried to match all addresses in the command file with the contents of the pattern space,
it writes the final contents of the pattern space to standard output. Then it reads a new input line from
standard input and starts the process over at the start of the command file.

Some editing commands change the way the process operates.

Flags used with the sed command can also change the operation of the command.

Using regular expressions
A regular expression is a string that contains literal characters, pattern-matching characters and/or
operators that define a set of one or more possible strings.

The stream editor uses a set of pattern-matching characters that is different from the shell pattern-
matching characters, but the same as the line editor, ed.

Using the sed command summary
All sed commands are single letters plus some parameters, such as line numbers or text strings.

The commands summarized below make changes to the lines in the pattern space.

The following symbols are used in the syntax diagrams:

Symbol Meaning

[] Square brackets enclose optional parts of the commands

italics Parameters in italics represent general names for a name that you enter. For example,
FileName represents a parameter that you replace with the name of an actual file.

Line1 This symbol is a line number or regular expression to match that defines the starting point
for applying the editing command.

Line2 This symbol is a line number or regular expression to match that defines the ending point to
stop applying the editing command.

General programming concepts 575

Line manipulation
This section describes the line manipulation.

Function Syntax/Description

append lines [Line1]a\\nText

Writes the lines contained in Text to the output stream after Line1. The a command
must appear at the end of a line.

change lines [Line1 [,Line2]]c\\nText

Deletes the lines specified by Line1 and Line2 as the delete lines command does.
Then it writes Text to the output stream in place of the deleted lines.

delete lines [Line1 [,Line2]]d

Removes lines from the input stream and does not copy them to the output stream.
The lines not copied begin at line number Line1. The next line copied to the output
stream is line number Line2 + 1. If you specify only one line number, then only that
line is not copied. If you do not specify a line number, the next line is not copied.
You cannot perform any other functions on lines that are not copied to the output.

insert lines [Line1] i \\nText

Writes the lines contained in Text to the output stream before Line1. The i
command must appear at the end of a line.

next line [Line1 [,Line2]]n

Reads the next line, or group of lines from Line1 to Line2 into the pattern space.
The current contents of the pattern space are written to the output if it has not
been deleted.

Substitution
This section describes the substitution.

Function Syntax/Description

substitution for pattern [Line1 [,Line2]] s/Pattern/String/Flags

Searches the indicated line(s) for a set of characters that
matches the regular expression defined in Pattern. When it
finds a match, the command replaces that set of characters
with the set of characters specified by String.

Input and output
This section describes the input output.

Function Syntax/Description

print lines [Line1 [,Line2]] p

Writes the indicated lines to STDOUT at the point in the editing process that the p
command occurs.

576 AIX Version 7.2: General programming concepts

Function Syntax/Description

write lines [Line1 [,Line2]]w FileName

Writes the indicated lines to a FileName at the point in the editing process that the w
command occurs.

If FileName exists, it is overwritten; otherwise, it is created. A maximum of 10
different files can be mentioned as input or output files in the entire editing process.
Include exactly one space between w and FileName.

read file [Line1]r FileName

Reads FileName and appends the contents after the line indicated by Line1.

Include exactly one space between r and FileName. If FileName cannot be opened,
the command reads it as a null file without giving any indication of an error.

Matching across lines
This section describes the matching across lines.

Function Syntax/Description

join next line [Line1 [,Line2]]N

Joins the indicated input lines together,
separating them by an embedded new-
line character. Pattern matches can extend
across the embedded new-lines(s).

delete first line of pattern space [Line1 [,Line2]]D

Deletes all text in the pattern space up to
and including the first new-line character.
If only one line is in the pattern space, it
reads another line. Starts the list of editing
commands again from the beginning.

print first line of pattern space [Line1 [,Line2]]P

Prints all text in the pattern space up to
and including the first new-line character to
STDOUT.

Pick up and put down
This section describes the pick up and put down.

Function Syntax/Description

pick up copy [Line1 [,Line2]]h

Copies the contents of the pattern space indicated by Line1 and
Line2 if present, to the holding area.

pick up copy, appended [Line1 [,Line2]]H

Copies the contents of the pattern space indicated by Line1 and
Line2 if present, to the holding area, and appends it to the end
of the previous contents of the holding area.

General programming concepts 577

Function Syntax/Description

put down copy [Line1 [,Line2]]g

Copies the contents of the holding area to the pattern space
indicated by Line1 and Line2 if present. The previous contents
of the pattern space are destroyed.

put down copy, appended [Line1 [,Line2]]G

Copies the contents of the holding area to the end of the
pattern space indicated by Line1 and Line2 if present. The
previous contents of the pattern space are not changed. A
new-line character separates the previous contents from the
appended text.

exchange copies [Line1 [,Line2]]x

Exchanges the contents of the holding area with the contents of
the pattern space indicated by Line1 and Line2 if present.

Control
This section describes the pick up and put down.

Function Syntax/Description

negation [Line1 [,Line2]]!

The ! (exclamation point) applies the command
that follows it on the same line to the parts of the
input file that are not selected by Line1 and Line2.

command groups [Line1 [,Line2]]{

grouped commands

}

The { (left brace) and the } (right brace) enclose
a set of commands to be applied as a set to the
input lines selected by Line1 and Line2. The first
command in the set can be on the same line or
on the line following the left brace. The right brace
must be on a line by itself. You can nest groups
within groups.

labels :Label

Marks a place in the stream of editing command
to be used as a destination of each branch. The
symbol Label is a string of up to 8 bytes. Each Label
in the editing stream must be different from any
other Label.

578 AIX Version 7.2: General programming concepts

Function Syntax/Description

branch to label, unconditional [Line1 [,Line2]]bLabel

Branches to the point in the editing stream
indicated by Label and continues processing the
current input line with the commands following
Label. If Label is null, branches to the end of the
editing stream, which results in reading a new
input line and starting the editing stream over. The
string Label must appear as a Label in the editing
stream.

test and branch [Line1 [,Line2]]tLabel

If any successful substitutions were made on
the current input line, branches to Label. If no
substitutions were made, does nothing. Clears the
flag that indicates a substitution was made. This
flag is cleared at the start of each new input line.

wait [Line1]q

Stops editing in an orderly fashion by writing the
current line to the output, writing any appended or
read test to the output, and stopping the editor.

find line number [Line1]=

Writes to standard output the line number of the
line that matches Line1.

Using text in commands
The append, insert and change lines commands all use a supplied text string to add to the output stream.

This text string conforms to the following rules:

• Can be one or more lines long.
• Each \n (new-line character) inside Text must have an additional \ character before it (\\n).
• The Text string ends with a new-line that does not have an additional \ character before it (\n).
• Once the command inserts the Text string, the string:

– Is always written to the output stream, regardless of what other commands do to the line that caused
it to be inserted.

– Is not scanned for address matches.
– Is not affected by other editing commands.
– Does not affect the line number counter.

Using string replacement
The s command performs string replacement in the indicated lines in the input file.

If the command finds a set of characters in the input file that satisfies the regular expression Pattern, it
replaces the set of characters with the set of characters specified in String.

The String parameter is a literal set of characters (digits, letters and symbols). Two special symbols can be
used in String:

General programming concepts 579

Symbol Use

& This symbol in String is replaced by the set of characters in the input lines that matched
Pattern. For example, the command:

s/boy/&s/

tells sed to find a pattern boy in the input line, and copy that pattern to the output with an appended s.
Therefore, it changes the input line:
From:

The boy look at the game.
To:

The boys look at the game.

Symbol Use

\d d is a single digit. This symbol in String is replaced by the set of characters in the input lines
that matches the dth substring in Pattern. Substrings begin with the characters \(and end
with the characters\). For example, the command:

s/\(stu\)\(dy\)/\1r\2/

From:
The study chair

To:
The sturdy chair

The letters that appear as flags change the replacement as follows:

Symbol Use

g Substitutes String for all instances of Pattern in the indicated line(s). Characters in
String are not scanned for a match of Pattern after they are inserted. For example, the
command:

s/r/R/g

changes:

From:
the red round rock

To:
the Red Round Rock

p Prints (to STDOUT) the line that contains a successfully matched Pattern.

w FileName Writes to FileName the line that contains a successfully matched Pattern. if FileName
exists, it is overwritten; otherwise, it is created. A maximum of 10 different files can
be mentioned as input or output files in the entire editing process. Include exactly one
space between w and FileName.

Shared libraries and shared memory
This topic provides information about the operating system facilities provided for sharing libraries and
memory allocation.

The operating system provides facilities for the creation and use of dynamically bound shared libraries.
Dynamic binding allows external symbols referenced in user code and defined in a shared library to be
resolved by the loader at run time.

580 AIX Version 7.2: General programming concepts

The shared library code is not present in the executable image on disk. Shared code is loaded into
memory once in the shared library segment and shared by all processes that reference it. The advantages
of shared libraries are:

• Less disk space is used because the shared library code is not included in the executable programs.
• Less memory is used because the shared library code is only loaded once.
• Load time may be reduced because the shared library code may already be in memory.
• Performance may be improved because fewer page faults will be generated when the shared library

code is already in memory. However, there is a performance cost in calls to shared library routines of
one to eight instructions.

The symbols defined in the shared library code that are to be made available to referencing modules
must be explicitly exported using an exports file, unless the -bexpall options is used. The first line of the
file optionally contains the path name of the shared library. Subsequent lines contain the symbols to be
exported.

Related information
ar
as
dump
ipcs
ipcrm
id
pagesize
rtl_enable
update
vmstat
XCOFF

Shared objects and run time linking
By default, programs are linked so that a reference to a symbol imported from a shared object is bound to
that definition at load time.

This is true even if the program, or another shared object required by the program, defines the same
symbol.

run time linker
A shared object that allows symbols to be rebound for appropriately linked programs

You include the run time linker in a program by linking the program with the -brtl option. This option has
the following effects:

• A reference to the run time linker is added to your program. When program execution begins, the
startup code (/lib/crt0.o) will call the run time linker before the main function is called.

• All input files that are shared objects are listed as dependents of your program in your program's loader
section. The shared objects are listed in the same order as they were specified on the command line.
This causes the system loader to loadall these shared objects so that the run time linker can use their
definitions. If the -brtl option is not used, a shared object that is not referenced by the program is
not listed, even if it provides definitions that might be needed by another shared object used by the
program.

• A shared object contained in an archive is only listed if the archive specifies automatic loading for the
shared object member. You specify automatic loading for an archive member foo.o by creating a file
with the following lines:

autoload
#! (foo.o)

General programming concepts 581

and adding the file as a member to the archive.
• In dynamic mode, input files specified with the -l flag may end in .so, as well as in .a. That is, a

reference to -lfoo is satisfied by the first libfoo.so or libfoo.a found in any of the directories being
searched. Dynamic mode is in effect by default unless the -bstatic option is used.

The run time linker mimics the behavior of the ld command when static linking is used, except that only
exported symbols can be used to resolve symbols. Even when run time linking is used, the system loader
must be able to load and resolve all symbol references in the main program and any module it depends
on. Therefore, if a definition is removed from a module, and the main program has a reference to this
definition, the program will not execute, even if another definition for the symbol exists in another module.

The run time linker can rebind all references to symbols imported from another module. A reference to a
symbol defined in the same module as the reference can only be rebound if the module was built with run
time linking enabled for that symbol.

Shared modules shipped with AIX 4.2 or later have run time linking enabled for most exported variables.
run time linking for functions is only enabled for functions called through a function pointer. For example,
as shipped, calls to the malloc subroutine within shared object shr.o in /lib/libc.a cannot be rebound,
even if a definition of malloc exists in the main program or another shared module. You can link most
shipped shared modules to enable run time linking for functions as well as variables by running the
rtl_enable command.

Operation of the run time linker

The main program is loaded and resolved by the system loader in the usual way. If the executable
program cannot be loaded for any reason, the exec() subroutine fails and the run time linker is not
invoked at all. If the main program loads successfully, control passes to the run time linker, which rebinds
symbols as described below. When the run time linker completes, initialization routines are called, if
appropriate, and then the main function is called.

The run time linker processes modules in breadth-first search order, starting with the main executable
and continuing with the direct dependents of the main executable, according to the order of dependent
modules listed in each module's loader section. This order is also used when searching for the defining
instance of a symbol. The "defining instance" of a symbol is usually the first instance of a symbol, but
there are two exceptions. If the first instance of a symbol is an unresolved, deferred import, no defining
instance exists. If the first instance is a BSS symbol (that is, with type XTY_CM, indicating an uninitialized
variable), and there is another instance of the symbol that is neither a BSS symbol nor an unresolved,
deferred import, the first such instance of the symbol is the defining instance.

The loader section of each module lists imported symbols, which are usually defined in another specified
module, and exported symbols, which are usually defined in the module itself. A symbol that is imported
and exported is called a "passed-through'' import. Such a symbol appears to be defined in one module,
although it is actually defined in another module.

Symbols can also be marked as "deferred imports." References to deferred import symbols are never
rebound by the run time linker. Resolution of these symbols must be performed by the system loader,
either by calling loadbind() or by loading a new module explicitly with load() or dlopen().

References to imported symbols (other than deferred imports) can always be rebound. The system
loader will have already resolved most imports. References to each imported symbol are rebound to the
symbol's defining instance. If no defining instance exists, an error message will be printed to standard
error. In addition, if the typechecking hash string of an imported symbol does not match the hash string of
the defining symbol, an error message is printed.

References to exported symbols are also rebound to their defining instances, as long as the references
appear in the relocation table of the loader section. (Passed-through imports are processed along with
other imports, as described above.) Depending on how the module was linked, some references to
exported symbols are bound at link time and cannot be rebound. Since exported symbols are defined
in the exporting module, a defining instance of the symbol will always exist, unless the first instance is
a deferred import, so errors are unlikely, but still possible, when rebinding exported symbols. As with
imports, errors are printed if the typechecking hash strings do not match when a symbol is rebound.

582 AIX Version 7.2: General programming concepts

Whenever a symbol is rebound, a dependency is added from the module using the symbol to the module
defining the symbol. This dependency prevents modules from being removed from the address space
prematurely. This is important when a module loaded by the dlopen subroutine defines a symbol that is
still being used when an attempt is made to unload the module with the dlclose subroutine.

The loader section symbol table does not contain any information about the alignment or length of
symbols. Thus, no errors are detected when symbols are rebound to instances that are too short or
improperly aligned. Execution errors may occur in this case.

Once all modules have been processed, the run time linker calls the exit subroutine if any run time
linking errors occurred, passing an exit code of 144 (0x90). Otherwise, execution continues by calling
initialization routines or main().

Creating a shared object with run time linking enabled

To create a shared object enabled for run time linking, you link with the -G flag. When this flag is used, the
following actions take place:

1. Exported symbols are given the nosymbolic attribute, so that all references to the symbols can be
rebound by the run time linker.

2. Undefined symbols are permitted (see the -berok option). Such symbols are marked as being imported
from the symbolic module name "..". Symbols imported from ".." must be resolved by the run time
linker before they can be used because the system loader will not resolve these symbols.

3. The output file is given a module type of SRE, as if the -bM:SRE option had been specified.
4. All shared objects listed on the command line are listed as dependents of the output module, in the

same manner as described when linking a program with the -brtl option.
5. Shared objects in archives are listed if they have the autoload attribute.

Using the -berok option, implied by the -G flag, can mask errors that could be detected at link time. If you
intend to define all referenced symbols when linking a module, you should use the -bernotok option after
the -G flag. This causes errors to be reported for undefined symbols.

Shared libraries and lazy loading
By default, when a module is loaded, the system loader automatically loads all of the module's
dependents at the same time. Loading of dependents occurs because when a module is linked, a list
of the module's dependent modules is saved in the loader section of the module.

Module Description

dump -H Command that allows viewing of dependent modules list.

-blazy In AIX 4.2.1 and later, linker option that links a module so that only some of its
dependents are loaded when a function in the module is first used.

When you use lazy loading, you can improve the performance of a program if most of a module's
dependents are never actually used. On the other hand, every function call to a lazily loaded module
has an additional overhead of about 7 instructions, and the first call to a function requires loading the
defining module and modifying the function call. Therefore, if a module calls functions in most of its
dependents, lazy loading may not be appropriate.

When a function defined in a lazily loaded module is called for the first time, an attempt is made to
load the defining module and find the desired function. If the module cannot be found or if the function
is not exported by the module, the default behavior is to print an error message to standard error and
exit with a return code of 1. An application can supply its own error handler by calling the function
_lazySetErrorHandler and supplying the address of an error handler. An error handler is called with 3
arguments: the name of the module, the name of the symbol, and an error value indicating the cause of
the error. If the error handler returns, its return value should be the address of a substitute function for
the desired function. The return value for _lazySetErrorHandler is NULL if no error handler exists, and the
address of a previous handler if one exists.

General programming concepts 583

Using lazy loading does not usually change the behavior of a program, but there are a few exceptions.
First, any program that relies on the order that modules are loaded is going to be affected, because
modules can be loaded in a different order, and some modules might not be loaded at all.

Second, a program that compares function pointers might not work correctly when lazy loading is used,
because a single function can have multiple addresses. In particular, if module A calls function `f' in
module B, and if lazy loading of module B was specified when module A was linked, then the address of
`f' computed in module A differs from the address of `f' computed in other modules. Thus, when you use
lazy loading, two function pointers might not be equal, even if they point to the same function.

Third, if any modules are loaded with relative path names and if the program changes working directories,
the dependent module might not be found when it needs to be loaded. When you use lazy loading, you
should use only absolute path names when referring to dependent modules at link time.

The decision to enable lazy loading is made at link time on a module-by-module basis. In a single
program, you can mix modules that use lazy loading with modules that do not. When linking a single
module, a reference to a variable in a dependent module prevents that module from being loaded lazily. If
all references to a module are to function symbols, the dependent module can be loaded lazily.

The lazy loading facility can be used in both threaded and non-threaded applications.

Lazy loading execution tracing

A runtime feature is provided that allows you to view the loading activity as it takes place. This is
accomplished using the environment variable LDLAZYDEBUG. The value of this variable is a number, in
decimal, octal (leading 0), or hexadecimal (leading 0x) that is the sum of one or more of the following
values:

Variable Description

1 Show load or look-up errors.

If a required module cannot be found, a message displays and the lazy load error handler is called. If
a requested symbol is not available in the loaded referenced module, a message displays before the
error handler is called.

2 Write tracing messages to stderr instead of stdout.

By default, these messages are written to the standard output file stream. This value selects the
standard error stream.

4 Display the name of the module being loaded.

When a new module is required to resolve a function call, the name of the module that is found and
loaded displays. This only occurs at the first reference to a function within that module; that is, once
a module is loaded, it remains available for subsequent references to functions within that module.
Additional load operations are not required.

8 Display the name of the called function.

The name of the required function, along with the name of the module from which the function is
expected, displays. This information displays before the module is loaded.

Named shared library areas
By default, AIX shares libraries among processes using a global set of segments, referred to as the global
shared library area.

For 32-bit processes, this area consists of one segment for shared library text (segment 0xD) and one
segment for pre-relocated library data (segment 0xF). Sharing text and pre-relocating data improves
performance on systems where a large number of processes use common shared libraries.

Because the global shared library area is a single fixed-size resource, attempts to share a set of libraries
that exceed the capacity of the area cannot succeed. In this situation, a portion of a process libraries
are loaded privately. Loading libraries privately, as opposed to shared, consumes private address space
in the process and places greater demands on paging space, leading to a degradation in overall system
performance.

584 AIX Version 7.2: General programming concepts

To address this limitation of the global shared library area, AIX 5.3 supports named shared library areas,
which include the following benefits:

• A named shared library area replaces the global shared library area for a group of processes.
• A named shared library area enables a group of processes to have the full shared library capacity

available to them at the same location in the effective address space as the global shared library area
(segments 0xD and 0xF).

• The named shared library area feature is enabled via the LDR_CNTRL environment variable and no
changes are required to existing binaries.

• Multiple named shared library areas can be active on the system simultaneously.
• Processes specify a particular named shared library area by a unique name. This name is chosen by the

process that causes the area’s creation.
• Named shared library areas are available for use only by 32-bit processes.

Because the use of a specific named shared library area is restricted to processes that request it, none of
its space will be consumed by processes using the global shared library area or a different named shared
library area. This decrease in competition for space in the named shared library area benefits processes
using the area. These processes experience lower private address space consumption and a greater
ability to share libraries among themselves. Use of a named shared library area among processes that
utilize common shared libraries can optimize the processes' address space usage and decrease demands
on paging space, resulting in enhanced overall system performance.

Alternate memory model (doubletext32)

In addition to the default shared library area memory model (one segment dedicated to shared library
text and one segment dedicated to pre-relocated library data), named shared library areas support an
alternate memory model that dedicates both segments to shared library text. This model is useful for
process groups that share greater than 256 MB of library text. Note that since this alternate memory
model performs no pre-relocation of library data, some performance degradation during module loading
(for both exec-time dependencies and dynamically loaded modules) may be experienced. Therefore, the
actual performance benefits of increased shared library text capacity should be considered on a case by
case basis.

Interface

Access

A process requests the use of a named shared library area by having the LDR_CNTRL environment
variable with the NAMEDSHLIB option in its environment at run time. The syntax of the new option is as
follows:

NAMEDSHLIB=name[,attribute][,attribute2]...[,attributeN]

A valid name string can be any string matching the regular expression, [A-Za-z0-9_\.]+ (containing
only alphanumeric, underbar, and period characters).

A valid name string must be terminated by one of the following characters:

• @ (at sign): The delimiter for multiple LDR_CNTRL options
• , (comma): The delimiter for NAMEDSHLIB attributes
• \0 (null): The terminator of the LDR_CNTRL environment string

If an invalid name string is specified, the entire NAMEDSHLIB option is ignored. If an invalid attribute is
specified, only that attribute is ignored. Currently, there is only one supported attribute: doubletext32.

There are no access restrictions for using named shared library areas. All requests for use of an area are
granted.

Creation

There is no explicit interface to create a named shared library area. When a process requests the use of a
named shared library area that does not exist, the area is automatically created.

General programming concepts 585

Purging

The system removes unused libraries from a named shared library area using the same mechanisms that
apply to the global shared library area:

• Automatic removal of unused libraries occurs when the area becomes full.
• Forced removal of unsused libraries can be accomplished using the slibclean command.

Destruction

There is no explicit interface to destroy a named shared library area. When the last process using a named
shared library area exits (the usecount of the area drops to zero), the area is automatically destroyed.

Attributes

The NAMEDSHLIB attributes are examined by the system loader only during named shared library area
creation. Therefore, requests to use an existing named shared library area are not strictly required to
specify attributes matching those specified at creation (the request will not fail because of an attribute
mismatch). However, because the system automatically destroys unused named shared library areas, it
is good practice to always specify attributes, even when you are requesting the use of an existing named
shared library area.

Examples

1. Run a pair of applications using the named shared library area named XYZ with one segment dedicated
to shared library text and one segment dedicated to pre-relocated library data by running the following
commands:

$ export LDR_CNTRL=NAMEDSHLIB=XYZ
$ xyz_app
$ xyz_app2

2. Run a pair of applications using the named shared library area named more_shtext with both segments
dedicated to shared library text by running the following commands:

$ export LDR_CNTRL=NAMEDSHLIB=more_shtext,doubletext32
$ mybigapp
$ mybigapp2

Creating a shared library
This section describes how to create a shared library.

Prerequisite tasks

1. Create one or more source files that are to be compiled and linked to create a shared library. These
files contain the exported symbols that are referenced in other source files.

For the examples in this article, two source files, share1.c and share2.c, are used. The
share1.c file contains the following code:

/************
 * share1.c: shared library source.
*************/

#include <stdio.h>

void func1 ()
 {
 printf("func1 called\n");
 }

void func2 ()
 {
 printf("func2 called\n");
 }

586 AIX Version 7.2: General programming concepts

The share2.c file contains the following code:

/************
 * share2.c: shared library source.
*************/

void func3 ()
 {
 printf("func3 called\n");
 }

The exported symbols in these files are func1, func2, and func3.
2. Create a main source file that references the exported symbols that will be contained in the shared

library.

For the examples in this article the main source file named main.c is used. The main.c file contains
the following code:

/************
 * main.c: contains references to symbols defined
 * in share1.c and share2.c
*************/

#include <stdio.h>

 extern void func1 (),
 func2 (),
 func3 ();
main ()
 {
 func1 ();
 func2 ();
 func3 ();
 }

3. Create the exports file necessary to explicitly export the symbols in the shared library that are
referenced by other object modules.

For the examples in this article, an exports file named shrsub.exp is used. The shrsub.exp file
contains the following code:

#! /home/sharelib/shrsub.o
* Above is full pathname to shared library object file
func1
func2
func3

The #! line is meaningful only when the file is being used as an import file. In this case, the #! line
identifies the name of the shared library file to be used at run time.

Procedure

1. Compile and link the two source code files to be shared. (This procedure assumes you are in the /
home/sharedlib directory.) To compile and link the source files, enter the following commands:

cc -c share1.c
cc -c share2.c
cc -o shrsub.o share1.o share2.o -bE:shrsub.exp -bM:SRE -bnoentry

This creates a shared library name shrsub.o in the /home/sharedlib directory.
-bM:SRE flag

Marks the resultant object file shrsub.o as a re-entrant, shared library

Each process that uses the shared code gets a private copy of the data in its private process area.

flag
Sets the dummy entry point _nostart to override the default entry point, _start

-bnoentry flag
Tells the linkage editor that the shared library does not have an entry point

General programming concepts 587

A shared library may have an entry point, but the system loader does not make use of an entry point
when a shared library is loaded.

2. Use the following command to put the shared library in an archive file:

ar qv libsub.a shrsub.o

This step is optional. Putting the shared library in an archive makes it easier to specify the shared
library when linking your program, because you can use the -l and -L flags with the ld command.

3. Compile and link the main source code with the shared library to create the executable file. (This step
assumes your current working directory contains the main.c file.) Use the following command:

cc -o main main.c -lsub -L/home/sharedlib

If the shared library is not in an archive, use the command:

cc -o main main.c /home/sharedlib/shrsub.o -L/home/sharedlib

The program main is now executable. The func1, func2, and func3 symbols have been marked for
load-time deferred resolution. At run time, the system loader loads the module in to the shared library
(unless the module is already loaded) and dynamically resolves the references.

Note: When creating a shared library from a C++ object, you must use the mangled C++ symbol names in
the export file. However, your C++ compiler might provide an option to create the shared library for you.
Refer to your compiler documentation for more information.

-L flag
Adds the specified directory (in this case, /home/sharedlib) to the library search path, which is
saved in the loader section of the program.

At run time the library search path is used to tell the loader where to find shared libraries.

LIBPATH environment variable
A colon-separated list of directory paths that can also be used to specify a different library search
path. Its format is identical to that of the PATH environment variable.

The directories in the list are searched to resolve references to shared objects. The /usr/lib and /lib
directories contain shared libraries and should normally be included in your library search path.

Program address space overview
The Base Operating System provides a number of services for programming application program memory
use.

Tools are available to assist in allocating memory, mapping memory and files, and profiling application
memory usage. As background, this section describes the system's memory management architecture
and memory management policy.

System memory architecture introduction

The system employs a memory management scheme that uses software to extend the capabilities of the
physical hardware. Because the address space does not correspond one-to-one with real memory, the
address space (and the way the system makes it correspond to real memory) is called virtual memory.

The subsystems of the kernel and the hardware that cooperate to translate the virtual address to physical
addresses make up the memory management subsystem. The actions the kernel takes to ensure that
processes share main memory fairly comprise the memory management policy. The following sections
describe the characteristics of the memory management subsystem in greater detail.

The physical address space of 64-bit systems

The hardware provides a continuous range of virtual memory addresses, from
0x00000000000000000000 to 0xFFFFFFFFFFFFFFFFFFFF, for accessing data. The total addressable
space is more than 1000000000000 terabytes. Memory access instructions generate an address of 64

588 AIX Version 7.2: General programming concepts

bits: 36 bits to select a segment register and 28 bits to give an offset within the segment. This addressing
scheme provides access to more than 64 million segments of up to 256M bytes each. Each segment
register contains a 52-bit segment ID that becomes a prefix to the 28-bit offset, which together form the
virtual memory address. The resulting 80-bit virtual address refers to a single, large, systemwide virtual
memory space.

The process space is a 64-bit address space; that is, programs use 64-bit pointers. However, each
process or interrupt handler can address only the systemwide virtual memory space (segment) whose
segment IDs are in the segment register.

Segment register addressing

The system kernel loads some segment registers in the conventional way for all processes, implicitly
providing the memory addressability needed by most processes. These registers include two kernel
segments, and a shared-library segment, and an I/O device segment, that are shared by all processes
and whose contents are read-only to non-kernel programs. There is also a segment for the exec system
call of a process, which is shared on a read-only basis with other processes executing the same program,
a private shared-library data segment that contains read-write library data, and a read-write segment
that is private to the process. The remaining segment registers may be loaded using memory mapping
techniques to provide more memory, or through memory access to files according to access permissions
imposed by the kernel.

The system's 32-bit addressing and the access provided through indirection capabilities gives each
process an interface that does not depend on the actual size of the systemwide virtual memory space.
Some segment registers are shared by all processes, others by a subset of processes, and yet others are
accessible to only one process. Sharing is achieved by allowing two or more processes to load the same
segment ID.

Paging space

To accommodate the large virtual memory space with a limited real memory space, the system uses real
memory as a work space and keeps inactive data and programs that are not mapped on disk. The area of
disk that contains this data is called the paging space. A page is a unit of virtual memory that holds 4K
bytes of data and can be transferred between real and auxiliary storage. When the system needs data or a
program in the page space, it:

1. Finds an area of memory that is not currently active.
2. Ensures that an up-to-date copy of the data or program from that area of memory is in the paging

space on disk.
3. Reads the new program or data from the paging space on disk into the newly freed area of memory.

Memory management policy

The real-to-virtual address translation and most other virtual memory facilities are provided to the system
transparently by the Virtual Memory Manager (VMM). The VMM implements virtual memory, allowing the
creation of segments larger than the physical memory available in the system. It accomplishes this by
maintaining a list of free pages of real memory that it uses to retrieve pages that need to be brought into
memory.

The VMM occasionally must replenish the pages on the free list by removing some of the current page
data from real memory. The process of moving data between memory and disk as the data is needed is
called "paging." To accomplish paging, the VMM uses page-stealing algorithms that categorize pages into
three classes, each with unique entry and exit criteria:

• working storage pages
• local file pages
• remote file pages

In general, working pages have highest priority, followed by local file pages, and then remote file pages.

In addition, the VMM uses a technique known as the clock algorithm to select pages to be replaced. This
technique takes advantage of a referenced bit for each page as an indication of what pages have been
recently used (referenced). When a page-stealer routine is called, it cycles through a page frame table,

General programming concepts 589

examining each page's referenced bit. If the page was unreferenced and is stealable (that is, not pinned
and meets other page-stealing criteria), it is stolen and placed on the free list. Referenced pages may not
be stolen, but their reference bit is reset, effectively "aging" the reference so that the page may be stolen
the next time a page-stealing algorithm is issued.

Memory allocation

Version 3 of the operating system uses a delayed paging slot technique for storage allocated to
applications. This means that when storage is allocated to an application with a subroutine such as
malloc, no paging space is assigned to that storage until the storage is referenced.

Related concepts
Understanding memory mapping
The speed at which application instructions are processed on a system is proportionate to the number of
access operations required to obtain data outside of program-addressable memory.
Paging space programming requirements
The amount of paging space required by an application depends on the type of activities performed on the
system. If paging space runs low, processes may be lost.
System memory allocation using the malloc subsystem
Memory is allocated to applications using the malloc subsystem.

Understanding memory mapping
The speed at which application instructions are processed on a system is proportionate to the number of
access operations required to obtain data outside of program-addressable memory.

The system provides two methods for reducing the transactional overhead associated with these external
read and write operations. You can map file data into the process address space. You can also map
processes to anonymous memory regions that may be shared by cooperating processes.

Memory mapped files provide a mechanism for a process to access files by directly incorporating file data
into the process address space. The use of mapped files can significantly reduce I/O data movement
since the file data does not have to be copied into process data buffers, as is done by the read and
write subroutines. When more than one process maps the same file, its contents are shared among them,
providing a low-overhead mechanism by which processes can synchronize and communicate.

Mapped memory regions, also called shared memory areas, can serve as a large pool for exchanging data
among processes. The available subroutines do not provide locks or access control among the processes.
Therefore, processes using shared memory areas must set up a signal or semaphore control method
to prevent access conflicts and to keep one process from changing data that another is using. Shared
memory areas can be most beneficial when the amount of data to be exchanged between processes is too
large to transfer with messages, or when many processes maintain a common large database.

The system provides two methods for mapping files and anonymous memory regions. The following
subroutines, known collectively as the shmat services, are typically used to create and use shared
memory segments from a program:

Subroutine Definition

shmctl Controls shared memory operations

shmget Gets or creates a shared memory segment

shmat Attaches a shared memory segment from a process. Does not allow you to map block
devices.

shmdt Detaches a shared memory segment from a process

mprotect Modifies the access protections of a specified address range within a shared memory
segment.

disclaim Removes a mapping from a specified address range within a shared memory segment

590 AIX Version 7.2: General programming concepts

The ftok subroutine provides the key that the shmget subroutine uses to create the shared segment

The second set of services, collectively known as the mmap services, is typically used for mapping files,
although it may be used for creating shared memory segments as well.

All operations valid on memory resulting from mmap() of a file are valid on memory resulting from mmap()
of a block device. A block device is a special file that provides access to a device driver that presents
a block interface. A block interface to a device driver requires data access in blocks of a fixed size. The
interface is typically used for data storage devices.

The mmap services include the following subroutines:

Subroutine Definition

madvise Advises the system of a process' expected paging behavior

mincore Determines residency of memory pages

mmap Maps an object file into virtual memory. Allows you to map block devices one process at a
time.

mprotect Modifies the access protections of memory mapping

msync Synchronizes a mapped file with its underlying storage device

munmap Unmaps a mapped memory region

The msem_init, msem_lock, msem_unlock, msem_remove, msleep, and mwakeup subroutines provide
access control for the processes mapped using the mmap services.

Refer to the following sections to learn more about memory mapping:

Comparing mmap with shmat

As with the shmat services, the portion of the process address space available for mapping files with
the mmap services is dependent on whether a process is a 32-bit process or a 64-bit process. For
32-bit processes, the portion of address space available for mapping consists of addresses in the
range of 0x30000000-0xCFFFFFFF, for a total of 2.5G bytes of address space. The portion of address
space available for mapping files consists of addresses in the rangesof 0x30000000-0xCFFFFFFF and
0xE0000000-0xEFFFFFFF for a total of 2.75G bytes of address space. In AIX 5.2 and later, a 32-bit
process run with the very large address-space model has the range 0x30000000-0xFFFFFFFF available
for mappings, with a total of up to 3.25GB of address space.

All available ranges within the 32-bit process address space are available for both fixed-location and
variable-location mappings. Fixed-location mappings occur when applications specify that a mapping be
placed at a fixed location within the address space. Variable-location mappings occur when applications
specify that the system should decide the location at which a mapping should be placed.

For 64-bit processes, two sets of address ranges with the process address space
are available for mmap or shmat mappings. The first, consisting of the single range
0x07000000_00000000-0x07FFFFFF_FFFFFFFF, is available for both fixed-location and variable-
location mappings. The second set of address ranges is available for fixed-location
mappings only and consists of the ranges 0x30000000-0xCFFFFFFF, 0xE0000000-0xEFFFFFFF,
and 0x10_00000000-0x06FFFFFF_FFFFFFFF. The last range of this set, consisting of
0x10_00000000-0x06FFFFFF_FFFFFFFF, is also made available to system loader to hold program text,
data and heap, so only unused portions of the range are available for fixed-location mappings.

Both the mmap and shmat services provide the capability for multiple processes to map the same region
of an object such that they share addressability to that object. However, the mmap subroutine extends
this capability beyond that provided by the shmat subroutine by allowing a relatively unlimited number of
such mappings to be established. While this capability increases the number of mappings supported per
file object or memory segment, it can prove inefficient for applications in which many processes map the
same file data into their address space.

General programming concepts 591

The mmap subroutine provides a unique object address for each process that maps to an object. The
software accomplishes this by providing each process with a unique virtual address, known as an alias.
The shmat subroutine allows processes to share the addresses of the mapped objects.

Because only one of the existing aliases for a given page in an object has a real address translation at
any given time, only one of the mmap mappings can make a reference to that page without incurring
a page fault. Any reference to the page by a different mapping (and thus a different alias) results in a
page fault that causes the existing real-address translation for the page to be invalidated. As a result, a
new translation must be established for it under a different alias. Processes share pages by moving them
between these different translations.

For applications in which many processes map the same file data into their address space, this toggling
process may have an adverse affect on performance. In these cases, the shmat subroutine may provide
more efficient file-mapping capabilities.

Note: On systems with PowerPC processors, multiple virtual addresses can exist for the same real
address. A real address can be aliased to different effective addresses in different processes without
toggling. Because there is no toggling, there is no performance degradation.

Use the shmat services under the following circumstances:

• For 32-bit application, eleven or fewer files are mapped simultaneously, and each is smaller than
256MB.

• When mapping files larger than 256MB.
• When mapping shared memory regions which need to be shared among unrelated processes (no

parent-child relationship).
• When mapping entire files.

Use mmap under the following circumstances:

• Portability of the application is a concern.
• Many files are mapped simultaneously.
• Only a portion of a file needs to be mapped.
• Page-level protection needs to be set on the mapping.
• Private mapping is required.

An "extended shmat" capability is available for 32-bit applications with their limited address spaces. If
you define the environment variable EXTSHM=ON, then processes executing in that environment can
create and attach more than eleven shared memory segments. The process can attach these segments
into the address space for the size of the segment. Another segment can be attached at the end of the
first one in the same 256M byte region. The address at which a process can attach is at page boundaries,
which is a multiple of SHMLBA_EXTSHM bytes.

Some restrictions exist on the use of the extended shmat feature. These shared memory regions cannot
be used as I/O buffers where the unpinning of the buffer occurs in an interrupt handler. The restrictions on
the use of extended shmat I/O buffers is the same as that of mmap buffers.

The environment variable provides the option of executing an application with either the additional
functionality of attaching more than 11 segments when EXTSHM=ON, or the higher-performance access
to 11 or fewer segments when the environment variable is not set. Again, the "extended shmat" capability
only applies to 32-bit processes.

mmap Compatibility Considerations

The mmap services are specified by various standards and commonly used as the file-mapping interface
of choice in other operating system implementations. However, the system's implementation of the
mmap subroutine may differ from other implementations. The mmap subroutine incorporates the
following modifications:

• Mapping into the process private area is not supported.

592 AIX Version 7.2: General programming concepts

• Mappings are not implicitly unmapped. An mmap operation which specifies MAP_FIXED will fail if a
mapping already exists within the range specified.

• For private mappings, the copy-on-write semantic makes a copy of a page on the first write reference.
• Mapping of I/O or device memory is not supported.
• Mapping of character devices or use of an mmap region as a buffer for a read-write operation to a

character device is not supported.
• The madvise subroutine is provided for compatibility only. The system takes no action on the advice
specified.

• The mprotect subroutine allows the specified region to contain unmapped pages. In operation, the
unmapped pages are simply skipped over.

• The OSF/AES-specific options for default exact mapping and for the MAP_INHERIT,
MAP_HASSEMAPHORE, and MAP_UNALIGNED flags are not supported.

Using the semaphore subroutines

The msem_init, msem_lock, msem_unlock, msem_remove, msleep and mwakeup subroutines
conform to the OSF Application Environment specification. They provide an alternative to IPC interfaces
such as the semget and semop subroutines. Benefits of using the semaphores include an efficient
serialization method and the reduced overhead of not having to make a system call in cases where there
is no contention for the semaphore.

Semaphores should be located in a shared memory region. Semaphores are specified by msemaphore
structures. All of the values in a msemaphore structure should result from a msem_init subroutine
call. This call may or may not be followed by a sequence of calls to the msem_lock subroutine or the
msem_unlock subroutine. If a msemaphore structure values originated in another manner, the results of
the semaphore subroutines are undefined.

The address of the msemaphore structure is significant. You should be careful not to modify the
structure's address. If the structure contains values copied from a msemaphore structure at another
address, the results of the semaphore subroutines are undefined.

The semaphore subroutines may prove less efficient when the semaphore structures exist in anonymous
memory regions created with the mmap subroutine, particularly in cases where many processes
reference the same semaphores. In these instances, the semaphore structures should be allocated out of
shared memory regions created with the shmget and shmat subroutines.

Mapping files with the shmat subroutine

Mapping can be used to reduce the overhead involved in writing and reading the contents of files. Once
the contents of a file are mapped to an area of user memory, the file may be manipulated as if it were
data in memory, using pointers to that data instead of input/output calls. The copy of the file on disk also
serves as the paging area for that file, saving paging space.

A program can use any regular file as a mapped data file. You can also extend the features of mapped
data files to files containing compiled and executable object code. Because mapped files can be accessed
more quickly than regular files, the system can load a program more quickly if its executable object file is
mapped to a file.

To create a program as a mapped executable file, compile and link the program using the -K flag with the
cc or ld command. The -K flag tells the linker to create an object file with a page-aligned format. That is,
each part of the object file starts on a page boundary (an address that can be divided by 2K bytes with no
remainder). This option results in some empty space in the object file but allows the executable file to be
mapped into memory. When the system maps an object file into memory, the text and data portions are
handled differently.

Copy-on-write mapped files

To prevent changes made to mapped files from appearing immediately in the file on disk, map the file as
a copy-on-write file. This option creates a mapped file with changes that are saved in the system paging
space, instead of to the copy of the file on disk. You must choose to write those changes to the copy on
disk to save the changes. Otherwise, you lose the changes when closing the file.

General programming concepts 593

Because the changes are not immediately reflected in the copy of the file that other users may access,
use copy-on-write mapped files only among processes that cooperate with each other.

The system does not detect the end of files mapped with the shmat subroutine. Therefore, if a program
writes beyond the current end of file in a copy-on-write mapped file by storing into the corresponding
memory segment (where the file is mapped), the actual file on disk is extended with blocks of zeros in
preparation for the new data. If the program does not use the fsync subroutine before closing the file, the
data written beyond the previous end of file is not written to disk. The file appears larger, but contains only
the added zeros. Therefore, always use the fsync subroutine before closing a copy-on-write mapped file
to preserve any added or changed data.

Mapping shared memory segments with the shmat subroutine

The system uses shared memory segments similarly to the way it creates and uses files. Defining
the terms used for shared memory with respect to the more familiar file-system terms is critical to
understanding shared memory. A definition list of shared memory terms follows:

Term Definition

key The unique identifier of a particular shared segment. It is associated with the shared segment
as long as the shared segment exists. In this respect, it is similar to the file name of a file.

shmid The identifier assigned to the shared segment for use within a particular process. It is similar
in use to a file descriptor for a file.

attach Specifies that a process must attach a shared segment in order to use it. Attaching a shared
segment is similar to opening a file.

detach Specifies that a process must detach a shared segment once it is finished using it. Detaching a
shared segment is similar to closing a file.

Related concepts
Program address space overview
The Base Operating System provides a number of services for programming application program memory
use.
Creating a shared memory segment with the shmat subroutine
This section describes how to create a shared memory segment with the shmat subroutine
Interprocess communication limits
This topic describes system limits for Interprocess communication (IPC) mechanisms.

Interprocess communication limits
This topic describes system limits for Interprocess communication (IPC) mechanisms.

On some UNIX systems, the system administrator can edit the /etc/master file and define limits for
IPC mechanisms (semaphores, shared memory segments, and message queues). The problem with this
method is that the higher the limits, the more memory the operating system uses, and performance can
be adversely affected.

AIX uses a different method. In AIX, upper limits are defined for the IPC mechanisms, which are not
configurable. The individual IPC data structures are allocated and deallocated as needed, so memory
requirements depend on the current system usage of IPC mechanisms.

This difference in methods sometimes confuses users who are installing or using databases. The limit
that is the most confusing is the maximum number of shared memory segments that can be attached
simultaneously per process. For 64-bit processes, the maximum number of shared memory segments is
268435456. For 32-bit processes, the maximum number of shared memory segments is 11, unless the
extended shmat capability is used.

The following tables summarize the semaphore limits on IPC mechanisms.

594 AIX Version 7.2: General programming concepts

Semaphores 4.3.0 4.3.1 4.3.2 5.1 5.2 5.3 7.1

Maximum number of
semaphore IDs for 32-
bit kernel

4096 4096 131072 131072 131072 131072 N/A

Maximum number of
semaphore IDs for 64-
bit kernel

4096 4096 131072 131072 131072 1048576 1048576

Maximum semaphores
per semaphore ID

65535 65535 65535 65535 65535 65535 65535

Maximum operations
per semop call

1024 1024 1024 1024 1024 1024 1024

Maximum undo entries
per process

1024 1024 1024 1024 1024 1024 1024

Size in bytes of undo
structure

8208 8208 8208 8208 8208 8208 8208

Semaphore maximum
value

32767 32767 32767 32767 32767 32767 32767

Adjust on exit
maximum value

16384 16384 16384 16384 16384 16384 16384

The following tables summarize the message queue limits on IPC mechanisms.

Message queue 4.3.0 4.3.1 4.3.2 5.1 5.2 5.3 7.1

Maximum message
size

4 MB 4 MB 4 MB 4 MB 4 MB 4 MB 4 MB

Maximum bytes on
queue

4 MB 4 MB 4 MB 4 MB 4 MB 4 MB 4 MB

Maximum number of
message queue IDs
for 32-bit kernel

4096 4096 131072 131072 131072 131072 131072

Maximum number of
message queue IDs
for 64-bit kernel

4096 4096 131072 131072 131072 1048576 1048576

Maximum messages
per queue ID

524288 524288 524288 524288 524288 524288 524288

The following tables summarize the shared memory limits on IPC mechanisms.

Shared
memory

4.3.0 4.3.1 4.3.2 5.1 5.2 5.3 7.1

Maximum
segment
size (32-
bit
process)

256 MB 2 GB 2 GB 2 GB 2 GB 2 GB 2 GB

General programming concepts 595

Shared
memory

4.3.0 4.3.1 4.3.2 5.1 5.2 5.3 7.1

Maximum
segment
size (64-
bit
process)
for 32-bit
kernel

256 MB 2 GB 2 GB 64 GB 1 TB 1 TB N/A

Maximum
segment
size (64-
bit
process)
for 64-bit
kernel

256 MB 2 GB 2 GB 64 GB 1 TB 32 TB 32 TB

Minimum
segment
size

1 1 1 1 1 1 1

Maximum
number of
shared
memory
IDs (32-bit
kernel)

4096 4096 131072 131072 131072 131072 131072

Maximum
number of
shared
memory
IDs (64-bit
kernel)

4096 4096 131072 131072 131072 1048576 1048576

Maximum
number of
segments
per
process
(32-bit
process)

11 11 11 11 11 11 11

Maximum
number of
segments
per
process
(64-bit
process)

26843545
6

26843545
6

26843545
6

268435456 26843545
6

26843545
6

26843545
6

Note: For 32-bit processes, the maximum number of segments per process is limited only by the size of
the address space when the extended shmat capability is used.

IPC limits on AIX4.3

• For semaphores and message queues, the table shows the system limits
• For shared memory, the maximum shared memory segment size is 256GB.

596 AIX Version 7.2: General programming concepts

• For shared memory without the extended shmat capability:

– A process can attach a maximum of 11 shared memory segments.
• For shared memory with the extended shmat capability:

– When a shared memory segments is attached, its size is rounded to a multiple of 4096 bytes
– A process can attach as many shared memory segments as will fit in the available address space. The

maximum available address space size is 11 segments, or 11 times 256 MB.
• The extended shmat capability is used if the environment variable EXTSHM has the value ON when the

process starts executing.
• The available address space for attaching shared memory segments is reduced if the large or very large

address-space model is used.

IPC limits on AIX 4.3.1

• The maximum size of a shared memory segment increases from 256 MB to 2 GB. When a shared
memory segment larger than 256 MB is attached, its size is rounded to a multiple of 256 MB, even if the
extended shmat capability is being used.

IPC limits on AIX 4.3.2

• The maximum number of message queues, semaphore IDs, and shared memory segments is 131072.
• The maximum number of messages per queue is 524288.

IPC limits on AIX 5.1

• The maximum size of a shared memory segment for 64-bit processes is 64 GB. A 32-bit process cannot
attach a shared memory segment larger than 2 GB.

IPC limits on AIX 5.2

• The maximum size of a shared memory segment for 64-bit processes is 1 TB. A 32-bit process cannot
attach a shared memory segment larger than 2 GB.

• 32-bit applications can use the shmat capability to obtain more than 11 segments when using the very
large address space model without having to use extended shmat. For more information on the very
large address space model.

• Applications can query the IPC limits on the system using the vmgetinfo system call.

IPC limits on AIX 5.3

• The maximum size of a shared memory segment for 64-bit processes is 32 TB. A 32-bit process cannot
attach a shared memory segment larger than 2 GB.

• 32-bit applications can use the shmat capability to obtain more than 11 segments when using the very
large address space model without having to use extended shmat. For more information on the very
large address space model.

• Applications can query the IPC limits on the system using the vmgetinfo system call.

IPC limits on AIX 6.1

The 32-bit kernel is no longer supported on AIX 6.1. All other values are the same.

Related concepts
Understanding memory mapping
The speed at which application instructions are processed on a system is proportionate to the number of
access operations required to obtain data outside of program-addressable memory.

Creating a mapped data file with the shmat subroutine
This section describes how to create a mapped data file using shmat subroutine.

Prerequisite condition

The file to be mapped is a regular file.

General programming concepts 597

Procedure

The creation of a mapped data file is a two-step process. First, you create the mapped file. Then, because
the shmat subroutine does not provide for it, you must program a method for detecting the end of the
mapped file.

1. To create the mapped data file:

a. Open (or create) the file and save the file descriptor:

if((fildes = open(filename , 2)) < 0)
{
 printf("cannot open file\n");
 exit(1);
}

b. Map the file to a segment with the shmat subroutine:

file_ptr=shmat (fildes, 0, SHM_MAP);

The SHM_MAP constant is defined in the /usr/include/sys/shm.h file. This constant indicates that
the file is a mapped file. Include this file and the other shared memory header files in a program
with the following directives:

#include <sys/shm.h>

2. To detect the end of the mapped file:

a. Use the lseek subroutine to go to the end of file:

eof = file_ptr + lseek(fildes, 0, 2);

This example sets the value of eof to an address that is 1 byte beyond the end of file. Use this
value as the end-of-file marker in the program.

b. Use file_ptr as a pointer to the start of the data file, and access the data as if it were in memory:

while (file_ptr < eof)
{
 .
 .
 .
 (references to file using file_ptr)
}

Note: The read and write subroutines also work on mapped files and produce the same
data as when pointers are used to access the data.

c. Close the file when the program is finished working with it:

close (fildes);

Creating a copy-on-write mapped data file with the shmat subroutine
This section describes how to create a copy-on-write mapped data file with the shmat subroutine.

Prerequisite Condition

The file to be mapped is a regular file.

Procedure

1. Open (or create) the file and save the file descriptor:

if((fildes = open(filename , 2)) < 0)
{
 printf("cannot open file\n");
 exit(1);
}

598 AIX Version 7.2: General programming concepts

2. Map the file to a segment as copy-on-write, with the shmat subroutine:

file_ptr = shmat(fildes, 0, SHM_COPY);

The SHM_COPY constant is defined in the /usr/include/sys/shm.h file. This constant indicates that the
file is a copy-on-write mapped file. Include this header file and other shared memory header files in a
program with the following directives:

#include <sys/shm.h>

3. Use file_ptr as a pointer to the start of the data file, and access the data as if it were in memory.

while (file_ptr < eof)
{
 .
 .
 .
 (references to file using file_ptr)
}

4. Use the fsync subroutine to write changes to the copy of the file on disk to save the changes:

fsync(fildes);

5. Close the file when the program is finished working with it:

close(fildes);

Creating a shared memory segment with the shmat subroutine
This section describes how to create a shared memory segment with the shmat subroutine

Prerequisite tasks or conditions

None.

Procedure

1. Create a key to uniquely identify the shared segment. Use the ftok subroutine to create the key. For
example, to create the key mykey using a project ID of R contained in the variable proj (type char)
and a file name of null_file, use a statement like:

mykey = ftok(null_file, proj);

2. Either:

• Create a shared memory segment with the shmget subroutine. For example, to create a shared
segment that contains 4096 bytes and assign the shmid to an integer variable mem_id, use a
statement like:

mem_id = shmget(mykey, 4096, IPC_CREAT | 0666);

• Get a previously created shared segment with the shmget subroutine. For example, to get a shared
segment that is already associated with the key mykey and assign the shmid to an integer variable
mem_id, use a statement like:

mem_id = shmget(mykey, 4096, IPC_ACCESS);

3. Attach the shared segment to the process with the shmat subroutine. For example, to attach a
previously created segment, use a statement like:

ptr = shmat(mem_id, 0, 0);

General programming concepts 599

In this example, the variable ptr is a pointer to a structure that defines the fields in the shared
segment. Use this template structure to store and retrieve data in the shared segment. This template
should be the same for all processes using the segment.

4. Work with the data in the segment using the template structure.
5. Detach from the segment using the shmdt subroutine:

shmdt(ptr);

6. If the shared segment is no longer needed, remove it from the system with the shmctl subroutine:

shmctl(mem_id, IPC_RMID, ptr);

Note: You can also use the ipcs command to get information about a segment, and the
ipcrm command to remove a segment.

Related concepts
Understanding memory mapping
The speed at which application instructions are processed on a system is proportionate to the number of
access operations required to obtain data outside of program-addressable memory.

Paging space programming requirements
The amount of paging space required by an application depends on the type of activities performed on the
system. If paging space runs low, processes may be lost.

If paging space runs out, the system may panic. When a paging space low condition is detected,
additional paging space should be defined.

The system monitors the number of free paging space blocks and detects when a paging space shortage
exists. The vmstat command obtains statistics related to this condition. When the number of free paging
space blocks falls below a threshold known as the paging space warning level, the system informs all
processes (excepts kprocs) of the low condition by sending the SIGDANGER signal.

Note: If the shortage continues and falls below a second threshold known as the paging space kill level,
the system sends the SIGKILL signal to processes that are the major users of paging space and that do
not have a signal handler for the SIGDANGER signal. (The default action for the SIGDANGER signal is to
ignore the signal). The system continues sending SIGKILL signals until the number of free paging space
blocks is above the paging space kill level. If the low_ps_handling parameter is set to 2 (under the
vmo command) and if no process is found to kill (without the SIGDANGER handler), the system sends the
SIGKILL signal to the earliest processes that have a signal handler for the SIGDANGER signal.

Processes that dynamically allocate memory can ensure that sufficient paging space exists by monitoring
the paging space levels with the psdanger subroutine or by using special allocation routines. Processes
can avoid being ended when the paging space kill level is reached by defining a signal handler for the
SIGDANGER signal and by using the disclaim subroutine to release memory and paging space resources
allocated in the data and stack areas, and in shared memory segments.

Other subroutines that can assist in dynamically retrieving paging information from the VMM include the
following:

Subroutin
e

Description

mincore Determines the residency of memory pages.

madvise Permits a process to advise the system about its expected paging behavior.

swapqry Returns paging device status.

swapon Activates paging or swapping to a designated block device.

Related concepts
Program address space overview

600 AIX Version 7.2: General programming concepts

The Base Operating System provides a number of services for programming application program memory
use.

List of memory manipulation services
The memory functions operate on arrays of characters in memory called memory areas.

These subroutines enable you to:

• Locate a character within a memory area
• Copy characters between memory areas
• Compare contents of memory areas
• Set a memory area to a value.

You do not need to specify any special flag to the compiler in order to use the memory functions.
However, you must include the header file for these functions in your program. To include the header file,
use the following statement:

#include <memory.h>

The following memory services are provided:

Service Description

compare_and_swap Compares and swaps data

fetch_and_add Updates a single word variable atomically

fetch_and_and or fetch_and_or Set or clear bits in a single word variable atomically

malloc, free, realloc, calloc, mallopt, mallinfo, or
alloca

Allocate memory

memccpy, memchr, memcmp, memcpy, memset
or memmove

Perform memory operations.

Service Description

moncontrol Starts and stops execution profiling after initialization by the monitor subroutine

monitor Starts and stops execution profiling using data areas defined in the function
parameters

monstartup Starts and stops execution profiling using default-sized data areas

mprotect Modifies the access protections of a specified address range within a shared
memory segment.

msem_init Initializes a semaphore in a mapped file or shared memory region

msem_lock Locks a semaphore

msem_remove Removes a semaphore

msem_unlock Unlocks a semaphore

msleep Puts a process to sleep when a semaphore is busy

mwakeup Wakes up a process that is waiting on a semaphore

disclaim Disclaims the content of a memory address range

ftok Generates a standard interprocess communication key

getpagesize Gets the system page size

psdanger Defines the amount of free paging space available

General programming concepts 601

Service Description

shmat Attaches a shared memory segment or a mapped file to the current process

shmctl Controls shared memory operations

shmdt Detaches a shared memory segment

shmget Gets a shared memory segment

swapon Activates paging or swapping to a designated block device

swapqry Returns device status

List of memory mapping services
The memory mapping subroutines operate on memory regions that have been mapped with the mmap
subroutine.

These subroutines enable you to:

• Map an object file into virtual memory
• Synchronize a mapped file
• Determine residency of memory pages
• Determine access protections to a mapped memory region
• Unmap mapped memory regions.

You do not need to specify any special flag to the compiler to use the memory functions. However, you
must include the header file for some of these subroutines. If the subroutine description specifies a
header file, you can include it with the following statement:

#include <HeaderFile.h>

The following memory mapping services are provided:

Service Description

madvise Advises the system of a process' expected paging behavior.

mincore Determines residency of memory pages.

mmap Maps an object file onto virtual memory.

mprotect Modifies access protections of memory mapping.

msync Synchronizes a mapped file with its underlying storage device.

munmap Unmaps a mapped memory region.

AIX vector programming
Some PowerPC processors implement a Single Instruction Multiple Data (SIMD)-style vector extension.

Often referred to as AltiVec or VMX, the vector extension to the PowerPC architecture provides an
additional instruction set for performing vector and matrix mathematical functions.

The Vector Arithmetic Logic Unit is an SIMD-style arithmetic unit, in which a single instruction performs
the same operation on all the data elements of each vector. AIX 5.3 with recommended technology level
5300-30 is the first AIX release to enable vector programming. The IBM PowerPC 970 processor is the
first processor supported by AIX that implements the vector extension. These processors are currently
found in the JS20 blade servers offered with the BladeCenter.

602 AIX Version 7.2: General programming concepts

Vector extension overview
The vector extension consists of an additional set of 32 128-bit registers that can contain a variety of
vectors including signed or unsigned 8-bit, 16-bit, or 32-bit integers, or 32-bit IEEE single-precision
floats. There is a vector status and control register that contains a sticky status bit indicating saturation,
as well as a control bit for enabling Java or non-Java mode for floating-point operations.

The default mode initialized by AIX for every new process is Java-mode enabled, which provides IEEE-
compliant floating-point operations. The alternate non-Java mode results in a less precise mode for
floating point computations, which might be significantly faster on some implementations and for specific
operations. For example, on the PowerPC 970 processor running in Java mode, some vector floating-point
instructions will encounter an exception if the input operands or result are denormal, resulting in costly
emulation by the operating system. For this reason, you are encouraged to consider explicitly enabling
the non-Java mode if the rounding is acceptable, or to carefully attempt to avoid vector computations on
denormal values.

The vector extension also includes more than 160 instructions providing load and store access between
vector registers and memory, in register manipulation, floating point arithmetic, integer arithmetic and
logical operations, and vector comparison operations. The floating point arithmetic instructions use the
IEEE 754-1985 single precision format, but do not report IEEE exceptions. Default results are produced
for all exception conditions as specified by IEEE for untrapped exceptions. Only IEEE default round-to-
nearest rounding mode is provided. No floating-point division or square-root instructions are provided,
but instead a reciprocal estimate instruction is provided for division, and a reciprocal square root estimate
instruction is provided for square root.

There is also a 32-bit special purpose register that is managed by software to represent a bitmask of
vector registers in use. This allows the operating system to optimize vector save and restore algorithms as
part of context switch management.

Runtime determination of vector capability
A program can determine whether a system supports the vector extension by reading the vmx_version
field of the _system_configuration structure. If this field is non-zero, then the system processors and
operating system contain support for the vector extension. A __power_vmx() macro is provided in /usr/
include/sys/systemcfg.h for performing this test. This can be useful for software that conditionally
exploits the vector extension when present, or to use functionally equivalent scalar code paths when not
present.

AIX ABI extension

The AIX Application Binary Interface (ABI) has been extended to support the addition of vector register
state and conventions. Refer to the Assembler Language Reference for a complete description of the ABI
extensions.

AIX supports the AltiVec programming interface specification. Below is a table of the C and C++ vector
data types. All vector data types are 16 bytes in size, and must be aligned on a 16-byte boundary.
Aggregates containing vector types must follow normal conventions of aligning the aggregate to the
requirement of its largest member. If an aggregate containing a vector type is packed, then there is no
guarantee of 16-byte alignment of the vector type. An AIX compiler supporting the AltiVec programming
interface specification is required.

Table 82. New C and C++ Vector Data Types

New C and C++ types Contents

vector unsigned characters 16 unsigned characters

vector signed characters 16 signed characters

vector bool characters 16 unsigned characters

vector unsigned short 8 unsigned short

General programming concepts 603

Table 82. New C and C++ Vector Data Types (continued)

New C and C++ types Contents

vector signed short 8 signed short

vector bool short 8 unsigned short

vector unsigned integers 4 unsigned integers

vector signed integers 4 signed integers

vector bool integers 4 unsigned integers

vector float 4 float

The following table outlines the vector register usage conventions.

Table 83. Vector Register Conventions

Register type Register Status Use

VRs VR0 Volatile Scratch register

VR1 Volatile Scratch register

VR2 Volatile First vector argument

First vector of function
return value

VR3 Volatile Second vector
argument, scratch

VR4 Volatile Third vector argument,
scratch

VR5 Volatile Fourth vector argument,
scratch

VR6 Volatile Fifth vector argument,
scratch

VR7 Volatile Sixth vector argument,
scratch

VR8 Volatile Seventh vector
argument, scratch

VR9 Volatile Eighth vector argument,
scratch

VR10 Volatile Ninth vector argument,
scratch

VR11 Volatile Tenth vector argument,
scratch

VR12 Volatile Eleventh vector
argument, scratch

VR13 Volatile Twelfth vector
argument, scratch

VR14:19 Volatile Scratch

604 AIX Version 7.2: General programming concepts

Table 83. Vector Register Conventions (continued)

Register type Register Status Use

VR20:31 Reserved (default mode)

Nonvolatile (extended
ABI mode)

When the default Vector
enabled mode is used,
these registers are
reserved and must not
be used.

In the extended ABI
vector enabled mode,
these registers are
nonvolatile and their
values are preserved
across function calls

Special Purpose VRSAVE Reserved In the AIX ABI, VRSAVE
is not used. An ABI-
compliant program must
not use or alter VRSAVE.

Special Purpose VSCR Volatile The Vector Status
and Control Register
contains the saturation
status bit and non-Java
mode control bit.

The AltiVec Programming Interface Specification defines the VRSAVE register to be used as a bitmask of
vector registers in use. AIX requires that an application never modify the VRSAVE register.

The first 12 vector parameters in a function are placed in VR2 through VR13. Unneeded vector parameter
registers contain undefined values upon entry to the function. Non-variable length argument list vector
parameters are not shadowed in general purpose registers (GPRs). Any additional vector parameters,
from 13th and beyond, are passed through memory on the program stack, 16-byte aligned, in their
appropriate mapped location within the parameter region corresponding to their position in the parameter
list.

For variable length argument lists, va_list continues to be a pointer to the memory location of the next
parameter. When va_arg() accesses a vector type, va_list must first be aligned to a 16-byte boundary. The
receiver or consumer of a variable-length argument list is responsible for performing this alignment prior
to retrieving the vector type parameter.

A non-packed structure or union passed by a value that has a vector member anywhere within it will be
aligned to a 16-byte boundary on the stack.

A function that takes a variable-length argument list has all parameters mapped in the argument area
ordered and aligned according to their types. The first eight words (32-bit) or doublewords (64-bit) of a
variable-length argument list are shadowed in GPRs r3 - r10. This includes vector parameters.

Functions that have a return value declared as a vector data type place the return value in VR2. Any
function that returns a vector type or has vector parameters requires a function prototype. This avoids the
compiler shadowing the VRs in GPRs for the general case.

Legacy ABI compatibility and interoperability
Due to the nature of interfaces (such as setjmp(), longjmp(), sigsetjmp(), siglongjmp(), _setjmp(),
_longjmp(), getcontext(), setcontext(), makecontext(), and swapcontext()) that must save and restore
nonvolatile machine state, there is risk introduced when considering dependencies between legacy and
vector-extended ABI modules. To complicate matters, the setjmp family of functions in libc reside in a
static member of libc, which means that every existing AIX binary has a statically bound copy of the
setjmp family and others that existed with the version of AIX it was linked against. Furthermore, existing

General programming concepts 605

AIX binaries have jmpbufs and ucontext data structure definitions that are insufficient to house any
additional nonvolatile vector register state.

Any cases where legacy modules and new modules interleave calls, or call-backs, where a legacy module
could perform a longjmp() or setcontext(), bypassing normal linkage convention of a vector extended
module, has a risk of compromising the nonvolatile vector register state.

For this reason, while the AIX ABI defines nonvolatile vector registers, the default compilation mode
when using vectors (AltiVec) in AIX compilers is to not use any of the nonvolatile vector registers. This
results in a default compilation environment that safely allows exploitation of vectors (AltiVec) while
introducing no risk with respect to interoperability with legacy binaries.

For applications where interoperability and module dependence is completely known, an additional
compilation option can be enabled that will allow the use of nonvolatile vector registers. This mode
should only be used when all dependent legacy modules and behaviors are fully known and understood
as either having no dependence on functions such as setjmp(), sigsetjmp(), _setjmp(), or getcontext(), or
ensuring that all module transitions are performed using normal subroutine linkage convention, and that
no call-backs to an upstream legacy module are used.

The default AltiVec compilation environment predefines __VEC__, in accordance with the AltiVec
Technology Programming Interface Manual.

When the option to use nonvolatile vector registers is enabled, the compilation environment must also
predefine __EXTABI__. You can compile non-vector enabled modules to be extended ABI-aware by
explicitly defining __AIXEXTABI. This will ensure that those modules can safely interact with vector-
enabled modules that are enabled to use nonvolatile vector registers.

Extended context
In order to support the additional machine state required by the vector extension as well as other
extensions such as user keys, AIX 5.3 introduced support for extended context structures. The primary
application-visible use of machine-context information is its presence in the sigcontext structure provided
to signal handlers, and the resulting activation of the machine context in the sigcontext upon return from
the signal handler. The sigcontext structure is actually a subset of the larger ucontext structure. The two
structures are identical for up to sizeof(struct sigcontext). When AIX builds a signal context to be passed
to a signal handler, it actually builds a ucontext structure on the signal handler's stack. The machine-
context portion of a signal context must contain all of the active machine state, volatile and nonvolatile,
for the involuntarily interrupted context. To accomplish this without affecting binary compatibility with
existing signal handlers, space previously reserved in the ucontext structure now serves as an indication
of whether extended context information is available.

A newly defined field in the ucontext, __extctx, is the address of an extended context structure, struct
__extctx, as defined in the sys/context.h file. A new field, __extctx_magic, within the ucontext structure
indicates whether the extended context information is valid when the value of __extctx_magic is equal to
__EXTCTX_MAGIC. The additional vector machine state for a thread using the vector extension is saved
and restored as a member of this new context extension to the ucontext structure as a part of signal
delivery and return.

The ucontext structure is also used on APIs (such as getcontext(), setcontext(), swapcontext(), and
makecontext()). In these cases, the context needing to be saved is due to a voluntary action, for which
calling linkage convention requires only that nonvolatile machine state be saved. Because the default
mode of vector enablement on AIX, as described in the ABI section, is to not use nonvolatile vector
registers, there are no extensions of the ucontext structure required for the majority of applications. If an
application chooses to explicitly enable the use of nonvolatile vector registers, it will pick up an extended
sized ucontext structure that already has space for the __extctx field that is included by the implicit
definition of __EXTABI__ by the compiler. The extended ucontext can also be picked up by an explicit
definition of __AIXEXTABI.

