
AIX Version 7.2

Technical Reference: Communication
Subroutines

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
391.

This edition applies to AIX Version 7.2 and to all subsequent releases and modifications until otherwise indicated in new
editions.
© Copyright International Business Machines Corporation 2015, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..vii
Highlighting...vii
Case-sensitivity in AIX..vii
ISO 9000...vii

Communication subroutines.. 1
eXternal Data Representation... 1

xdr_accepted_reply Subroutine... 1
xdr_array Subroutine.. 2
xdr_bool Subroutine... 2
xdr_bytes Subroutine... 3
xdr_callhdr Subroutine... 4
xdr_callmsg Subroutine.. 5
xdr_char Subroutine... 5
xdr_destroy Macro.. 6
xdr_enum Subroutine... 7
xdr_float Subroutine... 7
xdr_free Subroutine.. 8
xdr_getpos Macro... 9
xdr_hyper Subroutine...10
xdr_inline Macro... 10
xdr_int Subroutine..11
xdr_long Subroutine... 12
xdr_opaque Subroutine.. 12
xdr_opaque_auth Subroutine...13
xdr_pmap Subroutine...14
xdr_pmaplist Subroutine..15
xdr_pointer Subroutine.. 15
xdr_reference Subroutine.. 16
xdr_rejected_reply Subroutine.. 17
xdr_replymsg Subroutine... 18
xdr_setpos Macro... 18
xdr_short Subroutine..19
xdr_string Subroutine... 20
xdr_u_char Subroutine... 21
xdr_u_int Subroutine..21
xdr_u_long Subroutine... 22
xdr_u_short Subroutine..23
xdr_union Subroutine... 24
xdr_vector Subroutine.. 25
xdr_void Subroutine..25
xdr_wrapstring Subroutine...26
xdr_authunix_parms Subroutine... 27
xdr_double Subroutine... 27
xdrmem_create Subroutine... 28
xdrrec_create Subroutine...29
xdrrec_endofrecord Subroutine...30
xdrrec_eof Subroutine..31
xdrrec_skiprecord Subroutine... 31
xdrstdio_create Subroutine..32

 iii

Network Information Services.. 33
yp_all Subroutine..33
yp_bind Subroutine.. 35
yp_first Subroutine... 36
yp_get_default_domain Subroutine.. 37
yp_master Subroutine..37
yp_match Subroutine... 38
yp_next Subroutine.. 39
yp_order Subroutine...41
yp_unbind Subroutine.. 41
yp_update Subroutine.. 42
yperr_string Subroutine..43
ypprot_err Subroutine..44

Simple Network Management Protocol (SNMP)... 45
getsmuxEntrybyname or getsmuxEntrybyidentity Subroutine...45
isodetailor Subroutine..46
ll_hdinit, ll_dbinit, _ll_log, or ll_log Subroutine.. 47
o_number, o_integer, o_string, o_igeneric, o_generic, o_specific, or o_ipaddr Subroutine...............50
oid_cmp, oid_cpy, oid_free, sprintoid, str2oid, ode2oid, oid2ode, oid2ode_aux, prim2oid, or

oid2prim Subroutine... 52
oid_extend or oid_normalize Subroutine.. 54
readobjects Subroutine..55
s_generic Subroutine... 56
smux_close Subroutine..57
smux_error Subroutine.. 58
smux_free_tree Subroutine... 59
smux_init Subroutine... 60
smux_register Subroutine..61
smux_response Subroutine... 62
smux_simple_open Subroutine... 63
smux_trap Subroutine..64
smux_wait Subroutine... 66
text2inst, name2inst, next2inst, or nextot2inst Subroutine...67
text2oid or text2obj Subroutine...68

Sockets...69
_.. 69
a.. 72
b.. 77
c.. 80
d.. 84
e.. 87
f...105
g.. 118
h.. 165
i... 168
kvalid_user Subroutine.. 208
listen Subroutine.. 209
n.. 210
PostQueuedCompletionStatus Subroutine... 213
r...214
s.. 255
WriteFile Subroutine.. 325

Packet Capture.. 327
ioctl BPF Control Operations... 327

Librdmacm Library...329
Returned error rules...329
Supported verbs...330
Device Management...362

iv

Memory region management...363
Libibverbs Library.. 366

Returned error rules...366
Supported Verbs.. 366
Verbs not supported by the libibverbs library... 389

Notices..391
Privacy policy considerations.. 392
Trademarks.. 393

Index.. 395

 v

vi

About this document

This topic collection provides experienced C programmers with complete detailed information about
eXternal Data Representation, Network Information Services (NIS), and Simple Network Management
Protocol (SNMP), sockets, packet capture, Librdman library, and Libibverbs library for the AIX® operating
system. To use the topic collection effectively, you should be familiar with commands, system calls,
subroutines, file formats, and special files. This publication is also available on the documentation CD that
is shipped with the operating system.

Highlighting
The following highlighting conventions are used in this document:

Item Description

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you
might see displayed, examples of portions of program code similar to what you
might write as a programmer, messages from the system, or information you should
actually type.

Case-sensitivity in AIX
Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS,
the system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three
distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be
performed, always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2015, 2018 vii

viii AIX Version 7.2: Technical Reference: Communication Subroutines

Technical Reference: Communication subroutines
Review the communication subroutines for eXternal data representation, Network Information Services
(NIS), Simple Network Management Protocol (SNMP), and sockets.

The AIX operating system is designed to support The Open Group's Single UNIX Specification Version 3
(UNIX 03) for portability of operating systems based on the UNIX operating system. Many new interfaces,
and some current ones, have been added or enhanced to meet this specification. To determine the correct
way to develop a UNIX 03 portable application, see The Open Group's UNIX 03 specification on The UNIX
System website (http://www.unix.org).

eXternal Data Representation
This topic collection includes the subroutines that help in external data representation in the required
format.

xdr_accepted_reply Subroutine

Purpose
Encodes RPC reply messages.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

int xdr_accepted_reply (xdrs, ar)
XDR *xdrs;
struct accepted_reply *ar;

Description
The xdr_accepted_reply subroutine encodes Remote Procedure Call (RPC) reply messages. The routine
generates message replies similar to RPC message replies without using the RPC program.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

ar Specifies the address of the structure that contains the RPC reply.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of RPC Programming References
eXternal Data Representation (XDR) Overview for Programming
Remote Procedure Call (RPC) Overview for Programming

© Copyright IBM Corp. 2015, 2018 1

http://www.unix.org

xdr_array Subroutine

Purpose
Translates between variable-length arrays and their corresponding external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_array (xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR * xdrs;
char ** arrp;
u_int * sizep;
u_int maxsize;
u_int elsize;
xdrproc_t elproc;

Description
The xdr_array subroutine is a filter primitive that translates between variable-length arrays and their
corresponding external representations. This subroutine is called to encode or decode each element of
the array.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

arrp Specifies the address of the pointer to the array. If the arrp parameter is null when the array
is being deserialized, the XDR program allocates an array of the appropriate size and sets
the parameter to that array.

sizep Specifies the address of the element count of the array. The element count cannot exceed
the value for the maxsize parameter.

maxsize Specifies the maximum number of array elements.

elsize Specifies the byte size of each of the array elements.

elproc Translates between the C form of the array elements and their external representations.
This parameter is an XDR filter.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_bool Subroutine

Purpose
Translates between Booleans and their external representations.

2 AIX Version 7.2: Technical Reference: Communication Subroutines

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_bool (xdrs, bp)
XDR *xdrs;
bool_t *bp;

Description
The xdr_bool subroutine is a filter primitive that translates between Booleans (C integers) and their
external representations. When encoding data, this filter produces values of either 1 or 0.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

bp Specifies the address of the Boolean data.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_bytes Subroutine

Purpose
Translates between internal counted byte arrays and their external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_bytes (xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep;
u_int maxsize;

Description
The xdr_bytes subroutine is a filter primitive that translates between counted byte arrays and their
external representations. This subroutine treats a subset of generic arrays, in which the size of array

Technical Reference: Communication subroutines 3

elements is known to be 1 and the external description of each element is built-in. The length of the byte
array is explicitly located in an unsigned integer. The byte sequence is not terminated by a null character.
The external representation of the bytes is the same as their internal representation.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

sp Specifies the address of the pointer to the byte array.

sizep Points to the length of the byte area. The value of this parameter cannot exceed the value of
the maxsize parameter.

maxsize Specifies the maximum number of bytes allowed when XDR encodes or decodes messages.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_callhdr Subroutine

Purpose
Describes RPC call header messages.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_callhdr (xdrs, chdr)
XDR *xdrs;
struct rpc_msg *chdr;

Description
The xdr_callhdr subroutine describes Remote Procedure Call (RPC) call header messages. This
subroutine generates call headers that are similar to RPC call headers without using the RPC program.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

chdr Points to the structure that contains the header for the call message.

4 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of RPC Programming References
eXternal Data Representation (XDR) Overview for Programming
Remote Procedure Call (RPC) Overview for Programming

xdr_callmsg Subroutine

Purpose
Describes RPC call messages.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_callmsg (xdrs, cmsg)
XDR *xdrs;
struct rpc_msg *cmsg;

Description
The xdr_callmsg subroutine describes Remote Procedure Call (RPC) call messages. This subroutine
generates messages similar to RPC messages without using the RPC program.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

cmsg Points to the structure that contains the text of the call message.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of RPC Programming References
eXternal Data Representation (XDR) Overview for Programming
Remote Procedure Call (RPC) Overview for Programming

xdr_char Subroutine

Purpose
Translates between C language characters and their external representations.

Library
C Library (libc.a)

Technical Reference: Communication subroutines 5

Syntax

#include <rpc/xdr.h>

xdr_char (xdrs, cp)
XDR *xdrs;
char *cp;

Description
The xdr_char subroutine is a filter primitive that translates between C language characters and their
external representations.

Note: Encoded characters are not packed and occupy 4 bytes each. For arrays of characters, the
programmer should consider using the xdr_bytes, xdr_opaque, or xdr_string routine.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

cp Points to the character.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_destroy Macro

Purpose
Destroys the XDR stream pointed to by the xdrs parameter.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

void xdr_destroy (xdrs)
XDR *xdrs;

Description
The xdr_destroy macro invokes the destroy routine associated with the eXternal Data Representation
(XDR) stream pointed to by the xdrs parameter and frees the private data structures allocated to the
stream. The use of the XDR stream handle is undefined after it is destroyed.

Parameters

Item Description

xdrs Points to the XDR stream handle.

6 AIX Version 7.2: Technical Reference: Communication Subroutines

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Non-Filter Primitives

xdr_enum Subroutine

Purpose
Translates between a C language enumeration (enum) and its external representation.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_enum (xdrs, ep)
XDR *xdrs;
enum_t *ep;

Description
The xdr_enum subroutine is a filter primitive that translates between a C language enumeration (enum)
and its external representation.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

ep Specifies the address of the enumeration data.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_float Subroutine

Purpose
Translates between C language floats and their external representations.

Library
C Library (libc.a)

Technical Reference: Communication subroutines 7

Syntax

#include <rpc/xdr.h>

xdr_float (xdrs, fp)
XDR *xdrs;
float *fp;

Description
The xdr_float subroutine is a filter primitive that translates between C language floats (normalized single-
precision floating-point numbers) and their external representations.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

fp Specifies the address of the float.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_free Subroutine

Purpose
Deallocates, or frees, memory.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

void xdr_free (proc, objp)
xdrproc_t proc;
char *objp;

Description
The xdr_free subroutine is a generic freeing routine that deallocates memory. The proc parameter
specifies the eXternal Data Representation (XDR) routine for the object being freed. The objp parameter is
a pointer to the object itself.

Note: The pointer passed to this routine is not freed, but the object it points to is freed (recursively).

8 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

proc Points to the XDR stream handle.

objp Points to the object being freed.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Non-Filter Primitives

xdr_getpos Macro

Purpose
Returns an unsigned integer that describes the current position in the data stream.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

u_int xdr_getpos (xdrs)
XDR *xdrs;

Description
The xdr_getpos macro invokes the get-position routine associated with the eXternal Data Representation
(XDR) stream pointed to by the xdrs parameter. This routine returns an unsigned integer that describes
the current position in the data stream.

Parameters

Item Description

xdrs Points to the XDR stream handle.

Return Values
This macro returns an unsigned integer describing the current position in the stream. In some XDR
streams, it returns a value of -1, even though the value has no meaning.

Related reference
xdr_setpos Macro
Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Non-Filter Primitives

Technical Reference: Communication subroutines 9

xdr_hyper Subroutine

Purpose
Translates long integers from C language to their external representations.

Library
C Library (libc.a)

Syntax
 int xdr_hyper(XDR *xdrs, long long *lp)

Description
A filter primitive that translates ANSI C long integers to their external representations. This subroutine
returns 1 if it succeeds, otherwise returns a value of 0.

Parameters
Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

ulp Specifies the address of the long integer.

Return Values
Upon successful completion, the xdr_hyper subroutine returns a value of 1. If unsuccessful, it returns a
value of 0.

xdr_inline Macro

Purpose
Returns a pointer to the buffer of a stream pointed to by the xdrs parameter.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

long *x_inline (xdrs, len)
XDR *xdrs;
int len;

Description
The xdr_inline macro invokes the inline subroutine associated with the eXternal Data Representation
(XDR) stream pointed to by the xdrs parameter. The subroutine returns a pointer to a contiguous piece of
the stream's buffer, whose size is specified by the len parameter. The buffer can be used for any purpose,
but it is not data-portable. The xdr_inline macro may return a value of null if it cannot return a buffer
segment of the requested size.

10 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

xdrs Points to the XDR stream handle.

len Specifies the size, in bytes, of the internal buffer.

Return Values
This macro returns a pointer to a piece of the stream's buffer.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Non-Filter Primitives

xdr_int Subroutine

Purpose
Translates between C language integers and their external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_int (xdrs, ip)
XDR *xdrs;
int *ip;

Description
The xdr_int subroutine is a filter primitive that translates between C language integers and their external
representations.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

ip Specifies the address of the integer.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

Technical Reference: Communication subroutines 11

xdr_long Subroutine

Purpose
Translates between C language long integers and their external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_long
(xdrs, lp)
XDR *xdrs;
long *lp;

Description
The xdr_long filter primitive translates between C language long integers and their external
representations. This primitive is characteristic of most eXternal Data Representation (XDR) library
primitives and all client XDR routines.

Parameters

Item Description

xdrs Points to the XDR stream handle. This parameter can be treated as an opaque handler and
passed to the primitive routines.

lp Specifies the address of the number.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

When in 64 BIT mode, if the value of the long integer can not be expressed in 32 BIT, xdr_long will return
a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_opaque Subroutine

Purpose
Translates between fixed-size opaque data and its external representation.

Library
C Library (libc.a)

12 AIX Version 7.2: Technical Reference: Communication Subroutines

Syntax

#include <rpc/xdr.h>

xdr_opaque (xdrs, cp, cnt)
XDR *xdrs;
char *cp;
u_int cnt;

Description
The xdr_opaque subroutine is a filter primitive that translates between fixed-size opaque data and its
external representation.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

cp Specifies the address of the opaque object.

cnt Specifies the size, in bytes, of the object. By definition, the actual data contained in the opaque
object is not machine-portable.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_opaque_auth Subroutine

Purpose
Describes RPC authentication messages.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_opaque_auth (xdrs, ap)
XDR *xdrs;
struct opaque_auth *ap;

Description
The xdr_opaque_auth subroutine describes Remote Procedure Call (RPC) authentication information
messages. It generates RPC authentication message data without using the RPC program.

Technical Reference: Communication subroutines 13

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

ap Points to the structure that contains the authentication information.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of RPC Programming References
eXternal Data Representation (XDR) Overview for Programming
Remote Procedure Call (RPC) Overview for Programming

xdr_pmap Subroutine

Purpose
Describes parameters for portmap procedures.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_pmap (xdrs, regs)
XDR *xdrs;
struct pmap *regs;

Description
The xdr_pmap subroutine describes parameters for portmap procedures. This subroutine generates
portmap parameters without using the portmap interface.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

regs Points to the buffer or register where the portmap daemon stores information.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
portmap subroutine
List of RPC Programming References
eXternal Data Representation (XDR) Overview for Programming

14 AIX Version 7.2: Technical Reference: Communication Subroutines

xdr_pmaplist Subroutine

Purpose
Describes a list of port mappings externally.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_pmaplist (xdrs, rp)
XDR *xdrs;
struct pmaplist **rp;

Description
The xdr_pmaplist subroutine describes a list of port mappings externally. This subroutine generates the
port mappings to Remote Procedure Call (RPC) ports without using the portmap interface.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

rp Points to the structure that contains the portmap listings.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
portmap subroutine
List of RPC Programming References
eXternal Data Representation (XDR) Overview for Programming

xdr_pointer Subroutine

Purpose
Provides pointer chasing within structures and serializes null pointers.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_pointer (xdrs, objpp, objsize, xdrobj)
XDR * xdrs;
char ** objpp;

Technical Reference: Communication subroutines 15

u_int objsize;
xdrproc_t xdrobj;

Description
The xdr_pointer subroutine provides pointer chasing within structures and serializes null pointers. This
subroutine can represent recursive data structures, such as binary trees or linked lists.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

objpp Points to the character pointer of the data structure.

objsize Specifies the size of the structure.

xdrobj Specifies the XDR filter for the object.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Non-Filter Primitives

xdr_reference Subroutine

Purpose
Provides pointer chasing within structures.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_reference (xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

Description
The xdr_reference subroutine is a filter primitive that provides pointer chasing within structures. This
primitive allows the serializing, deserializing, and freeing of any pointers within one structure that are
referenced by another structure.

The xdr_reference subroutine does not attach special meaning to a null pointer during serialization.
Attempting to pass the address of a null pointer can cause a memory error. The programmer must
describe data with a two-armed discriminated union. One arm is used when the pointer is valid; the other
arm, when the pointer is null.

16 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

pp Specifies the address of the pointer to the structure. When decoding data, XDR allocates storage
if the pointer is null.

size Specifies the byte size of the structure pointed to by the pp parameter.

proc Translates the structure between its C form and its external representation. This parameter is the
XDR procedure that describes the structure.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_rejected_reply Subroutine

Purpose
Describes RPC message rejection replies.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_rejected_reply (xdrs, rr)
XDR *xdrs;
struct rejected_reply *rr;

Description
The xdr_rejected_reply subroutine describes Remote Procedure Call (RPC) message rejection replies.
This subroutine can be used to generate rejection replies similar to RPC rejection replies without using the
RPC program.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

rr Points to the structure that contains the rejected reply.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Technical Reference: Communication subroutines 17

Related information
List of RPC Programming References
eXternal Data Representation (XDR) Overview for Programming
Remote Procedure Call (RPC) Overview for Programming

xdr_replymsg Subroutine

Purpose
Describes RPC message replies.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_replymsg (xdrs, rmsg)
XDR *xdrs;
struct rpc_msg *rmsg;

Description
The xdr_replymsg subroutine describes Remote Procedure Call (RPC) message replies. Use this
subroutine to generate message replies similar to RPC message replies without using the RPC program.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

rmsg Points to the structure containing the parameters of the reply message.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of RPC Programming References
eXternal Data Representation (XDR) Overview for Programming
Remote Procedure Call (RPC) Overview for Programming

xdr_setpos Macro

Purpose
Changes the current position in the XDR stream.

Library
C Library (libc.a)

18 AIX Version 7.2: Technical Reference: Communication Subroutines

Syntax

#include <rpc/xdr.h>

xdr_setpos (xdrs, pos)
XDR *xdrs;
u_int pos;

Description
The xdr_setpos macro invokes the set-position routine associated with the eXternal Data Representation
(XDR) stream pointed to by the xdrs parameter. The new position setting is obtained from the xdr_getpos
macro. The xdr_setpos macro returns a value of false if the set position is not valid or if the requested
position is out of bounds.

A position cannot be set in some XDR streams. Trying to set a position in such streams causes the macro
to fail. This macro also fails if the programmer requests a position that is not in the stream's boundaries.

Parameters

Item Description

xdrs Points to the XDR stream handle.

pos Specifies a position value obtained from the xdr_getpos macro.

Return Values
Upon successful completion (if the stream is positioned successfully), this macro returns a value of 1. If
unsuccessful, it returns a value of 0.

Related reference
xdr_getpos Macro
Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming

xdr_short Subroutine

Purpose
Translates between C language short integers and their external representations.

Library
C Library (libc.a)

Syntax
#include <rpc/xdr.h>
xdr_short (xdrs, sp)
XDR *xdrs;
short *sp;

Description
The xdr_short subroutine is a filter primitive that translates between C language short integers and their
external representations.

Technical Reference: Communication subroutines 19

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

sp Specifies the address of the short integer.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_string Subroutine

Purpose
Translates between C language strings and their external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_string (xdrs, sp, maxsize)
XDR *xdrs;
char **sp;
u_int maxsize;

Description
The xdr_string subroutine is a filter primitive that translates between C language strings and their
corresponding external representations. Externally, strings are represented as sequences of ASCII
characters, while internally, they are represented with character pointers.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

sp Specifies the address of the pointer to the string.

maxsize Specifies the maximum length of the string allowed during encoding or decoding. This value
is set in a protocol. For example, if a protocol specifies that a file name cannot be longer
than 255 characters, then a string cannot exceed 255 characters.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

20 AIX Version 7.2: Technical Reference: Communication Subroutines

Related reference
xdr_wrapstring Subroutine
Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_u_char Subroutine

Purpose
Translates between unsigned C language characters and their external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_u_char (xdrs, ucp)
XDR *xdrs;
char *ucp;

Description
The xdr_u_char subroutine is a filter primitive that translates between unsigned C language characters
and their external representations.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

ucp Points to an unsigned integer.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_u_int Subroutine

Purpose
Translates between C language unsigned integers and their external representations.

Library
C Library (libc.a)

Technical Reference: Communication subroutines 21

Syntax

#include <rpc/xdr.h>

xdr_u_int (xdrs, up)
XDR *xdrs;
u_int *up;

Description
The xdr_u_int subroutine is a filter primitive that translates between C language unsigned integers and
their external representations.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

up Specifies the address of the unsigned long integer.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_u_long Subroutine

Purpose
Translates the unsigned long integers from the C language to their external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_u_long (xdrs, ulp)
XDR *xdrs;
u_long *ulp;

Description
The xdr_u_long subroutine is a filter primitive that translates the unsigned long integers from the C
language to their external representations.

Note: The xdr_u_long subroutine encodes or decodes a 32-bit value, irrespective of whether the
application is compiled in 32-bit mode or in 64-bit mode. If a 64-bit value is passed to the xdr_u_long
subroutine, the resulting high-order 32-bit values are not determined.

22 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

ulp Specifies the address of the unsigned long integer.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_u_short Subroutine

Purpose
Translates between C language unsigned short integers and their external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_u_short (xdrs, usp)
XDR *xdrs;
u_short *usp;

Description
The xdr_u_short subroutine is a filter primitive that translates between C language unsigned short
integers and their external representations.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

usp Specifies the address of the unsigned short integer.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

Technical Reference: Communication subroutines 23

xdr_union Subroutine

Purpose
Translates between discriminated unions and their external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_union (xdrs, dscmp, unp, armchoices, defaultarm)
XDR * xdrs;
enum_t * dscmp;
char * unp;
struct xdr_discrim * armchoices;
xdrproc_t (* defaultarm);

Description
The xdr_union subroutine is a filter primitive that translates between discriminated C unions and their
corresponding external representations. It first translates the discriminant of the union located at the
address pointed to by the dscmp parameter. This discriminant is always an enum_t value. Next, this
subroutine translates the union located at the address pointed to by the unp parameter.

The armchoices parameter is a pointer to an array of xdr_discrim structures. Each structure contains
an ordered pair of parameters [value, proc]. If the union's discriminant is equal to the associated value,
then the specified process is called to translate the union. The end of the xdr_discrim structure array is
denoted by a routine having a null value. If the discriminant is not found in the choices array, then the
defaultarm structure is called (if it is not null).

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

dscmp Specifies the address of the union's discriminant. The discriminant is an enumeration
(enum_t) value.

unp Specifies the address of the union.

armchoices Points to an array of xdr_discrim structures.

defaultarm A structure provided in case no discriminants are found. This parameter can have a
null value.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

24 AIX Version 7.2: Technical Reference: Communication Subroutines

xdr_vector Subroutine

Purpose
Translates between fixed-length arrays and their corresponding external representations.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_vector (xdrs, arrp, size, elsize, elproc)
XDR * xdrs;
char * arrp;
u_int size, elsize;
xdrproc_t elproc;

Description
The xdr_vector subroutine is a filter primitive that translates between fixed-length arrays and their
corresponding external representations.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

arrp Specifies the pointer to the array.

size Specifies the element count of the array.

elsize Specifies the size of each of the array elements.

elproc Translates between the C form of the array elements and their external representation. This is
an XDR filter.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_void Subroutine

Purpose
Supplies an XDR subroutine to the RPC system without transmitting data.

Library
C Library (libc.a)

Technical Reference: Communication subroutines 25

Syntax

#include <rpc/xdr.h>

xdr_void ()

Description
The xdr_void subroutine has no function parameters. It is passed to other Remote Procedure Call (RPC)
subroutines that require a function parameter, but does not transmit data.

Return Values
This subroutine always returns a value of 1.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdr_wrapstring Subroutine

Purpose
Calls the xdr_string subroutine.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_wrapstring (xdrs, sp)
XDR *xdrs;
char **sp;

Description
The xdr_wrapstring subroutine is a primitive that calls the xdr_string subroutine (xdrs, sp,
MAXUN.UNSIGNED), where the MAXUN.UNSIGNED value is the maximum value of an unsigned integer.
The xdr_wrapstring subroutine is useful because the Remote Procedure Call (RPC) package passes a
maximum of two eXternal Data Representation (XDR) subroutines as parameters, and the xdr_string
subroutine requires three.

Parameters

Item Description

xdrs Points to the XDR stream handle.

sp Specifies the address of the pointer to the string.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

26 AIX Version 7.2: Technical Reference: Communication Subroutines

Related reference
xdr_string Subroutine
Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming

xdr_authunix_parms Subroutine

Purpose
Describes UNIX-style credentials.

Library
C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_authunix_parms (xdrs, app)
XDR *xdrs;
struct authunix_parms *app;

Description
The xdr_authunix_parms subroutine describes UNIX-style credentials. This subroutine generates
credentials without using the Remote Procedure Call (RPC) authentication program.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

app Points to the structure that contains the UNIX-style authentication credentials.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of RPC Programming References
eXternal Data Representation (XDR) Overview for Programming
Remote Procedure Call (RPC) Overview for Programming

xdr_double Subroutine

Purpose
Translates between C language double-precision numbers and their external representations.

Library
C Library (libc.a)

Technical Reference: Communication subroutines 27

Syntax

#include <rpc/xdr.h>

xdr_double (xdrs, dp)
XDR *xdrs;
double *dp;

Description
The xdr_double subroutine is a filter primitive that translates between C language double-precision
numbers and their external representations.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

dp Specifies the address of the double-precision number.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Library Filter Primitives

xdrmem_create Subroutine

Purpose
Initializes in local memory the XDR stream pointed to by the xdrs parameter.

Library
C Library (libc.a)

Syntax
#include <rpc/xdr.h>
void
xdrmem_create (xdrs, addr, size, op)
XDR *xdrs;
char *addr;
u_int size;
enum xdr_op op;

Description
The xdrmem_create subroutine initializes in local memory the eXternal Data Representation (XDR)
stream pointed to by the xdrs parameter. The XDR stream data is written to or read from a chunk of
memory at the location specified by the addr parameter.

28 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

xdrs Points to the XDR stream handle.

addr Points to the memory where the XDR stream data is written to or read from.

size Specifies the length of the memory in bytes.

op Specifies the XDR direction. The possible choices are XDR_ENCODE, XDR_DECODE, or
XDR_FREE.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Non-Filter Primitives

xdrrec_create Subroutine

Purpose
Provides an XDR stream that can contain long sequences of records.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

void
xdrrec_create (xdrs, sendsize, recvsize, handle, readit, writeit)
XDR * xdrs;
u_int sendsize;
u_int recvsize;
char * handle;
int (* readit) (), (* writeit) ();

Description
The xdrrec_create subroutine provides an eXternal Data Representation (XDR) stream that can contain
long sequences of records and handle them in both the encoding and decoding directions. The record
contents contain data in XDR form. The routine initializes the XDR stream object pointed to by the xdrs
parameter.

Note: This XDR stream implements an intermediate record stream. As a result, additional bytes are in the
stream to provide record boundary information.

Parameters

Item Description

xdrs Points to the XDR stream handle.

sendsize Sets the size of the input buffer to which data is written. If 0 is specified, the buffers are
set to the system defaults.

Technical Reference: Communication subroutines 29

Item Description

recvsize Sets the size of the output buffer from which data is read. If 0 is specified, the buffers are
set to the system defaults.

handle Points to the input/output buffer's handle, which is opaque.

readit Points to the subroutine to call when a buffer needs to be filled. Similar to the read system
call.

writeit Points to the subroutine to call when a buffer needs to be flushed. Similar to the write
system call.

Related reference
xdrrec_endofrecord Subroutine
xdrrec_eof Subroutine
xdrrec_skiprecord Subroutine
Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Non-Filter Primitives

xdrrec_endofrecord Subroutine

Purpose
Causes the current outgoing data to be marked as a record.

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdrrec_endofrecord (xdrs, sendnow)
XDR *xdrs;
bool_t sendnow;

Description
The xdrrec_endofrecord subroutine causes the current outgoing data to be marked as a record and
can only be invoked on streams created by the xdrrec_create subroutine. If the value of the sendnow
parameter is nonzero, the data in the output buffer is marked as a completed record and the output buffer
is optionally written out.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

sendnow Specifies whether the record should be flushed to the output tcp stream.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

30 AIX Version 7.2: Technical Reference: Communication Subroutines

Related reference
xdrrec_create Subroutine
Related information
List of XDR Programming References
Understanding XDR Non-Filter Primitives

xdrrec_eof Subroutine

Purpose
Checks the buffer for an input stream that indicates the end of file (EOF).

Library
C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdrrec_eof (xdrs)
XDR *xdrs;

Description
The xdrrec_eof subroutine checks the buffer for an input stream to see if the stream reached the end of
the file. This subroutine can only be invoked on streams created by the xdrrec_create subroutine.

Parameters

Item Description

xdrs Points to the eXternal Data Representation (XDR) stream handle.

Return Values
After consuming the rest of the current record in the stream, this subroutine returns a value of 1 if the
stream has no more input, and a value of 0 otherwise.

Related reference
xdrrec_create Subroutine
Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming

xdrrec_skiprecord Subroutine

Purpose
Causes the position of an input stream to move to the beginning of the next record.

Library
C Library (libc.a)

Technical Reference: Communication subroutines 31

Syntax

#include <rpc/xdr.h>

xdrrec_skiprecord (xdrs)
XDR *xdrs;

Description
The xdrrec_skiprecord subroutine causes the position of an input stream to move past the current record
boundary and onto the beginning of the next record of the stream. This subroutine can only be invoked
on streams created by the xdrrec_create subroutine. The xdrrec_skiprecord subroutine tells the eXternal
Data Representation (XDR) implementation that the rest of the current record in the stream's input buffer
should be discarded.

Parameters

Item Description

xdrs Points to the XDR stream handle.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related reference
xdrrec_create Subroutine
Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Non-Filter Primitives

xdrstdio_create Subroutine

Purpose
Initializes the XDR data stream pointed to by the xdrs parameter.

Library
C Library (libc.a)

Syntax
#include <stdio.h>
#include <rpc/xdr.h>
void xdrstdio_create (xdrs, file, op)
XDR *xdrs;
FILE *file;
enum xdr_op op;

Description
The xdrstdio_create subroutine initializes the eXternal Data Representation (XDR) data stream pointed to
by the xdrs parameter. The XDR stream data is written to or read from the standard input/output stream
pointed to by the file parameter.

32 AIX Version 7.2: Technical Reference: Communication Subroutines

Note: The destroy routine associated with such an XDR stream calls the fflush function on the file stream,
but never calls the fclose function.

Parameters

Item Description

xdrs Points to the XDR stream handle to initialize.

file Points to the standard I/O device that data is written to or read from.

op Specifies an XDR direction. The possible choices are XDR_ENCODE, XDR_DECODE, or
XDR_FREE.

Related information
List of XDR Programming References
eXternal Data Representation (XDR) Overview for Programming
Understanding XDR Non-Filter Primitives

Network Information Services
This topic collection includes subroutines that derive information from the Network Information Services
lookup.

yp_all Subroutine

Purpose
Transfers all of the key-value pairs from the Network Information Services (NIS) server to the client as the
entire map.

Library
C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_all (indomain, inmap, incallback)
char *indomain;
char *inmap;
struct ypall_CallBack *incallback {
int (* foreach) ();
char * data;
};

foreach (instatus, inkey, inkeylen, inval, invallen, indata)
int instatus;
char * inkey;
int inkeylen;
char * inval;
int invallen;
char * indata;

Technical Reference: Communication subroutines 33

Description
The yp_all subroutine provides a way to transfer an entire map from the server to the client in a single
request. The routine uses Transmission Control Protocol (TCP) rather than User Datagram Protocol (UDP)
used by other NIS subroutines. This entire transaction takes place as a single Remote Procedure Call
(RPC) request and response. The yp_all subroutine is used like any other NIS procedure, identifying a
subroutine and map in the normal manner, and supplying a subroutine to process each key-value pair
within the map.

The memory pointed to by the inkey and inval parameters is private to the yp_all subroutine. This memory
is overwritten with each new key-value pair processed. The foreach function uses the contents of the
memory but does not own the memory itself. Key and value objects presented to the foreach function
look exactly as they do in the server's map. Objects not terminated by a new-line or null character in the
server's map are not terminated by a new-line or null character in the client's map.

Note: The remote procedure call is returned to the yp_all subroutine only after the transaction is
completed (successfully or unsuccessfully) or after the foreach function rejects any more key-value pairs.

Parameters

Item Description

data Specifies state information between the foreach function and the mainline code (see
also the indata parameter).

indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

incallback Specifies the structure containing the user-defined foreach function, which is called
for each key-value pair transferred.

instatus Specifies either a return status value of the form NIS_TRUE or an error code. The error
codes are defined in the rpcsvc/yp_prot.h file.

inkey Points to the current key of the key-value pair as returned from the server's database.

inkeylen Returns the length, in bytes, of the inkey parameter.

inval Points to the current value of the key-value pair as returned from the server's
database.

invallen Specifies the size of the value in bytes.

indata Specifies the contents of the incallback->data element passed to the yp_all
subroutine. The data element shares state information between the foreach function
and the mainline code. The indata parameter is optional because no part of the NIS
client package inspects its contents.

Return Values
The foreach subroutine returns a value of 0 when it is ready to be called again for additional received
key-value pairs. It returns a nonzero value to stop the flow of key-value pairs. If the foreach function
returns a nonzero value, it is not called again, and the yp_all subroutine returns a value of 0.

Related information
Network Information Service (NIS) Overview for System Management
Remote Procedure Call (RPC) Overview for Programming

34 AIX Version 7.2: Technical Reference: Communication Subroutines

yp_bind Subroutine

Purpose
Used in programs to call the ypbind daemon directly for processes that use backup strategies when
Network Information Services (NIS) is not available.

Library
C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_bind (indomain)
char *indomain;

Description
In order to use NIS, the client process must be bound to an NIS server that serves the appropriate
domain. That is, the client must be associated with a specific NIS server that services the client's requests
for NIS information. The NIS lookup processes automatically use the ypbind daemon to bind the client,
but the yp_bind subroutine can be used in programs to call the daemon directly for processes that use
backup strategies (for example, a local file) when NIS is not available.

Each NIS binding allocates, or uses up, one client process socket descriptor, and each bound domain uses
one socket descriptor. Multiple requests to the same domain use the same descriptor.

Note: If a Remote Procedure Call (RPC) failure status returns from the use of the yp_bind subroutine, the
domain is unbound automatically. When this occurs, the NIS client tries to complete the operation if the
ypbind daemon is running and either of the following is true:

• The client process cannot bind a server for the proper domain.
• RPCs to the server fail.

Parameters

Item Description

indomain Points to the name of the domain for which to attempt the bind.

Return Values
The NIS client returns control to the user with either an error or a success code if any of the following
occurs:

• The error is not related to RPC.
• The ypbind daemon is not running.
• The ypserv daemon returns the answer.

Related information
ypbind command
Network Information Service (NIS) Overview for System Management
Remote Procedure Call (RPC) Overview for Programming

Technical Reference: Communication subroutines 35

yp_first Subroutine

Purpose
Returns the first key-value pair from the named Network Information Services (NIS) map in the named
domain.

Library
C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_first (indomain, inmap, outkey, outkeylen, outval, outvallen)
char * indomain;
char * inmap;
char ** outkey;
int * outkeylen;
char ** outval;
int * outvallen;

Description
The yp_first routine returns the first key-value pair from the named NIS map in the named domain.

Parameters

Item Description

indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

outkey Specifies the address of the uninitialized string pointer where the first key is returned.
Memory is allocated by the NIS client using the malloc subroutine, and may be freed by
the application.

outkeylen Returns the length, in bytes, of the outkey parameter.

outval Specifies the address of the uninitialized string pointer where the value associated with
the key is returned. Memory is allocated by the NIS client using the malloc subroutine,
and may be freed by the application.

outvallen Returns the length, in bytes, of the outval parameter.

Return Values
Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns an error as
described in the rpcsvc/yp_prot.h file.

Related information
malloc subroutine
Network Information Service (NIS) Overview for System Management
Remote Procedure Call (RPC) Overview for Programming

36 AIX Version 7.2: Technical Reference: Communication Subroutines

yp_get_default_domain Subroutine

Purpose
Gets the default domain of the node.

Library
C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_get_default_domain (outdomain)
char **outdomain;

Description
Network Information Services (NIS) lookup calls require both a map name and a domain name. Client
processes can get the default domain of the node by calling the yp_get_default_domain routine and
using the value returned in the outdomain parameter as the input domain (indomain) parameter for NIS
remote procedure calls.

Parameters

Item Description

outdomain Specifies the address of the uninitialized string pointer where the default domain is
returned. Memory is allocated by the NIS client using the malloc subroutine and should
not be freed by the application.

Return Values
Upon successful completion, this routine returns a value of 0. If unsuccessful, it returns an error as
described in the rpcsvc/ypclnt.h file.

Related information
malloc subroutine
Network Information Service (NIS) Overview for System Management
Remote Procedure Call (RPC) Overview for Programming

yp_master Subroutine

Purpose
Returns the machine name of the Network Information Services (NIS) master server for a map.

Library
C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

Technical Reference: Communication subroutines 37

yp_master (indomain, inmap, outname)
char *indomain;
char *inmap;
char **outname;

Description
The yp_master subroutine returns the machine name of the NIS master server for a map.

Parameters

Item Description

indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

outname Specifies the address of the uninitialized string pointer where the name of the domain's
yp_master server is returned. Memory is allocated by the NIS client using the malloc
subroutine, and may be freed by the application.

Return Values
Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns one of the
error codes described in the rpcsvc/yp_prot.h file.

Related information
malloc subroutine
Network Information Service (NIS) Overview for System Management
Remote Procedure Call (RPC) Overview for Programming

yp_match Subroutine

Purpose
Searches for the value associated with a key.

Library
C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_match (indomain, inmap, inkey, inkeylen, outval, outvallen)
char * indomain;
char * inmap;
char * inkey;
int inkeylen;
char ** outval;
int * outvallen;

38 AIX Version 7.2: Technical Reference: Communication Subroutines

Description
The yp_match subroutine searches for the value associated with a key. The input character string entered
as the key must match a key in the Network Information Services (NIS) map exactly because pattern
matching is not available in NIS.

Parameters

Item Description

indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

inkey Points to the name of the key used as input to the subroutine.

inkeylen Specifies the length, in bytes, of the key.

outval Specifies the address of the uninitialized string pointer where the values associated with
the key are returned. Memory is allocated by the NIS client using the malloc subroutine,
and may be freed by the application.

outvallen Returns the length, in bytes, of the outval parameter.

Return Values
Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns one of the
error codes described in the rpcsvc/yp_prot.h file.

Related information
malloc subroutine
Network Information Service (NIS) Overview for System Management
Remote Procedure Call (RPC) Overview for Programming

yp_next Subroutine

Purpose
Returns each subsequent value it finds in the named Network Information Services (NIS) map until it
reaches the end of the list.

Library
C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_next (indomain, inmap, inkey, inkeylen, outkey, outkeylen, outval,
outvallen)
char * indomain;
char * inmap;
char * inkey;
int inkeylen;
char ** outkey;
int * outkeylen;
char ** outval;
int * outvallen;

Technical Reference: Communication subroutines 39

Description
The yp_next subroutine returns each subsequent value it finds in the named NIS map until it reaches the
end of the list.

The yp_next subroutine must be preceded by an initial yp_first subroutine. Use the outkey parameter
value returned from the initial yp_first subroutine as the value of the inkey parameter for the yp_next
subroutine. This will return the second key-value pair associated with the map. To show every entry in the
NIS map, the yp_first subroutine is called with the yp_next subroutine called repeatedly. Each time the
yp_next subroutine returns a key-value, use it as the inkey parameter for the next call.

The concepts of first and next depend on the structure of the NIS map being processed. The routines
do not retrieve the information in a specific order, such as the lexical order from the original, non-NIS
database information files or the numerical sorting order of the keys, values, or key-value pairs. If the
yp_first subroutine is called on a specific map with the yp_next subroutine called repeatedly until the
process returns a YPERR_NOMORE message, every entry in the NIS map is seen once. If the same
sequence of operations is performed on the same map at the same server, the entries are seen in the
same order.

Note: If a server operates under a heavy load or fails, the domain can become unbound and then bound
again while a client is running. If it binds itself to a different server, entries may be seen twice or not at all.
The domain rebinds itself to protect the enumeration process from being interrupted before it completes.
Avoid this situation by returning all of the keys and values with the yp_all subroutine.