Similarly, the jmp_buf for use with setjmp() or longjmp() requires no change for default-mode vector-
enabled applications, since nonvolatile vector registers are not used. The explicit enablement of
nonvolatile vector registers results in larger jmp_buf allocations, due to the implicit definition of

606 AIX Version 7.2: General programming concepts

__EXTABI__ by the compiler. The extended jump buffers can also be activated by explicit definition
of __AIXEXTABI.

See the sys/context.h header file for a more detailed layout of the extended context information.

Vector memory allocation and alignment
Vector data types introduce a data type requiring 16-byte alignment. In accordance with the AltiVec
programming interface specification, a set of malloc subroutines (vec_malloc, vec_free, vec_realloc,
vec_calloc) are provided by AIX that give 16-byte aligned allocations.

Vector-enabled compilation, with _VEC_ implicitly defined by the compiler, will result in any calls to
legacy malloc and calloc being redirected to their vector-safe counterparts, vec_malloc and vec_calloc,
respectively. Non-vector code can also be explicitly compiled to pick up these same malloc and calloc
redirections by explicitly defining __AIXVEC. The alignment of the default malloc(), realloc(), and calloc()
allocations can also be controlled at runtime.

First, externally to any program, a new environment variable, MALLOCALIGN, can be set to the default
alignment desired for every malloc() allocation. An example is

MALLOCALIGN=16; export MALLOCALIGN

The MALLOCALIGN environment variable can be set to any power of 2 greater than or equal to the size
of a pointer in the corresponding execution mode (4 bytes for 32-bit mode, 8 bytes for 64-bit mode).
If MALLOCALIGN is set to an invalid value, then the value is rounded up to the next power of 2, and all
subsequent malloc() allocations will be aligned to that value.

Also, internally to a program, the program can use a new command option to the mallopt() interface to
specify the desired alignment for future allocations. An example is

rc = mallopt(M_MALIGN, 16);

Refer to mallopt and MALLOCALIGN for more information.

printf and scanf of vector data types
In accordance with the AltiVec programming interface specification, support is added to the AIX versions
of scanf, fscanf, sscanf, wsscanf, printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, and
vwsprintf for the new vector conversion format strings. The new size formatters are as follows:

• vl or lv consumes one argument and modifies an existing integer conversion, resulting in vector signed
int, vector unsigned int, or vector bool for output conversions or vector signed int * or vector unsigned
int * for input conversions. The data is then treated as a series of four 4-byte components, with the
subsequent conversion format applied to each.

• vh or hv consumes one argument and modifies an existing short integer conversion, resulting in vector
signed short, or vector unsigned short for output conversions or vector signed short * or vector unsigned
short * for input conversions. The data is treated as a series of eight 2-byte components, with the
subsequent conversion format applied to each.

• v consumes one argument and modifies a 1-byte integer, 1-byte character, or 4-byte floating point
conversion. If the conversion is a floating point conversion the result is vector float for output
conversion or vector float * for input conversion. The data is treated as a series of four 4-byte floating
point components with the subsequent conversion format applied to each. If the conversion is an
integer or character conversion, the result is either vector signed char, vector unsigned char, or vector
bool char for output conversion or vector signed char * or vector unsigned char * for input conversions.
The data is treated as a series of sixteen 1-byte components, with the subsequent conversion format
applied to each.

Any conversion format that can be applied to the singular form of a vector-data type can be used with a
vector form. The %d, %x, %X, %u, %i, and %o integer conversions can be applied with the %lv, %vl, %hv,
%vh, and %v vector-length qualifiers. The %c character conversion can be applied with the %v vector

General programming concepts 607

length qualifier. The %a, %A, %e, %E, %f, %F, %g, and %G float conversions can be applied with the %v
vector length qualifier.

For input conversions, an optional separator character can be specified excluding whitespace preceding
the separator. If no separator is specified, the default separator is a space including whitespace
characters preceding the separator, unless the conversion is c, and then the default conversion is null.

For output conversions, an optional separator character can be specified immediately preceding the
vector size conversion. If no separator is specified, the default separator is a space, unless the conversion
is c, and then the default separator is null.

Threaded applications
Multithreaded applications exploiting the vector extension are also supported. These applications are
supported in both system scope (1:1 threading model) and process scope (M:N threading model). If a
multithreaded application is compiled with nonvolatile vector registers enabled, the pthreads for that
application will be flagged as extended ABI pthreads. The result will be larger context-save buffer
allocations within the pthread library for those threads. The dbx AIX debugger also provides full support
for machine-level debugging of vector-enabled multithreaded programs.

Compilers
An AIX compiler supporting the vector extension must conform to the AIX ABI Vector Extension. As
previously described, the default vector-enabled compilation mode on AIX should be with the use of
nonvolatile vector registers disabled. An explicit option to enable the use of nonvolatile vector registers
can be provided and enabled at your discretion, after understanding the issues and risks regarding new
and old module interoperability.

When enabling the use of nonvolatile vector registers, a C or C++ compiler must predefine __EXTABI__.
Also, when enabled for any form of vector compilation, a C or C++ compiler is expected to predefine
__VEC__. If compiling non-vector enabled C or C++ modules for linkage with vector-enabled Fortran
modules, it is best that the C or C++ modules be explicitly compiled with at least __AIXVEC defined
(explicit definition analogous to __VEC__), and also __AIXEXTABI (explicit definition analogous to
__EXTABI) if nonvolatile vector registers are enabled in the Fortran modules.

In addition to the AltiVec programming interface specification, which provides an explicit extension to
the C and C++ languages for vector programming, some compilers will probably allow the exploitation of
the vector extension in some optimization settings when targeting a processor that supports the vector
extension.

Refer to your compiler documentation for more details.

Assembler
The AIX assembler, in the /usr/ccs/bin/as directory, now supports the additional instruction set defined
by the vector extension, and specifically as implemented by the PowerPC 970 processor. You can use the
new -m970 assembly mode or the .machine 970 pseudo op within the source file to enable the assembly
of the new vector instructions. Refer to the Assembler Language Reference for more information.

Debugger
The dbx AIX debugger, in /usr/ccs/bin/dbx, supports machine-level debugging of vector-enabled
programs. This support includes the ability to disassemble the new vector instructions, and to display
and set vector registers. A new $instructionset value of 970 has been defined for enabling disassembly
of the PowerPC 970-specific instructions, including the vector instructions, when not running dbx on a
PowerPC 970 system. Note that if running dbx on a PowerPC 970, the default $instructionset will be 970.

To view vector registers, the subcommand unset $novregs must be used, as vector registers are not
displayed by default. Also, if the processor does not support the vector extension, or the process or
thread being examined is not using the vector extension, then no vector register state will be displayed.

608 AIX Version 7.2: General programming concepts

Otherwise, the registers subcommand will print all of the vector registers and their contents in raw
hexadecimal.

You can also display the vector registers individually, formatted according to a fundamental type. For
instance, print $vr0 will display the contents of register VR0 as an array of 4 integers. print $vr0c will
display the contents of register VR0 as an array of 16 characters. print $vr0s will display the contents of
register VR0 as an array of 8 shorts, and print $vr0f will display the contents of register VR0 as an array of
4 floats.

You can assign entire vector registers, for example assign $vr0 = $vr1, or assign individual vector
elements of the vector register as if assigning an element of an array. For example, assign $vr0[3] =
0x11223344 sets only the 4th integer member of VR0. assign $vr0f[0] = 1.123 results in only the first
float member of VR0 being set to the value 1.123.

You can trace vector registers throughout the execution of a function or program, for example tracei
$vr0 in main will display the contents of VR0 each time it is modified in main(). Likewise, by specifying
one of the format registers ($vr0f, $vr0c, $vr0s) to tracei, each display of the contents will be formatted
accordingly.

As long as compilers represent vector data types as arrays of their fundamental types, dbx should also be
able to display a vector data type formatted as an array.

Refer to the dbx command documentation for more information.

Enablement for third-party debuggers is also provided in the form of PTT_READ_VEC and
PTT_WRITE_VEC new ptrace operations, for reading or writing vector register state for a thread. Refer
to the ptrace documentation for details.

The /proc filesystem is also enhanced to support a /proc-based debugger. The status and lwpstatus files
for a vector-enabled process and thread, respectively, are extended to include vector register state. A new
control message, PCSVREG, is supported on the write of a process or thread control file for setting vector
register state. Refer to the /proc File Reference for more details.

Core files
AIX also supports the inclusion of vector machine state as part of the core file for a vector-enabled
process or thread. Only if a process or thread is using the vector extension will the vector machine state
be included in the core image for that thread. Note that if you select the pre-AIX 4.3 core file format,
vector state will not be included. The vector state is only supported in the current core file formats. You
can use the dbx command to read and display the vector machine state of a vector-enabled core file.

System memory allocation using the malloc subsystem
Memory is allocated to applications using the malloc subsystem.

The malloc subsystem is a memory management API that consists of the following subroutines:

• malloc
• calloc
• realloc
• free
• mallopt
• mallinfo
• alloca
• valloc
• posix_memalign

The malloc subsystem manages a logical memory object called a heap. The heap is a region of memory
that resides in the application's address space between the last byte of data allocated by the compiler

General programming concepts 609

and the end of the data region. The heap is the memory object from which memory is allocated and to
which memory is returned by the malloc subsystem API.

The malloc subsystem performs the following fundamental memory operations:

• Allocation:

Performed by the malloc, calloc valloc, alloca, and posix_memalign subroutines.
• Deallocation:

Performed by the free subroutine.
• Reallocation:

Performed by the realloc subroutine.

The mallopt and mallinfo subroutines are supported for System V compatibility. The mallinfo subroutine
can be used during program development to obtain information about the heap managed by the malloc
subroutine. The mallopt subroutine can be used to disclaim page-aligned, page-sized free memory, and
to enable and disable the default allocator. Similar to the malloc subroutine, the valloc subroutine is
provided for compatibility with the Berkeley Compatibility Library.

For additional information, see the following sections:

Working with the process heap

_edata is a symbol whose address is the first byte following the last byte of initialized program data. The
_edata symbol refers to the start of the process heap, which is enlarged by the malloc subsystem when
the first block of data is allocated. The malloc subsystem enlarges the process heap by increasing the
process brk value, which denotes the end of the process heap. This is done by calling the sbrk subroutine.
The malloc subsystem expands the process heap as the needs of the application dictate.

The process heap is divided into allocated and freed memory blocks. The free pool consists of the memory
available for subsequent allocation. An allocation is completed by first removing a memory block from the
free pool and then returning to the calling function a pointer to this block. A reallocation is completed by
allocating a memory block of the new size, moving the data in the original block to the new block, and
freeing the original block. The allocated memory blocks consist of the pieces of the process heap being
used by the application. Because the memory blocks are not physically removed from the heap (they
change state from free to allocated), the size of the process heap does not decrease when memory is
freed by the application.

Process address space in 32-bit applications

A 32-bit application program running on the system has an address space that is divided into the
following segments:

Segment Description

0x00000000 to 0x0fffffff Contains the kernel.

0x10000000 to 0x1fffffff Contains the application program text.

0x20000000 to 0x2fffffff Contains the application program data, the process heap, and the
application stack.

0x30000000 to 0xcfffffff Available for use by shared memory or mmap services.

0xd0000000 to 0xdfffffff Contains shared library text.

0xe0000000 to 0xefffffff Available for use by shared memory or mmap services.

0xf0000000 to 0xffffffff Contains the application shared library data.

Process address space in 64-bit applications

A 64-bit application program running on the system has an address space that is divided into the
following segments:

610 AIX Version 7.2: General programming concepts

Segment Description

0x0000 0000 0000 0000 to 0x0000 0000
0fff ffff

Contains the kernel.

0x0000 0000 f000 0000 to 0x0000 0000
ffff ffff

Reserved.

0x0000 0001 0000 0000 to 0x07ff ffff
ffff ffff

Contains the application program text, application
program data, the process heap, and shared
memory or mmap services.

0x0800 0000 0000 0000 to 0x08ff ffff
ffff ffff

Privately loaded objects.

0x0900 0000 0000 0000 to 0x09ff ffff
ffff ffff

Shared library text and data.

0x0f00 0000 0000 0000 to 0x0fff ffff
ffff ffff

Application stack.

Note: AIX uses a delayed paging slot allocation technique for storage allocated to applications. When
storage is allocated to an application with a subroutine, such as malloc, no paging space is assigned to
that storage until the storage is referenced. This technique is useful for applications that allocate large
sparse memory segments. However, this technique can affect portability of applications that allocate very
large amounts of memory. If the application expects that calls to malloc will fail when there is not enough
backing storage to support the memory request, the application might allocate too much memory. When
this memory is referenced later, the machine quickly runs out of paging space and the operating system
kills processes so that the system is not completely exhausted of virtual memory. The application that
allocates memory must ensure that backing storage exists for the storage being allocated. Setting the
PSALLOC environment variable to PSALLOC=early changes the paging space allocation technique to an
early allocation algorithm. In early allocation, paging space is assigned once the memory is requested. For
more information, see Paging space and virtual memory in Operating system and device management.

Understanding system allocation policy

The allocation policy refers to the set of data structures and algorithms employed to represent the
heap and to implement allocation, deallocation, and reallocation. The malloc subsystem supports several
different allocation policies, including the default allocation policy, the watson allocation policy, the
malloc 3.1 allocation policy, and the user-defined allocation policy. The API for accessing the malloc
subsystem is identical for all allocation policies; only the underlying implementation is different.

You can use the following environment variables to specify the allocation policy and any normal or debug
options for that policy:

• MALLOCTYPE specifies the allocation policy.
• MALLOCOPTIONS specifies normal options to the chosen allocation policy.
• MALLOCDEBUG specifies debug options to the chosen allocation policy.
• MALLOCALIGN specifies the default malloc alignment external to a program.

The default allocation policy is generally more efficient and is the preferred choice for the majority
of applications. The other allocation policies have some unique behavioral characteristics that can be
beneficial in specific circumstances, as described in Comparing the Different Allocation Policies.

Some options to the various allocation policies are compatible with each other and can be used in
tandem. When you are using options in tandem, use a comma (,) to separate options specified by the
MALLOCOPTIONS and MALLOCDEBUG environment variables.

The MALLOCALIGN environment variable can be set to the default alignment desired for every malloc()
allocation. An example is

MALLOCALIGN=16; export MALLOCALIGN

General programming concepts 611

The MALLOCALIGN environment variable can be set to any power of 2 value greater than or equal to
the size of a pointer in the corresponding run mode (4 bytes for 32-bit mode, 8 bytes for 64-bit mode).
For 32-bit vector-enabled programs, this environment variable can be set to 16, so all malloc()s will be
suitably aligned for vector data types if necessary. Note that 64-bit vector programs will already receive
16-byte-aligned allocations.

Also, internally to a program, the program can use the mallopt(M_MALIGN, 16) routine to change
the default malloc() to provide 16-byte aligned allocations. The mallopt(M_MALIGN) routine allows a
program to control the default malloc alignment dynamically at runtime.

Understanding the default allocation policy

The default allocation policy maintains the free space in the heap as nodes in a cartesian binary search
tree in which the nodes are ordered left-to-right by address (increasing address to the right) and top-to-
bottom by length (such that no child is larger than its parent). This data structure imposes no limitation
on the number of block sizes supported by the tree, allowing a wide range of potential block sizes.
Tree-reorganization techniques optimize access times for node location, insertion, and deletion, and also
protect against fragmentation.

The default allocation policy provides support for the following optional capabilities:

Allocation

A small amount of overhead is required to service an allocation request. This is due to the need for a
metadata prefix and the need for suitable alignment of each block of memory. The size of the metadata
prefix for all allocations is 8 and 16 bytes for 32-bit and 64-bit programs respectively. Each block must be
aligned on a 16 or 32 byte boundary, thus the total amount of memory required for an allocation of size n
is:

size = roundup(n + prefix_size, alignment requirement)

For example, an allocation of size 37 in a 32-bit process would require roundup(37 + 8, 16), which is
equal to 48 bytes.

The node of the tree with the lowest address that is greater than or equal to the size required is removed
from the tree. If the block found is larger than the needed size, the block is divided into two blocks: one
of the needed size, and the second a remainder. The second block, called the runt, is returned to the free
tree for future allocation. The first block is returned to the caller.

If a block of sufficient size is not found in the free tree, the heap is expanded, a block the size of the
acquired extension is added to the free tree, and allocation continues as previously described.

Deallocation

Memory blocks deallocated with the free subroutine are returned to the tree, at the root. Each node along
the path to the insertion point for the new node is examined to see if it adjoins the node being inserted.
If it does, the two nodes are merged and the newly merged node is relocated in the tree. If no adjoining
block is found, the node is simply inserted at the appropriate place in the tree. Merging adjacent blocks
can significantly reduce heap fragmentation.

Reallocation

If the size of the reallocated block will be larger than the original block, the original block is returned to
the free tree with the free subroutine so that any possible coalescence can occur. A new block of the
requested size is then allocated, the data is moved from the original block to the new block, and the new
block is returned to the caller.

If the size of the reallocated block is smaller than the original block, the block is split and the smaller one
is returned to the free tree.

Limitations

The default allocation policy supports the following options:

• Malloc Multiheap

612 AIX Version 7.2: General programming concepts

• Malloc Buckets
• Malloc Disclaim
• Malloc Thread Cache
• Understanding the no_overwrite Option

Understanding the watson allocation policy

The Watson allocation policy maintains the free space in the heap as nodes in two separate red-black
trees: one sorted by address, the other by size. Red-black trees provide simpler and more efficient tree
operations than the cartesian trees of the default allocator, thus the watson allocation policy is often
faster than the default.

Allocation

The Watson allocation policy has the same overhead requirements as the default allocation policy.

The size tree is searched for the smallest possible block that is greater than or equal to the size required.
This block is then removed from the size tree. If the block found is larger than the needed size, the block
is divided into two blocks: one block of the remaining size, and the second of the required size. The first
block, called the runt, is returned to the size tree for future allocation. The second block is returned to the
caller. If the block found in the size tree was exactly the required size, the block is removed from both the
size and the address tree, and then returned to the caller.

If a block of sufficient size is not found in the free tree, the process heap is expanded, a block the size of
this expansion is added to the size and address trees, and allocation continues as previously described.

Deallocation

Memory blocks deallocated with the free subroutine are returned to the address tree at the root. Each
node along the path to the insertion point for the new node is examined to see if it adjoins the node being
inserted. If it does, the two nodes are merged and the newly merged node is relocated in the size tree. If
no adjoining block is found, the node is simply inserted at the appropriate place in the both the address
and size tree.

After insertion, both red-black trees must be checked for correct balancing.

Reallocation

If the size of the reallocated block will be larger than the original block, the original block is returned to
the free trees with the free subroutine so that any possible coalescence can occur. A new block of the
requested size is then allocated, the data is moved from the original block to the new block, and the new
block is returned to the caller.

If the size of the reallocated block is smaller than the original block, the block is split and the remainder is
returned to the free tree.

Limitations

The Watson allocation policy supports the following options:

• Malloc Multiheap
• Malloc Disclaim
• Malloc Thread Cache
• Understanding the no_overwrite Option

Understanding the malloc 3.1 allocation policy

The malloc 3.1 allocation policy can be selected by setting MALLOCTYPE=3.1 prior to process startup.
Thereafter, all 32-bit programs run by the shell will use the malloc 3.1 allocation policy (64-bit programs
will continue to use the default allocation policy).

The malloc 3.1 allocation policy maintains the heap as a set of 28 hash buckets, each of which points to
a linked list. Each linked list contains blocks of a particular size. The index into the hash buckets indicates
the size of the blocks in the linked list. The size of the block is calculated using the following formula:

General programming concepts 613

size = 2 i + 4

where i identifies the bucket. This means that the blocks in the list anchored by bucket zero are 20+4 =
16 bytes long. Therefore, given that a prefix is 8 bytes in size, these blocks can satisfy requests for blocks
between 0 and 8 bytes long. The following table illustrates how requested sizes are distributed among the
buckets.

Note: This algorithm can use as much as twice the amount of memory actually requested by the
application. An extra page is required for buckets larger than 4096 bytes because objects of a page
in size or larger are page-aligned. Because the prefix immediately precedes the block, an entire page is
required solely for the prefix.

Bucket Block Size Sizes Mapped Pages Used

0 16 0 ... 8

1 32 9 ... 24

2 64 25 ... 56

3 128 57 ... 120

4 256 121 ... 248

5 512 249 ... 504

6 1K 505 ... 1K-8

7 2K 1K-7 ... 2K-8

8 4K 2K-7 ... 4K-8 2

9 8K 4K-7 ... 8K-8 3

10 16K 8K-7 ... 16K-8 5

11 32K 16K-7 ... 32K-8 9

12 64K 32K-7 ... 64K-8 17

13 128K 64K-7 ... 128K-8 33

14 256K 128K-7 ... 256K-8 65

15 512K 256K-7 ... 512K-8 129

16 1M 256K-7 ... 1M-8 257

17 2M 1M-7 ... 2M-8 513

18 4M 2M-7 ... 4M-8 1K + 1

19 8M 4M-7 ... 8M-8 2K + 1

20 16M 8M-7 ... 16M-8 4K + 1

21 32M 16M-7 ... 32M-8 8K + 1

22 64M 32M-7 ... 64M-8 16K + 1

23 128M 64M-7 ... 128M-8 32K + 1

24 256M 128M-7 ... 256M-8 64K + 1

25 512M 256M-7 ... 512M-8 128K + 1

26 1024M 512M-7 ... 1024M-8 256K + 1

27 2048M 1024M-7 ... 2048M-8 512K + 1

614 AIX Version 7.2: General programming concepts

Allocation

A block is allocated from the free pool by first converting the requested bytes to an index in the bucket
array, using the following equation:

needed = requested + 8

If needed <= 16,
then
bucket = 0

If needed > 16,
then
bucket = (log(needed)/log(2) rounded down to the nearest integer) - 3

The size of each block in the list anchored by the bucket is block size = 2 bucket + 4. If the list in the
bucket is null, memory is allocated using the sbrk subroutine to add blocks to the list. If the block size is
less than a page, then a page is allocated using the sbrk subroutine, and the number of blocks arrived at
by dividing the block size into the page size are added to the list. If the block size is equal to or greater
than a page, needed memory is allocated using the sbrk subroutine, and a single block is added to the
free list for the bucket. If the free list is not empty, the block at the head of the list is returned to the caller.
The next block on the list then becomes the new head.

Deallocation

When a block of memory is returned to the free pool, the bucket index is calculated as with allocation. The
block to be freed is then added to the head of the free list for the bucket.

Reallocation

When a block of memory is reallocated, the needed size is compared against the existing size of the block.
Because of the wide variance in sizes handled by a single bucket, the new block size often maps to the
same bucket as the original block size. In these cases, the length of the prefix is updated to reflect the
new size and the same block is returned. If the needed size is greater than the existing block, the block is
freed, a new block is allocated from the new bucket, and the data is moved from the old block to the new
block.

Limitations

Setting MALLOCTYPE=3.1 will only enable the malloc 3.1 policy for 32-bit programs. For 64-bit
programs to use the malloc 3.1 policy, the MALLOCTYPE environment variable must be explicitly
set to MALLOCTYPE=3.1_64BIT. This allocation policy is less efficient than the default and is not
recommended for use in most cases.

The malloc 3.1 allocation policy supports the following options:

• Malloc Disclaim
• Understanding the no_overwrite Option

Understanding the pool allocation policy

Malloc pool is a high performance front end to the libc functions malloc, calloc, free, posix_memalign
and realloc for managing storage objects smaller than 513 bytes. The performance benefits derive from
dramatically shorter path lengths and better data cache utilization. For multithreaded applications, there
is the further benefit that thread local pool anchors are used to avoid atomic operations. This front end
can be used in conjunction with any of the storage management schemes currently provided in libc
(yorktown, and watson).

To use malloc pool, run the following command:

export MALLOCOPTIONS=pool<:max_size>

When this option is specified, a collection of pools is created during malloc initialization where each
pool is a linked list of fixed sized objects. The smallest pool can hold objects of pointer-size (such as 8
bytes for 32-bit applications or 16 bytes for 64-bit applications). Each successive pool can accommodate
objects whose size is pointer-size larger than the previous pool. This means there are 128 pools for 32-bit

General programming concepts 615

applications and 64 pools for 64-bit applications. The collection of pools is represented as an array of
pointers that "anchor" the linked lists.

Malloc pool uses its own memory, the pool heap, which is not shared with standard malloc. When
specified, the max_size option is rounded up to the next higher 2 MB value and is used to control the size
of the pool heap. The max_size option can be specified as a decimal number or a hexadecimal number
preceded by 0x or 0X (for example, export MALLOCOPTIONS=pool:0x1700000 will set max_size to
24 MB after rounding up.

For 32-bit applications, the size of the pool heap starts at 2 MB. If more storage is required and the total
pool heap storage is less than max_size, an additional 2 MB is acquired. Each 2 MBb area will be on a
2 MB boundary, but need not be contiguous to any of the other 2 MB areas. For 64-bit applications, a
single contiguous pool heap of max_size is allocated during malloc initialization and never extended. If
max_size is not specified, it defaults to 512 MB for 32-bit applications and 32 MB for 64-bit applications.
For both 32- and 64-bit modes, max_size will be set to 512 MB if a larger size is specified. For 32-bit
mode, the max_size is set to 512MB, and for 64-bit mode, the max_size is set to 3.7 GB if a larger size is
specified.

Storage Utilization

All pool anchors are initially set to NULL or empty. When malloc pool services a request and the
corresponding pool is empty, a routine is called that allocates storage from the pool heap in contiguous
1024-byte chunks on 1024-byte boundaries. Multiple objects of the requested size are "created". The
address of the first is returned to satisfy the request, while the remaining objects are linked together and
placed on the pool anchor. For each 1024-byte chunk, there is a 2-byte entry in an auxiliary table that is
used by free to determine the size of a returned object.

When an object is freed by malloc pool, it is merely "pushed" onto the appropriate pool anchor. No
attempt is made to coalesce blocks to create larger sized objects.

Because of this behavior, malloc pool may use more storage than other forms of malloc.

Alignment

The default alignment for the malloc(), calloc(), and realloc() subroutines must be specified by setting the
MALLOCALIGN environment variable appropriately. The posix_memalign() subroutine continues working
even if the MALLOCALIGN environment variable is not set. If MALLOCALIGN is greater than 512, malloc
pool is not used.

Cache efficiency

The memory objects allocated with malloc pool have no prefixes or suffixes. Data cache lines are
therefore more densely packed with application usable data. As all memory objects that are a power
of 2 in size are aligned on a boundary equal to that size, each object is contained within the minimal
number of cache lines. The malloc and free subroutines do not scan trees or linked lists and therefore do
not “pollute” the cache.

Multithreaded support

Malloc pools can improve performance significantly in a multithreaded scenario because it reduces lock
contention and the need of atomic operations.

Load balancing support

In some multithreaded scenarios, one-thread's free pool might grow very large due to repetitive freeing of
dynamically allocated memory. However, other threads may not be able to use this memory.

Load-balancing support causes a thread to release half the memory in each pool to a global pool after
the pool reaches a threshold value so that other threads can use it. You can tune the threshold values at
which a thread's pool will be readjusted.

To turn on the load-balancing support, the following options must be exported:

export MALLOCOPTIONS=pool:0x80000000,pool_balanced

616 AIX Version 7.2: General programming concepts

export MALLOCFREEPOOL=min_size<-max_size>:threshold_value<,min_size<-max_size>:
threshold_value, ... >,default:threshold

The following example sets the threshold value for the pools that provide a memory of 0 -16 bytes and
256 chunks, and the threshold value of the pool that serves 32-byte chunks to 512-byte chunks. For the
rest of the pools, 128-byte chunks is the threshold value.

export MALLOCFREEPOOL=0-16:256,32:512,default:128

Debugging support

There is no debug version of this high-performance front end. If the MALLOCDEBUG environment variable
is set, the pool option is ignored. It is expected that applications will be debugged using "normal" malloc
prior to activating pooling.

Understanding the user-defined allocation policy

The malloc subsystem provides a mechanism through which users may develop their own algorithms for
managing the system heap and allocating memory.

Understanding the no_overwrite option

An additional option available to all allocation policies is no_overwrite. To reduce the overhead of glink
code within the malloc subsystem, the function descriptor for the malloc subsystem APIs are overwritten
with the function descriptor for the actual underlying implementation. Because some programs, such
as third-party debuggers, might not work when function pointers are modified in this manner, the
no_overwrite option can be used to disable this optimization.

To disable this optimization, set MALLOCOPTIONS=no_overwrite prior to process startup.

Comparing the various allocation policies

The various malloc allocation policies elaborated above provide flexibility to application developers when
used separately or combined in supported ways. It is the responsibility of the developer to recognize the
unique needs of an application and to tune the various allocation policy parameters in a beneficial way.

Comparing the default and malloc 3.1 allocation policies

Because the malloc 3.1 allocation policy rounds up the size of each allocation request to the next power
of 2, it can produce considerable virtual- and real-memory fragmentation and poor locality of reference.
The default allocation policy is generally a better choice because it allocates exactly the amount of space
requested and is more efficient about reclaiming previously used blocks of memory.

Unfortunately, some application programs may depend inadvertently on side effects of the malloc 3.1
allocation policy for acceptable performance or even for correct functioning. For example, a program that
overruns the end of an array may function correctly when using the malloc 3.1 allocator only because
of the additional space provided by the rounding-up process. The same program is likely to experience
erratic behavior or even fail when used with default allocator because the default allocator allocates only
the number of bytes requested.

As another example, because of the inefficient space reclamation of the malloc 3.1 allocation algorithm,
the application program almost always receives space that has been set to zeros (when a process touches
a given page in its working segment for the first time, that page is set to zeros). Applications may depend
on this side effect for correct execution. In fact, zeroing out of the allocated space is not a specified
function of the malloc subroutine and would result in an unnecessary performance penalty for programs
that initialize only as required and possibly not to zeros. Because the default allocator is more aggressive
about reusing space, programs that are dependent on receiving zeroed storage from malloc will probably
fail when the default allocator is used.

Similarly, if a program continually reallocates a structure to a slightly greater size, the malloc 3.1 allocator
may not need to move the structure very often. In many cases, the realloc subroutine can make use
of the extra space provided by the rounding implicit in the malloc 3.1 allocation algorithm. The default
allocator will usually have to move the structure to a slightly larger area because of the likelihood that
something else has been called by the malloc subroutine just above it. This may present the appearance
of a degradation in realloc subroutine performance when the default allocator is used instead of the

General programming concepts 617

malloc 3.1 allocator. In reality, it is the surfacing of a cost that is implicit in the application program's
structure.

Debugging application mismanagement of the system heap

The malloc subsystem offers a collection of debugging tools intended to help the application developer
debug and correct errors in a program's heap management. These debugging tools are controlled through
the MALLOCDEBUG environment variable.

Synopsis of malloc environment variable and options

The following table shows the compatibility between the MALLOCTYPE and MALLOCOPTIONS
environment variables.

Table 84. Compatibility between MALLOCTYPE and MALLOCOPTIONS Environment Variables

multiheap
(and sub-
options)

buckets
(and
suboptio
ns)

Thread
Cache

disclaim no_overwrite

Default Allocator yes yes yes yes yes

3.1 no no yes yes yes

Watson no no no no no

Watson2 no no no no no

user: no no no no yes

Table 85. Compatibility between MALLOCDEBUG and MALLOCTYPE Environment Variables

York
Town<Default
Allocator>

3.1 Watson Watson2 user:

catch_overflow (and
suboptions)

yes no yes yes no

report_allocations yes no yes yes no

postfree_checking yes no yes yes no

validate_ptrs yes no yes yes no

trace yes no yes yes no

log yes no yes yes no

verbose no no no no no

All MALLOCDEBUG options are compatible and supported with MALLOCOPTIONS.

Understanding the Watson2 allocation policy

The Watson2 malloc subsystem adapts to the behavior of the application when it changes from a
single thread to multiple threads and from multiple threads to a single thread. It uses a thread-specific
mechanism that uses a varying number of heap structures, which depend on the behavior of the program.
Therefore no configuration options are required. The Watson2 malloc subsystem has O (logN) amortized
the cost per operation for many workloads because vast number of operations can be run at a constant
time without synchronization.

Allocation

Allocation is handled through a combination of mechanisms. These mechanisms depend on parameters,
such as the number of active threads, size of the request and the deallocation history of the process. The

618 AIX Version 7.2: General programming concepts

set of mechanisms reaches from a thread-specific caching and use a variable number of heaps, which has
thread affinity to a Double-red-black tree and Page-based coalescing.

Deallocation

Deallocation depends on the same parameters as the allocation behavior. Typically, a returning block is
captured in the thread-specific cache. Based on the heap affinity and capacity utilization, memory might
be returned to one of the multiple heap structures. At times, the content from the multiple heap structure
is consolidated to a common heap structure to improve coalescing and to reduce heap fragmentation. To
improve robustness against application errors, the allocator identifies deallocation of invalid pointers or
corrupted blocks, to a certain degree and filters these operations.

Reallocation

Large blocks of memory that are adequate are reused. If the current block cannot satisfy the request, it is
replaced with a regular deallocation and allocation.

Limitations

The Watson2 malloc subsystem is adaptive to the application and does not require any further options,
but the Watson2 malloc subsystem supports the following debug features that are controlled by the
MALLOCDEBUG variable: validate_ptrs, report_allocations, and trace. The reports that are
related to allocations can be redirected to a file by using the output:<filename> option. See “Debug
malloc tool” on page 623 for detailed information on the MALLOCDEBUG variable.

Related concepts
Program address space overview
The Base Operating System provides a number of services for programming application program memory
use.
User-defined malloc replacement
Users can replace the memory subsystem (malloc, calloc, realloc, free, mallopt and mallinfo
subroutines) with one of their own design.
Malloc multiheap
By default, the malloc subsystem uses a single heap, or free memory pool.
Malloc buckets
Malloc buckets provides an optional buckets-based extension of the default allocator.
Malloc trace
Malloc Trace provides an optional extension to the malloc subsystem for use with the trace facility.
Malloc log
Malloc Log is an optional extension of the malloc subsystem, allowing the user to obtain information
regarding the active allocations currently held by the calling process. This data can then be used in
problem determination and performance analysis.
Malloc disclaim
Malloc Disclaim is an optional extension of the malloc subsystem, providing the user with a means to
enable the automatic disclaiming of memory returned by the free subroutine.
Related reference
Debug malloc tool
Debugging applications that are mismanaging memory allocated by the malloc subsystem can be difficult
and tedious. This is because there is generally no synchronicity between the insertion of an error and the
exposure of its resulting symptom.

User-defined malloc replacement
Users can replace the memory subsystem (malloc, calloc, realloc, free, mallopt and mallinfo
subroutines) with one of their own design.

Note: Replacement Memory Subsystems written in C++ are not supported due to the use of the libc.a
memory subsystem in the C++ library libC.a.

General programming concepts 619

The existing memory subsystem works for both threaded and non-threaded applications. The user-
defined memory subsystem must be threadsafe so that it works in both threaded and non-threaded
processes. Because there are no checks to verify that it is, if a non-threadsafe memory module is loaded
in a threaded application, memory and data may be corrupted.

The user defined memory subsystem 32- and 64- bit objects must be placed in an archive with the 32-bit
shared object named mem32.o and the 64-bit shared object named mem64.o.

The user-shared objects must export the following symbols :

• __malloc__
• __free__
• __realloc__
• __calloc__
• __mallinfo__
• __mallopt__
• __malloc_init__
• __malloc_prefork_lock__
• __malloc_postfork_unlock__

The user-shared objects can optionally export the following symbol:

• __malloc_start__
• __posix_memalign__

Execution does not stop if these symbols do not exist.

The functions are defined as follows:
void *__malloc__(size_t) :

This function is the user equivalent of the malloc subroutine.
void __free__(void *) :

This function is the user equivalent of the free subroutine.
void *__realloc__(void *, size_t) :

This function is the user equivalent of the realloc subroutine.
void *__calloc__(size_t, size_t) :

This function is the user equivalent of the calloc subroutine.
int __mallopt__(int, int) :

This function is the user equivalent of the mallopt subroutine.
struct mallinfo __mallinfo__() :

This function is the user equivalent of the mallinfo subroutine.
void __malloc_start__()

This function will be called once before any other user-defined malloc entry point is called.
void __posix_memalign__()

This function is the user equivalent of the posix_memalign subroutine. If this symbol does not
exist, the execution will not stop, but a call made to the posix_memalign subroutine will cause
unexpected results.

The following functions are used by the thread subsystem to manage the user-defined memory
subsystem in a multithreaded environment. They are only called if the application and/or the user defined
module are bound with libpthreads.a. Even if the the user-defined subsystem is not threadsafe and not
bound with libpthreads.a, these functions must be defined and exported. Otherwise, the object will not
be loaded.
void __malloc_init__(void)

Called by the pthread initialization routine. This function is used to initialize the threaded-user
memory subsystem. In most cases, this includes creating and initializing some form of locking data.

620 AIX Version 7.2: General programming concepts

Even if the user-defined memory subsystem module is bound with libpthreads.a, the user-defined
memory subsystem must work before __malloc_init__() is called.

void __malloc_prefork_lock__(void)
Called by pthreads when the fork subroutine is called. This function is used to insure that the
memory subsystem is in a known state before the fork() and stays that way until the fork() has
returned. In most cases this includes acquiring the memory subsystem locks.

void __malloc_postfork_unlock__(void)
Called by pthreads when the fork subroutine is called. This function is used to make the memory
subsystem available in the parent and child after a fork. This should undo the work done by
__malloc_prefork_lock__. In most cases, this includes releasing the memory subsystem locks.

All of the functions must be exported from a shared module. Separate modules must exist for 32- and
64-bit implementations placed in an archive. For example:

• mem.exp module:

__malloc__
__free__
__realloc__
__calloc__
__mallopt__
__mallinfo__
__malloc_init__
__malloc_prefork_lock__
__malloc_postfork_unlock__
__malloc_start__

• mem_functions32.o module:

Contains all of the required 32-bit functions
• mem_functions64.o module:

Contains all of the required 64-bit functions

The following examples are for creating the shared objects. The -lpthreads parameter is needed only if
the object uses pthread functions.

• Creating 32-bit shared object:

ld -b32 -m -o mem32.o mem_functions32.o \
-bE:mem.exp \
-bM:SRE -lpthreads -lc

• Creating 64-bit shared object:

ld -b64 -m -o mem64.o mem_functions64.o \
-bE:mem.exp \
-bM:SRE -lpthreads -lc

• Creating the archive (the shared objects name must be mem32.o for the 32bit object and mem64.o for
the 64bit object):

 ar -X32_64 -r archive_name mem32.o mem64.o

Enabling the user-defined memory subsystem

The user-defined memory subsystem can be enabled by using one of the following:

• The MALLOCTYPE environment variable
• The _malloc_user_defined_name global variable in the user's application

To use the MALLOCTYPE environment variable, the archive containing the user defined memory
subsystem is specified by setting MALLOCTYPE to user:archive_name where archive_name is in the
application's libpath or the path is specified in the LIBPATH environment variable.

General programming concepts 621

To use the _malloc_user_defined_name global variable, the user's application must declare the
global variable as:

char *_malloc_user_defined_name="archive_name"

where archive_name must be in the application's libpath or a path specified in the LIBPATH environment
variable.

Note:

1. When a setuid application is run, the LIBPATH environment variable is ignored so the archive must be
in the application's libpath.

2. archive_name cannot contain path information.
3. When both the MALLOCTYPE environment variable and the _malloc_user_defined_name global

variable are used to specify the archive_name, the archive specified by MALLOCTYPE will override the
one specified by _malloc_user_defined_name.

32-bit and 64-bit considerations

If the archive does not contain both the 32-bit and 64-bit shared objects and the user-defined memory
subsystem was enabled using the MALLOCTYPE environment variable, there will be problems executing
64-bit processes from 32-bit applications and 32-bit processes from 64-bit applications. When a new
process is created using the exec subroutine, the process inherits the environment of the calling
application. This means that the MALLOCTYPE environment variable will be inherited and the new
process will attempt to load the user-defined memory subsystem. If the archive member does not exist
for this type of program, the load will fail and the new process will exit.

Thread considerations

All of the provided functions must work in a multithreaded environment. Even if the module is linked
with libpthreads.a, at least __malloc__() must work before __malloc_init__() is called and
pthreads is initialized. This is required because the pthread initialization requires malloc() before
__malloc_init__() is called.

All provided memory functions must work in both threaded and non-threaded environments. The
__malloc__() function should be able to run to completion without having any dependencies on
__malloc_init__() (that is, __malloc__() should initially assume that __malloc_init__() has
not yet run.) After __malloc_init__() has completed, __malloc__() can rely on any work done
by __malloc_init__(). This is required because the pthread initialization uses malloc() before
__malloc_init__() is called.

The following variables are provided to prevent unneeded thread-related routines from being called:

• The __multi_threaded variable is zero until a thread is created when it becomes non-zero and will
not be reset to zero for that process.

• The __n_pthreads variable is -1 until pthreads has been initialized when it is set to 1. From that point
on it is a count of the number of active threads.

Example:

If __malloc__() uses pthread_mutex_lock(), the code might look similar to the following:

if (__multi_threaded)
pthread_mutex_lock(mutexptr);

/* work */

if (__multi_threaded)
pthread_mutex_unlock(mutexptr);

In this example, __malloc__() is prevented from executing pthread functions before pthreads is fully
initialized. Single-threaded applications are also accelerated because locking is not done until a second
thread is started.

Limitations

622 AIX Version 7.2: General programming concepts

Memory subsystems written in C++ are not supported due to initialization and the dependencies of libC.a
and the libc.a memory subsystem.

Error messages are not translated because the setlocale subroutine uses malloc() to initialize the
locales. If malloc() fails then the setlocale subroutine cannot finish and the application is still in the
POSIX locale. Therefore, only the default English messages will be displayed.

Existing statically built programs cannot use the user-defined memory subsystem without recompiling.

Error reporting

The first time the malloc subroutine is called, the 32- or 64-bit object in the archive specified by the
MALLOCTYPE environment variable is loaded. If the load fails, a message displays and the application
exits. If the load is successful, an attempt is made to verify that all of the required symbols are present. If
any symbols are missing, the application is terminated and the list of missing symbols displays.

Related concepts
System memory allocation using the malloc subsystem
Memory is allocated to applications using the malloc subsystem.

Debug malloc tool
Debugging applications that are mismanaging memory allocated by the malloc subsystem can be difficult
and tedious. This is because there is generally no synchronicity between the insertion of an error and the
exposure of its resulting symptom.

Adding to the difficulty is the inherent complexity of memory allocation, with thousands of allocations
being made, undone, and accessed (perhaps) asynchronously and simultaneously, all within a
multithreaded context that necessitates robust and efficient synchronization.

It is for these reasons that the focus of our debugging tools is primarily to move the time of symptom
detection closer to the time of error insertion. This helps the application developer to pinpoint more
precisely which section of code is responsible for committing the error.

Many different debugging tools have been developed for use with malloc. Some can be used in
combination with other debugging tools and with all allocation policies; others are more limited in their
use. Many of the debugging tools consume resources additional to those required by the process. It is up
to the application developer to provide adequate resources when necessary.

Performance Considerations
The debug malloc tools are not appropriate for full-time, constant, or system-wide use. Although they
are designed for minimal performance impact upon the application being debugged, significant negative
impact on overall system throughput can result if they are used widely throughout a system. In particular,
setting MALLOCDEBUG=catch_overflow in the /etc/environment file is not recommended, and will
likely cause significant system problems, such as excessive use of paging space. The debug malloc tools
should only be used to debug single applications or small groups of applications at the same time.

Because of the extra work involved in making various run-time checks, malloc subsystem performance
will degrade variably with debug malloc tools enabled (depending on which tool is being used), but not to
the point that applications will become unusable. After the problem is resolved, the debug malloc tools
should be turned off to restore malloc subsystem performance.

Disk and memory considerations
With the catch_overflow or Malloc Log tools enabled, the malloc subsystem will consume significantly
more memory.

For catch_overflow, each malloc request is increased by 4096 + 2 times the size of unsigned long,
then rounded up to the next multiple of the PAGESIZE macro. catch_overflow might prove to be
too memory-intensive to use for very large applications, but for the majority of applications that need
memory debugging, the extra use of memory should not cause a problem. For large applications, the use

General programming concepts 623

of the debug_range and functionset options to catch_overflow can significantly lower memory usage,
allowing the program to be debugged piecemeal.

For Malloc Log, an allocation record is stored for every active allocation in the process. This memory
overhead can be minimized by specifying a low number of saved stack pointers.

If the application being debugged frequently calls malloc subsystem allocation routines, it might
encounter memory usage problems with debug malloc tools enabled that could prevent the application
from executing properly in a single segment. If this occurs, it may be helpful to enable the application to
access additional memory by using the ulimit command and the -bmaxdata option of the ld command.

For the purpose of running with debug malloc tools enabled, set the ulimit for both the data (-d) and stack
(-s) variables as follows:

ulimit -d unlimited
ulimit -s unlimited

To reserve the maximum of 8 segments for a 32-bit process, the -bmaxdata option should be specified as
-bmaxdata:0x80000000.

When the debug malloc tools are turned off, the default values for ulimit and -bmaxdata can be restored.

For more information about the ulimit command and the -bmaxdata option, see Large Program Support.

The debug malloc tools are not appropriate for use in some debugging situations. Because some of the
debug malloc tools require the overhead of a page or more per allocation, programs that issue many small
allocation requests will see their memory usage increase dramatically. These programs might encounter
new failures as memory allocation requests are denied due to a lack of memory or paging space. These
failures are not necessarily errors in the program being debugged, and they are not errors in the debug
malloc tool.

One specific example of this is the X server, which issues numerous tiny allocation requests during
its initialization and operation. Any attempt to run the X server using the X or xinit commands with
catch_overflow enabled will result in the failure of the X server due to a lack of available memory. It
is possible, however, to debug X in piecemeal fashion using the debug_range or functionset options. X
clients in general will not encounter functional problems running with catch_overflow enabled. To use
catch_overflow on an X client program, take the following steps:

1. Start the X server with catch_overflow turned off.
2. Start a terminal window (for example, dtterm, xterm, aixterm).
3. Set the appropriate environment variables within the terminal window session to enable

catch_overflow.
4. Invoke the X client program to be debugged from within the same window.

Enabling debug malloc
Debug Malloc is not enabled by default, but is enabled and configured by setting the MALLOCDEBUG
environment variable to the appropriate option. If more than one option is required, options can be
separated by a comma (,). Options requested in tandem must be compatible with each other.

Note: To disable the debug malloc, unset the MALLOCDEBUG environment variable by using the unset
MALLOCDEBUG command.

Malloc debugging tools
The following malloc debugging tools are available:

• Buffer Overflow Detection

– align
– override_signal_handling
– debug_range

624 AIX Version 7.2: General programming concepts

– functionset
– allow_overreading
– postfree_checking

• Malloc Trace
• Malloc Log

– report_allocations
– validate_ptrs

• Malloc Detect

– verbose
– checkarena
– output
– continue

• Malloc debug Fill

Buffer overflow detection
Memory management errors are sometimes caused by the application program writing past the end of an
allocated buffer. Because this often has no immediate consequence, symptoms do not arise until much
later when the memory that was overwritten (usually belonging to another allocation) is referenced and
no longer contains the data originally stored therein.

The catch_overflow debug option exists to allow users to identify memory overwrites, overreads,
duplicate frees, and reuse of freed memory allocated by the malloc subroutine. Memory problems
detected by the catch_overflow tool result in an abort call or a segmentation violation (SIGSEGV). In
most cases, when an error is detected, the application stops immediately and a core file is produced.

The catch_overflow option affects the allocations of the following allocation policies and options:

• Default Allocation Policy
• Watson Allocation Policy
• Malloc Multiheap Option
• Malloc Threadcache Option
• Malloc Disclaim Option

The catch_overflow debug option is enabled by setting MALLOCDEBUG=catch_overflow. This will
turn on identification of memory overwrites and overreads.

align

By default, the malloc subroutine returns a pointer aligned on a 2-word boundary. This is necessary
for standards conformance and for programs which cannot accept unaligned memory accesses
(e.g. programs using DCE components). However, due to a quirk in the implementation of the
catch_overflow option, it is possible for a program to overwrite a buffer by an amount less than
the alignment value without being detected by catch_overflow. The align option can be used to
tell the malloc subsystem to disregard this default alignment in order to decrease or eliminate the
number of bytes by which a buffer can be overwritten without detection. A custom alignment can be
specified for any power of two between 0 and 4096 inclusive (e.g. 0,1,2,4,...). The values 0 and 1 are
treated as the same, that is, there is no memory alignment; therefore any memory accesses beyond
the allocated area will cause a SEGFAULT.

The align option is part of the catch_overflow option and is only meaningful when
catch_overflow is enabled. To enable a non-default alignment, set the MALLOCDEBUG
environment variable as follows:

MALLOCDEBUG=catch_overflow,align:n

General programming concepts 625

where n is the desired alignment.

To calculate how many bytes of overreads or overwrites the catch_overflow option will allow for
a given allocation request when n is the requested alignment and size is the number of bytes to be
allocated, use the following formula:

((((size / n) + 1) * n) - size) % n

The following example demonstrates the effect of the align option on the application's ability to
perform overreads or overwrites with the catch_overflow option enabled. In this example, the align
option is specified with a value of 2:

MALLOCDEBUG=align:2,catch_overflow

The catch_overflow option handles overreads and overwrites as follows:

• When an even number of bytes is allocated, malloc allocates exactly the number of bytes requested,
which will allow for 0 bytes of overreads or overwrites.

• When an odd number of bytes is allocated, malloc allocates the number of bytes requested, plus
one additional byte to satisfy the required alignment. This allows for 1 byte of possible overreads or
overwrites.

override_signal_handling

The catch_overflow option reports errors in one of the following ways:

• Memory access errors (such as trying to read or write past the end of allocated memory) cause a
segmentation violation (SIGSEGV), resulting in a core dump.

• For other types of errors (such as trying to free space that was already freed), the catch_overflow
option will output an error message, then call the abort function , which will send a SIGIOT signal to
end the current process.

If the calling program is blocking or catching the SIGSEGV and the SIGIOT
signals, the catch_overflow option will be prevented from reporting errors. The
override_signal_handling option provides a means of bypassing this situation without recoding
and rebuilding the application.

If the override_signal_handling option is specified, the catch_overflow option will perform
the following actions upon each call to a malloc subsystem routine:

1. Disable any existing signal handlers set up by the application for SIGSEGV or SIGIOT.
2. Set the action for both SIGIOT and SIGSEGV to the default (SIG_DFL).
3. Unblock both SIGIOT and SIGSEGV.

If an application signal handler modifies the action for SIGSEGV between memory allocation routine
calls and then attempts an invalid memory access, the catch_overflow option will be unable to report the
error (the application will not exit and no core file will be produced).

Note:

1. The override_signal_handling option can be ineffective in a threaded application
environment because the catch_overflow option uses the sigprocmask subroutine and many
threaded processes use the pthread_sigmask subroutine.

2. If a thread calls the sigwait subroutine without including SIGSEGV and SIGIOT in the signal set
and the catch_overflow option subsequently detects an error, the thread will hang because the
catch_overflow option can only generate SIGSEGV or SIGIOT.

3. If a pointer to invalid memory is passed to a kernel routine, the kernel routine will fail and usually
return with errno set to EFAULT. If the application is not checking the return from the system call,
this error might be undetected.

626 AIX Version 7.2: General programming concepts

debug_range

By default, if the catch_overflow option is enabled, buffer overflow detection is performed for
every allocation in the program. If the debug_range option is specified, only allocation requests
that fall between a user-defined minimum and maximum size will have buffer overflows detected by
the catch_overflow option. Otherwise, no buffer overflow detection will be performed. This option
allows the user to control the amount of extra memory resources consumed by the catch_overflow
option by only using the tool in specific cases.

The debug_range option is only meaningful in the context of the catch_overflow option. It is
enabled as follows:

MALLOCDEBUG=catch_overflow,debug_range:min:max

where min is the lower bound and max is the upper bound of the range in which buffer overflow
detection is to be performed. If 0 is specified as a minimum value, then anything that is less than the
maximum value will have buffer overflow detection performed. If 0 is specified as a maximum value,
then anything that is greater than the minimum value will have buffer overflow detection performed.

Limitation: Due to an internal implementation requirement, each allocation will still necessarily be at
least a page size in length. Therefore the debug_range option merely reduces the overhead of the
catch_overflow option rather than eliminating it.

If the realloc subroutine is called with an allocation request that falls within the user-specified range ,
buffer overflow detection is performed even if the original allocation was not within the specified
range. The reverse of this is also true.

Note: If the override_signal option is set in conjunction with the debug_range option, the
overriding of the SIGIOT and SIGSEGV signal behavior is performed for all allocations.

functionset

Due to an internal implementation requirement, each allocation will still necessarily be at least
a page size in length. Therefore the functionset option merely reduces the overhead of the
catch_overflow option rather than eliminating it.

If the realloc subroutine is called from a function that is a member of the user-specified function list ,
buffer overflow detection is performed even if the original allocation was not made from a specified
function. The reverse of this is also true.

Note: If the override_signal option is set in conjunction with the functionset option, the
overriding of the SIGIOT and SIGSEGV signal behavior is performed for all allocations.

The functionset option does not check the validity of the functions specified in the list.

allow_overreading

By default, when the catch_overflow debug option is enabled and the calling program attempts
to read past the end of allocated memory, a segmentation violation will occur and the process
will core dump. However, the user may not be interested in catching this type of error, and
may have enabled catch_overflow in order to catch more dangerous overwrites. Specifying the
allow_overreading option will cause the catch_overflow option to ignore overreads so that
other types of errors, which may be considered more serious, can be detected first.

The allow_overreading option is only meaningful in the context of the catch_overflow option.
It is enabled as follows:

MALLOCDEBUG=catch_overflow,allow_overreading,

postfree_checking

The postfree_checking option consumes a substantial amount of extra memory. Programs with
very large memory requirements may not be able to use the postfree_checking option.

General programming concepts 627

Malloc trace

Malloc Trace is a debugging option designed to allow tracing of all calls to the malloc subsystem API
through the system trace facility.

Mallow log

Malloc Log is a debugging option designed to provide the user with a runtime database of active
allocations in the malloc subsystem.

report_allocations

The report_allocations option is a tool for detecting memory leaks in an application program.
The report_allocations option uses the database constructed by Malloc Log to report a list of
allocations currently held by the user. A record of each successful allocation is made at the time of
the request by Malloc Log. When an allocation is deallocated, Malloc Log removes its record from
the database. At process exit, the list of allocations still active is printed to stderr, giving a list of
allocations that were never freed by their callers.

The report_allocations option requires the functionality of Malloc Log to work. Thus, Malloc Log
is implicitly enabled when report_allocations is enabled. The report_allocations option is
enabled as follows:

MALLOCDEBUG=report_allocations

validate_ptrs

By default, the malloc subsystem APIs do not validate their input pointers to ensure that they actually
reference memory previously allocated. If one of these pointers is invalid, severe heap corruption
can occur. Specifying the validate_ptrs option causes the malloc subsystem APIs to perform
extensive validation on their input pointers. If a pointer is found to be invalid (that is, it does not
reference memory previously allocated by a call to the malloc subsystem API), an error message
stating why it is invalid is printed, the abort function is called, and a core file is produced. The
validate_ptrs option is similar to the verbose sub-option. The validate_ptrs option does not
take effect if the postfree_checking option is enabled.

The validate_ptrs option is enabled as follows:

MALLOCDEBUG=validate_ptrs

Malloc detect

Malloc Detect is a debugging option designed to detect and report corruption of the internal malloc
subsystem data structures on every call to a malloc subsystem API.

verbose

Sub-option of Malloc Detect.

checkarena

Sub-option of Malloc Detect.

output

By default, the malloc debugging options send their output to stderr. This may not be desired for
all programs. The output option exists to provide an alternate destination for printed information.
Output can be sent to either stderr, stdout, or to any file on the system.

The output option is enabled as follows:

MALLOCDEBUG=output:<filename>

continue

Many malloc debugging options call abort() when they detect an error. This is not always the desired
behavior for all programs. The continue option exists to instruct the malloc subsystem to continue

628 AIX Version 7.2: General programming concepts

after the detection of a synchronous error rather than to abort the process. Error messages will still be
logged to the appropriate channels.

The continue option is enabled as follows:

MALLOCDEBUG=continue

Malloc debug fill

Malloc debug fill is a debugging option designed to fill up the memory allocated through the malloc()
calls with user specified pattern for debug purposes..

The pattern should be specified as a string (for example, export MALLOCDEBUG=fill:”abc” will set
the memory allocated through malloc with the pattern “abc”) and a maximum of 128 characters is
allowed. If the pattern is not specified, fill option is ignored.

The malloc debug fill option can be enabled as follows:

MALLOCDEBUG=fill:pattern

Pattern can be a octal or hexadecimal numbers specified in the form of a string. i.e the pattern
“\101” , is treated as the octal notation for character ‘A’ and the pattern “\x41”, is treated as the
hexadecimal notation for character ‘A’

If an invalid octal number is specified, for example \777 which cannot be contained within 1 byte, will
be stored as \377, the maximum octal value that can be stored as 1 byte.

Related concepts
System memory allocation using the malloc subsystem
Memory is allocated to applications using the malloc subsystem.

Malloc multiheap
By default, the malloc subsystem uses a single heap, or free memory pool.

However, it also provides an optional multiheap capability to allow the use of multiple heaps of free
memory, rather than just one.

The purpose of providing multiple-heap capability in the malloc subsystem is to improve the performance
of threaded applications running on multiprocessor systems. When the malloc subsystem is limited to
using a single heap, simultaneous memory-allocation requests received from threads running on separate
processors are serialized. The malloc subsystem can therefore only service one thread at a time, resulting
in a serious impact on multiprocessor system performance.

With malloc multiheap capability enabled, the malloc subsystem creates a fixed number of heaps
for its use. It will begin to use multiple heaps after the second thread is started (process becomes
multithreaded). Each memory-allocation request will be serviced using one of the available heaps. The
malloc subsystem can then process memory allocation requests in parallel, as long as the number of
threads simultaneously requesting service is less than or equal to the number of heaps.

If the number of threads simultaneously requesting service exceeds the number of heaps, additional
simultaneous requests will be serialized. Unless this occurs on an ongoing basis, the overall performance
of the malloc subsystem should be significantly improved when multiple threads are making calls to the
malloc subroutine in a multiprocessor environment.

Enabling malloc multiheap

Malloc multiheap is not enabled by default. It is enabled and configured by setting the
MALLOCOPTIONS environment variable. To enable malloc multiheap with the default settings, set
MALLOCOPTIONS=multiheap prior to process startup. Setting MALLOCOPTIONS in this manner will
enable malloc multiheap in its default configuration, with 32 heaps and the fast heap selection algorithm.

Malloc multiheap options

The Malloc Multiheap options are as follows:

General programming concepts 629

• multiheap:n
• considersize

Each of these options is described in detail later in this document.

To set any of these options, use the following syntax:

MALLOCOPTIONS=[multiheap:n] | [considersize]

One or both options can be specified in any order, as long as options are comma-separated, as in the
following example:

MALLOCOPTIONS=multiheap:3,considersize

In the preceding example, malloc multiheap would be enabled with three heaps and a somewhat slower
heap selection algorithm that tries to minimize process size.

Each configuration option should only be specified once when setting MALLOCOPTIONS. If a
configuration option is specified more than once per setting, only the final instance will apply.

The Malloc Multiheap options are described as follows:

multiheap:n
By default, the maximum number of heaps available to malloc multiheap is 32. The multiheap:n
option can be used to change the maximum number of heaps to any value from 1 through 32, where
n is the number of heaps. If n is set to a value outside the given range, the default value of 32 is used.
Only enable as many heaps as are necessary for the process' requirements. Unnecessarily enabled
heaps can increase the amount of fragmentation and waste.

considersize
By default, malloc multiheap selects the next available heap. If the considersize option is specified,
malloc multiheap will use an alternate heap-selection algorithm that tries to select an available
heap that has enough free space to handle the request. This may minimize the working set size of
the process by reducing the number of sbrk subroutine calls. However, because of the additional
processing required, the considersize heap-selection algorithm is somewhat slower than the default
heap selection algorithm.

If the heaps are unable to allocate space, the malloc subroutine will return NULL and set errno to
ENOMEM. If there is no available memory in the current heap, the malloc subsystem will check the other
heaps for available space.

Related concepts
System memory allocation using the malloc subsystem
Memory is allocated to applications using the malloc subsystem.

Malloc buckets
Malloc buckets provides an optional buckets-based extension of the default allocator.

It is intended to improve malloc performance for applications that issue large numbers of small allocation
requests. When malloc buckets is enabled, allocation requests that fall within a predefined range of block
sizes are processed by malloc buckets. All other requests are processed in the usual manner by the
default allocator.

Malloc buckets is not enabled by default. It is enabled and configured prior to process startup by setting
the MALLOCOPTIONS environment variable.

Bucket composition and sizing

A bucket consists of a block of memory that is subdivided into a predetermined number of smaller blocks
of uniform size, each of which is an allocatable unit of memory. Each bucket is identified using a bucket
number. The first bucket is bucket 0, the second bucket is bucket 1, the third bucket is bucket 2, and
so on. The first bucket is the smallest, and each succeeding bucket is larger in size than the preceding
bucket, using a formula described later in this section. A maximum of 128 buckets are available per heap.

630 AIX Version 7.2: General programming concepts

The block size for each bucket is a multiple of a bucket-sizing factor. The bucket-sizing factor equals the
block size of the first bucket. Each block in the second bucket is twice this size, each block in the third
bucket is three times this size, and so on. Therefore, a given bucket's block size is determined as follows:

block size = (bucket number + 1) * bucket sizing factor

For example, a bucket-sizing factor of 16 would result in a block size of 16 bytes for the first bucket
(bucket 0), 32 bytes for the second bucket (bucket 1), 48 bytes for the third bucket (bucket 2), and so on.

The bucket-sizing factor must be a multiple of 8 for 32-bit implementations and a multiple of 16 for
64-bit implementations in order to guarantee that addresses returned from malloc subsystem functions
are properly aligned for all data types.

The bucket size for a given bucket is determined as follows:

bucket size = number of blocks per bucket * (malloc overhead +
 ((bucket number + 1) * bucket sizing factor))

The preceding formula can be used to determine the actual number of bytes required for each bucket. In
this formula, malloc overhead refers to the size of an internal malloc construct that is required for each
block in the bucket. This internal construct is 8 bytes long for 32-bit applications and 16 bytes long for
64-bit applications. It is not part of the allocatable space available to the user, but is part of the total size
of each bucket.

The number of blocks per bucket, number of buckets, and bucket-sizing factor are all set with the
MALLOCOPTIONS environment variable.

Processing allocations from the buckets

A block will be allocated from one of the buckets whenever malloc buckets is enabled and an allocation
request falls within the range of block sizes defined by the buckets. Each allocation request is serviced
from the smallest possible bucket to conserve space.

If an allocation request is received for a bucket and all of its blocks are already allocated, malloc buckets
will automatically enlarge the bucket to service the request. The number of new blocks added to enlarge
a bucket is always equal to the number of blocks initially contained in the bucket, which is configured by
setting the MALLOCOPTIONS environment variable.

Support for multiheap processing

The malloc multiheap capability provides a means to enable multiple malloc heaps to improve the
performance of threaded applications running on multiprocessor systems. Malloc buckets supports up to
128 buckets per heap. This allows the malloc subsystem to support concurrent enablement of malloc
buckets and malloc multiheap so that threaded processes running on multiprocessor systems can benefit
from the buckets algorithm.

Enabling malloc buckets

Malloc buckets is not enabled by default, but is enabled and configured by setting the following
environment variables:

• MALLOCTYPE
• MALLOCOPTIONS

The MALLOCTYPE environment variable must be set to the default allocator when using Malloc
Buckets. To enable malloc buckets with default settings, set MALLOCOPTIONS=buckets prior
to process startup. To enable malloc buckets with user-specified configuration options, set
MALLOCOPTIONS=buckets,options prior to process startup, where options is a comma-separated list
of one or more predefined configuration options.

Malloc buckets configuration options

The MALLOCOPTIONS environment variable can be used to provide malloc buckets with one or more of
the following predefined configuration options:

General programming concepts 631

number_of_buckets:n
bucket_sizing_factor:n
blocks_per_bucket:n
bucket_statistics:[stdout|stderr|pathname]
no_mallinfo

Each of these options is described in detail in MALLOCOPTIONS.

To set the the MALLOCOPTIONS environment variable, use the following syntax:

MALLOCOPTIONS=[buckets,[number_of_buckets:n | bucket_sizing_factor:n | blocks_per_bucket:n |
bucket_statistics:[stdout|stderr|pathname] | no_mallinfo],...]

More than one option can be specified (and in any order), as long as options are comma-separated, for
example:

MALLOCOPTIONS=buckets,number_of_buckets:128,bucket_sizing_factor:8,bucket_statistics:stderr
MALLOCOPTIONS=buckets,bucket_statistics:stdout,blocks_per_bucket:512

Commas are the only valid delimiters for separating configuration options in this syntax. The use of other
delimiters (such as blanks) between options will cause configuration options to be parsed incorrectly.

Each configuration option should only be specified once when setting the MALLOCOPTIONS environment
variable. If a configuration option is specified more than once per setting, only the final instance will apply.

If a configuration option is specified with an invalid value, malloc buckets writes a warning message to
standard error and then continues execution using a documented default value.

The Malloc Buckets configuration options will be recognized by the malloc subsystem only if the buckets
option is set, as in the following example:

MALLOCOPTIONS=number_of_buckets:8,buckets,bucket_statistics:stderr

Malloc buckets options

number_of_buckets:n
The number_of_buckets:n option can be used to specify the number of buckets available per heap,
where n is the number of buckets. The value specified for n will apply to all available heaps.

The default value for number_of_buckets is 16. The minimum value allowed is 1. The maximum value
allowed is 128.

bucket_sizing_factor:n
The bucket_sizing_factor:n option can be used to specify the bucket-sizing factor, where n is the
bucket-sizing factor in bytes.

The value specified for bucket_sizing_factor must be a multiple of 8 for 32-bit implementations and a
multiple of 16 for 64-bit implementations. The default value for bucket_sizing_factor is 32 for 32-bit
implementations and 64 for 64-bit implementations.

blocks_per_bucket:n
The blocks_per_bucket:n option can be used to specify the number of blocks initially contained in
each bucket, where n is the number of blocks. This value is applied to all of the buckets. The value of
n is also used to determine how many blocks to add when a bucket is automatically enlarged because
all of its blocks have been allocated.

The default value for blocks_per_bucket is 1024.

bucket_statistics:[stdout|stderr|pathname]
The bucket_statistics option will cause the malloc subsystem to output a statistical summary for
malloc buckets upon normal termination of each process that calls the malloc subsystem while
malloc buckets is enabled. This summary shows buckets-configuration information and the number of
allocation requests processed for each bucket. If multiple heaps have been enabled by way of malloc
multiheap, the number of allocation requests shown for each bucket will be the sum of all allocation
requests processed for that bucket for all heaps.

632 AIX Version 7.2: General programming concepts

The buckets statistical summary will be written to one of the following output destinations, as
specified with the bucket_statistics option.

• stdout - standard output
• stderr - standard error
• pathname - a user-specified path name

If a user-specified path name is provided, statistical output is appended to the existing contents of the
file (if any).

Standard output should not be used as the output destination for a process whose output is piped as
input into another process.

The bucket_statistics option is disabled by default.

Note: One additional allocation request is always shown in the first bucket for the atexit subroutine
that prints the statistical summary. For threaded processes, additional allocation requests are shown
for some of the buckets due to malloc subsystem calls issued by the pthreads library.

no_mallinfo
If you specify MALLOCOPTIONS=no_mallinfo, the mallinfo setting is disabled and the information
about the heap that is managed by the malloc subsystem is not logged.

Malloc buckets default configuration

The following table summarizes the malloc buckets default configuration.

Configuration Option Default Value (32-bit) Default Value (64-bit)

number of buckets per heap 16 16

bucket sizing factor 32 bytes 64 bytes

allocation range 1 to 512 bytes (inclusive) 1 to 1024 bytes (inclusive)

number of blocks initially
contained in each bucket

1024 1024

bucket statistical summary disabled disabled

The default configuration for malloc buckets should be sufficient to provide a performance improvement
for many applications that issue large numbers of small allocation requests. However, it may be possible
to achieve additional gains by setting the MALLOCOPTIONS environment variable to modify the default
configuration. Before modifying the default configuration, become familiar with the application's memory
requirements and usage. Malloc buckets can then be enabled with the bucket_statistics option to fine-
tune the buckets configuration.

Limitations

Because of variations in memory requirements and usage, some applications may not benefit from the
memory allocation scheme used by malloc buckets. Therefore, it is not advisable to enable malloc
buckets for system-wide use. For optimal performance, malloc buckets should be enabled and configured
on a per-application basis.

Related concepts
System memory allocation using the malloc subsystem
Memory is allocated to applications using the malloc subsystem.

Malloc trace
Malloc Trace provides an optional extension to the malloc subsystem for use with the trace facility.

Traces of the malloc, realloc, and free subroutines are recorded for use in problem determination and
performance analysis.

General programming concepts 633

Malloc Trace is not enabled by default, but can be enabled and configured prior to process startup
through the MALLOCDEBUG environment variable.

Events recorded by malloc trace

The tracehook IDs used for Malloc Trace are as follows:

• HKWD_LIBC_MALL_SUBSYSTEM
• HKWD_LIBC_MALL_INTERNAL

When tracing is enabled for HKWD_LIBC_MALL_SUBSYSTEM, the input parameters, as well as return
values for each call to malloc, realloc, and free subroutines are recorded in the trace subsystem.

When tracing is enabled for HKWD_LIBC_MALL_INTERNAL and the Malloc Detect debugging tools are
enabled, Malloc Trace will log a trace event whenever Malloc Detect detects an error in the internal data
structures of the malloc subsystem.

Enabling malloc trace

Malloc Trace is not enabled by default. It is enabled and configured by setting the MALLOCDEBUG
environment variable. To enable Malloc Trace, set the MALLOCDEBUG environment variable by typing the
following on the command line:

MALLOCDEBUG=trace

To enable other Malloc Debug features, set the MALLOCDEBUG environment variable as follows:

MALLOCDEBUG=[trace, other_option]

Limitations

The Malloc Trace debugging feature is compatible with the following malloc policies and options:

• Default Allocation Policy
• 3.1 Allocation Policy
• Watson Allocation Policy
• Watson2 Allocation Policy
• Malloc Buckets
• Malloc Multiheap
• Malloc Thread Cache
• Malloc Disclaim Option

Related concepts
System memory allocation using the malloc subsystem
Memory is allocated to applications using the malloc subsystem.

Malloc log
Malloc Log is an optional extension of the malloc subsystem, allowing the user to obtain information
regarding the active allocations currently held by the calling process. This data can then be used in
problem determination and performance analysis.

Data recorded in the malloc log

Malloc Log records the following data for each active allocation:

• The address returned to the caller.
• The size of the allocation.
• The heap which the allocation was serviced from.
• The stack traceback of the calling function. The depth of the traceback that is recorded is a configurable

option.

634 AIX Version 7.2: General programming concepts

In addition, the following information can optionally be logged:

• The process ID of the calling process.
• The thread ID of the calling thread.
• The sequence number of the allocation with respect to process startup.
• The real time in which the allocation was made.

With Malloc Log enabled, each successful allocation requires an additional amount of overhead used to
store the metadata. This overhead is around 50-100 bytes for a 32-bit application; twice that for a 64-bit
application. The amount of overhead changes depending on the options that are set.

The Malloc Log information can be accessed in the following ways:

• Using the DBX malloc subcommand.
• Using the report_allocations malloc debug option.

Enabling malloc log

Malloc Log is not enabled by default. To enable Malloc Log with the default settings, set the
MALLOCDEBUG environment variable as follows:

MALLOCDEBUG=log

To enable Malloc Log with user-specified configuration options, set the MALLOCDEBUG environment
variable as follows:

MALLOCDEBUG=log:extended,stack_depth:6

Note: The default Malloc Log values are as follows:
extended

Defaults to off. Specifying this option will enable the logging of the optional allocation metadata
specified above. This parameter will affect the amount of overhead required for each allocation. This
option does not have any effect if MALLOCTYPE is set to watson2.

stack_depth
Used to specify the depth of the function-call stack that is recorded for each allocation. This
parameter affects the amount of overhead required for each allocation The default value is 4, the
maximum is 64.

Limitations

The performance of all programs can degrade when Malloc Log is enabled, due to the cost of storing data
to memory. Memory usage will also increase.

The Malloc Log debugging feature is compatible with the following malloc policies and options:

• Default Allocation Policy
• Watson Allocation Policy
• Watson2 Allocation Policy
• Malloc Buckets
• Malloc Multiheap
• Malloc Thread Cache
• Malloc Disclaim

Related concepts
System memory allocation using the malloc subsystem

General programming concepts 635

Memory is allocated to applications using the malloc subsystem.

Malloc disclaim
Malloc Disclaim is an optional extension of the malloc subsystem, providing the user with a means to
enable the automatic disclaiming of memory returned by the free subroutine.

This is useful in instances where a process has a high paging-space usage, but is not actually using the
memory.

Malloc Disclaim is not enabled by default. It can be enabled and configured prior to process startup
through the MALLOCOPTIONS environment variable, as follows:

MALLOCOPTIONS=disclaim

Related concepts
System memory allocation using the malloc subsystem
Memory is allocated to applications using the malloc subsystem.

Malloc detect
Malloc Detect provides an optional error reporting and detection extension to the malloc subsystem.
Information on errors that occurred in the malloc environment will be reported and actions can be
performed, if specified.

Malloc Detect can be divided into three distinct capabilities:

• Detecting an error
• Reporting the error using stderr
• Reporting the error using an application-defined function

Detecting an error

Some errors in the malloc subsystem are easy to detect. Errors such as freeing a pointer which is not
a valid heap address are detected synchronously in the codepath of free. However, errors caused by
asynchronous events, such as heap corruption, are much more difficult to pinpoint. The check_arena
option of Malloc Detect is designed to check for this type of corruption on a synchronous basis. On every
call to a malloc subsystem API, a check of the internal data structures is performed. If corruption is
found, it is then reported to the application. This provides another point in time with which to debug these
difficult problems. The check_arena option can be enabled by setting the MALLOCDEBUG environment
variable as follows:

MALLOCDEBUG=checkarena

Reporting an error using stderr

The normal way to report errors in the malloc subsystem is through the return value and the errno
environment variable. The verbose option of Malloc Detect allows these errors to be printed to the
standard error stream of the application program. This provides a more visible, more detailed way of
reporting errors in malloc. The verbose option can be enabled by setting the MALLOCDEBUG environment
variable as follows:

MALLOCDEBUG=verbose

|Reporting an error using an application-defined function

Malloc Detect also allows the user to provide a function that the malloc subsystem will call whenever
it encounters an error. Malloc Report will call the application-provided function, wait for a return, and
then return as usual. This facility allows the application to perform whatever necessary debug tasks are
required before allowing the program to continue. To enable this facility, the application must set the

636 AIX Version 7.2: General programming concepts

value of a global function pointer malloc_err_function equal to the value of the application's error routine.
For example:

extern void (*malloc_err_function)(int, ...)
malloc_err_function = &application_malloc_err_hdl

Limitations

The Malloc Detect debugging feature is compatible with the following malloc policies and options:

• Default Allocation Policy
• Malloc Buckets Option
• Watson Allocation Policy
• Malloc Multiheap
• Malloc Threadcache
• Malloc Disclaim Option

Configuring and using the malloc thread cache
The Malloc Thread Cache maintains a per-thread pool of unallocated memory for the purpose of reducing
contention for the global heap structures.

This cache attempts to preallocate memory pieces for future use according to the pattern of allocations
already performed by the thread. If an allocation request can be serviced using one of the unallocated
pieces in the Thread Cache, it is removed from the cache and returned to the caller. If an allocation
request cannot be serviced using an unallocated piece in the cache, the request is passed on to the global
heap structure.

Thread cache allocation strategy|

The first time a thread requests memory less than 4096 bytes, the thread cache preallocates multiple
chunks of memory of the same size from the global heap structure. It also reserves a larger piece of
memory to be used to service future requests. If the thread frees a piece of memory, that piece will be
kept in the thread cache for future allocations. However, if during a free the size of the thread cache
goes over a certain threshold, half of the elements in the cache will be returned to the backing allocator.
Essentially, the behavior of the thread cache can be described as a "batch processor", grouping up
individual allocation/deallocation calls to be ran at one single time. This leads to less contention on the
global heaps and, in many cases, efficiency gains.

Enabling malloc thread cache

Malloc Thread Cache is enabled by default for the Watson allocator. It can be disabled prior to process
startup by setting the MALLOCOPTIONS environment variable as follows:

$ MALLOCOPTIONS=threadcache:off

Malloc Thread Cache is not enabled by default for the default allocator. It can be enabled prior to process
startup by setting the MALLOCOPTIONS environment variable as follows.

$ MALLOCOPTIONS=threadcache

Writing reentrant and threadsafe code
In single-threaded processes, only one flow of control exists. The code executed by these processes
thus need not be reentrant or threadsafe. In multithreaded programs, the same functions and the same
resources may be accessed concurrently by several flows of control.

To protect resource integrity, code written for multithreaded programs must be reentrant and threadsafe.

Reentrance and thread safety are both related to the way that functions handle resources. Reentrance
and thread safety are separate concepts: a function can be either reentrant, threadsafe, both, or neither.

General programming concepts 637

This section provides information about writing reentrant and threadsafe programs. It does not cover the
topic of writing thread-efficient programs. Thread-efficient programs are efficiently parallelized programs.
You must consider thread efficiency during the design of the program. Existing single-threaded programs
can be made thread-efficient, but this requires that they be completely redesigned and rewritten.

Reentrance
A reentrant function does not hold static data over successive calls, nor does it return a pointer to static
data. All data is provided by the caller of the function. A reentrant function must not call non-reentrant
functions.

A non-reentrant function can often, but not always, be identified by its external interface and its usage.
For example, the strtok subroutine is not reentrant, because it holds the string to be broken into tokens.
The ctime subroutine is also not reentrant; it returns a pointer to static data that is overwritten by each
call.

Thread safety
A threadsafe function protects shared resources from concurrent access by locks. Thread safety concerns
only the implementation of a function and does not affect its external interface.

In C language, local variables are dynamically allocated on the stack. Therefore, any function that does
not use static data or other shared resources is trivially threadsafe, as in the following example:

/* threadsafe function */
int diff(int x, int y)
{
 int delta;

 delta = y - x;
 if (delta < 0)
 delta = -delta;

 return delta;
}

The use of global data is thread-unsafe. Global data should be maintained per thread or encapsulated, so
that its access can be serialized. A thread may read an error code corresponding to an error caused by
another thread. In AIX, each thread has its own errno value.

Making a function reentrant
In most cases, non-reentrant functions must be replaced by functions with a modified interface to
be reentrant. Non-reentrant functions cannot be used by multiple threads. Furthermore, it may be
impossible to make a non-reentrant function threadsafe.

Returning data
Many non-reentrant functions return a pointer to static data. This can be avoided in the following ways:

• Returning dynamically allocated data. In this case, it will be the caller's responsibility to free the
storage. The benefit is that the interface does not need to be modified. However, backward compatibility
is not ensured; existing single-threaded programs using the modified functions without changes would
not free the storage, leading to memory leaks.

• Using caller-provided storage. This method is recommended, although the interface must be modified.

For example, a strtoupper function, converting a string to uppercase, could be implemented as in the
following code fragment:

/* non-reentrant function */
char *strtoupper(char *string)
{
 static char buffer[MAX_STRING_SIZE];
 int index;

638 AIX Version 7.2: General programming concepts

 for (index = 0; string[index]; index++)
 buffer[index] = toupper(string[index]);
 buffer[index] = 0

 return buffer;
}

This function is not reentrant (nor threadsafe). To make the function reentrant by returning dynamically
allocated data, the function would be similar to the following code fragment:

/* reentrant function (a poor solution) */
char *strtoupper(char *string)
{
 char *buffer;
 int index;

 /* error-checking should be performed! */
 buffer = malloc(MAX_STRING_SIZE);

 for (index = 0; string[index]; index++)
 buffer[index] = toupper(string[index]);
 buffer[index] = 0

 return buffer;
}

A better solution consists of modifying the interface. The caller must provide the storage for both input
and output strings, as in the following code fragment:

/* reentrant function (a better solution) */
char *strtoupper_r(char *in_str, char *out_str)
{
 int index;

 for (index = 0; in_str[index]; index++)
 out_str[index] = toupper(in_str[index]);
 out_str[index] = 0

 return out_str;
}

Te non-reentrant standard C library subroutines were made reentrant using caller-provided storage.

Keeping data over successive calls
No data should be kept over successive calls, because different threads may successively call the
function. If a function must maintain some data over successive calls, such as a working buffer or a
pointer, the caller should provide this data.

Consider the following example. A function returns the successive lowercase characters of a string. The
string is provided only on the first call, as with the strtok subroutine. The function returns 0 when it
reaches the end of the string. The function could be implemented as in the following code fragment:

/* non-reentrant function */
char lowercase_c(char *string)
{
 static char *buffer;
 static int index;
 char c = 0;

 /* stores the string on first call */
 if (string != NULL) {
 buffer = string;
 index = 0;
 }

 /* searches a lowercase character */
 for (; c = buffer[index]; index++) {
 if (islower(c)) {
 index++;
 break;
 }
 }

General programming concepts 639

 return c;
}

h

This function is not reentrant. To make it reentrant, the static data, the index variable, must be
maintained by the caller. The reentrant version of the function could be implemented as in the following
code fragment:

/* reentrant function */
char reentrant_lowercase_c(char *string, int *p_index)
{
 char c = 0;

 /* no initialization - the caller should have done it */

 /* searches a lowercase character */
 for (; c = string[*p_index]; (*p_index)++) {
 if (islower(c)) {
 (*p_index)++;
 break;
 }
 }
 return c;
}

The interface of the function changed and so did its usage. The caller must provide the string on each call
and must initialize the index to 0 before the first call, as in the following code fragment:

char *my_string;
char my_char;
int my_index;
...
my_index = 0;
while (my_char = reentrant_lowercase_c(my_string, &my_index)) {
 ...
}

Making a function threadsafe
In multithreaded programs, all functions called by multiple threads must be threadsafe. However,
a workaround exists for using thread-unsafe subroutines in multithreaded programs. Non-reentrant
functions usually are thread-unsafe, but making them reentrant often makes them threadsafe, too.

Locking shared resources
Functions that use static data or any other shared resources, such as files or terminals, must serialize
the access to these resources by locks in order to be threadsafe. For example, the following function is
thread-unsafe:

/* thread-unsafe function */
int increment_counter()
{
 static int counter = 0;

 counter++;
 return counter;
}

To be threadsafe, the static variable counter must be protected by a static lock, as in the following
example:

/* pseudo-code threadsafe function */
int increment_counter();
{
 static int counter = 0;
 static lock_type counter_lock = LOCK_INITIALIZER;

 pthread_mutex_lock(counter_lock);
 counter++;
 pthread_mutex_unlock(counter_lock);

640 AIX Version 7.2: General programming concepts

 return counter;
}

In a multithreaded application program using the threads library, mutexes should be used for serializing
shared resources. Independent libraries may need to work outside the context of threads and, thus, use
other kinds of locks.

Workarounds for thread-unsafe functions
It is possible to use a workaround to use thread-unsafe functions called by multiple threads. This can
be useful, especially when using a thread-unsafe library in a multithreaded program, for testing or while
waiting for a threadsafe version of the library to be available. The workaround leads to some overhead,
because it consists of serializing the entire function or even a group of functions. The following are
possible workarounds:

• Use a global lock for the library, and lock it each time you use the library (calling a library routine or
using a library global variable). This solution can create performance bottlenecks because only one
thread can access any part of the library at any given time. The solution in the following pseudocode is
acceptable only if the library is seldom accessed, or as an initial, quickly implemented workaround.

/* this is pseudo code! */

lock(library_lock);
library_call();
unlock(library_lock);

lock(library_lock);
x = library_var;
unlock(library_lock);

• Use a lock for each library component (routine or global variable) or group of components. This
solution is somewhat more complicated to implement than the previous example, but it can improve
performance. Because this workaround should only be used in application programs and not in libraries,
mutexes can be used for locking the library.

/* this is pseudo-code! */

lock(library_moduleA_lock);
library_moduleA_call();
unlock(library_moduleA_lock);

lock(library_moduleB_lock);
x = library_moduleB_var;
unlock(library_moduleB_lock);

Reentrant and threadsafe libraries
Reentrant and threadsafe libraries are useful in a wide range of parallel (and asynchronous) programming
environments, not just within threads. It is a good programming practice to always use and write
reentrant and threadsafe functions.

Using libraries
Several libraries shipped with the AIX Base Operating System are threadsafe. In the current version of
AIX, the following libraries are threadsafe:

• Standard C library (libc.a)
• Berkeley compatibility library (libbsd.a)

Some of the standard C subroutines are non-reentrant, such as the ctime and strtok subroutines. The
reentrant version of the subroutines have the name of the original subroutine with a suffix _r (underscore
followed by the letter r).

When writing multithreaded programs, use the reentrant versions of subroutines instead of the original
version. For example, the following code fragment:

General programming concepts 641

token[0] = strtok(string, separators);
i = 0;
do {
 i++;
 token[i] = strtok(NULL, separators);
} while (token[i] != NULL);

should be replaced in a multithreaded program by the following code fragment:

char *pointer;
...
token[0] = strtok_r(string, separators, &pointer);
i = 0;
do {
 i++;
 token[i] = strtok_r(NULL, separators, &pointer);
} while (token[i] != NULL);

Thread-unsafe libraries may be used by only one thread in a program. Ensure the uniqueness of the
thread using the library; otherwise, the program will have unexpected behavior, or may even stop.

Converting libraries
Consider the following when converting an existing library to a reentrant and threadsafe library. This
information applies only to C language libraries.

• Identify exported global variables. Those variables are usually defined in a header file with the export
keyword. Exported global variables should be encapsulated. The variable should be made private
(defined with the static keyword in the library source code), and access (read and write) subroutines
should be created.

• Identify static variables and other shared resources. Static variables are usually defined with the static
keyword. Locks should be associated with any shared resource. The granularity of the locking, thus
choosing the number of locks, impacts the performance of the library. To initialize the locks, the
one-time initialization facility may be used.

• Identify non-reentrant functions and make them reentrant. For more information, see Making a Function
Reentrant.

• Identify thread-unsafe functions and make them threadsafe. For more information, see Making a
Function threadsafe.

Related concepts
One-time initializations
Some C libraries are designed for dynamic initialization, in which the global initialization for the library is
performed when the first procedure in the library is called.
Related information
admin
cdc
delta
get
prs
sccsdiff
sccsfile

Packaging software for installation
This topic provides information about preparing applications to be installed with the installp command.

This section describes the format and contents of the software product installation package that must be
supplied by the product developer. It gives a description of the required and optional files that is part of a
software installation or update package.

642 AIX Version 7.2: General programming concepts

A software product installation package is a backup-format file which contains the files of the software
product, required installation control files, and optional installation customization files. The installp
command is used to install and update software products.

An installation package contains one or more separately installable, logically grouped units called filesets.
Each fileset in a package must belong to the same product.

A fileset update or update package is a package which contains modifications to an existing fileset.

Throughout this topic, the term standard system is used to refer to a system that is not configured as a
diskless system.

Installation procedure requirements

• Installation must not require user interaction. Product configuration that requires user interaction must
occur before or after installation.

• All installations of independent filesets or updates to interdependent filesets must be able to be
performed during a single installation.

• No system restart should be required for installation. The installation will stop portions of the system
related to the installation, and a system restart is required after installation in order for the installation
to take full effect.

Package control information requirements

Package control information must:

• Specify all installation requirements the filesets have on other filesets.
• Specify all file system size requirements for the fileset installation.

Format of a software package

An installation or update package must be a single file in backup format that can be restored by the
installp command during installation. This file can be distributed on tape, diskette, or CD-ROM.

Package partitioning requirements

In order to support diskless or dataless client workstations, machine-specific portions of the package (the
root part) must be separated from the machine-shareable portions of the package (the usr part). The usr
part of the package contains files that reside in the /usr or /opt file system.

Installation of the root part of the package must not modify any files in the /usr file system. The /usr
file system is not writable during installation of the root part of a diskless or dataless client system. The
machine–specific (root) part should include everything that is not in the /usr or /opt file systems.

Packaging for workload partitions

Some software products require special consideration when being packaged for workload partitioning
(WPAR). For a software product to successfully deploy in a WPAR, it must be packaged such that it does
not attempt to write into the /usr or /opt file systems during the root part of the processing, because a
WPAR mounts those file systems in read-only mode. Similarly, any configuration that is to be performed in
each system where the product is installed must be performed from the root part of the package.

If a fileset is not intended to ever be installed into a workload partition, it must be designated with the
PRIVATE attribute in the lpp_name file of the package.

If a fileset needs to be configured differently when it is installed within a WPAR, a packaging script checks
the INUWPAR environment variable to determine whether the fileset is being installed within a WPAR.

If a fileset is configured differently when installed into a WPAR, it will be reconfigured when a WPAR
is created from a system copy, because the fileset was not installed into a WPAR originally. Fileset
owners can create programs in the /usr/lib/wpars/wparconvert.d/usr and /usr/lib/wpars/
wparconvert.d/root directories, which are to be run when converting the usr and root parts from their
fileset to be run within a system copy WPAR. All executable files within those directories are executed in
alphabetical order (C locale) when a system copy WPAR is first started.

Software vital product data

General programming concepts 643

Information about a software product and its installable options is maintained in the Software Vital
Product Data (SWVPD) database. The SWVPD consists of a set of commands and the Object Data Manager
(ODM) object classes for the maintenance of software product information. The SWVPD commands are
provided for the user to query (lslpp) and verify (lppchk) installed software products. The ODM object
classes define the scope and format of the software product information that is maintained.

The installp command uses the Object Data Manager to maintain the following information in the SWVPD
database:

• The name of the software product (for example, bos.adt)
• The version of the software product
• The release level of the software product, which indicates changes to the external programming

interface of the software product
• The modification level of the software product, which indicates changes that do not affect the software

product's external interface
• The fix level of the software product, which indicates small updates that are to be built into a regular
modification level at a later time

• The name, checksum, and size of the files that make up the software product or option
• The state of the software product: available, applying, applied, committing, committed, rejecting, or

broken
• Technology level and APAR information
• The destination directory and installer for non-installp packaged software, where applicable.

Software product packaging parts

In order to support installation in the client/server environment, the installation packaging is divided in
the following parts:
usr

Contains the part of the product that can be shared among several machines with compatible
hardware architectures. For a standard system, these files are stored in the /usr or /opt file tree.

root
Contains the part of the product that cannot be shared among machines. Each client must have its
own copy. Most of this software requiring a separate copy for each machine is associated with the
configuration of the machine or product. For a standard system, files in the root part are stored in the
root (/) file tree. The root part of a fileset must be in the same package as the usr part of the fileset. If
a fileset contains a root part, it must also contain a usr part.

Sample file system guide for package partitioning

Following is a brief description of file systems and directories. You can use this as a guide for splitting a
product package into root, usr, and share parts.

Some root-part directories and their contents:

/dev
Local machine device files

/etc
Machine configuration files such as hosts and passwd

/sbin
System utilities needed to boot the system

/var
System-specific data files and log files

Some usr-part directories and their contents include:

/usr/bin
Commands and scripts (ordinary executables)

644 AIX Version 7.2: General programming concepts

/usr/sbin
System administration commands

/usr/include
Include files

/usr/lib
Libraries, non-user commands, and architecture-dependent data

/opt
Libraries, non-user commands, and scripts normally associated with non-operating system products.

Package and fileset naming conventions

Use the following conventions when naming a software package and its filesets:

• A package name (PackageName) should begin with the product name. If a package has only one
installable fileset, the fileset name can be the same as the PackageName. All package names must be
unique.

• A fileset name has the form:

ProductName.PackageName.FilesetName.extension

where:

– ProductName identifies the product or solution group.
– PackageName identifies a functional group within the product.
– FilesetName (optional) identifies a specific functional set of files and libraries to be installed.
– Extension (optional) further describes the contents.

• A fileset name contains more than one character and begins with a letter.
• All characters in the fileset name must be ASCII characters. Valid characters are upper and lowercase

letters, digits, underscores (_), plus signs (+), and minus signs. The period (.) is used as a separator in
the fileset name.

• A fileset name cannot end with a period or dot.
• The maximum length for a fileset name is 144 bytes.
• All fileset names must be unique within the package.

Table 86. Fileset extension naming conventions

Extension Fileset Description

.adt Application development toolkit

.com Common code required by similar filesets

.compat Compatibility code that may be removed in a future
release

.diag Diagnostics support

.fnt Fonts

.help. Language Common Desktop Environment (CDE) help files for
a particular language

Special naming considerations for device driver packaging

The configuration manager command (cfgmgr) automatically installs software support for detectable
devices that are available on the installation media and packaged with the following naming convention:

devices.BusTypeID.CardID.Extension

where:

General programming concepts 645

• BusTypeID specifies the type of bus to which the card attaches (for example, pci for PCI
• CardID specifies the unique hexadecimal identifier associated with the card type
• Extension specifies the part of the driver that is included (for example, rte could be the extension for

runtime and diag is the extension for diagnostics.)

For example, assume that an ethernet device attaches to the PCI bus and is identified by the configuration
manager as having a unique card identifier of 1410bb02. The package of filesets associated with this
ethernet device would be named devices.pci.1410bb02. The runtime environment fileset within this
package would be named devices.pci.1410bb02.rte.

Special naming considerations for message catalog packaging

A user installing a package can request that the message catalogs be installed automatically. When
this request is made, the system automatically installs message filesets for the primary language if
the message filesets are available on the installation media and packaged with the following naming
convention:

Product.msg.Language.SubProduct

The optional.SubProduct suffix is used when a product has multiple message catalog filesets for the same
language, each message catalog fileset applying to a different SubProduct. You can choose to have one
message fileset for an entire product.

For example, the Super_Widget product has a plastic and a metal set of fileset
options. All Super_Widget English US message catalogs can be packaged in a single fileset
named Super_Widget.msg.en_US. If separate message catalog filesets are needed for the
plastic and metal options, the English US message catalog filesets would be named
Super_Widget.msg.en_US.plastic and Super_Widget.msg.en_US.metal.

Note: A message fileset that conforms to this naming convention must contain an installed-requisite
(instreq) on another fileset in the product in order to ensure automatic installation of the message fileset.

File names

Files delivered with the software package cannot have names containing commas or colons. Commas and
colons are used as delimiters in the control files used during the software installation process. File names
can contain non-ASCII characters. The full path for the file name cannot be more than 128 characters.

Fileset revision level identification

The fileset level is referred to as the level or alternatively as the v.r.m.f or VRMF and has the form:

Version.Release.Modification.FixLevel

where:

• Version is a numeric field of 1 to 2 digits that identifies the version number.
• Release is a numeric field of 1 to 2 digits that identifies the release number.
• Modification is a numeric field of 1 to 4 digits that identifies the modification level.
• FixLevel is a numeric field of 1 to 4 digits that identifies the fix level.

A base fileset installation level is the full initial installation level of a fileset. This level contains all files in
the fileset, as opposed to a fileset update, which may contain a subset of files from the full fileset.

All filesets in a software package should have the same fileset level, though it is not required for AIX
4.1-formatted packages.

For all new levels of a fileset, the fileset level must increase. The installp command uses the fileset level
to check for a later level of the product on subsequent installations.

fileset level precedence reads from left to right (for example, 5.2.0.0 is a newer level than 4.3.0.0).

Contents of a software package

646 AIX Version 7.2: General programming concepts

This section describes the files contained in an installation or update package. File path names are given
for installation package types. For update packages, wherever PackageName is part of the path name, it is
replaced by PackageName/FilesetName/FilesetLevel.

The usr part of an installation or update package contains the following installation control files:

• ./lpp_name: This file provides information about the software package to be installed or updated. For
performance reasons, the lpp_name file should be the first file in the backup-format file that makes up
a software installation package.

• ./usr/lpp/PackageName/liblpp.a: This archive file contains control files used by the installation
process for installing or updating the usr part of the software package.

• All files, backed up relative to root, that are to be restored for the installation or update of the usr part of
the software product.

If the installation or update package contains a root part, the root part contains the following files:

• ./usr/lpp/PackageName/inst_root/liblpp.a: This library file contains control files used by the
installation process for installing or updating the root part of the software package.

• All files that are to be restored for the installation or update of the root part of the software package.
For a base fileset installation level these files must be backed up relative to ./usr/lpp/PackageName/
inst_root.

Example contents of a software package

The farm.apps package contains the farm.apps.hog 4.1.0.0 fileset. The farm.apps.hog
4.1.0.0 fileset delivers the following files:

/usr/bin/raisehog (in the usr part of the package)
/usr/sbin/sellhog
 (in the usr part of the package)

/etc/hog
 (in the root part of the package)

The farm.apps package contains at least the following files:

./lpp_name

./usr/lpp/farm.apps/liblpp.a

./usr/lpp/farm.apps/inst_root/liblpp.a

./usr/bin/raisehog

./usr/sbin/sellhog

./usr/lpp/farm.apps/inst_root/etc/hog

Fileset update farm.apps.hog 4.1.0.3 delivers updates to the following files:

/usr/sbin/sellhog
/etc/hog

The fileset update package contains the following files:

./lpp_name

./usr/lpp/farm.apps/farm.apps.hog/4.1.0.3/liblpp.a

./usr/lpp/farm.apps/farm.apps.hog/4.1.0.3/inst_root/liblpp.a

./usr/sbin/sellhog

./usr/lpp/farm.apps/farm.apps.hog/4.1.0.3/inst_root/etc/hog

Note: The file from the root part of the package was restored under an inst_root directory. Files installed
for the machine-dependent root part of a package are restored relative to an inst_root directory. This
facilitates installation of machine-specific files in the root file systems of multiple systems. The root part
files are installed into the root portions of systems by copying the files from the inst_root directory. This
allows multiple machines to share a common machine-independent usr part.

The lpp_name package information file

Each software package must contain the lpp_name package information file. The lpp_name file gives the
installp command information about the package and each fileset in the package. Refer to the figure for

General programming concepts 647

an example lpp_name file for a fileset update package. The numbers and arrows in the figure refer to
fields that are described in the table that follows.

Table 87. lpp_name file fields

Field Name Format Separator Description

1. Format Integer White space Indicates the release level of installp for which this package was built. The
values are:

• 1 - AIX 3.1
• 3 - AIX 3.2
• 4 - AIX 4.1 and later

2. Platform Character White space Indicates the platform for which this package was built. The values are:

• R - RISC
• I - Intel
• N - Neutral

3. Package
Type

Character White space Indicates whether this is an installation or update package and what type.
The values are:

• I - Installation
• S - Single update
• SR - Single update required
• ML - Technology level update

4.
PackageName

Character White space The name of the software package (PackageName).

{ New line Indicates the beginning of the repeatable sections of fileset-specific data.

5.Fileset
name

Character White space The complete name of the fileset. This field begins the heading information
for the fileset or fileset update.

6. Level Shown in
Description
column

White space The level of the fileset to be installed. The format is:
Version.Release.Modification.FixLevel

Note: The level can be defined additionally with syntax of <, >, and =
combinations. For example, *prereq bos.rte v<5 or *prereq bos.rte
v=5 r=3.

7. Volume Integer White space Indicates the volume number where the fileset is located if shipped on
multivolume media.

8. Bosboot Character White space Indicates whether a bosboot is needed following the installation. The values
are:

• N - Do not start bosboot
• b - start bosboot

9. Content Character White space Indicates that the parts included in the fileset or fileset update. The values
are:

• B -usr and root part
• U -usr part only

10. Language Character White space Should be set to the language displayed if the C locale is selected. Generally
set to en_US.

11.
Description

Character # or new line Fileset description. The description is limited to 60 characters.

12.
Comments

Character New line (Optional) Additional comments.

[New line Indicates the beginning of the body of the fileset information.

13. Requisite
information

Described
following table

New line (Optional) Installation dependencies the fileset has on other filesets and
fileset updates. See the section following this table for detailed description.

% New line Indicates the separation between requisite and size information.

648 AIX Version 7.2: General programming concepts

Table 87. lpp_name file fields (continued)

Field Name Format Separator Description

14. Size and
License
Agreement
information

Described later
in this topic

New line Size requirements by directory and license agreement information. See Size
and License Agreement Information Section later in this topic for detailed
description.

% New line Indicates the separation between size and licensing information.

% New line Indicates the separation between licensing and supersede information.

15. Supersede
Information

Described later
in topic

New line Information regarding a prior fileset that this fileset replaces.

% New line Indicates the separation between licensing and fix information.

16. Fix
information

Described later
in topic

New line Information regarding the fixes contained in the fileset update. See Fix
Information Section later in this topic for detailed description.

] New line Indicates the end of the body of the fileset information.

} New line Indicates the end of the repeatable sections of fileset-specific information.

Table 88. Examples

1 23 4
| || | 6 7 8 9 10 11
4 RSfarm.apps { | | | | | | |
 5--> farm.apps.hog04.01.0000.0003 1 N U en_US Hog Utilities
12--># ...
[
13--> *ifreq bos.farming.rte (4.2.0.0) 4.2.0.15
%
14--> /usr/sbin 48
14--> /usr/lpp/farm.apps/farm.apps.hog/4.1.0.3 280
14--> /usr/lpp/farm.apps/farm.apps.hog/inst_root/4.1.0.3.96
14--> /usr/lpp/SAVESPACE 48
14--> /lpp/SAVESPACE 32
14--> /usr/lpp/bos.hos/farm.apps.hog/inst_root/4.1.0.3/ etc 32
%
%
15--> ranch.hog 4.1.0.0
%
16--> IX51366 Hogs producing eggs.
16--> IX81360 Piglets have too many ears.
]
}

Requisite information section

The requisite information section contains information about installation dependencies on other filesets
or fileset updates. Each requisite listed in the requisite section must be satisfied according to the requisite
rules in order to apply the fileset or fileset update.

Before any installing or updating occurs, the installp command compares the current state of the filesets
to be installed with the requirements listed in the lpp_name file. If the -g flag was specified with the
installp command, any missing requisites are added to the list of filesets to be installed. The filesets
are ordered for installation according to any prerequisites. Immediately before a fileset is installed, the
installp command again checks requisites for that fileset. This check verifies that all requisites installed
earlier in the installation process were installed successfully and that all requisites are satisfied.

In the following descriptions of the different types of requisites, RequiredFilesetLevel represents the
minimum fileset level that satisfies the requirements. Except when explicitly blocked for reasons
described in Supersede Information Section, newer levels of a fileset satisfy requisites on an earlier level.
For example, a requisite on the plum.tree 2.2.0.0 fileset is satisfied by the plum.tree 3.1.0.0
fileset.

Prerequisite

General programming concepts 649

A prerequisite indicates that the specified fileset must be installed at the specified fileset level or at a
higher level before the current fileset can install successfully. If a prerequisite fileset is scheduled to be
installed, the installp command orders the list of filesets to install to make sure the prerequisite is met. A
prerequisite on a fileset within the same package is not guaranteed.

Syntax

*prereq Fileset RequiredFilesetLevel

Alternate syntax

Fileset RequiredFilesetLevel

A fileset update contains an implicit prerequisite to its base-level fileset. If this implicit prerequisite is
not adequate, you must specify explicitly a different prerequisite. The Version and Release of the update
and the implicit prerequisite are the same. If the FixLevel of the update is 0, the ModificationLevel and the
FixLevel of the implicit prerequisite are both 0. Otherwise, the implicit prerequisite has a ModificationLevel
that is the same as the ModificationLevel of the update and a FixLevel of 0. For example, a 4.1.3.2 level
update requires its 4.1.3.0 level to be installed before the update installation. A 4.1.3.0 level update
requires its 4.1.0.0 level to be installed before the update installation.

Corequisite

A corequisite indicates that the specified fileset must be installed for the current fileset to function
successfully. At the end of the installation process, the installp command issues warning messages for
any corequisites that are not met. A corequisite can be used to indicate requisites between filesets within
the same package.

Syntax

*coreq Fileset RequiredFilesetLevel

If requisite

An if requisite indicates that the specified fileset is required to be at RequiredFilesetLevel only if the fileset
is installed at InstalledFilesetLevel. This is most commonly used to coordinate dependencies between
fileset updates. The following example shows an if requisite:

*ifreq plum.tree (1.1.0.0) 1.1.2.3

Syntax

*ifreq Fileset [(InstalledFilesetLevel)] RequiredFilesetLevel

If the plum.tree fileset is not already installed, this example does not cause it to be installed. If the
plum.tree fileset is already installed at any of the following levels, this example does not cause the
1.1.2.3 level to be installed:

1.1.2.3
This level matches the RequiredFilesetLevel.

1.2.0.0
This level is a different base fileset level.

1.1.3.0
This level supersedes the RequiredFilesetLevel.

If the plum.tree fileset is already installed at any of the following levels, this example causes the
1.1.2.3 level to be installed:

1.1.0.0
This level matches the InstalledFilesetLevel.

650 AIX Version 7.2: General programming concepts

1.1.2.0
This level is the same base level as the InstalledFilesetLevel and a lower level than the
RequiredFilesetLevel.

The (InstalledFilesetLevel) parameter is optional. If it is omitted, the Version and Release of
theInstalledFilesetLevel and the RequiredFilesetLevel are assumed to be the same. If the FixLevel
of the RequiredFilesetLevel is 0, the ModificationLevel and the FixLevel of the InstalledFilesetLevel
are both 0. Otherwise, the InstalledFilesetLevel has a ModificationLevel that is the same as the
ModificationLevel of the RequiredFilesetLevel and a FixLevel of 0. For example, if the RequiredFilesetLevel
is 4.1.1.1 and no InstalledFilesetLevel parameter is supplied, the InstalledFilesetLevel is 4.1.1.0.
If the RequiredFilesetLevel is 4.1.1.0 and no InstalledFilesetLevel parameter is supplied, the
InstalledFilesetLevel is 4.1.0.0.

Installed requisite

An installed requisite indicates that the specified fileset should be installed automatically only if its
corresponding fileset is already installed or is on the list of filesets to install. An installed requisite also
is installed if the user explicitly requests that it be installed. A fileset update can not have an installed
requisite. Because a fileset containing the message files for a particular package should not be installed
automatically without some other part of the package being installed, a message fileset should always
contain an installed requisite for another fileset in its product.

Syntax

*instreq Fileset RequiredFilesetLevel

Group requisite

A group requisite indicates that different requisite conditions can satisfy the requisite. A group requisite
can contain prerequisites, corequisites, if-requisites, and nested group requisites. The Number preceding
the { RequisiteExpressionList } identifies how many of the items in the RequisiteExpressionList are
required. For example, >2 states that at least three items in the RequisiteExpressionList are required.

Syntax

>Number { RequisiteExpressionList }

Requisite information section examples

1. The following example illustrates the use of corequisites. The book.create 12.30.0.0 fileset
cannot function without the layout.text 1.1.0.0 and index.generate 2.3.0.0 filesets
installed, so the requisite section for book.create 12.30.0.0 contains:

*coreq layout.text 1.1.0.0
*coreq index.generate 2.3.0.0

The index.generate 3.1.0.0 fileset satisfies the index.generate requisite, because 3.1.0.0
is a newer level than the required 2.3.0.0 level.

2. The following example illustrates the use of the more common requisite types. Fileset
new.fileset.rte 1.1.0.0 contains the following requisites:

*prereq database.rte 1.2.0.0
*coreq spreadsheet.rte 1.3.1.0
*ifreq wordprocessorA.rte (4.1.0.0) 4.1.1.1
*ifreq wordprocessorB.rte 4.1.1.1

The database.rte fileset must be installed at level 1.2.0.0 or higher before the
new.fileset.rte fileset can be installed. If database.rte and new.fileset.rte are installed
in the same installation session, the installation program installs the database fileset before the
new.fileset.rte fileset.

The spreadsheet.rte fileset must be installed at level 1.3.1.0 or higher for the
new.fileset.rte fileset to function properly. The spreadsheet.rte fileset does not need to be
installed before the new.fileset.rte fileset is installed, provided both are installed in the same

General programming concepts 651

installation session. If an adequate level of the spreadsheet.rte fileset is not installed by the end of
the installation session, a warning message will be issued stating that the corequisite is not met.

If the wordprocessorA.rte fileset is installed (or being installed with new.fileset.rte) at level
4.1.0.0, then the wordprocessorA.rte fileset update must be installed at level 4.1.1.1 or
higher.

If the wordprocessorB.rte fileset is installed (or being installed with new.fileset.rte) at level
4.1.1.0, then the wordprocessorB.rte fileset update must be installed at level 4.1.1.1 or
higher.

3. The following example illustrates an installed requisite. Fileset Super.msg.fr_FR.Widget at level
2.1.0.0 contains the following install requisite:

*instreq Super.Widget 2.1.0.0

The Super.msg.fr_FR.Widget fileset cannot be installed automatically when the Super.Widget
fileset is not installed. The Super.msg.fr_FR.Widget fileset can be installed when the
Super.Widget fileset is not installed if the fileset is listed explicitly on the list of filesets to be
installed..

4. The following example illustrates a group requisite. At least one of the prerequisite filesets listed must
be installed (both can be installed). If installed, the spreadsheet_1.rte fileset must be at level
1.2.0.0 or higher or the spreadsheet_2.rte fileset must be at level 1.3.0.0 or higher.

>0 {
*prereq spreadsheet_1.rte 1.2.0.0
*prereq spreadsheet_2.rte 1.3.0.0
}

Size and license agreement information

The size and license agreement information section contains information about the disk space and license
agreement requirements for the fileset.

Size Information

This information is used by the installation process to ensure that enough disk space is available for the
installation or update to succeed. Size information has the form:

Directory PermanentSpace [TemporarySpace]

Additionally, the product developer can specify PAGESPACE or INSTWORK in the full-path name field to
indicate disk space requirements for paging space and workspace needed in the package directory during
the installation process.

Directory
The full path name of the directory that has size requirements.

PermanentSpace

The size (in 512-byte blocks) of the permanent space needed for the installation or update.
Permanent space is space that is needed after the installation completes. This field has a different
meaning in the following cases:

If Directory is PAGESPACE, PermanentSpace represents the size of page space needed (in 512-byte
blocks) to perform the installation.

If Directory is INSTWORK, PermanentSpace represents the number of 512-byte blocks needed for
extracting control files used during the installation. These control files are the files that are archived to
the liblpp.a file.

TemporarySpace

The size (in 512-byte blocks) of the temporary space needed for the installation only. Temporary
space is released after the installation completes. The TemporarySpace value is optional. An example
of temporary space is the space needed to re-link an executable object file. Another example is the

652 AIX Version 7.2: General programming concepts

space needed to archive an object file into a library. To archive into a library, the installp command
makes a copy of the library, archives the object file into the copied library, and moves the copied
library over the original library. The space for the copy of the library is considered temporary space.

When Directory is INSTWORK, TemporarySpace represents the number of 512-byte blocks needed for
the unextracted liblpp.a file.

The following example shows a size information section:

/usr/bin 30
/lib 40 20
PAGESPACE 10
INSTWORK 10 6

Because it is difficult to predict how disk file systems are mounted in the file tree, the directory path
name entries in the size information section should be as specific as possible. For example, it is better to
have an entry for /usr/bin and one for /usr/lib than to have a combined entry for /usr, because /usr/bin
and /usr/lib can exist on different file systems that are both mounted under /usr. In general, it is best to
include entries for each directory into which files are installed.

For an update package only, the size information must include any old files (to be replaced) that will move
into the save directories. These old files will be restored if the update is later rejected. In order to indicate
these size requirements, an update package must specify the following special directories:

/usr/lpp/SAVESPACE
The save directory for usr part files. By default, the usr part files are saved in the /usr/lpp/
PackageName/FilesetName/FilesetLevel.save directory.

/lpp/SAVESPACE
The save directory for root part files. By default, the root part files are saved in the /lpp/
PackageName/FilesetName/FilesetLevel.save directory.

License agreement information

A recent addition to the AIX install process allows product owners to require that a customer sign a
license agreement before the install of the product. The installp command reads a fileset's lpp_name
file as usual for any image. If there are LAF or LAR entries in the size section of the lpp_name file, the
installp command calls the inulag command which displays the license in a window and records
the customer acceptance of the license. If the customer refuses to accept the license, the installation is
halted for that product.

Where to place the license file

Placement of the license files is up to the product owner. However, it is strongly suggested that the
license be placed in /usr/swlag/LANG. The suggested name for the License Agreement file is given
as ProductName_VersionRelease.la. There is no requirement to use this name or location. The
installp command and this packaging is simply suppling a method to deliver the information to
customers. All tools and file content must be provided by the product.

Translation requirements for the license file

If there is a requirement that the License Agreement files be translated into the supported languages, it is
recommended that the files be separated into different files by language. This translation can require that
several files be created.

How to ship the license file

A product can ship the license file as part of its main product or in a separate fileset for the product.
Many products are choosing to create a separate fileset for shipping just the license files. This enables a
product with many different features to create one license file and fileset that can ship on all the media
required for each feature instead of having to include the files in several different features. The current
suggestions for the fileset name are lpp.license or lpp.loc.license. Most products are currently
using the first suggestion. If you want the license fileset to be hidden from the customer in standard
installs, use lpp.loc.license because the license fileset does not need to be selected for installation.

General programming concepts 653

How to package the license file

The file itself is never listed in the fileset.al or the fileset.inventory files for the fileset. The installp
command finds the license because of the entry in the size section of the ProductName file. The types of
entries are:
LAF

License Agreement File tells the installp command that this particular license file is shipped in this
fileset.

License agreement files are indicated by a size section entry with:

LAF<lang>license_file size

Term
Meaning

LAF
stands for License Agreement File

<lang>
language to which the file is translated. These are typically entries like en_US, fr_FR, Ja_JP, and
zh_TW. If <lang> is not specified, then the agreement file is assumed to be non-translated and
encoded as ASCII. If the license agreement file is translated, <lang> must be part of the path so
that the requirement entry can be associated with the file.

license_file
is the fullpath to the license file as it will be found in the image and placed on the system. The
suggested path takes the form /usr/swlag/en_US/ProductName_VersionRelease.la

size
This is the real size in 512-byte blocks of the license file so as to ensure that installp has
allowed enough space to place the license file on the system.

LAR

The License Agreement Requisite tells the installp command that this fileset requires the
installation of the listed license agreement file. This is not the same as a prerequisite because it
is in the file and not in a fileset. Files and filesets have different formats and different purposes. They
should not be confused.

Term
Meaning

LAR
stands for License Agreement Requisite

req_license_file
The full path to the license file required to install this fileset. Typically these entries use %L in the
path instead of the actual language name to allow for the appropriate file to be viewed without
forcing the customer to view all of the languages.

Generally one fileset ships the files, and contains all of the LAF entries. The other filesets in the product
which require this license only ship the LAR entry. The fileset which ships the LAF entries also contains
the files listed at their full path location in the BFF image, but the files are not listed in the fileset.al or the
fileset.inventory files for the fileset. The design used for electronic licenses does not require that the files
be registered to the SWVPD. The installp command:

1. Finds a requirement on the file.
2. Checks the system to see if it was accepted.
3. If the file was not accepted

a. Finds the fileset that ships the file.
b. Extracts (restores) only that file from the BFF image.
c. Display the file to the customer.

654 AIX Version 7.2: General programming concepts

LAF fileset example

The following is an example of a fileset that ships the license file:

iced.tea.loc.license 03.01.0000.0000 1 N U en_US IcedTea Recipe License Information
[
%
INSTWORK 16 160
LAF/usr/swlag/de_DE/iced.tea.la 24
LAF/usr/swlag/DE_DE/iced.tea.la 24
LAF/usr/swlag/en_US/iced.tea.la 24
LAF/usr/swlag/EN_US/iced.tea.la 24
LAF/usr/swlag/es_ES/iced.tea.la 24
LAF/usr/swlag/ES_ES/iced.tea.la 24
LAF/usr/swlag/fr_FR/iced.tea.la 24
LAF/usr/swlag/FR_FR/iced.tea.la 24
LAF/usr/swlag/it_IT/iced.tea.la 24
LAF/usr/swlag/IT_IT/iced.tea.la 24
LAF/usr/swlag/ja_JP/iced.tea.la 24
LAF/usr/swlag/JA_JP/iced.tea.la 32
LAF/usr/swlag/Ja_JP/iced.tea.la 24
LAF/usr/swlag/ko_KR/iced.tea.la 24
LAF/usr/swlag/KO_KR/iced.tea.la 24
LAF/usr/swlag/pt_BR/iced.tea.la 24
LAF/usr/swlag/PT_BR/iced.tea.la 24
LAF/usr/swlag/ru_RU/iced.tea.la 24
LAF/usr/swlag/RU_RU/iced.tea.la 48
LAF/usr/swlag/zh_CN/iced.tea.la 16
LAF/usr/swlag/zh_TW/iced.tea.la 16
LAF/usr/swlag/Zh_TW/iced.tea.la 16
LAF/usr/swlag/ZH_TW/iced.tea.la 24
%
%
%
]

LAR Fileset example

The following is an example of a fileset which ships the license requirement to the license file:

iced.tea.server 03.01.0000.0010 1 N B en_US Iced Tea Recipe Group
[
*prereq bos.net.tcp.client 5.1.0.10
*coreq iced.tea.tools 5.1.0.10
*coreq Java14.sdk 1.4.0.1
%
/usr/bin 624
/usr/lib/objrepos 24
/usr/include 16
/usr/include/sys 56
/usr/lpp/iced.tea 22
/usr/samples/iced.tea 8
/usr/samples/iced.tea/server 504
/usr/lpp/iced.tea/inst_root/etc/tea 8
/usr/iced.tea 8
/usr/lpp/iced.tea/inst_root/etc/tea/Top 8
INSTWORK 208 96
/lpp/iced.tea 104
/etc/tea 8
/etc/objrepos 8
/etc/tea/Top 8
/tmp 0 6
LAR/usr/swlag/%L/iced.tea.la 0
%
%
%
]

Supersede information section

The supersede information section indicates the levels of a fileset or fileset update for which this fileset or
fileset update may (or may not) be used as a replacement. Supersede information is optional and is only
applicable to AIX 4.1-formatted fileset base installation packages and AIX 3.2-formatted fileset update
packages.

A newer fileset supersedes any older version of that fileset unless the supersedes section of the
lpp_name file identifies the latest level of that fileset it supersedes. In the rare cases where a fileset

General programming concepts 655

does not supersede all earlier levels of that fileset, the installp command does not use the fileset to
satisfy requisites on levels older than the level of the fileset listed in the supersedes section.

A fileset update supersedes an older update for that fileset only if it contains all of the files, configuration
processing, and requisite information contained in the older fileset update. The installp command
determines that a fileset update supersedes another update for that fileset in the following conditions:

• The version, release, and modification levels for the updates are equal, the fix levels are both non-zero,
and the update with the higher fix level does not contain a prerequisite on a level of the fileset greater
than or equal to the level of the update with the lower fix level.

• The version and release levels for the updates are equal, and the update with the higher modification
level does not contain a prerequisite on a level of the fileset greater than or equal to the level of the
update with the lower modification level.

For example, the fileset update farm.apps.hog 4.1.0.1 delivers an update of /usr/sbin/sellhog.
Fileset update farm.apps.hog 4.1.0.3 delivers updates to the/usr/sbin/sellhog file and
the /etc/hog file. Fileset update farm.apps.hog 4.1.1.2 delivers an update to the /usr/bin/
raisehog file.

Update farm.apps.hog 4.1.0.3 supersedes farm.apps.hog 4.1.0.1 because it delivers the same
files and applies to the same level, farm.apps.hog 4.1.0.0.

Update farm.apps.hog 4.1.1.2 does not supersede either farm.apps.hog 4.1.0.3 or
farm.apps.hog 4.1.0.1 because it does not contain the same files and applies to a different level,
farm.apps.hog 4.1.1.0. Update farm.apps.hog 4.1.1.0 supersedesfarm.apps.hog 4.1.0.1
and farm.apps.hog 4.1.0.3.

Supersede section for fileset installation levels (base levels)

An AIX 4.1-formatted fileset installation package can contain the following supersede entries:

Barrier Entry
Identifies the fileset level where a major incompatibility was introduced. Such an incompatibility
keeps the current fileset from satisfying requisites to levels of the fileset earlier than the specified
level.

Compatibility Entry
Indicates the fileset can be used to satisfy the requisites of another fileset. A compatibility entry is
used when a fileset has been renamed or made obsolete. Only one fileset can supersede a given
fileset. You may specify only one compatibility entry for each fileset.

The lpp_name file can contain at most one barrier and one compatibility entry for a fileset.

A barrier entry consists of the fileset name and the fileset level when the incompatibility was introduced.
A barrier entry is necessary for a fileset only in the rare case that a level of the fileset has introduced an
incompatibility such that functionality required by dependent filesets has been modified or removed to
such an extent that requisites on previous levels of the fileset are not met. A barrier entry must exist in
all subsequent versions of the fileset indicating the latest level of the fileset that satisfies requisites by
dependent filesets.

For example, if a major incompatibility was introduced in fileset Bad.Idea 6.5.6.0, the supersede
information section for each Bad.Idea fileset installation package from fileset level 6.5.6.0 onward
would contain a Bad.Idea 6.5.6.0 barrier entry. This barrier entry would prevent a requisite of
Bad.Idea 6.5.4.0 from being satisfied by any levels of Bad.Idea greater than or equal to 6.5.6.0.

A compatibility entry consists of a fileset name (different from the fileset in the package) and a fileset
level. The fileset level identifies the level at which requisites to the specified fileset (and earlier levels
of that fileset) are met by the fileset in the installation package. The compatibility is useful when the
specified fileset is obsolete or has been renamed, and the function from the specified fileset is contained
in the current fileset. The fileset level in the compatibility entry should be higher than any level expected
to exist for the specified fileset.

As an example, assume the Year.Full 19.91.0.0 fileset is no longer delivered as a unit but is instead
broken into several smaller, individual filesets. Only one of the smaller resulting filesets, perhaps Winter

656 AIX Version 7.2: General programming concepts

19.94.0.0, should contain a compatibility entry of Year.Full 19.94.0.0. This compatibility entry
allows the Winter 19.94.0.0 fileset to satisfy the requisites of filesets dependent on Year.Full at
levels 19.94.0.0 and earlier.

Supersedes processing

The installp command provides the following special features for installing filesets and fileset updates
which supersede other filesets or fileset updates:

• If the installation media does not contain a fileset or fileset update that the user requested to install, a
superseding fileset or fileset update on the installation media can be installed.

For example, asume a user invokes the installp command with the -g flag (automatically install
requisites) to install the farm.apps.hog 4.1.0.2 fileset. If the installation media contains the
farm.apps.hog 4.1.0.4 fileset only, then the installp command will install the farm.apps.hog
4.1.0.4 fileset because it supersedes the requested level.

• If the system and the installation media do not contain a requisite fileset or fileset update, the requisite
can be satisfied by a superseding fileset or fileset update.

• If an update is requested for installation and the -g flag is specified, the request is satisfied by the
newest superseding update on the installation media.

When the -g flag is specified with the installp command, any update requested for installation (either
explicitly or implicitly) is satisfied by the newest superseding update on the installation media. If the
user wants to install a particular level of an update, not necessarily the latest level, the user can invoke
theinstallp command without the -g flag.

• If an update and a superseding update (both on the installation media) are requested for installation,
the installp command installs the newer update only.

In this case, if a user wishes to apply a certain update and its superseding update from the installation
media, the user must do separate installp operations for each update level. Note that this kind of
operation is meaningless if the two updates are applied and committed (-ac). Committing the second
update removes the first update from the system.

Fix information section

The fix information section is optional. The fix information section entries contain a fix keyword and a
60 characters or less description of the problem fixed. A fix keyword is a 16 characters or less identifier
corresponding to the fix. Fix keywords beginning with ix, iy, IY andIX are reserved for use by the
operating system manufacturer.

A technology level is a fix that is a major update level. Periodic preventive maintenance packages are
technology levels. A technology level identifier begins with the name of the software product (not the
package), followed by a single dot (.) and an identifying level, such as farm.4.1.1.0.

The liblpp.a installation control library file

The liblpp.a file is an archive file that contains the files required to control the package installation. You
can create a liblpp.a file for your package using the ar command with the -g flag on systems later than
AIX 4.3 to ensure that a 32 bit archive is created. This section describes many of the files you can put in a
liblpp.a archive.

Throughout this section, Fileset appears in the names of the control files. Fileset represents the name of
the separate fileset to be installed within the software package. For example, assume the apply list file is
described as Fileset.al. The apply list file for the bos.net.tcp.client option of the bos.net software
product would then be bos.net.tcp.client.al.

For any files you include in the liblpp.a archive file other than the files listed in this section, you should
use the following naming conventions:

• If the file is used in the installation of a specific fileset, the file name should begin with the Fileset.
prefix.

• If the file is used as a common file for several filesets in the same package, the file name should begin
with the lpp. prefix.

General programming concepts 657

Many files described in this section are optional. An optional file is necessary only if the function the file
provides is required for the fileset or fileset update. Unless stated, a file pertains to both full installation
packages and fileset update packages.

Data files contained in the liblpp.a file

Fileset.al
Apply list. This file lists all files to be restored for this fileset. Files are listed one per line with a path
relative to root, as in ./usr/bin/pickle. An apply list file is required if any files are delivered with
the fileset or fileset update.

Fileset.cfginfo
Special instructions file. This file lists one keyword per line, each keyword indicating special
characteristics of the fileset or fileset update. The only currently recognized keyword is BOOT, which
causes a message to be generated after installation is complete indicating that the system needs to
be restarted.

Fileset.cfgfiles
List of user-configurable files and processing instructions for use when applying a newer or equal
installation level of a fileset that is already installed. Before restoring the files listed in the Fileset.al
file, the system saves the files listed in Fileset.cfgfiles file. Later, these saved files are processed
according to the handling methods specified in the Fileset.cfgfiles file.

Fileset.copyright
Required copyright information file for the fileset. This file consists of the full name of the software
product followed by the copyright notices.

Fileset.err
Error template file used as input to the errupdate command to add or delete entries in the Error
Record Template Repository. This file is commonly used by device support software. The errupdate
command creates a Fileset.undo.err file for cleanup purposes. See the errupdate command for
information about the format of the Fileset.err file. This file can only be included in the root part of a
fileset.

Fileset.fixdata
Stanza format file. This file contains information about the fixes contained in a fileset or fileset update.

Fileset.inventory
The inventory file. This file contains required software vital product data for the files in the fileset or
fileset update. The inventory file is a stanza-format file containing an entry for each file to be installed
or updated.

Fileset.namelist
List of obsolete filesets and current fileset (if applicable) that once contained files now existing in the
fileset to be installed. This file is used for installation of repackaged software products only.

Fileset.odmadd or Fileset.*.odmadd
Stanzas to be added to ODM (Object Data Manager) databases.

Fileset.rm_inv
Remove inventory file. This file is for installation of repackaged software products only and must exist
if the fileset is not a direct replacement for an obsolete fileset. This stanza-format file contains names
of files that need to be removed from obsolete filesets.

Fileset.size
This file contains the space requirements for the files included in this fileset as described earlier in
this section.

Fileset.trc
Trace report template file. The trcupdate command uses this file to add, replace, or delete trace
report entries in the /etc/trcfmt file. The trcupdate command creates a Fileset.undo.trc file for
cleanup purposes. Only the root part of a package can contain Fileset.trc files.

lpp.acf
Archive control file for the entire package. This file is needed only when adding or replacing an archive
member file to an archive file that already exists on the system. The archive control file consists of

658 AIX Version 7.2: General programming concepts

lines containing pairs of the member file in the temporary directory as listed in the Fileset.al file and
the archive file that the member belongs to, both listed relative to root as in:

./usr/ccs/lib/libc/member.o ./usr/ccs/lib/libc.a

lpp.README
Readme file. This file contains information the user should read before using the software. This file is
optional and can also be named README, lpp.doc, lpp.instr, or lpp.lps.

productid
Product identification file. This file consists of a single line indicating the product name, the product
identifier (20-character limit), and the optional feature number (10-character limit).

Optional executable files contained in the liblpp.a file

The product-specific executable files described in this section are called during the installation process.
Unless otherwise noted, file names that end in _i are used during installation processing only, and file
names that end in _u are used in fileset update processing only. All files described in this section are
optional and can be either shell scripts or executable object modules. Each program should have a return
value of 0 (zero), unless the program is intended to cause the installation or update to fail.

Fileset.config or Fileset.config_u
Modifies configuration near the end of the default installation or update process. Fileset.config is used
during installation processing only.

Fileset.odmdel orFileset.*.odmdel
Updates ODM database information for the fileset prior to adding new ODM entries for the fileset. The
odmdel file naming conventions enables a fileset to have multiple odmdel files.

Fileset.pre_d
Indicates whether a fileset may be removed during deinstall. The program must return a value of 0
(zero) if the fileset can be removed. Filesets are removable by default. The program should generate
error messages indicating why the fileset is not removable.

Fileset.pre_i or Fileset.pre_u
Runs prior to restoring or saving the files from the apply list in the package, but after removing the
files from a previously installed version of the fileset.

Fileset.pre_rej
Runs prior to the reject operation or prior to the preview of a reject operation of the fileset. Use the
script to determine whether the fileset can be rejected. Do not use this script to run any commands
which change anything on the system. If the script exits with a non-zero return code, the reject
operation is not allowed.

Fileset.pre_rm
Runs during a fileset installation prior to removing the files from a previously installed version of the
fileset.

Fileset.post_i or Fileset.post_u
Runs after restoring the files from the apply list of the fileset installation or update.

Fileset.unconfig Fileset.unconfig_u
Undoes configuration processing performed in the installation or update during a deinstall or a reject
of a fileset. Fileset.unconfig is used during deinstallation processing only.

Fileset.unodmadd
Deletes entries that were added to ODM databases during the installation or update.

Fileset.unpost_i orFileset.unpost_u
Undoes processing performed following restoring the files from the apply list in the installation or
update during a deinstall or a reject of a fileset.

Fileset.unpre_i or Fileset.unpre_u
Undoes processing performed prior to restoring the files from the apply list in the installation or
update during a deinstall or a reject of a fileset.

General programming concepts 659

If any of these executable files runs a command that may change the device configuration on a machine,
that executable file should check the INUCLIENTS environment variable before running the command. If
the INUCLIENTS environment variable is set, the command should not be run. The Network Installation
Management (NIM) environment uses the installp command for many purposes, some of which require
the installp command to bypass some of its normal processing. NIM sets the INUCLIENTS environment
variable when this normal processing must be bypassed.

If the default installation processing is insufficient for your package, you can provide the following
executable files in the liblpp.a file. If these files are provided in your package, the installp command
uses your package-provided files in place of the system default files. Your package-provided files must
contain the same functionality as the default files or unexpected results can occur. You can use the
default files as models for creating your own files. Use of the default files in place of package-provided
files is strongly recommended.

instal
Used in place of the default installation script /usr/lib/instl/instal. The installp command calls this
executable file if a fileset in an installation package is applied.

lpp.cleanup
Used in place of the default installation cleanup script /usr/lib/instl/cleanup. The installp command
calls this executable file if a fileset in an installation or update package has been partially applied and
must be cleaned up to put the fileset back into a consistent state.

lpp.deinstal
Used in place of the default fileset removal script /usr/lib/instl/deinstal. This executable file must be
placed in the /usr/lpp/PackageName directory. The installp command calls this executable file if a
fileset in an installation package is removed.

lpp.reject
Used in place of the default installation rejection script /usr/lib/instl/reject. The installp command
calls this executable if a fileset update in an update package is rejected. (The default /usr/lib/instl/
reject script is a link to the /usr/lib/instl/cleanup script.)

update
Used in place of the default fileset update script /usr/lib/instl/update. The installp command calls
this executable file if a fileset in an update package is applied. (The default /usr/lib/instl/update
script is a link to the /usr/lib/instl/instal script.)

To ensure compatibility with the installp command, the instal or update executable provided with a
software package must:

• Process all of the filesets in the software package. It can either process the installation for all the
filesets or invoke other executables for each fileset.

• Use the inusave command to save the current level of any files to be installed.
• Use inurest command to restore all required files for the usr part from the distribution media.
• Use the inucp command to copy all required files for the root part from the /usr/lpp/Package_Name/

inst_root directory.
• Create an $INUTEMPDIR/status file indicating success or failure for each fileset being installed or

updated.
• Return an exit code indicating the status of the installation. If the instal or update executable file

returns a nonzero return code and no status file is found, the installation process assumes all filesets
failed.

Optional executable file contained in the Fileset.al file

Fileset.unconfig_d
Undoes fileset-specific configuration operations performed during the installation and updates of the
fileset. The Fileset.unconfig_d file is used when the -u flag is specified with the installp command.
If this file is not provided and the -u flag is specified, the Fileset.unconfig, Fileset.unpost_i, and
Fileset.unpre_i operations are performed.

Further description of installation control fileseThe Fileset.cfgfiles file

660 AIX Version 7.2: General programming concepts

The Fileset.cfgfiles file lists configuration files that need to be saved in order to migrate to a new version
of the fileset without losing user-configured data. To preserve user-configuration data, a Fileset.cfgfiles
file must be provided in the proper liblpp.a file (usr or root).

The Fileset.cfgfiles contains a one-line entry for each file to be saved. Each entry contains the file name
(a path name relative to root), a white-space separator, and a keyword describing the handling method for
the migration of the file. The handling method keywords are:

preserve
Replaces the installed new version of the file with the saved version from the save directory. After
replacing the new file with the saved version, the saved file from the configuration save directory is
deleted.

auto_merge
During the Fileset.post_i processing, the product-provided executables merge necessary data from
the installed new version of the file into the previous version of the file saved in the configuration
save directory. After the Fileset.post_i processing, the installp command replaces the installed new
version of the file with the merged version in the configuration save directory (if it exists) and then
removes the saved file.

hold_new
Replaces the installed new version of the file with the saved version from the save directory. The new
version of the file is placed in the configuration save directory in place of the old version. The user will
be able to reference the new version.

user_merge
Leaves the installed new version of the file on the system and keeps the old version of the file in the
configuration save directory. The user will be able to reference the old version to perform any merge
that may be necessary. This keyword should be avoided if possible.

other
Used in any case where none of the other defined handling methods are sufficient. The installp
command saves the file in the configuration save directory and provides no further support. Any
other manipulation and handling of the configuration file must be done by the product-provided
executables. The product developer has the responsibility of documenting the handling of the file.

The Fileset.post_i executable can be used to do specific manipulating or merging of configuration data
that cannot be done through the default installation processing.

Configuration files listed in the Fileset.cfgfiles file are saved in the configuration save directory with the
same relative path name given in the Fileset.cfgfiles file. The name of the configuration save directory is
stored in the MIGSAVE environment variable. The save directory corresponds to the part of the package
being installed. The following directories are the configuration save directories:

/usr/lpp/save.config
For the usr part

/lpp/save.config
For the root part

If the list of files that you need to save varies depending on the currently installed level of the fileset, the
Fileset.cfgfiles file must contain the entire list of configuration files that might be found. If necessary, the
Fileset.post_i executable (or executables provided by other products) must handle the difference.

For example, assume you have a fileset (change.rte) that has one file that can be configured. So, in the
root change.rte.cfgfiles, there is one file listed:

/etc/change_user user_merge

When migrating from your old fileset (change.obj) to change.rte, you cannot preserve this file because
the format has changed. However, when migrating from an older level change.rte to a newer level
change.rte, the file can be preserved. In this case, you might want to create a change.rte.post_i script
that checks to see what fileset you are migrating from and acts appropriately. This way, if a user had made
changes to the /etc/change_user file, they are saved.

General programming concepts 661

The root change.bar.post_i script could be as follows:

#! /bin/ksh
rc=0
grep -q change.rte $INSTALLED_LIST
if [$? = 0]
then
mv $MIGSAVE/etc/change_user/ /etc/change_user
rc=1
fi
exit $rc

$INSTALLED_LIST is created and exported by installp. See Installation for Control Files Specifically
for Repackaged Products for more information about theFileset.installed_list configuration file. The
$MIGSAVE variable contains the name of the directory in which the root part configuration files are saved.

The installp command does not produce a warning or error message if a file listed in the Fileset.cfgfiles
file is not found. The installp command also does not produce a message for a file that is not found during
the phase following Fileset.post_i processing when saved configuration files are processed according to
their handling methods. If any warning or error messages are desired, the product-provided executables
must generate the messages.