Parameters

Item Description

indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

inkey Points to the key that is used as input to the subroutine.

inkeylen Returns the length, in bytes, of the inkey parameter.

outkey Specifies the address of the uninitialized string pointer where the first key is returned.
Memory is allocated by the NIS client using the malloc subroutine, and may be freed by
the application.

outkeylen Returns the length, in bytes, of the outkey parameter.

outval Specifies the address of the uninitialized string pointer where the values associated with
the key are returned. Memory is allocated by the NIS client using the malloc subroutine,
and may be freed by the application.

outvallen Returns the length, in bytes, of the outval parameter.

Return Values
Upon successful completion, this routine returns a value of 0. If unsuccessful, it returns one of the error
codes described in the rpcsvc/yp_prot.h file.

Related information
malloc subroutine
Network Information Service (NIS) Overview for System Management
Remote Procedure Call (RPC) Overview for Programming

40 AIX Version 7.2: Technical Reference: Communication Subroutines

yp_order Subroutine

Purpose
Returns the order number for an Network Information Services (NIS) map that identifies when the map
was built.

Library
C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_order (indomain, inmap, outorder)
char * indomain;
char * inmap;
int * outorder;

Description
The yp_order subroutine returns the order number for a NIS map that identifies when the map was built.
The number determines whether the local NIS map is more current than the master NIS database.

Parameters

Item Description

indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

outorder Points to the returned order number, which is a 10-digit ASCII integer that represents the
operating system time, in seconds, when the map was built.

Return Values
Upon successful completion, this routine returns a value of 0. If unsuccessful, it returns one of the error
codes described in the rpcsvc/yp_prot.h file.

Related information
Network Information Service (NIS) Overview for System Management
Remote Procedure Call (RPC) Overview for Programming

yp_unbind Subroutine

Purpose
Manages socket descriptors for processes that access multiple domains.

Library
C Library (libc.a)

Technical Reference: Communication subroutines 41

Syntax

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

void yp_unbind (indomain)
char *indomain;

Description
The yp_unbind subroutine is available to manage socket descriptors for processes that access multiple
domains. When the yp_unbind subroutine is used to free a domain, all per-process and per-node
resources that were used to bind the domain are also freed.

Parameters

Item Description

indomain Points to the name of the domain used as input to the subroutine.

Return Values
Upon successful completion, this routine returns a value of 0. If unsuccessful, it returns one of the error
codes described in the rpcsvc/yp_prot.h file.

Related information
ypbind command
Remote Procedure Call (RPC) Overview for Programming
Sockets Overview

yp_update Subroutine

Purpose
Makes changes to an Network Information Services (NIS) map.

Library
C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_update (indomain, inmap, ypop, inkey, inkeylen, indata, indatalen)
char * indomain;
char * inmap;
unsigned ypop;
char * inkey;
int inkeylen;
char * indata;
int indatalen;

Description
Note: This routine depends upon the secure Remote Procedure Call (RPC) protocol, and will not work
unless the network is running it.

42 AIX Version 7.2: Technical Reference: Communication Subroutines

The yp_update subroutine is used to make changes to a NIS map. The syntax is the same as that of the
yp_match subroutine except for the additional ypop parameter, which may take on one of the following
four values:

Value Description

ypop _INSERT Inserts the key-value pair into the map. If the key already exists in the map, the
yp_update subroutine returns a value of YPERR_KEY.

ypop_CHANGE Changes the data associated with the key to the new value. If the key is not found
in the map, the yp_update subroutine returns a value of YPERR_KEY.

ypop_STORE Stores an item in the map regardless of whether the item already exists. No error is
returned in either case.

ypop_DELETE Deletes an entry from the map.

Parameters

Item Description

indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

ypop Specifies the update operation to be used as input to the subroutine.

inkey Points to the input key to be used as input to the subroutine.

inkeylen Specifies the length, in bytes, of the inkey parameter.

indata Points to the data used as input to the subroutine.

indatalen Specifies the length, in bytes, of the data used as input to the subroutine.

Return Values
Upon successful completion, this routine returns a value of 0. If unsuccessful, it returns one of the error
codes described in the rpcsvc/yp_prot.h file.

Files

Item Description

/var/yp/updaters A makefile for updating NIS maps.

Related information
Network Information Service (NIS) Overview for System Management
Remote Procedure Call (RPC) Overview for Programming

yperr_string Subroutine

Purpose
Returns a pointer to an error message string.

Library
C Library (libc.a)

Technical Reference: Communication subroutines 43

Syntax

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

char *yperr_string (incode)
int incode;

Description
The yperr_string routine returns a pointer to an error message string. The error message string is null-
terminated but contains no period or new-line escape characters.

Parameters

Item Description

incode Contains Network Information Services (NIS) error codes as described in the rpcsvc/
yp_prot.h file.

Return Values
This subroutine returns a pointer to an error message string corresponding to the incode parameter.

Related reference
ypprot_err Subroutine
Related information
Network Information Service (NIS) Overview for System Management

ypprot_err Subroutine

Purpose
Takes an Network Information Services NIS protocol error code as input and returns an error code to be
used as input to a yperr_string subroutine.

Library
C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

ypprot_err (incode)
u_int incode;

Description
The ypprot_err subroutine takes a NIS protocol error code as input and returns an error code to be used
as input to a yperr_string subroutine.

Parameters

Item Description

incode Specifies the NIS protocol error code used as input to the subroutine.

44 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
This subroutine returns a corresponding error code to be passed to the yperr_string subroutine.

Related reference
yperr_string Subroutine
Related information
Network Information Service (NIS) Overview for System Management
Remote Procedure Call (RPC) Overview for Programming

Simple Network Management Protocol (SNMP)
The Simple Network Management Protocol (SNMP) is used by network hosts to exchange information
in the management of networks. SNMP network management is based on the familiar client-server
model that is widely used in Transmission Control Protocol/Internet Protocol (TCP/IP)-based network
applications. Each managed host runs a process called an agent. The agent is a server process that
maintains the MIB database for the host. Hosts that are involved in network management decision-
making may run a process called a manager. A manager is a client application that generates requests for
MIB information and processes responses. In addition, a manager may send requests to agent servers to
modify MIB information.

getsmuxEntrybyname or getsmuxEntrybyidentity Subroutine

Purpose
Retrieves SNMP multiplexing (SMUX) peer entries from the /etc/snmpd.peers file or the local
snmpd.peers file.

Library
SNMP Library (libsnmp.a)

Syntax
#include <isode/snmp/smux.h>

struct smuxEntry *getsmuxEntrybyname (name)
char *name;

struct smuxEntry *getsmuxEntrybyidentity (identity)
OID identity;

Description
The getsmuxEntrybyname and getsmuxEntrybyidentity subroutines read the snmpd.peers file and
retrieve information about the SMUX peer. The sample peers file is /etc/snmpd.peers. However, these
subroutines can also retrieve the information from a copy of the file that is kept in the local directory. The
snmpd.peers file contains entries for the SMUX peers defined for the network. Each SMUX peer entry
should contain:

• The name of the SMUX peer.
• The SMUX peer object identifier.
• An optional password to be used on connection initiation. The default password is a null string.
• The optional priority to register the SMUX peer. The default priority is 0.

The getsmuxEntrybyname subroutine searches the file for the specified name. The
getsmuxEntrybyidentity subroutine searches the file for the specified object identifier.

Technical Reference: Communication subroutines 45

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

name Points to a character string that names the SMUX peer.

identity Specifies the object identifier for a SMUX peer.

Return Values
If either subroutine finds the specified SMUX entry, that subroutine returns a structure containing the
entry. Otherwise, a null entry is returned.

Files

Item Description

/etc/snmpd.peers Contains the SMUX peer definitions for the network.

Related information
List of Network Manager Programming References
SNMP Overview for Programmers

isodetailor Subroutine

Purpose
Initializes variables for various logging facilities.

Library
ISODE Library (libisode.a)

Syntax
#include <isode/tailor.h>

void isodetailor (myname, wantuser)
char * myname;
int wantuser;

Description
The ISODE library contains internal logging facilities. Some of the facilities need to have their variables
initialized. The isodetailor subroutine sets default or user-defined values for the logging facility variables.
The logging facility variables are listed in the usr/lpp/snmpd/smux/isodetailor file.

The isodetailor subroutine first reads the /etc/isodetailor file. If the wantuser parameter is set to 0, the
isodetailor subroutine ignores the myname parameter and reads the /etc/isodetailor file. If the wantuser
parameter is set to a value greater than 0, the isodetailor subroutine searches the current user's
home directory ($HOME) and reads a file based on the myname parameter. If the myname parameter
is specified, the isodetailor subroutine reads a file with the name in the form .myname_tailor. If the
myname parameter is null, the isodetailor subroutine reads a file named .isode_tailor. The _tailor file
contents must be in the following form:

#comment
<variable> : <value> # comment

46 AIX Version 7.2: Technical Reference: Communication Subroutines

<variable> : <value> # comment
<variable> : <value> # comment

The comments are optional. The isodetailor subroutine reads the file and changes the values. The latest
entry encountered is the final value. The subroutine reads /etc/isodetailor first and then the $HOME
directory, if told to do so. A complete list of the variables is in the /usr/lpp/snmpd/smux/isodetailor
sample file.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

myname Contains a character string describing the SNMP multiplexing (SMUX) peer.

wantuser Indicates that the isodetailor subroutine should check the $HOME directory for a
isodetailor file if the value is greater than 0. If the value of the wantuser parameter is
set to 0, the $HOME directory is not checked, and the myname parameter is ignored.

Files

Item Description

/etc/isodetailor Location of user's copy of the /usr/lpp/snmpd/
smux/isodetailor file.

/usr/lpp/snmpd/smux/isodetailor Contains a complete list of all the logging
parameters.

Related reference
ll_hdinit, ll_dbinit, _ll_log, or ll_log Subroutine
Related information
List of Network Manager Programming References
SNMP Overview for Programmers

ll_hdinit, ll_dbinit, _ll_log, or ll_log Subroutine

Purpose
Reports errors to log files.

Library
ISODE Library (libisode.a)

Syntax
#include <isode/logger.h>

void ll_hdinit (lp, prefix)
register LLog * lp;
char * prefix;

void ll_dbinit (lp, prefix)
register LLog *lp;
char *prefix;

int _ll_log (lp, event, ap)

Technical Reference: Communication subroutines 47

register LLog *lp;
int event;
va_list ap;

int ll_log (va_alist)
va_dcl

Description
The ISODE library provides logging subroutines to put information into log files. The LLog data structure
contains the log file information needed to control the associated log. The SMUX peer provides the log file
information to the subroutines.

The LLog structure contains the following fields:

 typedef struct ll_struct
 {
 char *ll_file; /* path name to logging file */
 char *ll_hdr; /* text to put in opening line */
 char *ll_dhdr; /* dynamic header - changes */
 int ll_events; /* loggable events */
 int ll_syslog; /* loggable events to send to syslog */
 /* takes same values as ll_events */
 int ll_msize; /* max size for log, in Kbytes */
 /* If ll_msize < 0, then no checking */
 int ll_stat; /* assorted switches */
 int ll_fd; /* file descriptor */
 } LLog;

The possible values for the ll_events and ll_syslog fields are:

 LLOG_NONE 0 /* No logging is performed */
 LLOG_FATAL 0x01 /* fatal errors */
 LLOG_EXCEPTIONS 0x02 /* exceptional events */
 LLOG_NOTICE 0x04 /* informational notices */
 LLOG_PDUS 0x08 /* PDU printing */
 LLOG_TRACE 0x10 /* program tracing */
 LLOG_DEBUG 0x20 /* full debugging */
 LLOG_ALL 0xff /* All of the above logging */

The possible values for the ll_stat field are:

 LLOGNIL 0x00 /* No status information */
 LLOGCLS 0x01 /* keep log closed, except writing */
 LLOGCRT 0x02 /* create log if necessary */
 LLOGZER 0x04 /* truncate log when limits reach */
 LLOGERR 0x08 /* log closed due to (soft) error */
 LLOGTTY 0x10 /* also log to stderr */
 LLOGHDR 0x20 /* static header allocated/filled */
 LLOGDHR 0x40 /* dynamic header allocated/filled */

The ll_hdinit subroutine fills the ll_hdr field of the LLog record. The subroutine allocates the memory
of the static header and creates a string with the information specified by the prefix parameter, the current
user's name, and the process ID of the SMUX peer. It also sets the static header flag in the ll_stat field.
If the prefix parameter value is null, the header flag is set to the "unknown" string.

The ll_dbinit subroutine fills the ll_file field of the LLog record. If the prefix parameter is null, the
ll_file field is not changed. The ll_dbinit subroutine also calls the ll_hdinit subroutine with the same
lp and prefix parameters. The ll_dbinit subroutine sets the log messages to stderr and starts the logging
facility at its highest level.

The _ll_log and ll_log subroutines are used to print to the log file. When the LLog structure for the log file
is set up, the _ll_log or ll_log subroutine prints the contents of the string format, with all variables filled
in, to the log specified in the lp parameter. The LLog structure passes the name of the target log to the
subroutine.

The expected parameter format for the _ll_log and ll_log subroutines is:

• _ll_log(lp, event, what), string_format, ...);

48 AIX Version 7.2: Technical Reference: Communication Subroutines

• ll_log(lp, event, what, string_format, ...);

The difference between the _ll_log and the ll_log subroutine is that the _ll_log uses an explicit listing of
the LLog structure and the event parameter. The ll_log subroutine handles all the variables as a variable
list.

The event parameter specifies the type of message being logged. This value is checked against the
events field in the log record. If it is a valid event for the log, the other LLog structure variables are
written to the log.

The what parameter variable is a string that explains what actions the subroutines have accomplished.
The rest of the variables should be in the form of a printf statement, a string format and the variables to
fill the various variable placeholders in the string format. The final output of the logging subroutine is in
the following format:

mm/dd hh:mm:ss ll_hdr ll_dhdr string_format what: system_error

where:

Variable Description

mm/dd Specifies the date.

hh:mm:ss Specifies the time.

ll_hdr Specifies the value of the ll_hdr field of the LLog structure.

ll_dhdr Specifies the value of the ll_dhdr field of the LLog structure.

string_format Specifies the string format passed to the ll_log subroutine, with the extra
variables filled in.

what Specifies the variable that tells what has occurred. The what variable often
contains the reason for the failure. For example if the memory device, /dev/mem,
fails, the what variable contains the name of the /dev/mem device.

system_error Contains the string for the errno value, if it exists.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

lp Contains a pointer to a structure that describes a log file. The lp parameter is used to
describe things entered into the log, the file name, and headers.

prefix Contains a character string that is used to represent the name of the SMUX peer in
the ll_hdinit subroutine. In the ll_dbinit subroutine, the prefix parameter represents the
name of the log file to be used. The new log file name will be ./prefix.log.

event Specifies the type of message to be logged.

ap Provides a list of variables that is used to print additional information about the status of
the logging process. The first argument needs to be a character string that describes what
failed. The following arguments are expected in a format similar to the printf operation,
which is a string format with the variables needed to fill the format variable places.

va_alist Provides a variable list of parameters that includes the lp, event, and ap variables.

Return Values
The ll_dbinit and ll_hdinit subroutines have no return values. The _ll_log and ll_log subroutines return
OK on success and NOTOK on failure.

Technical Reference: Communication subroutines 49

Related reference
isodetailor Subroutine
Related information
List of Network Manager Programming References
Examples of SMUX Error Logging Routines
SNMP Overview for Programmers

o_number, o_integer, o_string, o_igeneric, o_generic, o_specific, or o_ipaddr
Subroutine

Purpose
Encodes values retrieved from the Management Information Base (MIB) into the specified variable
binding.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/objects.h>
#include <isode/pepsy/SNMP-types.h>
#include <sys/types.h>
#include <netinet/in.h>

int o_number (oi, v, number)
OI oi;
register struct type_SNMP_VarBind *v;
int number;

#define o_integer (oi, v, number) o_number ((oi), (v), (number))

int o_string (oi, v, base, len)
OI oi;
register struct type_SNMP_VarBind *v;
char *base;
int len;

int o_igeneric (oi, v, offset)
OI oi;
register struct type_SNMP_VarBind *v;
int offset;

int o_generic (oi, v, offset)
OI oi;
register struct type_SNMP_VarBind *v;
int offset;

int o_specific (oi, v, value)
OI oi;
register struct type_SNMP_VarBind *v;
caddr_t value;

int o_ipaddr (oi, v, netaddr)
OI oi;
register struct type_SNMP_VarBind *v;
struct sockaddr_in *netaddr;

50 AIX Version 7.2: Technical Reference: Communication Subroutines

Description
The o_number subroutine assigns a number retrieved from the MIB to the variable binding used to
request it. Once an MIB value has been retrieved, the value must be stored in the binding structure
associated with the variable requested. The o_number subroutine places the integer number into the
v parameter, which designates the binding for the variable. The value parameter type is defined by the
oi parameter and is used to specify the encoding subroutine that stores the value. The oi parameter
references a specific MIB variable and should be the same as the variable specified in the v parameter.
The encoding functions are defined for each type of variable and are contained in the object identifier (OI)
structure.

The o_integer macro is defined in the /usr/include/snmp/objects.h file. This macro casts the number
parameter as an integer. Use the o_integer macro for types that are not integers but have integer values.

The o_string subroutine assigns a string that has been retrieved for a MIB variable to the variable binding
used to request the string. Once a MIB variable has been retrieved, the value is stored in the binding
structure associated with the variable requested. The o_string subroutine places the string, specified with
the base parameter, into the variable binding in the v parameter. The length of the string represented
in the base parameter equals the value of the len parameter. The length is used to define how much
of the string is copied in the binding parameter of the variable. The value parameter type is defined by
the oi parameter and is used to specify the encoding subroutine that stores the value. The oi parameter
references a specific MIB variable and should be the same as the variable specified in the v parameter.
The encoding subroutines are defined for each type of variable and are contained in the OI structure.

The o_generic and o_igeneric subroutines assign results that are already in the customer's MIB
database. These two subroutines do not retrieve values from any other source. These subroutines check
whether the MIB database has information on how and what to encode as the value. The o_generic
and o_igeneric subroutines also ensure that the variable requested is an instance. If the variable is an
instance, the subroutines encode the value and return OK. The subroutine has an added set of return
codes. If there is not any information about the variable, the subroutine returns NOTOK on a get_next
request and int_SNMP_error__status_noSuchName for the get and set requests. The difference between
the o_generic and the o_igeneric subroutine is that the o_igeneric subroutine provides a method for
users to define a generic subroutine.

The o_specific subroutine sets the binding value for a MIB variable with the value in a character pointer.
The o_specific subroutine ensures that the data-encoding procedure is defined. The encode subroutine is
always checked by all of the o_ subroutines. The o_specific subroutine returns the normal values.

The o_ipaddr subroutine sets the binding value for variables that are network addresses. The o_ipaddr
subroutine uses the sin_addr field of the sockaddr_in structure to get the address. The subroutine does
the normal checking and returns the results like the rest of the subroutines.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

oi Contains the OI data structure for the variable whose value is to be recorded into the
binding structure.

v Specifies the variable binding parameter, which is of type type_SNMP_VarBind. The v
parameter contains a name and a value field. The value field contents are supplied by
the o_ subroutines.

number Contains an integer to store in the value field of the v (variable bind) parameter.

base Points to the character string to store in the value field of the v parameter.

len Designates the length of the integer character string to copy. The character string is
described by the base parameter.

Technical Reference: Communication subroutines 51

Item Description

offset Contains an integer value of the current type of request, for example:

type_SNMP_PDUs_get__next__request

value Contains a character pointer to a value.

netaddr Points to a sockaddr_in structure. The subroutine only uses the sin_addr field of this
structure.

Return Values
The return values for these subroutines are:

Value Description

int_SNMP_error__status_genErr Indicates an error occurred when setting the v
parameter value.

int_SNMP_error__status_noErr Indicates no errors found.

Related reference
s_generic Subroutine
Related information
List of Network Manager Programming References
SNMP Overview for Programmers
Working with Management Information Base (MIB) Variables

oid_cmp, oid_cpy, oid_free, sprintoid, str2oid, ode2oid, oid2ode,
oid2ode_aux, prim2oid, or oid2prim Subroutine

Purpose
Manipulates the object identifier data structure.

Library
ISODE Library (libisode.a)

Syntax

#include <isode/psap.h>

int oid_cmp (p, q)
OID p, q;

OID oid_cpy (oid)
OID oid;

void oid_free (oid)
OID oid;

char *sprintoid (oid)
OID oid;

OID str2oid (s)
char * s;

52 AIX Version 7.2: Technical Reference: Communication Subroutines

OID ode2oid (descriptor)
char * descriptor;

char *oid2ode (oid)
OID oid;

OID *oid2ode_aux (descriptor, quote)
char *descriptor;
int quote;

OID prim2oid (pe)
PE pe;

PE oid2prim (oid)
OID oid;

Description
These subroutines are used to manipulate and translate object identifiers. The object identifier data (OID)
structure and these subroutines are defined in the /usr/include/isode/psap.h file.

The oid_cmp subroutine compares two OID structures. The oid_cpy subroutine copies the object
identifier, specified by the oid parameter, into a new structure. The oid_free procedure frees the object
identifier and does not have any return parameters.

The sprintoid subroutine takes an object identifier and returns the dot-notation description as a string.
The string is in static storage and must be copied to other user storage if it is to be maintained. The
sprintoid subroutine takes the object data and converts it without checking for the existence of the oid
parameter.

The str2oid subroutine takes a character string specifying an object identifier in dot notation (for example,
1.2.3.6.1.2) and converts it into an OID structure. The space is static. To get a permanent copy of the
OID structure, use the oid_cpy subroutine.

The oid2ode subroutine is identical to the sprintoid subroutine except that the oid2ode subroutine
checks whether the oid parameter is in the isobjects database. The oid2ode subroutine is implemented
as a macro call to the oid2ode_aux subroutine. The oid2ode_aux subroutine is similar to the oid2ode
subroutine except for an additional integer parameter that specifies whether the string should be
enclosed by quotes. The oid2ode subroutine always encloses the string in quotes.

The ode2oid subroutine retrieves an object identifier from the isobjects database.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

p Specifies an OID structure.

q Specifies an OID structure.

descriptor Contains the object identifier descriptor data.

oid Contains the object identifier data.

s Contains a character string that defines an object identifier in dot notation.

descriptor Contains the object identifier descriptor data.

quote Specifies an integer that indicates whether a string should be enclosed in quotes. A
value of 1 adds quotes; a value of 0 does not add quotes.

pe Contains a presentation element in which the OID structure is encoded (as with the
oid2prim subroutine) or decoded (as with the prim2oid subroutine).

Technical Reference: Communication subroutines 53

Return Values
The oid_cmp subroutine returns a 0 if the structures are identical, -1 if the first object is less than
the second, and a 1 if any other conditions are found. The oid_cpy subroutine returns a pointer to the
designated object identifier when the subroutine is successful.

The oid2ode subroutine returns the dot-notation description as a string in quotes. The sprintoid
subroutine returns the dot-notation description as a string without quotes.

The ode2oid subroutine returns a static pointer to the object identifier. If the ode2oid and oid_cpy
subroutines are not successful, the NULLOID value is returned.

Related reference
oid_extend or oid_normalize Subroutine
text2oid or text2obj Subroutine
Related information
List of Network Manager Programming References
SNMP Overview for Programmers

oid_extend or oid_normalize Subroutine

Purpose
Extends the base ISODE library subroutines.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/objects.h>

OID oid_extend (q, howmuch)
OID q;
integer howmuch;

OID oid_normalize (q, howmuch, initial)
OID q;
integer howmuch, initial;

Description
The oid_extend subroutine is used to extend the current object identifier data (OID) structure. The OID
structure contains an integer number of entries and an array of integers. The oid_extend subroutine
creates a new, extended OID structure with an array of the size specified in the howmuch parameter plus
the original array size specified in the q parameter. The original values are copied into the first entries of
the new structure. The new values are uninitialized. The entries of the OID structure are used to represent
the values of an Management Information Base (MIB) tree in dot notation. Each entry represents a level in
the MIB tree.

The oid_normalize subroutine extends and adjusts the values of the OID structure entries. The
oid_normalize subroutine extends the OID structure and then decrements all nonzero values by 1. The
new values are initialized to the value of the initial parameter. This subroutine stores network address and
netmask information in the OID structure.

These subroutines do not free the q parameter.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

54 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

q Specifies the size of the original array.

howmuch Specifies the size of the array for the new OID structure.

initial Indicates the initialized value of the OID structure extensions.

Return Values
Both subroutines, when successful, return the pointer to the new object identifier structure. If the
subroutines fail, the NULLOID value is returned.

Related reference
oid_cmp, oid_cpy, oid_free, sprintoid, str2oid, ode2oid, oid2ode, oid2ode_aux, prim2oid, or oid2prim
Subroutine
Related information
List of Network Manager Programming References
SNMP Overview for Programmers

readobjects Subroutine

Purpose
Allows the SNMP multiplexing (SMUX) peer to read the Management Information Base (MIB) variable
structure.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/objects.h>

int
readobjects (file)
char *file;

Description
The readobjects subroutine reads the file given in the file parameter. This file must contain the MIB
variable descriptions that the SMUX peer supports. The SNMP library functions require basic information
about the MIB tree supported by the SMUX peer. These structures are supplied from information
in the readobjects file. The text2oid subroutine receives a string description and uses the object
identifier information retrieved with the readobjects subroutine to return a MIB object identifier. The
file designated in the file parameter must be in the following form:

<MIB directory> <MIB position>

<MIB name> <MIB position> <MIB type> <MIB access> <MIB required?>
<MIB name> <MIB position> <MIB type> <MIB access> <MIB required?>
...

An example of a file that uses this format is /etc/mib.defs. The /etc/mib.defs file defines the MIBII tree
used in the SNMP agent.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Technical Reference: Communication subroutines 55

Parameters

Item Description

file Contains the name of the file to be read. If the value is NULL, the /etc/mib.defs file is read.

Return Values
If the subroutine is successful, OK is returned. Otherwise, NOTOK is returned.

Related reference
text2oid or text2obj Subroutine
smux_free_tree Subroutine
Related information
List of Network Manager Programming References
SNMP Overview for Programmers

s_generic Subroutine

Purpose
Sets the value of the Management Information Base (MIB) variable in the database.

Library
The SNMP Library (libsnmp.a)

Syntax

#include <isode/objects.h>

int s_generic
(oi, v, offset)
OI oi;
register struct type_SNMP_VarBind *v;
int offset;

Description
The s_generic subroutine sets the database value of the MIB variable. The subroutine retrieves the
information it needs from a value in a variable binding within the Protocol Data Unit (PDU). The s_generic
subroutine sets the MIB variable, specified by the object identifier oi parameter, to the value field
specified by the v parameter.

The offset parameter is used to determine the stage of the set process. If the offset parameter value
is type_SNMP_PDUs_set__reque st, the value is checked for validity and the value in the ot_save
field in the OI structure is set. If the offset parameter value is type_SNMP_PDUs_commit, the value
in the ot_save field is freed and moved to the MIB ot_info field. If the offset parameter value is
type_SNMP_PDUs_rollback, the value in the ot_save field is freed and no new value is written.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

oi Designates the OI structure representing the MIB variable to be set.

56 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

v Specifies the variable binding that contains the value to be set.

offset Contains the stage of the set. The possible values for the
offset parameter are type_SNMP_PDUs_commit, type_SNMP_PDUs_rollback, or
type_SNMP_PDUs_set__request.

Return Values
If the subroutine is successful, a value of int_SNMP_error__status_noError is returned. Otherwise, a
value of int_SNMP_error__status_badValue is returned.

Related reference
o_number, o_integer, o_string, o_igeneric, o_generic, o_specific, or o_ipaddr Subroutine
Related information
List of Network Manager Programming References
SNMP Overview for Programmers
SNMP daemon processing

smux_close Subroutine

Purpose
Ends communications with the SNMP agent.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_close (reason)
int reason;

Description
The smux_close subroutine closes the transmission control protocol (TCP) connection from the SNMP
multiplexing (SMUX) peer. The smux_close subroutine sends the close protocol data unit (PDU) with the
error code set to the reason value. The subroutine closes the TCP connection and frees the socket. This
subroutine also frees information it was maintaining for the connection.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

reason Indicates an integer value denoting the reason the close PDU message is being sent.

Return Values
If the subroutine is successful, OK is returned. Otherwise, NOTOK is returned.

Technical Reference: Communication subroutines 57

Error Codes
If the subroutine returns NOTOK, the smux_errno global variable is set to one of the following values:

Value Description

invalidOperation Indicates that the smux_init subroutine has not been executed
successfully.

congestion Indicates that memory could not be allocated for the close PDU. The TCP
connection is closed.

youLoseBig Indicates that the SNMP code has a problem. The TCP connection is closed.

Related information
List of Network Manager Programming References
SNMP Overview for Programmers

smux_error Subroutine

Purpose
Creates a readable string from the smux_errno global variable value.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

char *smux_error (error)
int error;

Description
The smux_error subroutine creates a readable string from error code values in the smux_errno global
variable in the smux.h file. The smux global variable, smux_errno, is set when an error occurs. The
smux_error subroutine can also get a string that interprets the value of the smux_errno variable. The
smux_error subroutine can be used to retrieve any numbers, but is most useful interpreting the integers
returned in the smux_errno variable.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

error Contains the error to interpret. Usually called with the value of the smux_errno variable, but
can be called with any error that is an integer.

Return Values
If the subroutine is successful, a pointer to a static string is returned. If an error occurs, a string of the
type SMUX error %s(%d) is returned. The %s value is a string representing the explanation of the error.
The %d is the number used to reference that error.

58 AIX Version 7.2: Technical Reference: Communication Subroutines

Related information
List of Network Manager Programming References
SNMP Overview for Programmers

smux_free_tree Subroutine

Purpose
Frees the object tree when a smux tree is unregistered.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

void smux_free_tree (parent, child)
char *parent;
char *child;

Description
The smux_free_tree subroutine frees elements in the Management Information Base (MIB) list within
an SNMP multiplexing (SMUX) peer. If the SMUX peer implements the MIB list with the readobjects
subroutine, a list of MIBs is created and maintained. These MIBs are kept in the object tree (OT) data
structures.

Unlike the smux_register subroutine, the smux_free_tree subroutine frees the MIB elements even if the
tree is unregistered by the snmpd daemon. This functionality is not performed by the smux_register
routine because the OT list is created independently of registering a tree with the snmpd daemon.
The unregistered objects should be removed as the user deems appropriate. Remove the unregistered
objects if the smux peer is highly dynamic. If the peer registers and unregisters many trees, it might
be reasonable to add and delete the OT MIB list on the fly. The smux_free_tree subroutine expects the
parent of the MIB tree in the local OT list to delete unregistered objects.

This subroutine does not return values or error codes.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

parent Contains a character string holding the immediate parent of the tree to be deleted.

child Contains a character string holding the beginning of the tree to be deleted.

The character strings are names or dot notations representing object identifiers.

Related reference
readobjects Subroutine
Related information
snmpd subroutine
List of Network Manager Programming References
SNMP Overview for Programmers

Technical Reference: Communication subroutines 59

smux_init Subroutine

Purpose
Initiates the transmission control protocol (TCP) socket that the SNMP multiplexing (SMUX) agent uses
and clears the basic SMUX data structures.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_init (debug)
int debug;

Description
The smux_init subroutine initializes the TCP socket that is used by the SMUX agent to communicate
with the SNMP daemon. The subroutine assumes that loopback is used to define the path to the SNMP
daemon. Name resolution attempts to find an IPv6 address mapping for loopback. If it cannot find an
IPv6 address, it tries to find an IPv4 address for loopback. The subroutine also clears the base structures
that the SMUX code uses. The smux_init subroutine also sets the debug level that is used when it runs
the SMUX subroutines.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

debug Indicates the level of debug to be printed during SMUX subroutines.

Return Values
If the subroutine is successful, the socket descriptor is returned. Otherwise, the value of NOTOK is
returned and the smux_errno global variable is set.

Error Codes
Possible values for the smux_errno global variable are:

Value Description

congestion Indicates memory allocation problems

youLoseBig Signifies problem with SNMP library code

systemError Indicates TCP connection failure.

These are defined in the /usr/include/isode/snmp/smux.h file.

Related information
List of Network Manager Programming References
SNMP Overview for Programmers

60 AIX Version 7.2: Technical Reference: Communication Subroutines

smux_register Subroutine

Purpose
Registers a section of the Management Information Base (MIB) tree with the Simple Network
Management Protocol (SNMP) agent.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_register (subtree, priority, operation)

OID subtree;
int priority;
int operation;

Description
The smux_register subroutine registers the section of the MIB tree for which the SMUX peer is
responsible with the SNMP agent. Using the smux_register subroutine, the SMUX peer informs the SNMP
agent of both the level of responsibility the SMUX peer has and the sections of the MIB tree for which it
is responsible. The level of responsibility (priority) the SMUX peer sends determines which requests it can
answer. Lower priority numbers correspond to higher priority.

If a tree is registered more than once, the SNMP agent sends requests to the registered SMUX peer
with the highest priority. If the priority is set to -1, the SNMP agent attempts to give the SMUX peer the
highest available priority. The operation parameter defines whether the MIB tree is added with readOnly
or readWrite permissions, or if it should be deleted from the list of register trees. The SNMP agent returns
an acknowledgment of the registration. The acknowledgment indicates the success of the registration and
the actual priority received.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

subtree Indicates an object identifier that contains the root of the MIB tree to be registered.

priority Indicates the level of responsibility that the SMUX peer has on the MIB tree. The priority
levels range from 0 to (2^31 - 2). The lower the priority number, the higher the priority. A
priority of -1 tells the SNMP daemon to assign the highest priority currently available.

operation Specifies the operation for the SNMP agent to apply to the MIB tree. Possible values are
delete, readOnly, or readWrite. The delete operation removes the MIB tree from the
SMUX peers in the eyes of the SNMP agent. The other two values specify the operations
allowed by the SMUX peer on the MIB tree that is being registered with the SNMP agent.

Return Values
The values returned by this subroutine are OK on success and NOTOK on failure.

Technical Reference: Communication subroutines 61

Error Codes
If the subroutine is unsuccessful, the smux_errno global variable is set to one of the following values:

Value Description

parameterMissing Indicates a parameter was null. When the parameter is fixed, the
smux_register subroutine can be reissued.

invalidOperation Indicates that the smux_register subroutine is trying to perform this
operation before a smux_init operation has successfully completed. Start
over with a new smux_init subroutine call.

congestion Indicates a memory problem occurred. The TCP connection is closed. Start
over with a new smux_init subroutine call.

youLoseBig Indicates an SNMP code problem has occurred. The TCP connection is
closed. Start over with a new smux_init subroutine call.

Related information
List of Network Manager Programming References
SNMP Overview for Programmers

smux_response Subroutine

Purpose
Sends a response to a Simple Network Management Protocol (SNMP) agent.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_response (event)
struct type_SNMP_GetResponse__PDU *event;

Description
The smux_response subroutine sends a protocol data unit (PDU), also called an event, to the SNMP
agent. The subroutine does not check whether the Management Information Base (MIB) tree is properly
registered. The subroutine checks only to see whether a Transmission Control Protocol (TCP) connection
to the SNMP agent exists and ensures that the event parameter is not null.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

event Specifies a type_SNMP_GetResponse__PDU variable that contains the response PDU to send
to the SNMP agent.

Return Values
If the subroutine is successful, OK is returned. Otherwise, NOTOK is returned.

62 AIX Version 7.2: Technical Reference: Communication Subroutines

Error Codes
If the subroutine is unsuccessful, the smux_errno global variable is set to one of the following values:

Value Description

parameterMissing Indicates the parameter was null. When the parameter is fixed, the
subroutine can be reissued.

invalidOperation Indicates the subroutine was attempted before the smux_init subroutine
successfully completed. Start over with the smux_init subroutine.

youLoseBig Indicates a SNMP code problem has occurred and the TCP connection is
closed. Start over with the smux_init subroutine.

Related information
List of Network Manager Programming References
SNMP Overview for Programmers

smux_simple_open Subroutine

Purpose
Sends the open protocol data unit (PDU) to the Simple Network Management Protocol (SNMP) daemon.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_simple_open (identity, description, commname, commlen)
OID identity;
char * description;
char * commname;
int commlen;

Description
Following the smux_init command, the smux_simple_open subroutine alerts the SNMP daemon that
incoming messages are expected. Communication with the SNMP daemon is accomplished by sending
an open PDU to the SNMP daemon. The smux_simple_open subroutine uses the identity object-identifier
parameter to identify the SNMP multiplexing (SMUX) peer that is starting to communicate. The description
parameter describes the SMUX peer. The commname and the commlen parameters supply the password
portion of the open PDU. The commname parameter is the password used to authenticate the SMUX
peer. The SNMP daemon finds the password in the /etc/snmpd.conf file. The SMUX peer can store the
password in the /etc/snmpd.peers file. The commlen parameter specifies the length of the commname
parameter value.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

identity Specifies an object identifier that describes the SMUX peer.

Technical Reference: Communication subroutines 63

Item Description

description Contains a string of characters that describes the SMUX peer. The description
parameter value cannot be longer than 254 characters.

commname Contains the password to be sent to the SNMP agent. Can be a null value.

commlen Indicates the length of the community name (commname parameter) to be sent to
the SNMP agent. The value for this parameter must be at least 0.

Return Values
The subroutine returns an integer value of OK on success or NOTOK on failure.

Error Codes
If the subroutine is unsuccessful, the smux_errno global variable is set one of the following values:

Value Description

parameterMissing Indicates that a parameter was null. The commname parameter can be
null, but the commlen parameter value should be at least 0.

invalidOperation Indicates that the smux_init subroutine did not complete successfully
before the smux_simple_open subroutine was attempted. Correct the
parameters and reissue the smux_simple_open subroutine.

inProgress Indicates that the smux_init call has not completed the TCP connection.
The smux_simple_open can be reissued.

systemError Indicates the TCP connection was not completed. Do not reissue this
subroutine without restarting the process with a smux_init subroutine
call.

congestion Indicates a lack of available memory space. Do not reissue this subroutine
without restarting the process with a smux_init subroutine call.

youLoseBig The SNMP code is having problems. Do not reissue this subroutine without
restarting the process with a smux_init subroutine call.

Related information
List of Network Manager Programming References
SNMP Overview for Programmers

smux_trap Subroutine

Purpose
Sends SNMP multiplexing (SMUX) peer traps to the Simple Network Management Protocol (SNMP) agent.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

64 AIX Version 7.2: Technical Reference: Communication Subroutines

int smux_trap (generic, specific, bindings)

int generic;
int specific;
struct type_SNMP_VarBindList *bindings;

Description
The smux_trap subroutine allows the SMUX peer to generate traps and send them to the SNMP agent.
The subroutine sets the generic and specific fields in the trap packet to values specified by the
parameters. The subroutine also allows the SMUX peer to send a list of variable bindings to the SNMP
agent. The variable bindings are values associated with specific variables. If the trap is to return a set of
variables, the variables are sent in the variable binding list.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

generic Contains an integer specifying the generic trap type. The value must be one of the
following:
0

Specifies a cold start.
1

Specifies a warm start.
2

Specifies a link down.
3

Specifies a link up.
4

Specifies an authentication failure.
5

Specifies an EGP neighbor loss.
6

Specifies an enterprise-specific trap type.

specific Contains an integer that uniquely identifies the trap. The unique identity is typically
assigned by the registration authority for the enterprise owning the SMUX peer.

bindings Indicates the variable bindings to assign to the trap protocol data unit (PDU).

Return Values
The subroutine returns NOTOK on failure and OK on success.

Error Codes
If the subroutine is unsuccessful, the smux_errno global variable is set to one of the following values:

Value Description

invalidOperation Indicates the Transmission Control Protocol (TCP) connection was not
completed.

congestion Indicates memory is not available. The TCP connection was closed.

Technical Reference: Communication subroutines 65

Value Description

youLoseBig Indicates an error occurred in the SNMP code. The TCP connection was
closed.

Related information
List of Network Manager Programming References
SNMP Overview for Programmers

smux_wait Subroutine

Purpose
Waits for a message from the Simple Network Management Protocol (SNMP) agent.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_wait (event, isecs)
struct type_SMUX_PDUs **event;
int isecs;

Description
The smux_wait subroutine waits for a period of seconds, designated by the value of the isecs parameter,
and returns the protocol data unit (PDU) received. The smux_wait subroutine waits on the socket
descriptor that is initialized in a smux_init subroutine and maintained in the SMUX subroutines. The
smux_wait subroutine waits up to isecs seconds. If the value of the isecs parameter is 0, the smux_wait
subroutine returns only the first packet received. If the value of the isecs parameter is less than 0, the
smux_wait subroutine waits indefinitely for the next message or returns a message already received.
If no data is received, the smux_wait subroutine returns an error message of NOTOK and sets the
smux_errno variable to the inProgress value. If the smux_wait subroutine is successful, it returns the
first PDU waiting to be received. If a close PDU is received, the subroutine will automatically close the TCP
connection and return OK.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

event Points to a pointer of type_SMUX_PDUs. This holds the PDUs received by the smux_wait
subroutine.

isecs Specifies an integer value equal to the number of seconds to wait for a message.

Return Values
If the subroutine is successful, the value OK is returned. Otherwise, the return value is NOTOK.

Error Codes
If the subroutine is unsuccessful, the smux_errno global variable is set to one of the following values:

66 AIX Version 7.2: Technical Reference: Communication Subroutines

Value Description

parameterMissing Indicates that the event parameter value was null.

inProgress Indicates that there was nothing for the subroutine to receive.

invalidOperation Indicates that the smux_init subroutine was not called or failed to operate.

youLoseBig Indicates an error occurred in the SNMP code. The TCP connection was
closed.