As an example of the Fileset.cfgfiles file, the Product_X.option1 fileset must recover user
configuration data from three configuration files located in the root part of the fileset. The
Product_X.option1.cfgfiles is included in the root part of the liblpp.a file and contains the
following:

./etc/cfg_leafpreserve

./etc/cfg_pudding hold_new

./etc/cfg_newtonpreserve

The Fileset.fixdata file

Fileset.fixdata
A stanza-format file that describes the fixes contained in the fileset update (or in a fileset installation,
if used in place of an update)

The information in this file is added to a fix database. The instfix command uses this database to identify
fixes installed on the system. If the Fileset.fixdata exists in a package, the fix information in the fix
database is updated when the package is applied.

Each fix in the fileset should have its own stanza in the Fileset.fixdata file. A Fileset.fixdata stanza has the
following format:

fix:
name = FixKeyword
abstract = Abstract
type = {f | p}
filesets = FilesetName FilesetLevel
[FilesetName FilesetLevel ...]
[symptom = [Symptom]]

• FixKeyword cannot exceed 16 characters.
• Abstract describes the fix and can not exceed 60 characters.
• In the type field, f represents a fix, and p represents a preventive maintenance update.
• The filesets field contains a new-line separated list of filesets and fileset levels.
• FilesetLevel is the initial level in which the fileset delivered all or part of the fix.
• Symptom is an optional description of the problem corrected by the fix. Symptom does not have a

character limit.

The following example shows aFileset.fixdata stanza for problem MS21235. The fix for this problem is
contained in two filesets.

662 AIX Version 7.2: General programming concepts

fix:
name = MS21235
abstract = 82 gigabyte diskette drive unusable on Mars
type = f
filesets = devices.mca.8d77.rte 12.3.6.13
devices.mca.8efc.rte 12.1.0.2
symptom = The 82 gigabyte subatomic diskettes fail to operate in a Martian environment.

The Fileset.inventory file

Fileset.inventory
File that contains specific information about each file that is to be installed or updated for the fileset

sysck
Command that uses the Fileset.inventory file to enter the file name, product name, type, checksum,
size, link, and symlink information into the software information database

The Fileset.inventory file is required for each part of a fileset that installs or update files. If the package
has a root part that does not contain files to be installed (it does configuration only), the root part does not
require the Fileset.inventory file.

Note: The Fileset.inventory file does not support files which are greater than 2 GB in size. If you ship a file
that is greater than 2 GB, include it in your fileset.al file, but not in your Fileset.inventory file. sysck has
not been updated to handle files larger than 2GB, and the /usr file system on most machines will not be
created with capability for files greater than 2GB (by default).

The inventory file consists of ASCII text in stanza format. The name of a stanza is the full path name of the
file to be installed. The stanza name ends with a colon (:) and is followed by a new-line character. The file
attributes follow the stanza name and have the format Attribute=Value. Each attribute is described on a
separate line.

A Fileset.inventory stanza has the following format:

inventory:
type = type
class = inventory,apply,C2_exclude,fileset
owner = owner_name
group = group_name
mode = TCB | SUID | SGID,permissions
target = fullpath_filename
link = fullpath_to_hardlink [additional_hardlinks]
size =<blank> | VOLATILE |size
checksum =<blank> | VOLATILE |"checksum"

Table 89. Valid attributes

Attribute Description

file_name The full path to the file or link relative to root (./) followed immediately by a colon (:)
and then a new line. The maximum length for this full pathname is 255 characters.

type Type of the file_name entry where a valid type is one of the following:
Keywords

Meaning
FILE

Standard file
DIRECTORY

Directory
SYMLINK

The fullpath to a symbolic link

General programming concepts 663

Table 89. Valid attributes (continued)

Attribute Description

class Specifies how the file_name is to be referenced during installation. This field must
have at least two of the following keywords:
Type Items

Meaning
inventory

Indicates that the file remains after the installation is complete. The file is added
to the inventory SWVPD database. This should not be used with an A type file in
the fileset.il file.

apply
Indicates that the file is to be restored from the install media. The file_name field
is listed in the apply list (fileset.al). This should not be used for an I type file in the
fileset.il file.

C2_exclude
Indicates that this file should be excluded from execution on a C2 Secure system.
If this flag is used, the file should also be listed in the fileset.tcb file.

owner Specifies the file owner after installation. Do not use the uid for this field. The attribute
value must be the owner name and must be no more than 8 characters.

group Specifies the file group. Do not use the gid for this field. The attribute value must be
the group name and must be no more than 8 characters.

mode Specifies the file mode. The value must contain the permissions of the file in octal
format. Any of the following keywords can precede the permissions value. Items in the
list are separated by commas.
Mode Items

Meaning
TCB

Part of the "Trusted Computing Base". If the file is SUID root or SGID system, then
the file must be TCB.

SUID
This file has the set user ID bit set. This has no meaning on a DIRECTORY entry.

SGID
This file has the set group ID bit set. If set on a DIRECTORY entry, this forces all
files created in that directory to have the same group as the directory.

permissions
Must be a three-digit octal number, for example, 644.

Note: If the type is SYMLINK, the mode must be 777. No other entries are valid.

link Lists any hard links to this file. If multiple hard links exist, each fullpath to a hard
link is separated by a comma. The hardlinks must reside in the same directory as
the source file. If the type of the entry is SYMLINK, link is not valid. The maximum
length of the full path name is 255 characters.

target Valid only for type=SYMLINK. This is the full path filename to the target of the link.
If the link being created is from /usr/bin to /bin, the filename would be /bin and
the target would be /usr/bin. The maximum length of the full path name is 255
characters.

664 AIX Version 7.2: General programming concepts

Table 89. Valid attributes (continued)

Attribute Description

size Mode Items
Meaning

blank
If this field is blank, the size of the filename is determined at the time of
installation. The drawback to using this option is that if a file was corrupted during
installation, the customer is not informed.

VOLATILE
If the file size is expected to change through normal operation, the value for this
attribute must be VOLATILE.

size
The exact size of the file.

Note: Do not include the size field for DIRECTORY or SYMLINK entries.

checksum Mode Items
Meaning

blank
If this field is blank, the value returned from the sum -r command to be placed in
the inventory SWVPD database when the file is installed.

VOLATILE
Specifies the size of the file in blocks. If the file size is expected to change through
normal operation, the value for this attribute must be VOLATILE.

checksum
The exact sum of the file as returned by the sum -r command. This should be
placed in double quotes.

Note: Do not include the checksum field for DIRECTORY or SYMLINK entries.

fileset Indicates the fileset to which the file belongs.

Note: The sysck command creates hard links and symbolic links during installation if those links do not
exist. The root part symbolic links should be packaged in the root part Fileset.inventory file.

fileset.inventory example

The following fileset.inventory example demonstrates the use of type.

/usr/bin:
 owner = bin
 group = bin
 mode = 755
 type = directory
 class = apply,inventory,bos.rte

/usr/bin/tcbck:
 owner = root
 group = security
 mode = TCB,SUID,550
 type = file
 class = apply,inventory,bos.rte.security
 size = 99770
 checksum = "17077 98 "

/usr/sbin/tsm:
 owner = root
 group = security
 mode = TCB,SUID,555
 links = /usr/sbin/getty,/usr/sbin/login
 class = apply,inventory,bos.rte,security

General programming concepts 665

 size = 55086
 checksum = "57960 54 "

Installation control files specifically for repackaged products

Fileset.installed_list
File created by the installp command when installing the fileset from a package if it is found that the
fileset (or some form of it) is already installed on the system at some level

The software information database is searched to determine if either Fileset or any filesets listed in the file
Fileset.namelist (if it exists) are already installed on the system. If so, the fileset and the installation level
are written to the Fileset.installed_list file.

If it is created, the Fileset.installed_list is available at the time of the calls to the rminstal and instal
executables. The Fileset.installed_list file can be located in the following directories, the packaging
working directories, or PackageWorkDirectory:
/usr/lpp/

PackageName for the usr part
/lpp/

PackageName for the root part

The Fileset.installed_list file contains a one-line entry for each fileset that was installed. Each entry
contains the fileset name and the fileset level.

As an example, assume that while the storm.rain 1.2.0.0 fileset is being installed, the installp
command discovers that storm.rain 1.1.0.0 is already installed. The installp command would then
create the PackageWorkDirectory/storm.rain.installed_list file with the following contents:

storm.rain 1.1.0.0

As another example, asume the Baytown.com fileset contains a Baytown.com.namelist file with the
following entries:

Pelly.com
GooseCreek.rte
CedarBayou.stream

While installing the Baytown.com 2.3.0.0 fileset, the installp command finds that Pelly.com
1.2.3.0 and CedarBayou.stream 4.1.3.2 are installed. The installp command creates the
PackageWorkDirectory/Baytown.com.installed_list file with the following contents:

Pelly.obj 1.2.3.0
CedarBayou.stream 4.1.3.2

Table 90. The Fileset.namelist file

Attribute Description

Fileset.namelist This file is necessary when the fileset name has changed or the fileset
contains files previously packaged in obsolete filesets. It contains
names of all filesets that previously contained files currently included in
the fileset to be installed. Each fileset name must appear on a separate
line.

The Fileset.namelist file must be provided in the usr or root part of theliblpp.a file. The
Fileset.namelist file is only valid for installation packages; it is not valid for update packages.

At the beginning of installation, the installp command searches the Software Vital Product Data (SWVPD)
to determine if the fileset or any fileset listed in the Fileset.namelist file is already installed on the system.
The installp command writes to the Fileset.installed_list file the fileset names and fileset levels that are
found installed, making this information available to product-provided executables.

666 AIX Version 7.2: General programming concepts

As a simple example of a Fileset.namelist file, assume the small.business fileset replaces
an earlier fileset named family.business. The small.business product package contains the
small.business.namelist file in its usr part liblpp.a file. The small.business.namelist file
contains the following entry:

family.business

As a more complex example of a Fileset.namelist file would be where a fileset is divided into a client
fileset and a server fileset. The LawPractice.client and LawPractice.server filesets replace the
earlier lawoffice.mgr fileset. The LawPractice.server fileset also contains a few files from the
obsolete BusinessOffice.mgr fileset. TheLawPractice.client.namelist file in the liblpp.a file
for the LawPractice package contains the following entry:

lawoffice.mgr

The LawPractice.server.namelist file in the liblpp.a file for the LawPractice package contains
the following entries:

lawoffice.mgr
BusinessOffice.mgr

If the Fileset.namelist file contains only one entry and the current fileset is not a direct replacement for
the fileset listed in the Fileset.namelist file, you must include a Fileset.rm_inv file in the liblpp.a file. The
installation process uses the Fileset.namelist file and the Fileset.rm_inv file to determine if a fileset is a
direct replacement for another fileset. If the Fileset.namelist file contains only one entry and there is no
Fileset.rm_inv file, the installation process assumes the new fileset is a direct replacement for the old
fileset. When the new (replacement) fileset is installed, the installation process removes from the system
all files from the old (replaced) fileset, even files not included in the new fileset.

In the previous examples, the small.business fileset is a direct replacement for
the family.business fileset, so a small.business.rm_inv file should not exist. The
LawPractice.client fileset is not a direct replacement for the lawoffice.mgr fileset, so a
LawPractice.client.rm_inv file must exist, even if it is empty.

Example 3:

Filesets bagel.shop.rte and bread.shop.rte have been shipping separately for years. Now,
bagel.shop.rte is going to ship as a part of bread.shop.rte. For this to happen, the
bread.shop.rte.namelist file would look like:

bread.shop.rte
bagel.shop.rte

You must also ship an empty bread.shop.rte.rm_inv file to indicate that all files from the
bagel.shop.rte fileset should be removed from the system.

Table 91. The Fileset.rm_inv file

Attribute Description

Fileset.rm_inv File that contains a list of files, links, and directories to be removed from the
system if they are found installed

This file is used when the current fileset is packaged differently from a previous level of the fileset and
the installation process should not remove previously installed files based on the fileset's entries in the
inventory database.

A simple name change for a fileset is not sufficient to require a Fileset.rm_inv file. The Fileset.rm_inv file
is necessary when a new fileset is either a subset of a previous fileset or a mixture of parts of previous
filesets. If a Fileset.namelist file exists and contains entries for more than one fileset, you must use the
Fileset.rm_inv file to remove previously installed levels of the files from the system.

General programming concepts 667

The Fileset.rm_inv file consists of ASCII text in stanza format. The name of a stanza is the full path name
of the file or directory to be removed if found on the system. The stanza name ends with a colon (:) and
is followed by a new-line character. If attributes follow the stanza name, the attributes have the format
Attribute=Value. Attributes are used to identify hard links and symbolic links that need to be removed.
Each attribute is described on a separate line. The following list describes the valid attributes associated
with the listed file:

Table 92. Attributes and descriptions

Attribute Description

links One or more hard links to the file. The full path names of the links are delimited by
commas.

symlinks One or more symbolic links to the file. The full path names of the links are delimited
by commas.

Note: Links need to be listed twice, once as a standalone stanza and once as an attribute to the file that is
linked to.

For example, assume the U.S.S.R 19.91.0.0 fileset contains the following files in the /usr/lib
directory: moscow, leningrad, kiev, odessa, and petrograd (a symbolic link to leningrad). The
product developers decide to split the U.S.S.R 19.91.0.0 fileset into two filesets: Ukraine.lib
19.94.0.0 and Russia.lib 19.94.0.0. The Ukraine.lib fileset contains the kiev and odessa
files. TheRussia.lib fileset contains the moscow file. The leningrad file no longer exists and is
replaced by the st.petersburg file in the Russia.lib fileset.

The Ukraine.lib.rm_inv file must exist because the Ukraine.lib fileset is not a direct replacement
for the U.S.S.R fileset. The Ukraine.lib.rm_inv file should be empty because no files need to be
removed when the Ukraine.lib fileset is installed to clean up the migrating U.S.S.R fileset.

The Russia.lib.rm_inv file must exist because the Russia.lib fileset is not a direct replacement
for the U.S.S.R fileset. If the Russia.lib.rm_inv file is used to remove the leningrad file when the
Russia.lib fileset is installed, the Russia.lib.rm_inv file would contain the following stanza:

/usr/lib/leningrad:
 symlinks = /usr/lib/petrograd
/usr/lib/petrograd:

Installation files for supplemental disk subsystems

A disk subsystem that will not configure with the provided SCSI or bus-attached device driver requires
its own device driver and configuration methods. These installation files are provided on a supplemental
diskette (which accompanies the device) and must be in backup format with a ./signature file and a ./
startup file. The signature file must contain the string target. The startup file must use restore by name to
extract the needed files from the supplemental diskette and to run the commands necessary to bring the
device to the available state.

Format of distribution media

The following types of media can be used to distribute software product installation packages.

The following sections describe the formats that must be used to distribute multiple product packages on
each of these media.

Tape

In order to stack multiple product package images onto either a single tape or a set of tapes, the files on
each tape in the set must conform to the following format:

• File 1 is empty. (Reserved for bootable tapes.)
• File 2 is empty. (Reserved for bootable tapes.)

668 AIX Version 7.2: General programming concepts

• File 3 contains a table of contents file that describes product package images on the set of tapes.
Therefore, each tape in the set contains a copy of the same table of contents file, except for the
difference of the tape volume number in a multi-volume set.

• Files 4 through (N+3) contain the backup-format file images for product packages 1 through N.
• A product package image file cannot span across two tapes.
• Each file is followed by an end-of-file tape mark.

CD-ROM

A CD-ROM that is to contain multiple product package images must be compliant with the Rock Ridge
Group Protocol. Product packages should be stored in the installation directory, which must contain the
following:

• The backup-format file images of the product packages.
• A table of contents file named .toc that describes the product package images in the directory.

A multiple volume CD-ROM is a CD-ROM that has an additional directory structure to define a set of
CD-ROMs as a single installable unit.

A multiple volume CD-ROM must conform to the following rules:

• A /installp/mvCD directory exists with the following contents:

1. A table of contents file (.toc) that describes the product package images on all of the CD-ROMs of the
set. Each volume of the CD-ROM must have the same .toc in /installp/mvCD.

2. An ASCII file named volume_id in which the first line consists of the decimal volume number of the
CD in the set1.

3. A symbolic link named vol% n, where n is the decimal volume number of the of the CD in the set.
The target of the symbolic link must be a relative path to the directory of product packages on that
particular volume of the CD. The standard value for the symbol link is ../ppc.

• The table of contents file (.toc) in the /installp/mvCD conforms to the standard table of contents
format. The special characteristic of the multiple volume .toc is that the location of each product
package image begins with the directory entry vol% n, where n indicates the volume which contains
that particular product package.

AIX 5.2 Example:

fileset A is in file A.bff on volume 1. fileset B is in file B.bff on volume 2. The field in the table of contents
file in /installp/mvCD containing the location of the product package images for A and B are vol%1/A.bff
and vol%2/B.bff, respectively. The field in the table of contents file in /installp/ppc of volume 1 contains
the location of A as A.bff. The field in the table of contents file in /installp/ppc of volume 2 contains the
location of B as B.bff.

The CD-ROM directory structure for AIX 5.1 and later allows for specification of other installers, as well as
multiple platforms.

Diskette

In order to stack multiple product package images onto a set of diskettes, the following files must be
written to the set of diskettes:

• A table of contents file that describes product package images to be included in the set.
• Each product package image file that is to be included in the set.

The files are written to the set of diskettes using the following rules:

• Write the data as a stream to the diskette set with a volume ID sector inserted in block 0 of each
diskette in the set. The data from the last block of one volume is treated as logically adjacent to the data
from block 1 of the next volume (the volume ID sector is verified and discarded when read).

• Each file begins on a 512-byte block boundary.

General programming concepts 669

• Write the table of contents file first. Pad this file to fill its last sector with null characters (x'00'). At
least one null character is required to mark the end of the table of contents file. Thus, a full sector of null
characters may be required.

• Following the table of contents file, write each of the product package image files to successive sectors.
Pad each file to fill its last sector using null characters. A null character is not required if the file ends on
the block boundary.

• Block 0 of each diskette in the set contains a volume ID sector. The format of this sector is:

Position Description

Bytes 0:3 A magic number for identification. This is a binary integer with a value of
decimal 3609823513=x'D7298918'.

Bytes 4:15 A date and time stamp (in ASCII) that serves as the identification for the set of
diskettes. The format is MonthDayHourMinuteSecondYear. The Hour should be
a value from 00 to 23. All date and time fields contain two digits. Thus, Month
should be represented as 03 instead of 3, and Year should be represented as
94 instead of 1994.

Bytes 16:19 A binary integer volume number within this set of diskettes. The first diskette
in the set is x'00000001'.

Bytes 20:511 Binary zeroes.

Table 93. The table of contents file

Field Name Format Separator Description

1. Volume Character White space For the tape and diskette table of contents file, this is the number of
the volume containing this data. For the fixed disk or CD-ROM table of
contents file, the volume number is 0.

2. Date and time stamp mmddhhMMssyy White space For tape or diskette, this is the time stamp when volume 1 was
created. For fixed disk or CD-ROM, this is the time stamp when the .toc
file was created. See Date and Time Stamp Format later in this article
for detailed description.

3. Header format Character New line A number indicating the format of the table of contents file. Valid
entries are:

• 1 -AIX Version 3.1

• 2 -Version 3.2

• 3 -AIX Version 4.1 or later

• B -mksysb tape (invalid for use by installp)

4. Location of product
package image

Character White space For tape or diskette, this is a character string in the form:
vvv:bbbbb:sssssssSee Location Format for Tape and Diskette later in
this article for detailed description. For fixed disk or CD-ROM, this is
the file name of the product package image file. Note that this is the
file name only and must not be preceded by any part of the path name.

5. Package specific
information

lpp_name file format New line The contents of the lpp_name file contained in this product package
image. See The lpp_name Package Information File for detailed
description.

Note: Items 4 and 5 described in the preceding table are repeated for each product package image
contained on the media.

Date and time stamp format

A date and time stamp format is an ASCII string that has the following format:

MonthDayHourMinuteSecondYear

The Hour should be a value from 00 to 23. All date and time fields contain two digits. Thus, Month should
be represented as 03 instead of 3, and Year should be represented as 94 instead of 1994.

Location format for tape and diskette

The location has the format of vvv:bbbbb:sssssss where each letter represents a digit and has the
following meaning:

670 AIX Version 7.2: General programming concepts

For tape

vvv
is the volume number of the tape.

bbbbb
is the file number on the tape of the product package image.

ssssssss
is the size of the file in bytes.

For diskette

vvv
is the volume number of the diskette.

bbbbb
is the block number on diskette where the product package image file begins.

ssssssss
is the size of the file in bytes (including padding to the end of the block boundary).

AIX Relocatable Install

While AIX relocatable installation is now supported with the native AIX installation utilities (such as
installp, instfix, lslpp, and lppchk), the use of relocation is of particular interest to applications that need
to be installed within a Workload Partition. This is because default System WPAR configurations do not
include a writeable /usr or /opt filesystem. Therefore, application installation may need to be retargeted
to locations other than the traditional /usr or /opt location.

In addition to being able to install filesets in the default install location (that is, “/”), an administrator can
now install relocatable packages into alternate root install locations. This enables the administrator to do
the following:

• Install and maintain multiple installations of the same installp package in a single instance of the AIX
operating system

• Install and maintain multiples versions of the same installp package in a single instance of the AIX
operating system

• Use native installp tracking tools (such as lppchk, lslpp, instfix, and inulag) to verify and report
installation data on all relocated installation instances

• Attach and detach pre-installed software locations on a given system (application hosting).

Terminology

root install path
The base directory where an application is installed. The installp default install path is "/".

default install path
The default root install path (that is, "/").

relocated install path
Any root install path that is not the default install path. The path location may be any valid path that is
not "/" and that has a size no greater than 512 characters.

relocatable application
An application that can be installed in a non-default root install path.

USIL (User Specified Install Location)
A relocated install path instance set up by the user.

USIL

A User Specified Install Location, or USIL, is a tracked relocated install path that is created by the
administrator. This location is tracked by the system and can be used as an alternate install path for
packages that support relocation. Multiple instances and/or versions of the same software package can
be installed on a single system by delegating each installation to a separate USIL. An existing USIL
instance may be attached or detached from any given system.

General programming concepts 671

Each USIL instance maintains its own set of Software Vital Product Data (SWVPD) in all three current
installp parts:

• <InstallRoot>/etc/objrepos
• <InstallRoot>/usr/lib/objrepos
• <InstallRoot>/usr/share/lib/objrepos

Notes:

1. The current SWVPD object classes include the following:

• product
• lpp
• inventory
• history
• fix
• vendor
• lag

2. Each USIL instance will mirror the default SWVPD structure within the relocated path.

USIL management commands

/usr/sbin/mkusil

Creates or attaches a new USIL instance.

mkusil -R RelocatePath -c Comments [XFa]

-a
Attach an existing installation as a USIL instance

-c
Comments to include in the USIL definition (visible with the lsusil command)

-R
Path to new USIL location. Must be a valid directory.

-X
Automatically expand of space needed

/usr/sbin/lsusil

Lists existing USIL instances.

lsusil [-R RelocatePath | "ALL"]

-R
Path to existing USIL location.

/usr/sbin/rmusil

Removes an existing USIL instance.

rmusil -R RelocatePath

-R
Path to existing USIL location.

Note: The rmusil command only removes the USIL reference in the SWVPD. No files are removed in the
USIL install path.

/usr/sbin/chusil

Changes an attribute of an existing USIL instance.

chusil -R RelocatePath -c NewComments [X]

672 AIX Version 7.2: General programming concepts

-c
New comments to include in the USIL definition (visible with the lsusil command).

-R
Path to existing USIL location.

-X
Automatically expand if space needed

Relocatable installation utilities

To preserve code isolation, all USIL changes are isolated to separately compiled modules. The relocated
installation utilities include the following user level modules:

• /usr/sbin/mkusil
• /usr/sbin/rmusil
• /usr/sbin/lsusil
• /usr/sbin/chusil

Note:

1. Each utility takes the -R RelocatePath flag.
2. When working with relocatable installp packages, the above utilities must be used.

Requirements for relocatable applications packaging

The application packaging must support relocatable installation. The following are the recommended
guidelines:

• A relocatable application package may not deliver (write) inventory objects outside of its root install
location.

• A relocatable application package may not deliver (write) data using packaging customization outside of
its root install location.

• The relocatable application package must contain the RELOCATABLE extended packaging attribute for
each relocatable fileset. The fileset is the smallest installable unit that may be relocated.

• The relocatable application package may not have requisites that are located in external relocated
paths. It may have requisites to filesets installed in the default install path or in its own install path.

Requirements for relocatable application execution

The application design must support execution from an installation environment. The following are the
recommended guidelines:

• The application must have a method to determine its root install location or function such that it has no
dependency on the install location.

• The application must reference all application specific executable components relative to its root install
location.

• The application must reference all application specific data components relative to its root install
location or it must be designed to share the data with other application instances.

• The application should not make any persistent changes outside of its root install location.

USIL connector ODM class object

The USIL connector ODM Class Object resides in the /etc/objrepos/usilc file and contains data that links
the default SWVPD with all USIL instances.

The following is the entry for this object class that will be contained in swvpd.cre:

/* User Install Location Connector */
/* Connects the default install path to all relocated install paths. */
class usilc {
 vchar path[1024]; /* USIL path */
 vchar comments[2048]; /* USIL Comments */

General programming concepts 673

 long flags; /* USIL flags */
 };

Listing all install paths with the -R "ALL" or -R "all" option

The lslpp and lppchk commands can perform listing operations on all install locations if the -R "ALL"
syntax is used.

Attach/Detach Operations

The attach operation allows the user to integrate an existing detached USIL path into the SWVPD.

For example, if the administrator creates a master USIL instance with various relocatable applications
installed for the purposes of application hosting. The administrator then copies or NFS mounts this USIL
instance to various systems and uses the attach feature to integrate the USIL instance into the SWVPD.
The detach operation removes reference to the USIL instance.

installp licensing

A new USIL instance starts out with an empty LAG (installp license agreement ODM object class). Any
installation of filesets or LPPs that require a license will require a license acceptance according to normal
installp conventions. The license acceptance does not span USIL instances.

|Trusted Computing Base (TCB)

Installing USIL instances is currently not supported on TCB enabled systems.

Relocatable requisites

A new packaging semantic indicates the relocatable requisite location. A packager can specify that a
given requisite should be found in the default install path or in the relocated install path.

The following new requisite semantic applies:

• prereq_ r = prereq in relocated install path
• ifreq_r = ifreq in relocated install path
• coreq_r = coreq in relocated install path
• instreq_r = instreq in relocated install path

The currently defined requisites types (prereq, ifreq, coreq, and instreq) are all default requisites
(requisites that apply to the default install location).

TOC changes for relocatable packages

The following is a sample of the new requisite sections in the TOC file:

sscp.rte.1.0.0.5.U.PRIVATE.bff 4 R S sscp {
sscp.rte 01.00.0000.0005 1 N B En_US Sscp
[
*coreq bos.games 1.1.1.1 <-- default requisite in default requisite section
*prereq bos.rte 1.1.1.1 <-- default requisite in default requisite section
%
/usr/bin 20
/etc 20
INSTWORK 72 40
%
%
%
IY99999 1 APAR text here.
%
RELOCATABLE <-- attribute tag to denote relocatable package
%
*prereq bos.rte 1.1.1.1 <-- default requisite in relocated requisite section
*coreq_r bos.games 1.1.1.1 <-- relocated requisite in relocated requisite section
]
}

Notes:

1. If the relocatable requisite section is present during a relocated installation, it is used as the requisite
section for the installation.

674 AIX Version 7.2: General programming concepts

2. If the relocatable requisite section is not present during a relocated installation, the default requisite
section is used. This means all requisites will be default requisites.

3. A default installation (non-relocated) does not use the relocatable requisite section.

Table 94. The installp processing of product packages

Command Description

Apply When a fileset in a product installation package is applied, it is installed on
the system and it overwrites any preexisting version of that fileset, therefore
committing that version of the fileset on the system. The fileset may be removed if
the user decides the fileset is no longer required.

When a fileset update is applied, the update is installed and information is saved
(unless otherwise requested) so that the update can be removed later. Fileset
updates that were applied can be committed or rejected later.

Commit When a fileset update is committed, the information saved during the apply is
removed from the system. Committing already applied software does not change
the currently active version of a fileset.

Reject When an update is rejected, information saved during the apply is used to change
the active version of the fileset to the version previous to the rejected update. The
saved information is then removed from the system. The reject operation is valid
only for updates. Many of the same steps in the reject operation are performed in a
cleanup operation when a fileset or fileset update fails to complete installation.

Remove When a fileset is removed, the fileset and its updates are removed from the system
independent of their state (applied, committed, or broken). The remove operation is
valid only for the installation level of a fileset.

Executables provided within a product package can tailor processing for the apply, reject, and remove
operations.

Reinstalling a fileset does not perform the same actions that removing and installing the same fileset
do. The reinstall action (see /usr/lib/instl/rminstal) cleans up the current files from the previous or the
same version, but does not run any of the unconfig or unpre* scripts. Therefore, do not assume that
the unconfig script was run. The .config script should check the environment before assuming that the
unconfig was completed.

For example, for a ras.berry.rte fileset, the config script adds a line to root's crontab file. Reinstalling the
ras.berry.rte fileset results in two crontab entries, because the unconfig script was not run on reinstall
(which removed the crontab entry). The config script should always remove the entry and then add it
again.

Processing for the Apply Operation

This section describes the steps taken by the installp command when a fileset or fileset update is
applied.

1. Restore the lpp_name product package information file for the package from the specified device.
2. Verify that the requested filesets exist on the installation media.
3. Check the level of the requested filesets to ensure that they may be installed on the system.
4. Restore control files from the liblpp.a archive library file into the package directory (/usr/lpp/

Package_Name for usr or usr/root packages. The control files specifically for the root portion of a
usr/root package reside in /usr/lpp/Package_Name/inst_root/liblpp.a).

5. Check disk space requirements.
6. Check that necessary requisites (filesets required to be at certain levels to use or install another

fileset) are already installed or are on the list to be installed.
7. Determine if there are license agreement requirements which must be satisfied in order to proceed

with the installation.

General programming concepts 675

8. If this is an installation package rather than a fileset update package, search the software vital product
data (SWVPD) to see if Fileset (the fileset being installed) or any filesets listed in the Fileset.namelist
file are already installed on the system at any level. If Fileset is already installed, write the fileset name
and installed level to the Work_Directory/Fileset.installed_list file.

If no level of Fileset is installed, then if any filesets listed in the Fileset.namelist file are installed, list all
those filesets and levels in theWork_Directory/Fileset.installed_list file. Work_Directory is the same as
the package directory with the exception of root parts, which use/lpp/Package_Name.

9. If this is an installation package rather than a fileset update package, run the /usr/lib/instl/rminstal
script to do the following for each fileset being installed.

Note: Unless otherwise specified, files checked for existence must have been restored from the
liblpp.a control file library.

a. If Fileset.pre_rm exists, run Fileset.pre_rm to perform required steps before removing any files
from this version or an existing version of Fileset.

b. If Work_Directory/Fileset.installed_list exists, move the existing files listed in Fileset.cfgfiles to the
configuration file save directory (indicated by the MIGSAVE environment variable).

c. If a version of Fileset is already installed, remove the files and SWVPD information (except history)
for Fileset.

d. If Work_Directory/Fileset.installed_list exists, and Fileset.rm_inv exists or Fileset.namelist
contains more than one fileset or the only fileset listed in Fileset.namelist is bos.obj, then do
the following:

i) Remove files and SWVPD inventory information for files listed in the file Fileset.rm_inv.
ii) Remove files and SWVPD inventory information for files listed in the file Fileset.inventory.

iii) Remove other SWVPD information for any filesets listed in Fileset.namelist which no longer
have any SWVPD inventory information.

e. If Work_Directory/Fileset.installed_list exists and contains only one fileset and Fileset.namelist
contained only one fileset, Remove files and SWVPD information (except history) for that fileset.

f. For each part of a product package (usr part only or usr followed by root)

i) Set INUTREE (U for usr and M for root) and INUTEMPDIR (name of created temporary working
directory environment variables.

ii) If an instal control program exists in the package directory (not recommended), run ./instal,
otherwise, run the default script /usr/lib/instl/instal. If an instal control program does not exist
in the package directory, set INUSAVEDIR environment variable.

iii) If an update control program exists in the package directory (not recommended), run ./
update. If an update control program does not exist in the package directory, run the default
script /usr/lib/instl/update.

iv) If a status file has been successfully created by instal or update, Use status file to determine
the success or failure of each fileset. If a status file has not been created, assume all requested
filesets in package failed to apply.

v) If the apply operation for a fileset was successful, update the Software Vital Product
Data (SWVPD), then register any associated license agreement requirements. If the apply
operation for a fileset was not successful, run /usr/lib/instl/cleanup or the package-supplied
lpp.cleanup from package directory to clean up the failed filesets.

Processing of the default install or update script

The instal or update executable is invoked from installp with the first parameter being the device being
used for the installation or update. The second parameter is the full path name to the file containing
the list of filesets to be installed or updated, referred to below as $FILESETLIST. The default instal
and update scripts are linked together; processing varies based on whether it is invoked as instal or
update.The current directory is the package directory. A temporary directory INUTEMPDIR is created
in /tmp to hold working files.

The flow within the default instal and update script is as follows:

676 AIX Version 7.2: General programming concepts

1. Do the following for each fileset listed in the $FILESETLIST:

a. If the fileset is an update, Execute Fileset.pre_u (pre_update) if it exists. If the fileset is not an
update, execute Fileset.pre_i (pre_installation) if it exists.

b. Build a master list of files to be restored from the package by appending Fileset.al to the new file
INUTEMPDIR/master.al.

c. If this is an update, the files are specified to be saved, and the lpp.acf archive control file exists.

Save off the library archive members being updated.
d. If the processing is successful, append this fileset to the list to be installed in the

$FILESETLIST.new file.
2. If this is an update and file saving is specified, run inusave to save current versions of the files.
3. If you are processing the root part, run inucp to copy files from the apply list to root part. If you are not

processing root part, run inurest to restore files from apply list for the usr part.
4. Do the following for each fileset listed in $FILESETLIST.new file:

Note: Failure in any step is recorded in the status file and processing for that fileset ends

a. Determine if this fileset is installed at the same or older level, or if filesets listed in the
Fileset.namelist are installed. If so, export the INSTALLED_LIST and MIGSAVE environment
variables. This is called a migration.

b. If you are processing an update, invoke Fileset.post_u if it exists. If Fileset.post_u does not exist,
invoke Fileset.post_i if it exists.

c. If Fileset.cfgfiles exists, run /usr/lib/instl/migrate_cfg to handle processing of configuration files
according to their specified handling method.

d. Invoke sysck to add the information in the Fileset.inventory file to the Software Vital Product
Database (SWVPD).

e. Invoke the tcbck command to add the trusted computing base information to the system if the
Fileset.tcb file exists and the trusted computing base tcb_enabled attribute is set in the /usr/lib/
objrepos/PdAt ODM database.

f. Invoke errupdate to add error templates if Fileset.err exists.
g. Invoke trcupdate to add trace report format templates if Fileset.trc exists.
h. If update or if Work_Directory/Fileset.installed_list exists, invoke each Fileset.odmdel and

Fileset.*.odmdel script to process ODM database deletion commands.
i. Invoke odmadd on each existing Fileset.odmadd and Fileset.*.odmadd to add information to ODM

databases.
j. If this is an update, invoke Fileset.config_u (fileset configuration update) if it exists. Otherwise,

invoke Fileset.config (fileset configuration) if it exists.
k. Update the status file indicating successful processing for the fileset.

5. Link control files for needed for fileset removal into the package's deinstl directory for future use.
These files include the following files that might be present in the package directory:

• lpp.deinstal
• Fileset. al
• Fileset. inventory
• Fileset. pre_d
• Fileset. unpre_i
• Fileset. unpre_u
• Fileset. unpost_i
• Fileset. unpost_u
• Fileset. unodmadd

General programming concepts 677

• Fileset. unconfig
• Fileset. unconfig_u
• $SAVEDIR/Fileset. *.rodmadd
• SAVEDIR/Fileset. *.unodmadd

Processing for the reject and cleanup operations

This section describes the steps taken by the installp command when a fileset update is rejected or when
a fileset or fileset update fails to complete installation. The default cleanup and reject scripts located
in /usr/lib/instl are linked together. Their logic differs slightly depending on whether the script was
invoked as reject or cleanup. For usr/root filesets or fileset updates, the root part is processed before the
usr part.

1. If rejecting, check requisites to ensure that all dependent product updates are also rejected.
2. For each part of a package (for example, usr and root):

a. Set INUTREE (U for usr and M for root.) and INUTEMPDIR environment variables.
b. If reject control file exists in current directory (INULIBDIR), invoke ./lpp.reject. Otherwise, invoke

the default script /usr/lib/instl/reject.
3. Update the Software Vital Product Data.

The reject executable is invoked from installp with the first parameter being undefined and the second
parameter being the full path name to the file containing the list of filesets (referred to below as
$FILESETLIST) to be rejected for the update.

The following files are referenced by the default cleanup and reject script.

The flow within the default cleanup and reject script is as follows:

1. Do the following for each fileset listed in $FILESETLIST:

a. If invoked as cleanup, then read the line in the Package_Name.s status file to determine which
step the installation failed on and skip ahead to the undo action for that step. A cleanup operation
will only begin at the step where the installation failed. For example, if the installation of a fileset
failed in the Fileset.post_i script, then the cleanup operation for that fileset would begin at i,
because there are no actions to undo from subsequent steps in the installation.

b. Undo any configuration processing performed during the installation:

If rejecting an update, invoke Fileset.unconfig_u if it exists. Otherwise, invoke Fileset.unconfig if it
exists.

c. Run any Fileset.*.unodmaddand/or Fileset.unodmadd files to remove Object Data Manager (ODM)
entries added during the installation.

d. Run any Fileset.*.rodmadd and/or Fileset.rodmadd exist to replace ODM entries deleted during
the installation.

e. Invoketrcupdate if Fileset.undo.trc exists to undo any trace format template changes made
during the installation.

f. Invoke errupdate if Fileset.undo.err exists to undo any error format template changes made
during the installation.

g. Invoke tcbck to delete the trusted computing base information to the system if the Fileset.tcb file
exists and the trusted computing base attribute tcb_enabled is set in the /usr/lib/objrepos/PdAt
ODM database.

h. Invoke sysck if Fileset.inventory exists to undo changes to the software information database.
i. Undo any post_installation processing performed during the installation:

If this is an update, invoke Fileset.unpost_u if it exists. Otherwise, invoke Fileset.unpost_i if it
exists.

j. Build a master apply list (called master.al) from Fileset.al files.
k. Add Fileset to $FILESETLIST.new.

678 AIX Version 7.2: General programming concepts

2. Do the following if $INUTEMPDIR/master.al exists.

a. Change directories to / (root).
b. Remove all files in master.al.

3. Do the following while reading $FILESETLIST.new.

a. Call inurecv to recover all saved files.
b. If this is an update, invoke Fileset.unpre_u if it exists. Otherwise, invoke Fileset.unpre_i if it exists.
c. Delete the install/update control files.

4. Remove the Package_Name.s status file.

Processing for the remove operation

This section describes the steps taken by the installp command when a fileset is removed. For usr/root
filesets or fileset updates, the root part is processed before the usr part.

1. Check requisites to ensure that all dependent filesets are also removed.
2. For each part of a product package (for example, usr or root):

a. Set INUTREE (U for usr, M for root, and S for share) and INUTEMPDIR (installp working directory
generated in /tmp) environment variables.

b. Change directory to INULIBDIR.
c. If the deinstal control file exists in current directory, run the ./lpp.deinstalscript. If the deinstal

control file does not exist in current directory, run the /usr/lib/instl/deinstal default script.
3. Remove files belonging to the fileset from the file system.
4. Remove fileset entries from the SWVPD except for history data.
5. Deactivate license agreement requirement registration for the fileset.

The deinstal executable is invoked from installp with the first parameter being the full path name to the
file containing the list of filesets to be removed, referred to below as $FILESETLIST.

The flow within the default deinstal script is as follows:

1. Do the following for each fileset listed in input file $FILESETLIST:
2. If Fileset.unconfig_d exists

Execute Fileset.unconfig_d to remove all configuration changes, Object Data Manager (ODM) changes,
and error and trace format changes, and to undo all operations performed in the post-installation
and pre-installation scripts for all updates and the base level installation. Use of this file is not
recommended.

3. If Fileset.unconfig_d does not exist,

a. For each update for that fileset, do the following:

• Run all Fileset.unconfig_u scripts to undo any update configuration processing.
• Run all Fileset.*.unodmadd and Fileset.unodmadd to delete Object Data Manager (ODM) entries

added during the update.
• Run all Fileset.*.rodmadd and Fileset.rodmadd to add Object Data Manager (ODM) entries

deleted during the update.
• Run errupdate if Fileset.undo.err exists to undo error log template changes.
• Run trcupdate if Fileset.undo.trc exists to undo trace report template changes.
• Run any Fileset.unpost_u to undo any post-installation customization.

b. For the fileset base installation level, do the following:

• Run any Fileset.*.unodmaddand/or Fileset.unodmadd to delete Object Data Manager (ODM)
entries added during the installation.

General programming concepts 679

• Run any Fileset.*.rodmadd and/or Fileset.rodmadd to add Object Data Manager (ODM) entries
deleted during the installation.

• Run errupdate if Fileset.undo.err exists to undo error log template changes.
• Run trcupdate if Fileset.undo.trc exists to undo trace report template changes.
• Run Fileset.unconfig_i to undo any installation configuration processing.
• Run Fileset.unpost_i to undo any post-file installation customization.

4. Remove the files and software data information installed with the fileset.
5. If Fileset.unconfig_d does not exist,

a. For each update for that fileset, run any Fileset.unpre_u to undo any pre-file installation
customization.

b. For the fileset base installation level, run any Fileset.unpre_i to undo any pre-file installation
customization.

6. Delete any empty directories associated with the fileset.

Note: If an error is returned from some call during the execution of the deinstal executable, the error
will be logged, but execution will continue. This is different from the other scripts because execution
for that fileset is normally canceled once an error is encountered. However, once the removal of a
fileset has begun, there is no recovery; therefore, removal becomes a best effort once an error is
found.

The installation status file

$INUTEMPDIR/status
File that contains a one-line entry for each fileset that was to be installed or updated

The installp command uses this status file to determine appropriate processing. If you create installation
scripts, your scripts should produce a status file that has the correct format. Each line in the status file
has the format:

Table 95. StatusCode Fileset

Status code Meaning

s Success, update SWVPD

f Failure, perform cleanup procedure

b Bypass, failed, cleanup not needed

i Requisite failure, cleanup not needed

v sysck verification failed

The following example of a status file indicates to the installp command that the installations for
the tcp.client and tcp.server filesets of bos.net package were successful and the installation for the
nfs.client fileset was not successful.

s bos.net.tcp.client
s bos.net.tcp.server
f bos.net.nfs.client

Installation commands used during installation and update processing
inucp

Copies files from the /usr/lpp/Package_Name/inst_root directory to the / (root) file tree when
installing the root part.

inulag
Acts as the front end to the subroutines to manage license agreements.

inurecv
Recovers saved files for installation failure or software rejection (installp -r).

680 AIX Version 7.2: General programming concepts

inurest
Restores files from the distribution medium onto the system using an apply list as input.

inusave
Saves all files specified by an apply list into the save directory belonging to the software product.

inuumsg
Issues messages from the inuumsg.cat message catalog file for the software product being
installed.

ckprereq
Verifies compatibility of the software product with any dependencies using requisite information
supplied in the lpp_name file and information about already installed products found in the SWVPD.

sysck
Checks the inventory information during installation and update procedures.
The sysck command is in the /usr/bin directory. Other commands listed previously are in the /usr/
sbin directory.

For examples of their use, refer to the default installation script, /usr/lib/instl/instal.

Source code control system
The source code control system (SCCS) is a complete system of commands that allows specified users to
control and track changes made to an SCCS file. SCCS files allow several versions of the same file to exist
simultaneously, which can be helpful when developing a project requiring many versions of large files.

The SCCS commands support Multibyte Character Set (MBCS) characters.

Introduction to SCCS

The SCCS commands form a complete system for creating, editing, converting, or changing the controls
on SCCS files. An SCCS file is any text file controlled with SCCS commands. All SCCS files have the prefix
s., which sets them apart from regular text files.

Attention: Using non-SCCS commands to edit SCCS files can damage the SCCS files.

Use SCCS commands on an SCCS file. If you wish to look at the structure of an SCCS file, use the pg
command or a similar command to view its contents. However, do not use an editor to directly change the
file.

To change text in an SCCS file, use an SCCS command (such as the get command) to obtain a version
of the file for editing, and then use any editor to modify the text. After changing the file, use the delta
command to save the changes. To store the separate versions of a file, and control access to its contents,
SCCS files have a unique structure.

An SCCS file is made up of three parts:

• Delta table
• Access and tracking flags
• Body of the text

Delta table in SCCS files

Instead of creating a separate file for each version of a file, the SCCS file system only stores the changes
for each version of a file. These changes are referred to as deltas. The changes are tracked by the delta
table in every SCCS file.

Each entry in the delta table contains information about who created the delta, when they created it,
and why they created it. Each delta has a specific SID (SCCS IDentification number) of up to four digits.
The first digit is the release, the second digit the level, the third digit the branch, and the fourth digit the
sequence.

An example of an SID number is:

General programming concepts 681

SID = 1.2.1.4

that is, release 1, level 2, branch 1, sequence 4.

No SID digit can be 0, so there cannot be an SID of 2.0 or 2.1.2.0, for example.

Each time a new delta is created, it is given the next higher SID number by default. That version of the file
is built using all the previous deltas. Typically, an SCCS file grows sequentially, so each delta is identified
only by its release and level. However, a file may branch and create a new subset of deltas. The file then
has a trunk, with deltas identified by release and level, and one or more branches, which have deltas
containing all four parts of an SID. On a branch, the release and level numbers are fixed, and new deltas
are identified by changing sequence numbers.

Note: A file version built from a branch does not use any deltas placed on the trunk after the
point of separation.

Control and tracking flags in SCCS files

After the delta table in an SCCS file, a list of flags starting with the @ (at sign) define the various access
and tracking options of the SCCS file. Some of the SCCS flag functions include:

• Designating users who may edit the files
• Locking certain releases of a file from editing
• Allowing joint editing of the file
• Cross-referencing changes to a file

Body of an SCCS file

The SCCS file body contains the text for all the different versions of the file. Consequently, the body of the
file does not look like a standard text file. Control characters bracket each portion of the text and specify
which delta created or deleted it. When the SCCS system builds a specific version of a file, the control
characters indicate the portions of text that correspond to each delta. The selected pieces of text are then
used to build that specific version.

SCCS flag and parameter conventions
This section lists flags for the SCCS commands.

In most cases, SCCS commands accept two types of parameters:

Parameter Description

flags Flags consist of a - (minus sign), followed by a lowercase character,
which is sometimes followed by a value. Flags control how the command
operates.

File or Directory These parameters specify the file or files with which the command
operates. Using a directory name as an argument specifies all SCCS files in
that directory.

File or directory names cannot begin with a - (minus sign). If you specify this sign by itself, the command
reads standard input or keyboard input until it reaches an end-of-file character. This is useful when using
pipes that allow processes to communicate.

Any flags specified for a command apply to all files on the command line and are processed before
any other parameters to that command. Flag placement in the command line is not important. Other
parameters are processed left to right. Some SCCS files contain flags that determine how certain
commands operate on the file. See the admin command description of SCCS header flags for more
information.

682 AIX Version 7.2: General programming concepts

Creating, editing, and updating an SCCS file
You can create, edit, and update an SCCS file using the admin, get, and delta commands.

Creating an SCCS File

admin
Creates an SCCS file or changes an existing SCCS file.

• To create an empty SCCS file named s.test.c, enter:

admin -n s.test.c

Using the admin command with the -n flag creates an empty SCCS file.
• To convert an existing text file into an SCCS file, enter:

admin -itest.c s.test.c
There are no SCCS identification keywords in the file (cm7)

ls
s.test.c test.c

If you use the -i flag, the admin command creates delta 1.1 from the specified file. Once delta 1.1
is created, rename the original text file so it does not interfere with SCCS commands (it will act as a
backup):

mv test.c back.c

The message There are no SCCS identification keywords in the file (cm7) does not
indicate an error.

• To start the test.c file with a release number of 3.1, use the -r flag with the admin command, as
follows:

admin -itest.c -r3 s.test.c

Editing an SCCS file

Attention: Do not edit SCCS files directly with non-SCCS commands, or you can damage the
SCCS files.

get
Gets a specified version of an SCCS file for editing or compiling.

1. To edit an SCCS file, enter the get command with the -e flag to produce an editable version of the file:

get -e s.test.c
1.3
new delta 1.4
67 lines

ls
p.test.c s.test.c test.c

The get command produces two new files, p.test.c and test.c. The editable file is test.c.
The p.test.c file is a temporary, uneditable file used by SCCS to keep track of file versions. It will
disappear when you update your changes to the SCCS file. Notice also that the get command prints the
SID of the version built for editing, the SID assigned to the new delta when you update your changes,
and the number of lines in the file.

2. Use any editor to edit test.c, for example:

ed test.c

You can now work on your actual file. Edit this file as often as you wish. Your changes will not affect the
SCCS file until you choose to update it.

General programming concepts 683

3. To edit a specific version of an SCCS file with multiple versions, enter the get command with the -r
flag :

get -r1.3 s.test.c
1.3
67 lines

get -r1.3.1.4 s.test.c
1.3.1.4
50 lines

Updating an SCCS File

delta
Adds a set of changes (deltas) to the text of an SCCS file.

1. To update the SCCS file and create a new delta with the changes you made while editing, use the delta
command:

$delta s.test.c
Type comments, terminated with EOF or a blank line:

2. The delta command prompts you for comments to be associated with the changes you made. For
example, enter your comments, and then press the Enter key twice:

No id keywords (cm7)
1.2
5 lines inserted
6 lines deleted
12 lines unchanged

The delta command updates the s.prog.c file with the changes you made to the test.c file. The delta
command tells you that the SID of the new version is 1.2, and that the edited file inserted 5 lines,
deleted 6 lines, and left 12 lines unchanged from the previous version.

Controlling and tracking SCCS file changes
The SCCS command and file system are primarily used to control access to a file and to track who altered
a file, why it was altered, and what was altered.

Controlling access to SCCS files
The following types of access can be controlled in an SCCS file system:

File access controls

Directories containing SCCS files should be created with permission code 755 (read, write, and
execute permissions for owner; read and execute permissions for group members and others). The
SCCS files themselves should be created as read-only files (444). With these permissions, only the
owner can use non-SCCS commands to modify SCCS files. If a group can access and modify the SCCS
files, the directories should have group write permission.

User access controls

The admin command with the -a flag can designate a group of users that can make changes to the
SCCS file. A group name or number can also be specified with this flag.

Version access controls

The admin command can lock, or prevent, various versions of a file from being accessed by the get
command by using header flags.

-fc
Sets a ceiling on the highest release number that can be retrieved

-ff
Sets a floor on the lowest release number that can be retrieved

684 AIX Version 7.2: General programming concepts

-fl
Locks a particular release against being retrieved

Tracking changes to an SCCS file
There are three ways to track changes to an SCCS file:

• Comments associated with each delta
• Modification Request (MR) numbers
• The SCCS commands

Tracking changes with delta comments

After an SCCS file is updated and a new delta created, the system prompts for comments to be
associated with that delta. These comments can be up to 512 characters long and can be modified
with the cdc command.

cdc
Changes the comments associated with a delta

The get command with the -l flag prints out the delta table and all the delta comments for any version
of a file. In addition to storing the comments associated with a delta, the delta table automatically
stores the time and date of the last modification, the real user ID at the time of the modification, the
serial numbers of the delta and its predecessor, and any MR numbers associated with the delta.

Tracking changes with modification request numbers

The admin command with the -fv flag prompts for MR numbers each time a delta is created. A
program can be specified with the -fv flag to check the validity of the MR numbers when an attempt is
made to create a new delta in the SCCS file. If the MR validity-checking program returns a nonzero exit
value, the update will be unsuccessful.

The MR validity-checking program is created by the user. It can be written to track changes made to
the SCCS file and index them against any other database or tracking system.

Tracking changes with SCCS commands
sccsdiff

Compares two SCCS files and prints their differences to standard output

The delta command with the -p flag acts the same as the sccsdiff command when the file is updated.
Both of these commands allow you to see what changes have been made between versions.

prs
Formats and prints specified portions of an SCCS file to standard output

This command allows you to find the differences in two versions of a file.

Detecting and repairing damaged SCCS files
You can detect and repair damaged SCCS files using the admin command.

Procedure

1. Check SCCS files on a regular basis for possible damage. Any time an SCCS file is changed without
properly using SCCS commands, damage may result to the file. The SCCS file system detects this
damage by calculating the checksum and comparing it with the one stored in the delta table. Check
for damage by running the admin command with the -h flag on all SCCS files or SCCS directories as
shown:

admin -h s.file1 s.file2 ...

OR

admin -h directory1 directory2 ...

General programming concepts 685

If the admin command finds a file where the computed checksum is not equal to the checksum listed
in the SCCS file header, it displays this message:

ERROR [s.filename]:
1255-057 The file is damaged. (co6)

2. If a file was damaged, try to edit the file again or read a backup copy. Once the checksum has been
recalculated, any remaining damage will be undetectable by the admin command.

Note: Using the admin command with the -z flag on a damaged file can prevent future
detection of the damage.

3. After fixing the file, run the admin command with the -z flag and the repaired file name:

admin -z s.file1

List of additional SCCS commands
The following SCCS commands complete the system for handling SCCS files:

Attention: Using non-SCCS commands with SCCS files can damage the SCCS files.

Command Description

rmdel Removes the most recent delta on a branch from an SCCS file.

sact Displays current SCCS file editing status.

sccs Administration program for the SCCS system. The sccs command contains a set of
pseudo-commands that perform most SCCS services.

sccshelp Explains an SCCS error message or command.

unget Cancels the effect of a previous use of the get -e command.

val Checks an SCCS file to see if its computed checksum matches the checksum listed in the
header.

vc Substitutes assigned values in place of identification keywords.

what Searches a system file for a pattern and displays text that follows it.

Subroutines, example programs, and libraries
This topic provides information about what subroutines are, how to use them, and where they are stored.

Subroutines are stored in libraries to conserve storage space and to make the program linkage process
more efficient. A library is a data file that contains copies of a number of individual files and control
information that allows them to be accessed individually. The libraries are located in the /usr/ccs/lib
and /usr/lib directories. By convention, most of them have names of the form libname.a where name
identifies the specific library.

All include statements should be near the beginning of the first file being compiled, usually in the
declarations section before main(), and must occur before using any library functions. For example, use
the following statement to include the stdio.h file:

#include <stdio.h>

You do not need to do anything special to use subroutines from the Standard C library (libc.a). The cc
command automatically searches this library for subroutines that a program needs. However, if you use
subroutines from another library, you must tell the compiler to search that library. If your program uses
subroutines from the library libname.a, compile your program with the flag -lname (lowercase L). The
following example compiles the program myprog.c, which uses subroutines from the libdbm.a library:

686 AIX Version 7.2: General programming concepts

cc myprog.c -ldbm

You can specify more than one -l (lowercase L) flag. Each flag is processed in the order specified.

If you are using a subroutine that is stored in the Berkeley Compatibility Library, bind to the libbsd.a
library before binding to the libc.a library, as shown in the following example:

cc myprog.c -lbsd

When an error occurs, many subroutines return a value of -1 and set an external variable named errno to
identify the error. The sys/errno.h file declares the errno variable and defines a constant for each of the
possible error conditions.

In this documentation, all system calls are described as subroutines and are resolved from the libc.a
library. The programming interface to system calls is identical to that of subroutines. As far as a C
Language program is concerned, a system call is merely a subroutine call. The real difference between
a system call and a subroutine is the type of operation it performs. When a program invokes a system
call, a protection domain switch takes place so that the called routine has access to the operating system
kernel's privileged information. The routine then operates in kernel mode to perform a task on behalf of
the program. In this way, access to the privileged system information is restricted to a predefined set of
routines whose actions can be controlled.

Note:

1. The following list represents the wString routines that are obsolete for the 64 bit libc.a. Their
corresponding 64 bit libc.a equivalents are included. The routines for the 32 bit libc.a can be found in
the wstring subroutine.

32 Bit only 64 Bit Equivalent

wstrcat wcscat
wstrchr wcschr
wstrcmp wcscoll
wstrcpy wcscpy
wstrcspn wcscspn
wstrdup Not available and has no
 equivalents in the 64 bit libc.a
wstrlen wcslen
wstrncat wcsncat
wstrncpy wcsncpy
wstrpbrk wcspbrk
wstrrchr wcsrchr
wstrspn wcsspn
wstrtok wcstok

2. All programs that handle multibyte characters, wide characters, or locale-specific information must
call the setlocale subroutine at the beginning of the program.

3. Programming in a multithreaded environment requires reentrant subroutines to ensure data integrity.

Related concepts
Tools and utilities
This section provides an overview of the tools and utilities that you can use to develop C compiled
language programs.
Related information
List of time data manipulation services
Header Files Overview
itrunc
printf
scanf
setlocate
sqrt

General programming concepts 687

128-bit long double floating-point data type
The AIX operating system supports a 128-bit long double data type that provides greater precision than
the default 64-bit long double data type. The 128-bit data type can handle up to 31 significant digits
(compared to 17 handled by the 64-bit long double). However, while this data type can store numbers
with more precision than the 64-bit data type, it does not store numbers of greater magnitude.

The following special issues apply to the use of the 128-bit long double data type:

• Compiling programs that use the 128-bit long double data type
• Compliance with the IEEE 754 standard
• Implementing the 128-bit long double format
• Values of numeric macros

Compiling programs that use the 128-bit long double data type

To compile C programs that use the 128-bit long double data type, use the xlc128 command. This
command is an alias to the xlc command with support for the 128-bit data type. The xlc command
supports only the 64-bit long double data type.

The standard C library, libc.a, provides replacements for libc.a routines which are implicitly sensitive to
the size of a long double. Link with the libc.a library when compiling applications that use the 64-bit
long double data type. Link applications that use 128-bit long double values with both the libc128.a and
libc.a libraries. When linking, be sure to specify the libc128.a library before the libc.a library in the library
search order.

Compliance with IEEE 754 standard

The 64-bit implementation of the long double data type is fully compliant with the IEEE 754 standard, but
the 128-bit implementation is not. Use the 64-bit implementation in applications that must conform to
the IEEE 754 standard.

The 128-bit implementation differs from the IEEE standard for long double in the following ways:

• Supports only round-to-nearest mode. If the application changes the rounding mode, results are
undefined.

• Does not fully support the IEEE special numbers NaN and INF.
• Does not support IEEE status flags for overflow, underflow, and other conditions. These flags have no

meaning for the 128-bit long double inplementation.
• The 128-bit long double data type does not support the following math APIs: atanhl, cbrtl, copysignl,

exp2l, expm1l, fdiml, fmal, fmaxl, fminl, hypotl, ilogbl, llrintl, llroundl, log1pl, log2l, logbl, lrintl,
lroundl, nanl, nearbyintl, nextafterl, nexttoward, nexttowardf, nexttowardl, remainderl, remquol,
rintl, roundl, scalblnl, scalbnl, tgammal, and truncl.

Implementing the 128- bit long double format

A 128-bit long double number consists of an ordered pair of 64-bit double-precision numbers. The first
member of the ordered pair contains the high-order part of the number, and the second member contains
the low-order part. The value of the long double quantity is the sum of the two 64-bit numbers.

Each of the two 64-bit numbers is itself a double-precision floating-point number with a sign, exponent,
and significand. The low-order member has a magnitude that is less than 1 unit in the last place of
the high part, so the values of the two 64-bit numbers do not overlap and the entire significand of the
low-order number adds precision beyond the high-order number.

This representation results in several issues that must be considered in the use of these numbers:

• The precision of 128-bit long double data type is greater than the precision of the double data type, but
the exponent range is the same. Therefore, the magnitude of numbers that are represented by using
128-bit long double data type is slightly greater than the magnitude of 64-bit double precision data
type.

688 AIX Version 7.2: General programming concepts

• As the absolute value of the magnitude decreases (near the denormal range), the additional precision
available in the low-order part also decreases. When the value to be represented is in the denormal
range, this representation provides no more precision than the 64-bit double-precision data type.

• The actual number of bits of precision can vary. If the low-order part is much less than 1 ULP of
the high-order part, significant bits (either all 0's or all 1's) are implied between the significant of the
high-order and low-order numbers. Certain algorithms that rely on having a fixed number of bits in the
significand can fail when using 128-bit long double numbers.

Values of numeric macros

Because of the storage method for the long double data type, more than one number can satisfy certain
values that are available as macros.The representation of 128-bit long double numbers means that the
following macros required by standard C in the values.h file do not have clear meaning:

• Number of bits in the mantissa (LDBL_MANT_DIG)
• Epsilon (LBDL_EPSILON)
• Maximum representable finite value (LDBL_MAX)

Number of bits in the mantissa

The number of bits in the significand is not fixed, but for a correctly formatted number (except in the
denormal range) the minimum number available is 106. Therefore, the value of the LDBL_MANT_DIG
macro is 106.

Epsilon

The ANSI C standard defines the value of epsilon as the difference between 1.0 and the least
representable value greater than 1.0, that is, b**(1-p), where b is the radix (2) and p is the number of
base b digits in the number. This definition requires that the number of base b digits is fixed, which is not
true for 128-bit long double numbers.

The smallest representable value greater than 1.0 is this number:

0x3FF0000000000000, 0x0000000000000001

The difference between this value and 1.0 is this number:

0x0000000000000001, 0x0000000000000000
0.4940656458412465441765687928682213E-323

Because 128-bit numbers usually provide at least 106 bits of precision, an appropriate minimum value for
p is 106. Thus, b**(1-p) and 2**(-105) yield this value:

0x3960000000000000, 0x0000000000000000
0.24651903288156618919116517665087070E-31

Both values satisfy the definition of epsilon according to standard C. The long double subroutines use the
second value because it better characterizes the accuracy provided by the 128-bit implementation.

Maximum long double value

The value of the LDBL_MAX macro is the largest 128-bit long double number that can be multiplied by
1.0 and yield the original number. This value is also the largest finite value that can be generated by
primitive operations, such as multiplication and division:

0x7FEFFFFFFFFFFFFF, 0x7C9FFFFFFFFFFFFF
0.1797693134862315907729305190789002575e+309

List of character manipulation subroutines
The character manipulation functions and macros test and translate ASCII characters.

These functions and macros are of three kinds:

General programming concepts 689

• Character testing
• Character translation
• Miscellaneous character manipulation

The Character Testing illustrates some of the character manipulation routines.

Character testing

Use the following functions and macros to determine character type. Punctuation, alphabetic, and case-
querying functions values depend on the current collation table.

The ctype subroutines contain the following functions:

isalpha
Is character alphabetic?

isalnum
Is character alphanumeric?

isupper
Is character uppercase?

islower
Is character lowercase?

isdigit
Is character a digit?

isxdigit
Is character a hex digit?

isspace
Is character a blank-space character?

ispunct
Is character a punctuation character?

isprint
Is character a printing character, including space?

isgraph
Is character a printing character, excluding space?

iscntrl
Is character a control character?

isascii
Is character an integer ASCII character?

Character translation

The conv subroutines contain the following functions:

toupper
Converts a lowercase letter to uppercase

_toupper
(Macro) Converts a lowercase letter to uppercase

tolower
Converts an uppercase letter to lowercase

_tolower
(Macro) Converts an uppercase letter to lowercase

toascii
Converts an integer to an ASCII character

Miscellaneous character manipulation

getc, fgetc,getchar, getw
Get a character or word from an input stream

690 AIX Version 7.2: General programming concepts

putc,putchar, fputc, putw
Write a character or word to a stream

List of executable program creation subroutines
The list of executable program creation services consists of subroutines that support a group of
commands.

These commands and subroutines allow you to create, compile, and work with files in order to make your
programs run.

Subroutine Description

_end, _text, _edata Define the last location of a program

confstr Determines the current value of a specified system variable
defined as a string

getopt Gets flag letters from the argument vector

ldopen, ldaopen Open a common object file

ldclose, ldaclose Close a common object file

ldahread Reads the archive header of a member of an archive file

ldfhread Reads the file header of a common object file

ldlread, ldlinit, ldlitem Read and manipulate line number entries of a common
object file function

ldshread, ldnshread Read a section header of a common object file

ldtbread Reads a symbol table entry of a common object file

ldgetname Retrieves a symbol name from a symbol table entry or from
the string table

ldlseek, ldnseek Seek to line number entries of a section of a common object
file

ldohseek Seek to the optional file header of a common object file

ldrseek, ldnrseek Seek to the relocation information for a section of a common
object file

ldsseek, ldnsseek Seek to a section of a common object file

ldtbseek Seeks to the symbol table of a common object file

ldtbindex Returns the index of a particular common object file symbol
table entry

load Loads and binds an object module into the current process

unload Unloads an object file

loadbind Provides specific runtime resolution of a module's deferred
symbols

loadquery Returns error information from the load subroutine or the
exec subroutine. Also provides a list of object files loaded
for the current process

monitor Starts and stops execution profiling

nlist Gets entries from a name list

regcmp, regex Compile and matche regular-expression patterns

setjmp, longjmp Store a location

General programming concepts 691

Subroutine Description

sgetl, sputl Accesses long numeric data in a machine-independent
fashion

sysconf Determines the current value of a specified system limit or
option

List of files and directories subroutines
The system provides services to create files, move data into and out of files, and describe restrictions and
structures of the file system.

Many of these subroutines are the base for the system commands that have similar names. You can,
however, use these subroutines to write new commands or utilities to help in the program development
process, or to include in an application program.