Related information
List of Network Manager Programming References
SNMP Overview for Programmers

text2inst, name2inst, next2inst, or nextot2inst Subroutine

Purpose
Retrieves instances of variables from various forms of data.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/objects.h>

OI text2inst (text)
char *text;

OI name2inst (oid)
OID oid;

OI next2inst (oid)
OID oid;

OI nextot2inst (oid, ot)
OID oid;
OT ot;

Description
These subroutines return pointers to the actual objects in the database. When supplied with a way to
identify the object, the subroutines return the corresponding object.

The text2inst subroutine takes a character string object identifier from the text parameter. The object's
database is then examined for the specified object. If the specific object is not found, the NULLOI value is
returned.

The name2inst subroutine uses an object identifier structure specified in the oid parameter to specify
which object is desired. If the object cannot be found, a NULLOI value is returned.

The next2inst and nextot2inst subroutines find the next object in the database given an object identifier.
The next2inst subroutine starts at the root of the tree, while the nextot2inst subroutine starts at the
object given in the ot parameter. If another object cannot be found, the NULLOI value will be returned.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Technical Reference: Communication subroutines 67

Parameters

Item Description

text Specifies the character string used to identify the object wanted in the text2inst subroutine.

oid Specifies the object identifier structure used to identify the object wanted in the name2inst,
next2inst, and nextot2inst subroutines.

ot Specifies an object in the database used as a starting point for the nextot2inst subroutine.

Return Values
If the subroutine is successful, an OI value is returned. OI is a pointer to an object in the database. On a
failure, a NULLOI value is returned.

Related reference
text2oid or text2obj Subroutine
Related information
List of Network Manager Programming References
SNMP Overview for Programmers

text2oid or text2obj Subroutine

Purpose
Converts a text string into some other value.

Library
SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/objects.h>

OID text2oid (text)
char *text;

OT text2obj (text)
char *text;

Description
The text2oid subroutine takes a character string and returns an object identifier. The string can be a
name, a name.numbers, or dot notation. The returned object identifier is in memory-allocation storage
and should be freed when the operation is completed with the oid_free subroutine.

The text2obj subroutine takes a character string and returns an object. The string needs to be the name
of a specific object. The subroutine returns a pointer to the object.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

Item Description

text Contains a text string used to specify the object identifier or object to be returned.

68 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
On a successful execution, these subroutines return completed data structures. If a failure occurs, the
text2oid subroutine returns a NULLOID value and the text2obj returns a NULLOT value.

Related reference
readobjects Subroutine
text2inst, name2inst, next2inst, or nextot2inst Subroutine
oid_cmp, oid_cpy, oid_free, sprintoid, str2oid, ode2oid, oid2ode, oid2ode_aux, prim2oid, or oid2prim
Subroutine

Sockets
The operating system includes the Berkeley Software Distribution (BSD) interprocess communication
(IPC) facility known as sockets. Sockets are communication channels that enable unrelated processes to
exchange data locally and across networks. A single socket is one end point of a two-way communication
channel. Socket subroutines enable interprocess and network interprocess communications (IPC).

_
AIX runtime services beginning with the character _.

_getlong Subroutine

Purpose
Retrieves long byte quantities.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

unsigned long _getlong (MessagePtr)
u_char *MessagePtr;

Description
The _getlong subroutine gets long quantities from the byte stream or arbitrary byte boundaries.

The _getlong subroutine is one of a set of subroutines that form the resolver, a set of functions that
resolves domain names. Global information used by the resolver subroutines is kept in the _res data
structure. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the _getlong subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters
Item Description

MessagePtr Specifies a pointer into the byte stream.

Technical Reference: Communication subroutines 69

Return Values
The _getlong subroutine returns an unsigned long (32-bit) value.

Files
Item Description

 /etc/resolv.conf Lists name server and domain names.

Related information
Sockets Overview
Understanding Domain Name Resolution

_getshort Subroutine

Purpose
Retrieves short byte quantities.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

unsigned short getshort (MessagePtr)
u_char *MessagePtr;

Description
The _getshort subroutine gets quantities from the byte stream or arbitrary byte boundaries.

The _getshort subroutine is one of a set of subroutines that form the resolver, a set of functions that
resolve domain names. Global information used by the resolver subroutines is kept in the _res data
structure. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the _getshort subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

MessagePtr Specifies a pointer into the byte stream.

Return Values
The _getshort subroutine returns an unsigned short (16-bit) value.

70 AIX Version 7.2: Technical Reference: Communication Subroutines

Files

Item Description

/etc/resolv.conf Defines name server and domain names.

Related information
Sockets Overview
Understanding Domain Name Resolution

_putlong Subroutine

Purpose
Places long byte quantities into the byte stream.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

void _putlong (Long, MessagePtr)
unsigned long Long;
u_char *MessagePtr;

Description
The _putlong subroutine places long byte quantities into the byte stream or arbitrary byte boundaries.

The _putlong subroutine is one of a set of subroutines that form the resolver, a set of functions that
resolve domain names. Global information used by the resolver subroutines is kept in the _res data
structure. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the _putlong subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

Long Represents a 32-bit integer.

MessagePtr Represents a pointer into the byte stream.

Files

Item Description

 /etc/
resolv.conf

Lists the name server and domain name.

Related information
Sockets Overview

Technical Reference: Communication subroutines 71

Understanding Domain Name Resolution

_putshort Subroutine

Purpose
Places short byte quantities into the byte stream.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

void _putshort (Short, MessagePtr)
unsigned short Short;
u_char *MessagePtr;

Description
The _putshort subroutine puts short byte quantities into the byte stream or arbitrary byte boundaries.

The _putshort subroutine is one of a set of subroutines that form the resolver, a set of functions that
resolve domain names. Global information used by the resolver subroutines is kept in the _res data
structure. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the _putshort subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

Short Represents a 16-bit integer.

MessagePtr Represents a pointer into the byte stream.

Files

Item Description

 /etc/resolv.conf Lists the name server and domain name.

Related information
Sockets Overview
Understanding Domain Name Resolution

a
AIX runtime services beginning with the letter a.

accept Subroutine

72 AIX Version 7.2: Technical Reference: Communication Subroutines

Purpose
Accepts a connection on a socket to create a new socket.

Library
Standard C Library (libc.a)

Syntax
#include <sys/socket.h>

int accept (Socket, Address, AddressLength)
int Socket;
struct sockaddr *Address;
socklen_t *AddressLength;

Description
The accept subroutine extracts the first connection on the queue of pending connections, creates a new
socket with the same properties as the specified socket, and allocates a new file descriptor for that
socket.

If the listen queue is empty of connection requests, the accept subroutine:

• Blocks a calling socket of the blocking type until a connection is present.
• Returns an EWOULDBLOCK error code for sockets marked nonblocking.

The accepted socket cannot accept more connections. The original socket remains open and can accept
more connections.

The accept subroutine is used with SOCK_STREAM and SOCK_CONN_DGRAM socket types.

For SOCK_CONN_DGRAM socket type and ATM protocol, a socket is not ready to transmit/receive data
until SO_ATM_ACCEPT socket option is called. This allows notification of an incoming connection to the
application, followed by modification of appropriate parameters and then indicate that a connection can
become fully operational.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure
BSD 4.3 compatible. For more details refer to socket.h.

Parameters

Item Description

Socket Specifies a socket created with the socket subroutine that is bound to an address
with the bind subroutine and has issued a successful call to the listen subroutine.

Address Specifies a result parameter that is filled in with the address of the connecting
entity as known to the communications layer. The exact format of the Address
parameter is determined by the domain in which the communication occurs.

AddressLength Specifies a parameter that initially contains the amount of space pointed to
by the Address parameter. Upon return, the parameter contains the actual
length (in bytes) of the address returned. The accept subroutine is used with
SOCK_STREAM socket types.

Return Values
Upon successful completion, the accept subroutine returns the nonnegative socket descriptor of the
accepted socket.

Technical Reference: Communication subroutines 73

If the accept subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the ernno global variable.

Error Codes
The accept subroutine is unsuccessful if one or more of the following is true:

Item Description

EBADF The Socket parameter is not valid.

ECONNRESET The connection has been reset by the partner.

EINTR The accept function was interrupted by a signal that was caught before a valid
connection arrived.

EINVAL The socket referenced by s is not currently a listen socket or has been
shutdown with shutdown. A listen must be done before an accept is allowed.

EMFILE The system limit for open file descriptors per process has already been
reached (OPEN_MAX).

ENFILE The maximum number of files allowed are currently open.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.

EFAULT The Address parameter is not in a writable part of the user address space.

EWOULDBLOCK The socket is marked as nonblocking, and no connections are present to be
accepted.

ENETDOWN The network with which the socket is associated is down.

ENOTCONN The socket is not in the connected state.

ECONNABORTED The client aborted the connection.

Examples
As illustrated in this program fragment, once a socket is marked as listening, a server process can accept
a connection:

struct sockaddr_in from;
.
.
.
fromlen = sizeof(from);
newsock = accept(socket, (struct sockaddr*)&from, &fromlen);

Related reference
listen Subroutine
socket Subroutine
Related information
Accepting Stream Connections Example Program
Binding Names to Sockets

arpresolve_common Subroutine

74 AIX Version 7.2: Technical Reference: Communication Subroutines

Purpose
Reads or creates new arp entries so that hardware addresses can be resolved.

Syntax
int arpresolve_common (ac, m, arpwhohas, dst, hwaddr, szhwaddr, extra, if_dependent)

 register struct arpcom *ac;
 struct mbuf *m;
 int (*arpwhohas)(register struct arpcom *ac,
 struct in_addr *addr, int skipbestif, void *extra),
 struct sockaddr_in *dst;
 u_char * hwaddr;
 int szhwaddr;
 void *extra;
 union if_dependent *if_dependent;

Description
The arpresolve_common subroutine reads or creates new arp entries so that hardware addresses can be
resolved. It is called by arpresolve from the IF layer of the interface. If the arp entry is complete, then
arpresolve_common returns the address pointed to by hwaddr and the data pointed to by if_dependent if
if_dependent is true. If the arp entry is not complete, then this subroutine adds the memory buffer pointed
to by mbuf to at_hold. at_hold holds one or more packets that are waiting for the arp entry to complete
so they can be transmitted.

If an arp entry does not exist, arpresolve_common creates a new entry by calling arptnew and then adds
the memory buffer pointed to by mbuf to at_hold. This subroutine calls arpwhohas when it creates a new
arp entry or when the timer for the incomplete arp entry (with the IP address that is pointed to by dst) has
expired.

Parameters
Item Description

ac Points to the arpcom structure.

m Points to the memory buffer (mbuf), which will be added to the list awaiting
completion of the arp table entry.

arpwhohas Points to the arpwhohas subroutine.

addr Points to the in_addr structure's address.

extra A void pointer that can be used in the future so that IF layers can pass extra
structures to arpwhohas.

dst Points to the sockaddr_in structure. This structure has the destination IP
address.

hwaddr Points to the buffer. This buffer contains the hardware address if it finds a
completed entry.

szhwaddr Size of the buffer pointed to by hwaddr.

if_dependent Pointer to the if_dependent structure. arpresolve_common uses this to pass
the if_dependent data, which is part of the arptab entry, to the calling
function.

Return Values
Item Description

ARP_MBUF The arp entry is not complete.

Technical Reference: Communication subroutines 75

Item Description

ARP_HWADDR The hwaddr buffer is filled with the hardware address.

ARP_FLG_NOARP The arp entry does not exist, and the IFF_NOARP flag is set only if the
value of if_type is IFT_ETHER.

arpupdate Subroutine

Purpose
Updates arp entries for a given IP address.

Syntax
int arpupdate (ac, m, hp, action, prm)
 register struct arpcom *ac;
 struct mbuf *m;
 caddr_t hp;
 int action;
 struct arpupdate_parm *prm;

Description
The arpupdate subroutine updates arp entries for a given IP address. It is called by arpinput from the IF
layer of the interface. This subroutine searches the arp table for an entry that matches the IP address. It
then updates the arp entry for the given IP address. The arpupdate subroutine also performs reverse arp
lookups.

The arpupdate subroutine enters a new address in arptab, pushing out the oldest entry from the bucket
if there is no room. This subroutine always succeeds because no bucket can be completely filled with
permanent entries (except when arpioctl tests whether another permanent entry can fit).

Depending on the action specified, the prm IP addresses isaddr, itaddr, and myaddr are used by the
arpupdate subroutine.

Parameters
Item Description

ac Points to the arpcom structure.

m Points to the memory buffer (mbuf), that contains the arp response packet
received by the interface.

hp Points to the buffer that is passed by the interrupt handler.

76 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

action Returns a value that indicates which action is taken:
LOOK

Looks for the isaddr IP address in the arp table and returns the hardware
address and if_dependent structure.

LKPUB
Looks for the isaddr IP address in the arp table and returns the hardware
address and if_dependent structure only if the ATF_PUBL is set.

UPDT
Updates the arp entry for an IP address (isaddr). If no arp entry is there,
creates a new one and updates the if_dependent structure using the ptr
function passed in the prm structure.

REVARP
Reverses the arp request. hwaddr contains the hardware address,
szhwaddr indicates its size, and saddr returns the IP address if an entry is
found.

prm Points to the arpudpate_parm structure. The values are:
LOOK or LKPUB

itaddr and myaddr are ignored. isaddr is used for arp table lookup.
UPDTE

isaddr points to the sender protocol address. itaddr points to the target
protocol address. myaddr points to the protocol address of the interface
that received the packet.

Return Values
Item Description

ARP_OK Lookup or update was successful.

ARP_FAIL Lookup or update failed.

ARP_NEWF New arp entry could not be created.

b
AIX runtime services beginning with the letter b.

bind Subroutine

Purpose
Binds a name to a socket.

Library
Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int bind (Socket, Name, NameLength)
int Socket;

Technical Reference: Communication subroutines 77

const struct sockaddr *Name;
socklen_t NameLength;

Description
The bind subroutine assigns a Name parameter to an unnamed socket. Sockets created by the socket
subroutine are unnamed; they are identified only by their address family. Subroutines that connect
sockets either assign names or use unnamed sockets.

For a UNIX domain socket, a connect call only succeeds if the process that calls connect has read and
write permissions on the socket file created by the bind call. Permissions are determined by the umask
value of the process that created the file.

An application program can retrieve the assigned socket name with the getsockname subroutine.

The socket applications can be compiled with COMPAT_43 defined. This makes the sockaddr structure
BSD 4.3 compatible. For more details refer to the socket.h file.

Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller
when it is no longer needed.

Note: When you enable IPv6 for an application, IPv4 addresses are also supported. You can use an
AF_INET6 socket to send and receive both IPv4 and IPv6 packets because AF_INET6 sockets are capable
of handling communication with both IPv4 and IPv6 hosts. However, you must convert the address
format of the IPv4 addresses that were previously passed to the socket calls to the IPv4-mapped IPv6
address format. For example, you must convert 10.1.1.1 in the sockaddr_in structure to ::ffff:10.1.1.1 in
the sockaddr_in6 structure.

Parameters

Item Description

Socket Specifies the socket descriptor (an integer) of the socket to be bound.

Name Points to an address structure that specifies the address to which the socket should be
bound. The /usr/include/sys/socket.h file defines the sockaddr address structure.
The sockaddr structure contains an identifier specific to the address format and
protocol provided in the socket subroutine.

NameLength Specifies the length of the socket address structure.

Return Values
Upon successful completion, the bind subroutine returns a value of 0.

If the bind subroutine is unsuccessful, the subroutine handler performs the following actions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable see "Error Notification Object Class" in Communications Programming Concepts.

Error Codes
The bind subroutine is unsuccessful if any of the following errors occurs:

Value Description

EACCES The requested address is protected, and the current user does not have
permission to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the local machine.

78 AIX Version 7.2: Technical Reference: Communication Subroutines

Value Description

EAFNOSUPPORT The specified address is not a valid address for the address family of the
specified socket.

EAGAIN The transient ports are already in use and are not available.

EBADF The Socket parameter is not valid.

EDESTADDRREQ The address argument is a null pointer.

EFAULT The Address parameter is not in a writable part of the UserAddress space.

EINVAL The socket is already bound to an address.

ENOBUF Insufficient buffer space available.

ENODEV The specified device does not exist.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The socket referenced by Socket parameter does not support address
binding.

Examples
The following program fragment illustrates the use of the bind subroutine to bind the name "/tmp/zan/"
to a UNIX domain socket.

#include <sys/un.h>

.

.

.
struct sockaddr_un addr;
.
.
.
strcpy(addr.sun_path, "/tmp/zan/");
addr.sun_len = strlen(addr.sun_path);
addr.sun_family = AF_UNIX;
bind(s,(struct sockaddr*)&addr, SUN_LEN(&addr));

Related reference
connect Subroutine
socket Subroutine

bind2addrsel Subroutine

Purpose
Binds a socket to an address according to address selection preferences.

Library
Library (libc.a)

Syntax

#include <netinet/in.h>
int bind2addrsel(int socket,const struct sockaddr *dstaddr, socklen_t dstaddrlen)

Technical Reference: Communication subroutines 79

Description
When establishing a communication with a distant address, AIX uses a address selection algorithm to
define what local address will be used to communicate with a distant address. This algorithm uses
a set of ordered rules (RFC 3484) to choose this local address. Some of these rules use the type of
address for this selection. By default, public addresses are preferred over temporary addresses; CGA
addresses are preferred over non CGA addresses; home addresses are preferred over care-of addresses.
An application may prefer the use other preference choices (for example use a temporary address
rather that a public address) for the rules using the type of address. If these rules are applied, these
preferences will be used. The application can express these preferences using a setsockopt call with the
IPV6_ADDR_PREFERENCES option and a combination of the following flags:

• IPV6_PREFER_SRC_HOME: prefer addresses reachable from a Home source address
• IPV6_PREFER_SRC_COA: prefer addresses reachable from a Care-of source address
• IPV6_PREFER_SRC_TMP: prefer addresses reachable from a temporary address
• IPV6_PREFER_SRC_PUBLIC: the prefer addresses reachable from a public source address
• IPV6_PREFER_SRC_CGA: the prefer addresses reachable from a Cryptographically Generated Address

(CGA) source address
• IPV6_PREFER_SRC_NONCGA: the prefer addresses reachable from a non-CGA source address

The application will then call bind2addrsel. bind2addrsel binds a socket to a local address selected to
communicate with the given destination address according to the address selection preferences.

Parameters

Item Description

socket Specifies the unique socket name

dstaddr Points to a sockaddr structure containing the destination address. The sin6_family field
of this sockaddr structure must be set to AF_INET6.

dstaddrlen Specifies the size of the sockaddr structure pointed by dstaddr.

Return Values
Upon successful completion, the subroutine returns 0

If unsuccessful, the subroutine returns -1 and errno is set accordingly:

c
AIX runtime services beginning with the letter c.

connect Subroutine

Purpose
Connects two sockets.

Library
Standard C Library (libc.a

Syntax

#include <sys/socket.h>

80 AIX Version 7.2: Technical Reference: Communication Subroutines

int connect (Socket, Name, NameLength)
int Socket;
const struct sockaddr *Name;
socklen_t NameLength;

Description
The connect subroutine requests a connection between two sockets. The kernel sets up the
communication link between the sockets; both sockets must use the same address format and protocol.

If a connect subroutine is issued on an unbound socket or a partially bound socket (a socket that is
assigned a port number but no IP address), the system automatically binds the socket. The connect
subroutine can be used to connect a socket to itself. This can be done, for example, by binding a socket to
a local port (using bind) and then connecting it to the same port with a local IP address (using connect).

The connect subroutine performs a different action for each of the following two types of initiating
sockets:

• If the initiating socket is SOCK_DGRAM, the connect subroutine establishes the peer address. The
peer address identifies the socket where all datagrams are sent on subsequent send subroutines. No
connections are made by this connect subroutine. If the UDP socket is receiving datagrams when the
connect subroutine is called, the subroutine will change the IP address, preventing the socket from
receiving datagram packets based on the previous address.

• If the initiating socket is SOCK_STREAM or SOCK_CONN_DGRAM, the connect subroutine attempts
to make a connection to the socket specified by the Name parameter. Each communication space
interprets the Name parameter differently. For SOCK_CONN_DGRAM socket type and ATM protocol,
some of the ATM parameters may have been modified by the remote station, applications may query
new values of ATM parameters using the appropriate socket options.

• In the case of a UNIX domain socket, a connect call only succeeds if the process that calls connect has
read and write permissions on the socket file created by the bind call. Permissions are determined by
the umask< value of the process that created the file.

Implementation Specifics

Parameters

Item Description

Socket Specifies the unique name of the socket.

Name Specifies the address of target socket that will form the other end of the
communication line

NameLength Specifies the length of the address structure.

Return Values
Upon successful completion, the connect subroutine returns a value of 0.

If the connect subroutine is unsuccessful, the system handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
The connect subroutine is unsuccessful if any of the following errors occurs:

Technical Reference: Communication subroutines 81

Value Description

EADDRINUSE The specified address is already in use. This error will also occur if the
SO_REUSEADDR socket option was set and the local address (whether specified
or selected by the system) is already in use.

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EALREADY The socket is specified with O_NONBLOCK or O_NDLAY, and a previous
connecttion attempt has not yet completed.

EINTR The attempt to establish a connection was interrupted by delivery of a signal that
was caught; the connection will be established asynchronously.

EACCES Search permission is denied on a component of the path prefix or write access to
the named socket is denied.

ENOBUFS The system ran out of memory for an internal data structure.

EOPNOTSUPP The socket referenced by Socket parameter does not support connect.

EWOULDBLOCK The range allocated for TCP/UDP ephemeral ports has been exhausted.

EBADF The Socket parameter is not valid.

ECONNREFUSED The attempt to connect was rejected.

EFAULT The Address parameter is not in a writable part of the user address space.

EINPROGRESS The socket is marked as nonblocking. The connection cannot be immediately
completed. The application program can select the socket for writing during the
connection process.

EINVAL The specified path name contains a character with the high-order bit set.

EISCONN The socket is already connected.

ENETDOWN The specified physical network is down.

ENETUNREACH No route to the network or host is present.

ENOSPC There is no space left on a device or system table.

ENOTCONN The socket could not be connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

ETIMEDOUT The establishment of a connection timed out before a connection was made.

EPROTOTYPE The specified address has a different type from the socket that is bound to the
specified peer address.

ELOOP Too many symbolic links were encountered in translating the path name in
address.

ENOENT A component of the path name does not name an existing file or the path name is
an empty string.

ENOTDIR A component of the path prefix of the path name in address is not a directory.

Examples
The following program fragment illustrates the use of the connect subroutine by a client to initiate a
connection to a server's socket.

struct sockaddr_un server;
.
.

82 AIX Version 7.2: Technical Reference: Communication Subroutines

.
connect(s,(struct sockaddr*)&server, sun_len(&server));

Related reference
bind Subroutine
/etc/socks5c.conf File

CreateIoCompletionPort Subroutine

Purpose
Creates an I/O completion port with no associated file descriptor or associates an opened socket or file
with an existing or newly created I/O completion port.

Syntax
#include <iocp.h>
int CreateIoCompletionPort (FileDescriptor, CompletionPort, CompletionKey, ConcurrentThreads)
HANDLE FileDescriptor, CompletionPort;
DWORD CompletionKey, ConcurrentThreads;

Description
The CreateIoCompletionPort subroutine creates an I/O completion port or associates an open
file descriptor with an existing or newly created I/O completion port. When creating a new I/O
completion port, the CompletionPort parameter is set to NULL, the FileDescriptor parameter is set to
INVALID_HANDLE_VALUE (-1), and the CompletionKey parameter is ignored.

The CreateIoCompletionPort subroutine returns a descriptor (an integer) to the I/O completion port
created or modified.

The CreateIoCompletionPort subroutine is part of the I/O Completion Port (IOCP) kernel extension.

Note: This subroutine only works with file descriptors of sockets, or regular files for use with the
Asynchronous I/O (AIO) subsystem. It does not work with file descriptors of other types.

Parameters
Item Description

FileDescriptor Specifies a valid file descriptor obtained from a call
to the socket or accept subroutines.

CompletionPort Specifies a valid I/O completion port descriptor.
Specifying a CompletionPort parameter value
of NULL causes the CreateIoCompletionPort
subroutine to create a new I/O completion port.

CompletionKey Specifies an integer to serve as the identifier for
completion packets generated from a particular
file-completion port set.

ConcurrentThreads This parameter is not implemented and is present
only for compatibility purposes.

Return Values
Upon successful completion, the CreateIoCompletionPort subroutine returns an integer (the I/O
completion port descriptor).

If the CreateIoCompletionPort is unsuccessful, the subroutine handler performs the following functions:

Technical Reference: Communication subroutines 83

• Returns a value of NULL to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable, see the link in the Related Information section of this document.

Error Codes
The CreateIoCompletionPort subroutine is unsuccessful if either of the following errors occur:

Item Description

EBADF The I/O completion port descriptor is invalid.

EINVAL The file descriptor is invalid.

EALREADY The file descriptor is already associated.

Examples
The following program fragment illustrates the use of the CreateIoCompletionPort subroutine to create a
new I/O completion port with no associated file descriptor:

c = CreateIoCompletionPort (INVALID_HANDLE_VALUE, NULL, 0, 0);

The following program fragment illustrates the use of the CreateIoCompletionPort subroutine to
associate file descriptor 34 (which has a newly created I/O completion port) with completion key 25:

c = CreateIoCompletionPort (34, NULL, 25, 0);

The following program fragment illustrates the use of the CreateIoCompletionPort subroutine to
associate file descriptor 54 (which has an existing I/O completion port) with completion key 15:

c = CreateIoCompletionPort (54, 12, 15, 0);

Related information
Error Notification Object Class

d
AIX runtime services beginning with the letter d.

dn_comp Subroutine

Purpose
Compresses a domain name.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int dn_comp (ExpDomNam, CompDomNam, Length, DomNamPtr, LastDomNamPtr)
u_char * ExpDomNam, * CompDomNam;

84 AIX Version 7.2: Technical Reference: Communication Subroutines

int Length;
u_char ** DomNamPtr, ** LastDomNamPtr;

Description
The dn_comp subroutine compresses a domain name to conserve space. When compressing names, the
client process must keep a record of suffixes that have appeared previously. The dn_comp subroutine
compresses a full domain name by comparing suffixes to a list of previously used suffixes and removing
the longest possible suffix.

The dn_comp subroutine compresses the domain name pointed to by the ExpDomNam parameter and
stores it in the area pointed to by the CompDomNam parameter. The dn_comp subroutine inserts labels
into the message as the name is compressed. The dn_comp subroutine also maintains a list of pointers to
the message labels and updates the list of label pointers.

• If the value of the DomNamPtr parameter is null, the dn_comp subroutine does not compress any
names. The dn_comp subroutine translates a domain name from ASCII to internal format without
removing suffixes (compressing). Otherwise, the DomNamPtr parameter is the address of pointers to
previously compressed suffixes.

• If the LastDomNamPtr parameter is null, the dn_comp subroutine does not update the list of label
pointers.

The dn_comp subroutine is one of a set of subroutines that form the resolver. The resolver is a set of
functions that perform a translation between domain names and network addresses. Global information
used by the resolver subroutines resides in the _res data structure. The /usr/include/resolv.h file
contains the _res data structure definition.

All applications containing the dn_comp subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

ExpDomNam Specifies the address of an expanded domain name.

CompDomNam Points to an array containing the compressed domain name.

Length Specifies the size of the array pointed to by the CompDomNam parameter.

DomNamPtr Specifies a list of pointers to previously compressed names in the current
message.

LastDomNamPtr Points to the end of the array specified to by the CompDomNam parameter.

Return Values
Upon successful completion, the dn_comp subroutine returns the size of the compressed domain name.

If unsuccessful, the dn_comp subroutine returns a value of -1 to the calling program.

Files

Item Description

/usr/include/resolv.h Contains global information used by the resolver subroutines.

Related reference
dn_expand Subroutine
Related information
TCP/IP name resolution

Technical Reference: Communication subroutines 85

Sockets Overview
Understanding Domain Name Resolution

dn_expand Subroutine

Purpose
Expands a compressed domain name.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int dn_expand (MessagePtr, EndofMesOrig, CompDomNam, ExpandDomNam, Length)
u_char * MessagePtr, * EndOfMesOrig;
u_char * CompDomNam, * ExpandDomNam;
int Length;

Description
The dn_expand subroutine expands a compressed domain name to a full domain name, converting the
expanded names to all uppercase letters. A client process compresses domain names to conserve space.
Compression consists of removing the longest possible previously occurring suffixes. The dn_expand
subroutine restores a domain name compressed by the dn_comp subroutine to its full size.

The dn_expand subroutine is one of a set of subroutines that form the resolver. The resolver is a set of
functions that perform a translation between domain names and network addresses. Global information
used by the resolver subroutines resides in the _res data structure. The /usr/include/resolv.h file
contains the _res data structure definition.

All applications containing the dn_expand subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

MessagePtr Specifies a pointer to the beginning of a message.

EndOfMesOrig Points to the end of the original message that contains the compressed domain
name.

CompDomNam Specifies a pointer to a compressed domain name.

ExpandDomNam Specifies a pointer to a buffer that holds the resulting expanded domain name.

Length Specifies the size of the buffer pointed to by the ExpandDomNam parameter.

Return Values
Upon successful completion, the dn_expand subroutine returns the size of the expanded domain name.

If unsuccessful, the dn_expand subroutine returns a value of -1 to the calling program.

86 AIX Version 7.2: Technical Reference: Communication Subroutines

Files

Item Description

 /etc/
resolv.conf

Defines name server and domain name constants, structures, and values.

Related reference
dn_comp Subroutine
Related information
exit subroutine
TCP/IP name resolution

e
AIX runtime services beginning with the letter e.

eaccept Subroutine

Purpose
Accepts a connection on a socket to create a new socket. The eaccept subroutine is similar to the
accept subroutine with the addition of the sec_labels_t structure. The sec_labels_t structure reads the
Sensitivity Level (SL) that is received on the incoming connection for Trusted AIX enabled systems.

Library
Standard C Library (libc.a)

Syntax
#include <sys/socket.h>
#include <sys/mac.h>

int eaccept (Socket, Address, AddressLength, Label)
int Socket;
struct sockaddr *Address;
socklen_t *AddressLength;
sec_labels_t *Label;

Description
The eaccept subroutine extracts the first connection in the queue of pending connections, creates a
new socket with the same properties as the specified socket, and allocates a new file descriptor for that
socket.

If there are no connection requests in the listen queue, the eaccept subroutine performs the following
actions:

• Blocks a calling socket of the blocking type until a connection is present.
• Returns an EWOULDBLOCK error code for sockets marked nonblocking.

The accepted socket cannot accept more connections, but the original socket remains open and can
accept more connections.

The eaccept subroutine is used with only the SOCK_STREAM socket type. If a valid Label parameter is
specified, the SL from the incoming connection is returned to the application.

Technical Reference: Communication subroutines 87

Parameters
Item Description

Socket Specifies a socket created with the socket subroutine that is bound to an address
with the bind or ebind subroutine and has issued a successful call to the listen
subroutine.

Address Specifies a result parameter that contains the address of the connecting entity as
known to the communications layer. The exact format of the Address parameter is
determined by the domain in which the communication occurs.

AddressLength Specifies a parameter that initially contains the amount of space pointed to
by the Address parameter. Upon return, the parameter contains the actual
length (in bytes) of the address returned. The eaccept subroutine is used with
SOCK_STREAM socket types.

Label Specifies a result parameter that contains the SL received on the incoming
connection.

Return Values
Item Description

Successful a non-negative socket descriptor of the accepted socket

Unsuccessful -1

Error Codes
The eaccept subroutine is unsuccessful if one or more of the following is true:

Item Description

EBADF The Socket parameter is not valid.

EINTR The eaccept function was interrupted by a signal that was caught before a
valid connection arrived.

EINVAL The socket referenced by s is not currently a listen socket or has been
shutdown with shutdown. A listen must be done before an eaccept is
allowed.

EMFILE The number of open file descriptors per process exceeds the system limit
(OPEN_MAX).

ENFILE The number of open files exceeds the allowed maximum value.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.

EFAULT The Address parameter is not in a writable part of the user address space.

EWOULDBLOCK The socket is marked as nonblocking, and no connections are present to be
accepted.

ENETDOWN The network that the socket is associated with is down.

ENOTCONN The socket is not in the connected state.

ECONNABORTED The client aborted the connection.

EPERM The MLS MAC check failed.

ebind Subroutine

88 AIX Version 7.2: Technical Reference: Communication Subroutines

Purpose
Binds a name to a socket. Also binds a socket to the specific Sensitivity Level (SL) that is passed as a
parameter.

Library
Standard C Library (libc.a)

Syntax

#include <sys/socket.h>
#include <sys/mac.h>

int ebind (Socket, Name, NameLength, Label)
int Socket;
const struct sockaddr *Name;
socklen_t NameLength;
sec_labels_t *Label;

Description
The ebind subroutine assigns a Name parameter to an unnamed socket. Sockets created by the socket
subroutine are unnamed; they are identified only by their address family. Subroutines that connect
sockets either assign names or use unnamed sockets.

When a NULL pointer is passed to the Label parameter, then a normal multi-level port is created. However,
when a valid label is passed to the Label parameter, a port at the specified Sensitivity Level (SL) is created.
This means that only those incoming connections at the specified SL are able to connect. This also means
that multiple sockets can be bound to the same port at different SLs. It is possible to create a multi-level
port as well as several specific-level ports. If none of the specific SLs matches the incoming packet, then
the packet port is a default multi-level port.

Parameters
Item Description

Socket Specifies the socket descriptor of the socket to be bound. The socket descriptor is an
integer,

Name Points to an address structure that specifies the address to which the socket should be
bound. The /usr/include/sys/socket.h file defines the sockaddr address structure.
The sockaddr structure contains an identifier specific to the address format and
protocol provided in the socket subroutine.

NameLength Specifies the length of the socket address structure.

Label Specifies the Sensitivity Label associated with the socket.

Return Values
Item Description

Successful 0

Unsuccessful -1

Error Codes
The ebind subroutine is unsuccessful if any of the following errors occurs:

Technical Reference: Communication subroutines 89

Value Description

EACCES The requested address is protected, and the current user does not have
permission to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The specified address is not a valid address for the address family of the
specified socket.

EBADF The Socket parameter is not valid.

EDESTADDRREQ The address argument is a null pointer.

EFAULT The Address parameter is not in a writable part of the user address space.

EINVAL The socket is already bound to an address.

ENOBUF Insufficient buffer space available.

ENODEV The specified device does not exist.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The socket referenced by the Socket parameter does not support address
binding.

econnect Subroutine

Purpose
Connects two sockets. The econnect subroutine is similar to the connect subroutine with the addition
of the sec_labels_t pointer. The sec_labels_t pointer indicates the Sensitivity Level (SL) of the outgoing
connection request.

Library
Standard C Library (libc.a)

Syntax
#include <sys/socket.h>
#include <sys/mac.h>

int econnect (Socket, Name, NameLength, Label)
int Socket;
const struct sockaddr *Name;
socklen_t NameLength;
sec_labels_t *Label;

Description
The econnect subroutine requests a connection between two sockets, similar to the connect subroutine.
The kernel sets up the communication link between the sockets; both sockets must use the same address
format and protocol.

The SL specified by the Label parameter is the SL of the outgoing request. The requested SL must be
dominated by the current clearance or must have appropriate privileges to clear the MAC check.

90 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters
Item Description

Socket Specifies the unique name of the socket.

Name Specifies the address of the target socket that will form the other end of the
communication line.

NameLength Specifies the length of the address structure.

Label Specifies the SL of the outgoing connection request.

Return Values
Item Description

Successful 0

Unsuccessful -1

Error Codes
The econnect subroutine is unsuccessful if any of the following errors occurs:

Value Description

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EALREADY The socket is specified with O_NONBLOCK or O_NDLAY, and a previous
connection attempt has not yet completed.

EINTR The attempt to establish a connection was interrupted by delivery of a signal that
was caught; the connection will be established asynchronously.

EACCES Search permission was denied on a component of the path prefix or write access
to the named socket was denied.

ENOBUFS The system has run out of memory for an internal data structure.

EOPNOTSUPP The socket referenced by the Socket parameter does not support the econnect
subroutine.

EWOULDBLOCK The range allocated for TCP/UDP ephemeral ports has been exhausted.

EBADF The Socket parameter is not valid.

ECONNREFUSED The attempt to connect was rejected.

EFAULT The Address parameter is not in a writable part of the user address space.

EINPROGRESS The socket is marked as nonblocking. The connection cannot be immediately
completed. The application program can select the socket for writing during the
connection process.

EINVAL The specified path name contains a character with the high-order bit set.

EISCONN The socket is already connected.

ENETDOWN The specified physical network is down.

ENETUNREACH No route to the network or host is present.

ENOSPC There is no space left on a device or system table.

ENOTCONN The socket could not be connected.

Technical Reference: Communication subroutines 91

Value Description

ENOTSOCK The Socket parameter refers to a file, not a socket.

ETIMEDOUT The establishment of a connection times out before a connection is made.

EPERM The Trusted AIX MAC check failed.

endhostent Subroutine

Purpose
Closes the /etc/hosts file.

Library

Standard C Library (libc.a)
(libbind)
(libnis)
(liblocal)

Syntax

#include <netdb.h>
endhostent ()

Description
When using the endhostent subroutine in DNS/BIND name service resolution, endhostent closes the TCP
connection which the sethostent subroutine set up.

When using the endhostent subroutine in NIS name resolution or to search the /etc/hosts file,
endhostent closes the /etc/hosts file.

Note: If a previous sethostent subroutine is performed and the StayOpen parameter does not equal
0, the endhostent subroutine closes the /etc/hosts file. Run a second sethostent subroutine with the
StayOpen value equal to 0 in order for a following endhostent subroutine to succeed. Otherwise, the /etc/
hosts file closes on an exit subroutine call .

Files
Item Description

/etc/hosts Contains the host name database.

/etc/netsvc.conf Contains the name service ordering.

/usr/include/netdb.h Contains the network database structure.

Related reference
sethostent Subroutine
Related information
exit subroutine
Sockets Overview

endhostent_r Subroutine

Purpose
Closes the /etc/hosts file.

92 AIX Version 7.2: Technical Reference: Communication Subroutines

Library
Standard C Library (libc.a)
(libbind)
(libnis)
(liblocal)

Syntax
#include <netdb.h>

void endhostent_r (struct hostent_data *ht_data);

Description
When using the endhostent_r subroutine in DNS/BIND name service resolution, endhostent_r closes the
TCP connection which the sethostent_r subroutine set up.

When using the endhostent_r subroutine in NIS name resolution or to search the /etc/hosts file,
endhostent_r closes the /etc/hosts file.

Note: If a previous sethostent_r subroutine is performed and the StayOpen parameter does not equal 0,
then the endhostent_r subroutine closes the /etc/hosts file. Run a second sethostent_r subroutine with
the StayOpen value equal to 0 in order for a following endhostent_r subroutine to succeed. Otherwise,
the /etc/hosts file closes on an exit subroutine call .

Parameters
Item Description

ht_data Points to the hostent_data structure

Files
Item Description

/etc/hosts Contains the host name database.

/etc/netsvc.conf Contains the name service ordering.

/usr/include/netdb.h Contains the network database structure.

endnetent Subroutine

Purpose
Closes the /etc/networks file.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

void endnetent ()

Technical Reference: Communication subroutines 93

Description
The endnetent subroutine closes the /etc/networks file. Calls made to the getnetent, getnetbyaddr, or
getnetbyname subroutine open the /etc/networks file.

All applications containing the endnetent subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Return Values
If a previous setnetent subroutine has been performed and the StayOpen parameter does not equal 0,
then the endnetent subroutine will not close the /etc/networks file. Also, the setnetent subroutine does
not indicate that it closed the file. A second setnetent subroutine has to be issued with the StayOpen
parameter equal to 0 in order for a following endnetent subroutine to succeed. If this is not done,
the /etc/networks file must be closed with the exit subroutine.

Examples
To close the /etc/networks file, type:

endnetent();

Files
Item Description

/etc/networks Contains official network names.

Related reference
setnetent Subroutine
Related information
exit subroutine

endnetent_r Subroutine

Purpose
Closes the /etc/networks file.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>

void endnetent_r (net_data)
struct netent_data *net_data;

Description
The endnetent_r subroutine closes the /etc/networks file. Calls made to the getnetent_r,
getnetbyaddr_r, or getnetbyname_r subroutine open the /etc/networks file.

94 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters
Item Description

net_data Points to the netent_data structure.

Files
Item Description

/etc/networks Contains official network names.

endnetgrent_r Subroutine

Purpose
Handles the group network entries.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>
 void endnetgrent_r (void **ptr)

Description
The setnetgrent_r subroutine establishes the network group from which the getnetgrent_r subroutine
will obtain members, and also restarts calls to the getnetgrent_r subroutine from the beginnning of the
list. If the previous setnetgrent_r call was to a different network group, an endnetgrent_r call is implied.

The endnetgrent_r subroutine frees the space allocated during the getnetgrent_r calls.

Parameters
Item Description

ptr Keeps the function threadsafe.

Files
Item Description

/etc/netgroup Contains network groups recognized by the system.

/usr/include/netdb.h Contains the network database structures.

endprotoent Subroutine

Purpose
Closes the /etc/protocols file.

Library
Standard C Library (libc.a)

Technical Reference: Communication subroutines 95

Syntax
void endprotoent (void)

Description
The endprotoent subroutine closes the /etc/protocols file.

Calls made to the getprotoent subroutine, getprotobyname subroutine, or getprotobynumber
subroutine open the /etc/protocols file. An application program can use the endprotoent subroutine
to close the /etc/protocols file.

All applications containing the endprotoent subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Return Values
If a previous setprotoent subroutine has been performed and the StayOpen parameter does not equal 0,
the endprotoent subroutine will not close the /etc/protocols file. Also, the setprotoent subroutine does
not indicate that it closed the file. A second setprotoent subroutine has to be issued with the StayOpen
parameter equal to 0 in order for a following endprotoent subroutine to succeed. If this is not done,
the /etc/protocols file closes on an exit subroutine.