The system provides subroutines for:

Controlling files

access, accessx, or faccessx
Determine accessibility of a file

fclear
Clears space in a file

fcntl, dup, or dup2
Control open file descriptors

fsync
Writes changes in a file to permanent storage

getenv
Returns the value of an environment variable

getutent, getutid, getutline, putuline, setutent, endutent, or utmpname
Access utmp file entries

getutid_r, getutline_r, pututline_r, setutent_r, endutent_r, or utmpname_r
Access utmp file entries

lseek or llseek
Move the read-write pointer in an open file

lockfx, lockf, or flock
Controls open file descriptor locks

mknod or mkfifo
Create regular, FIFO, or special files

mktemp or mkstemp
Construct a unique file name

open, openx, or creat
Return a file descriptor and creates files

pclose
Closes an open pipe

pipe
Creates an interprocess channel

popen
Initiates a pipe to a process

pathconf, fpathconf
Retrieve file implementation characteristics

putenv
Sets an environment variable

692 AIX Version 7.2: General programming concepts

read, readx, readv, readvx
Read from a file or device

rename
Renames directory or file within a file system

statx, stat, fstatx, fstat, fullstat, fullstat
Get file status

tmpfile
Creates a temporary file

tmpnam or tempnam
Construct a name for a temporary file

truncate, ftruncate
Make a file shorter

umask
Gets and sets the value of the file creation mask

utimes or utime
Set file access or modification time

write, writex, writev, writevx
Write to a file or device

Working with directories

chdir
Changes the current working directory

chroot
Changes the effective root directory

getwd, getcwd
Get the current directory path name

glob
Generates a list of path names to accessible files

globfree
Frees all memory associated with the pglob parameter

link
Creates additional directory entry for an existing file

mkdir
Creates a directory

opendir, readdir, telldir, seekdir, rewinddir, closedir
Performs operations on directories

readdir_r
Reads a directory

rmdir
Removes a directory

scandir, alphasort
Scan a directory

readlink
Reads the volume of a symbolic link

remove
Makes a file inaccessible by specified name

symlink
Creates a symbolic link to a file

unlink
Removes a directory entry

General programming concepts 693

Manipulating file systems

confstr
Determines the current value of a specified system variable defined by a string

fscntl
Manipulates file system control operations

getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent
Get information about a file system

getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, endvfsent
Get information about virtual file system entries

mnctl
Returns mount status information

quotactl
Manipulates disk quotas

statfs, fstatfs
Get the status of a file's file system

sysconf
Reports current value of system limits or options

sync
Updates all file systems information to disk

umask
Gets and sets the value of the file creation mask

vmount
Mounts a file system

umount, uvmount
Remove a virtual file system from the file tree

List of numerical manipulation subroutines
These functions perform numerical manipulation:

Function Description

a64l, l64a Convert between long integers and base-64 ASCII
strings

abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs,
lldiv

Compute absolute value, division, and
multiplication of integers

asin, asinl, acos, acosl, atan, atanl, atan2, atan2l Compute inverse trigonometric functions

asinh, acosh, atanh Compute inverse hyperbolic functions

atof, atoff, strtod, strtold, strtof Convert an ASCII string to a floating point number

bessell: j0, j1, jn, y0, y1, yn Compute bessel functions

class, finite, isnan, unordered Determine types of floating point functions

copysign, nextafter, scalb, logb, ilogb Compute certain binary floating-point functions

nrand48, mrand48, jrand48, srand48, seed48,
lcong48

Generate pseudo-random sequences

lrand48_r, mrand48_r, nrand48_r, seed48_r, or
srand48_r

Generate pseudo-random sequences

drem or remainder Compute an IEEE remainder

ecvt, fcvt, gcvt Convert a floating-point number to a string

694 AIX Version 7.2: General programming concepts

Function Description

erf, erfl, erfc, erfcl Compute error and complementary error functions

exp, expl, expm1, log, logl, log10, log10l, log1p,
pow, powl

Compute exponential, log, and power functions

floor, floorl, ceil, ceill, nearest,

trunc, rint, itrunc, uitrunc, fmod, fmodl, fabs,
fabsl

Round floating-point numbers

fp_any_enable, fp_is_enabled, fp_enable_all,

fp_enable, fp_disable_all, fp_disable Allow operations on the floating-point exception
status

fp_clr_flag, fp_set_flag, fp_read_flag, or
fp_swap_flag

Allow operations on the floating-point exception
status

fp_invalid_op, fp_divbyzero, fp_overflow,

fp_underflow, fp_inexact, fp_any_xcp Test to see if a floating-point exception has
occurred

fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf,

fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp Test to see if a floating-point exception has
occurred

fp_read_rnd,fp_swap_rnd Read and set the IEEE rounding mode

frexp, frexpl, ldexp, ldexpl, modf, modfl Manipulate floating point numbers

l64a_r Converts base-64 long integers to strings

lgamma, lgammal, gamma Compute the logarithm of the gamma function

hypot, cabs Compute Euclidean distance functions and
absolute values

13tol, ltol3 Convert between 3-byte integers and long integers

madd, msub, mult, mdiv, pow, gcd, invert,

rpow, msqrt, mcmp, move, min, omin,

fmin, m_in, mout, omout, fmout, m_out, sdiv,
itom

Provide multiple precision integer arithmetic

rand, srand Generate random numbers

rand_r Generates random numbers

random, srandom, initstate, setstate Generate better random numbers

rsqrt Computes the reciprocal of the square root of a
number

sin, cos, tan Compute trigonometric and inverse trigonometric
functions

sinh, sinhl, cosh, coshl, tanh, tanhl Computes hyperbolic functions

sqrt, sqrtl, cbrt Compute square root and cube root functions

strtol, strtoll, strtoul, strtoull, atol, atoi Convert a string to an integer

General programming concepts 695

List of long long integer numerical manipulation subroutines
The following subroutines perform numerical manipulation of integers stored in the long long integer data
format:

Subroutine Description

llabs Computes the absolute value of a long long integer

lldiv Computes the quotient and remainder of the division of two long long integers

strtoll Converts a string to a signed long long integer

strtoull Converts a string to an unsigned long long integer

wcstoll Converts a wide character string to a signed long long integer

wcstoull Converts a wide character string to an unsigned long long integer

List of 128-bit long double numerical manipulation subroutines
The following subroutines perform numerical manipulation of floating-point numbers stored in the 128-
bit long double data type.

These subroutines do not support the 64-bit long double data type. Applications that use the 64-bit long
double data type should use the corresponding double-precision subroutines.

Subroutine Description

acosl Computes the inverse cosine of a floating-point number in long double format

asinl Computes the inverse sine of a floating-point number in long double format

atan2l Computes the principal value of the arc tangent of x/y, whose components are expressed
in long double format

atanl Computes the inverse tangent of a floating-point number in long double format

ceill Computes the smallest integral value not less than a specified floating-point number in
long double format

coshl Computes the hyperbolic cosine of a floating-point number in long double format

cosl Computes the cosine of a floating-point number in long double format

erfcl Computes the value of 1 minus the error function of a floating-point number in long double
format

erfl Computes the error function of a floating-point number in long double format

expl Computes the exponential function of a floating-point number in long double format

fabsl Computes the absolute value of a floating-point number in long double format

floorl Computes the largest integral value not greater than a specified floating-point number in
long double format

fmodl Computes the long double remainder of a fraction x/y, where x and y are floating-point
numbers in long double format

frexpl Expresses a floating-point number in long double format as a normalized fraction and an
integral power of 2, storing the integer and returning the fraction

ldexpl Multiplies a floating-point number in long double format by an integral power of 2

lgammal Computes the natural logarithm of the absolute value of the gamma function of a floating-
point number in long double format

log10l Computes the base 10 logarithm of a floating-point number in long double format

696 AIX Version 7.2: General programming concepts

Subroutine Description

logl Computes the natural logarithm of a floating-point number in long double format

modfl Stores the integral part of a real number in a long double variable and returns the
fractional part of the real number

powl Computes the value of x raised to the power of y, where both numbers are floating-point
numbers in long double format

sinhl Computes the hyperbolic sine of a floating-point number in long double format

sinl Computes the sine of a floating-point number in long double format

sqrtl Computes the square root of a floating-point number in long double format

strtold Converts a string to a floating-point number in long double format

tanl Computes the tangent of a floating-point number in long double format

tanhl Computes the hyperbolic tangent of a floating-point number in long double format

List of processes subroutines
With the introduction of threads, several process subroutines have been extended and other subroutines
have been added. Threads, not processes, are now the schedulable entity.

For signals, the handler exists at the process level, but each thread can define a signal mask. Some
examples of changed or new subroutines are: getprocs, getthrds, ptrace, getpri, setpri, yield and
sigprocmask.

The subroutines are listed in the following categories:

Process initiation

exec:, execl, execv, execle, execve, execlp, execvp, or exect
Execute new programs in the calling process

fork or vfork
Create a new process

reboot
Restarts the system

siginterrupt
Sets subroutines to restart when they are interrupted by specific signals

Process suspension

pause
Suspends a process until that process receives a signal

wait, wait3, waitpid
Suspend a process until a child process stops or terminates

Process termination

abort
Terminates current process and produces a memory dump by sending a SIGOT signal

exit, atexit, or _exit
Terminate a process

, unatexit,
Unregisters functions that were previously registered by the atexit subroutine. If the referenced
function is found, it is removed from the list of functions that are called at normal program
termination.

kill or killpg
Terminate current process or group of processes with a signal

General programming concepts 697

Process and thread identification

ctermid
Gets the path name for the terminal that controls the current process

cuserid
Gets the alphanumeric user name associated with the current process

getpid, getpgrp, or getppid
Get the process ID, process group ID, or the parent process ID, respectively

getprocs
Gets process table entries

getthrds
Gets thread table entries

setpgid or setpgrp
Set the process group ID

setsid
Creates a session and sets process group IDs

uname or unamex
Gets the names of the current operating system

Process accounting

acct
Enables and disables process accounting

ptrace
Traces the execution of a process

Process resource allocation

brk or sbrk
Change data segment space allocation

getdtablesize
Gets the descriptor table size

getrlimit, setrlimit, or vlimit
Limit the use of system resources by current process

getrusage, times, or vtimes
Display information about resource use

plock
Locks processes, text, and data into memory

profil
Starts and stops program address sampling for execution profiling

ulimit
Sets user process limits

Process prioritization

getpri
Returns the scheduling priority of a process

getpriority, setpriority, or nice
Get or set the priority value of a process

setpri
Sets a process scheduling priority to a constant value

yield
Yields the processor to processes with higher priorities

Process and thread synchronization

698 AIX Version 7.2: General programming concepts

compare_and_swap
Conditionally updates or returns a single word variable atomically

fetch_and_add
Updates a single word variable atomically

fetch_and_and and fetch_and_or
Sets or clears bits in a single word variable atomically

semctl
Controls semaphore operations

semget
Gets a set of semaphores

semop
Performs semaphore operations

Process signals and masks

raise
Sends a signal to an executing program

sigaction, sigvec, or signal
Specifies the action to take upon delivery of a signal

sigemptyset, sigfillset, sigaddset, sigdelset, or sigismember
Create and manipulate signal masks

sigpending
Determines the set of signals that are blocked from delivery

sigprocmask, sigsetmask, or sigblock
Set signal masks

sigset, sighold, sigrelse, or sigignore
Enhance the signal facility and provide signal management

sigsetjmp or siglongjmp
Save and restore stack context and signal masks

sigstack
Sets signal stack context

sigsuspend
Changes the set of blocked signals

ssignal or gsignal
Implement a software signal facility

Process messages

msgctl
Provides message control operations

msgget
Displays a message queue identifier

msgrcv
Reads messages from a queue

msgsnd
Sends messages to the message queue

msgxrcv
Receives an extended message

psignal
Printing system signal messages

General programming concepts 699

List of multithreaded programming subroutines
Programming in a multithreaded environment requires reentrant subroutines to ensure data integrity.

Use the following subroutines rather than the non-reentrant version:

Subroutine Description

asctime_r Converts a time value into a character array

getgrnam_r Returns the next group entry in the user database that matches a specific name

getpwuid_r Returns the next entry that matches a specific user ID in the use database

The following lists the non-reentrant subroutines in libc.

Subroutine Description

asctime getgrent gsignal setkey

auditread getgrgid hcreate setlogmask

closelog getgrnam hdestroy setnetent

crypt getgroupsbyuser hsearch setnetgrent

ctime getgrset inet_ntoa setprotoent

dirname gethostbyaddr initstate setpwent

drand48 gethostbyname innetgr setpwfile

ecvt gethostent iso_addr setrpcent

endttyent getlogin iso_ntoa setservent

encrypt getnetbyaddr jrand48 setstate

asctime getnetbyname l64a setttyent

endfsent getnetent lcong48 setutent

endfsent getnetgrent link_ntoa setutxent

endgrent getopt localtime srand48

endhostent getprotobyname lrand48 srandom

endnetent getprotobynumber mrand48 ssignal

endnetgrent getprotoent mtime strerror

endprotoent getpwent ndutent strtok

endpwent getpwnam nrand48 syslog

endrpcent getpwuid ns_ntoa ttyname

endservent getrpcbyname openlog utmpname

endttyent getrpcbynumber pututline wcstok

endutxent getrpcent pututxline

erand48 getservbyname rand

ether_aton getservbyport random

ether_ntoa getservent rcmd

fcvt fgetgrent getttyent rcmd2

700 AIX Version 7.2: General programming concepts

Subroutine Description

fgetpwent getttynam readdir

getdate getuinfo rexec

getfsent getutent re_comp

getfsent getutid re_exec

getfsfile getutline seed48

getfsfile getutxent setfsent

getfsspec getutxid setgrent

getfstype getutxline sethostent

List of programmer's workbench library subroutines
The Programmers Workbench Library (libPW.a) contains routines that are provided only for compatibility
with existing programs.

Their use in new programs is not recommended. These interfaces are from AT&T PWB Toolchest.

Routine Description

any (Character, String) Determines whether String contains
Character

anystr (String1, String2) Determines the offset in String1 of the first
character that also occurs in String2

balbrk (String, Open, Close, End) Determines the offset in String of the first
character in the string End that occurs
outside of a balanced string as defined by
Open and Close

cat (Destination, Source1, Source0) Concatenates the Source strings and
copies them to Destination

clean_up () Defaults the cleanup routine

curdir (String) Puts the full path name of the current
directory in String

dname (p) Determines which directory contains the
file p

fatal (Message) General purpose error handler

fdfopen (fd, Mode) Same as the stdio fdopen subroutine

giveup (Dump) Forces a core dump

imatch (pref, String) Determines if the string pref is an initial
substring of String

lockit (LockFile, Count, pid) Creates a lock file

move (String1, String2, n) Copies the first n characters of String1 to
String2

patoi (String) Converts String to integer

patol (String) Converts String to long.

repeat (Destination, String, n) Sets Destination to String repeated n times

General programming concepts 701

Routine Description

repl (String, Old, New) Replaces each occurrence of the character
Old in String with the character New

satoi (String, *ip) Converts String to integer and saves it in
*ip

setsig () Causes signals to be caught by setsig1

setsig1 (Signal) General purpose signal handling routine

sname (String) Gets a pointer to the simple name of full
path name String

strend (String) Finds the end of String.

trnslat (s, old, new, Destination) Copies string s into Destination and
replace any character in old with the
corresponding characters in new

unlockit (lockfile, pid) Deletes the lock file

userdir (uid) Gets the user's login directory

userexit (code) Defaults user exit routine

username (uid) Gets the user's login name

verify (String1, String2) Determines the offset in string String1 of
the first character that is not also in string
String2

xalloc (asize) Allocates memory

xcreat (name, mode) Creates a file

xfree (aptr) Frees memory

xfreeall () Frees all memory

xlink (f1, f2) Links files

xmsg (file, func) Calls the routine fatal with an appropriate
error message

xpipe (t) Creates a pipe

xunlink (f) Removes a directory entry

xwrite (fd, buffer, n) Writes n bytes to the file associated with
fd from buffer

zero (p, n) Zeros n bytes starting at address p

zeropad (s) Replaces the initial blanks with the
character 0 (zero) in string s

File

/usr/lib/libPW.a
Contains routines provided only for compatibility with existing programs

List of security and auditing subroutines
This section lists security and auditing subroutines.

Access control subroutines

702 AIX Version 7.2: General programming concepts

Subroutine Description

acl_chg or acl_fchg Change the access control information on a file

acl_get or acl_fget Get the access control information of a file

acl_put or acl_fput Set the access control information of a file

acl_set or acl_fset Set the base entries of the access control information of a file

aclx_convert Convert the access control information from one ACL type to another

aclx_get or aclx_fget Get the access control information of a file if the ACL associated is of
the AIXC type

aclx_gettypeinfo Retrieve the ACL characteristics given to an ACL type

aclx_gettypes Retrieve the list of ACL types supported for the file system
associated with the path provided

aclx_print or aclx_printStr Convert the binary access control information into nonbinary,
readable format

aclx_put or aclx_fput Stores the access control information for a file system object

aclx_scan or aclx_scanStr Convert the access control information that is in nonbinary, readable
text format into ACL type-specific native format binary ACL data

chacl or fchac l Change the permissions on a file

chmod or fchmod Change file access permissions

chown, fchown, chownx, or
fchownx

Change file ownership

frevoke Revoke access to a file by other processes

revoke Revoke access to a file

statacl or fstatacl Retrieve the access control information for a file

Auditing subroutines

Subroutine Description

audit Enables and disables system auditing

auditbin Defines files to contain audit records

auditevents Gets or sets the status of system event auditing

auditlog Appends an audit record to an audit bin file

auditobj Gets or sets the auditing mode of a system data object

auditpack Compresses and uncompresses audit bins

auditproc Gets or sets the audit state of a process

auditread or auditread_r Read an audit record

auditwrite Writes an audit record

Identification and authentication subroutines

User authentication routines have a potential to store passwords and encrypted passwords in memory.
This may expose passwords and encrypted passwords in coredumps.

Subroutine Description

authenticate Authenticates the user's name and password

General programming concepts 703

Subroutine Description

ckuseracct Checks the validity of a user account

ckuserID Authenticates the user

crypt, encrypt, or setkey Encrypt or decrypt data

genpagvalue Generates a system-wide unique PAG value for a
given PAG name such as afs.

getpagvalue64 Retrieves 64-bit PAG values for a process.

setpagvalue64 Stores 64-bit PAG values for a process. .

getgrent, getgrgid, getgrnam, setgrent, or
endgrent

Accesses the basic group information in the user
database

getgrgid_r Gets a group database entry for a group ID in a
multithreaded environment

getgrnam_r Searches a group database for a name in a
multithreaded environment

getgroupattr, IDtogroup, nextgroup, or
putgroupattr

Accesses the group information in the user
database

getlogin Gets the user's login name

getlogin_r Gets the user's login name in a multithreaded
environment

getpass Reads a password

getportattr or putportattr Access the port information in the port database

getpwent, getpwuid, getpwnam, putpwent,
setpwent, or endpwent

Access the basic user information in the user
database

getuinfo Finds the value associated with a user

getuserattr, IDtouser, nextuser, or putuserattr Access the user information in the user database

getuserpw, putuserpw, or putuserpwhist Access the user authentication data

loginfailed Records an unsuccessful login attempt

loginrestrictions Determines if a user is allowed to access the
system

loginsuccess Records a successful login

newpass Generates a new password for a user

passwdexpired Checks the user's password to determine if it has
expired

setpwdb or endpwdb Open or close the authentication database

setuserdb or enduserdb Open or close the user database

system Runs a shell command

tcb Alters the Trusted Computing Base status of a file

Process subroutines

Subroutine Description

getgid or getegid Get the real or group ID of the calling process

704 AIX Version 7.2: General programming concepts

Subroutine Description

getgroups Gets the concurrent group set of the current
process

getpcred Gets the current process security credentials

getpenv Gets the current process environment

getuid or geteuid Get the real or effective user ID of the current
process

initgroups Initializes the supplementary group ID of the
current process

kleenup Cleans up the run-time environment of a process

setgid, setrgid, setegid, or setregid Set the group IDs of the calling process

setgroups Sets the supplementary group ID of the current
process

setpcred Sets the current process credentials

setpenv Sets the current process environment

setuid, setruid, setuid, or setreuid Set the process user IDs

usrinfo Gets and sets user information about the owner of
the current process

List of string manipulation subroutines
The string manipulation functions include:

The string manipulation functions include:

• Locate a character position within a string
• Locate a sequence of characters within a string
• Copy a string
• Concatenate strings
• Compare strings
• Translate a string
• Measure a string

When using these string functions, you do not need to include a header file for them in the program or
specify a special flag to the compiler.

The following functions manipulate string data:

bcopy, bcmp, bzero, ffs
Perform bit and byte string operations

gets, fgets
Get a string from a stream

puts, fputs
Write a string to a stream

compile, step, advance
Compile and match regular-expression patterns

strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok
Perform operations on strings

jcode
Performs string conversion on 8-bit processing codes.

General programming concepts 705

varargs
Handles a variable-length parameter list

Example: Program for manipulating characters
This section includes a programming example for manipulating characters.

/*
This program is designed to demonstrate the use of "Character
classification and conversion" subroutines. Since we are dealing
with characters, it is a natural place to demonstrate the use of
getchar subroutine and putchar subroutine from the stdio library.

The program objectives are:

-Read input from "stdin"

-Verify that all characters are ascii and printable

-Convert all uppercase characters to lowercase

-Discard multiple white spaces

-Report statistics regarding the types of characters

The following routines are demonstrated by this example program:

- getchar

- putchar

- isascii (ctype)

- iscntrl (ctype)

- isspace (ctype)

- isalnum (ctype)

- isdigit (ctype)

- isalpha (ctype)

- isupper (ctype)

- islower (ctype)

- ispunct (ctype)

- tolower (conv)

- toascii (conv)

*/

#include <stdio.h> /* The mandatory include file */
#include <ctype.h> /* Included for character classification

subroutines */

706 AIX Version 7.2: General programming concepts

/* The various statistics gathering counters */

int asciicnt, printcnt, punctcnt, uppercnt, lowercnt,

digcnt, alnumcnt, cntrlcnt, spacecnt, totcnt, nonprntcnt,linecnt, tabcnt ;

main()
{

int ch ; /* The input character is read in to this */
char c , class_conv() ;

asciicnt=printcnt=punctcnt=uppercnt=lowercnt=digcnt==0;
cntrlcnt=spacecnt=totcnt=nonprntcnt=linecnt=tabcnt=0;
alnumcnt=0;

while ((ch =getchar()) != EOF)
{

totcnt++;
c = class_conv(ch) ;
putchar(c);

}
printf("The number lines of of input were %d\n",linecnt);
printf(" The character wise breakdown follows :\n");
printf(" TOTAL ASCII CNTRL PUNCT ALNUM DIGITS UPPER

LOWER SPACE TABCNT\n");

printf("%5d %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",totcnt,

asciicnt, cntrlcnt, punctcnt, alnumcnt, digcnt, uppercnt,lowercnt, spacecnt, tabcnt);

}

char class_conv(ch)
char ch;
{

if (isascii(ch)) {

asciicnt++;
if (iscntrl(ch) && ! isspace(ch)) {

nonprntcnt++ ;
cntrlcnt++ ;
return(' ');

General programming concepts 707

}
else if (isalnum(ch)) {

alnumcnt++;
if (isdigit(ch)){

digcnt++;
return(ch);

}
else if (isalpha(ch)){

if (isupper(ch)){

uppercnt++ ;
return(tolower(ch));

}
else if (islower(ch)){

lowercnt++;
return(ch);

}
else {

/*
We should never be in this situation since an alpha character can only be
either uppercase or lowercase.
*/

fprintf(stderr,"Classification error for %c \n",ch);
return(NULL);

}

}
else if (ispunct(ch)){

punctcnt++;
return(ch);

}
else if (isspace(ch)){

spacecnt++;
if (ch == '\n'){
linecnt++;
return(ch);

}
while ((ch == '\t') || (ch == ' ')) {
if (ch == '\t') tabcnt ++ ;
else if (ch == ' ') spacecnt++ ;
totcnt++;
ch = getchar();

}
ungetc(ch,stdin);
totcnt--;
return(' ');

708 AIX Version 7.2: General programming concepts

}
else {

/*
We should never be in this situation any ASCII character
can only belong to one of the above classifications.
*/
fprintf(stderr,"Classification error for %c \n",ch);
return(NULL);
}

}
else
{

fprintf(stdout,"Non Ascii character encountered \n");
return(toascii(ch));

}

}

Example: Searching and sorting program
This section includes an example of a searching and sorting program.

/**This program demonstrates the use of the following:

-qsort subroutine (a quick sort library routine)

-bsearch subroutine (a binary search library routine)

-fgets, fopen, fprintf, malloc, sscanf, and strcmp subroutines.

The program reads two input files with records in
string format, and prints or displays:

-records from file2, which are excluded in file1

-records from file1, which are excluded in file2

The program reads the input records from both files
into two arrays, which are subsequently sorted in
common order using the qsort subroutine. Each element of
one array is searched for its counterpart entry in the
other array using the bsearch subroutine. If the item is
not found in both arrays, a message indicates the record
was not found. The process is repeated interchanging
the two arrays, to obtain the second list of exclusions.

**/

#include <stdio.h> /*the library file to be included for
 /*standard input and output*/

#include <search.h> /*the file to be included for qsort*/
#include <sys/errno.h> /*the include file for interpreting

General programming concepts 709

 /*predefined error conditions*/

#define MAXRECS 10000 /*array size limit*/

#define MAXSTR 256 /*maximum input string length*/
#define input1 "file1" /*one input file*/
#define input2 "file2" /*second input file*/
#define out1 "o_file1" /*output file1*/
#define out2 "o_file2" /*output file2*/

main()
{

char *arr1[MAXRECS] , *arr2[MAXRECS] ;/*the arrays to store

input records*/

unsigned int num1 , num2; /*to keep track of the number of

 /*input records. Unsigned int

 /*declaration ensures
 /*compatability

 /*with qsort library routine.*/

int i ;
int compar(); /*the function used by qsort and

 /*bsearch*/

extern int errno ; /*to capture system call failures*/
FILE *ifp1 , *ifp2, *ofp1, *ofp2; /*the file pointers for

input and output */

void *bsearch() ; /*the library routine for binary search*/
void qsort(); /*the library routine for quick sort*/
char*malloc() ; /*memory allocation subroutine*/
void exit() ;

num1 = num2 = 0;

/**Open the input and output files for reading or writing
**/

if ((ifp1 = fopen(input1 , "r")) == NULL)
{

(void) fprintf(stderr,"%s could not be opened\n",input1);
exit(-1);

}

if ((ifp2 = fopen(input2 , "r")) == NULL)
{

710 AIX Version 7.2: General programming concepts

(void) fprintf(stderr,"%s could not be opened\n",input2);
exit(-1);

}

if ((ofp1 = fopen(out1,"w")) == NULL)
{

(void) fprintf(stderr,"%s could not be opened\n",out1);
exit(-1);

}

if ((ofp2 = fopen(out2,"w")) == NULL)
{

(void) fprintf(stderr,"%s could not be opened\n", out2);
exit(-1);

}

/**Fill the arrays with data from input files. Readline
function returns the number of input records.**/

if ((i = readline(arr1 , ifp1)) < 0)
{

(void) fprintf(stderr,"o data in %s. Exiting\n",input1);
exit(-1);

}
num1 = (unsigned) i;
if ((i = readline (arr2 , ifp2)) < 0)
{

(void) fprintf(stderr,"No data in %s. Exiting\n",input2);
exit(-1);

}
num2 = (unsigned) i;

/**
The arrays can now be sorted using qsort subroutine
**/

qsort((char *)arr1 , num1 , sizeof (char *) , compar);
qsort((char *)arr2 , num2 , sizeof (char *) , compar);

/**When the two arrays are sorted in a common order, the
program builds a list of elements found in one but not
in the other, using bsearch.

Check that each element in array1 is in array2
**/

for (i= 0 ; i < num1 ; i++)
{

if (bsearch((void *)&arr1[i] , (char *)arr2,num2,

sizeof(char *) , compar) == NULL)

General programming concepts 711

{
(void) fprintf(ofp1,"%s",arr1[i]);

}

} /**One list of exclusions is complete**/

/**Check that each element in array2 is in array1**/

for (i = 0 ; i < num2 ; i++)
{
 if (bsearch((void *)&arr2[i], (char *)arr1, num1

, sizeof(char *) , compar) == NULL)

{
(void) fprintf(ofp2,"%s",arr2[i]);

}

}

/**Task completed, so return**/

return(0);

}

/**The function reads in records from an input
 file and fills in the details into the two arrays.**/

readline (char **aptr, FILE *fp)

{

char str[MAXSTR] , *p ;
int i=0 ;

/**Read the input file line by line**/

while (fgets(str , sizeof(str) , fp))
{

/**Allocate sufficient memory. If the malloc subroutine
fails, exit.**/

if ((p = (char *)malloc (sizeof(str))) == NULL)
{

(void) fprintf(stderr,"Insufficient Memory\n");
return(-1);

}
else

{
if (0 > strcpy(p, str))

{
(void) fprintf(stderr,"Strcpy failed \n");
return(-1);

712 AIX Version 7.2: General programming concepts

}
i++ ; /*increment number of records count*/

}

} /**End of input file reached**/
return(i);/*return the number of records read*/

}

/**We want to sort the arrays based only on the contents of the first field of
the input records. So we get the first field using SSCANF**/

compar(char **s1 , char **s2)
{

char st1[100] , st2[100] ;
(void) sscanf(*s1,"%s" , st1) ;
(void) sscanf(*s2,"%s" , st2) ;

/**Return the results of string comparison to the calling procedure**/

return(strcmp(st1 , st2));

}

List of operating system libraries
This section lists operating system libraries.

Library Description

/usr/lib/libbsd.a Berkeley library

/lib/profiled/libbsd.a Berkeley library profiled

/usr/ccs/lib/libcurses.a Curses library

/usr/ccs/lib/libc.a Standard I/O library, standard C library

/lib/profiled/libc.a Standard I/O library, standard C library profiled

/usr/ccs/lib/libdbm.a Database Management library

/usr/ccs/lib/libi18n.a Layout library

/usr/lib/liblvm.a LVM (Logical Volume Manager) library

/usr/ccs/lib/libm.a Math library

/usr/ccs/lib/libp/libm.a Math library profiled

/usr/lib/libodm.a ODM (Object Data Manager) library

/usr/lib/libPW.a Programmers Workbench library

/usr/lib/libpthreads.a POSIX compliant Threads library

/usr/lib/libqb.a Queue Backend library

/usr/lib/librpcsvc.a RPC (Remote Procedure Calls) library

/usr/lib/librts.a Run-Time Services library

/usr/lib/libs.a Security functions

/usr/lib/libsm.a System management library

General programming concepts 713

Library Description

/usr/lib/libsrc.a SRC (System Resource Controller) library

/usr/lib/libmsaa.a SVID (System V Interface Definition) math library

/usr/ccs/lib/libp/libmsaa.a SVID (System V Interface Definition) math library
profiled

/usr/ccs/lib/libtermcap.a Terminal I/O

/usr/lib/liby.a YP (Yellow Pages) library

/usr/lib/lib300.a Graphics subroutines for DASI 300 workstations

/usr/lib/lib300s.a Graphics subroutines for DASI 300s workstations

/usr/lib/lib300S.a Graphics subroutines for DASI 300S workstations

/usr/lib/lib4014.a Graphics subroutines for Tektronix 4014 workstations

/usr/lib/lib450.a Graphics subroutines for DASI 450 workstations

/usr/lib/libcsys.a Kernel extensions services

/usr/ccs/lib/libdbx.a Debug program library

/usr/lib/libgsl.a Graphics Support library

/usr/lib/libieee.a IEEE floating point library

/usr/lib/libIM.a Stanza file processing library

/usr/ccs/lib/libl.a lex library

/usr/lib/libogsl.a Old graphics support library

/usr/lib/liboldX.a X10 library

/usr/lib/libplot.a Plotting subroutines

/usr/lib/librpcsvc.a RPC services

/usr/lib/librs2.a Hardware-specific sqrt and itrunc subroutines

/usr/lib/libxgsl.a Enhanced X-Windows graphics subroutines

/usr/lib/libX11.a X11 run time library

/usr/lib/libXt.a X11 toolkit library

/usr/lib/liby.a yacc run time library

System Management Interface Tool (SMIT)
The System Management Interface Tool (SMIT) is an interactive and extensible screen-oriented command
interface.

It prompts users for the information needed to construct command strings and presents appropriate
predefined selections or run time defaults where available. This shields users from many sources of
extra work or error, including the details of complex command syntax, valid parameter values, system
command spelling, or custom shell path names.

You can also build and use alternate databases instead of modifying SMIT's default system database.

The following sections discuss SMIT in detail:

New tasks consisting of one or more commands or inline ksh shell scripts can be added to SMIT at any
time by adding new instances of predefined screen objects to SMIT's database. These screen objects
(described by stanza files) are used by the Object Data Manager (ODM) to update SMIT's database. This
database controls SMIT's run-time behavior.

714 AIX Version 7.2: General programming concepts

Related information
dspmsg
gencat
ksh
man
odmadd
odmcreate
odmget
smit
spaths

SMIT screen types
There are three main screen types available for the System Management Interface Tool (SMIT). The
screens occur in a hierarchy consisting of menu screens, selector screens, and dialog screens.

When performing a task, a user typically traverses one or more menus, then zero or more selectors, and
finally one dialog.

The following table shows SMIT screen types, what the user sees on each screen, and what SMIT does
internally with each screen:

Screen type What the user sees on the
screen

What SMIT does internally with
each screen

Menu A list of choices Uses the choice to select the next
screen to display.

Selector Either a list of choices or an entry
field

Obtains a data value for
subsequent screens. Optionally
selects alternative dialogs or
selectors.

Dialog A sequence of entry fields. Uses data from the entry fields to
construct and run the target task
command string.

Menus present a list of alternative subtasks; a selection can then lead to another menu screen or to a
selector or dialog screen. A selector is generally used to obtain one item of information that is needed by
a subsequent screen and which can also be used to select which of several selector or dialog screens to
use next. A dialog screen is where any remaining input is requested from the user and where the chosen
task is actually run.

A menu is the basic entry point into SMIT and can be followed by another menu, a selector, or a dialog. A
selector can be followed by a dialog. A dialog is the final entry panel in a SMIT sequence.

Menu screens

A SMIT menu is a list of user-selectable items. Menu items are typically tasks or classes of tasks that can
be performed from SMIT. A user starting with the main SMIT menu selects an item defining a broad range
of system tasks. A selection from the next and subsequent menus progressively focuses the user's choice,
until finally a dialog is typically displayed to collect information for performance of a particular task.

Design menus to help a user of SMIT narrow the scope of choice to a particular task. Your design can be
as simple as a new menu and dialog attached to an existing branch of SMIT, or as complex as an entire
new hierarchy of menus, selectors, and dialogs starting at the SMIT applications menu.

At run time, SMIT retrieves all menu objects with a given ID (id descriptor value) from the specified object
repository. To add an item to a particular SMIT menu, add a menu object having an ID value equal to the
value of the id descriptor of other non-title objects in the same menu.

General programming concepts 715

Build menus by defining them in a stanza file and then processing the file with the odmadd command. A
menu definition is compiled into a group of menu objects. Any number of menus, selectors, and dialogs
can be defined in one or more files.

Command Description

odmadd Adds the menu definitions to the specified object repository.

/usr/lib/objrepos Default object repository for system information and can be used to store
your compiled objects.

At SMIT run time, the objects are automatically retrieved from a SMIT database.

Note: You should always back up the /usr/lib/objrepos directory before deleting or adding any objects
or object classes. Unanticipated damage to objects or classes needed for system operations can cause
system problems.

Selector screens

A SMIT selector prompts a user to specify a particular item, typically a system object (such as a printer) or
attribute of an object (such as a serial or parallel printer mode). This information is then generally used by
SMIT in the next dialog.

For instance, a selector can prompt a user to enter the name of a logical volume for
which to change logical volume characteristics. This could then be used as a parameter
in the sm_cmd_hdr.cmd_to_discover_postfix field of the next dialog for entry field
initialization. Likewise, the selector value could also be used as the value for a subsequent
sm_cmd_opt.cmd_to_list_postfix field. It can also be used directly as a subsequent initial entry
field value. In each case, logical consistency requires that this item either be selected prior to the dialog
or be held constant while in the dialog.

Design a selector to request a single piece of information from the user. A selector, when used, falls
between menus and dialogs. Selectors can be strung together in a series to gather several pieces of
information before a dialog is displayed.

Selectors should usually contain a prompt displayed in user-oriented language and either a response area
for user input or a pop-up list from which to select a value; that is, one question field and one answer.
Typically the question field is displayed and the SMIT user enters a value in the response area by typing
the value or by selecting a value from a list or an option ring.

To give the user a run-time list of choices, the selector object can have an associated command (defined
in the sm_cmd_opt.cmd_to_list field) that lists the valid choices. The list is not hard-coded, but
developed by the command in conjunction with standard output. The user gets this list by selecting the F4
(Esc+4)=List function of the SMIT interface.

In a ghost selector (sm_cmd_hdr.ghost="y"), the command defined in the
sm_cmd_opt.cmd_to_list field, if present, is automatically run. The selector screen is not displayed at
this time and the user sees only the pop-up list.

The application of a super-ghost selector permits branching following menu selection, where the branch
to be taken depends on the system state and not user input. In this case, the cmd_to_classify descriptor
in the super-ghost selector can be used to get the required information and select the correct screen to
present next.

Build selectors by defining them in a stanza file and then processing the file with the odmadd command.
Several menus, selectors, and dialogs can be defined in a single file. The odmadd command adds each
selector to the specified object repository. The /usr/lib/objrepos directory is the default object repository
for system information and is used to store your compiled objects. At SMIT run time, the objects are
automatically retrieved from a SMIT database.

Note: Always back up the /usr/lib/objrepos directory before deleting or adding any objects or object
classes. Unanticipated damage to objects or classes needed for system operations can cause system
problems.

Dialog screens

716 AIX Version 7.2: General programming concepts

A dialog in SMIT is the interface to a command or task a user performs. Each dialog executes one or more
commands, shell functions, and so on. A command can be run from any number of dialogs.

To design a dialog, you need to know the command string you want to build and the command options and
operands for which you want user-specified values. In the dialog display, each of these command options
and operands is represented by a prompt displayed in user-oriented language and a response area for
user input. Each option and operand is represented by a dialog command option object in the Object Data
Manager (ODM) database. The entire dialog is held together by the dialog header object.

The SMIT user enters a value in the response area by typing the value, or by selecting a value from
a list or an option ring. To give the user a run-time list of choices, each dialog object can have
an associated command that lists the valid choices. The associated commands are defined in the
sm_cmd_opt.cmd_to_list field. The user gets this list by invoking the F4 (Esc + 4)=List function of
the SMIT interface. This causes SMIT to run the command defined in the associated cmd_to_list field
and to use its standard output and stderr file for developing the list.

Dialog screens can have the following options assigned to the entries:

Option Function

Signifies that a numerical value is expected.

* Signifies that an entry is mandatory.

+ Signifies that a listing of choices can be obtained using the F4 key.

In a ghost dialog, the dialog screen is not displayed. The dialog runs as if the user had immediately
pressed the dialog screen Enter key to run the dialog.

Build dialogs by defining them in a stanza file and then processing the file with the odmadd command.
Several menus, selectors, and dialogs can be defined in a single file. The odmadd command adds each
dialog definition to the specified object repository. The /usr/lib/objrepos directory is the default object
repository for system information and can be used to store your compiled objects. At SMIT run time, the
objects are automatically retrieved from a SMIT database.

Note: Always back up the /usr/lib/objrepos directory before deleting or adding any objects or object
classes. Unanticipated damage to objects or classes needed for system operations can cause system
problems.

SMIT object classes
A System Management Interface Tool (SMIT) object class created with the Object Data Manager (ODM)
defines a common format or record data type for all individual objects that are instances of that object
class.

Therefore a SMIT object class is basically a record data type and a SMIT object is a particular record of
that type.

SMIT menu, selector, and dialog screens are described by objects that are instances of one of four object
classes:

• sm_menu_opt
• sm_name_hdr
• sm_cmd_hdr
• sm_cmd_opt

The following table shows the objects used to create each screen type:

Screen Type Object Class Object's Use (typical case)

Menu sm_menu_opt 1 for title of screen

sm_menu_opt 1 for first item

General programming concepts 717

Screen Type Object Class Object's Use (typical case)

sm_menu_opt 1 for second item

... ...

sm_menu_opt 1 for last item

Selector sm_name_hdr 1 for title of screen and other attributes

sm_cmd_opt 1 for entry field or pop-up list

Dialog sm_cmd_hdr 1 for title of screen and command string

sm_cmd_opt 1 for first entry field

sm_cmd_opt 1 for second entry field

... ...

sm_cmd_opt 1 for last entry field

Each object consists of a sequence of named fields and associated values. These are represented in
stanza format in ASCII files that can be used by the odmadd command to initialize or extend SMIT
databases. Stanzas in a file should be separated with one or more blank lines.

Note: Comments in an ODM input file (ASCII stanza file) used by the odmadd command must
be alone on a line beginning with a # (pound sign) or an * (asterisk) in column one. Only an
* (asterisk) comment can be on the same line as a line of the stanza, and must be after the
descriptor value.

The following is an example of a stanza for an sm_menu_opt object:

sm_menu_opt: *name of object class
 id = "top_menu" *object's (menu screen) name
 id_seq_num = "050"
 next_id = "commo" *id of objects for next menu screen
 text = "Communications Applications & Services"
 text_msg_file = ""
 text_msg_set = 0
 text_msg_id = 0
 next_type = "m" *next_id specified another menu
 alias = ""
 help_msg_id = ""
 help_msg_loc = ""
 help_msg_base = ""
 help_msg_book = ""

The notation ObjectClass.Descriptor is commonly used to describe the value of the fields of an object. For
instance, in the preceding sm_menu_opt object, the value of sm_menu_opt.id is top_menu.

The following is an example of a stanza for an sm_name_hdr object:

sm_name_hdr: *---- used for selector screens
 id = "" *the name of this selector screen
 next_id = "" *next sm_name_hdr or sm_cmd_hdr
 option_id = "" *specifies one associated sm_cmd_opt
 has_name_select = ""
 name = "" *title for this screen
 name_msg_file = ""
 name_msg_id = 0
 type = ""
 ghost = ""
 cmd_to_classify = ""
 cmd_to_classify_postfix = ""
 raw_field_name = ""
 cooked_field_name = ""
 next_type = ""
 help_msg_id = ""
 help_msg_loc = ""
 help_msg_base = ""
 help_msg_book = ""

718 AIX Version 7.2: General programming concepts

The following is an example of a stanza for an sm_cmd_hdr object:

sm_cmd_hdr: *---- used for dialog screens
 id = "" *the name of this dialog screen
 option_id = "" *defines associated set of sm_cmd_opt objects
 has_name_select = ""
 name = "" *title for this screen
 name_msg_file = ""
 name_msg_set = 0
 name_msg_id = 0
 cmd_to_exec = ""
 ask = ""
 exec_mode = ""
 ghost = ""
 cmd_to_discover = ""
 cmd_to_discover_postfix = ""
 name_size = 0
 value_size = 0
 help_msg_id = ""
 help_msg_loc = ""
 help_msg_base = ""
 help_msg_book = ""

The following is an example of a stanza for an sm_cmd_opt object:

sm_cmd_opt: *---- used for selector and dialog screens
 id = "" *name of this object
 id_seq_num = "" *"0" if associated with selector screen
 disc_field_name = ""
 name = "" *text describing this entry
 name_msg_file = ""
 name_msg_set = 0
 name_msg_id = 0
 op_type = ""
 entry_type = ""
 entry_size = 0
 required = ""
 prefix = ""
 cmd_to_list_mode = ""
 cmd_to_list = ""
 cmd_to_list_postfix = ""
 multi_select = ""
 value_index = 0
 disp_values = ""
 values_msg_file = ""
 values_msg_set = 0
 values_msg_id = 0
 aix_values = ""
 help_msg_id = ""
 help_msg_loc = ""
 help_msg_base = ""
 help_msg_book = ""

All SMIT objects have an id field that provides a name used for looking up that object. The sm_menu_opt
objects used for menu titles are also looked up using their next_id field. The sm_menu_opt and
sm_name_hdr objects also have next_id fields that point to the id fields of other objects. These are
how the links between screens are represented in the SMIT database. Likewise, there is an option_id
field in sm_name_hdr and sm_cmd_hdr objects that points to the id fields of their associated
sm_cmd_opt object(s).

Note: The sm_cmd_hdr.option_id object field is equal to each sm_cmd_opt.id object field; this defines
the link between the sm_cmd_hdr object and its associated sm_cmd_opt objects.

Two or more dialogs can share common sm_cmd_opt objects since SMIT uses the ODM LIKE operator
to look up objects with the same sm_cmd_opt.id field values. SMIT allows up to five IDs (separated by
commas) to be specified in a sm_cmd_hdr.option_id field, so that sm_cmd_opt objects with any of
five different sm_cmd_opt.id field values can be associated with the sm_cmd_hdr object.

The following table shows how the value of an sm_cmd_hdr.option_id field relates to the values of the
sm_cmd_opt.id and sm_cmd_opt.id_seq_num fields.

Note: The values in the sm_cmd_opt.id_seq_num fields are used to sort the retrieved objects
for screen display.

General programming concepts 719

IDs of objects to retrieve
(sm_cmd_hdr.option_id)

Objects retrieved
(sm_cmd_opt.id)

Display sequence
of retrieved objects
(sm_cmd_opt.id_seq_num)

"demo.[AB]" "demo.A" "10"

"demo.B" "20"

"demo.A" "30"

"demo.A "40"

"demo.[ACD]" "demo.A" "10"

"demo.C" "20"

"demo.A" "30"

"demo.A" "40"

"demo.D" "50"

"demo.X,demo.Y,demo.Z" "demo.Y" "20"

"demo.Z" "40"

"demo.X" "60"

"demo.X" "80"

The SMIT database

SMIT objects are generated with ODM creation facilities and stored in files in a designated database. The
default SMIT database consists of eight files:

• sm_menu_opt
• sm_menu_opt.vc
• sm_name_hdr
• sm_name_hdr.vc
• sm_cmd_hdr
• sm_cmd_hdr.vc
• sm_cmd_opt
• sm_cmd_opt.vc

The files are stored by default in the /usr/lib/objrepos directory. They should always be saved and
restored together.

SMIT aliases and fast paths
This section describes SMIT aliases and fast paths

A System Management Interface Tool (SMIT) sm_menu_opt object can be used to define a fast path that,
when entered with the smit command to start SMIT, can get a user directly to a specific menu, selector, or
dialog; the alias itself is never displayed. Use of a fast path allows a user to bypass the main SMIT menu
and other objects in the SMIT interface path to that menu, selector, or dialog. Any number of fast paths
can point to the same menu, selector, or dialog.

An sm_menu_opt object is used to define a fast path by setting the sm_menu_opt.alias field to
"y". In this case, the sm_menu_opt object is used exclusively to define a fast path. The new fast
path or alias name is specified by the value in the sm_menu_opt.id field. The contents of the
sm_menu_opt.next_id field points to another menu object, selector header object, or dialog header
object, depending on whether the value of the sm_menu_opt.next_type field is "m" (menu), "n"
(selector), or "d" (dialog).

720 AIX Version 7.2: General programming concepts

Every non alias sm_menu_opt object for a menu title (next_type="m") should have a unique
sm_menu_opt.next_id field value, since this field is automatically used as a fast path.

If you want two menu items to point to the same successor menu, one of the next_id fields should point
to an alias, which in turn points to the successor menu.

Build aliases and fast paths by defining them in a stanza file and then processing the file with the odmadd
command. Several menus, selectors, and dialogs can be defined in a single file. The odmadd command
adds each alias definition to the specified object repository. The /usr/lib/objrepos directory is the default
object repository for system information and can be used to store your compiled objects. At SMIT run
time, the objects are automatically retrieved from a SMIT database.

Note: You should always back up the /usr/lib/objrepos directory before deleting or adding
any objects or object classes. Unanticipated damage to objects or classes needed for system
operations can cause system problems.

SMIT information command descriptors
The System Management Interface Tool (SMIT) can use several descriptors defined in its objects to
get the information, such as current run time values, required to continue through the SMIT interface
structure.

Each of these descriptors is assigned some form of command string to run and retrieve the needed data.

The descriptors that can be set to a command for discovery of required information are:

• The cmd_to_discover descriptor that is part of the sm_cmd_hdr object class used to define a dialog
header.

• The cmd_to_classify descriptor that is part of the sm_name_hdr object class used to define a selector
header.

• The cmd_to_list descriptor that is part of the sm_cmd_opt object class used to define a selector option
list associated with a selector or a dialog command option list associated with a dialog entry field.

SMIT executes a command string specified by a cmd_to_list, cmd_to_classify, or cmd_to_discover
descriptor by first creating a child process. The standard error (strerr) and standard output of the child
process are redirected to SMIT via pipes. SMIT next executes a setenv("ENV=") subroutine in the child
process to prevent commands specified in the $HOME/.env file of the user from being run automatically
when a new shell is invoked. Finally, SMIT calls the execl system subroutine to start a new ksh shell,
using the command string as the ksh -c parameter value. If the exit value is not 0, SMIT notifies the user
that the command failed.

SMIT makes the path names of the log files and the settings of the command line verbose, trace, and
debug flags available in the shell environment of the commands it runs. These values are provided via the
following environment variables:

• _SMIT_LOG_FILE
• _SMIT_SCRIPT_FILE
• _SMIT_VERBOSE_FLAG
• _SMIT_TRACE_FLAG
• _SMIT_DEBUG_FLAG

The presence or absence of the corresponding flag is indicated by a value of 0 or 1, respectively.

An easy way to view the current settings is to invoke the shell function after starting SMIT and then run
the command string env | grep _SMIT.

All writes to the log files should be done as appends and should be immediately followed by flushes
unless this occurs automatically.

The cmd_to_discover descriptor

General programming concepts 721

When SMIT puts up a dialog, it gets the sm_cmd_hdr (dialog header) object and its associated dialog
body (one or more sm_cmd_opt objects) from the object repository. However, the sm_cmd_opt objects
can also be initialized with current run time values. If the sm_cmd_hdr.cmd_to_discover field is not
empty (""), SMIT runs the command specified in the field to obtain current run time values.

Any valid ksh command string can be used as a cmd_to_discover descriptor value. The command should
generate the following output format as its standard output:

#name_1:name_2: ... :name_n\n
value_1:value_2: ... :value_n

In the standard output of a command, the first character is always a # (pound sign). A \n (new line
character) is always present to separate the name line from the value line. Multiple names and values
are separated by : (colons). And any name or value can be an empty string (which in the output format
appears as two colons with no space between them). SMIT maintains an internal current value set in this
format that is used to pass name-value pairs from one screen to the next.

Note: If the value includes a : (colon), the : must be preceded by #! (pound sign, exclamation
point). Otherwise, SMIT reads the : (colon) as a field separator.

When SMIT runs a command specified in a cmd_to_discover field, it captures the stdout of the
command and loads these name-value pairs (name_1 and value_1 name_2 and value_2, and so on)
into the disp_values and aix_values descriptors of the sm_cmd_opt (dialog command option) objects by
matching each name to a sm_cmd_opt.disc_field_name descriptor in each sm_cmd_opt object.

For a sm_cmd_opt (dialog command option) object that displays a value from a preceding selector,
the disc_field_name descriptor for the dialog command option object must be set to "_rawname" or
"_cookedname" (or whatever alternate name was used to override the default name) to indicate which
value to use. In this case, the disc_field_name descriptor of the sm_cmd_opt (dialog command option)
object should normally be a no-entry field. If a particular value should always be passed to the command,
the required descriptor for the sm_cmd_opt (dialog command option) object must be set to y (yes), or
one of the other alternatives.

A special case of option ring field initialization permits the current value for a cmd_to_discover descriptor
(that is, any name-value pair from the current value set of a dialog) of a ring entry field to specify
which pre-defined ring value to use as the default or initial value for the corresponding entry field.
At dialog initialization time, when a dialog entry field matches a name in the current value set of
the dialog (via sm_cmd_opt.disc_field_name), a check is made to determine if it is an option ring
field (sm_cmd_opt.op_type = "r") and if it has predefined ring values (sm_cmd_opt.aix_values !=
""). If so, this set of option ring values is compared with the current value for disc_field_name
from the current value set. If a match is found, the matched option ring value becomes the
default ring value (sm_cmd_opt.value_index is set to its index). The corresponding translated value
(sm_cmd_opt.disp_values), if available, is displayed. If no match is found, the error is reported and the
current value becomes the default and only value for the ring.

In many cases, discovery commands already exist. In the devices and storage areas, the general
paradigms of add, remove, change, and show exist. For example, to add (mk), a dialog is needed to solicit
characteristics. The dialog can have as its discovery command the show (ls) command with a parameter
that requests default values. SMIT uses the standard output of the show (ls) command to fill in the
suggested defaults. However, for objects with default values that are constants known at development
time (that is, that are not based on the current state of a given machine), the defaults can be initialized in
the dialog records themselves; in this case, no cmd_to_discover is needed. The dialog is then displayed.
When all fields are filled in and the dialog is committed, the add (mk) command is executed.

As another example, a change (ch) dialog can have as its discovery command a show (ls) command to get
current values for a given instance such as a particular device. SMIT uses the standard output of the show
(ls) command to fill in the values before displaying the dialog. The show (ls) command used for discovery
in this instance can be the same as the one used for discovery in the add (mk) example, except with a
slightly different set of options.

The cmd_to_*_postfix descriptors

722 AIX Version 7.2: General programming concepts

Associated with each occurrence of a cmd_to_discover, cmd_to_classify, or cmd_to_list descriptor is
a second descriptor that defines the postfix for the command string defined by the cmd_to_discover,
cmd_to_classify, or cmd_to_list descriptor. The postfix is a character string defining the flags and
parameters that are appended to the command before it is executed.

The descriptors that can be used to define a postfix to be appended to a command are:

• The cmd_to_discover_postfix descriptor that defines the postfix for the cmd_to_discover descriptor in
an sm_cmd_hdr object defining a dialog header.

• The cmd_to_classify_postfix descriptor that defines the postfix for the cmd_to_classify descriptor in
an sm_name_hdr object defining a selector header.

• The cmd_to_list_postfix descriptor that defines the postfix for the cmd_to_list descriptor in an
sm_cmd_opt object defining a selector entry field associated with a selector or a dialog entry field
associated with a dialog.

The following is an example of how the postfix descriptors are used to specify parameter flags and values.
The * (asterisk) in the example can be list, classify, or discover.

Assume that cmd_to_* equals "DEMO -a", that cmd_to_*_postfix equals "-l _rawname -n
stuff -R _cookedname", and that the current value set is:

#name1:_rawname:_cookedname::stuff\n
value1:gigatronicundulator:parallel:xxx:47

Then the constructed command string would be:

DEMO -a -l 'gigatronicundulator' -n '47' -R 'parallel'

Surrounding '' (single-quotation marks) can be added around postfix descriptor values to permit
handling of parameter values with embedded spaces.

SMIT command generation and execution
Each dialog in the System Management Interface Tool (SMIT) builds and executes a version of a standard
command.

The command to be executed by the dialog is defined by the cmd_to_exec descriptor in the sm_cmd_hdr
object that defines the dialog header.

Generating dialog defined tasks

In building the command defined in an sm_cmd_hdr.cmd_to_exec descriptor, SMIT uses a two-pass scan
over the dialog set of sm_cmd_opt objects to collect prefix and parameter values. The parameter values
collected include those that the user changed from their initially displayed values and those with the
sm_cmd_opt.required descriptor set to "y".

The first pass gathers all of the values of the sm_cmd_opt objects (in order) for which the prefix
descriptor is either an empty string ("") or starts with a - (a minus sign). These parameters are not
position-sensitive and are added immediately following the command name, together with the contents of
the prefix descriptor for the parameter.

The second pass gathers all of the values of the remaining sm_cmd_opt objects (in order) for which
the prefix descriptor is — (two dashes). These parameters are position-sensitive and are added after the
flagged options collected in the first pass.

Note: SMIT executes the value of what you enter in the prefix field. If the value in the prefix
field is a reserved shell character, for example, the * (asterisk), you must follow the character
with a —' (dash dash single quotation mark). Then, when the system evaluates the character, it
does not mistake it for a shell character.

Command parameter values in a dialog are filled in automatically when the disc_field_name descriptors
of its sm_cmd_opt objects match names of values generated by preceding selectors or a preceding

General programming concepts 723

discovery command. These parameter values are effectively default values and are normally not added
to the command line. Initializing an sm_cmd_opt.required descriptor to "y" or "+" causes these
values to be added to the command line even when they are not changed in the dialog. If the
sm_cmd_opt.required descriptor value is "?", the corresponding values are used only if the associated
entry field is non-empty. These parameter values are built into the command line as part of the regular
two-pass process.

Leading and trailing white spaces (spaces and tabs) are removed from parameter values except when the
sm_cmd_opt.entry_type descriptor is set to "r". If the resulting parameter value is an empty string, no
further action is taken unless the sm_cmd_opt.prefix descriptor starts with an option flag. Surrounding
single quotation marks are added to the parameter value if the prefix descriptor is not set to "—" (two
dashes). Each parameter is placed immediately after the associated prefix, if any, with no intervening
spaces. Also, if the multi_select descriptor is set to "m", tokens separated by white space in the entry
field are treated as separate parameters.

Executing dialog defined tasks

SMIT runs the command string specified in a sm_cmd_hdr.cmd_to_exec descriptor by first creating a
child process. The standard error and standard output of the child process are handled as specified by
the contents of the sm_cmd_hdr.exec_mode descriptor. SMIT next runs a setenv("ENV=") subroutine
in the child process to prevent commands specified in the $HOME/.env file of the user from being run
automatically when a new shell is invoked. Finally, SMIT calls the execl subroutine to start a ksh shell,
using the command string as the ksh -c parameter value.

SMIT makes the path names of the log files and the settings of the command line verbose, trace, and
debug flags available in the shell environment of the commands it runs. These values are provided with
the following environment variables:

• _SMIT_LOG_FILE
• _SMIT_SCRIPT_FILE
• _SMIT_VERBOSE_FLAG
• _SMIT_TRACE_FLAG
• _SMIT_DEBUG_FLAG

The presence or absence of the corresponding flag is indicated by a value of 0 or 1, respectively.

Additionally, the SMIT environment variable provides information about which SMIT environment is
active. The SMIT environment variable can have the following vaues:

Value SMIT environment

a SMIT in an ASCII interface

d SMIT in the Distributed SMIT (DSMIT) interface

m SMIT in a windows (also called Motif) interface

An easy way to view the current settings is to invoke the shell function after starting SMIT and then run
the command string env | grep SMIT.

You can disable the function key F9=Shell by setting the environment variable SMIT_SHELL=n.

All writes to the log files should be done as appends and should immediately be followed by flushes
where this does not occur automatically.

You can override SMIT default output redirection of the (child) task process by setting the
sm_cmd_hdr.exec_mode field to "i". This setting gives output management control to the task, since
the task process simply inherits the standard error and standard output file descriptors.

You can cause SMIT to shutdown and replace itself with the target task by setting the
sm_cmd_hdr.exec_mode field to "e".

724 AIX Version 7.2: General programming concepts

Adding tasks to the SMIT database
When developing new objects for the System Management Interface Tool (SMIT) database, it is
recommended that you set up a separate test database for development.

Procedure

To create a test database, do the following:

1. Create a directory for testing use. For example, the following command creates a /home/smit/test
directory:

mkdir /home/smit /home/smit/test

2. Make the test directory the current directory:

cd /home/smit/test

3. Define the test directory as the default object repository by setting the ODMDIR environment variable
to . (the current directory):

export ODMDIR= .

4. Create a new SMIT database in the test directory:

cp /usr/lib/objrepos/sm_* .

To add tasks to the SMIT database:

1. Design the dialog for the command you want SMIT to build.
2. Design the hierarchy of menus and, optionally, of selectors needed to get a SMIT user to the dialog,

and determine where and how this hierarchy should be linked into the existing SMIT database. The
following strategy may save you time if you are developing SMIT database extensions for the first time:

a. Start SMIT (run the smit command), look for existing menu, selector, and dialog screens that
perform tasks similar to the one you want to add, and find the menu screen(s) to which you will add
the new task.

b. Exit from SMIT, then remove the existing SMIT log file. Instead of removing the log file, you can use
the -l flag of the smit command to specify a different log file when starting SMIT in the following
step. This enables you to isolate the trace output of your next SMIT session.

c. Start SMIT again with the -t command flags and again look at the screen to which you will add the
new task. This logs the object IDs accessed for each screen for the next step.

d. Look at the SMIT log file to determine the ID for each object class used as part of the menu(s).
e. Use the object class IDs with the odmget command to retrieve the stanzas for these objects.

The stanzas can be used as rough examples to guide your implementation and to learn from the
experience of others.

f. Look in the SMIT log file for the command strings used when running through the screens to see
if special tools are being utilized (such as sed or awk scripts, ksh shell functions, environment
variable assignment, and so on). When entering command strings, keep in mind that they are
processed twice: the first time by the odmadd command and the second time by the ksh shell. Be
careful when using special escape meta-characters such as \ or quotation characters (' and ").
Note also that the output of the odmget command does not always match the input to the odmadd
command, especially when these characters or multiline string values are used.

3. Code the dialog, menu, and selector objects by defining them in the ASCII object stanza file format
required by the odmadd command.

4. Add the dialog, menu, and selector objects to the SMIT test database with the odmadd command,
using the name of your ASCII object stanza file in place of test_stanzas:

odmadd test_stanzas

General programming concepts 725

5. Test and debug your additions by running SMIT using the local test database:

smit -o

When you are finished testing, restore the /etc/objrepos directory as the default object repository by
setting the ODMDIR environment variable to /etc/objrepos:

export ODMDIR=/etc/objrepos

Debugging SMIT database extensions
This section describes the process of debugging SMIT database extensions.

Prerequisite tasks or conditions

1. Add a task to the SMIT Database.
2. Test the task.

Procedure

1. Identify the problem using one of the following flags:

• Run the smit -v command if the problem applies to the following SMIT descriptors:

– cmd_to_list
– cmd_to_classify
– cmd_to_discover

• Run the smit -t command if the problems applies to individual SMIT database records.
• Run the smit -l command to generate an alternate log file. Use the alternate log file to isolate current

session information.
2. Modify the SMIT database where the incorrect information resides.
3. Retest SMIT task.

Creating SMIT help information for a new task
System Management Interface Tool (SMIT) helps are an extension of the SMIT program.

They are a series of helps designed to give you online information about the components of SMIT used to
construct dialogs and menus. SMIT helps reside in a database, just as the SMIT executable code resides
in a database. SMIT has two ways to retrieve SMIT help information:

Each of these methods provides a different way to retrieve SMIT helps from the SMIT help database.

Man pages method
Prerequisite tasks or conditions: Create a SMIT task that requires help information.

1. Using any editor, create a file and enter help text inside the file. The file must adhere to the format
specified by the man command. Put only one set of help information in a file.

2. Give the help text file a title as specified by the man command.
3. Place the help text file in the correct place in the manual subdirectory.
4. Test the newly created file to ensure it works using the man command.
5. Locate the file that contains the ASCII object stanza file format for the new SMIT task.
6. Locate the help descriptor fields in the object stanzas of the file.
7. Set the help_msg_loc help descriptor field equal to the title of the help text file. The title for the text

file is also the parameter to pass to the man command. For example:

help_msg_loc = "xx", where "xx" = title string name

726 AIX Version 7.2: General programming concepts

This example executes the man command with the xx title string name.
8. Leave the rest of the help descriptor fields empty.

Message catalog method
Prerequisite tasks or conditions: Create a new SMIT task that requires help information.

1. Use any editor to create a file and enter help messages inside the file. The .msg file must adhere to the
format specified by the message facility.

Note: An existing .msg file can also be used.
2. Give each help message a set number (Set #) and a message number (MSG#). This allows the system

to retrieve the proper help text.
3. Use the gencat command to convert the .msg file into a .cat file. Place the .cat file in the correct

directory according to the NLSPATH environment variable.
4. Test the help messages using the dspmsg command.
5. Locate the file that contains the ASCII object stanza file format for the new SMIT task.
6. Locate the help descriptor fields in the object stanzas of the file.
7. For each object stanza, locate the help_msg_id help descriptor field. Enter the Set# and Msg# values

for the message in the .msg file. These values must adhere to the Messages Facility format. For
example, to retrieve message #14 for set #2, set:

help_msg_id - "2,14"

8. Set the help_msg_loc help descriptor field to the filename of the file containing the help text.
9. Leave the other help descriptor fields empty.

sm_menu_opt (SMIT menu) object class
Each item on a menu is specified by an sm_menu_opt object.

The displayed menu represents the set of objects that have the same value for id plus the sm_menu_opt
object used for the title, which has a next_id value equal to the id value of the other objects.

Note: When coding an object in this object class, set unused empty strings to "" (double-
quotation marks) and unused integer fields to 0.

The descriptors for sm_menu_opt objects are:

Descriptor Definition

id The ID or name of the object. The value of id is a string with a maximum length
of 64 characters. IDs should be unique both to your application and unique within
the particular SMIT database used. See the next_id and alias definitions for this
object for related information.

id_seq_num The position of this item in relation to other items on the menu. Non-title
sm_menu_opt objects are sorted on this string field. The value of id_seq_num is
a string with a maximum length of 16 characters.

next_id The fast path name of the next menu, if the value for the next_type descriptor
of this object is "m" (menu). The next_id of a menu should be unique both
to your application and within the particular SMIT database used. All non-alias
sm_menu_opt objects with id values matching the value of next_id form the set
of selections for that menu. The value of next_id is a string with a maximum
length of 64 characters.

text The description of the task that is displayed as the menu item. The value of text is
a string with a maximum length of 1024 characters. This string can be formatted
with embedded \n (newline) characters.

General programming concepts 727

Descriptor Definition

text_msg_file The file name (not the full path name) that is the Message Facility catalog for
the string, text. The value of text_msg_file is a string with a maximum length
of 1024 characters. Message catalogs required by an application program can be
developed with the Message Facility. Set to "" if you are not using the Message
Facility.

text_msg_set The Message Facility set ID for the string, text. Set IDs can be used to indicate
subsets of a single catalog. The value of text_msg_set is an integer. Set to 0 if
you are not using the Message Facility.

text_msg_id The Message Facility ID for the string, text. The value of text_msg_id is an
integer. Set to 0 if you are not using the Message Facility.

next_type The type of the next object if this item is selected. Valid values are:
"m"

Menu; the next object is a menu (sm_menu_opt).
"d"

Dialog; the next object is a dialog (sm_cmd_hdr).
"n"

Name; the next object is a selector (sm_name_hdr).
"i"

Info; this object is used to put blank or other separator lines in a menu, or to
present a topic that does not lead to an executable task but about which help
is provided via the help_msg_loc descriptor of this object.

alias Defines whether or not the value of the id descriptor for this menu object is an
alias for another existing fast path specified in the next_id field of this object.
The value of the alias descriptor must be "n" for a menu object.

help_msg_id Specifies a Message Facility message set number and message ID number with a
comma as the separator or a numeric string equal to a SMIT identifier tag.

help_msg_loc The file name sent as a parameter to the man command for retrieval of help text,
or the file name of a file containing help text. The value of help_msg_loc is a
string with a maximum length of 1024 characters.

help_msg_base The fully qualified path name of a library that SMIT reads for the file names
associated with the correct book.

help_msg_book Contains the string with the value of the name file contained in the file library
indicated by help_msg_base.

The sm_menu_opt Object Class Used for Aliases

A SMIT alias is specified by an sm_menu_opt object.

The descriptors for the sm_menu_opt object class and their settings to specify an alias are:

Descriptor Definition

id The ID or name of the new or alias fast path. The value of id is a string with a
maximum length of 64 characters. IDs should be unique to your application and
unique within the SMIT database in which they are used.

id_seq_num Set to "" (empty string).

next_id Specifies the id_seq_num of the menu object pointed to by the alias. The value of
next_id is a string with a maximum length of 64 characters.

text Set to "" (empty string).

728 AIX Version 7.2: General programming concepts

Descriptor Definition

text_msg_file Set to "" (empty string).

text_msg_set Set to 0.

text_msg_id Set to 0.

next_type The fast path screen type. The value of next_type is a string. Valid values are:
"m"

Menu; the next_id field specifies a menu screen fast path.
"d"

Dialog; the next_id field specifies a dialog screen fast path.
"n"

Name; the next_id field specifies a selector screen fast path.

alias Defines this object as an alias fast path. The alias descriptor for an alias must be
set to "y" (yes).

help_msg_id Set to "" (empty string).

help_msg_loc Set to "" (empty string).

help_msg_base Set to "" (empty string).

help_msg_book Set to "" (empty string).

sm_name_hdr (SMIT selector header) object class
A selector screen is specified by two objects: an sm_name_hdr object that specifies the screen title and
other information, and an sm_cmd_opt object that specifies what type of data item is to be obtained.

Note: When coding an object in this object class, set unused empty strings to "" (double-
quotation marks) and unused integer fields to 0.

In a SMIT Selector Header screen (sm_name_hdr) with type = "c", if you specify a value using a : (colon),
(for example, tty:0), SMIT inserts a #! (pound sign, exclamation point) in front of the : to signify that the :
is not a field separator. SMIT removes the #! after parsing the rest of the value, before passing it to the
cmd_to_classify descriptor. To make any further additions to the cmd_to_classify descriptor, reinsert the
#! in front of the :

The descriptors for the sm_name_hdr object class are:

Descriptor Definition

id The ID or name of the object. The id field can be externalized
as a fast path ID unless has_name_select is set to "y" (yes).
The value of id is a string with a maximum length of 64
characters. IDs should be unique to your application and unique
within your system.

next_id Specifies the header object for the subsequent screen; set
to the value of the id field of the sm_cmd_hdr object
or the sm_name_hdr object that follows this selector. The
next_type field described below specifies which object class
is indicated. The value of next_id is a string with a maximum
length of 64 characters.

option_id Specifies the body of this selector; set to the id field of the
sm_cmd_opt object. The value of option_id is a string with a
maximum length of 64 characters.

General programming concepts 729

Descriptor Definition

has_name_select Specifies whether this screen must be preceded by a selector
screen. Valid values are:
"" or "n"

No; this is the default case. The id of this object can be used
as a fast path, even if preceded by a selector screen.

"y"
Yes; a selector must precede this object. This setting
prevents the id of this object from being used as a fast path
to the corresponding dialog screen.

name The text displayed as the title of the selector screen. The
value of name is a string with a maximum length of 1024
characters. The string can be formatted with embedded \n
(newline) characters.

name_msg_file The file name (not the full path name) that is the
Message Facility catalog for the string, name. The value
of name_msg_file is a string with a maximum length of
1024 characters. Message catalogs required by an application
program can be developed with the Message Facility.

name_msg_set The Message Facility set ID for the string, name. Set IDs can
be used to indicate subsets of a single catalog. The value of
name_msg_set is an integer.

name_msg_id The Message Facility ID for the string, name. The value of
name_msg_id is an integer.

type The method to be used to process the selector. The value of
type is a string with a maximum length of 1 character. Valid
values are:
"" or "j"

Just next ID; the object following this object is always the
object specified by the value of the next_id descriptor.
The next_id descriptor is a fully-defined string initialized
at development time.