Examples
To close the /etc/protocols file, type:

endprotoent();

Files
Item Description

/etc/protocols Contains protocol names.

Related reference
setprotoent Subroutine
getprotobyname Subroutine
getprotobynumber Subroutine
getprotoent Subroutine
getservbyport Subroutine
getservent Subroutine
setservent Subroutine
Related information
exit subroutine
Sockets Overview
Understanding Network Address Translation

endprotoent_r Subroutine

Purpose
Closes the /etc/protocols file.

96 AIX Version 7.2: Technical Reference: Communication Subroutines

Library
Standard C Library (libc.a)

Syntax
void endprotoent_r(proto_data);
struct protoent_data *proto_data;

Description
The endprotoent_r subroutine closes the /etc/protocols file, which is opened by the calls made to the
getprotoent_r subroutine, getprotobyname_r subroutine, or getprotobynumber_r subroutine.

Parameters
Item Description

proto_data Points to the protoent_data structure

Files
Item Description

/etc/protocols Contains protocol names.

endservent Subroutine

Purpose
Closes the /etc/services file.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

void endservent ()

Description
The endservent subroutine closes the /etc/services file. A call made to the getservent subroutine,
getservbyname subroutine, or getservbyport subroutine opens the /etc/services file. An application
program can use the endservent subroutine to close the /etc/services file.

All applications containing the endservent subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Return Values
If a previous setservent subroutine has been performed and the StayOpen parameter does not equal
0, then the endservent subroutine will not close the /etc/services file. Also, the setservent subroutine
does not indicate that it closed the file. A second setservent subroutine has to be issued with the

Technical Reference: Communication subroutines 97

StayOpen parameter equal to 0 in order for a following endservent subroutine to succeed. If this is not
done, the /etc/services file closes on an exit subroutine.

Examples
To close the /etc/services file, type:

endservent ();

Files
Item Description

/etc/services Contains service names.

Related reference
getservbyname Subroutine
getservbyport Subroutine
Related information
exit subroutine
Sockets Overview

endservent_r Subroutine

Purpose
Closes the /etc/services file.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>
void endservent_r(serv_data)
struct servent_data *serv_data;

Description
The endservent_r subroutine closes the /etc/services file, which is opend by a call made to the
getservent_r subroutine, getservbyname_r subroutine, or getservbyport_r subroutine opens the /etc/
services file.

Parameters
Item Description

serv_data Points to the servent_data structure

Examples
To close the /etc/services file, type:

endservent_r(serv_data);

98 AIX Version 7.2: Technical Reference: Communication Subroutines

Files
Item Description

/etc/services Contains service names.

erecv, erecvmsg, erecvfrom, enrecvmsg, or enrecvfrom Subroutine

Purpose
Allows applications to receive messages from sockets along with the Sensitivity Level (SL).

Library
The libraries that are available in the erecv subroutines are:

1. Standard C Library (libc.a)
2. Trusted AIX Sensitivity Label Library (libmls.a)

Syntax
#include <sys/socket.h>
#include <sys/mac.h>

int erecv (Socket, Buffer, Length, Flags, Label)
int Socket;
void * Buffer;
size_t Length;
int Flags;
sec_labels_t *Label;

int erecvmsg (Socket, Message, Flags, Label)
int Socket;
struct msghdr Message [];
int Flags;
sec_labels_t *Label;

ssize_t erecvfrom (Socket, Buffer, Length, Flags, From, FromLength, Label)
int Socket;
void * Buffer;
size_t Length,
int Flags;
struct sockaddr * From;
socklen_t * FromLength;
sec_labels_t *Label;

int enrecvmsg (Socket, Message, Flags, Label)
int Socket;
struct msghdr Message [];
int Flags;
sec_labels_t *Label;

ssize_t enrecvfrom (Socket, Buffer, Length, Flags, From, FromLength, Label)
int Socket;
void *Buffer;
size_t Length;
int Flags;
struct sockaddr *From;
socklen_t *FromLength;
sec_labels_t *Label;

Description
The erecv, erecvmsg, erecvfrom, enrecvmsg, and enrecvfrom subroutines work exactly like the
recv, recvmsg, recvfrom, nrecvmsg, and nrecvfrom subroutines respectively, except that the erecv,
erecvmsg, erecvfrom, enrecvmsg, and enrecvfrom subroutines allow the application to retrieve the SL
from the received data by providing a valid Label parameter.

Technical Reference: Communication subroutines 99

If no messages are available at the socket, the erecv, erecvmsg, erecvfrom, enrecvmsg, and enrecvfrom
subroutines wait for a message to arrive, unless the socket is nonblocking. If a socket is nonblocking, the
system returns an error.

Parameters
Item Description

Socket Specifies the socket descriptor.

Buffer Specifies the address where the message is placed.

Length Specifies the size of the Buffer parameter.

Flags Points to a value controlling the message reception. The /usr/include/sys/
socket.h file defines the Flags parameter. The argument to receive a call is
formed by the logical OR operation with one or more of the following values:
MSG_OOB

Processes out-of-band data. The significance of out-of-band data is protocol
dependent.

MSG_PEEK
Peeks at incoming data. The data continues to be treated as unread and will
be read by the next call to the erecv, erecvmsg, erecvfrom, enrecvmsg, or
enrecvfrom subroutine or a similar subroutine.

MSG_WAITALL
Requests that the subroutine does not return until the requested number of
bytes are read. The subroutine can return fewer bytes than the requested
number if a signal is caught, the connection is terminated, or an error is
pending for the socket. The subroutine can also return fewer bytes when the
SL information across the data stream is different. Only those bytes that have
the same SL information are returned to the user.

Message Points to the address of the msghdr structure, which contains both the address
for the incoming message and the space for the sender address.

From Points to a socket structure, containing the address of the source.

FromLength Specifies the length of the address of the sender or of the source.

Label Specifies a result parameter that contains the SL from the received data.

Return Values
Upon successful completion, the subroutines return the length of the message in bytes.

When an error occurs, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Returns a value of 0 if the connection disconnects (in case of connected sockets).
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
The erecv, erecvmsg, erecvfrom,enrecvmsg, or enrecvfrom subroutine is unsuccessful if any of the
following errors occurs:

Item Description

EBADF The Socket parameter is not valid.

ECONNRESET The remote peer forced the connection to be closed.

100 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

EFAULT The data was directed into a nonexistent or protected part of the process
address space. (The Buffer parameter is not valid.)

EINTR A signal interrupted the erecv, erecvmsg, erecvfrom, enrecvmsg, or
enrecvfrom subroutine before any data is available.

EINVAL The MSG_OOB value was set and no out-of-band data was available.

ENOBUF Insufficient resources are available in the system to perform the operation.

ENOTCONN A receiving operation was attempted on a SOCK_STREAM socket that was not
connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The MSG_OOB value is set for a SOCK_DGRAM socket or any AF_UNIX socket.

ETIMEDOUT The connection timed out during connection establishment, or there was a
transmission timeout on an active connection.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be
accepted.

EACCES The MLS MAC check failed.

esend, esendto, or esendmsg Subroutine

Purpose
Allows an application to send messages on a socket with the Sensitivity Level (SL) different from that of its
own.

Library
Standard C Library (libc.a)Trusted AIX Sensitivity Label Library (libmls.a)

Syntax
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/mac.h>
#include <sys/socket.h>

int esend (Socket, Message, Length, Flags, Label)
int Socket;
const void * Message;
size_t Length;
int Flags;
sec_labels_t *Label;

int esendmsg (Socket, Message, Flags, Label)
int Socket;
const struct msghdr Message [];
int Flags;
sec_labels_t *Label;

int esendto (Socket, Message, Length, Flags, To, ToLength, Label)
int Socket;
const void * Message;
size_t Length;
int Flags;
const struct sockaddr * To;
socklen_t ToLength;
sec_labels_t *Label;

Technical Reference: Communication subroutines 101

Description
The esend, esendmsg, and esendto subroutines work exactly like send, sendmsg and sendto
subroutines respectively, except that the esend, esendmsg, and esendto subroutines allow applications
to associate a Sensitivity Level different from their own to the outgoing data through the Label parameter.

The esend subroutine can be used on connected sockets only. The esendto and esendmsg subroutines
can be used with connected or unconnected sockets.

For SOCK_STREAM socket types, when the SL is changed between subsequent send operations, the
application is blocked until the pending data on the socket buffer can be flushed. If the socket is marked
as nonblocking type and there is pending data on the socket buffer, an error is returned.

Parameters
Item Description

Socket Specifies a unique name for the socket.

Message Points to the address of the message or the msghdr structure containing the
message to send.

Length Specifies the length of the message in bytes.

Flags Allows the sender to control the transmission of the message.
MSG_OOB

Processes out-of-band data on sockets that support SOCK_STREAM
communication.

MSG_DONTROUTE
Sends without using routing tables.

MSG_MPEG2
Indicates that this block is a MPEG2 block. This value is valid
SOCK_CONN_DGRAM socket types only.

To Specifies the destination address for the message. The destination address is a
sockaddr structure defined in the /usr/include/sys/socket.h file.

ToLength Specifies the size of the destination address.

Label Specifies the SL to be used on the outgoing data.

Return Values
Upon successful completion, the esend, esendmsg, or esendto subroutine returns the number of
characters sent.

If errors occur, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
The esend, esendmsg, or esendto subroutine is unsuccessful if any of the following errors occurs:

Error Description

EACCES Write access to the named socket is denied, or the socket trying to send a broadcast
packet does not have broadcast capability, or the MLS MAC check failed.

EADDRNOTAVAI
L

The specified address is not valid.

102 AIX Version 7.2: Technical Reference: Communication Subroutines

Error Description

EAFNOSUPPORT The specified address is not a valid address for the address family of this socket.

EBADF The Socket parameter is not valid.

ECONNRESET A connection was forcibly closed by a peer.

EDESTADDRREQ The socket is not in connection mode and no peer address is set.

EFAULT The Address parameter is not in a writable part of the user address space.

EHOSTUNREACH The destination host cannot be reached.

EINTR A signal interrupted the esend, esendmsg, or esendto subroutine before any data
was transmitted.

EINVAL The Length parameter is not valid.

EISCONN A SOCK_DGRAM socket is already connected.

EMSGSIZE The message is too large to be sent all at once, as the socket requires.

ENETUNREACH The destination network is not reachable.

ENOBUFS Insufficient resources were available in the system to perform the operation.

ENOENT The path name does not contain an existing file, or the path name is an empty string.

ENOMEM The available data space in memory is not large enough to hold group or ACL
information.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The Socket parameter is associated with a socket that does not support one or more
of the values set in the Flags parameter.

EPIPE An attempt was made to send on a socket that was connected, but the connection
was shut down either by the remote peer or by this side of the connection. If the
socket is of type SOCK_STREAM, the SIGPIPE signal is generated for the calling
process.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.
Or a sending operation was attempted with different SLs while there was pending
data on the socket buffer, and the socket was marked nonblocking

ether_ntoa, ether_aton, ether_ntohost, ether_hostton, or ether_line
Subroutine

Purpose
Maps 48-bit Ethernet numbers.

Library
Standard C Library (libc.a)

Syntax

#include <arap/inet.h>

char *ether_ntoa (EthernetNumber)
struct ether_addr * EthernetNumber;

struct ether_addr *ether_aton(String);
char *string

Technical Reference: Communication subroutines 103

int *ether_ntohost (HostName, EthernetNumber)
char * HostName;
struct ether_addr *EthernetNumber;

int *ether_hostton (HostName, EthernetNumber)
char *HostName;
struct ether_addr *EthernetNumber;

int *ether_line (Line, EthernetNumber, HostName)
char * Line, *HostName;
struct ether_addr *EthernetNumber;

Description
Attention: Do not use the ether_ntoa or ether_aton subroutine in a multithreaded
environment.

The ether_ntoa subroutine maps a 48-bit Ethernet number pointed to by the EthernetNumber parameter
to its standard ASCII representation. The subroutine returns a pointer to the ASCII string. The
representation is in the form x:x:x:x:x:x: where x is a hexadecimal number between 0 and ff. The
ether_aton subroutine converts the ASCII string pointed to by the String parameter to a 48-bit Ethernet
number. This subroutine returns a null value if the string cannot be scanned correctly.

The ether_ntohost subroutine maps a 48-bit Ethernet number pointed to by the EthernetNumber
parameter to its associated host name. The string pointed to by the HostName parameter must be
long enough to hold the host name and a null character. The ether_hostton subroutine maps the host
name string pointed to by the HostName parameter to its corresponding 48-bit Ethernet number. This
subroutine modifies the Ethernet number pointed to by the EthernetNumber parameter.

The ether_line subroutine scans the line pointed to by line and sets the hostname pointed to by the
HostName parameter and the Ethernet number pointed to by the EthernetNumber parameter to the
information parsed from LINE.

Parameters

Item Description

EthernetNumber Points to an Ethernet number.

String Points to an ASCII string.

HostName Points to a host name.

Line Points to a line.

Return Values

Item Description

0 Indicates that the subroutine was successful.

non-zero Indicates that the subroutine was not successful.

Files

Item Description

/etc/ethers Contains information about the known (48-bit) Ethernet addresses of hosts on the
Internet.

Related information
Subroutines Overview

104 AIX Version 7.2: Technical Reference: Communication Subroutines

List of Multithread Subroutines

f
AIX runtime services beginning with the letter f.

FrcaCacheCreate Subroutine

Purpose
Creates a cache instance within the scope of a Fast Response Cache Accelerator (FRCA) instance.

Library
FRCA Library (libfrca.a)

Syntax
#include <frca.h>
int32_t FrcaCacheCreate (CacheHandle, FrcaHandle, CacheSpec);
int32_t * CacheHandle;
int32_t FrcaHandle;
frca_cache_create_t * CacheSpec;

Description
The FrcaCacheCreate subroutine creates a cache instance for an FRCA instance that has already been
configured. Multiple caches can be created for an FRCA instance. Cache handles are unique only within
the scope of the FRCA instance.

Parameters

Item Description

CacheHandle Returns a handle that is required by the other cache-related subroutines of the FRCA
API to refer to the newly created FRCA cache instance.

FrcaHandle Identifies the FRCA instance for which the cache is created.

CacheSpec Points to a frca_ctrl_create_t structure, which specifies the characteristics of the
cache to be created. The structure contains the following members:

uint32_t cacheType;
uint32_t nMaxEntries;

Note: Structure members do not necessarily appear in this order.

cacheType
Specifies the type of the cache instance. This field must be set to
FCTRL_SERVERTYPE_HTTP.

nMaxEntries
Specifies the maximum number of entries allowed for the cache instance.

Return Values

Item Description

0 The subroutine completed successfully.

Technical Reference: Communication subroutines 105

Item Description

-1 The subroutine failed. The global variable errno is
set to indicate the specific type of error.

Error Codes

Item Description

EINVAL The CacheHandle or the CacheSpec parameter is
zero or the CacheSpec parameter is not of the
correct type FCTRL_CACHETYPE_HTTP.

EFAULT The CacheHandle or the CacheSpec point to an
invalid address.

ENOENT The FrcaHandle parameter is invalid.

FrcaCacheDelete Subroutine

Purpose
Deletes a cache instance within the scope of a Fast Response Cache Accelerator (FRCA) instance.

Library
FRCA Library (libfrca.a)

Syntax
#include <frca.h>
int32_t FrcaCacheDelete (CacheHandle, FrcaHandle);
int32_t CacheHandle;
int32_t FrcaHandle;

Description
The FrcaCacheDelete subroutine deletes a cache instance and releases any associated resources.

Parameters

Item Description

CacheHandle Identifies the cache instance that is to be deleted.

FrcaHandle Identifies the FRCA instance to which the cache instance belongs.

Return Values

Item Description

0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is
set to indicate the specific type of error.

106 AIX Version 7.2: Technical Reference: Communication Subroutines

Error Codes

Item Description

ENOENT The CacheHandle or the FrcaHandle parameter is invalid.

FrcaCacheLoadFile Subroutine

Purpose
Loads a file into a cache associated with a Fast Response Cache Accelerator (FRCA) instance.

Library
FRCA Library (libfrca.a)

Syntax
#include <frca.h>
int32_t FrcaCacheLoadFile (CacheHandle, FrcaHandle, FileSpec, AssocData);
int32_t CacheHandle;
int32_t FrcaHandle;
frca_filespec_t * FileSpec;
frca_assocdata_t * AssocData;

Description
The FrcaCacheLoadFile subroutine loads a file into an existing cache instance for an previously
configured FRCA instance.

Parameters

Item Description

CacheHandle Identifies the cache instance to which the new entry should be added.

FrcaHandle Identifies the FRCA instance to which the cache instance belongs.

Technical Reference: Communication subroutines 107

Item Description

FileSpec Points to a frca_loadfile_t structure, which specifies characteristics used to identify
the cache entry that is to be loaded into the given cache. The structure contains the
following members:

uint32_t cacheEntryType;
char * fileName;
char * virtualHost;
char * searchKey;

Note: Structure members do not necessarily appear in this order.

cacheEntryType
Specifies the type of the cache entry. This field must be set to
FCTRL_CET_HTTPFILE.

fileName
Specifies the absolute path to the file that is providing the contents for the new
cache entry.

virtualHost
Specifies a virtual host name that is being served by the FRCA instance.

searchKey
Specifies the key that the cache entry can be found under by the FRCA instance
when it processes an intercepted request. For the HTTP GET engine, the search
key is identical to the abs_path part of the HTTP URL according to section
3.2.2 of RFC 2616. For example, the search key corresponding to the URL http://
www.mydomain/welcome.html is /welcome.html.

Note: If a cache entry with the same type, file name, virtual host, and search
key already exists and the file has not been modified since the existing entry was
created, the load request succeeds without any effect. If the entry exists and the
file's contents have been modified since being loaded into the cache, the cache entry
is updated. If the entry exists and the file's contents have not changed, but any of the
settings of the HTTP header fields change, the existing entry must be unloaded first.

108 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

AssocData Points to a frca_assocdata_t structure, which specifies additional information to be
associated with the contents of the given cache entry. The structure contains the
following members:

uint32_t assocDataType;
char * cacheControl;
char * contentType;
char * contentEncoding;
char * contentLanguage;
char * contentCharset;

Note: Structure members do not necessarily appear in this order.

assocDataType
Specifies the type of data that is associated with the given cache entry.

cacheControl
Specifies the settings of the corresponding HTTP header field according to RFC
2616.

contentType
Specifies the settings of the corresponding HTTP header field according to RFC
2616.

contentEncoding
Specifies the settings of the corresponding HTTP header field according to RFC
2616.

contentLanguage
Specifies the settings of the corresponding HTTP header field according to RFC
2616.

contentCharset
Specifies the settings of the corresponding HTTP header field according to RFC
2616.

Return Values

Item Description

0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is
set to indicate the specific type of error.

Error Codes

Item Description

EINVAL The FileSpec or the AssocData parameter is zero or
are not of the correct type or any of the fileName
or the searchKey components are zero or the size of
the file is zero.

EFAULT The FileSpec or the AssocData parameter or one of
their components points to an invalid address.

ENOMEM The FRCA or NBC subsystem is out of memory.

EFBIG The content of the cache entry failed to load
into the NBC. Check network options nbc_limit,
nbc_min_cache, and nbc_max_cache.

Technical Reference: Communication subroutines 109

Item Description

ENOTREADY The kernel extension is currently being loaded or
unloaded.

ENOENT The CacheHandle or the FrcaHandle parameter is
invalid.

FrcaCacheUnloadFile Subroutine

Purpose
Removes a cache entry from a cache that is associated with a Fast Response Cache Accelerator (FRCA)
instance.

Library
FRCA Library (libfrca.a)

Syntax
#include <frca.h>
int32_t FrcaCacheUnoadFile (CacheHandle, FrcaHandle, FileSpec);
int32_t CacheHandle;
int32_t FrcaHandle;
frca_filespec_t * FileSpec;

Description
The FrcaCacheUnoadFile subroutine removes a cache entry from an existing cache instance for an
previously configured FRCA instance.

Parameters

Item Description

CacheHandle Identifies the cache instance from which the entry should be removed.

FrcaHandle Identifies the FRCA instance to which the cache instance belongs.

110 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

FileSpec Points to a frca_loadfile_t structure, which specifies characteristics used to identify
the cache entry that is to be removed from the given cache. The structure contains
the following members:

uint32_t cacheEntryType;
char * fileName;
char * virtualHost;
char * searchKey;

Note: Structure members do not necessarily appear in this order.

cacheEntryType
Specifies the type of the cache entry. This field must be set to
FCTRL_CET_HTTPFILE.

fileName
Specifies the absolute path to the file that is to be removed from the cache.

virtualHost
Specifies a virtual host name that is being served by the FRCA instance.

searchKey
Specifies the key under which the cache entry can be found.

Note: The FrcaCacheUnoadFile subroutine succeeds if a cache entry with the same type, file name,
virtual host, and search key does not exist. This subroutine fails if the file associated with fileName does
not exist or if the calling process does not have sufficient access permissions.

Return Values

Item Description

0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is
set to indicate the specific type of error.

Error Codes

Item Description

EINVAL The FileSpec parameter is zero or the
cacheEntryType component is not set to
FCTRL_CET_HTTPFILE or the searchKey
component is zero or the fileName is '/' or the
fileName is not an absolute path.

EFAULT The FileSpec parameter or one of the components
points to an invalid address.

EACCES Access permission is denied on the fileName.

FrcaCtrlCreate Subroutine

Purpose
Creates a Fast Response Cache Accelerator (FRCA) control instance.

Technical Reference: Communication subroutines 111

Library
FRCA Library (libfrca.a)

Syntax
#include <frca.h>
int32_t FrcaCtrlCreate (FrcaHandle, InstanceSpec);
int32_t * FrcaHandle;
frca_ctrl_create_t * InstanceSpec;

Description
The FrcaCtrlCreate subroutine creates and configures an FRCA instance that is associated with a
previously configured TCP listen socket. TCP connections derived from the TCP listen socket are
intercepted by the FRCA instance and, if applicable, adequate responses are generated by the in-kernel
code on behalf of the user-level application.

The only FRCA instance type that is currently supported handles static GET requests as part of the
Hypertext Transfer Protocol (HTTP).

Parameters

Item Description

FrcaHandle Returns a handle that is required by the other FRCA API subroutines to refer to the newly
configured FRCA instance.

112 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

InstanceSpec Points to a frca_ctrl_create_t structure, which specifies the parameters used to
configure the newly created FRCA instance. The structure contains the following
members:

uint32_t serverType;
char * serverName;
uint32_t nListenSockets;
uint32_t * ListenSockets;
uint32_t flags;
uint32_t nMaxConnections;
uint32_t nLogBufs;
char * logFile;

Note: Structure members do not necessarily appear in this order.

serverType
Specifies the type for the FRCA instance. This field must be set to
FCTRL_SERVERTYPE_HTTP.

serverName
Specifies the value to which the HTTP header field is set.

nListenSocket
Specifies the number of listen socket descriptors pointed to by listenSockets.

listenSocket
Specifies the TCP listen socket that the FRCA instance should be configured to
intercept.

Note: The TCP listen socket must exist and the SO_KERNACCEPT socket option must
be set at the time of calling the FrcaCtrlCreate subroutine.

flags
Specifies the logging format, the initial state of the logging subsystem, and whether
responses generated by the FRCA instance should include the Server: HTTP header
field. The valid flags are as follows:
FCTRL_KEEPALIVE
FCTRL_LOGFORMAT
FCTRL_LOGFORMAT_ECLF
FCTRL_LOGFORMAT_VHOST
FCTRL_LOGMODE
FCTRL_LOGMODE_ON
FCTRL_SENDSERVERHEADER

nMaxConnections
Specifies the maximum number of intercepted connections that are allowed at any
given point in time.

nLogBufs
Specifies the number of preallocated logging buffers used for logging information
about HTTP GET requests that have been served successfully.

Technical Reference: Communication subroutines 113

Item Description

logFile
Specifies the absolute path to a file used for appending logging information. The
HTTP GET engine uses logFile as a base name and appends a sequence number to
it to generate the actual file name. Whenever the size of the current log file exceeds
the threshold of approximately 1 gigabyte, the sequence number is incremented by 1
and the logging subsystem starts appending to the new log file.

Note: The FRCA instance creates the log file, but not the path to it. If the path does
not exist or is not accessible, the FRCA instance reverts to the default log file /tmp/
frca.log.

Return Values

Item Description

0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is
set to indicate the specific type of error.

Error Codes

Item Description

EINVAL The FrcaHandle or the InstanceSpec parameter
is zero or is not of the correct type or the
listenSockets components do not specify any
socket descriptors.

EFAULT The FrcaHandle or the InstanceSpec or a
component of the InstanceSpec points to an invalid
address.

ENOTREADY The kernel extension is currently being loaded or
unloaded.

ENOTSOCK A TCP listen socket does not exist.

FrcaCtrlDelete Subroutine

Purpose
Deletes a Fast Response Cache Accelerator (FRCA) control instance.

Library
FRCA Library (libfrca.a)

Syntax
#include <frca.h>
int32_t FrcaCtrlDelete (FrcaHandle);
int32_t * FrcaHandle;

Description
The FrcaCtrlDelete subroutine deletes an FRCA instance and releases any associated resources.

114 AIX Version 7.2: Technical Reference: Communication Subroutines

The only FRCA instance type that is currently supported handles static GET requests as part of the
Hypertext Transfer Protocol (HTTP).

Parameters

Item Description

FrcaHandle Identifies the FRCA instance on which this operation is performed.

Return Values

Item Description

0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is
set to indicate the specific type of error.

Error Codes

Item Description

ENOENT The FrcaHandle parameter is invalid.

ENOTREADY The FRCA control instance is in an undefined state.

FrcaCtrlLog Subroutine

Purpose
Modifies the behavior of the logging subsystem.

Library
FRCA Library (libfrca.a)

Syntax
#include <frca.h>
int32_t FrcaCtrlLog (FrcaHandle, Flags);
int32_t FrcaHandle;
uint32_t Flags;

Description
The FrcaCtrlLog subroutine modifies the behavior of the logging subsystem for the Fast Response Cache
Accelerator (FRCA) instance specified. Modifiable attributes are the logging mode, which can be turned
on or off, and the logging format, which defaults to the HTTP Common Log Format (CLF). The logging
format can be changed to Extended Common Log Format (ECLF) and can be set to include virtual host
information.

The only FRCA instance type that is currently supported handles static GET requests as part of the
Hypertext Transfer Protocol (HTTP).

Technical Reference: Communication subroutines 115

Parameters

Item Description

FrcaHandle Returns a handle that is required by the other FRCA API subroutines to refer to the
newly configured FRCA instance.

Flags Specifies the behavior of the logging subsystem. The parameter value is constructed
by logically ORing single flags. The valid flags are as follows:
FCTRL_LOGFORMAT
FCTRL_LOGFORMAT_ECLF
FCTRL_LOGFORMAT_VHOST
FCTRL_LOGMODE
FCTRL_LOGMODE_ON

Return Values

Item Description

0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is
set to indicate the specific type of error.

Error Codes

Item Description

ENOTREAD
Y

The kernel extension is currently being loaded or unloaded.

FrcaCtrlStart Subroutine

Purpose
Starts the interception of TCP data connections for a previously configured Fast Response Cache
Accelerator (FRCA) instance.

Library
FRCA Library (libfrca.a)

Syntax
#include <frca.h>
int32_t FrcaCtrlStart (FrcaHandle);
int32_t * FrcaHandle;

Description
The FrcaCtrlStart subroutine starts the interception of TCP data connections for an FRCA instance. If the
FRCA instance cannot handle the data on that connection, it passes the data to the user-level application
that has established the listen socket.

The only FRCA instance type that is currently supported handles static GET requests as part of the
Hypertext Transfer Protocol (HTTP).

116 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

FrcaHandle Identifies the FRCA instance on which this operation is performed.

Return Values

Item Description

0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is
set to indicate the specific type of error.

Error Codes

Item Description

ENOENT The FrcaHandle parameter is invalid.

ENOTREADY The FRCA control instance is in an undefined state.

ENOTSOCK A TCP listen socket that was passed in with the
FrcaCtrlCreate cannot be intercepted because it
does not exist.

FrcaCtrlStop Subroutine

Purpose
Stops the interception of TCP data connections for a Fast Response Cache Accelerator (FRCA) instance.

Library
FRCA Library (libfrca.a)

Syntax
#include <frca.h>
int32_t FrcaCtrlStop (FrcaHandle);
int32_t * FrcaHandle;

Description
The FrcaCtrlStop subroutine stops the interception of newly arriving TCP data connections for a
previously configured FRCA instance. Connection requests are passed to the user-level application that
has established the listen socket.

The only FRCA instance type that is currently supported handles static GET requests as part of the
Hypertext Transfer Protocol (HTTP).

Parameters

Item Description

FrcaHandle Identifies the FRCA instance on which this operation is performed.

Technical Reference: Communication subroutines 117

Return Values

Item Description

0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is
set to indicate the specific type of error.

Error Codes

Item Description

ENOENT The FrcaHandle parameter is invalid.

ENOTREADY The FRCA control instance has not been started yet.

freeaddrinfo Subroutine

Purpose
Frees memory allocated by the “getaddrinfo Subroutine” on page 118.

Library
The Standard C Library (<libc.a>)

Syntax
#include <sys/socket.h>
#include <netdb.h>
void freeaddrinfo (struct addrinfo *ai)

Description
The freeaddrinfo subroutine frees one or more addrinfo structures returned by the getaddrinfo
subroutine, along with any additional storage associated with those structures. If the ai_next field of
the structure is not NULL, the entire list of structures is freed.

Parameters
Item Description

ai Points to dynamic storage allocated by the getaddrinfo subroutine

Related information
gai_strerror Subroutine

g
AIX runtime services beginning with the letter g.

getaddrinfo Subroutine

Purpose
Protocol-independent hostname-to-address translation.

118 AIX Version 7.2: Technical Reference: Communication Subroutines

Library
Library (libc.a)

Syntax

#include <sys/socket.h>
#include <netdb.h>
int getaddrinfo (hostname, servname, hints, res)
const char *hostname;
const char *servname;
const struct addrinfo *hints;
struct addrinfo **res;

Description
The hostname and servname parameters describe the hostname and/or service name to be referenced.
Zero or one of these arguments may be NULL. A non-NULL hostname may be either a hostname or a
numeric host address string (a dotted-decimal for IPv4 or hex for IPv6). A non-NULL servname may be
either a service name or a decimal port number.

The hints parameter specifies hints concerning the desired return information. The hostname and
servname parameters are pointers to null-terminated strings or NULL. One or both of these arguments
must be a non-NULL pointer. In a normal client scenario, both the hostname and servname parameters
are specified. In the normal server scenario, only the servname parameter is specified. A non-NULL
hostname string can be either a host name or a numeric host address string (for example, a dotted-
decimal IPv4 address or an IPv6 hex address). A non-NULL servname string can be either a service name
or a decimal port number.

The caller can optionally pass an addrinfo structure, pointed to by the hints parameter, to provide hints
concerning the type of socket that the caller supports. In this hints structure, all members other than
ai_flags, ai_eflags ai_family, ai_socktype, and ai_protocol must be zero or a NULL pointer. A value of
PF_UNSPEC for ai_family means the caller will accept any protocol family. A value of zero for ai_socktype
means the caller accepts any socket type. A value of zero for ai_protocol means the caller accepts any
protocol. For example, if the caller handles only TCP and not UDP, the ai_socktype member of the hints
structure should be set to SOCK_STREAM when the getaddrinfo subroutine is called. If the caller handles
only IPv4 and not IPv6, the ai_family member of the hints structure should be set to PF_INET when
getaddrinfo is called. If the hints parameter in getaddrinfo is a NULL pointer, it is the same as if the caller
fills in an addrinfo structure initialized to zero with ai_family set to PF_UNSPEC.

Upon successful return, a pointer to a linked list of one or more addrinfo structures is returned through
the res parameter. The caller can process each addrinfo structure in this list by following the ai_next
pointer, until a NULL pointer is encountered. In each returned addrinfo structure the three members
ai_family, ai_socktype, and ai_protocol are the corresponding arguments for a call to the socket
subroutine. In each addrinfo structure, the ai_addr member points to a filled-in socket address structure
whose length is specified by the ai_addrlen member.

If the AI_PASSIVE bit is set in the ai_flags member of the hints structure, the caller plans to use the
returned socket address structure in a call to the bind subroutine. If the hostname parameter is a NULL
pointer, the IP address portion of the socket address structure will be set to INADDR_ANY for an IPv4
address or IN6ADDR_ANY_INIT for an IPv6 address.

If the AI_PASSIVE bit is not set in the ai_flags member of the hints structure, the returned socket address
structure is ready for a call to the connect subroutine (for a connection-oriented protocol) or the connect,
sendto, or sendmsg subroutine (for a connectionless protocol). If the hostname parameter is a NULL
pointer, the IP address portion of the socket address structure is set to the loopback address.

If the AI_CANONNAME bit is set in the ai_flags member of the hints structure, upon successful return the
ai_canonname member of the first addrinfo structure in the linked list points to a NULL-terminated string
containing the canonical name of the specified hostname.

Technical Reference: Communication subroutines 119

If the AI_NUMERICHOST flag is specified, a non-NULL nodename string supplied is a numeric host
address string. Otherwise, an (EAI_NONAME) error is returned. This flag prevents any type of name
resolution service (such as, DNS) from being invoked.

If the AI_NUMERICSERV flag is specified, a non-NULL servname string supplied is a numeric port string.
Otherwise, an (EAI_NONAME) error is returned. This flag prevents any type of name resolution service
from being invoked.

If the AI_V4MAPPED flag is specified along with an ai_family value of AF_INET6, the getaddrinfo
subroutine returns IPv4-mapped IPv6 addresses when no matching IPv6 addresses (ai_addrlen is 16)
are found. For example, when using DNS, if no AAAA or A6 records are found, a query is made for A
records. Any found are returned as IPv4-mapped IPv6 addresses. The AI_V4MAPPED flag is ignored
unless ai_family equals AF_INET6.

If the AI_ALL flag is used with the AI_V4MAPPED flag, the getaddrinfo subroutine returns all matching
IPv6 and IPv4 addresses. For example, when using DNS, a query is first made for AAAA/A6 records.
If successful, those IPv6 addresses are returned. Another query is made for A records, and any
IPv4 addresses found are returned as IPv4-mapped IPv6 addresses. The AI_ALL flag without the
AI_V4MAPPED flag is ignored.

Note: When ai_family is not specified (AF_UNSPEC), AI_V4MAPPED and AI_ALL flags are used if
AF_INET6 is supported.

If the AI_EXTFLAGS is specified in the ai_flags member of the hints structure and ai_eflags is specified
as a non zero value, the address selection algorithm is affected. The address selection algorithm orders
the list of returned addrinfo structures using a set of ordered rules (RFC 3484) taking into account the
address contained in the ai_addr member of each addrinfo structure and the source addresses from
which this address can be reached. The ai_eflags expresses preferences meaning that the rules described
below will be applied if a higher rule has not ordered the set of addresses before.

The ai_eflags can be set to a combination of the following flags:

• IPV6_PREFER_SRC_HOME: prefer addresses reachable from a Home source address
• IPV6_PREFER_SRC_COA: prefer addresses reachable from a Care-of source address
• IPV6_PREFER_SRC_TMP: prefer addresses reachable from a temporary address
• IPV6_PREFER_SRC_PUBLIC: the prefer addresses reachable from a public source address
• IPV6_PREFER_SRC_CGA: the prefer addresses reachable from a Cryptographically Generated Address

(CGA) source address
• IPV6_PREFER_SRC_NONCGA: the prefer addresses reachable from a non-CGA source address

For instance, the IPV6_PREFER_SRC_TMP ai_eflags means that the address selection algorithm will order
the returned addrinfo structures with addresses reachable from a temporary address before the ones
with addresses reachable from a public address whenever possible. Setting contradictory flags (e.g.
IPV6_PREFER_SRC_TMP and IPV6_PREFER_SRC_PUBLIC) at the same time results in the error EINVAL.

If the AI_ADDRCONFIG flag is specified, a query for AAAA or A6 records should occur only if the node has
at least one IPv6 source address configured. A query for A records should occur only if the node has at
least one IPv4 source address configured. The loopback address is not considered valid as a configured
source address.

All of the information returned by the getaddrinfo subroutine is dynamically allocated: the addrinfo
structures, the socket address structures, and canonical host name strings pointed to by the addrinfo
structures. To return this information to the system, freeaddrinfo subroutine is called.

The addrinfo structure is defined as:

struct addrinfo {
 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
 int ai_family; /* PF_xxx */
 int ai_socktype; /* SOCK_xxx */
 int ai_protocol; /* 0 or IP=PROTO_xxx for IPv4 and IPv6 */
 size_t ai_addrlen; /* length of ai_addr */
 char *ai_canonname; /* canoncial name for hostname */
 struct sockaddr *ai_addr; /* binary address */

120 AIX Version 7.2: Technical Reference: Communication Subroutines

 struct addrinfo *ai_next; /* next structure in linked list */
 int ai_eflags; /* Extended flags for special usage */
}

Return Values
If the query is successful, a pointer to a linked list of one or more addrinfo structures is returned via the
res parameter. A zero return value indicates success. If the query fails, a non-zero error code is returned.

Error Codes
The following names are the non-zero error codes. See netdb.h for further definition.

Item Description

EAI_ADDRFAMILY Address family for hostname not supported

EAI_AGAIN Temporary failure in name resolution

EAI_BADFLAGS Invalid value for ai_flags

EAI_FAIL Non-recoverable failure in name resolution

EAI_FAMILY ai_family not supported

EAI_MEMORY Memory allocation failure

EAI_NODATA No address associated with hostname

EAI_NONAME No hostname nor servname provided, or not known

EAI_SERVICE servname not supported for ai_socktype

EAI_SOCKTYPE ai_socktype not supported

EAI_SYSTEM System error returned in errno

EAI_BADEXTFLAGS Invalid value for ai_eflags.

Related information
gai_strerror Subroutine

get_auth_method Subroutine

Purpose
Returns the list of authentication methods for the secure rcmds.

Library
Authentication Methods Library (libauthm.a)

Syntax

int get_auth_method (uint ** authm)

Description
This method returns the authentication methods currently configured in the order in which they should be
attempted in the unsigned integer pointer the user passed in.

Technical Reference: Communication subroutines 121

The list in the unsigned integer pointer is either NULL (on an error) or is an array of unsigned integers
terminated by a zero. Each integer identifies an authentication method. The order that a client should
attempt to authenticate is defined by the order of the list.

Note: The calling routine is responsible for freeing the memory in which the list is contained.

The flags identifying the authentication methods are defined in the /usr/include/authm.h file.

Parameter

Item Description

authm Points to an array of unsigned integers. The list of authentication methods is returned in the
zero terminated list.

Return Values
Upon successful completion, the get_auth_method subroutine returns a zero.

Upon unsuccessful completion, the get_auth_method subroutine returns an errno.

getdomainname Subroutine

Purpose
Gets the name of the current domain.

Library
Standard C Library (libc.a)

Syntax
int getdomainname (Name, Namelen)
char *Name;
int Namelen;

Description
The getdomainname subroutine returns the name of the domain for the current processor as previously
set by the setdomainname subroutine. The returned name is null-terminated unless insufficient space is
provided.

The purpose of domains is to enable two distinct networks that may have host names in common to
merge. Each network would be distinguished by having a different domain name. Only the Network
Information Service (NIS) and the sendmail command make use of domains.

All applications containing the getdomainname subroutine must be compiled with the _BSD macro set
to a specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the
BSD libbsd.a library.

Note: Domain names are restricted to 256 characters.

Parameters

Item Description

Name Specifies the domain name to be returned.

Namelen Specifies the size of the array pointed to by the Name parameter.

122 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
If the call succeeds, a value of 0 is returned. If the call is unsuccessful, a value of -1 is returned and an
error code is placed in the errno global variable.

Error Codes
The following error may be returned by this subroutine:

Value Description

EFAULT The Name parameter gave an invalid address.

Related reference
setdomainname Subroutine
Related information
Sockets Overview

gethostbyaddr Subroutine

Purpose
Gets network host entry by address.

Library

Standard C Library (libc.a)
(libbind)
(libnis)
(liblocal)

Syntax

#include <netdb.h>

struct hostent *gethostbyaddr (Address, Length, Type)
const void *Address, size_t Length, int Type;

Description
The gethostbyaddr subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The gethostbyaddr subroutine retrieves information about a host using the host address as a search key.
Unless specified, the gethostbyaddr subroutine uses the default name services ordering, that is, it will
query DNS/BIND, NIS, then the local /etc/hosts file.

When using DNS/BIND name service resolution, if the file /etc/resolv.conf exists, the gethostbyaddr
subroutine queries the domain name server. The gethostbyaddr subroutine recognizes domain name
servers as described in RFC 883.

When using NIS for name resolution, if the getdomainname subroutine is successful and yp_bind
indicates NIS is running, then the gethostbyaddr subroutine queries NIS.

The gethostbyaddr subroutine also searches the local /etc/hosts file when indicated to do so.

The gethostbyaddr returns a pointer to a hostent structure, which contains information obtained from
one of the name resolutions services. The hostent structure is defined in the netdb.h file.

The environment variable, NSORDER can be set to override the default name services ordering and the
order specified in the /etc/netsvc.conf file.

Technical Reference: Communication subroutines 123

Parameters

Item Description

Address Specifies a host address. The host address is passed as a pointer to the binary format
address.

Length Specifies the length of host address.

Type Specifies the domain type of the host address. It can be either AF_INET or AF_INET6.

Return Values
The gethostbyaddr subroutine returns a pointer to a hostent structure upon success.

If an error occurs or if the end of the file is reached, the gethostbyaddr subroutine returns a NULL pointer
and sets h_errno to indicate the error.