"r"
Cat raw name; in this case, the next_id descriptor is defined
partially at development time and partially at runtime by
user input. The value of the next_id descriptor defined at
development time is concatenated with the value selected
by the user to create the id value to search for next (that of
the dialog or selector to display).

"c"
Cat cooked name; the value selected by the user requires
processing for more information. This value is passed to
the command named in the cmd_to_classify descriptor, and
then output from the command is concatenated with the
value of the next_id descriptor to create the id descriptor to
search for next (that of the dialog or selector to display).

730 AIX Version 7.2: General programming concepts

Descriptor Definition

ghost Specifies whether to display this selector screen or only the list
pop-up panel produced by the command in the cmd_to_list
field. The value of ghost is a string. Valid values are:
"" or "n"

No; display this selector screen.
"y"

Yes; display only the pop-up panel produced by the
command string constructed using the cmd_to_list
and cmd_to_list_postfix fields in the associated
sm_cmd_opt object. If there is no cmd_to_list value, SMIT
assumes this object is a super-ghost (nothing is displayed),
runs the cmd_to_classify command, and proceeds.

cmd_to_classify The command string to be used, if needed, to classify the
value of the name field of the sm_cmd_opt object associated
with this selector. The value of cmd_to_classify is a string
with a maximum length of 1024 characters. The input to the
cmd_to_classify taken from the entry field is called the "raw
name" and the output of the cmd_to_classify is called the
"cooked name". Previous to AIX Version 4.2.1, you could create
only one value with cmd_to_classify. If that value included a
colon, it was escaped automatically. In AIX 4.2.1 and later,
you can create multiple values with cmd_to_classify, but the
colons are no longer escaped. The colon is now being used as a
delimiter by this command. If you use colons in your values, you
must preserve them manually.

cmd_to_classify_postfix The postfix to interpret and add to the command string in the
cmd_to_classify field. The value of cmd_to_classify_postfix
is a string with a maximum length of 1024 characters.

raw_field_name The alternate name for the raw value. The value of
raw_field_name is a string with a maximum length of 1024
characters. The default value is "_rawname".

cooked_field_name The alternate name for the cooked value. The value of
cooked_field_name is a string with a maximum length of 1024
characters. The default value is "cookedname".

next_type The type of screen that follows this selector. Valid values are:
"n"

Name; a selector screen follows. See the description of
next_id above for related information.

"d"
Dialog; a dialog screen follows. See the description of
next_id above for related information.

help_msg_id Specifies a Message Facility message set number and message
ID number with a comma as the separator or a numeric string
equal to a SMIT identifier tag.

help_msg_loc The file name sent as a parameter to the man command for
retrieval of help text, or the file name of a file containing help
text. The value of help_msg_loc is a string with a maximum
length of 1024 characters.

help_msg_base The fully qualified path name of a library that SMIT reads for the
file names associated with the correct book.

General programming concepts 731

Descriptor Definition

help_msg_book Contains the string with the value of the name file contained in
the file library indicated by help_msg_base.

sm_cmd_opt (SMIT dialog/selector command option) object class
Each object in a dialog, except the dialog header object, normally corresponds to a flag, option, or
attribute of the command that the dialog performs.

One or more of these objects is created for each SMIT dialog; a ghost dialog can have no associated
dialog command option objects. Each selector screen is composed of one selector header object and one
selector command option object.

Note: When coding an object in this object class, set unused empty strings to "" (double-quotation
marks) and unused integer fields to 0.

The dialog command option object and the selector command option object are both sm_cmd_opt
objects. The descriptors for the sm_cmd_opt object class and their functions are:

Descriptor Function

id The ID or name of the object. The id of the associated dialog or
selector header object can be used as a fast path to this and other
dialog objects in the dialog. The value of id is a string with a maximum
length of 64 characters. All dialog objects that appear in one dialog
must have the same ID. Also, IDs should be unique to your application
and unique within the particular SMIT database used.

id_seq_num The position of this item in relation to other items on the dialog;
sm_cmd_opt objects in a dialog are sorted on this string field. The
value of id_seq_num is a string with a maximum length of 16
characters. When this object is part of a dialog screen, the string "0"
is not a valid value for this field. When this object is part of a selector
screen, the id_seq_num descriptor must be set to 0.

disc_field_name A string that should match one of the name fields in the output of
the cmd_to_discover command in the associated dialog header. The
value of disc_field_name is a string with a maximum length of 64
characters.

The value of the disc_field_name descriptor can be defined using
the raw or cooked name from a preceding selector instead of
the cmd_to_discover command in the associated header object.
If the descriptor is defined with input from a preceding selector,
it must be set to either "_rawname" or "_cookedname", or to
the corresponding sm_name_hdr.cooked_field_name value or
sm_name_hdr.raw_field_name value if this was used to redefine
the default name.

name The string that appears on the dialog or selector screen as the field
name. It is the visual questioning or prompting part of the object,
a natural language description of a flag, option or parameter of the
command specified in the cmd_to_exec field of the associated dialog
header object. The value of name is a string with a maximum length of
1024 characters.

name_msg_file The file name (not the full path name) that is the Message Facility
catalog for the string, name. The value of name_msg_file is a string
with a maximum length of 1024 characters. Message catalogs required
by an application program can be developed with the Message Facility.
Set to "" (empty string) if not used.

732 AIX Version 7.2: General programming concepts

Descriptor Function

name_msg_set The Message Facility set ID for the string, name. The value of
name_msg_set is an integer. Set to 0 if not used.

name_msg_id The Message Facility message ID for the string, name. The value of
name_msg_id is an integer. Set to 0 if not used.

op_type The type of auxiliary operation supported for this field. The value of
op_type is a string. Valid values are:

"" or "n" - This is the default case. No auxiliary operations (list or ring
selection) are supported for this field.

"l" - List selection operation provided. A pop-up window displays a list
of items produced by running the command in the cmd_to_list field
of this object when the user selects the F4=List function of the SMIT
interface.

"r" - Ring selection operation provided. The string in the
disp_values or aix_values field is interpreted as a comma-
delimited set of valid entries. The user can tab or backtab through
these values to make a selection. Also, the F4=List interface function
can be used in this case, since SMIT will transform the ring into a list as
needed.

The values "N", "L", and "R" can be used as op_type values just as
the lowercase values "n", "l", and "r". However, with the uppercase
values, if the cmd_to_exec command is run and returns with an exit
value of 0, then the corresponding entry field will be cleared to an
empty string.

entry_type The type of value required by the entry field. The value of entry_type is
a string. Valid values are:

"" or "n" - No entry; the current value cannot be modified via direct
type-in. The field is informational only.

"t" - Text entry; alphanumeric input can be entered.

"#" - Numeric entry; only the numeric characters 0, 1, 2, 3, 4, 5, 6, 7,
8, or 9 can be entered. A - (minus sign) or + (plus sign) can be entered
as the first character.

"x" - Hex entry; hexadecimal input only can be entered.

"f" - File entry; a file name should be entered.

"r" - Raw text entry; alphanumeric input can be entered. Leading and
trailing spaces are considered significant and are not stripped off the
field.

entry_size Limits the number of characters the user can type in the entry field.
The value of entry_size is an integer. A value of 0 defaults to the
maximum allowed value size.

General programming concepts 733

Descriptor Function

required Defines if a command field must be sent to the cmd_to_exec
command defined in the associated dialog header object. The value
of required is a string. If the object is part of a selector screen, the
required field should normally be set to "" (empty string). If the
object is part of a dialog screen, valid values are:

"" or "n" - No; the option is added to the command string in the
cmd_to_exec command only if the user changes the initially-displayed
value. This is the default case.

"y" - Yes; the value of the prefix field and the value of the entry field
are always sent to the cmd_to_exec command.

"+" - The value of the prefix field and the value of the entry field
are always sent to the cmd_to_exec command. The entry field must
contain at least one non-blank character. SMIT will not allow the user
to run the task until this condition is satisfied.

"?" - Except when empty; the value of the prefix field and the value
of the entry field are sent to the cmd_to_exec field unless the entry
field is empty.

prefix In the simplest case, defines the flag to send with the entry field value
to the cmd_to_exec command defined in the associated dialog header
object. The value of prefix is a string with a maximum length of 1024
characters.

The use of this field depends on the setting of the required field,
the contents of the prefix field, and the contents of the associated
entry field.

Note: If the prefix field is set to — (dash dash), the content of the
associated entry field is appended to the end of the cmd_to_exec
command. If the prefix field is set to —' (dash dash single quotation
mark), the contents of the associated entry field is appended to the
end of the cmd_to_exec command in single quotes.

cmd_to_list_mode Defines how much of an item from a list should be used. The list is
produced by the command specified in this object's cmd_to_list
field. The value of cmd_to_list_mode is a string with a maximum
length of 1 character. Valid values are:

"" or "a" - Get all fields. This is the default case.

"1" - Get the first field.

"2" - Get the second field.

"r" - Range; running the command string in the cmd_to_list field
returns a range (such as 1..99) instead of a list. Ranges are for
information only; they are displayed in a list pop-up, but do not change
the associated entry field.

cmd_to_list The command string used to get a list of valid values for the value field.
The value of cmd_to_list is a string with a maximum length of 1024
characters. This command should output values that are separated by
\n (new line) characters.

734 AIX Version 7.2: General programming concepts

Descriptor Function

cmd_to_list_postfix The postfix to interpret and add to the command string specified
in the cmd_to_list field of the dialog object. The value of
cmd_to_list_postfix is a string with a maximum length of 1024
characters. If the first line starts with # (pound sign) following a space,
that entry will be made non-selectable. This is useful for column
headings. Subsequent lines that start with a #, optionally preceded
by spaces, are treated as a comment and as a continuation of the
preceding entry.

multi_select Defines if the user can make multiple selections from a list of valid
values produced by the command in the cmd_to_list field of the
dialog object. The value of multi_select is a string. Valid values are:

"" - No; a user can select only one value from a list. This is the default
case.

"," - Yes; a user can select multiple items from the list. When the
command is built, a comma is inserted between each item.

"y" - Yes; a user can select multiple values from the list. When the
command is built, the option prefix is inserted once before the string of
selected items.

"m" - Yes; a user can select multiple items from the list. When the
command is built, the option prefix is inserted before each selected
item.

value_index For an option ring, the zero-origin index to the array of disp_value
fields. The value_index number indicates the value that is displayed as
the default in the entry field to the user. The value of entry_size is an
integer.

disp_values The array of valid values in an option ring to be presented to
the user. The value of the disp_values fields is a string with a
maximum length of 1024 characters. The field values are separated
by , (commas) with no spaces preceding or following the commas.

values_msg_file The file name (not the full path name) that is the Message Facility
catalog for the values in the disp_values fields, if the values are
initialized at development time. The value of the values_msg_file
field is a string with a maximum length of 1024 characters. Message
catalogs required by an application program can be developed with the
Message Facility.

values_msg_set The Message Facility set ID for the values in the disp_values fields.
Set to 0 if not used.

values_msg_id The Message Facility message ID for the values in the disp_values
fields. Set to 0 if not used.

aix_values If for an option ring, an array of values specified so that each
element corresponds to the element in the disp_values array in the
same position; use if the natural language values in disp_values are
not the actual options to be used for the command. The value of
the aix_values field is a string with a maximum length of 1024
characters.

help_msg_id Specifies a Message Facility message set number and message ID
number with a comma as the separator or a numeric string equal to a
SMIT identifier tag.

General programming concepts 735

Descriptor Function

help_msg_loc The file name sent as a parameter to the man command for retrieval
of help text, or the file name of a file containing help text. The value of
help_msg_loc is a string with a maximum length of 1024 characters.

help_msg_base The fully qualified path name of a library that SMIT reads for the file
names associated with the correct book.

help_msg_book Contains the string with the value of the name file contained in the file
library indicated by help_msg_base.

sm_cmd_hdr (SMIT dialog header) object class
A dialog header object is an sm_cmd_hdr object. A dialog header object is required for each dialog, and
points to the dialog command option objects associated with the dialog.

Note: When coding an object in this object class, set unused empty strings to "" (double-quotation
marks) and unused integer fields to 0.

The descriptors for the sm_cmd_hdr object class are:

Descriptor Function

id The ID or name of the object. The value of id is a string with
a maximum length of 64 characters. The id field can be used
as a fast path ID unless there is a selector associated with the
dialog. IDs should be unique to your application and unique
within your system.

option_id The id of the sm_cmd_opt objects (the dialog fields) to which
this header refers. The value of option_id is a string with a
maximum length of 64 characters.

has_name_select Specifies whether this screen must be preceded by a selector
screen or a menu screen. Valid values are:
"" or "n"

No; this is the default case.
"y"

Yes; a selector precedes this object. This setting prevents
the id of this object from being used as a fast path to the
corresponding dialog screen.

name The text displayed as the title of the dialog screen. The value
of name is a string with a maximum length of 1024 characters.
The text describes the task performed by the dialog. The string
can be formatted with embedded \n (newline) characters.

name_msg_file The file name (not the full path name) that is the
Message Facility catalog for the string, name. The value
of name_msg_file is a string with a maximum length of
1024 characters. Message catalogs required by an application
program can be developed with the Message Facility.

name_msg_set The Message Facility set ID for the string, name. Set IDs can
be used to indicate subsets of a single catalog. The value of
name_msg_set is an integer.

name_msg_id The Message Facility ID for the string, name. Message IDs
can be created by the message extractor tools owned by the
Message Facility. The value of name_msg_id is an integer.

736 AIX Version 7.2: General programming concepts

Descriptor Function

cmd_to_exec The initial part of the command string, which can be the
command or the command and any fixed options that execute
the task of the dialog. Other options are automatically
appended through user interaction with the command option
objects (sm_cmd_opt) associated with the dialog screen. The
value of cmd_to_exec is a string with a maximum length of
1024 characters.

ask Defines whether or not the user is prompted to reconsider the
choice to execute the task. Valid values are:
"" or "n"

No; the user is not prompted for confirmation; the task is
performed when the dialog is committed. This is the default
setting for the ask descriptor.

"y"
Yes; the user is prompted to confirm that the task
be performed; the task is performed only after user
confirmation.

Prompting the user for execution confirmation is especially
useful prior to performance of deletion tasks, where the
deleted resource is either difficult or impossible to recover,
or when there is no displayable dialog associated with the
task (when the ghost field is set to "y").

General programming concepts 737

Descriptor Function

exec_mode Defines the handling of standard input, standard output, and
the stderr file during task execution. The value of exec_mode is
a string. Valid values are:
"" or "p"

Pipe mode; the default setting for the exec_mode
descriptor. The command executes with standard output
and the stderr file redirected through pipes to SMIT. SMIT
manages output from the command. The output is saved
and is scrollable by the user after the task finishes running.
While the task runs, output is scrolled as needed.

"n"
No scroll pipe mode; works like the "p" mode, except that
the output is not scrolled while the task runs. The first
screen of output will be shown as it is generated and then
remains there while the task runs. The output is saved and
is scrollable by the user after the task finishes running.

"i"
Inherit mode; the command executes with standard input,
standard output, and the stderr file inherited by the child
process in which the task runs. This mode gives input and
output control to the executed command. This value is
intended for commands that need to write to the /dev/tty
file, perform cursor addressing, or use libcur or libcurses
library operations.

"e"
Exit/exec mode; causes SMIT to run (do an execl subroutine
call on) the specified command string in the current
process, which effectively terminates SMIT. This is intended
for running commands that are incompatible with SMIT
(which change display modes or font sizes, for instance).
A warning is given that SMIT will exit before running the
command.

"E"
Same as "e", but no warning is given before exiting SMIT.

"P" , "N" or "I"
Backup modes; work like the corresponding "p", "n", and
"i" modes, except that if the cmd_to_exec command is run
and returns with an exit value of 0, SMIT backs up to the
nearest preceding menu (if any), or to the nearest preceding
selector (if any), or to the command line.

ghost Indicates if the normally displayed dialog should not be shown.
The value of ghost is a string. Valid values are:
"" or "n"

No; the dialog associated with the task is displayed. This is
the default setting.

"y"
Yes; the dialog associated with the task is not displayed
because no further information is required from the user.
The command specified in the cmd_to_exec descriptor is
executed as soon as the user selects the task.

738 AIX Version 7.2: General programming concepts

Descriptor Function

cmd_to_discover The command string used to discover the default or current
values of the object being manipulated. The value of
cmd_to_discover is a string with a maximum length of 1024
characters. The command is executed before the dialog is
displayed, and its output is retrieved. Output of the command
must be in colon format.

cmd_to_discover_postfix The postfix to interpret and add to the command
string in the cmd_to_discover field. The value of
cmd_to_discover_postfix is a string with a maximum length of
1024 characters.

help_msg_id Specifies a Message Facility message set number and message
ID number with a comma as the separator or a numeric string
equal to a SMIT identifier tag.

help_msg_loc The file name sent as a parameter to the man command for
retrieval of help text, or the file name of a file containing help
text. The value of help_msg_loc is a string with a maximum
length of 1024 characters.

help_msg_base The fully qualified path name of a library that SMIT reads for the
file names associated with the correct book.

help_msg_book Contains the string with the value of the name file contained in
the file library indicated by help_msg_base.

SMIT example program
The following example program is designed to help you write your own stanzas.

If you add these stanzas to the SMIT directory that comes with the operating system, they will be
accessible through SMIT by selecting the Applications item in the SMIT main menu. All of the demos are
functional except for Demo 3, which does not install any languages.

#--
Intro:
Unless you are creating a new SMIT database, first you need
to decide where to insert the menu for your application.
Your new menu will point to other menus, name headers, and
dialogs. For this example, we are inserting a pointer to the
demo menu under the "Applications" menu option. The next_id for
the Applications menu item is "apps", so we begin by creating a
menu_opt with "apps" as its id.
#--
sm_menu_opt:
 id = "apps"
 id_seq_num = "010"
 next_id = "demo"
 text = "SMIT Demos"
 next_type = "m"

sm_menu_opt:
 id = "demo"
 id_seq_num = "010"
 next_id = "demo_queue"
 text = "Demo 1: Add a Print Queue"
 next_type = "n"

sm_menu_opt:
 id = "demo"
 id_seq_num = "020"
 next_id = "demo_mle_inst_lang_hdr"
 text = "Demo 2: Add Language for Application Already Installed"
 next_type = "n"

#----
Since demo_mle_inst_lang_hdr is a descriptive, but not very

General programming concepts 739

memorable name, an alias with a simpler name can be made to
point to the same place.
#----
sm_menu_opt:
 id = "demo_lang"
 next_id = "demo_mle_inst_lang_hdr"
 next_type = "n"
 alias = "y"

sm_menu_opt:
 id_seq_num = "030"
 id = "demo"
 next_id = "demo_lspv"
 text = "Demo 3: List Contents of a Physical Volume"
 text_msg_file = "smit.cat"
 next_type = "n"

sm_menu_opt:
 id_seq_num = "040"
 id = "demo"
 next_id = "demo_date"
 text = "Demo 4: Change / Show Date, Time"
 text_msg_file = "smit.cat"
 next_type = "n"

#--
Demo 1

Goal: Add a Print Queue. If the printers.rte package is not
installed, install it automatically. If the user is
running MSMIT (SMIT in a windows interface), launch a
graphical program for this task. Otherwise, branch to
the SMIT print queue task.
#
Topics: 1. cooked output & cmd_to_classify
2. SMIT environment variable (msmit vs. ascii)
3. ghost name_hdr
4. super-ghost name_hdr
5. creating an "OK / cancel" option
6. dspmsg for translations
7. exit/exec mode
8. id_seq_num for a name_hdr option
#--
#----
Topics: 1,4
Note that the next_id is the same as the id. Remember that the
output of the cmd_to_classify is appended to the next_id,
since the type is "c", for cooked. So, the next_id will be
either demo_queue1 or demo_queue2. None of the output of the
name_hdr is displayed, and there is no cmd_to_list in the
demo_queue_dummy_opt, making this name_hdr a super-ghost.
#----
sm_name_hdr:
 id = "demo_queue"
 next_id = "demo_queue"
 option_id = "demo_queue_dummy_opt"
 name = "Add a Print Queue"
 name_msg_file = "smit.cat"
 name_msg_set = 52
 name_msg_id = 41
 type = "c"
 ghost = "y"
 cmd_to_classify = "\
x()
{
 # Check to see if the printer file is installed.
 lslpp -l printers.rte 2>/dev/null 1>/dev/null
 if [[$? != 0]]
 then
 echo 2
 else
 echo 1
 fi
}
x"
 next_type = "n"

#----
Topics: 2,4
Having determined the printer software is installed, we want
to know if the gui program should be run or if we should
branch to the ascii SMIT screen for this task. To do this, we

740 AIX Version 7.2: General programming concepts

check the value of the environment variable SMIT, which is "m"
for windows (Motif) or "a" for ascii. Here again we tack the
output of the cmd_to_classify onto the next_id.
#----
sm_name_hdr:
 id = "demo_queue1"
 next_id = "mkpq"
 option_id = "demo_queue_dummy_opt"
 has_name_select = ""
 ghost = "y"
 next_type = "n"
 type = "c"
 cmd_to_classify = "\
gui_check()
{
 if [$SMIT = \"m\"]; then
 echo gui
 fi
}
 gui_check"

sm_name_hdr:
 id = "mkpqgui"
 next_id = "invoke_gui"
 next_type = "d"
 option_id = "demo_queue_dummy_opt"
 ghost = "y"

#----
Topics: 7
Note: the exec_mode of this command is "e", which
exits SMIT before running the cmd_to_exec.
#----
sm_cmd_hdr:
 id = "invoke_gui"
 cmd_to_exec = "/usr/bin/X11/xprintm"
 exec_mode = "e"
 ghost = "y"

sm_cmd_opt:
 id = "demo_queue_dummy_opt"
 id_seq_num = 0

#----
Topics: 3,5
The printer software is not installed. Install the software
and loop back to demo_queue1 to check the SMIT environment
variable. This is a ghost name_hdr. The cmd_to_list of the
sm_cmd_opt is displayed immediately as a pop-up option
instead of waiting for the user to input a response. In this
ghost, the cmd_opt is a simple OK/cancel box that prompts the
user to press return.
#----
sm_name_hdr:
 id = "demo_queue2"
 next_id = "demo_queue1"
 option_id = "demo_queue_opt"
 name = "Add a Print Queue"
 name_msg_file = "smit.cat"
 name_msg_set = 52
 name_msg_id = 41
 ghost = "y"
 cmd_to_classify = "\
install_printers ()
{

 # Install the printer package.
 /usr/lib/assist/install_pkg \"printers.rte\" 2>&1 >/dev/null
 if [[$? != 0]]
 then
 echo "Error installing printers.rte"
 exit 1
 else
 exit 0
 fi
}
install_printers "
 next_type = "n"

#----
Topics: 5,6,8
Here a cmd_opt is used as an OK/cancel box. Note also that the

General programming concepts 741

command dspmsg is used to display the text for the option. This
allows for translation of the messages.
Note: the id_seq_num for the option is 0. Only one option is
allowed per name_hdr, and its id_seq_num must be 0.
#----
sm_cmd_opt:
 id = "demo_queue_opt"
 id_seq_num = "0"
 disc_field_name = ""
 name = "Add a Print Queue"
 name_msg_file = "smit.cat"
 name_msg_set = 52
 name_msg_id = 41
 op_type = "l"
 cmd_to_list = "x()\
{
if [$SMIT = \"a\"] \n\
then \n\
dspmsg -s 52 smit.cat 56 \
'Press Enter to automatically install the printer software.\n\
Press F3 to cancel.\n\
'\n\
else \n\
dspmsg -s 52 smit.cat 57 'Click on this item to automatically install
the printer software.\n' \n\
fi\n\
} \n\
x"
 entry_type = "t"
 multi_select = "n"

#--
#
Demo 2

Goal: Add a Language for an Application Already Installed. It
is often clearer to the user to get some information
before displaying the dialog screen. Name Headers
(sm_name_hdr) can be used for this purpose. In this
example, two name headers are used to determine the
language to install and the installation device. The
dialog has entries for the rest of the information needed
to perform the task.
#
Topics:
1. Saving output from successive name_hdrs with
cooked_field_name
2. Using getopts inside cmd_to_exec to process cmd_opt
info
3. Ring list vs. cmd_to_list for displaying values
cmd_opts
#--

#----
Topic: 1
This is the first name_hdr. It is called by the menu_opt for
this function. We want to save the user's input for later use
in the dialog. The parameter passed into the cmd_to_classify
comes from the user's selection/entry. Cmd_to_classify cleans
up the output and stores it in the variable specified by
cooked_field_name. This overrides the default value for the
cmd_to_classify output, which is _cookedname. The default must
be overridden because we also need to save the output of the
next name_hdr.
#----
sm_name_hdr:
 id = "demo_mle_inst_lang_hdr"
 next_id = "demo_mle_inst_lang"
 option_id = "demo_mle_inst_lang_select"
 name = "Add Language for Application Already Installed"
 name_msg_file = "smit.cat"
 name_msg_set = 53
 name_msg_id = 35
 type = "j"
 ghost = "n"
 cmd_to_classify = "\
 foo() {
 echo $1 | sed -n \"s/[^[]*\\[\\([^]]*\\).*/\\1/p\"
 }
 foo"
 cooked_field_name = "add_lang_language"
 next_type = "n"

742 AIX Version 7.2: General programming concepts

 help_msg_id = "2850325"

sm_cmd_opt:
 id = "demo_mle_inst_lang_select"
 id_seq_num = "0"
 disc_field_name = "add_lang_language"
 name = "LANGUAGE translation to install"
 name_msg_file = "smit.cat"
 name_msg_set = 53
 name_msg_id = 20
 op_type = "l"
 entry_type = "n"
 entry_size = 0
 required = ""
 prefix = "-l "
 cmd_to_list_mode = "a"
 cmd_to_list = "/usr/lib/nls/lsmle -l"
 help_msg_id = "2850328"

#----
Topic:1
This is the second name_hdr. Here the user's input is passed
directly through the cmd_to_classify and stored in the
variable add_lang_input.
#----
sm_name_hdr:
 id = "demo_mle_inst_lang"
 next_id = "demo_dialog_add_lang"
 option_id = "demo_add_input_select"
 has_name_select = "y"
 name = "Add Language for Application Already Installed"
 name_msg_file = "smit.cat"
 name_msg_set = 53
 name_msg_id = 35
 type = "j"
 ghost = "n"
 cmd_to_classify = "\
 foo() {
 echo $1
 }
 foo"
 cooked_field_name = "add_lang_input"
 next_type = "d"
 help_msg_id = "2850328"

sm_cmd_opt:
 id = "demo_add_input_select"
 id_seq_num = "0"
 disc_field_name = "add_lang_input"
 name = "INPUT device/directory for software"
 name_msg_file = "smit.cat"
 name_msg_set = 53
 name_msg_id = 11
 op_type = "l"
 entry_type = "t"
 entry_size = 0
 required = "y"
 prefix = "-d "
 cmd_to_list_mode = "1"
 cmd_to_list = "/usr/lib/instl/sm_inst list_devices"
 help_msg_id = "2850313"

#----
Topic: 2
Each of the cmd_opts formats its information for processing
by the getopts command (a dash and a single character, followed
by an optional parameter). The colon following the letter in
the getopts command means that a parameter is expected after
the dash option. This is a nice way to process the cmd_opt
information if there are several options, especially if one of
the options could be left out, causing the sequence of $1, $2,
etc. to get out of order.
#----
sm_cmd_hdr:
 id = "demo_dialog_add_lang"
 option_id = "demo_mle_add_app_lang"
 has_name_select = ""
 name = "Add Language for Application Already Installed"
 name_msg_file = "smit.cat"
 name_msg_set = 53
 name_msg_id = 35
 cmd_to_exec = "\

General programming concepts 743

 foo()
 {
 while getopts d:l:S:X Option \"$@\"
 do
 case $Option in
 d) device=$OPTARG;;
 l) language=$OPTARG;;
 S) software=$OPTARG;;
 X) extend_fs="-X";;
 esac
 done

 if [[`/usr/lib/assist/check_cd -d $device` = '1']]
 then
 /usr/lib/assist/mount_cd $device
 CD_MOUNTED=true
 fi

 if [[$software = \"ALL\"]]
 then
 echo "Installing all software for $language..."
 else
 echo "Installing $software for $language..."
 fi
 exit $RC
 }
 foo"
 ask = "y"
 ghost = "n"
 help_msg_id = "2850325"

sm_cmd_opt:
 id = "demo_mle_add_app_lang"
 id_seq_num = "0"
 disc_field_name = "add_lang_language"
 name = "LANGUAGE translation to install"
 name_msg_file = "smit.cat"
 name_msg_set = 53
 name_msg_id = 20
 entry_type = "n"
 entry_size = 0
 required = "y"
 prefix = "-l "
 cmd_to_list_mode = "a"
 help_msg_id = "2850328"

#----
Topic: 2
The prefix field precedes the value selected by the user, and
both the prefix and the user-selected value are passed into
the cmd_to_exec for getopts processing.
#----
sm_cmd_opt:
 id = "demo_mle_add_app_lang"
 id_seq_num = "020"
 disc_field_name = "add_lang_input"
 name = "INPUT device/directory for software"
 name_msg_file = "smit.cat"
 name_msg_set = 53
 name_msg_id = 11
 entry_type = "n"
 entry_size = 0
 required = "y"
 prefix = "-d "
 cmd_to_list_mode = "1"
 cmd_to_list = "/usr/lib/instl/sm_inst list_devices"
 help_msg_id = "2850313"

sm_cmd_opt:
 id = "demo_mle_add_app_lang"
 id_seq_num = "030"
 name = "Installed APPLICATION"
 name_msg_file = "smit.cat"
 name_msg_set = 53
 name_msg_id = 43
 op_type = "l"
 entry_type = "n"
 entry_size = 0
 required = "y"
 prefix = "-S "
 cmd_to_list_mode = ""
 cmd_to_list = "\

744 AIX Version 7.2: General programming concepts

 list_messages ()
 {
 language=$1
 device=$2
 lslpp -Lqc | cut -f2,3 -d':'
 }
 list_messages"
 cmd_to_list_postfix = "add_lang_language add_lang_input"
 multi_select = ","
 value_index = 0
 disp_values = "ALL"
 help_msg_id = "2850329"

#----
Topic: 3
Here, instead of a cmd_to_list, there is a comma-delimited set
of Ring values in the disp_values field. This list is displayed
one item at a time as the user presses tab in the cmd_opt entry
field. However, instead of passing a yes or no to the cmd_hdr,
it is more useful to use the aix_values field to pass either
a -X or nothing. The list in the aix_values field must match
one-to-one with the list in the disp_values field.
#----
sm_cmd_opt:
 id_seq_num = "40"
 id = "demo_mle_add_app_lang"
 disc_field_name = ""
 name = "EXTEND file systems if space needed?"
 name_msg_file = "smit.cat"
 name_msg_set = 53
 name_msg_id = 12
 op_type = "r"
 entry_type = "n"
 entry_size = 0
 required = "y"
 multi_select = "n"
 value_index = 0
 disp_values = "yes,no"
 values_msg_file = "sm_inst.cat"
 values_msg_set = 1
 values_msg_id = 51
 aix_values = "-X,"
 help_msg_id = "0503005"

#--
#
Demo 3

Goal: Show Characteristics of a Logical Volume. The name of the
logical volume is entered by the user and passed to the
cmd_hdr as _rawname.
#
Topics: 1. _rawname
2. Ringlist & aix_values
#--

#----
Topic: 1
No rawname is needed because we have only one name_hdr and
we can use the default variable name _rawname.
#----
sm_name_hdr:
 id = "demo_lspv"
 next_id = "demo_lspvd"
 option_id = "demo_cmdlvmpvns"
 has_name_select = ""
 name = "List Contents of a Physical Volume"
 name_msg_file = "smit.cat"
 name_msg_set = 15
 name_msg_id = 100
 type = "j"
 ghost = ""
 cmd_to_classify = ""
 raw_field_name = ""
 cooked_field_name = ""
 next_type = "d"
 help_msg_id = "0516100"

sm_cmd_opt:
 id_seq_num = "0"
 id = "demo_cmdlvmpvns"
 disc_field_name = "PVName"

General programming concepts 745

 name = "PHYSICAL VOLUME name"
 name_msg_file = "smit.cat"
 name_msg_set = 15
 name_msg_id = 101
 op_type = "l"
 entry_type = "t"
 entry_size = 0
 required = "+"
 cmd_to_list_mode = "1"
 cmd_to_list = "lsvg -o|lsvg -i -p|grep -v '[:P]'| \
 cut -f1 -d' '"
 cmd_to_list_postfix = ""
 multi_select = "n"
 help_msg_id = "0516021"

#----
Topic: 1
The cmd_to_discover_postfix passes in the name of the physical
volume, which is the raw data selected by the user in the
name_hdr - _rawname.
#----
sm_cmd_hdr:
 id = "demo_lspvd"
 option_id = "demo_cmdlvmlspv"
 has_name_select = "y"
 name = "List Contents of a Physical Volume"
 name_msg_file = "smit.cat"
 name_msg_set = 15
 name_msg_id = 100
 cmd_to_exec = "lspv"
 ask = "n"
 cmd_to_discover_postfix = "_rawname"
 help_msg_id = "0516100"

sm_cmd_opt:
 id_seq_num = "01"
 id = "demo_cmdlvmlspv"
 disc_field_name = "_rawname"
 name = "PHYSICAL VOLUME name"
 name_msg_file = "smit.cat"
 name_msg_set = 15
 name_msg_id = 101
 op_type = "l"
 entry_type = "t"
 entry_size = 0
 required = "+"
 cmd_to_list_mode = "1"
 cmd_to_list = "lsvg -o|lsvg -i -p|grep -v '[:P]'| \
 cut -f1 -d' '"
 help_msg_id = "0516021"

#----
Topic: 2
Here a ringlist of 3 values matches with the aix_values we
want to pass to the sm_cmd_hdr's cmd_to_exec.
#----
sm_cmd_opt:
 id_seq_num = "02"
 id = "demo_cmdlvmlspv"
 disc_field_name = "Option"
 name = "List OPTION"
 name_msg_file = "smit.cat"
 name_msg_set = 15
 name_msg_id = 92
 op_type = "r"
 entry_type = "n"
 entry_size = 0
 required = "n"
 value_index = 0
 disp_values = "status,logical volumes,physical \
 partitions"
 values_msg_file = "smit.cat"
 values_msg_set = 15
 values_msg_id = 103
 aix_values = " ,-l,-p"
 help_msg_id = "0516102"

#--
#
Demo 4

Goal: Change / Show Date & Time

746 AIX Version 7.2: General programming concepts

#
Topics: 1. Using a ghost name header to get variable
values for the next dialog screen.
2. Using a cmd_to_discover to fill more than one
cmd_opt with initial values.
3. Re-ordering parameters in a cmd_to_exec.
#--

#----
Topic: 1
This ghost name_hdr gets two values and stores them in the
variables daylight_y_n and time_zone for use in the cmd_opts
for the next dialog. The output of cmd_to_classify is colon-
delimited, as is the list of field names in cooked_field_name.
#----
sm_name_hdr:
 id = "demo_date"
 next_id = "demo_date_dial"
 option_id = "date_sel_opt"
 name_msg_set = 0
 name_msg_id = 0
 ghost = "y"
 cmd_to_classify = " \
if [$(echo $TZ | awk '{ \
 if (length($1) <=6) {printf(\"2\")} \
 else {printf(\"1\")} }') = 1] \n\
then\n\
 echo $(dspmsg smit.cat -s 30 18 'yes')\":$TZ\"\n\
else\n\
 echo $(dspmsg smit.cat -s 30 19 'no')\":$TZ\"\n\
fi #"
 cooked_field_name = "daylight_y_n:time_zone"

sm_cmd_opt:
 id_seq_num = "0"
 id = "date_sel_opt"

#----
Topic: 2,3
Here the cmd_to_discover gets six values, one for each of the
editable sm_cmd_opts for this screen. The cmd_to_discover
output is two lines, the first with a # followed by a list of
variable names, and the second line the list of values. Both
lists are colon-delimited. We also see here the cmd_to_exec
takeing the parameters from the cmd_opts and reordering them
when calling the command.
#----
sm_cmd_hdr:
 id = "demo_date_dial"
 option_id = "demo_chtz_opts"
 has_name_select = "y"
 name = "Change / Show Date & Time"
 name_msg_file = "smit.cat"
 name_msg_set = 30
 name_msg_id = 21
 cmd_to_exec = "date_proc () \
MM dd hh mm ss yy\n\
dialogue param order # 3 4 5 6 7 2\n\
{\n\
date \"$3$4$5$6.$7$2\"\n\
}\n\
date_proc "
 exec_mode = "P"
 cmd_to_discover = "disc_proc() \n\
{\n\
TZ=\"$1\"\n\
echo '#cur_month:cur_day:cur_hour:cur_min:cur_sec:cur_year'\n\
date +%m:%d:%H:%M:%S:%y\n\
}\n\
disc_proc"
 cmd_to_discover_postfix = ""
 help_msg_id = "055101"

#----
The first two cmd_opts get their initial values
(disc_field_name) from the name_hdr.
#----
sm_cmd_opt:
 id_seq_num = "04"
 id = "demo_chtz_opts"
 disc_field_name = "time_zone"
 name = "Time zone"

General programming concepts 747

 name_msg_file = "smit.cat"
 name_msg_set = 30
 name_msg_id = 16
 required = "y"

sm_cmd_opt:
 id_seq_num = "08"
 id = "demo_chtz_opts"
 disc_field_name = "daylight_y_n"
 name = "Does this time zone go on Daylight Saving Time?\n"
 name_msg_file = "smit.cat"
 name_msg_set = 30
 name_msg_id = 17
 entry_size = 0

#----
The last six cmd_opts get their values from the
cmd_to_discover.
#----
sm_cmd_opt:
 id_seq_num = "10"
 id = "demo_chtz_opts"
 disc_field_name = "cur_year"
 name = "YEAR (00-99)"
 name_msg_file = "smit.cat"
 name_msg_set = 30
 name_msg_id = 10
 entry_type = "#"
 entry_size = 2
 required = "+"
 help_msg_id = "055102"

sm_cmd_opt:
 id_seq_num = "20"
 id = "demo_chtz_opts"
 disc_field_name = "cur_month"
 name = "MONTH (01-12)"
 name_msg_file = "smit.cat"
 name_msg_set = 30
 name_msg_id = 11
 entry_type = "#"
 entry_size = 2
 required = "+"
 help_msg_id = "055132"

sm_cmd_opt:
 id_seq_num = "30"
 id = "demo_chtz_opts"
 disc_field_name = "cur_day"
 name = "DAY (01-31)\n"
 name_msg_file = "smit.cat"
 name_msg_set = 30
 name_msg_id = 12
 entry_type = "#"
 entry_size = 2
 required = "+"
 help_msg_id = "055133"

sm_cmd_opt:
 id_seq_num = "40"
 id = "demo_chtz_opts"
 disc_field_name = "cur_hour"
 name = "HOUR (00-23)"
 name_msg_file = "smit.cat"
 name_msg_set = 30
 name_msg_id = 13
 entry_type = "#"
 entry_size = 2
 required = "+"
 help_msg_id = "055134"

sm_cmd_opt:
 id_seq_num = "50"
 id = "demo_chtz_opts"
 disc_field_name = "cur_min"
 name = "MINUTES (00-59)"
 name_msg_file = "smit.cat"
 name_msg_set = 30
 name_msg_id = 14
 entry_type = "#"
 entry_size = 2
 required = "+"

748 AIX Version 7.2: General programming concepts

 help_msg_id = "055135"

sm_cmd_opt:
 id_seq_num = "60"
 id = "demo_chtz_opts"
 disc_field_name = "cur_sec"
 name = "SECONDS (00-59)"
 name_msg_file = "smit.cat"
 name_msg_set = 30
 name_msg_id = 15
 entry_type = "#"
 entry_size = 2
 required = "+"
 help_msg_id = "055136"

System resource controller
This article provides information about the System Resource Controller (SRC), which facilitates the
management and control of complex subsystems.

The SRC is a subsystem controller. Subsystem programmers who own one or more daemon processes
can use SRC services to define a consistent system management interface for their applications. The SRC
provides a single set of commands to start, stop, trace, refresh, and query the status of a subsystem.

In addition, the SRC provides an error notification facility. You can use this facility to incorporate
subsystem-specific recovery methods. The type of recovery information included is limited only by the
requirement that the notify method is a string in a file and is executable.

Refer to the following information to learn more about SRC programming requirements:

Subsystem interaction with the SRC

The SRC defines a subsystem as a program or set of related programs designed as a unit to perform
related functions. See "System Resource Controller" in Operating system and device management for a
more detailed description of the characteristics of a subsystem.

A subserver is a process that belongs to and is controlled by a subsystem.

The SRC operates on objects in the SRC object class. Subsystems are defined to the SRC as subsystem
objects; subservers, as subserver-type objects. The structures associated with each type of object are
predefined in the usr/include/sys/srcobj.h file.

The SRC can issue SRC commands against objects at the subsystem, subserver, and subsystem-group
levels. A subsystem group is a group of any user-specified subsystems. Grouping subsystems allows
multiple subsystems to be controlled by invoking a single command. Groups of subsystems may also
share a common notification method.

The SRC communicates with subsystems by sending signals and exchanging request and reply packets.
In addition to signals, the SRC recognizes the sockets and IPC message-queue communication types. A
number of subroutines are available as an SRC API to assist in programming communication between
subsystems and the SRC. The SRC API also supports programming communication between client
programs and the SRC.

The SRC and the init command

The SRC is operationally independent of the init command. However, the SRC is intended to extend
the process-spawning functionality provided by this command. In addition to providing a single point
of control to start, stop, trace, refresh, and query the status of subsystems, the SRC can control the
operations of individual subsystems, support remote system control, and log subsystem failures.

Operationally, the only time the init command and the SRC interact occurs when the srcmstr (SRC
master) daemon is embedded within the inittab file. By default, the srcmstr daemon is in the inittab file.
In this case, the init command starts the srcmstr daemon at system startup, as with all other processes.
You must have root user authority or be in the system group to invoke the srcmstr daemon.

Compiling programs to interact with the srcmstr daemon

General programming concepts 749

To enable programs to interact with the srcmstr daemon, the /usr/include/spc.h file should be included
and the program should be compiled with the libsrc.a library. This support is not needed if the subsystem
uses signals to communicate with the SRC.

SRC operations

To make use of SRC functionality, a subsystem must interact with the srcmstr daemon in two ways:

• A subsystem object must be created for the subsystem in the SRC subsystem object class.
• If a subsystem uses signals, it does not need to use SRC subroutines. However, if it uses message

queues or sockets, it must respond to stop requests using the SRC subroutines.

All SRC subsystems must support the stopsrc command. The SRC uses this command to stop subsystems
and their subservers with the SIGNORM (stop normal), SIGFORCE (stop force), or SIGCANCEL (cancel
systems) signals.

Subsystem support is optional for the startsrc, lssrc -l, traceson, tracesoff, and refresh commands, long
status and subserver status reporting, and the SRC notification mechanism.

SRC capabilities

The SRC provides the following support for the subsystem programmer:

• A common command interface to support starting, stopping, and sending requests to a subsystem
• A central point of control for subsystems and groups of subsystems
• A common format for requests to the subsystem
• A definition of subservers so that each subserver can be managed as it is uniquely defined to the

subsystem
• The ability to define subsystem-specific error notification methods
• The ability to define subsystem-specific responses to requests for status, trace support, and
configuration refresh

• A single point of control for servicing subsystem requests in a network computing environment

Related information
mknotify
mkserver
mksys
refresh
rmnotify
srcmstr
tracesoff
traceson
spc.h
srcobj.h

SRC objects
The System Resource Controller (SRC) defines and manages three object classes:

Together, these object classes represent the domain in which the SRC performs its functions. A
predefined set of object-class descriptors comprise the possible set of subsystem configurations
supported by the SRC.

Note: Only the SRC Subsystem object class is required. Use of the Subserver Type and Notify
object classes is subsystem-dependent.

Subsystem object class

The subsystem object class contains the descriptors for all SRC subsystems. A subsystem must be
configured in this class before it can be recognized by the SRC.

750 AIX Version 7.2: General programming concepts

The descriptors for the Subsystem object class are defined in the SRCsubsys structure of the /usr/
include/sys/srcobj.h file. The Subsystem Object Descriptors and Default Values table provides a short-
form illustration of the subsystem descriptors as well as the mkssys and chssys command flags
associated with each descriptor.

Table 96. Subsystem Object Descriptors and Default Values

Descriptors Default values Flags

Subsystem name -s

Path to subsystem command -p

Command arguments -a

Execution priority 20 -E

Multiple instance NO -Q -q

User ID -u

Synonym name (key) -t

Start action ONCE -O -R

stdin /dev/console -i

stdout /dev/console -o

stderr /dev/console -e

Communication type Sockets -K -I -S

Subsystem message type -m

Communication IPC queue key -l

Group name -G

SIGNORM signal -n

SIGFORCE signal -f

Display Yes -D -d

Wait time 20 seconds -w

Auditid

The subsystem object descriptors are defined as follows:

Object descriptors Definition

Subsystem name Specifies the name of the subsystem object. The name cannot exceed
30 bytes, including the null terminator (29 characters for single-byte
character sets, or 14 characters for multibyte character sets). This
descriptor must be POSIX-compliant. This field is required.

Subsystem command path Specifies the full path name for the program executed by the
subsystem start command. The path name cannot exceed 200 bytes,
including the null terminator (199 characters for single-byte character
sets, or 99 characters for multibyte character sets). The path name
must be POSIX-compliant. This field is required.

General programming concepts 751

Object descriptors Definition

Command arguments Specifies any arguments that must be passed to the command that
starts the subsystem. The arguments cannot exceed 200 bytes,
including the null terminator (199 characters for single-byte character
sets, or 99 characters for multibyte character sets). The arguments are
parsed by the srcmstr daemon according to the same rules used by
shells. For example, quoted strings are passed as a single argument,
and blanks outside quoted strings delimit arguments.

Execution priority Specifies the process priority of the subsystem to be run. Subsystems
started by the srcmstr daemon run with this priority. The default value
is 20.

Multiple instance Specifies the number of instances of a subsystem that can run at one
time. A value of NO (the -Q flag) specifies that only one instance of the
subsystem can run at one time. Attempts to start this subsystem if it
is already running will fail, as will attempts to start a subsystem on the
same IPC message queue key. A value of YES (the -q flag) specifies that
multiple subsystems may use the same IPC message queue and that
there can be multiple instances of the same subsystem. The default
value is NO.

User ID Specifies the user ID (numeric) under which the subsystem is run. A
value of 0 indicates the root user. This field is required.

Synonym name Specifies a character string to be used as an alternate name for the
subsystem. The character string cannot exceed 30 bytes, including the
null terminator (29 characters for single-byte character sets, or 14
characters for multibyte character sets). This field is optional.

Start action Specifies whether the srcmstr daemon should restart the subsystem
after an abnormal end. A value of RESPAWN (the -R flag) specifies the
srcmstr daemon should restart the subsystem. A value of ONCE (the
-O flag) specifies the srcmstr daemon should not attempt to restart the
failed system. There is a respawn limit of two restarts within a specified
wait time. If the failed subsystem cannot be successfully restarted, the
notification method option is consulted. The default value is ONCE.

Standard Input File/Device Specifies the file or device from which the subsystem receives its
input. The default is /dev/console. This field cannot exceed 200 bytes,
including the null terminator (199 characters for single-byte character
sets, or 99 characters for multibyte character sets). This field is ignored
if the communication type is sockets.

Standard Output File/Device Specifies the file or device to which the subsystem sends its output.
This field cannot exceed 200 bytes, including the null terminator (199
characters for single-byte character sets, or 99 characters for multibyte
character sets). The default is /dev/console.

Standard Error File/Device Specifies the file or device to which the subsystem writes its error
messages. This field cannot exceed 200 bytes, including the null
terminator (199 characters for single-byte character sets, or 99
characters for multibyte character sets). Failures are handled as part
of the notify method. The default is /dev/console.

Note: Catastrophic errors are sent to the error log.

Communication type Specifies the communication method between the srcmstr daemon
and the subsystem. Three types can be defined: IPC (-I), sockets (-K),
or signals (-S). The default is sockets.

752 AIX Version 7.2: General programming concepts

Object descriptors Definition

Communication IPC queue
key

Specifies a decimal value that corresponds to the IPC message queue
key that the srcmstr daemon uses to communicate to the subsystem.
This field is required for subsystems that communicate using IPC
message queues. Use the ftok subroutine with a fully qualified path
name and an ID parameter to ensure that this key is unique. The
srcmstr daemon creates the message queue prior to starting the
subsystem.

Group name Designates the subsystem as a member of a group. This field cannot
exceed 30 bytes, including the null terminator (29 characters for single-
byte character sets, or 14 characters for multibyte character sets). This
field is optional.

Subsystem message type Specifies the mtype of the message that is placed on the subsystem's
message queue. The subsystem uses this value to retrieve messages
by using the msgrcv or msgxrcv subroutine. This field is required if you
are using message queues.

SIGNORM signal value Specifies the value to be sent to the subsystem when a stop normal
request is sent. This field is required of subsystems using the signals
communication type.

SIGFORCE signal value Specifies the value to be sent to the subsystem when a stop force
request is sent. This field is required of subsystems using the signals
communication type.

Display value Indicates whether the status of an inoperative subsystem can be
displayed on lssrc -a or lssrc -g output. The -d flag indicates display;
the -D flag indicates do not display. The default is -d (display).

Wait time Specifies the time in seconds that a subsystem has to complete a
restart or stop request before alternate action is taken. The default is
20 seconds.

Auditid Specifies the subsystem audit ID. Created automatically by the srcmstr
daemon when a subsystem is defined, this field is used by the security
system, if configured. This field cannot be set or changed by a program.

Subserver type object class

An object must be configured in this class if a subsystem has subservers and the subsystem expects to
receive subserver-related commands from the srcmstr daemon.

This object class contains three descriptors, which are defined in the SRCsubsvr structure of the srcobj.h
file:

Descriptor Definition

Subserver ID (key) Specifies the name of the subserver type object identifier. The set of
subserver type names defines the allowable values for the -t flag of
the subserver commands. The name length cannot exceed 30 bytes,
including the terminating null (29 characters for single-byte character
sets, or 14 characters for multibyte character sets).

Owning subsystem name Specifies the name of the subsystem that owns the subserver object.
This field is defined as a link to the SRC subsystem object class.

General programming concepts 753

Descriptor Definition

Code point Specifies a decimal number that identifies the subserver. The code
point is passed to the subsystem controlling the subserver in the
object field of the subreq structure of the SRC request structure.
If a subserver object name is also provided in the command,
the srcmstr daemon forwards the code point to the subsystem in
the objname field of the subreq structure. See the "SRC Request
Structure Example" in the spc.h file documentation for examples of
these elements.

The commands that reference subservers identify each subserver as a named type of subserver and can
also append a name to each instance of a subserver type. The SRC daemon uses the subserver type to
determine the controlling subsystem for the subserver, but does not examine the subserver name.

Notify object class

This class provides a mechanism for the srcmstr daemon to invoke subsystem-provided routines when
the failure of a subsystem is detected. When the SRC daemon receives a SIGCHLD signal indicating the
termination of a subsystem process, it checks the status of the subsystem (maintained by the srcmstr
daemon) to determine if the termination was caused by a stopsrc command. If no stopsrc command was
issued, the termination is interpreted as an abnormal termination. If the restart action in the definition
does not specify respawn, or if respawn attempts fail, the srcmstr daemon attempts to read an object
associated with the subsystem name from the Notify object class. If such an object is found, the method
associated with the subsystem is run.

If no subsystem object is found in the Notify object class, the srcmstr daemon determines whether the
subsystem belongs to a group. If so, the srcmstr daemon attempts to read an object of that group name
from the Notify object class. If such an object is found, the method associated with it is invoked. In this
way, groups of subsystems can share a common method.

Note: The subsystem notify method takes precedence over the group notify method. Therefore,
a subsystem can belong to a group that is started together, but still have a specific recovery or
cleanup routine defined.

Notify objects are defined by two descriptors:

Descriptor Definition

Subsystem name or group name Specifies the name of the subsystem or group for which a notify
method is defined.

Notify method Specifies the full path name to the routine that is executed
when the srcmstr daemon detects abnormal termination of the
subsystem or group.

Such notification is useful when specific recovery or clean-up work needs to be performed before a
subsystem can be restarted. It is also a tool for information gathering to determine why a subsystem
abnormally stopped.

Notify objects are created with the mknotify command. To modify a notify method, the existing notify
object must be removed using the rmnotify command, and then a new notify object created.

Command Definition

mknotify Adds a notify method to the SRC configuration database

rmnotify Removes a notify method from the SRC configuration database

The srcmstr daemon logs subsystem recovery activity. The subsystem is responsible for reporting
subsystem failures.

754 AIX Version 7.2: General programming concepts

SRC communication types
The System Resource Controller (SRC) supports three communication types: signals, sockets, and
interprocess communication (IPC) message queues.

The communication type chosen determines to what degree the subsystem takes advantage of SRC
functions.

Note: All subsystems, regardless of the communication type specified in the subsystem environment
object, must be capable of supporting limited signals communication. A signal-catcher routine must be
defined to handle SIGTERM (stop cancel) signals. The SIGTERM signal indicates a subsystem should
clean up all resources and terminate.

Refer to the following sections to learn more about SRC communication types:

The Communications Between the srcmstr Daemon and Subsystems table summarizes communication
type actions associated with SRC functions.

Function Using IPC or sockets Using signals

start

subsystem SRC forks and execs to create
subsystem process.

SRC forks and execs to create
subsystem process.

subserver Uses IPC message queue or
socket to send request to
subsystem.

Not supported

stop normal

subsystem Uses IPC message queue or
socket to send request to
subsystem.

Sends SIGNORM to the
subsystem.

subserver Uses IPC message queue or
socket to send request to
subsystem.

Not supported.

stop forced

subsystem Uses IPC message queue or
socket to send request to
subsystem.

Sends SIGFORCE to the
subsystem.

subserver Uses IPC message queue or
socket to send request to
subsystem.

Not supported.

stop cancel

subsystem Sends SIGTERM followed by
SIGKILL to the process group of
the subsystem.

Sends SIGTERM followed by
SIGKILL to the process group of
the subsystem.

status short

subsystem Implemented by SRC (no
subsystem request).

Implemented by SRC (no
subsystem request).

subserver Uses IPC message queue or
socket to send request to
subsystem.

Not supported.

status long

General programming concepts 755

Function Using IPC or sockets Using signals

subsystem Uses IPC message queue or
socket to send request to
subsystem.

Not supported.

subserver Uses IPC message queue or
socket to send request to
subsystem.

Not supported.

traceon/traceoff

subsystem Uses IPC message queue or
socket to send request to
subsystem.

Not supported.

subserver Uses IPC message queue or
socket to send request to
subsystem.

Not supported.

refresh

subsystem Uses IPC message queue or
socket to send request to
subsystem.

Not supported.

subserver Uses IPC message queue or
socket to send request to
subsystem.

Not supported.

notify

subsystem Implemented by subsystem-
provided method.

Implemented by subsystem-
provided method.

Signals communication

The most basic type of communication between a subsystem and the srcmstr daemon is accomplished
with signals. Because signals constitute a one-way communication scheme, the only SRC command that
signals subsystems recognize is a stop request. Subsystems using signals do not recognize long status,
refresh, or trace requests. Nor do they recognize subservers.

Signals subsystems must implement a signal-catcher routine, such as the sigaction, sigvec, or signal
subroutine, to handle SIGNORM and SIGFORCE requests.

Signals subsystems are specified in the SRC subsystem object class by issuing a mkssys -Snf command
string or by using the defssys and addssys subroutines.

Item Descriptor

addssys Adds a subsystem definition to the SRC configuration database

defssys Initializes a new subsystem definition with default values

mkssys Adds a subsystem definition to the SRC configuration database

Sockets communication

Increasingly, the communication option of choice for subsystem programmers is sockets. Sockets are
also the default communication type for the srcmstr daemon. See the Sockets OverviewCommunications
Programming Concepts for more information.

The srcmstr daemon uses sockets to receive work requests from a command process. When this
communication type is chosen, the srcmstr daemon creates the subsystem socket in which the
subsystem will receive srcmstr daemon requests. UNIX sockets (AF_UNIX) are created for local

756 AIX Version 7.2: General programming concepts

subsystems. Internet sockets (AF_INET) are created for remote subsystems. The following steps describe
the command processing sequence:

1. The command process accepts a command from the input device, constructs a work-request message,
and sends the work-request UDP datagram to the srcmstr daemon on the well-known SRC port. The
AF_INET is identified in the /etc/services file.

2. The srcmstr daemon listens on the well-known SRC port for work requests. Upon receiving a work
request, it tells the system to fill the socket subroutine's sockaddr structure to obtain the originating
system's address and appends the address and port number to the work request.

3. The srcmstr daemon uses the srcrrqs and srcsrpy subroutines. It processes only those requests that
it can process and then sends the information back to the command process. Other requests are
forwarded to the appropriate subsystem on the port that the subsystem has specified for its work
requests.

4. The subsystem listens on the port previously obtained by the srcmstr daemon for the subsystem.
(Each subsystem inherits a port when the srcmstr daemon starts a subsystem.) The subsystem
processes the work request and sends a reply back to the command process.

5. The command process listens for the response on the specified port.

The file access permissions and addresses of the sockets used by the srcmstr daemon are maintained in
the /dev/SRC and /dev/.SRC-unix temporary directories. Though displayable using the ls command, the
information contained in these directories is for internal SRC use only.

Message queues and sockets offer equal subsystem functionality.

Item Descriptor

srcrrqs Saves the destination address of your subsystem's response to a received packet. (Also
see threadsafe version srcrrqs_r)

srcsrpy Sends your subsystem response packet to a request that your subsystem received.

IPC message queue communication

IPC message queue functionality is similar to sockets functionality. Both communication types support a
full-function SRC environment.

When the communication type is IPC message queue, the srcmstr daemon uses sockets to receive work
requests from a command process, then uses an IPC message queue in which the subsystem receives
SRC messages. The message queue is created when the subsystem is started, and is used thereafter.
Message queue subsystems use the following command-processing sequence to communicate with the
srcmstr daemon:

1. The srcmstr daemon gets the message queue ID from the SRC subsystem object and sends the
message to the subsystem.

2. The subsystem waits for the message queue and issues a msgrcv subroutine to receive the command
from the message queue in the form of the subreq structure required of subsystem requests.

3. The subsystem calls the srcrrqs subroutine to get a tag ID that is used in responding to the message.
4. The subsystem interprets and processes the received command. Depending upon the command, the

subsystem creates either a svrreply or statcode data structure to return a reply to the command
process. Refer to the /usr/include/spc.h file for more information on these structures.

5. The subsystem calls the srcsrpy subroutine to send back a reply buffer to the command process.

Programming subsystem communication with the SRC
System Resource Controller (SRC) commands are executable programs that take options from the
command line.

After the command syntax has been verified, the commands call SRC run-time subroutines to construct a
User Datagram Protocol (UDP) datagram and send it to the srcmstr daemon.

General programming concepts 757

The following sections provide more information about SRC subroutines and how they can be used by
subsystems to communicate with the SRC main process:

Programming subsystems to receive SRC requests

The programming tasks associated with receiving SRC requests vary with the communication type
specified for the subsystem. The srcmstr daemon uses sockets to receive work requests from a
command process and constructs the necessary socket or message queue to forward work requests.
Each subsystem needs to verify the creation of its socket or message queue. Read the following sections
for information on communication type-specific guidelines on programming your subsystem to receive
SRC request packets.

Note: All subsystems, regardless of communication type, must define a signal-catcher routine to handle
the SIGTERM request.

Receiving SRC signals

Subsystems that use signals as their communication type must define a signal-catcher routine to
catch the SIGNORM and SIGFORCE signals. The signal-catching method used is subsystem-dependent.
Following are two examples of the types of subroutines that can be used for this purpose.

Subroutine Description

sigaction, sigvec, or signal subroutine Specifies the action to take upon the delivery of a
signal.

sigset, sighold, sigrelse, or sigignore subroutine Enhances the signal facility and provides signal
management for application processes.

Receiving SRC request packets using sockets

Use the following guidelines when programming sockets subsystems to receive SRC request packets:

• Include the SRC subsystem structure in your subsystem code by specifying the /usr/include/spc.h file.
This file contains the structures the subsystem uses to respond to SRC commands. In addition, the
spc.h file includes the srcerrno.h file, which does not need to be included separately. The srcerrno.h
file contains error-code definitions for daemon support.

• When a sockets subsystem is started, the socket on which the subsystem receives SRC request
packets is set as file descriptor 0. The subsystem should verify this by calling the getsockname
subroutine, which returns the address of the subsystem's socket. If file descriptor 0 is not a socket,
the subsystem should log an error and then exit. See "Reading Internet Datagrams Example Program"
in Communications Programming Concepts for information on how the getsockname subroutine can be
used to return the address of a subsystem socket.

• If a subsystem polls more than one socket, use the select subroutine to determine which socket
has something to read. See "Checking for Pending Connections Example Program" in Communications
Programming Concepts for more information on how the select subroutine can be used for this purpose.

• Use the recvfrom subroutine to get the request packet from the socket.

Note: The return address for the subsystem response packet is in the received SRC request
packet. This address should not be confused with the address that the recvfrom subroutine
returns as one of its parameters.

After the recvfrom subroutine completes and the packet has been received, use the srcrrqs subroutine
to return a pointer to a static srchdr structure. This pointer contains the return address for the
subsystem's reply. This structure is overwritten each time the srcrrqs subroutine is called, so its
contents should be stored elsewhere if they will be needed after the next call to the srcrrqs subroutine.

Receiving SRC request packets using message queues

Use the following guidelines when programming message queue subsystems to receive SRC request
packets:

758 AIX Version 7.2: General programming concepts

• Include the SRC subsystem structure in your subsystem code by specifying the /usr/include/spc.h
file. This file contains the structures the subsystem uses to respond to SRC commands. In addition,
the spc.h file includes the srcerrno.h include file, which does not need to be included separately. The
srcerrno.h file contains error-code definitions for daemon support.

• Specify -DSRCBYQUEUE as a compile option. This places a message type (mtype) field as the first field
in the srcreq structure. This structure should be used any time an SRC packet is received.

• When the subsystem has been started, use the msgget subroutine to verify that a message queue was
created at system startup. The subsystem should log an error and exit if a message queue was not
created.

• If a subsystem polls more than one message queue, use the select subroutine to determine which
message queue has something to read. See "Checking for Pending Connections Example Program" in
Communications Programming Concepts for information on how the select subroutine can be used for
this purpose.

• Use the msgrcv or msgxrcv subroutine to get the packet from the message queue. The return address
for the subsystem response packet is in the received packet.

• When the msgrcv or msgxrcv subroutine completes and the packet has been received, call the srcrrqs
subroutine to finish the reception process. The srcrrqs subroutine returns a pointer to a static srchdr
structure that is overwritten each time the srcrrqs subroutine is called. This pointer contains the return
address for the subsystem's reply.

Programming subsystems to process SRC request packets

Subsystems must be capable of processing stop requests. Optionally, subsystems may support start,
status, trace, and refresh requests.

Processing request packets involves a two-step process:

Reading SRC request packets

SRC request packets are received by subsystems in the form of a srcreq structure as defined in the /usr/
include/spc.h file. The subsystem request resides in the subreq structure of the srcreq structure:

struct subreq
 short object; /*object to act on*/
 short action; /*action START, STOP, STATUS, TRACE,\
 REFRESH*/
 short parm1; /*reserved for variables*/
 short parm2; /*reserved for variables*/
 char objname; /*object name*/

The object field of the subreq structure indicates the object to which the request applies. When the
request applies to a subsystem, the object field is set to the SUBSYSTEM constant. Otherwise, the
object field is set to the subserver code point or the objname field is set to the subserver PID as a
character string. It is the subsystem's responsibility to determine the object to which the request applies.

The action field specifies the action requested of the subsystem. Subsystems should understand the
START, STOP, and STATUS action codes. The TRACE and REFRESH action codes are optional.

The parm1 and parm2 fields are used differently by each of the actions.

Action parm1 parm2

STOP NORMAL or FORCE

STATUS LONGSTAT or SHORTSTAT

TRACE LONGTRACE or SHORT-TRACE TRACEON or TRACEOFF

The START subserver and REFRESH actions do not use the parm1 and parm2 fields.

Programming subsystem response to SRC requests

General programming concepts 759

The appropriate subsystem actions for the majority of SRC requests are programmed when the subsystem
object is defined to the SRC. The structures that subsystems use to respond to SRC requests are defined
in the /usr/include/spc.h file. Subsystems may use the following SRC run-time subroutines to meet
command processing requirements:

Subroutin
e

Description

srcrrqs Allows a subsystem to store the header from a request.

srcsrpy Allows a subsystem to send a reply to a request.

Status-request processing requires a combination of tasks and subroutines.

When subsystems receive requests they cannot process or that are invalid, they must send an error
packet with an error code of SRC_SUBICMD in response to the unknown, or invalid, request. SRC reserves
action codes 0-255 for SRC internal use. If your subsystem receives a request containing an action
code that is not valid, your subsystem must return an error code of SRC_SUBICMD. Valid action codes
supported by SRC are defined in the spc.h file. You can also define subsystem-specific action codes. An
action code is not valid if it is not defined by the SRC or your subsystem.

Note: Action codes 0-255 are reserved for SRC use.

Processing SRC status requests

Subsystems may be requested to provide three types of status reports: long subsystem status, short
subserver status, and long subserver status.

Note: Short subsystem status reporting is performed by the srcmstr daemon. Statcode and
reply-status value constants for this type of report are defined in the /usr/include/spc.h file.
The Status Value Constants table lists required and suggested reply-status value codes.

Reply status value codes

Value Meaning Subsystem Subserver

SRCWARN Received a request to
stop. (Will be stopped
within 20 seconds.)

X X

SRCACT Started and active. X X

SRCINAC Not active.

SRCINOP Inoperative. X X

SRCLOSD Closed.

SRCLSPN In the process of being
closed.

SRCNOSTAT Idle.

SRCOBIN Open, but not active.

SRCOPND Open.

SRCOPPN In the process of being
opened.

SRCSTAR Starting. X

SRCSTPG Stopping. X X

SRCTST TEST active.

SRCTSTPN TEST pending.

760 AIX Version 7.2: General programming concepts

The SRC lssrc command displays the received information on standard output. The information returned
by subsystems in response to a long status request is left to the discretion of the subsystem. Subsystems
that own subservers are responsible for tracking and reporting the state changes of subservers, if desired.
Use the srcstathdr subroutine to retrieve a standard status header to pass back at the beginning of your
status data.

The following steps are recommended in processing status requests:

1. To return status from a subsystem (short or long), allocate an array of statcode structures plus a
srchdr structure. The srchdr structure must start the buffer that you are sending in response to the
status request. The statcode structure is defined in the /usr/include/spc.h file.

struct statcode
{
 short objtype;
 short status;
 char objtext [65];
 char objname [30];
};

2. Fill in the objtype field with the SUBSYSTEM constant to indicate that the status is for a subsystem,
or with a subserver code point to indicate that the status is for a subserver.

3. Fill in the status field with one of the SRC status constants defined in the spc.h file.
4. Fill in the objtext field with the NLS text that you wish displayed as status. This field must be a NULL

terminated string.
5. Fill in the objname field with the name of the subsystem or subserver for which the objtext field

applies. This field must be a NULL terminated string.

Note: The subsystem and requester can agree to send other subsystem-defined information
back to the requester.

Programming subsystems to send reply packets

The packet that a subsystem returns to the SRC should be in the form of the srcrep structure as defined
in the /usr/include/spc.h file. The svrreply structure that is part of the srcrep structure will contain the
subsystem reply:

struct svrreply
{
 short rtncode; /*return code from the subsystem*/
 short objtype; /*SUBSYSTEM or SUBSERVER*/
 char objtext[65]; /*object description*/
 char objname[20]; /*object name*/
 char rtnmsg[256]; /*returned message*/
};

Use the srcsrpy subroutine to return a packet to the requester.