Error Codes
The gethostbyaddr subroutine is unsuccessful if any of the following errors occur:

Error Description

HOST_NOT_FOUND The host specified by the Name parameter is not found.

TRY_AGAIN The local server does not receive a response from an authoritative
server. Try again later.

NO_RECOVERY This error code indicates an unrecoverable error.

NO_ADDRESS The requested Address parameter is valid but does not have a name at
the name server.

SERVICE_UNAVAILABLE None of the name services specified are running or available.

Files
Item Description

/etc/hosts Contains the host-name database.

/etc/resolv.conf Contains the name server and domain name
information.

/etc/netsvc.conf Contains the name of the services ordering.

/usr/include/netdb.h Contains the network database structure.

Related reference
gethostbyname Subroutine
Related information
Sockets Overview
Network Address Translation

gethostbyaddr_r Subroutine

Purpose
Gets network host entry by address.

124 AIX Version 7.2: Technical Reference: Communication Subroutines

Library

Standard C Library (libc.a)
(libbind)
(libnis)
(liblocal)

Syntax
#include <netdb.h>
int gethostbyadd_r(Addr, Len, Type, Htent, Ht_data)
const char *Addr, size_t Len, int Type, struct hostent *Htent, struct hostent_data *Ht_data;

Description
This function internally calls the gethostbyaddr subroutine and stores the value returned by the
gethostbyaddr subroutine to the hostent structure.

Parameters
Item Description

Addr Points to the host address that is a pointer to the binary format address.

Len Specifies the length of the address.

Type Specifies the domain type of the host address. It can be either AF_INET or
AF_INET6.

Htent Points to a hostent structure which is used to store the return value of the
gethostaddr subroutine.

Ht_data Points to a hostent_data structure.

Return Values
The function returns a 0 if successful and a -1 if unsuccessful.

Note: The return value of the gethostbyaddr subroutine points to static data that is overwritten by
subsequent calls. This data must be copied at every call to be saved for use by subsequent calls. The
gethostbyaddr_r subroutine solves this problem.

If the Name parameter is a hostname, this subroutine searches for a machine with that name as an IP
address. Because of this, use the gethostbyname_r subroutine.

Error Codes
The gethostbyaddr_r subroutine is unsuccessful if any of the following errors occur:

Item Description

HOST_NOT_FOUND The host specified by the Name parameter was not found.

TRY_AGAIN The local server did not receive a response from an authoritative server.
Try again later.

NO_RECOVERY Indicates an unrecoverable error occured.

NO_ADDRESS The requested Name parameter is valid but does not have an Internet
address at the name server.

SERVICE_UNAVAILABLE None of the name services specified are running or available.

EINVAL The hostent pointer is NULL

Technical Reference: Communication subroutines 125

Files
Item Description

/etc/hosts Contains the host name data base.

/etc/resolv.conf Contains the name server and domain name.

/etc/netsvc.conf Contains the name services ordering.

/usr/include/netdb.h Contains the network database structure.

gethostbyname Subroutine

Purpose
Gets network host entry by name.

Library

Standard C Library (libc.a)
(libbind)
(libnis)
(liblocal)

Syntax
#include <netdb.h>

struct hostent *gethostbyname (Name)
char *Name;

Description
The gethostbyname subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The gethostbyname subroutine retrieves host address and name information using a host name as a
search key. Unless specified, the gethostbyname subroutine uses the default name services ordering,
that is, it queries DNS/BIND, NIS or the local /etc/hosts file for the name.

When using DNS/BIND name service resolution, if the /etc/resolv.conf file exists, the gethostbyname
subroutine queries the domain name server. The gethostbyname subroutine recognizes domain name
servers as described in RFC883.

When using NIS for name resolution, if the getdomaninname subroutine is successful and yp_bind
indicates yellow pages are running, then the gethostbyname subroutine queries NIS for the name.

The gethostbyname subroutine also searches the local /etc/hosts file for the name when indicated to do
so.

The gethostbyname subroutine returns a pointer to a hostent structure, which contains information
obtained from a name resolution services. The hostent structure is defined in the netdb.h header file.

Parameters

Item Description

Name Points to the host name.

126 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
The gethostbyname subroutine returns a pointer to a hostent structure on success.

If the parameter Name passed to gethostbyname is actually an IP address, gethostbyname will
return a non-NULL hostent structure with an IP address as the hostname without actually doing a
lookup. Remember to call inet_addr subroutine to make sure Name is not an IP address before calling
gethostbyname. To resolve an IP address call gethostbyaddr instead.

If an error occurs or if the end of the file is reached, the gethostbyname subroutine returns a null pointer
and sets h_errno to indicate the error.

The environment variable, NSORDER can be set to overide the default name services ordering and the
order specified in the /etc/netsvc.conf file.

By default, resolver routines first attempt to resolve names through the DNS/BIND, then NIS and
the /etc/hosts file. The /etc/netsvc.conf file may specify a different search order. The environment
variable NSORDER overrides both the /etc/netsvc.conf file and the default ordering. Services are ordered
as hosts = value, value, value in the /etc/netsvc.conf file where at least one value must be specified from
the list bind, nis, local. NSORDER specifies a list of values.

Error Codes
The gethostbyname subroutine is unsuccessful if any of the following errors occur:

Error Description

HOST_NOT_FOUND The host specified by the Name parameter was not found.

TRY_AGAIN The local server did not receive a response from an
authoritative server. Try again later.

NO_RECOVERY This error code indicates an unrecoverable error.

NO_ADDRESS The requested Name is valid but does not have an Internet
address at the name server.

SERVICE_UNAVAILABLE None of the name services specified are running or available.

Examples
The following program fragment illustrates the use of the gethostbyname subroutine to look up a
destination host:

hp=gethostbyname(argv[1]);
if(hp = = NULL) {
 fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);
 exit(2);
}

Files

Item Description

/etc/hosts Contains the host name data base.

/etc/resolv.conf Contains the name server and domain name.

/etc/netsvc.conf Contains the name services ordering.

/usr/include/netdb.h Contains the network database structure.

Related reference
gethostbyaddr Subroutine
inet_addr Subroutine

Technical Reference: Communication subroutines 127

Related information
Sockets Overview

gethostbyname_r Subroutine

Purpose
Gets network host entry by name.

Library

Standard C Library (libc.a)
(libbind)
(libnis)
(liblocal)

Syntax
#include netdb.h>
int gethostbyname_r(Name, Htent, Ht_data)

const char *Name, struct hostent *Htent, struct hostent_data *Ht_data;

Description
This function internally calls the gethostbyname subroutine and stores the value returned by the
gethostbyname subroutine to the hostent structure.

Parameters
Item Description

Name Points to the host name (which is a constant).

Htent Points to a hostent structure in which the return
value of the gethostbyname subroutine is stored.

Ht_data Points to a hostent_data structure.

Return Values
The function returns a 0 if successful and a -1 if unsuccessful.

Note:

The return value of the gethostbyname subroutine points to static data that is overwritten by
subsequent calls. This data must be copied at every call to be saved for use by subsequent calls. The
gethostbyname_r subroutine solves this problem.

If the Name parameter is an IP address, this subroutine searches for a machine with that IP address as a
name. Because of this, use the gethostbyaddr_r subroutine instead of the gethostbyname_r subroutine if
the Name parameter is an IP address.

Error Codes
The gethostbyname_r subroutine is unsuccessful if any of the following errors occurs:

128 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

HOST_NOT_FOUND The host specified by the Name parameter was not
found.

TRY_AGAIN The local server did not receive a response from an
authoritative server. Try again later.

NO_RECOVERY An unrecoverable error occurred.

NO_ADDRESS The requested Name is valid but does not have an
Internet address at the name server.

SERVICE_UNAVAILABLE None of the name services specified are running or
available.

EINVAL The hostent pointer is NULL.

Files
Item Description

/etc/hosts Contains the host name data base.

/etc/resolv.conf Contains the name server and domain name.

/etc/netsvc.conf Contains the name services ordering.

/usr/include/netdb.h Contains the network database structure.

gethostent Subroutine

Purpose
Retrieves a network host entry.

Library

Standard C Library (libc.a)
(libbind)
(libnis)
(liblocal)

Syntax

#include <netdb.h>

struct hostent *gethostent ()

Description
The gethostent subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

When using DNS/BIND name service resolution, the gethostent subroutine is not defined.

When using NIS name service resolution or searching the local /etc/hosts file, the gethostent subroutine
reads the next line of the /etc/hosts file, opening the file if necessary.

The gethostent subroutine returns a pointer to a hostent structure, which contains the equivalent fields
for a host description line in the /etc/hosts file. The hostent structure is defined in the netdb.h file.

Technical Reference: Communication subroutines 129

Return Values
Upon successful completion, the gethostent subroutine returns a pointer to a hostent structure.

If an error occurs or the end of the file is reached, the gethostent subroutine returns a null pointer.

Files
Item Description

/etc/hosts Contains the host name database.

/etc/netsvc.conf Contains the name services ordering.

/usr/include/netdb.h Contains the network database structure.

Related information
Sockets Overview
Network Address Translation

gethostent_r Subroutine

Purpose
Retrieves a network host entry.

Library
Standard C Library (libc.a)
(libbind)
(libnis)
(liblocal)

Syntax

#include <netdb.h>

int gethostent_r (htent, ht_data)
struct hostent *htent;
struct hostent_data *ht_data;

Description
When using DNS/BIND name service resolution, the gethostent_r subroutine is not defined.

When using NIS name service resolution or searching the local /etc/hosts file, the gethostent_r
subroutine reads the next line of the /etc/hosts file, and opens the file if necessary.

The gethostent_r subroutine internally calls the gethostent subroutine, and stores the values in the htent
and ht_data structures.

The gethostent subroutine overwrites the static data returned in subsequent calls. The gethostent_r
subroutine does not.

Parameters
Item Description

htent Points to the hostent structure

ht_data Points to the hostent_data structure

130 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
This subroutine returns a 0 if successful, and a -1 if unsuccessful.

Files
Item Description

/etc/hosts Contains the host name database.

/etc/netsvc.conf Contains the name services ordering.

/usr/include/netdb.h Contains the network database structure.

gethostid Subroutine

Purpose
Gets the unique identifier of the current host.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int gethostid ()

Description
The gethostid subroutine allows a process to retrieve the 32-bit identifier for the current host. In most
cases, the host ID is stored in network standard byte order and is a DARPA Internet Protocol address for a
local machine.

All applications containing the gethostid subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Return Values
Upon successful completion, the gethostid subroutine returns the identifier for the current host.

Related reference
sethostname Subroutine
Related information
Sockets Overview

gethostname Subroutine

Purpose
Gets the name of the local host.

Library
Standard C Library (libc.a)

Technical Reference: Communication subroutines 131

Syntax
#include <unistd.h>

int gethostname (Name, NameLength)
char *Name;
size_t NameLength;

Description
The gethostname subroutine retrieves the standard host name of the local host. If excess space is
provided, the returned Name parameter is null-terminated. If insufficient space is provided, the returned
name is truncated to fit in the given space. System host names are limited to 256 characters.

The gethostname subroutine allows a calling process to determine the internal host name for a machine
on a network.

All applications containing the gethostname subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

Name Specifies the address of an array of bytes where the host name is to be stored.

NameLength Specifies the length of the Name array.

Return Values
Upon successful completion, the system returns a value of 0.

If the gethostname subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
The gethostname subroutine is unsuccessful if the following is true:

Error Description

EFAULT The Name parameter or NameLength parameter gives an invalid address.

Related reference
sethostname Subroutine
Related information
Sockets Overview

GetMultipleCompletionStatus Subroutine

Purpose
Dequeues multiple completion packets from a specified I/O completion port.

132 AIX Version 7.2: Technical Reference: Communication Subroutines

Syntax
#include <sys/iocp.h>

int GetMultipleCompletionStatus (CompletionPort, Nmin, Nmax, Timeout, Results[])
HANDLE CompletionPort;
DWORD Nmin, Nmax, Timeout;
struct gmcs {
 DWORD transfer_count, completion_key, errorno;
 LPOVERLAPPED overlapped;
} Results[];

Description
The GetMultipleCompletionStatus subroutine attempts to dequeue a number of completion packets
from the completion port that is specified by the CompletionPort parameter. The number of dequeued
completion packets that are wanted ranges from the value of the Nmin parameter through the value of the
Nmax parameter. As it collects the packets, this subroutine might wait a predetermined maximum amount
of time that is specified by the Timeout parameter for the minimum number of completion packets to
arrive. If, for example, the Xth completion packet does not arrive in time, the subroutine returns with only
X-1 packets completed.

Either the Timeout parameter or a signal might cause a return with completions fewer than the value
of the Nmin parameter. In other words, Nmin completions are not guaranteed to be returned unless the
Timeout parameter value is set to INFINITE, and a signal does not interrupt the wait. The return of zero
completions is not considered an error. The errno value will, however, indicate the condition with either
the ETIMEDOUT or EINTR error code. In extreme low-memory situations, the kernel might not be able to
provide a timeout. In this case, the system call returns immediately with any available completions, up to
the value of the Nmax parameter, and the errno value is set to ENOMEM. Be sure to set the errno value
to zero before calling the GetMultipleCompletionStatus subroutine so that the change of the errno value
that the subroutine makes can be distinguished from the existing value.

The GetMultipleCompletionStatus subroutine is part of the I/O Completion Port (IOCP) kernel extension.

Note:

1. This subroutine only works with file descriptors of sockets, or regular files for use with the
asynchronous I/O subsystem. It does not work with file descriptors of other types.

2. This function must be the exclusive wait mechanism on a completion port. Multiple simultaneous waits
through the GetMultipleCompletionStatus subroutine, the GetQueuedCompletionStatus subroutine,
or both, are not supported.

3. When the GetMultipleCompletionStatus subroutine is used with the lio_listio subroutine, you
can set the value of the cmd parameter of the lio_listio subroutine to LIO_NOWAIT_GMCS to
avoid asynchronous updating of the aiocb structures, thereby reducing overhead. In this case,
you must use the GetMultipleCompletionStatus subroutine to wait for I/O completions, and
retrieve completion status only from the struct gmcs members, not from the aiocb structure.
When using the LIO_NOWAIT_GMCS value, do not use the completion_key value in the gmcs
structure. Do not use the LIO_NOWAIT_AIOWAIT value with the lio_listio subroutine when using
the GetMultipleCompletionStatus subroutine. The LIO_NOWAIT_GMCS value is available for that
purpose.

4. Cancelling an asynchronous I/O operation will not affect the GetMultipleCompletionStatus
subroutine. Even if the cancelling reduces the number of active asynchronous I/O operations to zero,
the subroutine will continue to wait.

5. When using the GetMultipleCompletionStatus subroutine with sockets, do not wait for multiple
completions (Nmin > 1) with an INFINITE timeout. Use a finite timeout value, and to be prepared to
repeat the call if additional completions are still expected.

Technical Reference: Communication subroutines 133

Parameters
Item Description Attribute description

CompletionPort Specifies the file descriptor for
the completion port that this
subroutine will access.

Nmin Specifies the minimum number
of completions. Fewer might be
returned if the value of the
timeout parameter is exceeded,
or a signal accepted. More
might be returned, up to the
number that is specified by the
Nmax parameter, if additional
completions have occurred.
Setting the value of the Nmin
parameter to zero will poll
for completions and return
immediately, ignoring the value
of the timeout parameter.

Nmax Specifies the maximum number
of completions to wait for, up
to the value of the GMCS_NMAX
macro.

Results This is the address of an array
of the gmcs structure to receive
the completion data. The array
must contain space for the
number of entries specified by
the Nmax parameter.

Results[i]. transfer_count Specifies the number of bytes transferred. This
parameter is set by the subroutine from the value
received in the ith completion packet. This value is
limited to 2 G.

Results[i].completion_key Specifies the completion key associated with the
file descriptor that is used in the transfer request.
This parameter is set by the subroutine from the
value received in the ith completion packet. Do
not use this value with the LIO_NOWAIT_GMCS
command parameter of the lio_listio subroutine.

Results[i].errorno Specifies the errno value that is associated
with the ith completion packet. When
asynchronous I/O requests are started using the
lio_listio subroutine with the LIO_NOWAIT_GMCS
command parameter, you must use this error
value, not the aio_errno member in the aiocb
structure, to retrieve the error value that is
associated with an I/O request.

134 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description Attribute description

Results[i].overlapped Specifies the overlapped structure that is used
in the transfer request. This parameter is set by
the subroutine from the value received in the ith
completion packet. For regular files, this parameter
contains a pointer to the asynchronous I/O control
block (AIOCB) for a completed AIO request. If an
application uses the same completion port for both
socket and AIO to regular files, it must use unique
completion_key values to differentiate between
sockets and regular files to properly interpret the
overlapped parameter.

Timeout Specifies the amount of time in
milliseconds that the subroutine
is to wait for completion
packets. This value can be set
to zero. If this parameter is set
to INFINITE, the subroutine will
never time out.

Return Values
Item Description

Success The subroutine returns an integer ranging from zero through the value of the Nmax
parameter, indicating how many completion packets are dequeued.

Failure The subroutine returns a value of -1.

Error codes
The subroutine is unsuccessful if any of the following errors occur:

Item Description

EINVAL The value of the CompletionPort or other parameter is not valid.

EBUSY Another thread is already waiting on the I/O completion port.

EBADF This error code might also be returned when the value of the CompletionPort
parameter is not valid.

If an error occurs after some completions have been handled, the error notifications will be lost. An
EFAULT error when copying out results can cause the situation.

Examples
1. The following program fragment illustrates the use of the GetMultipleCompletionStatus subroutine to

dequeue up to 10 completion packets within a 100-millisecond window.

struct gmcs results[10];
int n_results;
HANDLE iocpfd;
errno = 0;
n_results = GetMultipleCompletionStatus(iocpfd, 10, 10, 100, results);

Related information
lio_listio subroutine
Error Notification Object Class

Technical Reference: Communication subroutines 135

getnameinfo Subroutine

Purpose
Address-to-host name translation [given the binary address and port].

Note: This is the reverse functionality of the “getaddrinfo Subroutine” on page 118 host-to-address
translation.

Attention: This is not a POSIX (1003.1g) specified function.

Library
Library (libc.a)

Syntax

#include <sys/socket.h>
#include <netdb.h>
int
getnameinfo (sa, salen, host, hostlen, serv, servlen, flags)
const struct sockaddr *sa;
char *host;
size_t hostlen;
char *serv;
size_t servlen;
int flags;

Description
The sa parameter points to either a sockaddr_in structure (for IPv4) or a sockaddr_in6 structure (for
IPv6) that holds the IP address and port number. Thesalen parameter gives the length of the sockaddr_in
or sockaddr_in6 structure.

Note: A reverse lookup is performed on the IP address and port number provided in sa.

The host parameter is a buffer where the hostname associated with the IP address is copied. The hostlen
parameter provides the length of this buffer. The service name associated with the port number is copied
into the buffer pointed to by the serv parameter. The servlen parameter provides the length of this buffer.

The flags parameter defines flags that may be used to modify the default actions of this function. By
default, the fully-qualified domain name (FQDN) for the host is looked up in DNS and returned.

Item Description

NI_NOFQDN If set, return only the hostname portion of the
FQDN. If cleared, return the FQDN.

NI_NUMERICHOST If set, return the numeric form of the host address.
If cleared, return the name.

NI_NAMEREQD If set, return an error if the host's name cannot
be determined. If cleared, return the numeric form
of the host's address (as if NI_NUMERICHOST had
been set).

NI_NUMERICSERV If set, return the numeric form of the desired
service. If cleared, return the service name.

NI_DGRAM If set, consider the desired service to be a
datagram service, (for example, call getservbyport
with an argument of udp). If clear, consider the
desired service to be a stream service (for example,
call getserbyport with an argument of tcp).

136 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
A zero return value indicates successful completion; a non-zero value indicates failure. If successful, the
strings for hostname and service name are copied into the host and serv buffers, respectively. If either
the host or service name cannot be located, the numeric form is copied into the host and serv buffers,
respectively.

Related information
gai_strerror Subroutine
Subroutines Overview

getnetbyaddr Subroutine

Purpose
Gets network entry by address.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct netent *getnetbyaddr (Network, Type)
long Network;
int Type;

Description
The getnetbyaddr subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The getnetbyaddr subroutine retrieves information from the /etc/networks file using the network
address as a search key. The getnetbyaddr subroutine searches the file sequentially from the start of
the file until it encounters a matching net number and type or until it reaches the end of the file.

The getnetbyaddr subroutine returns a pointer to a netent structure, which contains the equivalent fields
for a network description line in the /etc/networks file. The netent structure is defined in the netdb.h
file.

Use the endnetent subroutine to close the /etc/networks file.

All applications containing the getnetbyaddr subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

Network Specifies the number of the network to be located.

Type Specifies the address family for the network. The only supported value is
AF_INET.

Return Values
Upon successful completion, the getnetbyaddr subroutine returns a pointer to a netent structure.

Technical Reference: Communication subroutines 137

If an error occurs or the end of the file is reached, the getnetbyaddr subroutine returns a null pointer.

Files
Item Description

/etc/networks Contains official network names.

Related reference
endnetent Subroutine
setnetent Subroutine
Related information
Sockets Overview

getnetbyaddr_r Subroutine

Purpose
Gets network entry by address.

Library
Standard C Library (libc.a)

Syntax
#include<netdb.h>
int getnetbyaddr_r(net, type, netent, net_data)

register in_addr_t net;
register int type;
struct netent *netent;
struct netent_data *net_data;

Description
The getnetbyaddr_r subroutine retrieves information from the /etc/networks file using the Name
parameter as a search key.

The getnetbyaddr_r subroutine internally calls the getnetbyaddr subroutine and stores the information
in the structure data.

The getnetbyaddr subroutine overwrites the static data returned in subsequent calls. The
getnetbyaddr_r subroutine does not.

Use the endnetent_r subroutine to close the /etc/networks file.

Parameters
Item Description

Net Specifies the number of the network to be located.

Type Specifies the address family for the network. The
only supported values are AF_INET, and AF_INET6.

netent Points to the netent structure.

net_data Points to the net_data structure.

138 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
The function returns a 0 if successful and a -1 if unsuccessful.

Files
Item Description

/etc/networks Contains official network names.

getnetbyname Subroutine

Purpose
Gets network entry by name.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct netent *getnetbyname (Name)
char *Name;

Description
The getnetbyname subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The getnetbyname subroutine retrieves information from the /etc/networks file using the Name
parameter as a search key. The getnetbyname subroutine searches the /etc/networks file sequentially
from the start of the file until it encounters a matching net name or until it reaches the end of the file.

The getnetbyname subroutine returns a pointer to a netent structure, which contains the equivalent
fields for a network description line in the /etc/networks file. The netent structure is defined in the
netdb.h file.

Use the endnetent subroutine to close the /etc/networks file.

All applications containing the getnetbyname subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

Name Points to a string containing the name of the network.

Return Values
Upon successful completion, the getnetbyname subroutine returns a pointer to a netent structure.

If an error occurs or the end of the file is reached, the getnetbyname subroutine returns a null pointer.

Technical Reference: Communication subroutines 139

Files
Item Description

/etc/networks Contains official network names.

Related reference
endnetent Subroutine
Related information
Sockets Overview

getnetbyname_r Subroutine

Purpose
Gets network entry by name.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>
int getnetbyname_r(Name, netent, net_data)
register const char *Name;
struct netent *netent;
struct netent_data *net_data;

Description
The getnetbyname_r subroutine retrieves information from the /etc/networks file using the Name
parameter as a search key.

The getnetbyname_r subroutine internally calls the getnetbyname subroutine and stores the information
in the structure data.

The getnetbyname subroutine overwrites the static data returned in subsequent calls. The
getnetbyname_r subroutine does not.

Use the endnetent_r subroutine to close the /etc/networks file.

Parameters

Item Description

Name Points to a string containing the name of the network.

netent Points to the netent structure.

net_data Points to the net_data structure.

Return Values
The function returns a 0 if successful and a -1 if unsuccessful.

Note: If an error occurs or the end of the file is reached, the getnetbyname_r subroutine returns a -1 to
indicate error.

140 AIX Version 7.2: Technical Reference: Communication Subroutines

Files
Item Description

/etc/networks Contains official network names.

getnetent Subroutine

Purpose
Gets network entry.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct netent *getnetent ()

Description
The getnetent subroutine is threadsafe. However, the return value points to static data that is overwritten
by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The getnetent subroutine retrieves network information by opening and sequentially reading the /etc/
networks file.

The getnetent subroutine returns a pointer to a netent structure, which contains the equivalent fields for
a network description line in the /etc/networks file. The netent structure is defined in the netdb.h file.

Use the endnetent subroutine to close the /etc/networks file.

All applications containing the getnetent subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Return Values
Upon successful completion, the getnetent subroutine returns a pointer to a netent structure.

If an error occurs or the end of the file is reached, the getnetent subroutine returns a null pointer.

Files
Item Description

/etc/networks Contains official network names.

Related reference
setnetent Subroutine
Related information
Sockets Overview

Technical Reference: Communication subroutines 141

getnetent_r Subroutine

Purpose
Gets network entry.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>
int getnetent_r(netent, net_data)

struct netent *netent;
struct netent_data *net_data;

Description
The getnetent_r subroutine retrieves network information by opening and sequentially reading the /etc/
networks file. This subroutine internally calls the getnetent subroutine and stores the values in the
hostent structure.

The getnetent subroutine overwrites the static data returned in subsequent calls. The getnetent_r
subroutine does not. Use the endnetent_r subroutine to close the /etc/networks file.

Parameters
Item Description

netent Points to the netent structure.

net_data Points to the net_data structure.

Return Values
The function returns a 0 if successful and a -1 if unsuccessful.

Note: If an error occurs or the end of the file is reached, the getnetent_r subroutine returns a -1 to
indicate error.

Files
Item Description

/etc/networks Contains official network names.

getnetgrent_r Subroutine

Purpose
Handles the group network entries.

Library
Standard C Library (libc.a)

142 AIX Version 7.2: Technical Reference: Communication Subroutines

Syntax
#include<netdb.h>
int getnetgrent_r(machinep, namep, domainp, ptr)
 char **machinep, **namep, **domainp;
void **ptr;

Description
The getnetgrent_r subroutine internally calls the getnetgrent subroutine and stores the information in
the structure data. This subroutine returns 1 or 0, depending if netgroup contains the machine, user, and
domain triple as a member. Any of these three strings can be NULL, in which case it signifies a wildcard.

The getnetgrent_r subroutine returns the next member of a network group. After the call, the machinep
parameter contains a pointer to a string containing the name of the machine part of the network group
member. The namep and domainp parameters contain similar pointers. If machinep, namep, or domainp
is returned as a NULL pointer, it signifies a wildcard.

The getnetgrent subroutine overwrites the static data returned in subsequent calls. The getnetgrent_r
subroutine does not.

Parameters
Item Description

machinep Points to the string containing the machine part of
the network group.

namep Points to the string containing the user part of the
network group.

domainp Points to the string containing the domain name.

ptr Keeps the function threadsafe.

Return Values
The function returns a 0 if successful and a -1 if unsuccessful.

Files

Item Description

/etc/netgroup Contains network groups recognized by the system.

/usr/include/netdb.h Contains the network database structures.

getpeername Subroutine

Purpose
Gets the name of the peer socket.

Library
Standard C Library (libc.a)

Syntax
#include <sys/socket.h>
int getpeername (Socket, Name, NameLength)

Technical Reference: Communication subroutines 143

int Socket;
struct sockaddr *Name;
socklen_t *NameLength;

Description
The getpeername subroutine retrieves the Name parameter from the peer socket connected to the
specified socket. The Name parameter contains the address of the peer socket upon successful
completion.

A process created by another process can inherit open sockets. The created process may need to identify
the addresses of the sockets it has inherited. The getpeername subroutine allows a process to retrieve
the address of the peer socket at the remote end of the socket connection.

Note: The getpeername subroutine operates only on connected sockets.

A process can use the getsockname subroutine to retrieve the local address of a socket.

All applications containing the getpeername subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

Socket Specifies the descriptor number of a connected socket.

Name Points to a sockaddr structure that contains the address of the destination socket
upon successful completion. The /usr/include/sys/socket.h file defines the sockaddr
structure.

NameLength Points to the size of the address structure. Initializes the NameLength parameter to
indicate the amount of space pointed to by the Name parameter. Upon successful
completion, it returns the actual size of the Name parameter returned.

Return Values
Upon successful completion, a value of 0 is returned and the Name parameter holds the address of the
peer socket.

If the getpeername subroutine is unsuccessful, the system handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
The getpeername subroutine is unsuccessful if any of the following errors occurs:

Error Description

EBADF The Socket parameter is not valid.

EINVAL The socket has been shut down.

ENOTSOCK The Socket parameter refers to a file, not a socket.

ENOTCONN The socket is not connected.

ENOBUFS Insufficient resources were available in the system to complete the call.

EFAULT The Address parameter is not in a writable part of the user address space.

144 AIX Version 7.2: Technical Reference: Communication Subroutines

Examples
The following program fragment illustrates the use of the getpeername subroutine to return the address
of the peer connected on the other end of the socket:

struct sockaddr_in name;
int namelen = sizeof(name);
.
.
.
if(getpeername(0,(struct sockaddr*)&name, &namelen)<0){
 syslog(LOG_ERR,"getpeername: %m");
 exit(1);
} else
 syslog(LOG_INFO,"Connection from %s",inet_ntoa(name.sin_addr));
.
.
.

Related reference
getsockname Subroutine
Related information
Sockets Overview

getprotobyname Subroutine

Purpose
Gets protocol entry from the /etc/protocols file by protocol name.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct protoent *getprotobyname (Name)
char *Name;

Description
The getprotobyname subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The getprotobyname subroutine retrieves protocol information from the /etc/protocols file by protocol
name. An application program can use the getprotobyname subroutine to access a protocol name, its
aliases, and protocol number.

The getprotobyname subroutine searches the protocols file sequentially from the start of the file until it
finds a matching protocol name or until it reaches the end of the file. The subroutine returns a pointer to
a protoent structure, which contains fields for a line of information in the /etc/protocols file. The netdb.h
file defines the protoent structure.

Use the endprotoent subroutine to close the /etc/protocols file.

All applications containing the getprotobyname subroutine must be compiled with the _BSD macro set
to a specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the
BSD libbsd.a library.

Technical Reference: Communication subroutines 145

Parameters

Item Description

Name Specifies the protocol name.

Return Values
Upon successful completion, the getprotobyname subroutine returns a pointer to a protoent structure.

If an error occurs or the end of the file is reached, the getprotbyname subroutine returns a null pointer.

Related reference
endprotoent Subroutine
setprotoent Subroutine
setservent Subroutine
Related information
Sockets Overview

getprotobyname_r Subroutine

Purpose
Gets protocol entry from the /etc/protocols file by protocol name.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>

int getprotobyname_r(Name, protoent, proto_data)
register const char *Name;
struct protoent *protoent;
struct protoent_data *proto_data;

Description
The getprotobyname_r subroutine retrieves protocol information from the /etc/protocols file by protocol
name.

An application program can use the getprotobyname_r subroutine to access a protocol name, aliases,
and protocol number.

The getprotobyname_r subroutine searches the protocols file sequentially from the start of the file until it
finds a matching protocol name or until it reaches the end of the file. The subroutine writes the protoent
structure, which contains fields for a line of information in the /etc/protocols file.

The netdb.h file defines the protoent structure.

The getprotobyname subroutine overwrites any static data returned in subsequent calls. The
getprotobyname_r subroutine does not.

Use the endprotoent_r subroutine to close the /etc/protocols file.

146 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters
Item Description

Name Specifies the protocol name.

protoent Points to the protoent structure.

proto_data Points to the proto_data structure.

Return Values
The function returns a 0 if successful and a -1 if unsuccessful.

Note: If an error occurs or the end of the file is reached, the getprotobyname_r subroutine returns a -1 to
indicate error.

getprotobynumber Subroutine

Purpose
Gets a protocol entry from the /etc/protocols file by number.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct protoent *getprotobynumber (Protocol)
int Protocol;

Description
The getprotobynumber subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The getprotobynumber subroutine retrieves protocol information from the /etc/protocols file using a
specified protocol number as a search key. An application program can use the getprotobynumber
subroutine to access a protocol name, its aliases, and protocol number.

The getprotobynumber subroutine searches the /etc/protocols file sequentially from the start of the file
until it finds a matching protocol name or protocol number, or until it reaches the end of the file. The
subroutine returns a pointer to a protoent structure, which contains fields for a line of information in
the /etc/protocols file. The netdb.h file defines the protoent structure.

Use the endprotoent subroutine to close the /etc/protocols file.

All applications containing the getprotobynumber subroutine must be compiled with the _BSD macro set
to a specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the
BSD libbsd.a library.

Parameters

Item Description

Protocol Specifies the protocol number.

Technical Reference: Communication subroutines 147

Return Values
Upon successful completion, the getprotobynumber subroutine, returns a pointer to a protoent
structure.

If an error occurs or the end of the file is reached, the getprotobynumber subroutine returns a null
pointer.

Files
Item Description

/etc/protocols Contains protocol information.

Related reference
endprotoent Subroutine
Related information
Sockets Overview

getprotobynumber_r Subroutine

Purpose
Gets a protocol entry from the /etc/protocols file by number.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>
int getprotobynumber_r(proto, protoent, proto_data)
register int proto;
struct protoent *protoent;
struct protoent_data *proto_data;

Description
The getprotobynumber_r subroutine retrieves protocol information from the /etc/protocols file using a
specified protocol number as a search key.

An application program can use the getprotobynumber_r subroutine to access a protocol name, aliases,
and number.

The getprotobynumber_r subroutine searches the /etc/protocols file sequentially from the start of the
file until it finds a matching protocol name, protocol number, or until it reaches the end of the file.

The subroutine writes the protoent structure, which contains fields for a line of information in the /etc/
protocols file.

The netdb.h file defines the protoent structure.

The getprotobynumber subroutine overwrites static data returned in subsequent calls. The
getprotobynumber_r subroutine does not.

Use the endprotoent_r subroutine to close the /etc/protocols file.

148 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

proto Specifies the protocol number.

protoent Points to the protoent structure.

proto_data Points to the proto_data structure.

Return Values
The function returns a 0 if successful and a -1 if unsuccessful.

Note: If an error occurs or the end of the file is reached, the getprotobynumber_r subroutine sets the
protoent parameter to NULL and returns a -1 to indicate error.

Files
Item Description

/etc/protocols Contains protocol information.

getprotoent Subroutine

Purpose
Gets protocol entry from the /etc/protocols file.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct protoent *getprotoent ()

Description
The getprotoent subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The getprotoent subroutine retrieves protocol information from the /etc/protocols file. An application
program can use the getprotoent subroutine to access a protocol name, its aliases, and protocol number.

The getprotoent subroutine opens and performs a sequential read of the /etc/protocols file. The
getprotoent subroutine returns a pointer to a protoent structure, which contains the fields for a line
of information in the /etc/protocols file. The netdb.h file defines the protoent structure.

Use the endprotoent subroutine to close the /etc/protocols file.

All applications containing the getprotoent subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Return Values
Upon successful completion, the getprotoent subroutine returns a pointer to a protoent structure.

Technical Reference: Communication subroutines 149

If an error occurs or the end of the file is reached, the getprotoent subroutine returns a null pointer.

Files
Item Description

/etc/protocols Contains protocol information.

Related reference
endprotoent Subroutine
Related information
Sockets Overview

getprotoent_r Subroutine

Purpose
Gets protocol entry from the /etc/protocols file.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>

int getprotoent_r(protoent, proto_data)
struct protoent *protoent;
struct protoent_data *proto_data;

Description
The getprotoent_r subroutine retrieves protocol information from the /etc/protocols file. An application
program can use the getprotoent_r subroutine to access a protocol name, its aliases, and protocol
number. The getprotoent_r subroutine opens and performs a sequential read of the /etc/protocols file.
This subroutine writes to the protoent structure, which contains the fields for a line of information in
the /etc/protocols file.

The netdb.h file defines the protoent structure.

Use the endprotoent_r subroutine to close the /etc/protocols file. Static data is overwritten in
subsequent calls when using the getprotoent subroutine. The getprotoent_r subroutine does not
overwrite.

Parameters
Item Description

protoent Points to the protoent structure.

proto_data Points to the proto_data structure.

Return Values
The function returns a 0 if successful and a -1 if unsuccessful.

Note: If an error occurs or the end of the file is reached, the getprotoent_r subroutine sets the protoent
parameter to NULL.

150 AIX Version 7.2: Technical Reference: Communication Subroutines

Files
Item Description

/etc/protocols Contains protocol information.

GetQueuedCompletionStatus Subroutine

Purpose
Dequeues a completion packet from a specified I/O completion port.

Syntax
#include <iocp.h>
boolean_t GetQueuedCompletionStatus (CompletionPort, TransferCount, CompletionKey, Overlapped,
Timeout)
HANDLE CompletionPort;
LPDWORD TransferCount, CompletionKey;
LPOVERLAPPED Overlapped; DWORD Timeout;

Description
The GetQueuedCompletionStatus subroutine attempts to dequeue a completion packet from the
CompletionPort parameter. If there is no completion packet to be dequeued, this subroutine waits a
predetermined amount of time as indicated by the Timeout parameter for a completion packet to arrive.

The GetQueuedCompletionStatus subroutine returns a boolean indicating whether or not a completion
packet has been dequeued.

The GetQueuedCompletionStatus subroutine is part of the I/O Completion Port (IOCP) kernel extension.

Note: This subroutine only works with file descriptors of sockets, or regular files for use with the
Asynchronous I/O (AIO) subsystem. It does not work with file descriptors of other types.

Parameters
Item Description

CompletionPort Specifies the completion port that this subroutine will attempt to
access.

TransferCount Specifies the number of bytes transferred. This parameter is set by
the subroutine from the value received in the completion packet.

CompletionKey Specifies the completion key associated with the file descriptor used
in the transfer request. This parameter is set by the subroutine from
the value received in the completion packet.

Overlapped Specifies the overlapped structure used in the transfer request. This
parameter is set by the subroutine from the value received in the
completion packet. For regular files, this parameter contains a pointer
to the AIOCB for a completed AIO request. If an application uses
the same completion port for both socket and AIO to regular files,
it must use unique CompletionKey values to differentiate between
sockets and regular files in order to properly interpret the Overlapped
parameter.

Timeout Specifies the amount of time in milliseconds the subroutine is to wait
for a completion packet. If this parameter is set to INFINITE, the
subroutine will never timeout.

Technical Reference: Communication subroutines 151

Return Values
Upon successful completion, the GetQueuedCompletionStatus subroutine returns a boolean indicating
its success.

If the GetQueuedCompletionStatus subroutine is unsuccessful, the subroutine handler performs the
following functions:

• Returns a value of 0 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable, see the link in the Related Information section of this document.

Error Codes
The subroutine is unsuccessful if any of the following errors occur:

Item Description

ETIMEDOUT No completion packet arrived to be dequeued and the Timeout
parameter has elapsed.

EINVAL The value of the CompletionPort or other parameter is not valid.

EAGAIN Resource temporarily unavailable. If a sleep is interrupted by a
signal, EAGAIN may be returned.

ENOTCONN Socket is not connected. The ENOTCONN return can happen for
two reasons. One is if a request is made, the fd is then closed,
then the request is returned back to the process. The error will be
ENOTCONN. The other is if the socket drops while the fd is still
open, the requests after the socket drops (disconnects) will return
ENOTCONN.

EBADF This error code might also be returned when the value of the
CompletionPort parameter is not valid.

Examples
The following program fragment illustrates the use of the GetQueuedCompletionStatus subroutine to
dequeue a completion packet.

int transfer_count, completion_key
LPOVERLAPPED overlapped;
c = GetQueuedCompletionStatus (34, &transfer_count, &completion_key, &overlapped, 1000);

Related information
Error Notification Object Class

getservbyname Subroutine

Purpose
Gets service entry by name.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

152 AIX Version 7.2: Technical Reference: Communication Subroutines

struct servent *getservbyname (Name, Protocol)
char *Name, *Protocol;

Description
The getservbyname subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The getservbyname subroutine retrieves an entry from the /etc/services file using the service name as a
search key.

An application program can use the getservbyname subroutine to access a service, service aliases, the
protocol for the service, and a protocol port number for the service.

The getservbyname subroutine searches the /etc/services file sequentially from the start of the file until
it finds one of the following:

• Matching name and protocol number
• Matching name when the Protocol parameter is set to 0
• End of the file

Upon locating a matching name and protocol, the getservbyname subroutine returns a pointer to the
servent structure, which contains fields for a line of information from the /etc/services file. The netdb.h
file defines the servent structure and structure fields.

Use the endservent subroutine to close the /etc/services file.

All applications containing the getservbyname subroutine must be compiled with the _BSD macro set to
a specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the
BSD libbsd.a library.

Parameters

Item Description

Name Specifies the name of a service.

Protocol Specifies a protocol for use with the specified service.

Return Values
The getservbyname subroutine returns a pointer to a servent structure when a successful match occurs.
Entries in this structure are in network byte order.

If an error occurs or the end of the file is reached, the getservbyname subroutine returns a null pointer.

Files
Item Description

/etc/services Contains service names.

Related reference
endservent Subroutine
Related information
Sockets Overview
Understanding Network Address Translation

Technical Reference: Communication subroutines 153

getservbyname_r Subroutine

Purpose
Gets service entry by name.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>
int getservbyname_r(name, proto, servent, serv_data)
const char *Name, proto;
struct servent *servent;
struct servent_data *serv_data;

Description
Requirement: Use the getservbyname subroutine instead of the getservbyname_r subroutine. The
getservbyname_r subroutine is compatible only with earlier versions of AIX.

An application program can use the getservbyname_r subroutine to access a service, service aliases, the
protocol for the service, and a protocol port number for the service.

The getservbyname_r subroutine searches the /etc/services file sequentially from the start of the file
until it finds one of the following:

• Matching name and protocol number.
• Matching name when the Protocol parameter is set to 0.
• End of the file.