Creating a reply

To program a subsystem reply, use the following procedure:

1. Fill in the rtncode field with the SRC error code that applies. Use SRC_SUBMSG as the rtncode
field to return a subsystem-specific NLS message.

2. Fill in the objtype field with the SUBSYSTEM constant to indicate that the reply is for a subsystem, or
with the subserver code point to indicate that the reply is for a subserver.

3. Fill in the objname field with the subsystem name, subserver type, or subserver object that applies to
the reply.

4. Fill in the rtnmsg field with the subsystem-specific NLS message.
5. Key the appropriate entry in the srcsrpy Continued parameter. See "srcsrpy Continuation Packets" for

more information.

Note: The last packet from the subsystem must always have END specified in the Continued
parameter to the srcsrpy subroutine.

General programming concepts 761

srcsrpy continuation packets

Subsystem responses to SRC requests are made in the form of continuation packets. Two types of
continuation packets may be specified: Informative message, and reply packets.

The informative message is not passed back to the client. Instead, it is printed to the client's standard
output. The message must consist of NLS text, with message tokens filled in by the sending subsystem.
To send this type of continuation packet, specify CONTINUED in the srcsrpy subroutine Continued
parameter.

Note: The STOP subsystem action does not allow any kind of continuation. However, all other
action requests received by the subsystem from the SRC may be sent an informative message.

The reply packet is passed back to the client for further processing. Therefore, the packet must be agreed
upon by the subsystem and the requester. One example of this type of continuation is a status request.
When responding to subsystem status requests, specify STATCONTINUED in the srcsrpy Continued
parameter. When status reporting has completed, or all subsystem-defined reply packets have been sent,
specify END in the srcsrpy Continued parameter. The packet is then passed to the client to indicate the
end of the reply.

Programming subsystems to return SRC error packets

Subsystems are required to return error packets for both SRC errors and non-SRC errors.

When returning an SRC error, the reply packet that the subsystem returns should be in the form of the
svrreply structure of the srcrep structure, with the objname field filled in with the subsystem name,
subserver type, or subserver object in error. If the NLS message associated with the SRC error number
does not include any tokens, the error packet is returned in short form. This means the error packet
contains the SRC error number only. However, if tokens are associated with the error number, standard
NLS message text from the message catalog should be returned.

When returning a non-SRC error, the reply packet should be a svrreply structure with the rtncode field
set to the SRC_SUBMSG constant and the rtnmsg field set to a subsystem-specific NLS message. The
rtnmsg field is printed to the client's standard output.

Responding to trace requests

Support for the traceson and tracesoff commands is subsystem-dependent. If you choose to support
these commands, trace actions can be specified for subsystems and subservers.

Subsystem trace requests will arrive in the following form: A subsystem trace request will have the
subreq action field set to the TRACE constant and the subreq object field set to the SUBSYSTEM
constant. The trace action uses parm1 to indicate LONGTRACE or SHORTTRACE trace, and parm2 to
indicate TRACEON or TRACEOFF.

When the subsystem receives a trace subsystem packet with parm1 set to SHORTTRACE and parm2
set to TRACEON, the subsystem should turn short tracing on. Conversely, when the subsystem receives
a trace subsystem packet with parm1 set to LONGTRACE and parm2 set to TRACEON, the subsystem
should turn long tracing on. When the subsystem receives a trace subsystem packet with parm2 set to
TRACEOFF, the subsystem should turn subsystem tracing off.

Subserver trace requests will arrive in the following form: the subserver trace request will have the
subreq action field set to the TRACE constant and the subreq object field set to the subserver
code point of the subserver to send status on. The trace action uses parm1 to indicate LONGTRACE or
SHORTTRACE, and parm2 to indicate TRACEON or TRACEOFF.

When the subsystem receives a trace subserver packet with parm1 set to SHORTTRACE and parm2 set
to TRACEON, the subsystem should turn subserver short tracing on. Conversely, when the subsystem
receives a trace subserver packet with parm1 set to LONGTRACE and parm2 set to TRACEON, the
subsystem should turn subserver long tracing on. When the subsystem receives a trace subserver packet
with parm2 set to TRACEOFF, the subsystem should turn subserver tracing off.

Responding to refresh requests

762 AIX Version 7.2: General programming concepts

Support for subsystem refresh requests is subsystem-dependent. Subsystem programmers that choose
to support the refresh command should program their subsystems to interact with the SRC in the
following manner:

• A subsystem refresh request will have the subreq structure action field set to the REFRESH constant
and the subreq structure object field set to the SUBSYSTEM constant. The refresh subsystem action
does not use parm1 or parm2.

• When the subsystem receives the refresh request, the subsystem should reconfigure itself.

Defining your subsystem to the SRC
Subsystems are defined to the SRC object class as subsystem objects. Subservers are defined in the SRC
configuration database as subserver type objects.

The structures associated with each type of object are predefined in the sys/srcobj.h file.

A subsystem object is created with the mkssys command or the addssys subroutine. A subserver type
object is created with the mkserver command. You are not required to specify all possible options and
parameters using the configuration commands and subroutines. The SRC offers pre-set defaults. You
must specify only the required fields and any fields in which you want some value other than the default.

Descriptors can be added or modified at the command line by writing a shell script. They can also be
added or modified using the C interface. Commands and subroutines are available for configuring and
modifying the SRC objects.

Note: The choice of programming interfaces is provided for convenience only.

At the command line use the following commands:

Command Description

mkssys Adds a subsystem definition to the SRC configuration database.

mkserver Adds a subserver definition to the SRC configuration database.

chssys Changes a subsystem definition in the SRC configuration database.

chserver Changes a subserver definition in the SRC configuration database.

rmssys Removes a subsystem definition from the SRC configuration database.

rmserver Removes a subserver definition from the SRC configuration database.

When using the C interface, use the following subroutines:

Subroutine Description

addssys Adds a subsystem definition to the SRC configuration database

chssys Changes a subsystem definition in the SRC configuration database

defssys Initializes a new subsystem definition with default values

delssys Deletes an existing subsystem definition from the SRC configuration database

Note: The object code running with the chssys subroutine must be running
with the group system.

getssys Gets a subsystem definition from the SRC configuration database

getsubsvr Gets a subserver definition from the SRC configuration database

The mkssys and mkserver commands call the defssys subroutine internally to determine subsystem and
subserver default values prior to adding or modifying any values entered at the command line.

The getssys and getsubsvr subroutines are used when the SRC master program or a subsystem program
needs to retrieve data from the SRC configuration files.

General programming concepts 763

List of additional SRC subroutines
Use the following subroutines to program communication with the SRC and the subsystems controlled by
the SRC:

Subroutine Description

src_err_msg Returns message text for SRC errors encountered by SRC library routines. (Also see
threadsafe version src_err_msg_r)

srcsbuf Requests status from the subsystem in printable format. (Also see threadsafe
version srcsbuf_r)

srcsrqt Sends a message or request to the subsystem. (Also see threadsafe version
srcsrqt_r)

srcstat Requests short subsystem status. (Also see threadsafe version srcstat_r)

srcstathdr Gets the title text for SRC status.

srcstattxt Gets the text representation for an SRC status code. (Also see threadsafe version
srcstattxt_r)

srcstop Requests termination of the subsystem.

srcstrt Requests the start of a subsystem.

Trace facility
The trace facility helps you isolate system problems by monitoring selected system events or selected
processes. Events that can be monitored include: entry and exit to selected subroutines, kernel routines,
kernel extension routines, and interrupt handlers.

Trace can also be restricted to tracing a set of running processes or threads, or it can be used to initiate
and trace a program.

When the trace facility is active, information is recorded in a system trace log file. The trace facility
includes commands for activating and controlling traces and generating trace reports. Applications and
kernel extensions can use several subroutines to record additional events.

For more information on the trace facility, refer to the following:

The trace facility overview

The trace facility is in the bos.sysmgt.trace file set. To see if this file set is installed, type the following on
the command line:

lslpp -l | grep bos.sysmgt.trace

If a line is produced which includes bos.sysmgt.trace then the file set is installed, otherwise you must
install it.

The system trace facility records trace events which can be formatted later by the trace report command.
Trace events are compiled into kernel or application code, but are only traced if tracing is active.

Tracing is activated with the trace command or the trcstart subroutine. Tracing is stopped with either the
trcstop command or the trcstop subroutine. While active, tracing can be suspended or resumed with the
trcoff and trcon commands, or the trcoff and trcon subroutines.

Once the trace has been stopped with trcstop, a trace report can then be generated with the trcrpt
command. This command uses a template file, /etc/trcfmt, to know how to format the entries. The
templates are installed with the trcupdate command. For a discussion of the templates, see the
trcupdate command.

Controlling the trace

764 AIX Version 7.2: General programming concepts

The trace command starts the tracing of system events and controls the trace buffer and log file sizes.

There are three methods of gathering trace data.

1. The default method is to use 2 buffers to continuously gather trace data, writing one buffer while data
is being put into the other buffer. The log file wraps when it becomes full.

2. The circular method gathers trace data continuously, but only writes the data to the log file when
the trace is stopped. This is particularly useful for debugging a problem where you know when the
problem is happening and you just want to capture the data at that time. You can start the trace at any
time, and then stop it right after the problem occurs and you'll have captured the events around the
problem. This method is enabled with the -l trace daemon flag.

3. The third option only uses one trace buffer, and quits tracing when that buffer fills, and writes the
buffer to the log file. The trace is not stopped at this point, rather tracing is turned off as if a trcoff
command had been issued. At this point you will usually want to stop the trace with the trcstop
command. This option is most often used to gather performance data where we don't want trace to do
i/o or buffer swapping until the data has been gathered. Use the -f flag to enable this option.

You will usually want to run the trace command asynchronously, in other words, you want to enter the
trace command and then continue with other work. To run the trace asynchronously, use the -a flag or the
-x flag. If you use the -a flag, you must then stop the trace with the trcstop command. If you use the -x
flag, trace automatically stops when the program finishes.

It is usually desirable to limit the information that is traced. Use the -j events or -k events flags to specify
a set of events to include (-j) or exclude (-k).

Note: When you limit the trace to specific processes or threads, you also limit the amount of information
traced.

To display the program names associated with trace hooks, certain hooks must be enabled. These are
specified using the tidhk trace event group. For example, if you want to trace the mbuf hook, 254, and
show program names also, you need to run trace as follows:

trace -aJ tidhk -j 254

Tracing occurs. To stop tracing, type the following on a command line:

trcstop
trcrpt -O exec=on

The -O exec=on trcrpt option shows the program names, see the trcrpt command for more information.

It is often desirable to specify the buffer size and the maximum log file size. The trace buffers require real
memory to be available so that no paging is necessary to record trace hooks. The log file will fill to the
maximum size specified, and then wrap around, discarding the oldest trace data. The -T size and -L size
flags specify the size of the memory buffers and the maximum size of the trace data in the log file in bytes.

Note: Because the trace facility pins the data collection buffers, making this amount of memory
unavailable to the rest of the system, the trace facility can impact performance in a memory-constrained
environment. If the application being monitored is not memory-constrained, or if the percentage of
memory consumed by the trace routine is small compared to what is available in the system, the impact
of trace “stolen” memory should be small. If you do not specify a value, trace uses the default sizes.

Tracing can also be controlled from an application. See the trcstart, and trcstop articles.

Recording trace event data

There are two types of trace data.

generic data
consists of a data word, a buffer of opaque data and the opaque data's length. This is useful for tracing
items such as path names. See the Generic Trace Channels article in the Trace Facility Overview. It
can be found in Trace Facility.

General programming concepts 765

Note: Tracing of specific processes or threads is only supported for channel 0. It is not supported for
generic trace channels.

Non-generic data
This is what is normally traced by the AIX operating system. Each entry of this type consists of a
hook word and up to 5 words of trace data. For a 64-bit application these are 8-byte words. The C
programmer should use the macros TRCHKL0 through TRCHKL5, and TRCHKL0T through TRCHKL5T
defined in the /usr/include/sys/trcmacros.h file, to record non-generic data. If these macros can not
be used, see the article on the utrchook subroutine.

Generating a trace report

See the trcrpt command article for a full description of trcrpt. This command is used to generate a
readable trace report from the log file generated by the trace command. By default the command formats
data from the default log file, /var/adm/ras/trcfile. The trcrpt output is written to standard output.

To generate a trace report from the default log file, and write it to /tmp/rptout, enter

trcrpt >/tmp/rptout

To generate a trace report from the log file /tmp/tlog to /tmp/rptout, which includes program names and
system call names, use

trcrpt -O exec=on,svc=on /tmp/tlog >/tmp/rptout

Extracting trace data from a dump

If trace was active when the system takes a dump, the trace can usually be retrieved with the trcdead
command. To avoid overwriting the default trace log file on the current system, use the -o output-file
option.

For example:

trcdead -o /tmp/tlog /var/adm/ras/vmcore.0

creates a trace log file /tmp/tlog which may then be formatted with the following:

trcrpt /tmp/tlog

Trace facility commands

The following commands are part of the trace facility:

Command Function

trace Starts the tracing of system events. With this
command, you can control the size and manage the
trace log file as well as the internal trace buffers
that collect trace event data.

trcdead Extracts trace information from a system dump.
If the system halts while the trace facilities are
active, the contents of the internal trace buffers are
captured. This command extracts the trace event
data from the dump and writes it to the trace log
file.

766 AIX Version 7.2: General programming concepts

Command Function

trcnm Generates a kernel name list used by the trcrpt
command. A kernel name list is composed of a
symbol table and a loader symbol table of an object
file. The trcrpt command uses the kernel name list
file to interpret addresses when formatting a report
from a trace log file.

Note: It is recommended that you use the -n
trace option instead of trcnm. This puts name
list information into the trace log file instead of
a separate file, and includes symbols from kernel
extentions.

trcrpt Formats reports of trace event data contained in
the trace log file. You can specify the events to
be included (or omitted) in the report, as well as
determine the presentation of the output with this
command. The trcrpt command uses the trace
formatting templates stored in the /etc/trcfmt file
to determine how to interpret the data recorded for
each event.

trcstop Stops the tracing of system events.

trcupdate Updates the trace formatting templates stored in
the /etc/trcfmt file. When you add applications
or kernel extensions that record trace events,
templates for these events must be added to
the /etc/trcfmt file. The trcrpt command will use
the trace formatting templates to determine how
to interpret the data recorded for each event.
Software products that record events usually run
the trcupdate command as part of the installation
process.

Trace facility calls and subroutines

The following calls and subroutines are part of the trace facility:

Subroutine Description

trcgen, trcgent Records trace events of more than five words
of data. The trcgen subroutine can be used to
record an event as part of the system event
trace (trace channel 0) or to record an event
on a generic trace channel (channels 1 through
7). Specify the channel number in a subroutine
parameter when you record the trace event. The
trcgent subroutine appends a time stamp to the
event data. When using AIX 5L Version 5.3 with
the 5300-05 Technology Level and above, the
time stamp is always appended to the event data
regardless of the subroutine used. Use trcgenk
and trcgenkt in the kernel. C programmers should
always use the TRCGEN and TRCGENK macros.

General programming concepts 767

Subroutine Description

utrchook, utrchook64 Records trace events of up to five words of data.
These subroutines can be used to record an event
as part of the system event trace (trace channel
0). Kernel programmers can use trchook and
trchook64. C programmers should always use the
TRCHKL0 - TRCHKL5 and TRCHKL0T - TRCHKL5T
macros.

If you are not using these macros, you need to
build your own trace hook word. The format is
documented with the /etc/trcfmt file. Note that
the 32-bit and 64-bit traces have different hook
word formats.

trcoff Suspends the collection of trace data on either the
system event trace channel (channel 0) or a generic
trace channel (1 through 7). The trace channel
remains active and trace data collection can be
resumed by using the trcon subroutine.

trcon Starts the collection of trace data on a trace
channel. The channel can be either the system
event trace channel (0) or a generic channel (1
through 7). The trace channel, however, must
have been previously activated by using the trace
command or the trcstart subroutine. You can
suspend trace data collection by using the trcoff
subroutine.

trcstart Provides a library interface to the trace command.
It returns the channel number of the trace it
starts. If a generic channel is requested, the
channel number is one of the following numbers:
1,2,3,4,5,6, 7. Otherwise the channel number is 0.

trcstop Frees and deactivates a generic trace channel.

Trace facility files

File Description

/etc/trcfmt Contains the trace formatting templates used by
the trcrpt command to determine how to interpret
the data recorded for each event.

/var/adm/ras/trcfile Contains the default trace log file. The trace
command allows you to specify a different trace log
file.

/usr/include/sys/trchkid.h Contains trace hook identifier definitions.

/usr/include/sys/trcmacros.h Contains commonly used macros for recording
trace events.

Trace event data

See the /etc/trcfmt file for the format of the trace event data.

Trace hook identifiers

768 AIX Version 7.2: General programming concepts

A trace hook identifier is a three- or four-digit hexadecimal number that identifies an event being traced.
Prior to AIX 7.1and on 32-bit applications running on AIX 7.1 and above, only three-digit hook identifiers
can be used. When using a tracing macro such as TRCHKL1, you specify the trace hook as:

hhh00000

where hhh is the hook id.

On 64-bit applications and kernel routines running on AIX 7.1 and above, three- and four-digit identifiers
can be used. When using a tracing macro such as TRCHKL1, you specify the trace hook as:

hhhh0000

where hhhh is the hook id.

Note: If a four-digit identifier is used and the identifier is less than 0x1000, the least-significant digit must
be 0 (of the form 0x0hh0).

A three-digit identifier has an implicit 0 in its least-significant digit so that a 32-bit hook identifier is
equivalent to a 64-bit hook of the form hhh0.

Most trace hook identifiers are defined in the /usr/include/sys/trchkid.h file. The values 0x0100 through
0x0FF0 are available for use by 64-bit user applications. The values 0x010 through 0x0FF are available
for use by 32-bit user applications. All other values are reserved for system use. The currently defined
trace hook identifiers can be listed using the trcrpt -j command.

Trace facility generic trace channels

The trace facility supports up to eight active trace sessions at a time. Each trace session uses a channel of
the multiplexed trace special file, /dev/systrace. Channel 0 is used by the trace facility to record system
events. The tracing of system events is started and stopped by the trace and trcstop commands. If you
trace specific processes or threads, or if a program is traced, only channel 0 is used. Channels 1 through
7 are referred to as generic trace channels and can only be used by subsystems for other types of tracing
such as data link tracing.

To implement tracing using the generic trace channels of the trace facility, a subsystem calls the trcstart
subroutine to activate a trace channel and to determine the channel number. The subsystem modules
can then record trace events using the TRCGEN or TRCGENT macros, or if necessary, trcgen, trcgent,
trcgenk, or trcgenkt subroutine. The channel number returned by the trcstart subroutine is one of the
parameters that must be passed to these subroutines. The subsystem can suspend and resume trace
data collection using the trcoff and trcon subroutines and can deactivate a trace channel using the
trcstop subroutine. The subsystem must provide the user interface to activate and deactivate subsystem
tracing.

The trace hook IDs, most of which are stored in the /usr/include/sys/trchkid.h file, and the trace
formatting templates, which are stored in the /etc/trcfmt file, are shared by all the trace channels.

Related information
trace
trcdead
trcnm
trcrpt
trcstop
trcupdate

Start the trace facility
Use the following procedures to configure and start a system trace:

Configuring the trace command

General programming concepts 769

The trace command starts the tracing of system events and controls the size of and manages the trace
log file, as well as the internal trace buffers that collect trace event data. For information on the syntax of
this command, see trace Daemon.

Recording trace event data

The data recorded for each traced event consist of a word containing the trace hook identifier and the
hook type followed by a variable number of words of trace data optionally followed by a time stamp. The
word containing the trace hook identifier and the hook type is called the hook word. The remaining two
bytes of the hook word are called hook data and are available for recording event data.

Trace hook identifiers

A trace hook identifier is a three- or four-digit hexadecimal number that identifies an event being traced.
Prior to AIX 6.1 and on 32-bit applications running on AIX 6.1 and above, only three-digit hook identifiers
can be used. When using a tracing macro such as TRCHKL1, the trace hook is specified as:

hhh0000

where hhh is the hook identifier.

On 64-bit applications and kernel routines running on AIX 6.1 and above, three- and four-digit hook
identifiers can be used. When using a tracing macro such as TRCHKL1, the trace hook is specified as:

hhhh0000

where hhhh is the hook identifier.

Note: If a four-digit identifier is used and the identifier is less than 0x1000, the least-significant digit must
be 0 (of the form 0x0hh0).

A three-digit identifier has an implicit 0 in its least-significant digit such that a 32-bit hook identifier of hhh
is equivalent to a 64-bit hook identifier of hhh0.

Most trace hook identifiers are defined in the /usr/include/sys/trchkid.h file. The values 0x0100 through
0x0FF0 are available for use by 64-bit applications. The values 0x010 through 0x0FF are available for use
by 32-bit user applications. All other values are reserved for system use. The currently defined trace hook
identifers can be listed with the trcrpt -j command.

Using generic trace channels

The trace facility supports up to eight active trace sessions at a time. Each trace session uses a channel
of the multiplexed trace special file, /dev/systrace. Channel 0 is used by the trace facility to record
system events. The tracing of system events is started and stopped by the trace and trcstop commands.
Channels 1 through 7 are referred to as generic trace channels and may be used by subsystems for other
types of tracing such as data link tracing.

To implement tracing using the generic trace channels of the trace facility, a subsystem calls the trcstart
subroutine to activate a trace channel and to determine the channel number. The subsystem modules can
then record trace events TRCGEN or TRCGENT macros, or the trcgen, trcgent, trcgenk, or trcgenkt
subroutines. The channel number returned by the trcstart subroutine is one of the parameters that
must be passed to these subroutines. The subsystem can suspend and resume trace data collection
using the trcoff and trcon subroutines and can deactivate a trace channel using the trcstop subroutine.
The trace events for each channel are written to a separate trace log file, which, by default, is
named /var/adm/ras/trcfile.n, where n is the channel number. The subsystem must provide the user
interface to activate and deactivate subsystem tracing.

Starting a trace

Use one of the following procedures to start the trace facility.

• Start the trace facility by using the trace command.

Start the trace asynchronously. For example:

770 AIX Version 7.2: General programming concepts

trace -a
mycmd
trcstop

When using the trace facility asynchronously, use the trace daemon to trace the selected system events
(such as the mycmd command); then, use the trcstop command to stop the trace.

OR

Start the trace interactively. For example:

trace
->!mycmd
->quit

When using the trace facility interactively, get into the interactive mode as denoted by the -> prompt,
and use the trace subcommands (such as !) to trace the selected system events. Use the quit
subcommand to stop the trace.

• Use smit trace, and choose the Start Trace option.

smit trace

Stopping a trace

Use one of the following procedures to stop the trace you started earlier.

• When using trace asynchronously at the command line, use the trcstop command:

trace -a
mycmd
trcstop

When using the trace facility asynchronously, use the trace daemon to trace the selected system events
(such as the mycmd command); then, use the trcstop command to stop the trace.

• When using trace interactively at the command line, use the quit subcommand:

trace
->!mycmd
->quit

The interactive mode is denoted by the -> prompt. Use the trace subcommands (such as !) to trace the
selected system events. Use the quit subcommand to stop the trace.

• Use smit trace and choose the Stop Trace option:

smit trace

Generating a trace report

Use either of the following procedures to generate a report of events that have been traced.

• Use the trcrpt command:

trcrpt>/tmp/NewFile

The previous example formats the trace log file and sends the report to /tmp/newfile. The trcrpt
command reads the trace log file, formats the trace entries, and writes a report.

• Use the smit trcrpt command:

smit trcrpt

General programming concepts 771

Tracing user application
This topic describes tracing user applications.

The tracing operation depends on three logically different processes: the traced process, the controller
process, and the analyzer process. A process can simultaneously be the traced process, the controller
process and the analyzer process. When the traced process is running and a trace point is reached, a
trace event is recorded into the trace streams created for that process if the trace event type identifier
associated with this process is not filtered out.

The controller process controls the recording of trace events into trace streams. The controller process
performs the following operations for an active trace stream:

• Initializes the attributes of a trace stream.
• Creates the trace stream for a specified traced process using the initialized attributes.
• Starts and stops tracing for a trace stream.
• Filters the type of trace events to be recorded.
• Ends a trace stream.

The analyzer process retrieves the traced events either at runtime, when the trace stream is active and is
recording trace events; or after opening a trace log that is previously recorded and closed.

The posix_trace_create, posix_trace_create_withlog, and the posix_trace_open subroutines create a
trace stream identifier. The posix_trace_create and posix_trace_create_withlog subroutines are used
only by a controller process. The posix_trace_open subroutine is used only by an analyzer process.

A traced process contains a mapping of the trace event names to the trace event type identifiers that
are defined for the process. An active trace event records the system predefined trace event types,
such as the POSIX_TRACE_START, and the trace event types that are defined for the traced processes
but not filtered out by the trace stream. To define the mapping, call the posix_trace_eventid_open
subroutine from the instrumented application, or call the posix_trace_trid_eventid_open subroutine
from the controller process. For a prerecorded trace stream, the list of trace event types is obtained from
the prerecorded trace log.

The tracing subroutines can be used in debugging the possibly pre-instrumented code and postmortem
fault analysis. Debugging pre-instrumented code might require pre-filtering capabilities to avoid
overwhelming the trace stream and permits focusing on expected information. Postmortem fault analysis
requires comprehensive trace capabilities to be able to record all types of information.

The events to be traced belong to the following two classes:

• User trace events that the instrumented application generated.
• System trace events that the operating system generated in correspondence with the trace control

operation.

In a file associated with an active trace stream, the st_ctime and st_mtime fields are marked for
update every time any of the tracing operations modifies that file.

In a file associated with a trace stream, the st_atime field is marked for update every time any of the
tracing operations causes data to be read from that file.

If an application performs any operation on a file descriptor associated with an active or prerecorded
trace stream, the results are not defined until calling the posix_trace_shutdown or posix_trace_close
subroutines for that trace stream.

Tracing data structures
This section describes tracing data structure.

The <trace.h> header file defines the posix_trace_status_info structure and posix_trace_event_info
structures.

posix_trace_status_info structure

772 AIX Version 7.2: General programming concepts

To facilitate the control of a trace stream, call the posix_trace_get_status subroutine to dynamically
obtain the information about the current state of an active trace stream.

The posix_trace_status_info structure defined in the <trace.h> file contains the following members:

Member type Member name Description

int posix_stream_status The operating mode of the trace stream.

int posix_stream_full_status The full status of the trace stream.

int posix_stream_overrun_status Indicates whether trace events were lost in the trace
stream.

int posix_stream_flush_status Indicates whether a flush is in progress.

int posix_stream_flush_error Indicates whether any error occurred during the last
flush operation.

int posix_log_overrun_status Indicates whether trace events were lost in the trace
log.

int posix_log_full_status The full status of the trace log.

The posix_stream_status member indicates the operating mode of the trace stream. It can have one of
the following values defined by the manifest constants in the <trace.h> header:
POSIX_TRACE_RUNNING

The tracing is in progress. The trace stream is accepting trace events.
POSIX_TRACE_SUSPENDED

The trace stream is not accepting trace events. The tracing operation has not started or has stopped,
either following a posix_trace_stop subroutine call or because the trace resources are exhausted.

The posix_stream_full_status member indicates the full status of the trace stream. It can have one of
the following values defined by manifest constants in the <trace.h> header:
POSIX_TRACE_FULL

The space in the trace stream for trace events is exhausted.
POSIX_TRACE_NOT_FULL

The space in the trace stream is not full.

The combination of the posix_stream_status and posix_stream_full_status members indicate the
actual status of the stream. The status can be interpreted as follows:
POSIX_TRACE_RUNNING and POSIX_TRACE_NOT_FULL

The tracing is in progress, and the space is available for recording more trace events.
POSIX_TRACE_RUNNING and POSIX_TRACE_FULL

The tracing is in progress, and the trace stream is full of trace events. If the stream full policy is set to
POSIX_TRACE_LOOP, this status might occur. The trace stream contains trace events recorded during
a moving time window of previous trace events, and some previous trace events might be overwritten
and lost.

POSIX_TRACE_SUSPENDED and POSIX_TRACE_NOT_FULL
The tracing has not started, the posix_trace_stop subroutine stopped the tracing, or the
posix_trace_clear subroutine cleared the tracing.

POSIX_TRACE_SUSPENDED and POSIX_TRACE_FULL
The tracing stops. It stops because the stream full policy attribute is set to
POSIX_TRACE_UNTIL_FULL and the trace resources is exhausted, or because calling the
posix_trace_stop subroutine when the trace resource is exhausted.

The posix_stream_overrun_status member indicates whether trace events are lost in the trace stream.
This member can have one of the following values that are defined by manifest constants in the <trace.h>
header:

General programming concepts 773

POSIX_TRACE_OVERRUN
At least one trace event is lost and is not recorded in the trace stream.

POSIX_TRACE_NO_OVERRUN
No trace events are lost.

When the corresponding trace stream is created, the posix_stream_overrun_status member is set to
POSIX_TRACE_NO_OVERRUN. When an overrun occurs, the status is set to POSIX_TRACE_OVERRUN.

An overrun occurs in the following situations:

• The policy is POSIX_TRACE_LOOP and a recorded trace event is overwritten.
• The policy is POSIX_TRACE_UNTIL_FULL and the trace stream is full when a trace event is generated.
• The policy is POSIX_TRACE_FLUSH and more than one trace event is lost while flushing the trace

stream to the trace log.

The posix_stream_overrun_status member is reset to zero after its value is read.

The posix_stream_flush_status member indicates whether a flush operation is being performed and can
have one of the following values that the manifest constants in the <trace.h> header file define:
POSIX_TRACE_FLUSHING

The trace stream is being flushed to the trace log.
POSIX_TRACE_NOT_FLUSHING

The posix_stream_flush_status member is set to POSIX_TRACE_NOT_FLUSHING if no flush
operation is in progress.

The posix_stream_flush_status member is set to POSIX_TRACE_FLUSHING in the following situations:

• A flush operation is in progress because calling the posix_trace_flush subroutine.
• A flush operation is in progress because the trace stream becomes full with the stream-full-policy

attribute set to POSIX_TRACE_FLUSH.

The posix_stream_flush_error member is set to zero if no error occurs in the flushing. If an error occurs
in a previous flushing operation, the posix_stream_flush_error member is set to the value of the first
error that occurs. If more than one error occurs in the flushing operation, the first error value is used and
the others are discarded. The posix_stream_flush_error member is reset to zero after its value is read.

The posix_log_overrun_status member indicates whether trace events are lost in the trace log. This
member can have one of the following values that the manifest constants in the <trace.h> header defines:
POSIX_TRACE_OVERRUN

At least one trace event is lost.
POSIX_TRACE_NO_OVERRUN

No trace event is lost.
Whenever an overrun occurs, the posix_log_overrun_status member is set to POSIX_TRACE_OVERRUN.
When the corresponding trace stream is created, the posix_log_overrun_status member is set to
POSIX_TRACE_NO_OVERRUN.

The posix_log_overrun_status member is reset to zero after its value is read.

If an active trace stream is created by the posix_trace_create subroutine and it has no log, the
posix_log_overrun_status member is set to POSIX_TRACE_NO_OVERRUN.

The posix_log_full_status member indicates the full status of the trace log, and it can have one of the
following values defined by manifest constants in the <trace.h> header:
POSIX_TRACE_FULL

The space in the trace log is full.
POSIX_TRACE_NOT_FULL

The space in the trace log is not full.

The posix_log_full_status member is meaningful only when the log-full-policy attribute is either
POSIX_TRACE_UNTIL_FULL or POSIX_TRACE_LOOP.

774 AIX Version 7.2: General programming concepts

If an active trace stream is created by the posix_trace_create subroutine and it has no log, the
posix_log_full_status member is set to POSIX_TRACE_NOT_FULL.

posix_trace_event_info Structure

The trace event structure posix_trace_event_info contains the information for a recorded trace event.
The posix_trace_getnext_event, posix_trace_timedgetnext_event, and posix_trace_trygetnext_event
subroutines return this subroutine.

The posix_trace_event_info structure that is defined in the <trace.h> header file contains the following
members:

Member type Member name Description

trace_event_id_t posix_event_id Trace event type identification.

pid_t posix_pid Process ID of the process that
generates the trace event.

void* posix_prog_address Address where the trace point is
invoked.

int posix_truncation_status Truncation status of the data
associated with this trace event.

struct timespec posix_timestamp Time at which the trace event is
generated.

pthread_t posix_thread_id ID of the thread that generates
the trace event.

The posix_event_id member represents the identification of the trace event type. You cannot define the
member value directly. To return the identification, run one of the following subroutines:

• posix_trace_trid_eventid_open
• posix_trace_eventtypelist_getnext_id
• posix_trace_eventid_open

To obtain the name of the trace event type, run the posix_trace_eventid_get_name subroutine.

The posix_pid is the process identifier of the traced process that generates the trace event. If the
posix_event_id member is one of the system trace events and the trace event is not associated with any
process, the posix_pid member is set to zero.

For a user trace event, the posix_prog_address member is the mapped address of a process and the
point at which the associated call to the posix_trace_event subroutine is made.

The posix_truncation_status member defines the truncation status of the data associated with a trace
event. The posix_truncation_status member can have one of the following values that the manifest
constants in the <trace.h> header define:
POSIX_TRACE_NOT_TRUNCATED

All of the traced data is available.
POSIX_TRACE_TRUNCATED_RECORD

Data is truncated when the trace event is generated.
POSIX_TRACE_TRUNCATED_READ

Data is truncated when the trace event is read from a trace stream or a trace log. This truncation
status overrides the POSIX_TRACE_TRUNCATED_RECORD status.

The posix_timestamp member defines the time when the trace event is generated. The clock used
is CLOCK_REALTIME. To retrieve the resolution of this clock, call the posix_trace_attr_getclockres
subroutine.

General programming concepts 775

The posix_thread_id member is the identifier of the thread that generates the trace event. If the
posix_event_id member is one of the system trace events and that trace event is not associated with
any thread, the posix_thread_id member is set to zero.

Trace stream attributes
The following trace stream attributes compose the posix_trace_attr_t trace stream attributes object:

• The genversion attribute identifies the origin and version of the trace system.
• The tracename attribute is a character string defined by the trace controller. It identifies the trace

stream.
• The creation-time attribute represents the time when the trace stream is created.
• The clock-resolution attribute defines the clock resolution of the clock that is used to generate

timestamps.
• The stream-min-size attribute defines the minimum size in byte of the trace stream. The size is strictly

reserved for the trace events.
• The stream-full-policy attribute defines the policy to follow when the trace stream is full. Its value is

POSIX_TRACE_LOOP, POSIX_TRACE_UNTIL_FULL, or POSIX_TRACE_FLUSH.
• The max-data-size attribute defines the maximum size in byte of the record of a trace event.
• The inheritance attribute specifies whether a newly created trace stream inherits tracing in its

parent's process trace stream. The value of this attribute is either POSIX_TRACE_INHERITED or
POSIX_TRACE_CLOSE_FOR_CHILD.

• The log-max-size attribute defines the maximum size in byte of the trace log associated with an active
trace stream. Other stream data is not included in this size.

• The log-full-policy attribute defines the policy of a trace log associated with an active trace stream to be
POSIX_TRACE_LOOP, POSIX_TRACE_UNTIL_FULL, or POSIX_TRACE_APPEND.

Trace event type definitions
The <trace.h> header file defines system trace event types and user trace event types. This topic
describes the trace event types and the definitions.

System trace event type definitions

To interpret a trace stream or a trace log, a trace analyzer process requires information on trace events
and information on system trace events that report the invocation of trace operations.

The following system trace event types track the invocation of the trace operations:
POSIX_TRACE_START

Tracks the invocation of a trace start operation.
POSIX_TRACE_STOP

Tracks the invocation of a trace stop operation.
POSIX_TRACE_FILTER

Tracks the invocation of a change operation on a trace event type.

The following system trace event types report the trace events that are recorded by the Posix Trace
Library subroutines:
POSIX_TRACE_OVERFLOW

A trace overflow begins.
POSIX_TRACE_RESUME

A trace overflow ends.
POSIX_TRACE_FLUSH_START

A flush operation begins.
POSIX_TRACE_FLUSH_STOP

A flush operation ends.

776 AIX Version 7.2: General programming concepts

POSIX_TRACE_ERROR
A trace error occurs.

The POSIX_TRACE_START and POSIX_TRACE_STOP trace events specify the elapsed time that the trace
stream is running.

The POSIX_TRACE_STOP trace event with a value of zero indicates a call of the posix_trace_stop
subroutine.

The POSIX_TRACE_STOP trace event with a value of nonzero indicates an automatic stop of the trace
stream. For more information, see the posix_trace_attr_getstreamfullpolicy subroutine.

The POSIX_TRACE_FILTER trace event indicates that the value of the filter of the trace event types
changes when the trace stream is running.

The POSIX_TRACE_ERROR indicates that an internal error of the trace system occurs.

The POSIX_TRACE_OVERFLOW trace event is reported with a timestamp equal to the timestamp of the
first trace event that is overwritten. This trace event indicates that some generated trace events are lost.

The POSIX_TRACE_RESUME trace event indicates that the trace system is recording trace events after an
overflow.

A constant with the name of a trace event and a trace_event_id_t constant defines a trace event type.
Trace event data is associated with some of these trace events.

The System Trace Events table describes the system trace events that are predefined.

Table 97. System Trace Events

Event name Constant Associated data Data type

posix_trace_error POSIX_TRACE_ERROR Error int

posix_trace_start POSIX_TRACE_START event_filter trace_event_set_t

posix_trace_stop POSIX_TRACE_STOP Auto int

posix_trace_filter POSIX_TRACE_FILTER old_event_filter,
new_event_filter

trace_event_set_t

posix_trace_overflow POSIX_TRACE_OVERFLOW none none

posix_trace_resume POSIX_TRACE_RESUME none none

posix_trace_flush_star
t

POSIX_TRACE_FLUSH_START none none

posix_trace_flush_sto
p

POSIX_TRACE_FLUSH_STOP none none

User trace event type definitions

The <trace.h> header file defines the user trace event POSIX_TRACE_UNNAMED_USEREVENT. If the
limit of TRACE_USER_EVENT_MAX is reached, the POSIX_TRACE_UNNAMED_USEREVENT user event is
returned when an application tries to register more events than it is allowed. No data is associated with
this user trace event.

The POSIX_TRACE_UNNAMED_USEREVENT constant is predefined for the
posix_trace_unnamed_userevent trace event name.

Trace subroutines
This section describes the trace subroutines and the different tracing roles they support.

The trace interface is built and structured to improve portability by using trace data of opaque type.

General programming concepts 777

To set up and customize resources for a trace controller process to run a trace stream, use the
subroutines in the following table.

Subroutine Purpose

posix_trace_attr_init Initializes attributes

posix_trace_attr_destroy Destroys attributes

posix_trace_attr_getgenversion Gets the version of a trace stream

posix_trace_attr_getname Gets the trace name

posix_trace_attr_setname Sets the trace name

posix_trace_attr_getinherited Gets the inheritance policy of a trace stream

posix_trace_attr_setinherited Sets the inheritance policy of a trace stream

posix_trace_attr_setstreamfullpolicy Sets the stream full policy

posix_trace_attr_getstreamfullpolicy Gets the stream full policy

posix_trace_attr_setlogfullpolicy Sets the log full policy of a trace stream

posix_trace_attr_getlogfullpolicy Gets the log full policy of a trace stream

posix_trace_attr_setlogsize Sets the size of the log of a trace stream

posix_trace_attr_setmaxdatasize Sets the maximum size of the user trace event data

posix_trace_attr_setstreamsize Sets the size of a trace stream

posix_trace_attr_getmaxusereventsize Gets the maximum size of an user event for a given
length

posix_trace_create Creates an active trace stream

posix_trace_create_withlog Creates an active trace stream and associates it
with a trace log

posix_trace_flush Copies the content of a trace stream into the
associated trace log of the trace stream

posix_trace_shutdown Shuts down a trace stream

posix_trace_clear Clears a trace stream and a trace log

posix_trace_trid_eventid_open Associates a trace event type identifier to a user
trace event name

posix_trace_eventid_equal Compares two trace event type identifiers

posix_trace_eventid_get_name Retrieves the trace event name from a trace event
type identifier

posix_trace_eventtypelist_getnext_id,
posix_trace_eventtypelist_rewind

Iterate over a mapping of trace event types

posix_trace_eventset_add Adds a trace event type in a trace event type set

posix_trace_eventset_empty Empties a trace event type set

posix_trace_eventset_del Deletes a trace event type from a trace event type
set

posix_trace_eventset_fill Fills in a trace event type set

posix_trace_eventset_ismember Tests if the trace event type is included in the trace
event type set

778 AIX Version 7.2: General programming concepts

Subroutine Purpose

posix_trace_get_filter Gets the filter of an initialized trace stream

posix_trace_set_filter Sets the filter of an initialized trace stream

posix_trace_start Starts a trace stream

posix_trace_stop Stops a trace stream

posix_trace_get_attr Reads trace stream information

posix_trace_get_status Gets trace attributes or trace status

To set trace point for a traced process, use the posix_trace_event and posix_trace_eventid_open
subroutines. These subroutines define identifiers of trace event types and insert trace points.

The following table shows the subroutines that retrieve information from a trace stream and trace log for
a trace analyzer process.

Subroutine Purpose

posix_trace_attr_getname Gets the trace name

posix_trace_attr_getgenversion Reads identification information

posix_trace_attr_getcreatetime Gets the creation time of a trace stream

posix_trace_attr_getinherited Gets the inheritance policy of a trace stream

posix_trace_attr_getstreamfullpolicy Gets the stream full policy

posix_trace_attr_getlogfullpolicy Gets the log full policy of a trace stream

posix_trace_attr_getmaxusereventsize Gets the maximum size of an user event for a given
length

posix_trace_attr_getmaxsystemeventsize Gets the maximum size of a system trace event

posix_trace_attr_getlogsize Gets the size of the log of a trace stream

posix_trace_attr_getmaxdatasize Gets the maximum size of user trace event data

posix_trace_attr_getstreamsize Gets the size of a trace stream

posix_trace_trid_eventid_open Associates a trace event type identifier to a user
trace event name

posix_trace_eventid_equal Compares two trace event type identifiers

posix_trace_eventid_get_name Gets the trace event name from a trace event type
identifier

posix_trace_eventtypelist_getnext_id,
posix_trace_eventtypelist_rewind

Iterate over a mapping of trace event types

posix_trace_open Opens a trace log

posix_trace_close Closes a trace log

posix_trace_rewind Re-initializes a trace log for reading

posix_trace_get_attr Reads the information of a trace stream

posix_trace_get_status Reads the status of a trace stream

posix_trace_getnext_event Reads a trace event

General programming concepts 779

Subroutine Purpose

posix_trace_timedgetnext_event,
posix_trace_trygetnext_event

Gets a trace event

tty subsystem
AIX is a multiuser operating system that allows user access from local or remotely attached devices. The
communication layer that supports this function is the tty subsystem.

The communication between terminal devices and the programs that read and write to them is controlled
by the tty interface. Examples of tty devices are:

• Modems
• ASCII terminals
• System consoles
• Serial printers
• Xterms or aixterms under X-Windows

This overview provides information on the following topics:

TTY subsystem objectives
The tty subsystem is responsible for:

• Controlling the physical flow of data on asynchronous lines (including the transmission speed, character
size, and line availability)

• Interpreting the data by recognizing special characters and adapting to national languages
• Controlling jobs and terminal access by using the concept of controlling terminal

A controlling terminal manages the input and output operations of a group of processes. The tty special
file supports the controlling terminal interface. In practice, user programs seldom open terminal files,
such as dev/tty5. These files are opened by a getty or rlogind command and become the user's standard
input and output devices.

See tty Special File in Files Reference for more information about the controlling terminal.

tty subsystem modules
To perform its tasks, the tty subsystem is composed of modules, or disciplines. A module is a
set of processing rules that govern the interface for communication between the computer and an
asynchronous device. Modules can be added and removed dynamically for each tty.

The tty subsystem supports three main types of modules:

tty drivers

tty drivers, or hardware disciplines, directly control the hardware (tty devices) or pseudo-hardware
(pty devices). They perform the actual input and output to the adapter by providing services to the
modules above it. The services are flow control and special semantics when a port is being opened.

The following tty drivers are provided:

Driver Description

cxma 128-port asynchronous PCI controller.

cxpa 8-port asynchronous PCI controller.

lft Low-function terminal. The tty name is /dev/lftY, where Y >= 0.

pty pseudo-terminal device driver.

780 AIX Version 7.2: General programming concepts

Driver Description

sa 2-port asynchronous EIA-232 PCI adapter.

sf Universal asynchronous receiver/transceivers (UARTs) on system planar.

The “TTY drivers” on page 788 section provides more information.

Line disciplines

Line disciplines provide editing, job control, and special character interpretation. They perform all
transformations that occur on the inbound and outbound data streams. Line disciplines also perform
most of the error handling and status monitoring for the tty driver.

The following line disciplines are provided:

Subroutine Description

ldterm Terminal devices

sptr Serial printer (splp command)

slip Serial Line Internet Protocol (slattach command)

Converter modules

Converter modules, or mapping disciplines, translate, or map, input and output characters.

The following converter modules are provided:

Converter Description

nls National language support for terminal mapping; this converter
translates incoming and outgoing characters on the data stream,
based on the input and output maps defined for the port (see the
setmaps command)

lc_sjis and uc_sjis Upper and lower converter used to translate multibyte characters
between the Shifted Japanese Industrial Standard (SJIS) and the
Advanced Japanese EUC Code (AJEC) handled by the ldterm line
discipline.

“Converter modules” on page 787 provides more information on converters.

TTY subsystem structure
The tty subsystem is based on STREAMS. This STREAMS-based structure provides modularity and
flexibility, and enables the following features:

• Easy customizing; users can customize their terminal subsystem environment by adding and removing
modules of their choice.

• Reusable modules; for example, the same line discipline module can be used on many tty devices with
different configurations.

• Easy addition of new features to the terminal subsystem.
• Providing an homogeneous tty interface on heterogeneous devices.

The structure of a tty stream is made up of the following modules:

• The stream head, processing the user's requests. The stream head is the same for all tty devices,
regardless of what line discipline or tty driver is in use.

• An optional upper converter (uc_sjis for example), a converter module pushed above the line discipline
to convert upstream and downstream data.

• The line discipline.

General programming concepts 781

• An optional lower converter (lc_sjis for example), a converter module pushed below the line discipline
to convert upstream and downstream data.

• An optional character mapping module (nls), a converter module pushed above the tty driver to support
input and output terminal mapping.

• The stream end: a tty driver.

Unless required, the internationalization modules are not present in the tty stream.

For a serial printer, the internationalization modules are usually not present on the stream; therefore, the
structure is simpler.

Common services
The /usr/include/sys/ioctl.h and /usr/include/termios.h files describe the interface to the common
services provided by the tty subsystem. The ioctl.h file, which is used by all of the modules, includes the
winsize structure, as well as several ioctl commands. The termios.h file includes the POSIX compliant
subroutines and data types.

The provided services are grouped and discussed here according to their specific functions.

Hardware control services
The following subroutines are provided for hardware control:

Subroutine Description

cfgetispeed Gets input baud rate

cfgetospeed Gets output baud rate

cfsetispeed Sets input baud rate

cfsetospeed Sets output baud rate

tcsendbreak Sends a break on an asynchronous serial data line

Flow control services
The following subroutines are provided for flow control:

Subroutin
e

Description

tcdrain Waits for output to complete

tcflow Performs flow control functions

tcflush Discards data from the specified queue

Terminal information and control
The following subroutines are provided for terminal information and control:

Subroutine Description

isatty Determines if the device is a terminal

setcsmap Reads a code set map file and assigns it to the
standard input device

tcgetattr Gets terminal state

tcsetattr Sets terminal state

ttylock, ttywait, ttyunlock, or ttylocked Controls tty locking functions

782 AIX Version 7.2: General programming concepts

Subroutine Description

ttyname Gets the name of a terminal

Window and terminal size services

The kernel stores the winsize structure to provide a consistent interface for the current terminal or
window size. The winsize structure contains the following fields:

Field Description

ws_row Indicates the number of rows (in characters) on the window or terminal

ws_col Indicates the number of columns (in characters) on the window or terminal

ws_xpixel Indicates the horizontal size (in pixels) of the window or terminal

ws_ypixel Indicates the vertical size (in pixels) of the window or terminal

By convention, a value of 0 in all of the winsize structure fields indicates that the structure has not yet
been set up.

Subroutine Description

termdef Queries terminal characteristics.

TIOCGWINSZ Gets the window size. The argument to this ioctl operation is a pointer to a winsize
structure, into which the current terminal or window size is placed.

TIOCSWINSZ Sets the window size. The argument to this ioctl operation is a pointer to a winsize
structure, which is used to set the current terminal or window size information. If the
new information differs from the previous, a SIGWINCH signal is sent to the terminal
process group.

Process group management services
The following subroutines are provided for process group management:

Subroutine Description

tcgetpgrp Gets foreground process group ID

tcsetpgrp Sets foreground process group ID

Buffer size operations

The following ioctl operations are used for setting the size of the terminal input and output buffers. The
argument to these operations is a pointer to an integer specifying the size of the buffer.

Operations Description

TXSETIHOG Sets the hog limit for the number of input characters that can be received and stored
in the internal tty buffers before the process reads them. The default hog limit is 8192
characters. Once the hog limit plus one character is reached, an error is logged in the
error log and the input buffer is flushed. The hog number should not be too large, since
the buffer is allocated from the system-pinned memory.

General programming concepts 783

Operations Description

TXSETOHOG Sets the hog limit for the number of output characters buffered to echo input. The
default hog limit is 8192 characters. Once the hog output limit is reached, input
characters are no longer echoed. The hog number should not be too large, since the
buffer is allocated from the system-pinned memory.

Synchronization
The tty subsystem takes advantage of the synchronization provided by STREAMS. The tty stream modules
are configured with the queue pair level synchronization. This synchronization allows the parallelization of
the processing for two different streams.

Related information
rlogind
setmaps
stty
xdm
eucioctl.h
lft
pty
setmaps file
termios.h
tty file

Line discipline module (ldterm)
The ldterm line discipline is the common line discipline for terminals.

This line discipline is POSIX compliant and also ensures compatibility with the BSD interface. The latter
line discipline is supported only for compatibility with older applications. For portability reasons, it is
strongly recommended that you use the POSIX interface in new applications.

This section describes the features provided by the ldterm line discipline. For more information about
controlling ldterm, see "termios.h File" in Files Reference

Terminal parameters

The parameters that control certain terminal I/O characteristics are specified in the termios structure as
defined in the termios.h file. The termios structure includes (but is not limited to) the following members:

tcflag_t c_iflag
Input modes

tcflag_t c_oflag
Output modes

tcflag_t c_cflag
Control modes

tcflag_t c_lflag
Local modes

cc_t c_cc[NCCS]
Control characters.

The tcflag_t and cc_t unsigned integer types are defined in the termios.h file. The NCCS symbol is
also defined in the termios.h file.

Process group session management (job control)

784 AIX Version 7.2: General programming concepts

A controlling terminal distinguishes one process group in the session, with which it is associated, to be the
foreground process group. All other process groups in the session are designated as background process
groups. The foreground process group plays a special role in handling signals.

Command interpreter processes that support job control, such as the Korn shell (the ksh command)
and the C shell (the csh command), can allocate the terminal to different jobs, or process groups, by
placing related processes in a single process group and associating this process group with the terminal.
A terminal's foreground process group can be set or examined by a process, assuming the permission
requirements are met. The terminal driver assists in job allocation by restricting access to the terminal by
processes that are not in the foreground process group.

Terminal access contro

If a process that is not in the foreground process group of its controlling terminal attempts to read from
the controlling terminal, the process group of that process is sent a SIGTTIN signal. However, if the
reading process is ignoring or blocking the SIGTTIN signal, or if the process group of the reading process
is orphaned, the read request returns a value of -1, sets the errno global variable to EIO, and does not
send a signal.

If a process that is not in the foreground process group of its controlling terminal attempts to write
to the controlling terminal, the process group of that process is sent a SIGTTOU signal. However, the
management of the SIGTTOU signal depends on the TOSTOP flag which is defined in the c_lflag field
of the termios structure. If the TOSTOP flag is not set, or if the TOSTOP flag is set and the process is
ignoring or blocking the SIGTTOU signal, the process is allowed to write to the terminal, and the SIGTTOU
signal is not sent. If the TOSTOP flag is set, the process group of the writing process is orphaned, and the
writing process is not ignoring or blocking the SIGTTOU signal, then the write request returns a value of
-1, sets the errno global variable to EIO, and does not send a signal.

Certain functions that set terminal parameters (tcsetattr, tcsendbreak, tcflow, and tcflush) are treated
in the same manner as write requests, except that the TOSTOP flag is ignored. The effect is identical to
that of terminal write requests when the TOSTOP flag is set.

Reading data and input processing

Two general kinds of input processing are available, depending on whether the terminal device file is in
canonical or noncanonical mode. Additionally, input characters are processed according to the c_iflag
and c_lflag fields. Such processing can include echoing, or the transmitting of input characters
immediately back to the terminal that sent them. Echoing is useful for terminals that can operate in
full-duplex mode.

A read request can be handled in two ways, depending on whether the O_NONBLOCK flag is set by an
open or fcntl subroutine. If the O_NONBLOCK flag is not set, the read request is blocked until data is
available or until a signal is received. If the O_NONBLOCK flag is set, the read request is completed,
without blocking, in one of three ways:

• If there is enough data available to satisfy the entire request, the read request completes successfully
and returns the number of bytes read.

• If there is not enough data available to satisfy the entire request, the read request completes
successfully, having read as much data as possible, and returns the number of bytes it was able to
read.

• If there is no data available, the read request returns a value of -1 and sets the errno global variable to
EAGAIN.

The availability of data depends on whether the input processing mode is canonical or noncanonical. The
canonical or noncanonical modes can be set with the stty command.

Canonical mode input processing

In canonical mode input processing (ICANON flag set in c_lflag field of termios structure), terminal
input is processed in units of lines. A line is delimited by a new-line (ASCII LF) character, an end-of-file
(EOF) character, or an end-of-line (EOL) character. This means that a program attempting to read is
blocked until an entire line has been typed or a signal has been received. Also, regardless of how many
characters are specified in the read request, no more than one line is returned. It is not, however,

General programming concepts 785

necessary to read an entire line at once. Any number of characters can be specified in a read request
without losing information. During input, erase and kill processing is done.

ERASE character
(Backspace, by default) erases the last character typed

WERASE character
(Ctrl-W key sequence, by default) erases the last word typed in the current line, but not any preceding
spaces or tabs

(A word is defined as a sequence of nonblank characters; tabs are regarded as blanks.) Neither the ERASE
nor the WERASE character erases beyond the beginning of the line.

KILL character
(Ctrl-U sequence, by default) deletes the entire input line and, optionally, outputs a new-line character

All of these characters operate on a keystroke basis, independent of any backspacing or tabbing that
might have been done.

REPRINT character
(Ctrl-R sequence, by default) prints a new line followed by the characters from the previous line that
have not been read

Reprinting also occurs automatically if characters that would normally be erased from the screen are
fouled by program output. The characters are reprinted as if they were being echoed. Consequently, if
the ECHO flag is not set in the c_lflag field of the termios structure, the characters are not printed.
The ERASE and KILL characters can be entered literally by preceding them with the escape character \
(backslash), in which case, the escape character is not read. The ERASE, WERASE, and KILL characters
can be changed.

Noncanonical mode input processing

In noncanonical mode input processing (-ICANON flag set in c_lflag field of termios structure), input
bytes are not assembled into lines, and erase and kill processing does not occur.

MIN
Represents the minimum number of bytes that should be received when the read request is
successful

TIME
A timer of 0.1-second granularity that is used to time-out burst and short-term data transmissions

The values of the MIN and TIME members of the c_cc array are used to determine how to process the
bytes received. The MIN and TIME values can be set with the stty command. MIN and MAX have values
from 0 to 265. The four possible combinations for MIN and TIME and their interactions are described in
the subsequent paragraphs.

Case A: MIN0, TIME0

In this case, TIME serves as an interbyte timer, which is activated after the first byte is received and
reset each time a byte is received. If MIN bytes are received before the interbyte timer expires, the read
request is satisfied. If the timer expires before MIN bytes are received, the characters received to that
point are returned to the user. If TIME expires, at least one byte is returned. (The timer would not have
been enabled unless a byte was received.) The read operation blocks until the MIN and TIME mechanisms
are activated by the receipt of the first byte or until a signal is received.

Case B: MIN0, TIME = 0

In this case, only MIN is significant; the timer is not significant (the value of TIME is 0). A pending read
request is not satisfied (blocks) until MIN bytes are received or until a signal is received. A program that
uses this case to read record-based terminal I/O can block indefinitely in the read operation.

Case C: MIN = 0, TIME0

In this case, because the value of MIN is 0, TIME no longer represents an interbyte timer. It now serves as
a read timer that is activated as soon as the read request is processed. A read request is satisfied as soon
as a byte is received or when the read timer expires. Note that if the timer expires, no bytes are returned.

786 AIX Version 7.2: General programming concepts

If the timer does not expire, the read request can be satisfied only if a byte is received. In this case, the
read operation does not block indefinitely, waiting for a byte. If, after the read request is initiated, no byte
is received within the period specified by TIME multiplied by 0.1 seconds, the read request returns a value
of 0, having read no data.

Case D: MIN = 0, TIME = 0

In this case, the minimum of either the number of bytes requested or the number of bytes currently
available is returned without waiting for more bytes to be input. If no characters are available, the read
request returns a value of 0, having read no data.

Cases A and B exist to handle burst-mode activity, such as file transfer programs, where a program needs
to process at least the number of characters specified by the MIN variable at one time. In Case A, the
interbyte timer is activated as a safety measure. In Case B, the timer is turned off.

Cases C and D exist to handle single-character, limited transfers. These cases are readily adaptable to
screen-based applications that need to know if a character is present in the input queue before refreshing
the screen. In Case C, the timer is activated. In Case D, the timer is turned off. Case D can lead to
performance issues if overused; but it is better to use it than doing a read request with setting the
O_NONBLOCK flag.

Writing data and output processing

When one or more characters are written, they are transmitted to the terminal as soon as previously
written characters are displayed. (Input characters are echoed by putting them into the output queue as
they arrive.) If a process produces characters more rapidly than they can be displayed, the process is
suspended when its output queue exceeds a certain limit. When the queue has drained down to a certain
threshold, the program is resumed.

Modem management

If the CLOCAL flag is set in the c_cflag field of the termios structure, a connection does not depend on
the state of the modem status lines. If the CLOCAL flag is clear, the modem status lines are monitored.
Under normal circumstances, an open function waits for the modem connection to complete. However, if
the O_NONBLOCK or CLOCAL flag is set, the open function returns immediately without waiting for the
connection.

If the CLOCAL flag is not set in the c_cflag field of the termios structure and a modem disconnect is
detected by the terminal interface for a controlling terminal, the SIGHUP signal is sent to the controlling
process associated with the terminal. Unless other arrangements have been made, this signal causes the
process to terminate. If the SIGHUP signal is ignored or caught, any subsequent read request returns an
end-of-file indication until the terminal is closed. Any subsequent write request to the terminal returns a
value of -1 and sets the errno global variable to EIO until the device is closed.

Closing a terminal device file

The last process to close a terminal device file causes any output to be sent to the device and any input
to be discarded. Then, if the HUPCL flag is set in the c_cflag field of the termios structure and the
communications port supports a disconnect function, the terminal device performs a disconnect.

Converter modules
Converter modules are optional modules; they are pushed onto a tty stream only if required.

They are usually provided for internationalization purposes and perform various character mapping.

The following converter modules are shipped:

• The nls module
• The uc_sjis and lc_sjis modules

NLS module

The nls module is a lower converter module that can be pushed onto a tty stream below the line
discipline. The nls module ensures terminal mapping: it executes the mapping of input and output

General programming concepts 787

characters for nonstandard terminals (that is, for terminals that do not support the basic codeset ISO
8859 of the system).

The mapping rules are specified in two map files located in the /usr/lib/nls/termmap directory. The .in
files contain the mapping rules for the keyboard inputs. The .out files contain the mapping rules for the
display outputs. The files format is specified in the setmaps file format "setmaps File Format" in Files
Reference.

SJIS Modules

The uc_sjis and lc_sjis modules are converter modules that can be pushed onto a tty stream. They
ensure code set handling: they execute the conversion of multibyte characters between the shifted
Japanese industrial standard (SJIS) format and the advanced Japanese EUC code (AJEC) format,
supported by the line disciplines. These modules are needed when the user process and the hardware
terminal uses the IBM-943 code set.

AJEC is a Japanese implementation of the extended UNIX code (EUC) encoding method, which allows
combination of ASCII, phonetic Kana, and ideographic Kanji characters. AJEC is a superset of UNIX
Japanese industrial standard (UJIS), a common Japanese implementation of EUC.

Japanese-encoded data consist of characters from up to four code sets:

Code set Contained characters

ASCII Roman letters, digits, punctuation and control characters

JIS X0201 Phonetic Kana

JIS X0208 Ideographic Kanji

JIS X0212 Supplemental Kanji.

AJEC makes use of all four code sets. SJIS makes use only of ASCII, JIS X0201, and JIS X0208 code sets.
Therefore, the uc_sjis and lc_sjis modules convert:

• All SJIS characters into AJEC characters
• AJEC characters from ASCII, JIS X0201, and JIS X0208 code sets into SJIS characters
• AJEC characters from JIS X0212 code set into the SJIS undefined character

The uc_sjis and lc_sjis modules are always used together. The uc_sjis upper converter is pushed onto the
tty stream above the line discipline; the lc_sjis lower converter is pushed onto the stream below the line
discipline. The uc_sjis and lc_sjis modules are automatically pushed onto the tty stream by the setmaps
command and the setcsmap subroutine. They are also controlled by the EUC ioctl operations described in
the eucioctl.h file in the Files Reference.

TTY drivers
A tty driver is a STREAMS driver managing the actual connection to the hardware terminal.

Depending on the connection, three kinds of tty drivers are provided: asynchronous line drivers, the pty
driver, and the LFT driver.

Asynchronous line drivers

The asynchronous line drivers are provided to support devices (usually ASCII terminals) directly
connected to the system through asynchronous lines, including modems.

The asynchronous line drivers provide the interface to the line control hardware:

• The cxma driver supports the 128-port PCI adapter card.
• The cxpa driver supports the 8-port PCI adapter card.
• The sf driver supports the native ports on the system planar.
• The sa driver supports the 2-port PCI adapter card.

788 AIX Version 7.2: General programming concepts

The asynchronous line drivers are responsible for setting parameters, such as the baud rate, the character
size, and the parity checking. The user can control these parameters through the c_cflag field of the
termios structure.

The asynchronous line drivers also provide the following features:

• The hardware and software flow control, or pacing discipline, specifies how the connection is managed
to prevent a buffer overflow. The user can control this feature through the c_iflag field of the
termios structure (software flow control) and the x_hflag field of the termiox structure (hardware
flow control).

• The open discipline specifies how to establish a connection. This feature is controlled at configuration
time through the x_sflag field of the termiox structure.

Pseudo-terminal driver

The pseudo-terminal (pty) driver is provided to support terminals that need special processing, such as
X terminals or remote systems connected through a network.

A pty driver just transmits the input and output data from the application to a server process through a
second stream. The server process, running in the user space, is usually a daemon, such as the rlogind
daemon or the xdm daemon. It manages the actual communication with the terminal.

Other optional modules may be pushed on either user or server stream.

Loader domains
In some programming environments, it is desirable to have shared libraries loaded at the same virtual
address in each process.

Due to the dynamic nature of shared libraries maintained by the AIX system loader, this condition cannot
be guaranteed. Loader domains provide a means of loading shared libraries at the same virtual address in
a set of processes.

The system loader loads shared libraries into multiple global shared library regions. One region is called
the shared library text region, which contains the executable instructions for loaded shared libraries. The
shared library text region is mapped to the same virtual address in every process. The other region is the
shared library data region. This region contains the data for shared libraries. Because shared library data
is read/write, each process has its own private region that is a copy of the global shared library region.
This private region is mapped to the same virtual address in every process.

Since the global shared library regions are mapped at the same virtual address in every process, shared
libraries are loaded at the same virtual address in most cases. The case where this is not true is when
there is more than one version of a shared library loaded in the system. This happens whenever a shared
library that is in use is modified, or any shared libraries it depends on are modified. When this happens,
the loader must create a new version of the modified shared library and all other shared libraries that
depend on the modified shared library. Note that all shared libraries ultimately depend on the Kernel
Name Space. The Kernel Name Space contains all the system calls defined by the kernel and can be
modified any time a kernel extension is dynamically loaded or unloaded. When the system loader creates
a new version of a shared library, the new version must be located at a different location in the global
shared library segments. Therefore, processes that use the new version have the shared libraries loaded
at a different virtual address than processes that use the previous versions of the shared libraries.

A loader domain is a subset of all the shared libraries that are loaded in the system. The set of all
shared libraries loaded in the system is called the global loader domain. This global loader domain can
be subdivided into smaller user-defined loader domains. A user-defined loader domain contains one
version of any particular shared library. Processes can specify a loader domain. If a process specifies a
loader domain, the process uses the shared libraries contained in the loader domain. If more than one
process specifies the same loader domain, they use the same set of shared libraries. Since a loader
domain contains one version of any particular shared library, all processes that specify the same loader
domain use the same version of shared libraries and have their shared libraries loaded at the same virtual
address.

Using loader domains

General programming concepts 789

If a process uses a loader domain, it must be specified at exec time. The loader domain specified is in
effect and used for the entire duration of the process. When a process that specifies a loader domain calls
the exec system call, the system loader takes the following actions:

Finds/creates loader domain
The access permissions associated with the loader domain are checked to determine if this process
can use the loader domain. If the process does not have sufficient privilege to access (read or write)
the loader domain, no domain is used by the process. If the process does have sufficient privilege, the
list of loader domains maintained by the system loader is searched for the loader domain specified
by the process. If the loader domain specified is not found, it is created if the process has sufficient
privilege. If the process does not have sufficient privilege to create the loader domain, then the exec
call fails, and an error is returned.

Uses loader domain to limit search
If the process needs any shared libraries that are already listed in the loader domain, the version of
the library specified in the domain is used. The version of the shared library in the loader domain is
used regardless of other versions of the shared library that may exist in the global loader domain.

Adds shared libraries to loader domain
If the process needs a library that is not in the loader domain, the loader loads the library into the
process image by following the normal loader convention of loading the most recent version. If the
process has sufficient privilege, this version of the library is also added to the loader domain. If the
process does not have sufficient privilege to add an entry, the exec call fails, and an error is returned.

Shared libraries can also be explicitly loaded with the load() system call. When a shared library is
explicitly loaded, the data for these modules is normally put at the current break value of the process for
a 32-bit process. For a 64-bit process, the data for the modules is put in the region's privately loaded
modules. If a process uses a loader domain, the system loader puts the data in the shared library data
region. The virtual address of this explicitly loaded module is the same for all processes that load the
module. If the process has sufficient privilege, the shared library is added to the loader domain. If the
process does not have sufficient privilege to add an entry, the load call fails, and an error is returned.

A loader domain can be associated with any regular file. It is important to note that a loader domain
is associated with the file, NOT the path name of the file. The mode (access permissions) of the file
determines the operations that can be performed on the loader domain. Access permissions on the file
associated with the loader domain and the operations allowed on the loader domain are as follows:

• If the process is able to read the file, the process can specify the loader domain to limit the set of
shared libraries it uses.

• If the process is able to write to the file, the process is able to add shared libraries to the loader domain
and create the loader domain associated with the file.

If a process attempts to create or add entires to a loader domain without sufficient privilege, the
operation in progress (exec or load) fails, and an error is returned.

Loader domains are specified as part of the LIBPATH information. LIBPATH information is a colon (:)
separated list of directory path names used to locate shared libraries. LIBPATH information can come
from either the LIBPATH environment variable or the LIBPATH string specified in the loader section of
the executable file. If the first path name in the LIBPATH information is a regular file, a loader domain
associated with the file is specified. For example:

• If /etc/loader_domain/OOdomain_1 is a regular file, then setting the LIBPATH environment
variable to the string

/etc/loader_domain/OOdomain_1:/lib:/usr/lib

causes processes to create and use the loader domain associated with the /etc/loader_domain/
OOdomain_1 file.