Upon locating a matching name and protocol, the getservbyname_r subroutine stores the values to the
servent structure. The getservbyname subroutine overwrites the static data it returns in subsequent
calls. The getservbyname_r subroutine does not.

Use the endservent_r subroutine to close the /etc/hosts file.

You must fill the servent_data structure with zeros before its first access by either the setservent_r or
the getservbyname_r subroutine.

Parameters

Item Description

name Specifies the name of a service.

proto Specifies a protocol for use with the specified service.

servent Points to the servent structure.

serv_data Points to the serv_data structure.

Return Values
The function returns a 0 if successful and a -1 if unsuccessful. The getservbyname subroutine returns
a pointer to a servent structure when a successful match occurs. Entries in this structure are in network
byte order.

Note: If an error occurs or the end of the file is reached, the getservbyname_r returns a -1.

154 AIX Version 7.2: Technical Reference: Communication Subroutines

Files
Item Description

/etc/services Contains service names.

getservbyport Subroutine

Purpose
Gets service entry by port.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct servent *getservbyport (Port, Protocol)
int Port;char *Protocol;

Description
The getservbyport subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The getservbyport subroutine retrieves an entry from the /etc/services file using a port number as a
search key.

An application program can use the getservbyport subroutine to access a service, service aliases, the
protocol for the service, and a protocol port number for the service.

The getservbyport subroutine searches the services file sequentially from the beginning of the file until it
finds one of the following:

• Matching protocol and port number
• Matching protocol when the Port parameter value equals 0
• End of the file

Upon locating a matching protocol and port number or upon locating a matching protocol only if the Port
parameter value equals 0, the getservbyport subroutine returns a pointer to a servent structure, which
contains fields for a line of information in the /etc/services file. The netdb.h file defines the servent
structure and structure fields.

Use the endservent subroutine to close the /etc/services file.

All applications containing the getservbyport subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

Port Specifies the port where a service resides.

Protocol Specifies a protocol for use with the service.

Technical Reference: Communication subroutines 155

Return Values
Upon successful completion, the getservbyport subroutine returns a pointer to a servent structure.

If an error occurs or the end of the file is reached, the getservbyport subroutine returns a null pointer.

Files
Item Description

/etc/services Contains service names.

Related reference
endservent Subroutine
endprotoent Subroutine
Related information
Sockets Overview

getservbyport_r Subroutine

Purpose
Gets service entry by port.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

int getservbyport_r(Port, Proto, servent, serv_data)
int Port;
const char *Proto;
struct servent *servent;
struct servent_data *serv_data;

Description
The getservbyport_r subroutine retrieves an entry from the /etc/services file using a port number as a
search key. An application program can use the getservbyport_r subroutine to access a service, service
aliases, the protocol for the service, and a protocol port number for the service.

The getservbyport_r subroutine searches the services file sequentially from the beginning of the file until
it finds one of the following:

• Matching protocol and port number
• Matching protocol when the Port parameter value equals 0
• End of the file

Upon locating a matching protocol and port number or upon locating a matching protocol where the Port
parameter value equals 0, the getservbyport_r subroutine returns a pointer to a servent structure, which
contains fields for a line of information in the /etc/services file. The netdb.h file defines the servent
structure, the servert_data structure, and their fields.

The getservbyport routine overwrites static data returned on subsequent calls. The getservbyport_r
routine does not.

Use the endservent_r subroutine to close the /etc/services file.

156 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

Port Specifies the port where a service resides.

Proto Specifies a protocol for use with the service.

servent Points to the servent structure.

serv_data Points to the serv_data structure.

Return Values
The function returns a 0 if successful and a -1 if unsuccessful.

Note: If an error occurs or the end of the file is reached, the getservbyport_r subroutine returns a -1 to
indicate error.

Files
Item Description

/etc/services Contains service names.

getservent Subroutine

Purpose
Gets services file entry.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct servent *getservent ()

Description
The getservent subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The getservent subroutine opens and reads the next line of the /etc/services file.

An application program can use the getservent subroutine to retrieve information about network services
and the protocol ports they use.

The getservent subroutine returns a pointer to a servent structure, which contains fields for a line of
information from the /etc/services file. The servent structure is defined in the netdb.h file.

The /etc/services file remains open after a call by the getservent subroutine. To close the /etc/services
file after each call, use the setservent subroutine. Otherwise, use the endservent subroutine to close
the /etc/services file.

All applications containing the getservent subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Technical Reference: Communication subroutines 157

Return Values
The getservent subroutine returns a pointer to a servent structure when a successful match occurs.

If an error occurs or the end of the file is reached, the getservent subroutine returns a null pointer.

Files
Item Description

/etc/services Contains service names.

Related reference
endprotoent Subroutine
Related information
Sockets Overview
Understanding Network Address Translation

getservent_r Subroutine

Purpose
Gets services file entry.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>
int getservent_r(servent, serv_data)
struct servent *servent;
struct servent_data *serv_data;

Description
The getservent_r subroutine opens and reads the next line of the /etc/services file.An application
program can use the getservent_r subroutine to retrieve information about network services and the
protocol ports they use.

The /etc/services file remains open after a call by the getservent_r subroutine. To close the /etc/
services file after each call, use the setservent_r subroutine. Otherwise, use the endservent_r
subroutine to close the /etc/services file.

Parameters
Item Description

servent Points to the servent structure.

serv_data Points to the serv_data structure.

Return Values
The getservent_r fails when a successful match occurs. Thegetservent subroutine overwrites static data
returned on subsequent calls. The getservent_r subroutine does not.

158 AIX Version 7.2: Technical Reference: Communication Subroutines

Files
Item Description

/etc/services Contains service names.

getsockname Subroutine

Purpose
Gets the socket name.

Library
Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int getsockname (Socket, Name, NameLength)
int Socket;
struct sockaddr * Name;
socklen_t * NameLength;

Description
The getsockname subroutine retrieves the locally bound address of the specified socket. The socket
address represents a port number in the Internet domain and is stored in the sockaddr structure pointed
to by the Name parameter. The sys/socket.h file defines the sockaddr data structure.

A process created by another process can inherit open sockets. To use the inherited socket, the created
process needs to identify their addresses. The getsockname subroutine allows a process to retrieve the
local address bound to the specified socket.

A process can use the getpeername subroutine to determine the address of a destination socket in a
socket connection.

Parameters

Item Description

Socket Specifies the socket for which the local address is desired.

Name Points to the structure containing the local address of the specified socket.

NameLength Specifies the size of the local address in bytes. Initializes the value pointed to by
the NameLength parameter to indicate the amount of space pointed to by the Name
parameter.

Return Values
Upon successful completion, a value of 0 is returned, and the NameLength parameter points to the size of
the socket address.

If the getsockname subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Technical Reference: Communication subroutines 159

• For sockets in the AF_UNIX domain, if the returned value of the NameLength parameter is greater than
255, the corresponding value of the sun_len field in the overloaded sockaddr structure is assigned an
address of 0xFF because of the bit size limitations of the sun_len field.

Error Codes
The getsockname subroutine is unsuccessful if any of the following errors occurs:

Error Description

EBADF The Socket parameter is not valid.

ENOTSOCK The Socket parameter refers to a file, not a socket.

ENOBUFS Insufficient resources are available in the system to complete the call.

EFAULT The Address parameter is not in a writable part of the user address space.

Related reference
getpeername Subroutine
socket Subroutine
socks5tcp_bind Subroutine
socks5tcp_connect Subroutine
Related information
Checking for Pending Connections Example Program
Sockets Overview

getsockopt Subroutine

Purpose
Gets options on sockets.

Library
Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int getsockopt (Socket, Level, OptionName, OptionValue, OptionLength)
int Socket, Level, OptionName;
void * OptionValue;
socklen_t * OptionLength;

Description
The getsockopt subroutine allows an application program to query socket options. The calling program
specifies the name of the socket, the name of the option, and a place to store the requested information.
The operating system gets the socket option information from its internal data structures and passes the
requested information back to the calling program.

Options can exist at multiple protocol levels. They are always present at the uppermost socket level.
When retrieving socket options, specify the level where the option resides and the name of the option.

All applications containing the getsockopt subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

160 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters
Item Description

Socket Specifies the unique socket name.

Level Specifies the protocol level where the option resides. Options can be retrieved at the following levels:

Socket level
Specifies the Level parameter as the SOL_SOCKET option.

Other levels
Supplies the appropriate protocol number for the protocol controlling the option. For example, to indicate that an
option will be interpreted by the TCP protocol, set the Level parameter to the protocol number of TCP, as defined in
the netinet/in.h file.

OptionName Specifies a single option. The OptionName parameter and any specified options are passed uninterpreted to the appropriate
protocol module for interpretation. The sys/socket.h file contains definitions for socket level options. The netinet/tcp.h file
contains definitions for TCP protocol level options. Socket-level options can be enabled or disabled; they operate in a toggle
fashion. The sys/atmsock.h file contains definitions for ATM protocol level options.

The following list defines socket protocol level options found in the sys/socket.h file:

SO_DEBUG
Specifies the recording of debugging information. This option enables or disables debugging in the underlying
protocol modules.

SO_BROADCAST
Specifies whether transmission of broadcast messages is supported. The option enables or disables broadcast
support.

SO_CKSUMREV
Enables performance enhancements in the protocol layers. If the protocol supports this option, enabling causes the
protocol to defer checksum verification until the user's data is moved into the user's buffer (on recv, recvfrom, read,
or recvmsg thread). This can cause applications to be awakened when no data is available, in the case of a checksum
error. In this case, EAGAIN is returned. Applications that set this option must handle the EAGAIN error code returned
from a receive call.

SO_REUSEADDR
Specifies that the rules used in validating addresses supplied by a bind subroutine should allow reuse of a local port.
A particular IP address can only be bound once to the same port. This option enables or disables reuse of local ports.

SO_REUSEADDR allows an application to explicitly deny subsequent bind subroutine to the port/address of the
socket with SO_REUSEADDR set. This allows an application to block other applications from binding with the bind
subroutine.

SO_REUSEPORT
Specifies that the rules used in validating addresses supplied by a bind subroutine should allow reuse of a local
port/address combination. Each binding of the port/address combination must specify the SO_REUSEPORT socket
option. This option enables or disables the reuse of local port/address combinations.

SO_KEEPALIVE
Monitors the activity of a connection by enabling or disabling the periodic transmission of ACK messages on a
connected socket. The idle interval time can be designated using the TCP/IP no command. Broken connections are
discussed in "Understanding Socket Types and Protocols" in Communications Programming Concepts.

OptionName (contd) SO_DONTROUTE
Indicates outgoing messages should bypass the standard routing facilities. Does not apply routing on outgoing
messages. Directs messages to the appropriate network interface according to the network portion of the destination
address. This option enables or disables routing of outgoing messages.

SO_LINGER
Lingers on a close subroutine if data is present. This option controls the action taken when an unsent messages
queue exists for a socket, and a process performs a close subroutine on the socket.

If the SO_LINGER option is set, the system blocks the process during the close subroutine until it can transmit the
data or until the time expires. If the SO_LINGER option is not specified, and a close subroutine is issued, the system
handles the call in a way that allows the process to continue as quickly as possible.

The sys/socket.h file defines the linger structure that contains the l_linger member for specifying linger time
interval. If linger time is set to anything but 0, the system tries to send any messages queued on the socket.
The maximum value that the l_linger member can be set to is 65535. If the application has requested SPEC1170
compliant behavior by exporting the XPG_SUS_ENV environment variable, the linger time is n seconds; otherwise, the
linger time is n/100 seconds (ticks), where n is the value of the l_linger member.

SO_OOBINLINE
Leaves received out-of-band data (data marked urgent) in line. This option enables or disables the receipt of out-of-
band data.

SO_SNDBUF
Retrieves buffer size information.

SO_RCVBUF
Retrieves buffer size information.

SO_SNDLOWAT
Retrieves send buffer low-water mark information.

SO_RCVLOWAT
Retrieves receive buffer low-water mark information.

Technical Reference: Communication subroutines 161

Item Description

OptionName (contd) SO_SNDTIMEO
Retrieves time-out information. This option is settable, but currently not used.

SO_RCVTIMEO
Retrieves time-out information. This option is settable, but currently not used.

SO_PEERID
Retrieves the credential information of the process associated with a peer UNIX domain socket. This information
includes the process ID, effective user ID, and effective group ID. The peercred_struct structure must be used in
order to get the credential information. This structure is defined in the sys/socket.h file.

SO_ERROR
Retrieves information about error status and clears.

SO_TYPE
Sets the retrieval of a socket type.

The following list defines TCP protocol level options found in the netinet/tcp.h file:

TCP_CWND_IF
Increases the factor of the TCP congestion window (cwnd) during the congestion avoidance. The value must be in the
range 0 - 100 (0 is disable). The tcp_cwnd_modified network tunable option must be enabled.

TCP_CWND_DF
Decrease the factor of the TCP cwnd during the congestion avoidance. The value must be in the range 0 - 100 (0 is
disable). The tcp_cwnd_modified network tunable option must be enabled.

TCP_NOTENTER_SSTART
Avoids reentering the slow start after the retransmit timeout, which might reset the cwnd to the initial window
size, instead of the size of the current slow-start threshold (ss_threshold) value or half of the maximum cwnd (max
cwnd/2). The values are 1 for enable and 0 for disable. The tcp_cwnd_modified network tunable option must be
enabled.

TCP_ NOREDUCE_CWND_IN_FRXMT
Not decrease the cwnd size when in the fast retransmit phrase. The values are 1 for enable and 0 for disable. The
tcp_cwnd_modified network tunable option must be enabled.

TCP_ NOREDUCE_CWND_EXIT_FRXMT
Not decrease the cwnd size when exits the fast retransmit phrase. The values are 1 for enable and 0 for disable. The
tcp_cwnd_modified network tunable option must be enabled.

TCP_RFC1323
Indicates whether RFC 1323 is enabled or disabled on the specified socket. A non-zero OptionValue returned by the
getsockopt subroutine indicates the RFC is enabled.

TCP_NODELAY
Specifies whether TCP should follow the Nagle algorithm for deciding when to send data. By default TCP will
follow the Nagle algorithm. To disable this behavior, applications can enable TCP_NODELAY to force TCP to always
send data immediately. A non-zero OptionValue returned by the getsockopt subroutine indicates TCP_NODELAY is
enabled. For example, TCP_NODELAY should be used when there is an appliciation using TCP for a request/response.

OptionName (contd) TCP_NODELAYACK
Specifies if TCP needs to send immediate acknowledgement packets to the sender. If this option is not set, TCP
delays sending the acknowledgement packets by up to 200 ms. This allows the acknowledgements to be sent along
with the data on a response and minimizes system overhead. Setting this TCP option might cause a slight increase in
system overhead, but can result in higher performance for network transfers if the sender is waiting on the receiver's
acknowledgements.

The following list defines ATM protocol level options found in the sys/atmsock.h file:

SO_ATM_PARM
Retrieves all ATM parameters. This socket option can be used instead of using individual sockets options described
below. It uses the connect_ie structure defined in sys/call_ie.h file.

SO_ATM_AAL_PARM
Retrieves ATM AAL (Adaptation Layer) parameters. It uses the aal_parm structure defined in sys/call_ie.h file.

SO_ATM_TRAFFIC_DES
Retrieves ATM Traffic Descriptor values. It uses the traffic_desc structure defined in sys/call_ie.h file.

SO_ATM_BEARER
Retrieves ATM Bearer capability information. It uses the bearer structure defined in sys/call_ie.h file.

SO_ATM_BHLI
Retrieves ATM Broadband High Layer Information. It uses the bhli structure defined in sys/call_ie.h file.

SO_ATM_BLLI
Retrieves ATM Broadband Low Layer Information. It uses the blli structure defined in sys/call_ie.h file.

SO_ATM_QoS
Retrieves ATM Ouality Of Service values. It uses the qos_parm structure defined in sys/call_ie.h file.

SO_ATM_TRANSIT_SEL
Retrieves ATM Transit Selector Carrier. It uses the transit_sel structure defined in sys/call_ie.h file.

SO_ATM_MAX_PEND
Retrieves the number of outstanding transmit buffers that are permitted before an error indication is returned to
applications as a result of a transmit operation. This option is only valid for non best effort types of virtual circuits.

SO_ATM_CAUSE
Retrieves cause for the connection failure. It uses the cause_t structure defined in the sys/call_ie.h file.

162 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

OptionValue Specifies a pointer to the address of a buffer. The OptionValue parameter takes an integer parameter. The OptionValue
parameter should be set to a nonzero value to enable a Boolean option or to a value of 0 to disable the option. The following
options enable and disable in the same manner:

• SO_DEBUG

• SO_REUSEADDR

• SO_KEEPALIVE

• SO_DONTROUTE

• SO_BROADCAST

• SO_OOBINLINE

• TCP_RFC1323

OptionLength Specifies the length of the OptionValue parameter. The OptionLength parameter initially contains the size of the buffer
pointed to by the OptionValue parameter. On return, the OptionLength parameter is modified to indicate the actual size of
the value returned. If no option value is supplied or returned, the OptionValue parameter can be 0.

Options at other protocol levels vary in format and name.

Item Description

IP_DONTFRAG Get current IP_DONTFRAG option value.

IP_FINDPMTU Get current PMTU value.

IP_PMTUAGE Get current PMTU time out value.

Item Description

IP_DONTGRAG Not supported.

IP_FINDPMTU Get current PMTU value.

IP_PMTUAGE Not supported.

Item Description Value

IPV6_V6ONLY Determines whether the socket is restricted to IPv6
communications only.

Option Type:
int (Boolean interpretation)

Allows the user to determine the outgoing hop limit
value for unicast IPv6 packets.

Option Type:
int

Allows the user to determine the outgoing hop limit
value for multicast IPv6 packets.

Option Type:
int

Allows the user to determine the interface being used
for outgoing multicast packets.

Option Type:
unsigned int

If a multicast datagram is sent to a group that the
sending host belongs, a copy of the datagram is looped
back by the IP layer for local delivery (if the option is set
to 1). If the option is set to 0, a copy is not looped back.

Option Type:
unsigned int

Determines whether the destination IPv6 address and
arriving interface index of incoming IPv6 packets are
being received as ancillary data on UDP and raw
sockets.

Option Type:
int (Boolean interpretation)

Determines whether the hop limit of incoming IPv6
packets is being received as ancillary data on UDP and
raw sockets.

Option Type:
int (Boolean interpretation)

Determines whether the traffic class of incoming IPv6
packets is being received as ancillary data on UDP and
raw sockets.

Option Type:
int (Boolean interpretation)

Determines whether the routing header of incoming
IPv6 packets is being received as ancillary data on UDP
and raw sockets.

Option Type:
int (Boolean interpretation)

Determine whether the hop-by-hop options header of
incoming IPv6 packets is being received as ancillary
data on UDP and raw sockets.

Option Type:
int (Boolean interpretation)

Determines whether the destination options header of
incoming IPv6 packets is being received as ancillary
data on UDP and raw sockets.

Option Type:
int (Boolean interpretation)

Technical Reference: Communication subroutines 163

Item Description Value

Determines the source IPv6 address and outgoing
interface index for all IPv6 packets being sent on this
socket.

Option Type:
struct in6_pktinfo defined in the netinet/in.h
file.

Determines the next hop being used for outgoing IPv6
datagrams on this socket.

Option Type:
struct sockaddr_in6 defined in the netinet/in.h
file.

Determines the traffic class for outgoing IPv6
datagrams on this socket.

Option Type:
int

Determines the routing header to be used for outgoing
IPv6 datagrams on this socket.

Option Type:
struct ip6_rthdr defined in the netinet/ip6.h file.

Determines the hop-by-hop options header to be used
for outgoing IPv6 datagrams on this socket.

Option Type:
struct ip6_rthdr defined in the netinet/ip6.h file.

Determines the destination options header to be used
for outgoing IPv6 datagrams on this socket. This header
will follow a routing header (if present) and will also be
used when there is no routing header specified.

Option Type:
struct ip6_dest defined in the netinet/ip6.h file.

Determines the destination options header to be used
for outgoing IPv6 datagrams on this socket. This header
will precede a routing header (if present). If no routing
header is specified, this option will be silently ignored.

Option Type:
struct ip6_dest defined in the netinet/ip6.h file.

Determines how IPv6 path MTU discovery is being
controlled for this socket.

Option Type:
int

Determines whether fragmentation of outgoing IPv6
packets has been disabled on this socket.

Option Type:
int (Boolean interpretation)

Determines whether IPV6_PATHMTU messages are
being received as ancillary data on this socket.

Option Type:
int (Boolean interpretation)

Gets the address selection preferences for a socket. Option Type:
int (Boolean interpretation)

Determines the current Path MTU for a connected
socket.

Option Type:
struct ip6_mtuinfo defined in the netinet/in.h
file.

Item Description Value

IPPROTO_ICMPV6 Allows the user to filter ICMPV6
messages by the ICMPV6 type
field. If no filter was set, the
default kernel filter will be
returned.

Option Type:
The icmp6_filter structure
defined in the netinet/
icmp6.h file.

Return Values
Upon successful completion, the getsockopt subroutine returns a value of 0.

If the getsockopt subroutine is unsuccessful, the subroutine handler performs the following actions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Upon successful completion of the IPPROTO_IP option IP_PMTUAGE the returns are:

With AIX Version 6.1:

• Positive non-zero OptionValue.

Upon successful completion of TCP protocol sockets option IP_FINDPMTU the returns are:

With AIX Version 6.1:

• OptionValue 0 if PMTU discovery (tcp_pmtu_discover) is not enabled/not available.
• Positive non-zero OptionValue if PMTU is available.

164 AIX Version 7.2: Technical Reference: Communication Subroutines

Error Codes
Item Description

EBADF The Socket parameter is not valid.

EFAULT The address pointed to by the OptionValue parameter is not in a valid
(writable) part of the process space, or the OptionLength parameter is not
in a valid part of the process address space.

EINVAL The Level, OptionName, or OptionLength is invalid.

ENOBUF Insufficient resources are available in the system to complete the call.

ENOTSOCK The Socket parameter refers to a file, not a socket.

ENOPROTOOPT The option is unknown.

EOPNOTSUPP The option is not supported by the socket family or socket type.

EPERM The user application does not have the permission to get or to set this
socket option. Check the network tunable option.

Examples
The following program fragment illustrates the use of the getsockopt subroutine to determine an existing
socket type:

#include <sys/types.h>
#include <sys/socket.h>
int type;
socklen_t size = sizeof(int);
if(getsockopt(s, SOL_SOCKET, SO_TYPE, (void*)&type,&size)<0){
.
.
.
}

Related reference
bind Subroutine
shutdown Subroutine
Related information
no subroutine
Sockets Overview

h
AIX runtime services beginning with the letter h.

htonl Subroutine

Purpose
Converts an unsigned long integer from host byte order to Internet network byte order.

Library
ISODE Library (libisode.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>

Technical Reference: Communication subroutines 165

uint32_t htonl (HostLong)
uint32_t HostLong;

Description
The htonl subroutine converts an unsigned long (32-bit) integer from host byte order to Internet network
byte order.

The Internet network requires addresses and ports in network standard byte order. Use the htonl
subroutine to convert the host integer representation of addresses and ports to Internet network byte
order.

The htonl subroutine is defined in the net/nh.h file as a null macro if the host byte order is the same as
the network byte order.

The htonl subroutine is declared in the net/nh.h file as a function if the host byte order is not the same as
the network byte order.

All applications containing the htonl subroutine must be compiled with the _BSD macro set to a specific
value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

Parameters

Item Description

HostLong Specifies a 32-bit integer in host byte order.

Return Values
The htonl subroutine returns a 32-bit integer in Internet network byte order (most significant byte first).

Related information
Sockets Overview

htonll Subroutine

Purpose
Converts an unsigned long integer from host byte order to Internet network byte order.

Library
ISODE Library (libisode.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>

uint64_t htonll (HostLong)
uint64_t HostLong;

Description
The htonll subroutine converts an unsigned long (64-bit) integer from host byte order to Internet network
byte order.

166 AIX Version 7.2: Technical Reference: Communication Subroutines

The Internet network requires addresses and ports in network standard byte order. Use the htonll
subroutine to convert the host integer representation of addresses and ports to Internet network byte
order.

The htonll subroutine is defined in the net/nh.h file as a null macro if the host byte order is the same as
the network byte order.

The htonll subroutine is declared in the net/nh.h file as a function if the host byte order is not the same
as the network byte order.

All applications containing the htonll subroutine must be compiled with the _BSD macro set to a specific
value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

Parameters

Item Description

HostLong Specifies a 64-bit integer in host byte order.

Return Values
The htonll subroutine returns a 64-bit integer in Internet network byte order (most significant byte first).

Related information
Sockets Overview

htons Subroutine

Purpose
Converts an unsigned short integer from host byte order to Internet network byte order.

Library
ISODE Library (libisode.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>

uint16_t htons (HostShort)
uint16_t HostShort;

Description
The htons subroutine converts an unsigned short (16-bit) integer from host byte order to Internet
network byte order.

The Internet network requires ports and addresses in network standard byte order. Use the htons
subroutine to convert addresses and ports from their host integer representation to network standard
byte order.

The htons subroutine is defined in the net/nh.h file as a null macro if the host byte order is the same as
the network byte order.

The htons subroutine is declared in the net/nh.h file as a function if the host byte order is not the same as
the network byte order.

Technical Reference: Communication subroutines 167

All applications containing the htons subroutine must be compiled with the _BSD macro set to a specific
value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

Parameters

Item Description

HostShort Specifies a 16-bit integer in host byte order that is a host address or port.

Return Values
The htons subroutine returns a 16-bit integer in Internet network byte order (most significant byte first).

Related information
Sockets Overview

i
AIX runtime services beginning with the letter i.

if_freenameindex Subroutine

Purpose
Frees the dynamic memory that was allocated by the “if_nameindex Subroutine” on page 169.

Library
Library (libc.a)

Syntax
#include <net/if.h>

void if_freenameindex (struct if_nameindex *ptr);

Description
The ptr parameter is a pointer returned by the if_nameindex subroutine. After the if_freenameindex
subroutine has been called, the application must not use the array of which ptr is the address.

Parameters
Item Description

ptr Pointer returned by the if_nameindex subroutine

Related information
Subroutines Overview

if_indextoname Subroutine

Purpose
Maps an interface index into its corresponding name.

168 AIX Version 7.2: Technical Reference: Communication Subroutines

Library
Standard C Library <libc.a>

Syntax
#include <net/if.h>
char *if_indextoname(unsigned int ifindex, char *ifname);

Description
When the if_indextoname subroutine is called, the ifname parameter points to a buffer of at least
IF_NAMESIZE bytes. The if_indextoname subroutine places the name of the interface in this buffer with
the ifindex index.

Note: IF_NAMESIZE is also defined in <net/if.h> and its value includes a terminating null byte at the end
of the interface name.

If ifindex is an interface index, the if_indextoname Subroutine returns the ifname value, which points to a
buffer containing the interface name. Otherwise, it returns a NULL pointer and sets the errno global value
to indicate the error.

If there is no interface corresponding to the specified index, the errno global value is set to ENXIO. If a
system error occurs (such as insufficient memory), the errno global value is set to the proper value (such
as, ENOMEM).

Parameters
Item Description

ifindex Possible interface index

ifname Possible name of an interface

Error Codes
Item Description

ENXIO There is no interface corresponding to the specified index

ENOMEM Insufficient memory

Related information
Subroutines Overview

if_nameindex Subroutine

Purpose
Retrieves index and name information for all interfaces.

Library
The Standard C Library (<libc.a>)

Syntax
#include <net/if.h>

struct if_nameindex *if_nameindex(void)

Technical Reference: Communication subroutines 169

struct if_nameindex {
unsigned int if_index; /* 1, 2, ... */
char *if_name; /* null terminated name: "le0", ... */
};

Description
The if_nameindex subroutine returns an array of if_nameindex structures (one per interface).

The memory used for this array of structures is obtained dynamically. The interface names pointed to by
the if_name members are obtained dynamically as well. This memory is freed by the if_freenameindex
subroutine.

The function returns a NULL pointer upon error, and sets the errno global value to the appropriate value. If
successful, the function returns an array of structures. The end of an array of structures is indicated by a
structure with an if_index value of 0 and an if_name value of NULL.

Related information
Subroutines Overview

if_nametoindex Subroutine

Purpose
Maps an interface name to its corresponding index.

Library
Standard C Library (libc.a)

Syntax
#include <net/if.h>
unsigned int if_nametoindex(const char *ifname);

Description
If the ifname parameter is the name of an interface, the if_nametoindex subroutine returns the interface
index corresponding to the ifname name. If the ifname parameter is not the name of an interface, the
if_nametoindex subroutine returns a 0 and the errno global variable is set to the appropriate value.

Parameters
Item Description

ifname Possible name of an interface.

Related information
Subroutines Overview

inet_ntop6_zone Subroutine

Purpose
Converts a binary IPv6 address with the possible zone ID into a text string that is suitable for
presentation.

170 AIX Version 7.2: Technical Reference: Communication Subroutines

Syntax

const char
 inet_ntop6_zone (const void src, char dst, size_t size)

Description
The inet_ntop6_zone subroutine is preferred over the inet_ntop subroutine because it can infer the
zone ID (defined in Section 11 of RFC 4007) that might be present in the sin6_scope_id field of the
sockaddr_in6 structure.

Functionally, this subroutine uses the inet_ntop subroutine to generate the textual representation of the
address. It appends the %zoneid suffix to the string if the sin6_scope_id field is non-zero.

Parameters
Item Description

src Specifies the sockaddr_in6 structure that contains the address in the
sin6_addr field and the zone ID in the sin6_scope_id field.

dst Specifies a buffer where the textual representation of the address is stored,
and if non-zero, the zone ID is stored.

size Specifies the size (in bytes) of the buffer pointed to by the dst parameter.

Return Values
If successful, a pointer to the buffer containing the converted address is returned. If unsuccessful, NULL
is returned. Upon failure, the errno global variable is set to ENOSPC if the size parameter indicates that
the destination buffer is small.

Related information
inet_ntop Subroutines

inet_pton6_zone Subroutine

Purpose
Converts an IPv6 address in its standard text form which might include a zone ID suffix, into its numeric
binary form.

Syntax
int
inet_pton6_zone (const char *src, void *dst)

Description
The inet_pton6_zone subroutine is preferred over the inet_pton subroutine because it can infer the zone
ID suffix (defined in Section 11 of RFC 4007) that might be present in the textual representation of an
IPv6 address.

Functionally, this subroutine removes the zone ID, if present, and stores it in the sin6_scope_id field of
the sockaddr_in6 structure pointed to by the dst parameter. It uses the inet_pton subroutine to convert
the removed address, and stores it in the sin6_addr field.

Technical Reference: Communication subroutines 171

Parameters
Item Description

src The string that contains the textual representation of the address.

dst A pointer to the sockaddr_in6 structure where the numeric representation is
stored. The zone ID, if present, is stored in the sin6_scope_id field, and the
address is stored in the sin6_addr field.

Return Values
If successful, one is returned. If the input is not a valid IPv6 address, zero is returned.

Related information
inet_pton Subroutine

inet6_is_srcaddr Subroutine

Purpose
Verifies that a given local address meets address selection preferences.

Library
Library (libc.a)

Syntax
include <netinet/in.h>
int inet6_is_srcaddr(struct sockaddr_in6 *srcaddr, uint32_t flags);

Description
inet6_is_src_addr verifies that a local address corresponds to the set of address selection preference
flags specified in flags.

The values of address selection preference flags are:

• IPV6_PREFER_SRC_HOME: prefer addresses reachable from a Home source address
• IPV6_PREFER_SRC_COA: prefer addresses reachable from a Care-of source address
• IPV6_PREFER_SRC_TMP: prefer addresses reachable from a temporary address
• IPV6_PREFER_SRC_PUBLIC: the prefer addresses reachable from a public source address
• IPV6_PREFER_SRC_CGA: the prefer addresses reachable from a Cryptographically Generated Address

(CGA) source address
• IPV6_PREFER_SRC_NONCGA: the prefer addresses reachable from a non-CGA source address.

For example:

• To check if srcaddr is a Care-of address, flags must be set to IPV6_PREFER_SRC_COA.
• To check if srcaddr is a CGA and a public address, flags must be set to IPV6_PREFER_SRC_CGA |

IPV6_PREFER_SRC_PUBLIC.

Parameters
Item Description

srcaddr Points to a sockaddr_in6 structure containing the source address to check

172 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

flags Specifies the address selection preferences.

Return Values
• The subroutine returns 1 when the given address corresponds to a local address and satisfies the

address selection preferences.
• The subroutine returns -1 if the given address is not a local address or if flags does not specify one of

the valid address selection flag value
• The subroutine returns 0 if the given address is a local address but does not satisfies the address

selection preferences

inet6_opt_append Subroutine

Purpose
Returns the updated total length of the extension header.

Syntax
int inet6_opt_append(void *extbuf, socklen_t extlen, int offset,
 uint8_t type, socklen_t len, uint_t align,
 void **databufp);

Description
The inet6_opt_append subroutine returns the updated total length of the extension header, taking
into account adding an option with length len and alignment align. If extbuf is not NULL, then, in
addition to returning the length, the subroutine inserts any needed pad option, initializes the option
(setting the type and length fields), and returns a pointer to the location for the option content in
databufp. After inet6_opt_append() has been called, the application can use the databuf directly, or use
inet6_opt_set_val() to specify the content of the option.

Parameters
Item Description

extbuf If NULL, inet6_opt_append will return only the
updated length. If extbuf is not NULL, in addition
to returning the length, the function inserts any
needed pad option, initializes the option (setting
the type and length fields) and returns a pointer to
the location for the option content in databufp.

extlen Size of the buffer pointed to by extbuf.

offset The length returned by inet6_opt_init() or a
previous inet6_opt_append().

type 8-bit option type. Must have a value from 2 to 255,
inclusive. (0 and 1 are reserved for the Pad1 and
PadN options, respectively.)

len Length of the option data (excluding the option type
and option length fields). Must be a value between
0 and 255, inclusive, and is the length of the option
data that follows.

Technical Reference: Communication subroutines 173

Item Description

align Alignment of the option data. Must be a value of 1,
2, 4, or 8. The align value can not exceed the value
of len.

databufp Specifies the content of the option.

Return Values
Item Description

-1 Option content does not fit in the extension header buffer.

integer value Updated total length of the extension header.

inet6_opt_find Subroutine

Purpose
Looks for a specified option in the extension header.

Syntax
int inet6_opt_find(void *extbuf, socklen_t extlen, int offset,
 uint8_t *typep, socklen_t *lenp,
 void **databufp);

Description
The inet6_opt_find subroutine is similar to the inet6_opt_next() function, except this subroutine lets
the caller specify the option type to be searched for, instead of always returning the next option in the
extension header.

Parameters
Item Description

extbuf Specifies the extension header.

extlen Size of the buffer pointed to by extbuf.

offset Specifies the position where scanning of the
extension buffer can continue. Should either
be 0 (for the first option) or the length
returned by a previous call to inet6_opt_next() or
inet6_opt_find().

typep Stores the option type.

lenp Stores the length of the option data (excluding the
option type and option length fields).

databufp Points to the data field of the option.

Return Values
The inet6_opt_find subroutine returns the updated "previous" total length computed by advancing past
the option that was returned and past any options that did not match the type. This returned "previous"

174 AIX Version 7.2: Technical Reference: Communication Subroutines

length can then be passed to subsequent calls to inet6_opt_find() for finding the next occurrence of the
same option type.

Item Description

–1 The option cannot be located, there are no more options, or the option extension header is
malformed.

inet6_opt_finish Subroutine

Purpose
Returns the final length of an extension header.

Syntax
int inet6_opt_finish(void *extbuf, socklen_t extlen, int offset);

Description
The inet6_opt_finish subroutine returns the final length of an extension header, taking into account the
final padding of the extension header to make it a multiple of 8 bytes.

Parameters
Item Description

extbuf If NULL, inet6_opt_finish will only return the
final length. If extbuf is not NULL, in addition to
returning the length, the function initializes the
option by inserting a Pad1 or PadN option of the
proper length.

extlen Size of the buffer pointed to by extbuf.

offset The length returned by inet6_opt_init() or a
previous inet6_opt_append().

Return Values
Item Description

-1 The necessary pad does not fit in the extension header buffer.

integer value Final length of the extension header.

inet6_opt_get_val Subroutine

Purpose
Extracts data items of various sizes in the data portion of the option.

Syntax
int inet6_opt_get_val(void *databuf, int offset, void *val,
 socklen_t vallen);

Technical Reference: Communication subroutines 175

Description
The inet6_opt_get_val subroutine extracts data items of various sizes in the data portion of the option.
It is expected that each field is aligned on its natural boundaries, but the subroutine will not rely on the
alignment.

Parameters
Item Description

databuf Pointer to the data content returned by inet6_opt_next() or inet6_opt_find().

offset Specifies where in the data portion of the option the value should be extracted.
The first byte after the option type and length is accessed by specifying an offset
of 0.

val Pointer to the destination for the extracted data.

vallen Specifies the size of the data content to be extracted.

Return Values
The inet6_opt_get_val subroutine returns the offset for the next field (that is, offset + vallen), which can
be used when extracting option content with multiple fields.

inet6_opt_init Subroutine

Purpose
Returns the number of bytes needed for an empty extension header.

Syntax
int inet6_opt_init(void *extbuf, socklen_t extlen);

Description
The inet6_opt_init subroutine returns the number of bytes needed for the empty extension header (that
is, a header without any options).

Parameters
Item Description

extbuf Specifies NULL for an empty header. If extbuf is not NULL, it initializes the extension
header to have the correct length field.

extlen Specifies the size of the extension header. The value of extlen must be a positive
value that is a multiple of 8.

Return Values
Item Description

-1 The value of extlen is not a positive (non-zero) multiple of 8.

integer value Number of bytes needed for an empty extension header.

176 AIX Version 7.2: Technical Reference: Communication Subroutines

inet6_opt_next Subroutine
Item Description

–1 There are no more options or the option extension header is malformed.

Purpose
Parses received option extension headers returning the next option.

Syntax
int inet6_opt_next(void *extbuf, socklen_t extlen, int offset,
 uint8_t *typep, socklen_t *lenp,
 void **databufp);

Description
The inet6_opt_next subroutine parses received option extension headers, returning the next option. The
next option is returned by updating the typep, lenp, and databufp parameters.

Parameters
Item Description

extbuf Specifies the extension header.

extlen Size of the buffer pointed to by extbuf.

offset Specifies the position where scanning of the
extension buffer can continue. Should either
be 0 (for the first option) or the length
returned by a previous call to inet6_opt_next() or
inet6_opt_find().

typep Stores the option type.

lenp Stores the length of the option data (excluding the
option type and option length fields).

databufp Points to the data field of the option.

Return Values
The inet6_opt_next subroutine returns the updated "previous" length computed by advancing past the
option that was returned. This returned "previous" length can then be passed to subsequent calls to
inet6_opt_next(). This function does not return any PAD1 or PADN options.

inet6_opt_set_val Subroutine

Purpose
Inserts data items into the data portion of an option.

Syntax
int inet6_opt_set_val(void *databuf, int offset, void *val,
 socklen_t vallen);

Technical Reference: Communication subroutines 177

Description
The inet6_opt_set_val subroutine inserts data items of various sizes into the data portion of the option.
The caller must ensure that each field is aligned on its natural boundaries. However, even when the
alignment requirement is not satisfied, inet6_opt_set_val will just copy the data as required.

Parameters
Item Description

databuf Pointer to the data area returned by inet6_opt_append().

offset Specifies where in the data portion of the option the value should be inserted; the
first byte after the option type and length is accessed by specifying an offset of 0.

val Pointer to the data content to be inserted.

vallen Specifies the size of the data content to be inserted.

Return Values
The function returns the offset for the next field (that is, offset + vallen), which can be used when
composing option content with multiple fields.

inet6_rth_add Subroutine

Purpose
Adds an IPv6 address to the end of the Routing header being constructed.

Syntax
int inet6_rth_add(void *bp, const struct in6_addr *addr);

Description
The inet6_rth_add subroutine adds the IPv6 address pointed to by addr to the end of the Routing header
being constructed.

Parameters
Item Description

bp Points to the buffer of the Routing header.

addr Specifies which IPv6 address is to be added.

Return Values
Item Description

0 Success. The segleft member of the Routing Header is updated to account for the new
address in the Routing header.

–1 The new address could not be added.

inet6_rth_getaddr Subroutine

178 AIX Version 7.2: Technical Reference: Communication Subroutines

Purpose
Returns a pointer to a specific IPv6 address in a Routing header.

Syntax
struct in6_addr *inet6_rth_getaddr(const void *bp, int index);

Description
The inet6_rth_getaddr subroutine returns a pointer to the IPv6 address specified by index in the Routing
header described by bp. An application should first call inet6_rth_segments() to obtain the number of
segments in the Routing header.

Parameters
Item Description

bp Points to the Routing header.

index Specifies the index of the IPv6 address that must be returned. The value of index
must be between 0 and one less than the value returned by inet6_rth_segments().

Return Values
Item Description

NULL The inet6_rth_getaddr subroutine failed.

Valid
pointer

Pointer to the address indexed by index.

inet6_rth_init Subroutine

Purpose
Initializes a buffer to contain a Routing header.

Syntax
void *inet6_rth_init(void *bp, socklen_t bp_len, int type,
 int segments);

Description
The inet6_rth_init subroutine initializes the buffer pointed to by bp to contain a Routing header of the
specified type and sets ip6r_len based on the segments parameter. bp_len is only used to verify that the
buffer is large enough. The ip6r_segleft field is set to 0; inet6_rth_add() increments it.

When the application uses ancillary data, the application must initialize any cmsghdr fields. The caller
must allocate the buffer, and the size of the buffer can be determined by calling inet6_rth_space().

Parameters
Item Description

bp Points to the buffer to be initialized.

bp_len Size of the buffer pointed to by bp.

Technical Reference: Communication subroutines 179

Item Description

type Specifies the type of Routing header to be held.

segments Specifies the number of addresses within the Routing header.

Return Values
Upon success, the return value is the pointer to the buffer (bp), and this is then used as the first argument
to the inet6_rth_add() function.

Item Description

NULL The buffer could not be initialized.

inet6_rth_reverse Subroutine

Purpose
Writes a new Routing header that sends datagrams along the reverse route of a Routing header extension
header.

Syntax
int inet6_rth_reverse(const void *in, void *out);

Description
The inet6_rth_reverse subroutine takes a Routing header extension header (pointed to by the first
argument) and writes a new Routing header that sends datagrams along the reverse of that route. The
function reverses the order of the addresses and sets the segleft member in the new Routing header to
the number of segments. Both arguments are allowed to point to the same buffer (that is, the reversal can
occur in place).

Parameters
Item Description

in Points to the original Routing header extension header.

out Points to the new Routing header route that reverses the route of in.

Return Values
Item Description

0 The reverse Routing header was successfully created.

–1 The reverse Routing header could not be created.

inet6_rth_segments Subroutine

Purpose
Returns the number of segments (addresses) contained in a Routing header.

180 AIX Version 7.2: Technical Reference: Communication Subroutines

Syntax
int inet6_rth_segments(const void *bp);

Description
The inet6_rth_segments subroutine returns the number of segments (addresses) contained in the
Routing header described by bp.

Parameters
Item Description

bp Points to the Routing header.

Return Values
Item Description

0 (or greater) The number of addresses in the Routing header was returned.

–1 The number of addresses of the Routing header could not be returned.

inet6_rth_space Subroutine

Purpose
Returns the required number of bytes to hold a Routing header.

Syntax
socklen_t inet6_rth_space(int type, int segments);

Description
The inet6_rth_space subroutine returns the number of bytes required to hold a Routing header of the
specified type containing the specified number of segments (addresses). For an IPv6 Type 0 Routing
header, the number of segments must be between 0 and 127, inclusive. For an IPv6 Type 2 Routing
Header, the number of segments must be 1. The return value is simply the space for the Routing
header. When the application uses ancillary data, the application must pass the returned length to
CMSG_SPACE() in order to determine how much memory is needed for the ancillary data object (including
the cmsghdr structure).

Note: Although inet6_rth_space returns the size of the ancillary data, it does not allocate the space
required for the ancillary data. This allows an application to allocate a larger buffer, so that other ancillary
data objects can be added, because all the ancillary data objects must be specified to sendmsg() as a
single msg_control buffer.

Parameters
Item Description

type Specifies the type of Routing header to be held.

segments Specifies the number of addresses within the Routing header.

Technical Reference: Communication subroutines 181

Return Values
Item Description

0 Either the type of the Routing header is not supported by this implementation
or the number of segments is invalid for this type of Routing header.

length Determines how much memory is needed for the ancillary data object.

inet_addr Subroutine

Purpose
Converts Internet addresses to Internet numbers.

Library
Standard C Library (libc.a)

Syntax
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <netinet/in.h>
#include <arpa/inet.h>

in_addr_t inet_addr (CharString)
register const char *CharString;

Description
The inet_addr subroutine converts an ASCII string containing a valid Internet address using dot notation
into an Internet address number typed as an unsigned integer value. An example of dot notation is
120.121.5.123. The inet_addr subroutine returns an error value if the Internet address notation in the
ASCII string supplied by the application is not valid.

Note: Although they both convert Internet addresses in dot notation to Internet numbers, the inet_addr
subroutine and inet_network process ASCII strings differently. When an application gives the inet_addr
subroutine a string containing an Internet address value without a delimiter, the subroutine returns the
logical product of the value represented by the string and 0xFFFFFFFF. For any other Internet address,
if the value of the fields exceeds the previously defined limits, the inet_addr subroutine returns an error
value of -1.

When an application gives the inet_network subroutine a string containing an Internet address value
without a delimiter, the inet_network subroutine returns the logical product of the value represented by
the string and 0xFF. For any other Internet address, the subroutine returns an error value of -1 if the value
of the fields exceeds the previously defined limits.

All applications containing the inet_addr subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Sample return values for each subroutine are as follows:

Application String inet_addr Returns inet_network Returns

0x1234567890abcdef
0x1234567890abcdef.
256.257.258.259

0x090abcdef 0xFFFFFFFF (= -1)
0xFFFFFFFF (= -1)

0x000000ef 0x0000ef00
0x00010203

182 AIX Version 7.2: Technical Reference: Communication Subroutines

The ASCII string for the inet_addr subroutine must conform to the following format:

string::= field | field delimited_field^1-3 | delimited_field^1-3
delimited_field::= delimiter field | delimiter
delimiter::= .
field::= 0X | 0x | 0Xhexadecimal* | 0x hexadecimal* | decimal* | 0 octal
hexadecimal::= decimal |a|b|c|d|e|f|A|B|C|D|E|F
decimal::= octal |8|9
octal::= 0|1|2|3|4|5|6|7

Note:

1. ^n indicates n repetitions of a pattern.
2. ^n-m indicates n to m repetitions of a pattern.
3. * indicates 0 or more repetitions of a pattern, up to environmental limits.
4. The Backus Naur form (BNF) description states the space character, if one is used. Text indicates text,

not a BNF symbol.

The inet_addr subroutine requires an application to terminate the string with a null terminator (0x00) or a
space (0x30). The string is considered invalid if the application does not end it with a null terminator or a
space. The subroutine ignores characters trailing a space.

The following describes the restrictions on the field values for the inet_addr subroutine:

Format Field Restrictions (in decimal)

a Value_a < 4,294,967,296

a.b Value_a < 256; Value_b < 16,777,216

a.b.c Value_a < 256; Value_b < 256; Value_c < 65536

a.b.c.d Value_a < 256; Value_b < 256; Value_c < 256; Value_d < 256

Applications that use the inet_addr subroutine can enter field values exceeding these restrictions.
The subroutine accepts the least significant bits up to an integer in length, then checks whether the
truncated value exceeds the maximum field value. For example, if an application enters a field value of
0x1234567890 and the system uses 16 bits per integer, then the inet_addr subroutine uses bits 0 -15.
The subroutine returns 0x34567890.

Applications can omit field values between delimiters. The inet_addr subroutine interprets empty fields
as 0.

Note:

1. The inet_addr subroutine does not check the pointer to the ASCII string. The user must ensure the
validity of the address in the ASCII string.

2. The application must verify that the network and host IDs for the Internet address conform to either a
Class A, B, or C Internet address. The inet_attr subroutine processes any other number as a Class C
address.

Parameters

Item Description

CharString Represents a string of characters in the Internet address form.

Return Values
For valid input strings, the inet_addr subroutine returns an unsigned integer value comprised of the bit
patterns of the input fields concatenated together. The subroutine places the first pattern in the most
significant position and appends any subsequent patterns to the next most significant positions.

The inet_addr subroutine returns an error value of -1 for invalid strings.

Technical Reference: Communication subroutines 183

Note: An Internet address with a dot notation value of 255.255.255.255 or its equivalent in a different
base format causes the inet_addr subroutine to return an unsigned integer value of 4294967295. This
value is identical to the unsigned representation of the error value. Otherwise, the inet_addr subroutine
considers 255.255.255.255 a valid Internet address.

Files

Item Description

/etc/hosts Contains host names.

/etc/networks Contains network names.

Related reference
gethostbyname Subroutine
Related information
Sockets Overview
Understanding Network Address Translation

inet_lnaof Subroutine

Purpose
Returns the host ID of an Internet address.

Library
Standard C Library (libc.a)

Syntax

#include <sys/socket.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet_Inaof (InternetAddr)
struct in_addr InternetAddr;

Description
The inet_lnaof subroutine masks off the host ID of an Internet address based on the Internet address
class. The calling application must enter the Internet address as an unsigned long value.

All applications containing the inet_lnaof subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Note: The application must verify that the network and host IDs for the Internet address conform to
either a Class A, B, or C Internet address. The inet_lnaof subroutine processes any other number as a
Class C address.

Parameters

Item Description

InternetAddr Specifies the Internet address to separate.

184 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
The return values of the inet_lnaof subroutine depend on the class of Internet address the application
provides:

Value Description

Class A The logical product of the Internet address and 0x00FFFFFF.

Class B The logical product of the Internet address and 0x0000FFFF.

Class C The logical product of the Internet address and 0x000000FF.

Files

Item Description

 /etc/hosts Contains host names.

Related information
Sockets Overview
Understanding Network Address Translation

inet_makeaddr Subroutine

Purpose
Returns a structure containing an Internet Protocol address based on a network ID and host ID provided
by the application.

Library
Standard C Library (libc.a)

Syntax

#include <sys/socket.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

struct in_addr inet_makeaddr (Net, LocalNetAddr)
int Net, LocalNetAddr;

Description
The inet_makeaddr subroutine forms an Internet Protocol (IP) address from the network ID and Host
ID provided by the application (as integer types). If the application provides a Class A network ID, the
inet_makeaddr subroutine forms the IP address using the net ID in the highest-order byte and the logical
product of the host ID and 0x00FFFFFF in the 3 lowest-order bytes. If the application provides a Class B
network ID, the inet_makeaddr subroutine forms the IP address using the net ID in the two highest-order
bytes and the logical product of the host ID and 0x0000FFFF in the lowest two ordered bytes. If the
application does not provide either a Class A or Class B network ID, the inet_makeaddr subroutine forms
the IP address using the network ID in the 3 highest-order bytes and the logical product of the host ID
and 0x0000FFFF in the lowest-ordered byte.

The inet_makeaddr subroutine ensures that the IP address format conforms to network order, with the
first byte representing the high-order byte. The inet_makeaddr subroutine stores the IP address in the
structure as an unsigned long value.

Technical Reference: Communication subroutines 185

The application must verify that the network ID and host ID for the IP address conform to class A, B, or C.
The inet_makeaddr subroutine processes any nonconforming number as a Class C address.

The inet_makeaddr subroutine expects the in_addr structure to contain only the IP address field. If
the application defines the in_addr structure otherwise, then the value returned in in_addr by the
inet_makeaddr subroutine is undefined.

All applications containing the inet_makeaddr subroutine must be compiled with the _BSD macro set to
a specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the
BSD libbsd.a library.

Parameters

Item Description

Net Contains an Internet network number.

LocalNetAddr Contains a local network address.

Return Values
Upon successful completion, the inet_makeaddr subroutine returns a structure containing an IP address.

If the inet_makeaddr subroutine is unsuccessful, the subroutine returns a -1.

Files

Item Description

 /etc/hosts Contains host names.

Related information
Sockets Overview
Understanding Network Address Translation

inet_net_ntop Subroutine

Purpose
Converts between binary and text address formats.

Library
Library (libc.a)

Syntax

char *inet_net_ntop (af, src, bits, dst, size)
int af;
const void *src;
int bits;
char *dst;
size_t size;

Description
This function converts a network address and the number of bits in the network part of the address
into the CIDR format ascii text (for example, 9.3.149.0/24). The af parameter specifies the family of the
address. The src parameter points to a buffer holding an IPv4 address if the af parameter is AF_INET. The
bits parameter is the size (in bits) of the buffer pointed to by the src parameter. The dst parameter points

186 AIX Version 7.2: Technical Reference: Communication Subroutines

to a buffer where the function stores the resulting text string. The size parameter is the size (in bytes) of
the buffer pointed to by the dst parameter.

Parameters
Item Description

af Specifies the family of the address.

src Points to a buffer holding and IPv4 address if the af parameter is AF_INET.

bits Specifies the size of the buffer pointed to by the src parameter.

dst Points to a buffer where the resulting text string is stored.

size Specifies the size of the buffer pointed to by the dst parameter.

Return Values
If successful, a pointer to a buffer containing the text string is returned. If unsuccessful, NULL is returned.
Upon failure, errno is set to EAFNOSUPPORT if the af parameter is invalid or ENOSPC if the size of the
result buffer is inadequate.

Related information
Subroutines Overview

inet_net_pton Subroutine

Purpose
Converts between text and binary address formats.

Library
Library (libc.a)

Syntax
int inet_net_pton (af, src, dst, size)
int af;
const char *src;
void *dst;
size_t size;

Description
This function converts a network address in ascii into the binary network address. The ascii
representation can be CIDR-based (for example, 9.3.149.0/24) or class-based (for example, 9.3.149.0).
The af parameter specifies the family of the address. The src parameter points to the string being passed
in. The dst parameter points to a buffer where the function will store the resulting numeric address. The
size parameter is the size (in bytes) of the buffer pointed to by the dst parameter.

Parameters
Item Description

af Specifies the family of the address.

src Points to the string being passed in.

dst Points to a buffer where the resulting numeric address is stored.

Technical Reference: Communication subroutines 187

Item Description

size Specifies the size (in bytes) of the buffer pointed to by the dst parameter.

Return Values
If successful, the number of bits, either inputted classfully or specified with /CIDR, is returned. If
unsuccessful, a -1 (negative one) is returned (check errno). ENOENT means it was not a valid network
specification.

Related information
Subroutines Overview

inet_netof Subroutine

Purpose
Returns the network id of the given Internet address.

Library
Standard C Library (libc.a)

Syntax
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet_netof (InternetAddr)
struct in_addr InternetAddr;

Description
The inet_netof subroutine returns the network number from the specified Internet address number typed
as unsigned long value. The inet_netof subroutine masks off the network number and the host number
from the Internet address based on the Internet address class.

All applications containing the inet_netof subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Note: The application assumes responsibility for verifying that the network number and the host number
for the Internet address conforms to a class A or B or C Internet address. The inet_netof subroutine
processes any other number as a class C address.

Parameters

Item Description

 InternetAddr Specifies the Internet address to separate.

Return Values
Upon successful completion, the inet_netof subroutine returns a network number from the specified long
value representing the Internet address. If the application gives a class A Internet address, the inet_lnoaf
subroutine returns the logical product of the Internet address and 0xFF000000. If the application gives
a class B Internet address, the inet_lnoaf subroutine returns the logical product of the Internet address

188 AIX Version 7.2: Technical Reference: Communication Subroutines

and 0xFFFF0000. If the application does not give a class A or B Internet address, the inet_lnoaf
subroutine returns the logical product of the Internet address and 0xFFFFFF00.

Files

Item Description

 /etc/hosts Contains host names.

 /etc/networks Contains network names.

Related information
Sockets Overview
Understanding Network Address Translation

inet_network Subroutine

Purpose
Converts an ASCII string containing an Internet network addressee in . (dot) notation to an Internet
address number.

Library
Standard C Library (libc.a)

Syntax

#include <sys/socket.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

in_addr_t inet_network (CharString)
register const char *CharString;

Description
The inet_network subroutine converts an ASCII string containing a valid Internet address using . (dot)
notation (such as, 120.121.122.123) to an Internet address number formatted as an unsigned integer
value. The inet_network subroutine returns an error value if the application does not provide an ASCII
string containing a valid Internet address using . notation.

The input ASCII string must represent a valid Internet address number, as described in "TCP/IP
addressing" in Networks and communication management. The input string must be terminated with a
null terminator (0x00) or a space (0x30). The inet_network subroutine ignores characters that follow the
terminating character.

The input string can express an Internet address number in decimal, hexadecimal, or octal format. In
hexadecimal format, the string must begin with 0x. The string must begin with 0 to indicate octal format.
In decimal format, the string requires no prefix.

Each octet of the input string must be delimited from another by a period. The application can omit values
between delimiters. The inet_network subroutine interprets missing values as 0.

The following examples show valid strings and their output values in both decimal and hexadecimal
notation:

Technical Reference: Communication subroutines 189

Examples of valid strings

Input String Output Value (in decimal) Output Value (in hex)

...1 1 0x00000001

.1.. 65536 0x00010000

1 1 0x1

0xFFFFFFFF 255 0x000000FF

1. 256 0x100

1.2.3.4 66048 0x010200

0x01.0X2.03.004 16909060 0x01020304

1.2. 3.4 16777218 0x01000002

9999.1.1.1 251724033 0x0F010101

The following examples show invalid input strings and the reasons they are not valid:

Examples of invalid strings

Input String Reason

1.2.3.4.5 Excessive fields.

1.2.3.4. Excessive delimiters (and therefore fields).

1,2 Bad delimiter.

1p String not terminated by null terminator nor space.

{empty string} No field or delimiter present.

Typically, the value of each octet of an Internet address cannot exceed 246. The inet_network subroutine
can accept larger values, but it uses only the eight least significant bits for each field value. For
example, if an application passes 0x1234567890.0xabcdef, the inet_network subroutine returns
37103 (0x000090EF).

The application must verify that the network ID and host ID for the Internet address conform to class A,
class B, or class C. The inet_makeaddr subroutine processes any nonconforming number as a class C
address.

The inet_network subroutine does not check the pointer to the ASCII input string. The application must
verify the validity of the address of the string.

All applications containing the inet_network subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

CharString Represents a string of characters in the Internet address form.

Return Values
For valid input strings, the inet_network subroutine returns an unsigned integer value that comprises
the bit patterns of the input fields concatenated together. The inet_network subroutine places the first
pattern in the leftmost (most significant) position and appends subsequent patterns if they exist.

190 AIX Version 7.2: Technical Reference: Communication Subroutines

For invalid input strings, the inet_network subroutine returns a value of -1.

Files

Item Description

/etc/hosts Contains host names.

/etc/networks Contains network names.

Related information
Sockets Overview
Understanding Network Address Translation

inet_ntoa Subroutine

Purpose
Converts an Internet address into an ASCII string.

Library
Standard C Library (libc.a)

Syntax

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char *inet_ntoa (InternetAddr)
struct in_addr InternetAddr;

Description
The inet_ntoa subroutine takes an Internet address and returns an ASCII string representing the Internet
address in dot notation. All Internet addresses are returned in network order, with the first byte being the
high-order byte.

Use C language integers when specifying each part of a dot notation.

All applications containing the inet_ntoa subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

InternetAddr Contains the Internet address to be converted to ASCII.

Return Values
Upon successful completion, the inet_ntoa subroutine returns an Internet address.

If the inet_ntoa subroutine is unsuccessful, the subroutine returns a -1.

Technical Reference: Communication subroutines 191

Files

Item Description

/etc/hosts Contains host names.

/etc/networks Contains network names.

Related information
Sockets Overview
Understanding Network Address Translation

inet_ntop Subroutine

Purpose
This function is deprecated for AF_INET6 in favor of the inet_ntop6_zone Subroutine .

Library
Library (libc.a)

Syntax

const char *inet_ntop (af, src, dst, size)
int af;
const void *src;
char *dst;
size_t size;

Description
This function converts from an address in binary format (as specified by the src parameter) to standard
text format, and places the result in the dst parameter (if size, which specifies the space available in the
dst parameter, is sufficient). The af parameter specifies the family of the address. This can be AF_INET or
AF_INET6.

The src parameter points to a buffer holding an IPv4 address if the af parameter is AF_INET, or an
IPv6 address if the af parameter is AF_INET6. The dst parameter points to a buffer where the function
will store the resulting text string. The size parameter specifies the size of this buffer (in bytes). The
application must specify a non-NULL dst parameter. For IPv6 addresses, the buffer must be at least
INET6_ADDRSTRLEN bytes. For IPv4 addresses, the buffer must be at least INET_ADDRSTRLEN bytes.

In order to allow applications to easily declare buffers of the proper size to store IPv4 and IPv6 addresses
in string form, the following two constants are defined in the <netinet/in.h> library:

#define INET_ADDRSTRLEN 16
#define INET6_ADDRSTRLEN 46

Parameters
Item Description

af Specifies the family of the address. This can be AF_INET or AF_INET6.

src Points to a buffer holding an IPv4 address if the af parameter is set to
AF_INET, or an IPv6 address if the af parameter is set to AF_INET6.

dst Points to a buffer where the resulting text string is stored.

size Specifies the size (in bytes) of the buffer pointed to by the dst parameter.

192 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
If successful, a pointer to the buffer containing the converted address is returned. If unsuccessful, NULL
is returned. Upon failure, the errno global variable is set to EAFNOSUPPORT if the specified address
family (af) is unsupported, or to ENOSPC if the size parameter indicates the destination buffer is too small.

Related information
Subroutines Overview

inet_pton Subroutine

Purpose
This function is deprecated for AF_INET6 in favor of theinet_pton6_zone Subroutine .

Library
Library (libc.a)

Syntax
int inet_pton (af, src, dst)
int af;
const char *src;
void *dst;

Description
This function converts an address in its standard text format into its numeric binary form. The af
parameter specifies the family of the address.

Note: Only the AF_INET and AF_INET6 address families are supported.

Parameters
Item Description

af Specifies the family of the address. This can be AF_INET or AF_INET6.

src Points to the string being passed in.

dst Points to a buffer where the function stores the numeric address. The address
is returned in network byte order.

Return Values
If successful, one is returned. If unsuccessful, zero is returned if the input is not a valid IPv4 dotted-
decimal string or a valid IPv6 address string; or a negative one with the errno global variable set to
EAFNOSUPPORT if the af parameter is unknown. The calling application must ensure that the buffer
referred to by the dst parameter is large enough to hold the numeric address (4 bytes for AF_INET or 16
bytes for AF_INET6).

If the af parameter is AF_INET, the function accepts a string in the standard IPv4 dotted-decimal form.

ddd.ddd.ddd.ddd

Where ddd is a one to three digit decimal number between 0 and 255.

Note: Many implementations of the existing inet_addr and inet_aton functions accept nonstandard input
such as octal numbers, hexadecimal numbers, and fewer than four numbers. inet_pton does not accept
these formats.

Technical Reference: Communication subroutines 193

If the af parameter is AF_INET6, then the function accepts a string in one of the standard IPv6 text forms
defined in the addressing architecture specification.

Related information
Subroutines Overview

innetgr, getnetgrent, setnetgrent, or endnetgrent Subroutine

Purpose
Handles the group network entries.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

innetgr (NetGroup, Machine, User, Domain)
char * NetGroup, * Machine, * User, * Domain;

getnetgrent (MachinePointer, UserPointer, DomainPointer)
char ** MachinePointer, ** UserPointer, ** DomainPointer;

void setnetgrent (NetGroup)
char *NetGroup

void endnetgrent ()

Description
The innetgr subroutine is threadsafe. However, the return value points to static data that is overwritten by
subsequent calls. This data must be copied to be saved for use by subsequent calls.

The innetgr subroutine returns 1 or 0, depending on if netgroup contains the machine, user, domain triple
as a member. Any of these three strings; machine, user, or domain, can be NULL, in which case it signifies
a wild card.

The getnetgrent subroutine returns the next member of a network group. After the call, machinepointer
will contain a pointer to a string containing the name of the machine part of the network group member,
and similarly for userpointer and domainpointer. If any of machinepointer, userpointer, or domainpointer
is returned as a NULL pointer, it signifies a wild card. The getnetgrent subroutine uses malloc to allocate
space for the name. This space is released when the endnetgrent subroutine is called. getnetgrent
returns 1 if it succeeded in obtaining another member of the network group or 0 when it has reached the
end of the group.

The setnetgrent subroutine establishes the network group from which the getnetgrent subroutine will
obtain members, and also restarts calls to the getnetgrent subroutine from the beginnning of the list.
If the previous setnetgrent() call was to a different network group, an endnetgrent() call is implied.
endnetgrent() frees the space allocated during the getnetgrent() calls.

Parameters

Item Description

Domain Specifies the domain.

DomainPointer Points to the string containing Domain part of the network group.

194 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

Machine Specifies the machine.

MachinePointer Points to the string containing Machine part of the network group.

NetGroup Points to a network group.

User Specifies a user.

UserPointer Points to the string containing User part of the network group.

Return Values

Ite
m

Description

1 Indicates that the subroutine was successful in obtaining a member.

0 Indicates that the subroutine was not successful in obtaining a member.

Files

Item Description

/etc/netgroup Contains network groups recognized by the system.

/usr/include/netdb.h Contains the network database structures.

Related information
Sockets Overview

ioctl Socket Control Operations

Purpose
Performs network-related control operations.

Syntax
#include <sys/ioctl.h>

int ioctl (fd, cmd, .../* arg */)
int fd;
int cmd;
int ... /* arg */

Description
The socket ioctl commands does various network-related control. The fd argument is a socket descriptor.
For non-socket descriptors, the functions that are performed by this call are unspecified.

The cmd argument and an optional third argument (with varying type) are passed to and interpreted by
the socket ioctl function to perform an appropriate control operation that is specified by the user.

The socket ioctl control operations can be in the following control operations categories:

• Socket
• Routing table
• ARP table
• Global network parameters

Technical Reference: Communication subroutines 195

• Interface

Parameters
Item Description

fd Open file descriptor that refers to a socket created by using socket or accept calls.

cmd Selects the control function to be performed.

.../* arg */ Represents information that is required for the requested function. The type of arg
depends on the particular control request, but it is either an integer or a pointer to a
socket-specific data structure.

Socket Control Operations
The following ioctl commands operate on sockets:

ioctl command Description

SIOCATMARK Determines whether the read pointer is pointing to the logical mark
in the DataStream. The logical mark indicates the point at which the
out-of-band data is sent.

ioctl(fd, SIOCATMARK,&atmark);
int atmark;

If atmark is set to 1 on return, the read pointer points to the mark and
the next read returns data after the mark. If atmark is set to 0 on return
(assuming out-of-band data is present on the DataStream), the next
read returns data that is sent before the out-of-band mark.

Note: The out-of-band data is a logically independent data channel that
is delivered to the user independently of normal data; in addition, a
signal is also sent because of the immediate attention required. Ctrl-C
characters are an example.

SIOCSPGRP

SIOCGPGRP

SIOCSPGRP sets the process group information for a socket.
SIOCGPGRP gets the process group ID associated with a socket.

ioctl (fd, cmd, (int)&pgrp);
int pgrp;

cmd
Set to SIOCSPGRP or SIOCGPGRP.

pgrp
Specifies the process group ID for the socket.

Routing Table Control Operations
The following ioctl commands operate on the kernel routing table:

196 AIX Version 7.2: Technical Reference: Communication Subroutines

ioctl command Description

SIOCADDRT

SIOCDELRT

SIOCADDRT adds a route entry in the routing table. SIOCDELRT deletes
a route entry from the routing table.

ioctl(fd, cmd, (caddr_t)&route);
struct ortentry route;

cmd
Set to SIOCADDRT or SIOCDELRT.

The route entry information is passed in the ortentry structure.

SIOUPDROUTE Updates the routing table by using the information that is passed in the
ifreq structure.

ioctl (fd, SIOUPDROUTE, (caddr_t)&ifr);
struct ifreq ifr;

ARP Table Control Operations
The following ioctl commands operate on the kernel ARP table. The net/if_arp.h header file must be
included.

ioctl command Description

SIOCSARP

SIOCDARP

SIOCGARP

SIOCSARP adds or modifies an ARP entry in the ARP table. SIOCDARP
deletes an ARP entry from the ARP table. SIOCGARP gets an ARP entry
from the ARP table.

ioctl(fd, cmd, (caddr_t)&ar);
struct arpreq ar;

cmd
Set to SIOCSARP, SIOCDARP, or SIOCGARP.

The ARP entry information is passed in the arpreq structure. If ar.if
Type = IFT_IB and the command is SIOCDARP, the InfiniBand (IB)
ARP entry is deleted.

Global Network Parameters Control Operations
The following ioctl commands operate as global network parameters:

Technical Reference: Communication subroutines 197

ioctl command Description

SIOCSNETOPT

SIOCGNETOPT

SIOCDNETOPT

SIOCGNETOPT1

SIOCSNETOPT sets the value of a network option. SIOCGNETOPT gets
the value of a network option. SIOCDNETOPT sets the default values
of a network option.

ioctl(fd, cmd, (caddr_t)&oreq);
struct optreq oreq;

cmd
Set to SIOCSNETOPT, SIOCGNETOPT, or SIOCDNETOPT.

The network option value is stored in the optreq structure.

SIOCGNETOPT1 gets the current value, default value, and the range of
a network option.

ioctl(fd, SIOCGNETOPT1, (caddr_t)&oreq);
struct optreq1 oreq;

The network option information is stored in the optreq1 structure
upon return The optreq and optreq1 structures are defined in net/
netopt.h.

SIOCGNMTUS

SIOCGETMTUS

SIOCADDMTU

SIOCDELMTU

SIOCGNMTUS gets the number of MTUs maintained in the list of
common MTUs. SIOCADDMTU adds an MTU in the list of common
MTUs. SIOCDELMTU deletes an MTU from the list of common MTUs.

ioctl(fd, cmd, (caddr_t)&nmtus);
int nmtus;

cmd
Set to SIOCGNMTUS, SIOCADDMTU, or SIOCDELMTU.

SIOCGETMTUS gets the MTUs maintained in the list of common MTUs.

ioctl(fd, SIOCGETMTUS, (caddr_t)&gm);
struct get_mtus gm;

The get_mtus structure is defined in netinet/in.h.

Interface Control Operations
The following ioctl commands operate on interfaces. The net/if.h header file must be included.

ioctl command Description

SIOCSIFADDR

SIOCDIFADDR

SIOCSIFADDR sets an interface address. SIOCDIFADDR deletes an
interface address. The interface address is specified in the ifr.ifr_addr
field. SIOCGIFADDR gets an interface address. The address is
returned in the ifr.ifr_addr field.

ioctl(fd, cmd, (caddr_t)&ifr, sizeof(struct ifreq));
struct ifreq ifr;

cmd
Set to SIOCSIFADDR, or SIOCDIFADDR.

198 AIX Version 7.2: Technical Reference: Communication Subroutines

ioctl command Description

SIOCAIFADDR SIOCAIFADDR adds an interface address. The interface name is
specified in the ifr.ifra_name field. The alias IP address is specified
in the theifr.ifra_addr field. The alias IP broadcast address might
be specified in the ifr.ifra_broadaddr field, and the alias IP network
mask might be specified in the ifr.ifra_mask.

ioctl(fd, cmd, (caddr_t)&ifr, sizeof(struct ifaliasreq));
struct ifaliasreq ifr;

cmd
Set to SIOCAIFADDR

SIOCGIFADDRS Gets the list of addresses that are associated with an interface.

ioctl (fd, SIOCGIFADDRS, (caddr_t)ifaddrsp);
struct ifreqaddrs *ifaddrsp;

The interface name is passed in the ifaddrsp->ifr_name field. The
addresses that are associated with the interface are stored in
ifaddrsp->ifrasu array on return.

Note: The ifreqaddrs structure contains space for storing
only one sockaddr_in/sockaddr_in6 structure (array of one
sockaddr_in/sockaddr_in6 element). To get n addresses
associated with an interface, the caller of the ioctl command must
allocate space for {sizeof (struct ifreqaddrs) + (n * sizeof (struct
sockaddr_in)} bytes.

SIOCSIFDSTADDR

SIOCGIFDSTADDR

SIOCSIFDSTADDR sets the point-to-point address for an interface
that is specified in the ifr.ifr_dstaddr field. SIOCGIFDSTADDR gets
the point-to-point address that is associated with an interface. The
address is stored in the ifr.ifr_dstaddr field on return.

ioctl(fd, cmd, (caddr_t)&ifr, sizeof(struct ifreq));
struct ifreq ifr;

cmd
Set to SIOCSIFDSTADDR or SIOCGIFDSTADDR.

SIOCSIFNETMASK

SIOCGIFNETMASK

SIOCSIFNETMASK sets the interface netmask that is specified in the
ifr.ifr_addr field. SIOCGIFNETMASK gets the interface netmask.

ioctl(fd, cmd, (caddr_t)&ifr, sizeof(struct ifreq));
struct ifreq ifr;

cmd
Set to SIOCSIFNETMASK or SIOCGIFNETMASK.

SIOCSIFBRDADDR

SIOCGIFBRDADDR

SIOCSIFBRDADDR sets the interface broadcast address that is
specified in the ifr.ifr_broadaddr field. SIOCGIFBRDADDR gets the
interface broadcast address. The broadcast address is placed in the
ifr.ifr_broadaddr field.

ioctl(fd, cmd, (caddr_t)&ifr, sizeof(struct ifreq));
struct ifreq ifr;

cmd
Set to SIOCSIFBRDADDR or SIOCGIFBRDADDR.

Technical Reference: Communication subroutines 199

ioctl command Description

SIOCGSIZIFCONF Gets the size of memory that is required to get configuration
information for all interfaces returned by SIOCGIFCONF.

ioctl(fd, cmd, (caddr_t)&ifconfsize);
int ifconfsize;

SIOCGIFCONF Returns configuration information for all the interfaces that are
configured on the system.

ioctl(fd, SIOCGIFCONF, (caddr_t)&ifc);
struct ifconf ifc;

The configuration information is returned in a list of ifreq structures
pointed to by the ifc.ifc_req field, with one ifreq structure per
interface.

Note: The caller of the ioctl command must allocate sufficient space
to store the configuration information, returned as a list of ifreq
structures for all of the interfaces that are configured on the system.
For example, if n interfaces are configured on the system, ifc.ifc_req
must point to {n * sizeof (struct ifreq)} bytes of space allocated.

Note: Alternatively, the SIOCGSIZIFCONF ioctl command can be
used for this purpose.

SIOCSIFFLAGS

SIOCGIFFLAGS

SIOCSIFFLAGS sets the interface flags. SIOCGIFFLAGS gets the
interface flags.

ioctl(fd, cmd, (caddr_t)&ifr);
struct ifreq ifr;

Refer to /usr/include/net/if.h for the interface flags, denoted
by IFF_xxx.

Note: The IFF_BROADCAST, IFF_POINTTOPOINT, IFF_SIMPLEX,
IFF_RUNNING, IFF_OACTIVE, and IFF_MULTICAST flags cannot be
changed by using ioctl.

SIOCSIFMETRIC

SIOCGIFMETRIC

SIOCSIFMETRIC sets the interface metric that is specified in the
ifr.ifr_metric field. SIOCGIFMETRIC gets the interface metric. The
interface metric is placed in the ifr.ifr_metric field on return.

ioctl(fd, cmd, (caddr_t)&ifr);
struct ifreq ifr;

cmd
Set to SIOCSIFMETRIC or SIOCGIFMETRIC.

SIOCSIFSUBCHAN

SIOCGIFSUBCHAN

SIOCSIFSUBCHAN sets the subchannel address that is specified in
the ifr.ifr_flags field. SIOCGIFSUBCHAN gets the subchannel address
in the ifr.ifr_flags field.

ioctl(fd, SIOCSIFSUBCHAN, (caddr_t)&ifr);
struct ifreq ifr;

200 AIX Version 7.2: Technical Reference: Communication Subroutines

ioctl command Description

SIOCSIFOPTIONS

SIOCGIFOPTIONS

SIOCSIFOPTIONS sets the interface options. SIOCGIFOPTIONS gets
the interface options.

ioctl(fd, SIOCSIFOPTIONS, (caddr_t)&ifr);
struct ifreq ifr;

The interface options are stored in the ifr_flags field of the ifreq
structure. Refer to /usr/include/net/if.h file for the list of
interface options that are denoted by IFO_xxx.

ioctl command Description

SIOCADDMULTI

SIOCDELMULTI

SIOCADDMULTI adds an address to the list of multicast addresses for
an interface. SIOCDELMULTI deletes a multicast address from the list
of multicast addresses for an interface.

ioctl(fd, cmd, (caddr_t)&ifr);
struct ifreq ifr;

cmd
Set to SIOCADDMULTI or SIOCDELMULTI.

The multicast address information is specified in the ifr_addr
structure.

SIOCGETVIFCNT Gets the packet count information for a virtual interface. The
information is specified in the sioc_vif_req structure.

ioctl (fd, SIOCGETVIFCNT, (caddr_t)&v_req);
struct sioc_vif_req v_req;

SIOCGETSGCNT Gets the packet count information for the source group specified. The
information is stored in the sioc_sg_req structure on return.

ioctl(fd, SIOCGETSGCNT, (caddr_t)&v_req);
struct sioc_sg_req v_req;

SIOCSIFMTU

SIOCGIFMTU

SIOCSIFMTU sets the interface maximum transmission unit (MTU).
SIOCGIFMTU gets the interface MTU.

ioctl(fd, cmd, (caddr_t)&ifr);
struct ifreq ifr;

The MTU value is stored in ifr.ifr_mtu field.

Note: The range of valid values for MTU varies for an interface and is
dependent on the interface type.

SIOCIFATTACH

SIOCIFDETACH

SIOCIFATTACH attaches an interface. This initializes and adds an
interface in the network interface list. SIOCIFDETACH detaches
an interface broadcast address. This removes the interface from
the network interface list. The interface name is specified in the
ifr.ifr_name field.

ioctl(fd, cmd, (caddr_t)&ifr);
struct ifreq ifr;

Technical Reference: Communication subroutines 201

ioctl command Description

SIOCSIFGIDLIST

SIOCGIFGIDLIST

SIOCSIFGIDLIST adds or deletes the list of group IDs specified
in the ifrg.ifrg_gidlist field to the gidlist interface. The interface
name is specified in the ifrg.ifrg_name field. An operation code,
ADD_GRP/DEL_GRP, specified in the ifrg.ifrg_gidlist field indicates
whether the specified list of group IDs must be added to or deleted
from the gidlist interface. SIOCGIFGIDLIST gets the list of group
IDs associated with an interface. The group IDs are placed in the
ifrg.ifrg_gidlist field on return.

ioctl(fd, cmd, (caddr_t)&ifrg);
struct ifgidreq ifrg;

SIOCIF_ATM_UBR

SIOCIF_ATM_SNMPARP

SIOCIF_ATM_DUMPARP

SIOCIF_ATM_IDLE

SIOCIF_ATM_SVC

SIOCIF_ATM_DARP

SIOCIF_ATM_GARP

SIOCIF_ATM_SARP

SIOCIF_ATM_UBR sets the UBR rate for an ATM interface.
SIOCIF_ATM_SNMPARP gets the SNMP ATM ARP entries.
SIOCIF_ATM_DUMPARP gets the specified number of ATM ARP
entries. SIOCIF_ATM_DARP deletes an ATM ARP entry from the ARP
table. SIOCIF_ATM_GARP gets an ATM ARP entry to the ARP table.
SIOCIF_ATM_SARP adds an ATM ARP entry. The ARP information is
specified in the atm_arpreq structure. SIOCIF_ATM_SVC specifies
whether this interface supports Permanent Virtual Circuit (PVC) and
Switched Virtual Circuit (SVC) types of virtual connections. It also
specifies whether this interface is an ARP client or an ARP server
for this Logical IP Subnetwork (LIS) based on the flag that is set in
the ifatm_svc_arg structure. SIOCIF_ATM_IDLE specifies the idle
time limit on the interface.

SIOCSISNO

SIOCGISNO

SIOCSISNO sets interface specific network options for an interface.
SIOCGISNO gets interface specific network options that are
associated with an interface.

ioctl(fd, cmd, (caddr_t)&ifr);
struct ifreq ifr;

cmd
Set to SIOCSISNO or SIOCGISNO.

The interface-specific network options are stored in ifr.ifr_isno
structure. Refer to /usr/include/net/if.h file for the list of
interface-specific network options that are denoted by ISNO_xxx.

SIOCGIFBAUDRATE Gets the value of the interface baud rate in the ifr_baudrate field.

ioctl(fd, SIOCGIFBAUDRATE, (caddr_t)&ifr);
struct ifreq ifr;

The baud rate is stored in the ifr.ifr_baudrate field.

202 AIX Version 7.2: Technical Reference: Communication Subroutines

ioctl command Description

SIOCADDIFVIPA

SIOCDELIFVIPA

SIOCLISTIFVIPA

SIOCADDIFVIPA associates the specified list of interfaces pointed
to by ifrv.ifrv_ifname with the virtual interface specified by
ifrv.ifrv_name. This operation causes the source address for all
outgoing packets on these interfaces to be set to the virtual interface
address. SIOCDELIFVIPA removes the list of specified interfaces
that are pointed by ifrv.ifrv_ifname and associated with the virtual
interface specified by ifrv.ifrv_name, by using SIOCADDIFVIPA.
SIOCLISTIFVIPA lists all the interfaces that are associated with the
virtual interface specified by ifrv.ifrv_name.

ioctl(fd, SIOCADDIFVIPA, (caddr_t)&ifrv);
struct ifvireq ifrv;

The virtual interface information is stored in the ifvireq structure.

Note: These flags operate on a virtual interface only.