• If /etc/loader_domain/OOdomain_1 is a regular file, then the ldom program is built with the
following command:

790 AIX Version 7.2: General programming concepts

cc -o ldom ldom.c -L/etc/loader_domain/OOdomain_1

The path name /etc/loader_domain/OOdomain_1 is inserted as the first entry in the LIBPATH
information of the loader section for the ldom file. When ldom is executed, it creates and uses the
loader domain associated with the /etc/loader_domain/OOdomain_1 file.

Creating/Deleting loader domains

A loader domain is created the first time a process with sufficient privilege attempts to use the domain.
Access to a loader domain is controlled by access to the regular file associated with the domain.
Application writers are responsible for managing the regular files associated with loader domains used by
their applications. Loader domains are associated with regular files NOT the path names of the files. The
following examples illustrate this point:

• The apl application has specified loader domain domain01 in its LIBPATH information. The apl
application is then executed. The current working directory is /home/user1, and it contains a regular
file domain1 that is writable by apl. A new loader domain associated with the file /home/user1/
domain01 is created. apl is executed again. This time /home/user2 is the current working directory,
and it also contains a regular file domain01 that is writable by apl. A new loader domain associated
with the file /home/user1/domain02 is created.

• Application apl has specified loader domain /etc/1_domain/domain01 in its LIBPATH information.
apl is then executed. /etc/1_domain/domain01 is a regular file that is writable by apl. A new loader
domain associated with the file /etc/1_domain/domain01 is created.

/home/user1/my_domain is a symbolic link to file /etc/1_domain/domain01.

Application ap2 has specified loader domain /home/user1/my_domain in its LIBPATH information.
ap2 is then executed. The system loader notices that /home/user1/my_domain refers to the same
file as /etc/1_domain/domain01. A loader domain is already associated with file /etc/1_domain/
domain01; therefore, this loader domain is used by application ap2.

• Application apl has specified loader domain /etc/1_domain/domain01 in its LIBPATH information.
apl is then executed. /etc/1_domain/domain01 is a regular file that is writable by apl. A new loader
domain associated with the file /etc/1_domain/domain01 is created.

File /etc/1_domain/domain01 is deleted and recreated as a regular file.

Application apl is executed again. There is no longer any way to access the regular file that is
associated with the original loader domain /etc/1_domain/domain01. Therefore, a new loader
domain associated with the file /etc/1_domain/domain01 is created.

Loader domains are dynamic structures. During the life of a loader domain, shared libraries are added and
deleted. A shared library is added to a loader domain when a process that specified the loader domain
needs a shared library that does not already exist in the domain. Of course, this assumes the process has
sufficient privilege to add the shared library to the loader domain.

A separate use count is kept for each shared library that is a member of a loader domain. This use count
keeps track of how many processes with loader domains are using the shared library. When this use count
drops to zero, the shared library is deleted from the loader domain.

Data management application programming interface
AIX provides a data management application programming interface (DMAPI), which is an
implementation of the "System Management: Data Storage Management (XDSM) API" X/Open standard
that is published by The Open Group.

The DMAPI allows software vendors to develop data management applications using a set of functions
and semantics not found in POSIX-compliant systems. It does not provide direct functionality to the end
user. Complete documentation of the DMAPI is found in the Publications section of The Open Group's
Web site.

General programming concepts 791

The DMAPI provided by AIX is a general purpose implementation. The level of support for optional
interfaces and functionality is determined by the underlying file system implementation and is
documented in a separate section for the specific file system.

The intent of the DMAPI is to support a single product on any single file system. The DMAPI does
not preclude different products from different vendors operating on the same file system, but it is not
recommended. Different products on different file systems are fully supported by the DMAPI with regard
to event delivery, subject to the following restrictions:

• Multiple sessions cannot register disposition for the same event on the same object.
• Event messages are targeted to and enqueued on sessions; there is no explicit targeting of an event to a
specific process.

• If no session has registered a disposition for a particular event other than the mount event, the DMAPI
will not generate an event and allow the process to proceed as if there is no event enabled. If no session
has registered a disposition for the mount even, which is always enabled, the DMAPI will fail the event
and not allow the file system to be mounted.

The DMAPI is implemented in an abstract layer within AIX, allowing any underlying file system to define
its individual level of support and implementation options. The journaled file system (JFS) file system
does not provide any support for the DMAPI. The enhanced journaled file system (JFS2) behaviors for
implementation options, limits, and other specifics described by the X/Open standard are outlined in
DMAPI Considerations for the Enhanced Journaled File System.

The dm_init_service function returns 0 when the AIX DMAPI is correctly initialized and -1 if the
initialization fails. Use of any other DMAPI function after the initialization fails will also fail.

The AIX DMAPI does not provide support for the following optional DMAPI functions:

• dm_downgrade_right
• dm_upgrade_right
• dm_obj_ref_* family
• dm_pending

Other optional interfaces might not be supported by the underlying file system implementation and are
indicated in the DMAPI documentation for the specific file system.

When a data management (DM) application specifies that it wants to block until a right becomes available,
the DM application is blocked uninterruptibly.

AIX allows multiple, non-overlapping persistent managed regions. Only regular files are allowed to have
managed regions. Whether or not managed regions are reordered or coalesced is determined by the
underlying file system implementation.

When no session has registered to receive a particular event for which an object is enabled and activity
occurs that would otherwise trigger the event, AIX does not generate the event and allows the process to
proceed as if there is no event enabled.

Executing the dm_set_eventlist function causes a persistent event list to be stored with the object. If
an event list was previously set for the entire file system and a subsequent event list for an object in that
file system includes an event that was set for the file system, events will continue to be generated based
on the event list for the file system until such time as that event is disabled, in which case the event list for
the object will come into play.

When a process generating an event is blocked waiting on a response from a DM application, the sleep is
interruptible.

AIX adopts a reasonably reliable model of asynchronous message delivery. The number of undelivered
asynchronous messages is limited by the amount of available memory (real or virtual) configured on the
system. If the number of messages exceeds the amount of available memory, undelivered asynchronous
messages will be lost. Asynchronous delivery of namespace event messages is determined by the
underlying file system implementation.

For AIX, DM_SESSION_INFO_LEN is 256, and DM_ATTR_NAME_SIZE is 8.

792 AIX Version 7.2: General programming concepts

For DMAPI interfaces that return data to a user buffer and fill in a user variable with the resulting size
of the buffer, both the contents of the buffer and the user size variable are undefined when the interface
fails with an error other than E2BIG. For any such error, the contents of the user buffer must be ignored.
When the interface fails and errno is E2BIG, the content of the user size variable will be set to indicate the
required size, in which case the application can retry the interface with a resized buffer.

DMAPI considerations for the enhanced journaled file system

Note: Internal snapshots cannot be used with DMAPI-managed file systems.

In addition to the functionality provided by the general AIX implementation of the DMAPI, the JFS2
implementation provides the following functionality and restrictions.

The dm_get_config function returns the following values for the JFS2 implementation options and
limits:
DM_CONFIG_BULKALL

Supported
DM_CONFIG_LEGACY

Supported
DM_CONFIG_PERS_ATTRIBUTES

Supported
DM_CONFIG_PERS_EVENTS

Supported
DM_CONFIG_PERS_INHERIT_ATTRIBS

Supported
DM_CONFIG_PERS_MANAGED_REGIONS

Supported
DM_CONFIG_PUNCH_HOLE

Supported
DM_CONFIG_WILL_RETRY

Supported
DM_CONFIG_CREATE_BY_HANDLE

Not supported
DM_CONFIG_LOCK_UPGRADE

Not supported
DM_CONFIG_OBJ_REF

Not supported
DM_CONFIG_PENDING

Not supported
DM_CONFIG_DTIME_OVERLOAD

TRUE
DM_CONFIG_MAX_ATTR_ON_DESTROY

128
DM_CONFIG_MAX_ATTRIBUTE_SIZE

4072
DM_CONFIG_MAX_HANDLE_SIZE

32
DM_CONFIG_MAX_MANAGED_REGIONS

167
DM_CONFIG_MAX_MESSAGE_DATA

65536
DM_CONFIG_TOTAL_ATTRIBUTE_SPACE

4072

General programming concepts 793

In the JFS2 implementation, all DM attribute values share the same allocation. Consequently, the size
of any one attribute's value cannot exceed DM_CONFIG_MAX_ATTRIBUTE_SIZE and is further restricted
by the sum of the value sizes of all DM attributes associated with an object, which is also limited to
DM_CONFIG_MAX_ATTRIBUTE_SIZE.

In addition to the optional interfaces not supported by AIX, the JFS2 implementation does not
support the optional DMAPI cancel and debut events, nor the additional optional dm_getall_dmattr,
dm_create_by_handle, and dm_symlink_by_handle functions.

Due to the current implementation of JFS2's extended attribute support, the dm_set_region function
causes the file's ctime to be modified. JFS2 does not attempt to reorder nor coalesce managed regions.

JFS2 generates asynchronous namespace event messages for all corresponding operations, whether they
succeed or fail.

JFS2 provides interfaces that allow pre-allocation and direct control of metadata within a file system. Use
of these interfaces with either the MM_ALLOC or MM_RECORD modes generates a DMAPI write event for
the specified offset and length.

If a value is not specified for the mask to the dm_get_bulkall, dm_get_bulkattr,
dm_get_dirattrs, and dm_get_fileattr functions (that is, it is set to zero), JFS2 will return all
fields in the dm_stat structure. If the mask is set to a specific value, only the fields requested by the
mask are returned; the values for the fields not specified by the mask are undefined.

JFS2 does not use the respbufp parameter of the dm_respond_event function. If specified, the
content of the buffer is undefined when the functions returns.

Because JFS2 overloads dm_ctime and dm_dtime (that is, DM_CONFIG_DTIME_OVERLOAD is true), the
setdtime parameter of the dm_set_dmattr function is ignored.

At the time a file is memory mapped (that is, when the mmap(2) call is executed), any non-resident
portions of a file must be made resident by the DM application. To notify the application of the mapping,
JFS2 will generate a read or write event corresponding to the mode and region being mapped.

Activating the DMAPI on a JFS2 file system

To activate the DMAPI on a JFS2 file system, type the following:

chfs -a managed=yes mountpoint

If the file system is currently mounted when the chfs command is issued, there must be a DMAPI-
enabled application listening for and responding to mount events when the managed parameter is set;
the success of the chfs command will depend on how the application responds to the mount event.

To deactivate the DMAPI on a JFS2 file system, type the following:

chfs -a managed=no mountpoint

If the file system is currently mounted when the chfs command is issued, there must be a DMAPI-
enabled application listening for and responding to pre-unmount events when the managed parameter is
set. The success of the chfs command depends on how the application responds to the pre-unmount
event.

Using the DMAPI on JFS2 encrypted file systems

When you perform invisible I/O operations on encrypted files in a JFS2 encrypted file system, the same
offset and length alignment restrictions apply as if you performed RAW mode I/O on the file. In particular,
the offset and length of the I/O must be block-aligned according to the block size of the file system. The
size of the encrypted data is always a multiple of file system blocks, even when the decrypted file size is
not; when the file size is not block aligned, the file contains encrypted data beyond the file size.

Note: The stat subroutine and DMAPI interfaces, such as the dm_get_fileattr function, report the clear
text (decrypted) file size, while the statx subroutine reports the block-aligned encrypted data size when
you pass STX_EFSRAW as the command parameter.

794 AIX Version 7.2: General programming concepts

The dm_read_invis function and the dm_write_invis function must meet the following requirements to
make the operation successful:
dm_read_invis

For encrypted files, both the off and the len parameters must be file system block-size aligned, or the
operation fails with the EINVAL error code.

dm_write_invis
For encrypted files, both the off and the len parameters must be file system block-size aligned and the
operation must not attempt to extend the file, or the operation fails with the EINVAL error code.

Using the DMAPI on AIX workload partitions

You must add the PV_FS_DMAPI privilege to the set of privileges and assign them to the processes
running in the Workload Partition (WPAR) to run the DMAPI applications within a WPAR. You can add and
assign the set of privileges to a WPAR when it is being created, or you can modify the set of privileges
later.

Examples

mkwpar -S privs+=PV_FS_DMAPI -n wparname

chwpar -S privs+=PV_FS_DMAPI wparname

By default, only the root processes obtain the privilege to run in a WPAR. In a root-disabled system or in
an Trusted AIX installation, where root is disabled by default, nonroot processes obtain this privilege by
using the privcmds table in a global or WPAR system. For more information, see RBAC privileges.

AIX transactional memory programming
Transactional memory (TM) is a shared-memory synchronization construction that allows process-
threads to perform storage operations that appear to be atomic to other process-threads or applications.

Overview
TM is a construct that allows execution of lock-based critical sections of the code without acquiring a lock.
The IBM POWER 8 processor is the first processor that implements TM programming.

Use the TM facility in some of the following scenarios:

• Optimistic Execution of Lock-Based Applications – TM supports speculative execution of critical
sections of code without acquiring a lock. This method provides the benefits of fine-grained locking
to applications by using the current locks that are not tuned for performance.

• Transactional Programming in High-Level Languages – The transactional programming model is a
growing industry-wide standard that offers productivity gains relative to lock-based shared memory
programs.

• Checkpoint/Rollback Usage – TM is used as a checkpoint to restore architectural state. This method
enables speculative compiler optimizations during runtime code optimization or generation and
simulation of checkpoints.

To use the TM facility, a process-thread marks the beginning and end of the sequence of storage
accesses or transaction with the tbegin. and tend. instructions. The tbegin. instruction initiates
the transactional execution, during which the loads and stores appear to occur atomically. The tend.
instruction ends the transactional execution.

If a transaction is prematurely stopped, the storage updates that were made after executing the tbegin.
instruction are rolled back. Correspondingly, the contents of a subset of the registers are also rolled back
to the state before the tbegin. instruction was executed. When a transaction is prematurely stopped,
a software failure handler is started. The failure can be of the transient type or the persistent type. The
failure handler can retry the transaction or choose to employ a different locking construct or logic path
that depends on the nature of the failure.

General programming concepts 795

The AIX operating system supports the usage of TM including handling of TM state management across
context switches and interrupts.

Checkpoint state
When a transaction is initiated a set of registers are saved that represent the checkpoint state of the
processor. In case of a transaction failure, a set of registers are restored to the point before the start of
the transaction. The checkpoint state of the processor is also called as the pre-transactional state. The
checkpoint state includes the problem-state writable registers except for the CR0, FXCC, EBBHR, EBBRR,
BESCR registers, the performance monitor registers, and the TM SPRs.

Note: The checkpoint state cannot be directly accessed through the supervisor state or the problem state.

The checkpoint state is copied into the respective registers after the new treclaim. instruction is
executed. This process allows privileged code to save or modify the values. The checkpoint state is copied
back into the speculative registers from the respective user-accessible registers after the execution of the
new trechkpt. instruction.

The following TM SPRs are added to the machine state for the processor:
Name Title Description Privileged mtspr Privileged mfspr Size (bits) SPR

FSCR Facility Status and
Control Register

Controls the available
facilities in problem
state and indicates the
cause of a Facility
unavailable interrupt.

yes yes 64 153

TEXASR Transaction Exception
And Summary Register

Contains the
transaction level and
summary information
that is used by
the transaction failure
handlers. The 0:31
bits contain the cause
of the failure.

no no 64 130

TFHAR Transaction Failure
Handler Address
Register

Records the EA of
the software failure
handler. The TFHAR
register is always set
to the NIA for the
tbegin. instruction
that initiated the
transaction.

no no 64 128

TFIAR Transaction Failure
Instruction Address
Register

Set to the exact EA
of the instruction that
causes the failure,
when possible. The
accuracy of the TFIAR
register is recorded
in the Exact field (bit
37) of the TEXASR
register.

no no 64 129

TEXASRU Transaction Exception
and Summary Register
(Upper Half)

High-order half of
TEXASR register.

no no 32 131

The new TEXASR register contains information related to the state of a transaction and the cause of a
transaction failure. The following table describes the fields included in the TEXASR register:

Field Value-Meaning Bits

Failure Code (Note: bit 7 is referred to as the
Failure persistent field)

Transaction Failure Codes 0:7

Disallowed 0b1 - The access type instruction is not allowed 8

Nesting Overflow 0b1 - The maximum transaction level was
exceeded.

9

Footprint Overflow 0b1 - The tracking limit for transactional
storage accesses was exceeded.

10

Self-Induced Conflict 0b1 - A self-induced conflict occurred in
suspended state.

11

Non-Transactional Conflict 0b1 - A conflict occurred with a non-
transactional access by another processor.

12

796 AIX Version 7.2: General programming concepts

Field Value-Meaning Bits

Transaction Conflict 0b1 - A conflict occurred with another
transaction.

13

Translation Invalidation Conflict 0b1 - A conflict occurred with a TLB
invalidation.

14

Implementation Specific 0b1 - An implementation-specific condition
caused the transaction to fail.

15

Instruction Fetch Conflict 0b1 - An instruction fetch by the thread or
another thread that was performed from a block
that was previously written transactionally.

16

Reserved for future failure cases 17:30

Abort 0b1 - An abort was caused by the execution of a
particular TM instruction.

31

Suspended 0b1 - The failure was recorded in Suspended
State.

32

Reserved 33

Privilege The thread was in the privilege state
([MSRHV||PR]) at the time of failure recording.

34:35

Failure Summary (FS) 0b1 - A failure was detected and recorded. 36

TFIAR Exact 0b0 - The value in the TFIAR field is an
approximate value.

0b1 - The value in the TFIAR field is an exact
value.

37

ROT Set to 0b0 when a non-ROT tbegin.
instruction is executed.

Set to 0b1 when a ROT is initiated.

38

Reserved 39:51

Transaction Level (TL) Transaction level (nesting depth + 1) for the
active transaction has the following values:

• 0 if the most recent transaction completed
successfully.

• The transaction level at which the most
recent transaction failed, if the transaction
did not complete successfully.

Note: A value of 1 corresponds to an outer
transaction. A value greater than 1 corresponds
to a nested transaction.

52:63

Notes:

• Exactly 1 bit of the 8-31 bits of the TEXASR register is set when the transaction failure is recorded. The
single bit that is set indicates that the particular instruction or event caused failure.

• A Rollback Only Transaction (ROT) is a sequence of instructions that is executed either as a unit or
the instructions are not executed. This construct allows for the speculative execution of a bulk of
instructions with minimal cost. A ROT does not have the full atomic nature as a normal transaction or
its synchronization and serialization properties. Therefore, ROTs must not be used to manipulate shared
data.

Software failure handler
When a transaction fails, the machine hardware redirects control to the failure handler that is associated
with the outermost transaction. When a transaction fails, the control is redirected to the instruction that
follows the tbegin. instruction, CR0 is set to either

0b101 || 0

or

General programming concepts 797

0b010 || 0

Therefore, the instruction after the tbegin. instruction must be a branch instruction predicated on bit 2
of CR0. For example, after the tbegin. instruction is executed, the beq branch instruction predicated on
bit 2 of CR0. The target of the branch must be a section of code that handles transaction failures. When
the tbegin. instruction is successfully run at the start of the transaction, CR0 is set to either

0b000 || 0 or 0b010 || 0

Note: The bits 0:31 of TEXASR reports the cause of the failure. The failure code (FC) field in bits 0-7, is
used for the following scenarios:

• Privileged supervisor or hypervisor code causes the failure by using the treclaim. instruction.
• Problem-state code causes the failure by using a form of the tabort. instruction.

A value of l in bit 7 of TEXASR indicates that the failure is persistent and the transaction is bound to fail
when the transaction is attempted again. The failure codes reserved by the AIX operating system indicate
the cause of the failure that are defined in the /usr/include/sys/machine.h. directory.

A sample transaction
The following assembler code example shows a simple transaction that writes the value in GPR 5 into the
address in GPR 4, which is assumed to be shared among multiple threads of execution. If the transaction
fails due to a persistent cause, the code falls back to another code path at the lock_based_update
label. The code for the alternate path is not shown.

trans_entry:
 tbegin # Start transaction
 beq failure_hdlr # Handle transaction failure
 stw r5, 0(r4) # Write to memory pointed to by r4.
 tend. # End transaction
 b trans_exit
failure_hdlr: # Handle transaction failures:
 mfspr r4, TEXASRU # Read high-order half of TEXASR
 andis. r5, r4, 0x0100 # Is the failure persistent?
 bne lock_based_update # If persistent, acquire lock and
 # then perform the write.
 b trans_entry # If transient, try again.

lock_based_update:

trans_exit:

Runtime determination of Transactional Memory capability
A program can determine whether a system supports the TM category of the POWER ISA by reading the
SC_TM_VER system variable using the getsystemcfg subroutine. A __power_tm() macro is provided in
the /usr/include/sys/systemcfg.h file to determine the TM capability within a program. This macro
is useful for software that conditionally uses the TM capability when it is present, or uses the functionally
equivalent to lock-based code paths when the TM capability is not present.

Extended context structure
The earlier versions of the AIX operating system introduced support for extended context structures
to support the vector state and user keys. The existing extended context structure support is further
extended to support machine state that is required by TM.

An extended context is allocated and pinned for each transactional process-thread when it first uses TM.
If the extended context area cannot be allocated and pinned, then the process receives a SIGSEGV signal
that results in termination of the process.

The machine-context information is included in the sigcontext structure that is provided to signal
handlers. When a signal handler returns, the machine context present in the sigcontext structure is
activated. The sigcontext structure is actually a subset of the larger ucontext structure. The two

798 AIX Version 7.2: General programming concepts

structures are identical up to sizeof(struct sigcontext). When the AIX operating system builds
a signal context to be passed to a signal handler, a ucontext structure is built on the stack of the
signal handler. The machine-context portion of a signal context must contain all of the active machine
state, including the volatile and nonvolatile state for the involuntarily interrupted context. The ucontext
structure contains an indicator to determine whether extended context information is available.

The __extctx field in the ucontext structure is the address of an extended context structure is defined
in the /usr/include/sys/context.h file. The __extctx_magic field in the ucontext structure
indicates whether the extended context information is valid when the value of __extctx_magic field
is equal to __EXTCTX_MAGIC. The additional machine state for a thread that uses the TM capability is
restored and saved as a member of the context extension, to the ucontext structure as a part of the
signal delivery and return.

If an application chooses to explicitly enable the use of Transactional Memory, it takes an extended
size ucontext structure that already has space for the __extctx field that is included by the implicit
definition of __EXTABI__ by the compiler. The extended ucontext structure can also be picked up by an
explicit definition of __AIXEXTABI.

The getcontext(), setcontext(), makecontext(), and swapcontext() subroutines of libc are not
supported while in transactional or suspended state. When the subroutines are called within transaction,
the getcontext(), setcontext(), makecontext() subroutines result in a persistent transaction
failure of TM_LIBC type, which is defined in the /usr/include/sys/machine.h file.

When a swapcontext() subroutine is called within a transaction, it results in the following behavior:

• When a swapcontext() subroutine is in transactional state, it results in a persistent transaction failure
of TM_LIBC type.

• When a swapcontext() subroutine is in suspended state, it results in the transaction being doomed,
the specified ucontext structure swapped in and execution of the program is resumed by the
specified ucontext structure. The resulting state and subsequent behavior after the swapcontext()
subroutine returns are undefined.

If the getcontext(), setcontext(), and swapcontext() subroutines are called in a non-
transactional state, the subroutines do not retrieve or restore any extended TM context into or from
the ucontext structure pointed to by the ucp or oucp parameters. No error is indicated when the
setcontext() or swapcontext() subroutines are called with the extended TM context present.

See the /usr/include/sys/context.h header file for detailed information of the extended context.

Signal delivery
Asynchronous signals that are received by an application while in a transaction is delivered non-
transactionally. When in transactional state, the delivery of synchronous signals is not allowed and
instead results in a persistent transaction failure of TM_SYNC_SIGNAL type, as defined in the /usr/
include/sys/machine.h file.

Alignment interrupts and program interrupts
In transactional state, the alignment interrupts and program interrupts are caused due to an
illegal operation or an operation that requires emulation result in a persistent transaction failure of
TM_ALIGN_INT type or TM_INV_OP type, as defined in the /usr/include/sys/machine.h file.
When in suspended state, alignment and program interrupts are processed normally by using the non-
speculative semantics.

System calls
It is suggested that the system calls are not invoked within a transaction. System calls are only supported
within a transaction when the transaction is suspended through the tsuspend. instruction.

When a system call is invoked while a processor or thread is transactional and the transaction is
not suspended, the system call is not invoked by the AIX kernel and the associated transaction fails

General programming concepts 799

persistently. When this error occurs, the FC field of the TEXASR register contains the TM_ILL_SC failure
code, which is defined in the /usr/sys/include/machine.h file.

It is assumed that any operations performed under a suspended transaction when the application
programmer has explicitly suspended the transaction are intended to be persistent. Any operations that
are performed by a system call that is invoked while in suspended state is not rolled-back even if the
transaction fails.

The AIX operating system does not support system calls to be made while in transactional state because
there is no way to roll back any operations, including I/O, performed by AIX underneath a system call.

setjmp() and longjmp() subroutines
The setjmp() and longjmp() subroutines of libc are not supported in transactional or suspended state
because of the effects of setting a jump buffer and jumping back to the buffer. Consider the following
scenarios

1. If the setjmp() subroutine is called inside of a transaction and the corresponding longjmp()
subroutine is called after the transaction ends, the jump is to a speculative state that is now invalid.

2. If the setjmp() subroutine is called before the transaction, a corresponding longjmp() subroutine
goes to the state before the transaction started regardless of whether the transaction has ended,
failed, or aborted.

3. If the setjmp() subroutine is called within a transaction and then the transaction is aborted, the
updates that are made to the jump buffer by the setjmp() subroutine will not appear to have
occurred.

When the setjmp() subroutine is called within a transaction, it results in a persistent transaction failure
either of TM_LIBC type or TM_ILL_SC type that is defined in the /usr/include/sys/machine.h file.

When a longjmp() subroutine is called within a transaction, it results in the following behavior:

• When a longjmp() subroutine is in a transactional state, it results in a persistent transaction failure of
TM_LIBC type or TM_ILL_SC type that is defined in the /usr/include/sys/machine.h file.

• When a longjmp() subroutine is in a suspended state, it results in the transaction being doomed, the
specified jump buffer is restored, and execution of the program returns to the corresponding setjmp()
subroutine. The resulting state and subsequent behavior are undefined after the setjmp() subroutine
returns from the longjmp() subroutine .

Compilers
An AIX operating system compiler that supports the Transactional Memory must conform to the AIX
ABI. When the TM is enabled, a C or C++ compiler must predefine __EXTABI__. Refer to the compiler
documentation for detailed information.

Assembler
The AIX operating system assembler, in the /usr/ccs/bin/as supports the additional instruction set
defined for the TM in the POWER ISA, and as implemented by the POWER8 processor. You can use the –m
pwr8 assembly mode or the .machine pwr8 pseudo op within the source file to enable the assembly of
TM instructions. For more information, refer to the assembly language reference.

Debugger
The /usr/ccs/bin/dbx debugger supports machine-level debugging of TM programs. This support
includes the ability to disassemble the new Transactional Memory instructions and to view the TM SPRs:
TEXASR, TEXASRU, TFIAR, and TFHAR registers.

Setting a breakpoint inside of a transaction causes the transaction to unconditionally fail whenever the
breakpoint is encountered. Therefore, the suggested approach is to debug a transaction that is failing to

800 AIX Version 7.2: General programming concepts

set a breakpoint on the transaction’s failure handler and then view the TEXASR and TFIAR registers when
the breakpoint is encountered to determine the cause and location of the failure.

In dbx, the TEXASR, TFIAR, and TFHAR registers can be viewed by using the print subcommand with the
$texasr, $tfiar, or $tfhar parameter. The line of code that is associated with the address found in the
TFIAR, and TFHAR registers can be viewed through the list subcommand, for example:

(dbx) list at $tfiar

The dbx tm_status subcommand is used to view and interpret the contents of the TEXASR register. This
subcommand is used to determine the nature of a transaction failure.

Enablement for third-party debuggers is provided in the form of a new PTT_READ_TM ptrace operation
for reading the TM state of a thread. Refer to the ptrace documentation for details.

Tracing support
The AIX trace facility is expanded to include a set of trace events for TM operations that are performed by
the AIX operating system including pre-emption causing transaction failure and other various operations
that can cause transaction failure. The trace event identifier 675 can be used as input to the trace and
trcrpt commands to view TM-related trace events.

Core files
The AIX operating system also supports the inclusion of TM machine state as part of the core file for
processes or threads that uses TM. If a process or thread is using or used TM, the TM machine state is
included in the core image for that thread.

Note: The TM state is only supported in the current core file formats for the AIX operating system. You
can use the dbx command to read and view the TM machine state of a TM-enabled core file.

AIX threads library
The use of Transactional Memory is not supported for applications that use M:N threads. Undefined
behavior may occur in transactional threads in an environment where more than one thread shares a
single kernel thread. Usage of Transactional Memory by an application that uses M:N threads may lead
to a persistent transaction failure with the Failure Code of TM_PTH_PREEMPTED being set in the TEXASR
register.

General programming concepts 801

802 AIX Version 7.2: General programming concepts

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2015, 2019 803

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows:
© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

804 Notices

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 805

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

806 AIX Version 7.2: General programming concepts

Index

Special Characters
_exit subroutine 463
_LARGE_FILES 130
_system_configuration.ncpus 562
_system_configuration.ncpus variable 562

Numerics
216840 102
41Map203831 46

A
access subroutine 148
adb debug program

adb debug program
list of operators 46

address maps
displaying 39

addresses
displaying 39
finding current 39
forming 39

binary files
patching 39

breakpoints 30
C stack backtrace

displaying 39
commands, combining 35
computing numbers 39
creating scripts 35
customizing 35
data

displaying 39
data formats

choosing 39
data formatting, example 56
default input formats

setting 35
directory dumps

example 54
displaying text 39
examples

data formatting 56
directory dumps 54
i-node dumps 54
tracing multiple functions 58

exiting 29
expressions

list of 46
using integers 34
using operators 34
using symbols 34

external variables
displaying 39

files

adb debug program (continued)
files (continued)

locating values in 39
writing 39

i-node dumps
example 54

instructions
displaying 39

integers
using in expressions 34

list of subcommands 46
list of variables 46
maps

memory, changing 39
maps, address

displaying 39
maximum offsets

setting 35
memory

changing 39
memory maps

changing 39
numbers, computing 39
operators

using in expressions 34
operators, list of 46
output widths

setting 35
program execution

controlling 30
programs

continuing execution 30
preparing for debugging 30
running 30
single-stepping 30
stopping 30
stopping with keys 30

prompts, using 29
sample programs 52
scripts, creating 35
shell commands, using 29
source files

displaying and manipulating 39
starting 29
stopping a program 30
subcommands, list of 46
symbols

using in expressions 34
text, displaying 39
tracing multiple functions, example of 58
using prompts 29
using shell commands 29
values

locating in files 39
variables

displaying external 39
list of 46

Index 807

adb debug program (continued)
variables (continued)

using 39
adb debug program overview 29
addresses

disk 123
memory 588
overview 588
program 588

AIX transactional memory programming
Assembler 795
Checkpoint State 795
Compiler 795
Debugger 795
Signal delivery 795
Software Failure Handler 795
Trace facility 795

AIX vector programming 602
alarm subroutine 459
aliases

SMIT 720
allocating JFS2 file space 126
allocation

compressed file system 123
JFS 123

allocation bitmaps 127
allocation groups 127
allocation policy

default 609
Watson2 allocation policy 609

and 562
application binding 562
async-cancel safety 416
attributes object 413, 424, 429
aware 558

B
back end program 149
backup command 104
benefits of threads 489
bind CPU ID 562
binding a thread 177
bindprocessor 562
bindprocessor command 562
bindprocessor system call 562
blocks

boot 127
data 127
full logical 123
indirect 123, 142
logical 123
partial logical 123
super 127

boot block 127
buffer size operations 783

C
cancelability 416
cancelation 416, 417
capacity upgrade on demand (CUoD) 558
cbreak mode 17

characters
adding characters to windows 10
adding to windows 10
allowing 8-bit character return 10
converting control characters to printables 10
current

curses 3
deleting 10
getting from standard input 10
returning if no input is available 10

chclass 562
chdir subroutine 116
check phase 563, 570
chmod subroutine 148
chown subroutine 148
chroot subroutine 116
class definitions 562
cleanup handlers 421
close subroutine

closing files with 140
command

smtctl 556
commands

backup 104
cron 104
diag 96
errclear 104, 112
errdemon 112
errlogger 112
errpt 96, 104, 112
errstop 104
errupdate 107, 112
ls 104
mycmd 769
SCCS

list of 686
trace 764, 769
trcrpt 769
trcstop 769

compiling a multithreaded program 478
compressed file system 123
condition variable

attributes
creation 429
destruction 429
object 429
process-shared 464

creation 429
definition 429
destruction 429
usage 429
wait 433
waiting 429

configuring using malloc thread cache 637
contention scope

global 447
local 447
process 447
system 447

contention-scope attribute 447
control characters

converting to printables 10
controlling processor use 177
controlling terminal 780

808 AIX Version 7.2: General programming concepts

converter modules 787
creat subroutine

creating files with 139
creating

destroying 452
keys 452

creating a copy-on-write mapped data file with the shmat
subroutine 598
creating a mapped data file with the shmat subroutine 597
creating a thread 413
creation and destruction 424, 429
cron command 104
CUoD 558
curses

adding characters to windows 10
characters

current 3
returning if no input is available 10

control characters 10
converting control characters to printables 10
converting termcap to terminfo 17
current character 3
current line 3
cursors

controlling placement after refresh 9
logical 3
moving the logical cursor 9
moving the physical cursor 9
physical 3

deleting characters 10
displays 3
getting characters from standard input 10
inserting

blank lines in windows 10
lines

current 3
deleting 10

logical cursor 3
macros 3
moving

logical cursor 9
physical cursor 9

naming conventions 3
pads

creating 7
deleting 7
refreshing 7

physical cursor 3
printing

formatted printf on windows 10
refreshing

pads 7
windows 7

screen 3
scrolling

windows 10
setting options 23
starting 5
stopping 5
strings

adding to windows 10
sub-windows

creating 7
termcap

curses (continued)
termcap (continued)

converting to terminfo 17
terminology 3
windows

clearing 10
copying 7
creating 7
deleting 7
drawing boxes around 7
moving 7
overlapping 7
refreshing 7
screens 3
scrolling 10

curses compatibility 26
cursors

controlling placement after refresh 9
getting location of logical cursor 9
logical

curses 3
moving logical curses 9
moving physical 9
physical

curses 3

D
data blocks 123, 127
data management application programming interface DMAPI
791
data types

pthread_once_t 451
dbx

debugging multithreaded program using 481
symbolic debug program 60

dbx command
print subcommand 68
step subcommand 72
thread subcommand 68

dbx plug-in
alias

callback routine 77
event types 77
example 77
fds

callback routine 77
file format 77
file names 77
get_thread_context

callback routine 77
header file 77
Interface 77
loading 77
locate_symbol

callback routine 77
location 77
modules

callback routine 77
naming 77
overview 77
print

callback routine 77
process

Index 809

dbx plug-in (continued)
process (continued)

callback routine 77
pthreads

callback routine 77
read_memory

callback routine 77
regions

callback routine 77
session

callback routine 77
set_pthread_context

callback routine 77
set_thread_context

callback routine 77
threads

callback routine 77
unloading 77
version control 77
what_function

callback routine 77
write_memory

callback routine 77
dbx plug-in callback routines 77
dbx symbolic debug program

.dbxinit file 75
aliases

dbx subcommand, creating 75
breakpoints 60
calling procedures 66
changing the current file 64
command line editing 60
dbx subcommand aliases

creating 75
debugging spinlocks 75
expressions

modifiers and operators for 66
type checking 66

files
.dbxinit 75
current, changing 64
reading dbx subcommands from 75
source, displaying 64

folding variables to lowercase and uppercase 66
handling signals 66
list of subcommands 94
machine level debugging 72
machine level programs

debugging 72
running 72

machine registers 72
memory addresses 72
modifiers

for expressions 66
multiple threads 64
names, scoping 66
new dbx prompt

defining 75
operators

for expressions 66
print output

changing variables 66
procedures

calling 66

dbx symbolic debug program (continued)
procedures (continued)

current, changing 64
program control 60
programs

controlling 60
machine level 72
machine level, running 72
multiple threads 64
running 60
separating output from dbx 60

prompts
defining 75

reading dbx subcommands from a file 75
running programs 60
running shell commands 60
scoping names 66
separating dbx output from program output 60
signals, handling 66
source directory path

changing 64
source files

displaying and manipulating 64, 66, 75
spinlocks

debugging 75
stack trace, displaying 66
starting 60
subcommands, list of 94
tracing execution 60
type checking in expressions 66
using 60
variables

changing print output 66
displaying and modifying 66
folding, lowercase and uppercase 66

deadlock 427
deamons

srcmstr 749
trace 764

debug malloc tool 623
debugging multithreaded programs

dbx, using 481
kernel debug program, using 481

debugging programs 28
dependencies 561, 562
descriptors 136
destructor routine 452
detached state 441
detachstate attribute 413
developing multithreaded program debuggers 485
developing multithreaded programs to examine modify
pthread library objects 482
diag command 96
dialogs

SMIT 715
directories

changing
current 116
root 116

linking 134
overview 116
status 134
working with

overview 116

810 AIX Version 7.2: General programming concepts

directories (continued)
working with (continued)

subroutines for 116
disk address format 123
disk fragments 127
disk i-nodes 120, 127
disk space allocation 123
DLPAR 558, 563
DR_FAIL 570
DR_resource_POST_ERROR 570
DR_SUCCESS 570
DR_WAIT 570
Draft 7 applications

porting 480
dri_cpu 570
dri_cpu structure 570
dri_mem 570
dri_mem structure 570
dynamic logical paritioning 558, 562, 563
dynamic logical partitioning 561
dynamic memory guarding 181
Dynamic Processor Deallocation 177

E
ECHO directive 497
entry point routine 413
environment variables

NUM_SPAREVP 478
errclear command 104
error log

transferring to another system 98
error log descriptors 96
error logging

cleaning an error log 104
commands 112
copying an error log 111
example report 104
files 112
generating a report 104
kernel services 112
managing 98
overview 96
reading an error report 104
stopping an error log 104
subroutines 112

error logging facility 97
error notification 101
error report

detailed example 104
generating 104
summary example 104

errpt command 96, 104, 112
errstop command 104, 112
errupdate command 107, 112
event parameter 570
event_in_prog parameter 570
event_list parameter 570
example

dbx plug-in 77
example adb program adbsamp3 53
example adb program: adbsamp2 53
example program for the lex and yacc Programs 515
example programs

example programs (continued)
manipulating characters

isalnum (ctype) routine 706
isalpha (ctype) routine 706
isascii (ctype) routine 706
iscntrl (ctype) routine 706
isdigit (ctype) routine 706
islower (ctype) routine 706
ispunct (ctype) routine 706
isspace (ctype) routine 706
isupper (ctype) routine 706

exec subroutine 463
extended regular expressions

lex command 493

F
fast paths

SMIT 720
fclear subroutine 141
fdpr

debugging reordered executables 72
FIFO (first-in, first-out)

understanding 140–143, 145, 146
file descriptor tables

definition 136
file descriptors

definition 136
duplicating

dup subroutine 136
fcntl subroutine 136
fork subroutine 136

managing 136
preset values 136
resource limit 136

file systems
bitmap 123
compressed 123
fragment map 123
fragmented 123
layout 127
overview 113
quotas 123
types

creating 149
file types

overview 114
file-system helpers

execution syntax 150
operations 149
sample invocations 149

files
access modes 148
allocating space to 123
closing 140
creating 139
input and output (I/O) 140–143, 145, 146
large

_LARGE_FILES 130
64-bit file system 130
allocation in file systems 123
common pitfalls 130
implications for existing programs 130
open protection 130

Index 811

files (continued)
large (continued)

porting applications 130
writing programs that access 130

linking 134
locking fields 121
masks 139
opening 139
overview 114
pipes 140–143, 145, 146
reading 140–143, 145, 146
SCCS

controlling 684
creating 683
detecting damage 685
editing 683
repairing damage 685
tracking 684
updating 683

sharing open 136
status 147
termcap 17
terminfo 17
truncating 140–143, 145, 146
working with

subroutines for 114
writing 140–143, 145, 146

first-in first-out scheduling policy 444
floating-point exceptions

disabled and enabled processing 155
subroutines 154

fork cleanup handlers 463
fork subroutine 463
fragment map 123
fragmented file system 123
fragments

disk 127
map 123

front end program 149
ftruncate subroutine 140–143, 145, 146
full logical block 123
fullstat subroutine 147

G
generic trace channels 769

H
h_arg parameter 570
h_token parameter 570
handlers, extended 570
Hardware Management Console 558
heap

64-bit applications 609
help

SMIT 726
helpers 149
hlpadb 46

I
i-nodes

i-nodes (continued)
definition 114
disk 127
i-number byte offset 116
JFS2 121
modifying 120
timestamp

changing 147
I/O offset

absolute 140
and read subroutine 140–143, 145, 146
and write subroutine 140–143, 145, 146
description 140–143, 145, 146
end_relative 140
manipulating 140–143, 145, 146
relative 140

in-core i-nodes 121
index nodes 120
indirect blocks 123
inheritance protocol 448
inheritsched attribute 444
init command

SRC 749
initializations 451
input and output handling 163
input modes 17
inter-process communication IPC limits 594
introduction 588
IPC (interprocess channel) 114

J
J2_CFG_ASSIST ioctl operation 153
JFS

disk space allocation 123
JFS2

i-nodes 121
JFS2 file system layout 129
joining threads 441

K
kernel extensions 570
kernel programming

multiprocessor issues 181
kernel services 570
kernel thread 408–412
key destruction 452
keys

creating 452
destroying 452
destruction 452

kill subroutine 459

L
large files

common pitfalls
arithmetic overflows 130
failure to include proper headers 130
file size limits 130
fseek/ftell 130
imbedded file offsets 130

812 AIX Version 7.2: General programming concepts

large files (continued)
common pitfalls (continued)

improper data types 130
parameter mismatches 130
string conversions 130

open protection 130
porting applications to 130
using _LARGE_FILES 130
using 64-bit file system 130
writing programs that access 130

large program support 172
lazy loading 583
lex command

compiling the lexical analyzer 491
defining substitution strings 496
extended regular expressions 493
lexical analyzer 497
matched strings 497
passing code to program 496
start conditions 501

lex Command
end-of-file processing 497
input/output subroutines
497
lex library 497
lexical analyzer 491
operators 493

lex Library 497
lexical analyzer

parser program 492
libpthreads_compat.a library 412
libpthreads.a library 408–412
library model test 447
line discipline module ldterm 784
linking

run time 581
links

directory 134
symbolic 134

list numerical manipulation subroutines 694
list of additional curses subroutines 27
list of character manipulation subroutines 689
list of executable program creation subroutines 691
list of long integer numerical manipulation subroutines 696
list of multithreaded programming subroutines 700
list of threads processes interactions subroutines 462
list processes subroutines 697
list programmer's workbench library subroutines 701
list scheduling subroutines 447
list security auditing subroutines 702
list string manipulation subroutines 705
list synchronization subroutines 450
list thread advanced feature subroutines 468
list_size parameter 570
loader domains

using 789
locking

creating user locking services 181
logical block 123
logical partitioning 558
logical volume manager

library subroutines 153
logical volume programming 152
long locks 456

longjmp subroutine 459
LPAR 558
ls command 104
lsclass 562
lseek subroutine 140–143, 145, 146
lsrset 562

M
m4

built-in macros 532
changing quote characters 532
checking for defined macros 532
conditional expressions 532
creating user-defined macros 532
integer arithmetic 532
macro processing with arguments 532
manipulating files 532
manipulating strings 532
predefined macros 532
printing names and definitions 532
quote characters 532
redirecting output 532
removing macro definitions 532
system programs 532
unique names 532
using the macro processor 532

macros
PTHREAD_ONCE_INIT 451

main Subroutine 497
malloc buckets 630
malloc detect 636
malloc disclaim 636
malloc log 634
malloc multiheap 629
malloc subsystem

alloca 609
allocation policy 611
allocation policy, default 609
calloc 609
free 609
heap 609
mallinfo 609
malloc 609
mallopt 609
process heap 609
realloc 609
valloc 609

malloc trace 633
manipulating soft lables 26
masks 139
memory management

allocating memory 609
listing of memory manipulation services 601
program address space

overview 588
memory mapping

listing of memory mapping services 602
mmap comparison with shmat 590
mmap compatibility considerations 590
overview 590
semaphore subroutines overview 590

memory removal failure 561
menus

Index 813

menus (continued)
SMIT 715

minicurses
characters

adding characters to windows 10
strings

adding to windows 10
mkfifo subroutine 139
mknod subroutine

creating regular files with 139
mount command 149
mount helpers

execution syntax 149
overview 149

multi-threading simultaneous 556
multiprocessor programming 490
multithreaded program

Compiler Invocation 478
compiling 478
debugging 478

multithreaded programming 407
mutex

attributes
creation 424
destruction 424
object 424
prioceiling 448
process-shared 464

creation 424
definition 424
destruction 424
locking 424
protocol attributes 448
protocols 448
unlocking 424
usage 424

mycmd command 769
mycpu 558

N
name parameter 570
named shared library areas 584
notify object class (SRC)

creating a subsystem notification method 750
removing a subsystem notification method 750

NUM_SPAREVP environment variable 478

O
O_DEFER 141
object classes

SMIT 717
objects 541
ODM (Object Data Manager)

descriptors
link 541
method 541
terminal 541

example code
adding objects 553
creating object classes 553

list of commands 551

ODM (Object Data Manager) (continued)
list of subroutines 551
object classes

adding objects 541
creating 541
definition 541
locking 541
unlocking 541

objects
adding to object classes 541
definition 541
searching for 541

predicates
comparison operators 541
constants in 541
descriptor names 541

offset 140–143, 145, 146
one-time initialization 451
open subroutine

creating files with 139
opening a file with 139

operating system
libraries 713

operations 563
options (threads library) 464
overviews

make command
creating description files 519–526, 528–532,
574–579
creating target files 519–526, 528–532, 574–579
internal rules 519–526, 528–532, 574–579
using with non-SCCS files 519–526, 528–532,
574–579
using with SCCS files 519–526, 528–532, 574–579

P
pads

creating 7
curses 3
deleting 7
refreshing 7

paging space programming requirements 600
parser

lexical analyzer 492
parser operation generated yacc command 511
partial logical block 123
pbsearchsort 709
PCI slot removal failure 561
pclose subroutine 140–143, 145, 146
permissions

directories 148
files 148

pipe subroutine 140–143, 145, 146
pipes

child processes 140–143, 145, 146
creating with mkfifo 139

plug-in, dbx
alias

callback routine 77
event types 77
example 77
fds

callback routine 77

814 AIX Version 7.2: General programming concepts

plug-in, dbx (continued)
file format 77
file names 77
get_thread_context

callback routine 77
header file 77
Interface 77
loading 77
locate_symbol

callback routine 77
location 77
modules

callback routine 77
naming 77
print

callback routine 77
process

callback routine 77
pthreads

callback routine 77
read_memory

callback routine 77
regions

callback routine 77
session

callback routine 77
set_pthread_context

callback routine 77
set_thread_context

callback routine 77
threads

callback routine 77
unloading 77
version control 77
what_function

callback routine 77
write_memory

callback routine 77
plug-in, dbx callback routines 77
plug-in,dbx

overview 77
pobeve dynamic tracing facility 184
popen subroutine 140–143, 145, 146
POSIX thread 412
post phase 563, 570
post-add phase 570
post-error phase 570
post-remove phase 570
pre phase 563
pre-add phase 570
pre-phase 570
pre-remove phase 570
prioceiling attribute 448
priority

inheritance protocol 448
protection protocol 448

priority inversion 448
priority scheduling POSIX option 465
process

properties 408–412
process heap

32-bit applications 609
process-shared attribute 464
processes

processes (continued)
using pipes 140–143, 145, 146

processor
numbers 176
ODM names 176
states 176

processor bindings 562
processor numbering 562
processor removal failure 561
protect keys 167
protection protocol 448
protocol attribute 448
protocols

inheritance 448
mutex 448
priority inheritance 448
priority protection 448
protection 448

ps 562
ps command 562
pthread 412
pthread_atfork subroutine 463
pthread_attr_destroy subroutine 413
pthread_attr_getdetachstate subroutine 413
pthread_attr_getinheitsched subroutine 444
pthread_attr_getsatckaddr subroutine 464
pthread_attr_getschedparam 447
pthread_attr_getschedparam subroutine

schedparam attribute 444
pthread_attr_getscope subroutine 447
pthread_attr_getstacksize subroutine 464
pthread_attr_init subroutine 413
pthread_attr_setdetachstate subroutine 413
pthread_attr_setinheritsched subroutine 444
pthread_attr_setsatckaddr subroutine 464
pthread_attr_setschedparam 447
pthread_attr_setschedparam subroutine

schedparam attribute 444
pthread_attr_setschedpolicy subroutine 444
pthread_attr_setscope subroutine 447
pthread_attr_setstacksize subroutine 464
pthread_attr_t data type 413
pthread_cancel subroutine 417
pthread_cleanup_pop subroutine 416
pthread_cleanup_push subroutine 416
pthread_cond_broadcast subroutine 429
pthread_cond_destroy subroutine 429
pthread_cond_init subroutine 429
PTHREAD_COND_INITIALIZER macro 429
pthread_cond_signal subroutine 429
pthread_cond_t data type 429
pthread_cond_timedwait subroutine 429
pthread_cond_wait subroutine 429
pthread_condattr_destroy subroutine 429
pthread_condattr_init subroutine 429
pthread_condattr_t data type 429
pthread_create subroutine 413
pthread_equal subroutine 413
pthread_exit subroutine 416
pthread_getschedparam 447
pthread_getschedparam subroutine

schedparam attribute 444
schedpolicy attribute 444

pthread_getspecific subroutine 452

Index 815

pthread_join subroutine 441
pthread_key_create subroutine 452
pthread_key_delete subroutine 452
pthread_key_t data type 452
pthread_kill subroutine 459
pthread_mutex_destroy subroutine 424
pthread_mutex_init subroutine 424
pthread_mutex_lock subroutine 424
pthread_mutex_t data type 424
pthread_mutex_trylock subroutine 424
pthread_mutex_unlock subroutine 424
pthread_mutexattr_destroy subroutine 424
pthread_mutexattr_getprioceiling subroutine 448
pthread_mutexattr_getprotocol subroutine 448
pthread_mutexattr_init subroutine 424
pthread_mutexattr_setprioceiling subroutine 448
pthread_mutexattr_setprotocol subroutine 448
pthread_mutexattr_t data type 424
pthread_once subroutine 451
PTHREAD_ONCE_INIT macro 451
pthread_once_t data type 451
PTHREAD_PRIO_INHERIT 448
PTHREAD_PRIO_NONE 448
PTHREAD_PRIO_PROTECT 448
pthread_self subroutine 413
pthread_setcancelstate subroutine 416
pthread_setcanceltype subroutine 416
pthread_setschedparam subroutine 447
pthread_setspecific subroutine 452
pthread_t data type 413
pthread_testcancel 416
pthread_yield subroutine 429

Q
quotas 123

R
race condition 424
raise subroutine 459
read subroutine 140–143, 145, 146
reconfig_handler_complete 570
reconfig_handler_complete kernel service 570
reconfig_handler_complete routine 570
reconfig_handler_complete subroutine 570
reconfig_register 570
reconfig_register function 570
reconfig_register subroutine 570
reconfig_register_list subroutine 570
reconfig_unregister function 570
reconfiguration handlers 570
registering handlers 570
registering kernel extension handlers 570
regular expressions

lex command 493
REJECT directive 497
remove subroutine 134
resource_info parameter 570
rmdir subroutine 134
round-robin scheduling policy 444
routines

destructor 452

run time linking 581

S
SAFE 558
SCCS

commands
list of 686

files
controlling 684
creating 683
detecting damage 685
editing 683
repairing damage 685
tracking 684
updating 683

flags and parameters 682
SCCS retrieval

suppress 519–526, 528–532, 574–579
sched_yield 447
sched_yield subroutine 444
scheduling

parameters 444
policies 444
priority 444
synchronization of 448

screen types
SMIT 715

Scripts 563
scripts, using 563
searching and sorting

example program 709
sed command

starting the editor 574
using string replacement 574
using text in commands 574
using the command summary 574

sed program information 574
selectors

SMIT 715
semaphores (from OSF/1) 456
setjmp subroutine 459
shared libraries

creating 586
lazy loading 583

shared libraries and shared memory 580
shared memory

mmap comparison with shmat 590
overview 590

shared objects
creating 581

sigaction subroutine 459
siglongjmp subroutine 459
signal

delivery 459
generation 459
handlers 459
masks 459

signals 563
signals, using 563
sigprocmask subroutine 459
SIGRECONFIG 563
SIGRECONFIG signal 563
sigsetjmp subroutine 459

816 AIX Version 7.2: General programming concepts

sigthreadmask subroutine 459
sigwait subroutine 429, 459
Simultaneous Multithreading 556
SMIT (System Management Interface Tool)

aliases 720
dialogs

designing 715
executing 723
generating 723

example program 739
fast paths 720
generating commands with 723
help

creating 726
understanding 726

information command descriptors
cmd_to_*_postfix 721
cmd_to_discover 721
understanding 721

menus
designing 715

name selects
designing 715

object class
for aliases 727

object classes
dialog 732
dialog header 736
menu 727
selector header 729
understanding 717

screen types 715
tasks

adding 725
debugging 726

smit errclear command 104
smit errpt command 110
smit trace command 769
smtctl 556
software models

controller/worker 409
divide-and-conquer 408–412
master/slave 408–412
producer/consumer
408–412

Software Partitioning 562
source code control system SCCS 681
SRC

capabilities 749
defining subservers to the SRC object class 763
defining subsystems to the SRC object class 763
init command 749
list of subroutines 764
modifying subserver object definitions 763
modifying subsystem object definitions 763
operations 749
removing subserver object definitions 763
removing subsystem object definitions 763

SRC communication types
message queues (IPC)

overview 755
programming requirements 757

signals
programming requirements 757

SRC communication types (continued)
sockets

overview 755
programming requirements 757

SRC object classes
descriptors 750
notify object overview 750
subserver type object overview 750
subsystem environment object overview 750

SRC subsystem programming requirements
processing status requests 757
receiving SRC request packets

using message queue (IPC) communication 757
using signals communication 757
using sockets communication 757

returning continuation packets 757
returning error packets 757
returning subsystem reply packets 757

srcmstr 749
stack address POSIX option 465
stackaddr attribute 464
stacksize attribute 464
status

directories 134
status subroutines

overview 147
storage protect keys 167
string manipulation

using sed command 574
strings

adding to windows
curses 10
minicurses 10

structures
posix_trace_event_info 772
posix_trace_status_info 772

sub-windows
refreshing 7

subroutines
alloca 609
calloc 609
chmod 148
chown 148
controlling files and directories

list of 692
errlog 112
free 609
mallinfo 609
malloc 609
mallopt 609
pthread_getspecific 452
pthread_setspecific 452
realloc 609
valloc 609

subroutines, example programs, and libraries 686
subsystems

using the system resource controller 757
super block 127
suppress

SCCS retrieval 519–526, 528–532, 574–579
symbolic debug program, dbx 60
synchronization

mutex 424
synchronization scheduling

Index 817

synchronization scheduling (continued)
definition 448

sysconf subroutine 464
system 588
system calls

bindprocessor 562
system environment

Dynamic Processor Deallocation 177
system file tables 136
system management interface tool SMIT 714
system resource controller 750, 755, 757, 763, 764

T
termcap file 17
terminal devices

tty subsystem overview 780
terminals

multiple 17
setting input and output modes 17

terminating a thread 416
terminfo file 17
thread

attributes
contention-scope 447
creating 413
destroying 413
detachstate 413
inheritsched 444
object 413
schedparam 444
schedpolicy 444
stackaddr 464
stacksize 464

binding 177
Compiler Invocation 478
concurrency level 447
contention scope 447
data types 464
default values 464
definition 408–412
detached state 441
ID 413
join 441
kernel 408–412
libpthreads_compat.a library 412
libpthreads.a library 412
library 408–412
limits 464
models 408–412
POSIX thread 412, 478
properties 408–412
pthread 412
supported 468
user 408–412

thread-specific data
concurrent creation 453
definition 452
destroying data 455
destructor 452
destructor routine 452
key 452
setting values 452
swapping data 452

thread-specific data (continued)
usage 452

threads
creating 413
object-oriented interface 408–412
synchronization 423
terminating 416

threads library
cancelation 416
cleanup 416
condition variable

attributes creation and destruction 429
synchronization point 429
timed wait 429

dynamic initialization
threadsafe 451

exiting a thread 416
freeing returned data 441
join 441
mutex

attributes creation and destruction 424
read/write locks (from POSIX) 456
thread creation 478

threadsafe
SRC subroutines 764

threadsafe code 473, 637
timestamp

changing 147
tools utilities 1
trace

configuring 769
controlling 764
generating reports 769
recording trace event data 770
starting 769
starting a trace 769
stopping 769
using generic trace channels 769

trace command
configuring 769

trace facility
overview of 764

trace hook identifiers 769
tracing

configuring 769
definition 776
starting 769
trace event type 776
trace subroutines 777
tracing stream attributes 776

tracing data
tracing user application 772

tracing data structures
tracing user application 772

trcrpt command 769
trcstop command 769
troubleshooting 561
truncate subroutine 140–143, 145, 146
tty

current modes 17
restoring modes 17
saving modes 17

tty (terminal type)
definition 780

818 AIX Version 7.2: General programming concepts

tty (terminal type) (continued)
examples 780

tty drivers 788
tty subsystem 780

U
unlink subroutine 134
unmount command 149
user defined malloc replacement 619
user thread 408–412
using read-write locks 434
using yacc grammar file 504
utimes subroutine 147

V
variables 562
video attributes

setting 23
virtual memory

addressing
overview 588

virtual processor 408–412
vital product data (VPD) 104
VP 408–412
VPD (vital product data) 104
vue functions 374

W
windows

clearing 10
copying 7
curses 3
drawing box around 7
moving 7
overlapping 7
refreshing 7
refreshing multiple 7
scrolling 10

winsize structure 783
wlmctrl 562
working color 23
working JFS2 directories 118
Workload Manager 562
write subroutine 140–143, 145, 146

Y
yacc command

actions 509
ambiguous rules 513
creating a parser 502
declarations 505
error handling 510
grammar file 502
rules 507
turning on debug mode 515

yacc program 492
yyleng external variable 497
yyless Subroutine 497
yymore Subroutine 497

yyreject Subroutine 497
yywleng external variable 497
yywrap Subroutine 497

Index 819

820 AIX Version 7.2: General programming concepts

IBM®

	Contents
	About this document
	Highlighting
	Case-sensitivity in AIX
	ISO 9000

	General programming concepts
	What's new
	Tools and utilities
	Curses library
	Initializing curses
	Windows in the curses environment
	Manipulating window data with curses
	Controlling the cursor with curses
	Manipulating characters with curses
	Understanding terminals with curses
	Working with color
	Manipulating video attributes
	Manipulating soft labels
	Curses compatibility
	List of additional curses subroutines

	Debugging programs
	adb debug program overview
	Getting started with the adb debug program
	Controlling program execution
	Using adb expressions
	Customizing the adb debug program
	Computing numbers and displaying text
	Displaying and manipulating the source file with the adb program
	adb debug program reference information
	Example adb program: adbsamp
	Example adb program: adbsamp2
	Example adb program: adbsamp3
	Example of directory and i-node dumps in adb debugging
	Example of data formatting in adb debugging
	Example of tracing multiple functions in adb debugging
	dbx symbolic debug program overview
	Using the dbx debug program
	Displaying and manipulating the source file with the dbx debug program
	Examining program data
	Debugging at the machine level with dbx
	Customizing the dbx debugging environment
	Developing for the dbx plug-in framework
	List of dbx subcommands

	Error-logging overview
	Error-logging facility
	Managing error logging
	Error notification
	Error logging tasks
	Error logging and alerts
	Error logging controls

	File systems and logical volumes
	File types
	Working with JFS directories
	Working with JFS2 directories
	Working with JFS i-nodes
	Working with JFS2 i-nodes
	Allocating JFS file space
	Allocating JFS2 file space
	JFS file system layout
	JFS2 file system layout
	Writing programs that access large files
	Linking for programmers
	Using file descriptors
	Creating and removing files
	Working with file I/O
	Manipulating the current offset
	Reading a file
	Writing a file
	Direct I/O vs. normal cached I/O
	Benefits of direct I/O
	Working with pipes
	Synchronous I/O

	File status
	File accessibility
	Creating new file system types
	Logical volume programming
	Library of logical volume subroutines

	J2_CFG_ASSIST ioctl operation

	Floating-point exceptions
	Input and output handling
	Storage protect keys
	Large program support
	Programming on multiprocessor systems
	Identifying processors
	Controlling processor use
	Using Dynamic Processor Deallocation
	Dynamic memory guarding
	Creating locking services

	ProbeVue dynamic tracing facility
	ProbeVue concepts
	ProbeVue command
	Vue programming language
	Elements of C
	Vue scripts
	Probe point specification

	ProveVue variables
	Automatic class variables
	Thread-local class variables
	Global class variables
	Kernel global class variables
	Useful kernel variables
	Entry class variables
	Exit class variables
	Built-in class variables
	__curthread built-in variable
	__curproc built-in variable
	__ublock built-in variable
	__mst built-in variable
	__stat built-in variable

	SCSI Disk I/O statistics
	SCSI disk path I/O statistics
	vSCSI client I/O statistics
	vSCSI client driver statistics
	Fiber Channel driver statistics
	Network device driver statistics
	Network interface based statistics
	Network protocol based statistics
	Memory statistics
	CPU statistics
	Per logical CPU statistics
	Overall statistics for all CPUs

	System statistics behavior
	Value and type assignment
	External variables
	Script variables
	Data models for 32-bit and 64-bit processes
	Size-invariant variable types
	Size-variant variable types

	Data types derived from the C language
	Range and bucket data type
	Stack trace type
	Special data types
	String type
	List type
	Associative array type
	Timestamp data type
	File path data type
	MAC address data type
	IP address data type
	net_info_t data type

	Vue library functions
	Predicates
	Symbolic constants
	Header files
	Supported shell elements
	Tentative tracing

	Running ProbeVue
	Probe managers
	System call probe manager
	UFT probe manager
	C++ applications probe manager
	Java applications probe manager
	Interval probe manager
	Extended system call probe manager (syscallx)
	I/O probe manager
	Network probe manager
	Sysproc probe manager

	Shell scripts for ProbeVue
	ProbeVue error messages
	RAS events functions
	Generating a trace record
	Taking a live dump

	Vue functions
	Process attributes
	Multithreaded programming
	Understanding threads and processes
	Process properties
	Thread properties
	Initial thread
	Modularity
	Software models
	Controller/Worker Model
	Divide-and-Conquer Models
	Producer/Consumer Models

	Kernel Threads and User Threads
	Thread models and virtual processors
	Threads Library API
	Object-Oriented Interface
	Naming Convention for the Threads Library
	pthread implementation files

	Threadsafe and threaded libraries in AIX
	Creating threads
	Terminating threads
	Synchronization overview
	Using mutexes
	Using condition variables
	Using read/write locks
	Joining threads
	Scheduling threads
	List of scheduling subroutines

	Contention scope and concurrency level
	Synchronization scheduling
	List of synchronization subroutines

	One-time initializations
	Thread-specific data
	Creating complex synchronization objects
	Signal management
	List of threads-processes interactions subroutines

	Process duplication and termination
	Threads library options
	List of threads advanced-feature subroutines
	Supported interfaces

	Writing reentrant and threadsafe code
	Developing multithreaded programs
	Developing multithreaded programs to examine and modify pthread library objects
	Developing multithreaded program debuggers
	Benefits of threads

	lex and yacc program information
	Generating a lexical analyzer with the lex command
	Using the lex program with the yacc program
	Extended regular expressions in the lex command
	Passing code to the generated lex program
	Defining lex substitution strings
	lex library
	Actions taken by the lexical analyzer
	lex program start conditions
	Creating a parser with the yacc program
	The yacc grammar file
	Using the yacc grammar file
	yacc grammar file declarations
	yacc rules
	yacc actions
	yacc program error handling
	Parser operation generated by the yacc command
	Using ambiguous rules in the yacc program
	Turning on debug mode for a parser generated by the yacc command
	Example program for the lex and yacc programs

	make command
	Creating a description file
	Format of an entry in the make description file
	Using commands in a make description file
	Calling the make command from a description file
	Preventing the make command from stopping on errors
	Simplifying the description file

	Internal rules for the make program
	Example of default rules file
	Single-suffix rules
	Using the make command with archive libraries
	Defining default conditions in a description file
	Including other files in a description file

	Defining and using macros in a description file
	Using macros in a description file
	Internal macros
	Changing macro definitions in a command

	Creating a target file with the make command
	Using the make command with source code control system files
	Understanding makefile considerations in Source Code Control Systems (SCCS)
	Suppressing Default SCCS Retrieval

	Using the make command with non-source code control system (SCCS) files
	Understanding how the make command uses environment variables
	Using the make command in parallel run mode

	m4 macro processor overview
	Object data manager
	ODM commands and subroutines
	ODM example code and output

	Simultaneous multithreading
	Dynamic logical partitioning
	DLPAR-safe and aware programs
	Managing an application's DLPAR dependencies

	Processor bindings
	Integrating the DLPAR operation into the application
	Actions taken by DLPAR scripts
	Making kernel extensions DLPAR-aware

	sed program information
	Manipulating strings with sed
	Starting the editor
	How sed works
	Using regular expressions
	Using the sed command summary
	Line manipulation
	Substitution
	Input and output
	Matching across lines
	Pick up and put down
	Control

	Using text in commands
	Using string replacement

	Shared libraries and shared memory
	Shared objects and run time linking
	Shared libraries and lazy loading
	Named shared library areas
	Creating a shared library
	Program address space overview
	Understanding memory mapping
	Interprocess communication limits
	Creating a mapped data file with the shmat subroutine
	Creating a copy-on-write mapped data file with the shmat subroutine
	Creating a shared memory segment with the shmat subroutine
	Paging space programming requirements
	List of memory manipulation services
	List of memory mapping services

	AIX vector programming
	System memory allocation using the malloc subsystem
	User-defined malloc replacement
	Debug malloc tool
	Malloc multiheap
	Malloc buckets
	Malloc trace
	Malloc log
	Malloc disclaim
	Malloc detect
	Configuring and using the malloc thread cache

	Writing reentrant and threadsafe code
	Packaging software for installation
	Source code control system
	SCCS flag and parameter conventions
	Creating, editing, and updating an SCCS file
	Controlling and tracking SCCS file changes
	Detecting and repairing damaged SCCS files
	List of additional SCCS commands

	Subroutines, example programs, and libraries
	128-bit long double floating-point data type
	List of character manipulation subroutines
	List of executable program creation subroutines
	List of files and directories subroutines
	List of numerical manipulation subroutines
	List of long long integer numerical manipulation subroutines
	List of 128-bit long double numerical manipulation subroutines
	List of processes subroutines
	List of multithreaded programming subroutines
	List of programmer's workbench library subroutines
	List of security and auditing subroutines
	List of string manipulation subroutines
	Example: Program for manipulating characters
	Example: Searching and sorting program
	List of operating system libraries

	System Management Interface Tool (SMIT)
	SMIT screen types
	SMIT object classes
	SMIT aliases and fast paths
	SMIT information command descriptors
	SMIT command generation and execution
	Adding tasks to the SMIT database
	Debugging SMIT database extensions
	Creating SMIT help information for a new task
	sm_menu_opt (SMIT menu) object class
	sm_name_hdr (SMIT selector header) object class
	sm_cmd_opt (SMIT dialog/selector command option) object class
	sm_cmd_hdr (SMIT dialog header) object class
	SMIT example program

	System resource controller
	SRC objects
	SRC communication types
	Programming subsystem communication with the SRC
	Defining your subsystem to the SRC
	List of additional SRC subroutines

	Trace facility
	Start the trace facility

	Tracing user application
	Tracing data structures
	Trace stream attributes
	Trace event type definitions
	Trace subroutines

	tty subsystem
	Line discipline module (ldterm)
	Converter modules
	TTY drivers

	Loader domains
	Data management application programming interface
	AIX transactional memory programming

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