SIOCSIFADDR6 Set or Add an IPv6 address.

ioctl(fd, SIOCSIFADDR6, (caddr_t)&ifr);
struct in6_ifreq ifr;

SIOCGIFADDR6 Gets an IPv6 address.

ioctl(fd, SIOCGIFADDR6, (caddr_t)&ifr);
struct in6_ifreq ifr;

SIOCSIFDSTADDR6 Set the destination (point-to-point) address for a IPv6 address.

ioctl(fd, SIOCSIFDSTADDR6, (caddr_t)&ifr);
struct in6_ifreq ifr;

SIOCGIFDSTADDR6 Get the destination (point-to-point) address for a IPv6 address.

ioctl(fd, SIOCGIFDSTADDR6, (caddr_t)&ifr);
struct in6_ifreq ifr;

SIOCSIFNETMASK6 Set the netmask for an IPv6 address.

ioctl(fd, SIOCSIFNETMASK6, (caddr_t)&ifr);
struct in6_ifreq ifr;

SIOCGIFNETMASK6 Get the netmask for an IPv6 address.

ioctl(fd, SIOCGIFNETMASK6, (caddr_t)&ifr);
struct in6_ifreq ifr;

SIOCDIFADDR6 Delete an IPv6 address.

ioctl(fd, SIOCDIFADDR6, (caddr_t)&ifr);
struct in6_ifreq ifr;

SIOCFIFADDR6 Put an IPv6 address at the beginning of the address list.

ioctl(fd, SIOCFIFADDR6, (caddr_t)&ifr);
struct in6_ifreq ifr;

Technical Reference: Communication subroutines 203

ioctl command Description

SIOCAIFADDR6 Add or change an IPv6 alias address.

ioctl(fd, SIOCAIFADDR6, (caddr_t)&ifra);
struct in6_aliasreq ifra;

SIOCADDANY6 Add an IPv6 anycast address.

ioctl(fd, SIOCADDANY6, (caddr_t)&ifra);
struct in6_ifreq ifr;

SIOCDELANY6 Delete an IPv6 anycast address.

ioctl(fd, SIOCDELANY6, (caddr_t)&ifra);
struct in6_ifreq ifr;

SIOCSIFZONE6 Set the IPv6 zone ID of an interface at a particular address scope.

ioctl(fd, SIOCSIFZONE6, (caddr_t)&ifrz);
struct in6_zonereq ifrz;

SIOCGIFZONE6 Get the IPv6 scope zone IDs of an interface.

ioctl(fd, SIOCGIFZONE6, (caddr_t)&ifrz);
struct in6_zonereq ifrz;

SIOCSIFADDRORI6 Set the configuration origin for an IPv6 address.

ioctl(fd, SIOCSIFADDRORI6, (caddr_t)&ifro);
struct ifaddrorigin6 ifro;

SIOCAIFADDR6T Add or change an IPv6 alias address and type.

ioctl(fd, SIOCAIFADDR6T, (caddr_t)&ifra);
struct in6_aliasreq2 ifra;

SIOCGIFADDR6T Get the type of an IPv6 address.

ioctl(fd, SIOCGIFADDR6T, (caddr_t)&ifra);
struct in6_aliasreq2 ifra;

SIOCSIFADDRSTATE6 Change the state of an IPv6 address.

ioctl(fd, SIOCSIFADDRSTATE6, (caddr_t)&ifra);
struct in6_aliasreq2 ifra;

SIOCGIFADDRSTATE6 Get the state of an IPv6 address.

ioctl(fd, SIOCGIFADDRSTATE6, (caddr_t)&ifra);
struct in6_aliasreq2 ifra;

SIOCGSRCFILTER6 Get the IPv6 multicast group source filter for an interface.

ioctl(fd, SIOCGSRCFILTER6, (caddr_t)&ifrgsf);
struct group_source_filter_req ifrgsf;

SIOCACLADDR6 Add an IPv6 cluster alias address.

ioctl(fd, SIOCACLADDR6, (caddr_t)&ifra);
struct in6_aliasreq ifra;

204 AIX Version 7.2: Technical Reference: Communication Subroutines

ioctl command Description

SIOCDCLADDR6 Delete an IPv6 cluster address.

ioctl(fd, SIOCDCLADDR6, (caddr_t)&ifr);
struct in6_ifreq ifr;

SIOCSIFADDRFLAG6 Set address source flag for an IPv6 address.

ioctl(fd, SIOCSIFADDRFLAG6, (caddr_t)&ifra2);
struct in6_aliasreq2 ifra2;

SIOCGIFADDRFLAG6 Get address source flag for an IPv6 address.

ioctl(fd, SIOCGIFADDRFLAG6, (caddr_t)&ifra2);
struct in6_aliasreq2 ifra2;

Return Values
Upon successful completion, ioctl returns 0. Otherwise, it returns -1 and sets errno to indicate the error.

Error Codes
The ioctl commands fail under the following general conditions:

Item Description

EBADF The file descriptor fd is not a valid open socket file descriptor.

EINTR A signal was caught during ioctl operation.

EINVAL An invalid command or argument was specified.

If the underlying operation specified by the ioctl command cmd failed, ioctl fails with one of the following
error codes:

Item Description

EACCES Permission that is denied for the specified operation.

EADDRNOTAVAIL Specified address not available for interface.

EAFNOSUPPORT Operation that is not supported on sockets.

EBUSY Resource is busy.

EEXIST An entry or file exists.

EFAULT Argument references an inaccessible memory area.

EIO Input/Output error.

ENETUNREACH Gateway unreachable.

ENOBUFS Routing table overflow.

ENOCONNECT No connection.

ENOMEM Not enough memory available.

ENOTCONN The operation is only defined on a connected socket, but the socket
was not connected.

ENXIO Device does not exist.

ESRCH No such process.

Technical Reference: Communication subroutines 205

Related information
Socket Overview
ioctl subroutine

isinet_addr Subroutine

Purpose
Determines if the given ASCII string contains an Internet address using dot notation.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <netinet/in.h>

u_long isinet_addr (name)
char * name;

Description
The isinet_addr subroutine determines if the given ASCII string contains an Internet address using
dot notation (for example, "120.121.122.123"). The isaddr_inet subroutine considers Internet address
strings as a valid string, and considers any other string type as an invalid strings.

The isinet_addr subrountine expects the ASCII string to conform to the following format:

string ::= field | field delimited_field^1-3
delimited_field ::= delimiter field
delimiter ::= .
field ::= 0 X | 0 x | 0 X hexadecimal* | 0 x hexadecimal* | decimal* | 0 octal*
hexadecimal ::= decimal | a | b | c | d | e | f | A | B | C | D | E | F
decimal ::= octal | 8 | 9
octal ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Value Description

A^n Indicates n repetitions of pattern A.

A^n-m Indicates n to m repetitions of pattern A.

A* Indicates zero or more repetitions of pattern A, up to environmental limits.

The BNF description explicitly states the space character (' '), if used.

Value Description

{text} Indicates text, not a BNF symbol.

The isinet_addr subrountine allows the application to terminate the string with a null terminator (0x00)
or a space (0x30). It ignores characters trailing the space character and considers the string invalid if the
application does not terminate the string with a null terminator (0x00) or space (0x30).

The following describes the restrictions on the field values:

Address Format Field Restrictions (values in decimal base)

a a < 4294967296.

a.b a < 256; b < 16777216.

206 AIX Version 7.2: Technical Reference: Communication Subroutines

Address Format Field Restrictions (values in decimal base)

a.b.c a < 256; b < 256; c < 16777216.

a.b.c.d a < 256; b < 2^8; c < 256; d < 256.

The isinet_addr subrountine applications can enter field values exceeding the field value restrictions
specified previously; isinet_addr accepts the least significant bits up to an integer in length. The
isinet_addr subroutine still checks to see if the truncated value exceeds the maximum field value. For
example, if an application gives the string 0.0;0;0xFF00000001 then isinet_addr interprets the string
as 0.0.0.0x00000001 and considers the string as valid.

isinet_addr applications cannot omit field values between delimiters and considers a string with
successive periods as invalid.

Examples of valid strings:

Input String Comment

1 isinet_addr uses a format.

1.2 isinet_addr uses a.b format.

1.2.3.4 isinet_addr uses a.b.c.d format.

0x01.0X2.03.004 isinet_addr uses a.b.c.d format.

1.2 3.4 isinet_addr uses a.b format; and ignores "3.4".

Examples of invalid strings:

Input String Reason

... No explicit field values specified.

1.2.3.4.5 Excessive fields.

1.2.3.4. Excessive delimiters and fields.

1,2 Bad delimiter.

1p String not terminated by null terminator nor space.

{empty string} No field or delimiter present.

9999.1.1.1 Value for field a exceeds limit.

Note:

1. The isinet_addr subroutine does not check the pointer to the ASCII string; the user takes
responsibility for ensuring validity of the address of the ASCII string.

2. The application assumes responsibility for verifying that the network number and host number for the
Internet address conforms to a class A or B or C Internet address; any other string is processed as a
class C address.

All applications using isinet_addr must compile with the _BSD macro defined. Also, all socket
applications must include the BSD library libbsd when applicable.

Parameters

Item Description

name Address of ASCII string buffer.

Technical Reference: Communication subroutines 207

Return Values
The isinet_addr subroutine returns 1 for valid input strings and 0 for invalid input strings. isinet_addr
returns the value as an unsigned long type.

Files
#include <ctype.h>

#include <sys/types.h>

kvalid_user Subroutine

Purpose
This routine maps the DCE principal to the local user account and determines if the DCE principal is
allowed access to the account.

Library
Valid User Library (libvaliduser.a)

Syntax

int kvalid_user (char *princ_name, char *local_user)

Description
This routine is called when Kerberos 5 authentication is configured to determine if the incoming Kerberos
5 ticket should allow access to the local account.

This routine determines whether the DCE principal, specified by the princ_name parameter, is allowed
access to the user's account identified by the local_user parameter. The routine accesses the
$HOME/.k5login file for the users account. It looks for the string pointed to by princ_name in that file.

Access is granted if one of two things is true.

1. The $HOME/.k5login file exists and the princ_name is in it.
2. The $HOME/.k5login file does NOT exist and the DCE principal name is the same as the local user's

name.

Parameters

Item Description

princ_name This parameter is a single-string representation of the Kerberos 5 principal. The
Kerberos 5 libraries have two services, krb5_unparse_name and krb5_parse_name,
which convert a krb5_principal structure to and from a single-string format. This
routine expects the princ_name parameter to be a single-string form of the
krb5_principal structure.

local_user This parameter is the character string holding the name of the local account.

Return Values
If the user is allowed access to the account, the kvalid_user routine returns TRUE.

If the user is NOT allowed access to the account or there was an error, the kvalid_user routine returns
FALSE.

208 AIX Version 7.2: Technical Reference: Communication Subroutines

Related information
Communications and networks
Authentication and the secure rcmds

listen Subroutine

Purpose
Listens for socket connections and limits the backlog of incoming connections.

Library
Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int listen (Socket, Backlog)
int Socket, Backlog;

Description
The listen subroutine performs the following activities:

1. Identifies the socket that receives the connections.
2. Marks the socket as accepting connections.
3. Limits the number of outstanding connection requests in the system queue.

The outstanding connection request queue length limit is specified by the parameter backlog per listen
call. A no parameter - somaxconn - defines the maximum queue length limit allowed on the system, so
the effective queue length limit will be either backlog or somaxconn, whichever is smaller.

All applications containing the listen subroutine must be compiled with the _BSD macro set to a specific
value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

Parameters

Item Description

Socket Specifies the unique name for the socket.

Backlog Specifies the maximum number of outstanding connection requests.

Return Values
Upon successful completion, the listen subroutine returns a value 0.

If the listen subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
The subroutine is unsuccessful if any of the following errors occurs:

Technical Reference: Communication subroutines 209

Error Description

EBADF The Socket parameter is not valid.

ECONNREFUSED The host refused service, usually due to a server process missing at the requested
name or the request exceeding the backlog amount.

EINVAL The socket is already connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The referenced socket is not a type that supports the listen subroutine.

Examples
The following program fragment illustrates the use of the listen subroutine with 5 as the maximum
number of outstanding connections which may be queued awaiting acceptance by the server process.

listen(s,5)

Related reference
accept Subroutine
Related information
Accepting Internet Stream Connections Example Program
Sockets Overview
Understanding Socket Connections

n
AIX runtime services beginning with the letter n.

ntohl Subroutine

Purpose
Converts an unsigned long integer from Internet network standard byte order to host byte order.

Library
ISODE Library (libisode.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>

uint32_t ntohl (NetLong)
uint32_t NetLong;

Description
The ntohl subroutine converts an unsigned long (32-bit) integer from Internet network standard byte
order to host byte order.

Receiving hosts require addresses and ports in host byte order. Use the ntohl subroutine to convert
Internet addresses and ports to the host integer representation.

The ntohl subroutine is defined in the net/nh.h file as a null macro if the host byte order is same as the
network byte order.

210 AIX Version 7.2: Technical Reference: Communication Subroutines

The ntohl subroutine is declared in the net/nh.h file as a function if the host byte order is not same as the
network byte order.

All applications containing the ntohl subroutine must be compiled with the _BSD macro set to a specific
value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

Parameters

Item Description

NetLong Requires a 32-bit integer in network byte order.

Return Values
The ntohl subroutine returns a 32-bit integer in host byte order.

Related information
Sockets Overview

ntohll Subroutine

Purpose
Converts an unsigned long integer from Internet network standard byte order to host byte order.

Library
ISODE Library (libisode.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>

uint64_t ntohll (NetLong)
uint64_t NetLong;

Description
The ntohll subroutine converts an unsigned long (64-bit) integer from Internet network standard byte
order to host byte order.

Receiving hosts require addresses and ports in host byte order. Use the ntohll subroutine to convert
Internet addresses and ports to the host integer representation.

The ntohll subroutine is defined in the net/nh.h file as a null macro if the host byte order is the same as
the network byte order.

The ntohll subroutine is declared in the net/nh.h file as a function if the host byte order is not the same
as the network byte order.

All applications containing the ntohll subroutine must be compiled with the _BSD macro set to a specific
value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

Technical Reference: Communication subroutines 211

Parameters

Item Description

NetLong Requires a 64-bit integer in network byte order.

Return Values
The ntohll subroutine returns a 64-bit integer in host byte order.

Related information
Sockets Overview

ntohs Subroutine

Purpose
Converts an unsigned short integer from Internet network byte order to host byte order.

Library
ISODE Library (libisode.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>

uint16_t ntohs (NetShort)
uint16_t NetShort;

Description
The ntohs subroutine converts an unsigned short (16-bit) integer from Internet network byte order to the
host byte order.

Receiving hosts require Internet addresses and ports in host byte order. Use the ntohs subroutine to
convert Internet addresses and ports to the host integer representation.

The ntohs subroutine is defined in the net/nh.h file as a null macro if the host byte order is same as the
network byte order.

The ntohs subroutine is declared in the net/nh.h file as a function if the host byte order is not same as the
network byte order.

All applications containing the ntohs subroutine must be compiled with the _BSD macro set to a specific
value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

Parameters

Item Description

NetShort Requires a 16-bit integer in network standard byte order.

Return Values
The ntohs subroutine returns a 16-bit integer in host byte order.

212 AIX Version 7.2: Technical Reference: Communication Subroutines

Related information
Sockets Overview

PostQueuedCompletionStatus Subroutine

Purpose
Post a completion packet to a specified I/O completion port.

Syntax
#include <iocp.h>
boolean_t PostQueuedCompletionStatus (CompletionPort, TransferCount, CompletionKey, Overlapped,
)
HANDLE CompletionPort;
DWORD TransferCount, CompletionKey;
LPOVERLAPPED Overlapped;

Description
The PostQueuedCompletionStatus subroutine attempts to post a completion packet to CompletionPort
with the values of the completion packet populated by the TransferCount, CompletionKey, and Overlapped
parameters.

The PostQueuedCompletionStatus subroutine returns a boolean indicating whether or not a completion
packet has been posted.

The PostQueuedCompletionStatus subroutine is part of the I/O Completion Port (IOCP) kernel
extension.

Note: This subroutine only works to a socket file descriptor. It does not work with files or other file
descriptors.

Parameters
Item Description

CompletionPort Specifies the completion port that this subroutine will attempt to
access.

TransferCount Specifies the number of bytes transferred.

CompletionKey Specifies the completion key.

Overlapped Specifies the overlapped structure.

Return Values
Upon successful completion, the PostQueuedCompletionStatus subroutine returns a boolean indicating
its success.

If the PostQueuedCompletionStatus subroutine is unsuccessful, the subroutine handler performs the
following functions:

• Returns a value of 0 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable, see the link in the Related Information section of this document.

Error Codes
The subroutine is unsuccessful if either of the following errors occur:

Technical Reference: Communication subroutines 213

Item Description

EBADF The CompletionPort parameter was NULL.

EINVAL The CompletionPort parameter was invalid.

Examples
The following program fragment illustrates the use of the PostQueuedCompletionStatus subroutine to
post a completion packet.

c = GetQueuedCompletionStatus (34, 128, 25, struct overlapped);

Related information
Error Notification Object Class

r
AIX runtime services beginning with the letter r.

rcmd Subroutine

Purpose
Allows execution of commands on a remote host.

Library
Standard C Library (libc.a)

Syntax
int rcmd (Host,
Port, LocalUser, RemoteUser, Command, ErrFileDesc)
char ** Host;
u_short Port;
char * LocalUser;
char * RemoteUser;
char * Command;
int * ErrFileDesc;

Description
The rcmd subroutine allows execution of certain commands on a remote host that supports rshd, rlogin,
and rpc among others.

Only processes with an effective user ID of root user can use the rcmd subroutine. An authentication
scheme based on remote port numbers is used to verify permissions. Ports in the range between 0 and
1023 can only be used by a root user. The application must pass in Port, which must be in the range 512
to 1023.

The rcmd subroutine looks up a host by way of the name server or if the local name server isn't running, in
the /etc/hosts file.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to the
calling process and given to the remote command as standard input (stdin) and standard output (stdout).

Always specify the Host parameter. If the local domain and remote domain are the same, specifying the
domain parts is optional.

214 AIX Version 7.2: Technical Reference: Communication Subroutines

All applications containing the rcmd subroutine must be compiled with the _BSD macro set to a specific
value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

Parameters

Item Description

Host Specifies the name of a remote host that is listed in the /etc/
hosts file. If the specified name of the host is not found in this
file, the rcmd subroutine is unsuccessful.

Port Specifies the well-known port to use for the connection.
The /etc/services file contains the DARPA Internet services,
their ports, and socket types.

LocalUser and RemoteUser Points to user names that are valid at the local and remote
host, respectively. Any valid user name can be given.

Command Specifies the name of the command to be started at the
remote host.

ErrFileDesc Specifies an integer controlling the set up of communication
channels. Integer options are as follows:
Non-zero

Indicates an auxiliary channel to a control process is
set up, and the ErrFileDesc parameter points to the file
descriptor for the channel. The control process provides
diagnostic output from the remote command on this
channel and also accepts bytes as signal numbers to be
forwarded to the process group of the command.

0
Indicates the standard error (stderr) of the remote
command is the same as standard output (stdout). No
provision is made for sending arbitrary signals to the
remote process. However, it is possible to send out-of-
band data to the remote command.

Return Values
Upon successful completion, the rcmd subroutine returns a valid socket descriptor.

Upon unsuccessful completion, the rcmd subroutine returns a value of -1. The subroutine returns a -1, if
the effective user ID of the calling process is not root user or if the subroutine is unsuccessful to resolve
the host.

Files

Item Description

/etc/services Contains the service names, ports, and socket
type.

/etc/hosts Contains host names and their addresses for
hosts in a network.

/etc/resolv.conf Contains the name server and domain name.

Related information
Sockets Overview

Technical Reference: Communication subroutines 215

rcmd_af Subroutine

Purpose
Allows execution of commands on a remote host.

Syntax
int rcmd_af(char **ahost, unsigned short rport,
 const char *locuser, const char *remuser,
 const char *cmd, int *fd2p, int af)

Description
The rcmd_af subroutine allows execution of certain commands on a remote host that supports rshd,
rlogin, and rpc among others. It behaves the same as the existing rcmd() function, but instead of creating
only an AF_INET TCP socket, it can also create an AF_INET6 TCP socket. The existing rcmd() function
cannot transparently use AF_INET6 sockets because an application would not be prepared to handle
AF_INET6 addresses returned by subroutines such as getpeername() on the file descriptor created by
rcmd().

Only processes with an effective user ID of root user can use the rcmd_af subroutine. An authentication
scheme based on remote port numbers is used to verify permissions. Ports in the range between 0 and
1023 can only be used by a root user.

The rcmd_af subroutine looks up a host by way of the name server or if the local name server is not
running, in the /etc/hosts file.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to the
calling process and given to the remote command as standard input (stdin) and standard output (stdout).

Always specify the ahost parameter. If the local domain and remote domain are the same, specifying the
domain parts is optional.

Parameters
Item Description

ahost Specifies the name of a remote host that is listed in the /etc/hosts file. If the
specified name of the host is not found in this file, the rcmd_af subroutine is
unsuccessful.

rport Specifies the well-known port to use for the connection. The /etc/services file
contains the DARPA Internet services, their ports, and socket types.

locuser Points to user names that are valid at the local host. Any valid user name can be
given.

remuser Points to user names that are valid at the remote host. Any valid user name can be
given.

cmd Specifies the name of the command to be started at the remote host.

216 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

fd2p Specifies an integer controlling the set up of communication channels. Integer
options are as follows:
Non-zero

Indicates an auxiliary channel to a control process is set up, and the fd2p
parameter points to the file descriptor for the channel. The control process
provides diagnostic output from the remote command on this channel and also
accepts bytes as signal numbers to be forwarded to the process group of the
command.

0
Indicates the standard error (stderr) of the remote command is the same as
standard output (stdout). No provision is made for sending arbitrary signals to
the remote process. However, it is possible to send out-of-band data to the
remote command.

af The family argument is AF_INET, AF_INET6, or AF_UNSPEC. When either AF_INET
or AF_INET6 is specified, this function will create a socket of the specified address
family. When AF_UNSPEC is specified, it will try all possible address families until
a connection can be established, and will return the associated socket of the
connection.

Return Values
Upon successful completion, the rcmd_af subroutine returns a valid socket descriptor. Upon unsuccessful
completion, the rcmd_af subroutine returns a value of –1. The subroutine returns a –1 if the effective
user ID of the calling process is not the root user or if the subroutine is unsuccessful to resolve the host.

Files

Item Description

/etc/services Contains the service names, ports, and socket
type.

/etc/hosts Contains host names and their addresses for
hosts in a network.

/etc/resolv.conf Contains the name server and domain name.

rds Subroutine

Purpose
Reliable Datagram Sockets (RDS) provides reliable, in-order datagram delivery between sockets across
various network transport.

Library
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/bypass.h>
#include <net/rds_rdma.h>

Technical Reference: Communication subroutines 217

Description
RDS is an implementation of the RDS Application Programming Interface (API). RDS can be transported
through InfiniBand and loopback. RDS through TCP is disabled. RDS uses the standard AF_INET
addresses to identify the endpoints.

Socket Creation
RDS sockets are created as follows:

rds_socket = socket(AF_BYPASS, SOCK_SEQPACKET, BYPASSPROTO_RDS);

Socket Options
RDS supports multiple socket options through the setsockopt and getsockopt calls. The following
options with the SOL_SOCKET socket level are important.
SO_RCVBUF

Specifies the size of the receive buffer. See Congestion Control.
SO_SNDBUF

Specifies the size of the send buffer. See Message Transmission.
SO_SNDTIMEO

Specifies the send timeout of the socket when you enqueue a message on a socket with a full queue in
the blocking mode.

RDS also supports multiple protocol-specific options with the SOL_RDS socket level .

Binding
A new RDS has no local address when it is initially returned from the socket call. The socket must be
bound to a local address by running the bind system call before any messages are sent or received. The
bind call attaches the socket to a specific network transport, which is based on the type of interface the
local address is attached to. From the point the call is attached to the socket, the socket can reach the
destinations that are available through this network transport.

For instance, when binding to the address of an InfiniBand interface, such as ib0, the socket uses the
InfiniBand transport system. If RDS is not able to associate a transport system with the specific address,
it returns the EADDRNOTAVAIL value.

An RDS socket can only be bound to one address and only one socket can be bound to a specific address
or port pair. If no port is specified in the binding address, an unbound port is selected at random.

RDS does not permit the application to bind a previously bound socket to another address. Binding to the
INADDR_ANY wildcard address is not allowed.

Connecting
In the default mode of operation RDS uses unconnected sockets, and specifies destination address as
an argument to the sendmsg subroutine. However, RDS allows sockets to be connected to a remote end
point by using the connect subroutine. If a socket is connected, you can call the sendmsg subroutine
without specifying a destination address and the subroutine uses the remote address that was previously
provided.

Congestion Control
RDS does not have an explicit congestion control mechanism like the common streaming protocols such
as TCP. The sockets have two queue limits that are the send queue size and the receive queue
size. Messages are accounted based on the number of bytes of payload.

218 AIX Version 7.2: Technical Reference: Communication Subroutines

The send queue size limits the data that the local processes can queue on a local socket. If the limit
exceeds, the kernel does not accept messages until the queue is free and messages are delivered and
acknowledged by the remote host.

The receive queue size limits the data that RDS stores on the receive queue of a socket before
marking the socket as congested. When a socket becomes congested, RDS sends a congestion map
update to the other participating hosts, which are then expected to stop sending more messages to this
port.

There is a timing window during which a remote host can continue to send messages to a congested
port. RDS resolves the timing window by accepting messages even when the receive queue of the socket
exceeds the limit.

When the application receives incoming messages from the receive queue by using the recvmsg system
call, the number of bytes on the receive queue reduces below the receive queue size and the port is
marked as uncongested. A congestion update is sent to all the participating hosts.

The values for the send buffer size and receive buffer size can be tuned by the application through the
SO_SNDBUF and SO_RCVBUF socket options.

Blocking Behavior
The sendmsg and recvmsg calls can be blocked in various situations. A call can be blocked or returned
with an error depending on the non-blocking setting of the file descriptor and the MSG_DONTWAIT
message flag. If the file descriptor is set to blocking mode (which is the default), and the MSG_DONTWAIT
flag is not specified, the call is blocked.

The SO_SNDTIMEO and SO_RCVTIMEO socket options are used to specify a timeout (in seconds) after
which the call ends and returns an error. The default timeout is 0, which allows RDS to block indefinitely.

Message Transmission
Messages can be sent by using the sendmsg call after the RDS socket is bound. Message length cannot
exceed 4 GB as the wire protocol uses an unsigned 32-bit integer to express the message length.

RDS does not support data that is out-of-band. Applications can send data to unicast addresses only,
where broadcast or multicast are not supported.

A successful sendmsg call places the message in the transmit queue of the socket where it remains until
the destination acknowledges that the message is no longer in the network or the application removes the
message from the send queue.

Messages can be removed from the send queue with the RDS_CANCEL_SENT_TO socket option.

When a message is in the transmit queue, its payload bytes are considered. If an attempt is made to send
a message when the transmit queue is not free, the call blocks or returns the EAGAIN value.

When messages are sent to a destination that is marked as congested, the call is blocked or theENOBUFS
value is returned.

A message that is sent with no payload bytes does not require any space in the send buffer of the
destination but a message receipt is sent to the destination. The receiver cannot get any payload data but
the address of the sender can be viewed.

Messages sent to a port to which no socket is bound is discarded by the destination host. No error
messages are reported to the sender.

Message Receipt
Messages can be received with the recvmsg call on RDS after it is bound to a source address. RDS
returns messages in the same order that the sender sent the messages.

The address of the sender is returned in the sockaddr_in structure pointed by the msg_name field, if the
field is set.

Technical Reference: Communication subroutines 219

If the MSG_PEEK flag is set, the first message on the receive queue is returned without removing the
message from the queue.

The memory that is used by messages waiting to be delivered does not limit the number of messages that
can be queued to be received. RDS attempts to control congestion.

If the length of the message exceeds the size of the buffer that is provided to recvmsg call, then the
remaining bytes in the message are discarded and the MSG_TRUNC flag is set in the msg_flags field. In
this case the recvmsg call, returns the number of bytes copied. It does not return the length of the entire
message. If MSG_TRUNC is set in the flags argument to recvmsg, it returns the number of bytes in the
entire message. You can view the size of the next message in the receive queue without providing a zero
length buffer and setting the MSG_PEEK and MSG_TRUNC options in the flags argument.

The sending address of a zero-length message is provided in the msg_name field.

Control Messages
RDS uses control messages that is the ancillary data by using the msg_control and msg_controllen fields
in the sendmsg and recvmsg calls. Control messages that are generated by RDS have a cmsg_level value
of sol_rds. Most control messages are related to the zerocopy interface added in RDS version 3, and are
described in the rds-rdma subroutine.

The only exception is the RDS_CMSG_CONG_UPDATE message.

Polling
Support for the poll interface is limited. POLLIN is returned when there is an RDS message, or a control
message waiting in the receive queue of the socket. POLLOUT is returned when there is space on the send
queue of the socket.

Sending messages to the congested ports requires special handling mechanism. When an application
tries to send message to a congested destination, the system call returns the ENOBUFS value. RDS cannot
poll for POLLOUT because the transmit queue can still accommodate the messages and the call to the
poll interface might return immediately, even though the destination is congested.

You can perform one of the method to handle the congestion:

• Poll for the POLLIN option. By default, a process sleeping in the poll interface is activated when the
congestion map is updated. The application can retry any previously congested send operation.

• Monitor the explicit congestion, which gives the application greater control.

With explicit monitoring, the application polls for POLLIN option as before, and additionally uses
the RDS_CONG_MONITOR socket option to install a 64-bit mask value in the socket, where each bit
corresponds to a group of ports. When a congestion update is received, RDS socket checks the set of
ports that became uncongested against the bit mask that is installed in the socket. If they overlap, a
control message is enqueued on the socket, and the application is activated. When recvmsg call is called,
RDS gives the control message that contains the bitmap on the socket.

The congestion monitor bitmask can be set and queried by using the setsockopt call with the
RDS_CONG_MONITOR option, and a pointer to the 64-bit mask variable.

Congestion updates are delivered to the application through the RDS_CMSG_CONG_UPDATE control
messages. The control messages are delivered separately, but never with RDS data message. The
cmsg_data field of the control message is an eight byte data that contains the 64-bit mask value.

Applications can use the following macros to test for and set bits in the bitmask:

#define RDS_CONG_MONITOR_SIZE 64
#define RDS_CONG_MONITOR_BIT(port) (((unsigned int) port) % RDS_CONG_MONITOR_SIZE)
#define RDS_CONG_MONITOR_MASK(port) (1 << RDS_CONG_MONITOR_BIT(port))

220 AIX Version 7.2: Technical Reference: Communication Subroutines

Canceling Messages
An application can cancel messages from the send queue by using the RDS_CANCEL_SENT_TO
socket option with the setsockopt call. The setsockopt call uses an optional sockaddr_in
address structure as an argument. Only messages to the destination address that is specified by the
sockaddr_in address are discarded. If no address is provided, all pending messages are discarded.

Note: This call affects messages that are not transmitted and messages that are transmitted but no
acknowledgment is received from the remote host.

Reliability
If the sendmsg succeeds, RDS guarantees that the message is visible to recvmsg on a socket that is
bound to the destination address as long as that destination socket remains open.

If there is no socket bound on the destination, the message is dropped. If the RDS that is sending
messages is not sure that a socket is bound, it tries to send the message indefinitely until it is sure or the
sent message is canceled.

If a socket is closed, the pending sent messages on the socket are canceled and can or cannot be seen by
the receiver.

The RDS_CANCEL_SENT_TO socket option can be used to cancel all the pending messages to a given
destination.

If a receiving socket is closed with pending messages, then the sender considers those messages as
having left the network and will not retransmit them.

A message is seen by the recvmsg call unless the MSG_PEEK is specified. When the message is delivered
it is removed from the transmit queue of the sending socket.

All messages sent from the same socket to the same destination is delivered in the order they are sent.
Messages sent from different sockets, or to different destinations, are delivered randomly.

rds-info Subroutine

Purpose
Displays information from the kernel extension of the Reliable Datagram Sockets (RDS) .

Syntax
rds-info [-v] [-cknrst]

Description
The rds-info utility displays various sources of information that the RDS kernel module maintains.
When you run the rds-info utility without any optional arguments, the output has all the information.
When you specify the optional arguments, the information that is associated with those options is
displayed.

Technical Reference: Communication subroutines 221

Parameters

Item Descriptor

-c Displays global counters. Each counter increments
after the event occurs. You cannot reset the
counters. The set of the supported counters can
change with time. The list of output fields includes:
CounterName

The name of the counter. These names are
derived from the kernel and can change based
on the capability of the kernel extension.

Value
The number of times the counter increments
after the kernel module is loaded.

-k Displays all the RDS sockets in the system. There
is one socket that is listed at a time that is not
bound to or connected to any address because the
rds-info utility uses an unbound socket to collect
information. The list of output fields includes:
BoundAddr, BPort

The IP address and port number to which
the socket is bound. The 0.0.0.0 0 address
indicates that the socket is not bound.

ConnAddr, CPort
The IP address and port number to which the
socket is connected. The 0.0.0.0 0 address
indicates that the socket is not connected.

SndBuf, RcvBuf
The message payload in bytes that can
be queued for sending or receiving on the
respective socket.

222 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Descriptor

-n Displays all the RDS connections. RDS connections
are maintained between nodes by the network
transports. The list of output fields includes:
LocalAddr

The IP address of a node. For connections
that originate and terminate on the same node,
the local address indicates the address that
initiated the connection establishment and

RemoteAddr
The IP address of the remote end of the
connection.

NextTX
The sequence number that is given to the next
message that is sent over the connection.

NextRX
The expected sequence number of the next
message that arrives over the connection. Any
incoming messages with sequence numbers
less than the expected number is dropped.

Flg
Flags that indicate the state of the connection.

s
A process is sending a message down the
connection.

c
The transport is attempting to connect to the
remote address.

C
The connection to the remote host is active.

-r, -s, -t Displays the messages in the receive, send, or
retransmit queues.
LocalAddr, LPort

The local IP address and port number of the
node that is associated with the message.
For sent messages, this address is the source
address. For receive messages, this address is
the destination address.

RemoteAddr, RPort
The remote IP address and port number that
is associated with the message. For sent
messages, this address is the destination
address. For receive messages, this address is
the source address.

Seq
The sequence number of the message.

Bytes
The message payload in bytes.

-v Displays verbose output. When this option is
specified complete data is displayed.

Technical Reference: Communication subroutines 223

rds-ping Subroutine

Purpose
Tests the reachability of the remote node over Reliable Datagram Sockets (RDS).

Syntax
rds-ping [-ccount][-iinterval][-Ilocal_addr]remote_addr

Description
The rds-ping utility is used to test whether a remote node is reachable over RDS. The RDS interface is
designed to operate like the standard ping utility, with a difference. The rds-ping utility opens several
RDS sockets and sends packets to port 0 on the specified host. This port is a special port number to which
no socket is bound to, and the kernel processes the incoming packets and responds to them.

Parameters
Item Description

-c count Causes the rds-ping utility to exit after the specified number of packets are sent
and received.

-I address Accepts the local source address for the RDS socket that is based on the routing
information for the specified destination address. For example, if packets to a specific
destination are routed through the ib0 interface, it uses the IP address of ib0 as the
source address. By using the -I option, you can override this choice.

-i timeout Waits for one second between sending packets, by default. Use this option to specify
a different interval. The timeout value is given in seconds, and can be a floating point
number. Optionally, append the msec or usec parameter to specify the timeout in
milliseconds or microseconds.

Note: If you specify a timeout that is considerably smaller than the packet round-trip
time, it produces unexpected results.

rds-rdma Subroutine

Purpose
Reliable Datagram Sockets (RDS) zerocopy provides an interface for remote direct memory access
(RDMA) over RDS.

Description
The zerocopy interface of RDS was added in RDS Version3. In the RDS zerocopy, the client initiates a
direct transfer to or from an area of the memory in its process address space. This memory need not be
aligned.

The client obtains a handle for this region of memory, and passes it to the server. This cookie is called the
RDMA cookie. To the application, the cookie is an opaque 64-bit data type.

The client sends this handle to the server application, along with other details of the RDMA request such
as the data to transfer to the RDMA memory area. This message is called the RDMA request.

The server uses the RDMA cookie to initiate the requested RDMA transfer. The RDMA transfer is combined
atomically with a normal RDS message, which is delivered to the client. This message is called the RDMA
ACK. Atomic refers to both the RDMA succeeds and the RDMA ACK delivered, or they do not succeed.

224 AIX Version 7.2: Technical Reference: Communication Subroutines

When the client receives the RDMA ACK, it means that the RDMA completed successfully. If required, it
can then release the RDMA cookie for this memory region.

RDMA operations are not reliable. Unlike normal RDS messages, RDS RDMA operations fail and get
dropped.

Interface
The interface is based on control messages that are sent or received through the sendmsg and recvmsg
system calls. Optionally, a previous interface can be used that is based on the setsockopt system call.
The control messages must be used as it reduces the number of system calls required.

Control Message Interface
With the control message interface, the RDMA cookie is passed to the server out-of-band that is included
in an extension header that is attached to the RDS message.

Initially, the client sends RDMA requests along with a RDS_CMSG_RDMA_MAP control message. The control
message contains the address and length of the memory region to obtain a handle, flags, and a pointer to
a memory location in the address space of the caller where the kernel stores the RDMA cookie.

If the application has an RDMA cookie for the memory range to or from an RDMA request, it can give this
cookie to the kernel by using the RDS_CMSG_RDMA_DEST control message.

The kernel includes the resulting RDMA cookie in an extension header that is transmitted as part of the
RDMA request to the server.

When the server receives the RDMA request, the kernel delivers the cookie within a
RDS_CMSG_RDMA_DEST message. The server initiates the data transfer by sending the RDMA ACK
message along with a RDS_CMSG_RDMA_ARGS control message. This message contains the RDMA cookie,
and the local memory that can be copied.

The server process can request a notification when an RDMA operation completes. The notifications are
delivered as the RDS_CMSG_RDMA_STATUS control messages. When an application calls the recvmsg
call , it receives a regular RDS message with other RDMA-related control messages, or an empty
message with one or more status control messages. When an RDMA operation fails and is discarded,
the application can ask notifications for failed messages, regardless of the success notification of an
individual message.

To activate the option for receiving failed notification, you must set the RDS_RECVERR socket option.

Setsockopt Interface
A process can register and release memory ranges for RDMA through the setsockopt calls with the help
of RDS.
RDS_GET_MR

To obtain an RDMA cookie for a memory range, the application can use the setsockopt call with
the RDS_GET_MR option. This cookie operates as the RDS_CMSG_RDMA_MAP control message. The
argument contains the address and length of the memory range to be registered, and a pointer to an
RDMA cookie variable where the system call stores the cookie for the registered range.

RDS_FREE_MR
Memory ranges are released by calling the setsockopt call with the RDS_FREE_MR option. You can
specify the RDMA cookie with flags as arguments.

RDS_RECVERR
This is a Boolean option that is set and queried by using the getsockopt call. When enabled, RDS
sends RDMA notification messages to the application for any RDMA operation that fails. This option by
default is set to off.

For all the calls, the level argument to the setsockopt call is SOL_RDS.

Technical Reference: Communication subroutines 225

RDMA Macros and types
RDMA cookie

typedef u_int64_t rds_rdma_cookie_t

This cookie contains a memory location in the client process. The cookie contains the R_Key of the
remote memory region, and the offset into it so that the alignment is not a concern for the application.
The RDMA cookie is used in several struct types. The RDS_CMSG_RDMA_DEST control message contains a
rds_rdma_cookie_t as payload.

Mapping arguments

The following data type is used with the RDS_CMSG_RDMA_MAP control messages and with the
RDS_GET_MR socket option:

struct rds_iovec {
 u_int64_t addr;
 u_int64_t bytes;
};

struct rds_get_mr_args {
 struct rds_iovec vec;
 u_int64_t cookie_addr;
 uint64_t flags;
};

The cookie_addr parameter specifies a memory location to store the RDMA cookie.

The flags value is a bitwise OR of any of the following flags:
RDS_RDMA_USE_ONCE

This flag specifies to the kernel that the allocated RDMA cookie must be used one time. When the
RDMA ACK message is received, the kernel automically unbinds the memory area and releases any
resources that are associated with the cookie. If this flag is not set, the application must release the
memory region by using the RDS_FREE_MR socket option.

RDS_RDMA_INVALIDATE
The RDMA memory mappings are not invalidated because it requires synchronization with the HCA,
which is not cost effective. However, the server application can access the registered memory for any
amount of time. The RDS code invalidates the mapping at the time it is released, and this can happen
in two ways:

1. When an RDMA ACK and the RDS_RDMA_USE_ONCE flag is set
2. When the application releases the memory by using the RDS_FREE_MR socket option.

RDMA Operation

RDMA operations are initiated by the server by using the RDS_CMSG_RDMA_ARGS control message, which
takes the following data as payload:

struct rds_rdma_args {
 rds_rdma_cookie_t cookie;
 struct rds_iovec remote_vec;
 u_int64_t local_vec_addr;
 u_int64_t nr_local;
 u_int64_t flags;
 u_int32_t user_token;
};

The cookie argument contains the RDMA cookie received from the client. The local memory has an
array of rds_iovecs. The array address is specified in the local_vec_addr option, and its number of
elements is specified in the nr_local option. The struct member remote_vec specifies a location relative
to the memory area that is identified by the remote_vec.addr cookie as an offset into that region, and
remote_vec.bytes is the length of the memory window that can be copied. This length must match the
size of the local memory area that is the sum of bytes in all members of the local iovec call. The flags
field contains the bitwise or the following flags:

226 AIX Version 7.2: Technical Reference: Communication Subroutines

RDS_RDMA_READWRITE
Performs an RDMA WRITE from the memory of the server to the client when the flag is set. If not set,
RDS does an RDMA READ from the memory of the client to the memory of the server.

RDS_RDMA_FENCE
The order of an RDMA READ in reference to the subsequent SEND operations is not decided by
InfiniBand. When this flag is set, the RDMA READ is separated from the subsequent RDS ACK
message. Setting this flag requires an additional round trip of the InfiniBand. Set this flag by default.

RDS_RDMA_NOTIFY_ME
This flag requests a notification on completion of the RDMA operation whether successful or
otherwise. The notification contains the value of the user_token field that is passed by the
application. This flag allows the application to release resources such as buffers that are associated
with the RDMA transfer. The user_token can be used to pass an application-specific identifier to the
kernel. This token is returned to the application when a status notification is generated.

RDMA Notification

The RDS kernel code is able to notify the server application when an RDMA operation completes.
These notifications are delivered through the RDS_CMSG_RDMA_STATUS control messages. By default,
no notifications are generated. There are two ways an application can request for the messages. The
status notifications can be enabled for every operation by setting the RDS_RDMA_NOTIFY_ME flag in the
RDMA arguments. The application can request notifications for all RDMA operations that fail by setting the
RDS_RECVERR socket option. In both cases, the format of the notification is the same and one notification
is sent for the completed operation. The format of the message is as shown:

 struct rds_rdma_notify {
 u_int32_t user_token;
 int32_t status;
};

The user_token field contains the value that was previously stored in the kernel in the
RDS_CMSG_RDMA_ARGS control message. The status field contains a status value, with 0 indicating
success, and non-zero indicating an error. The following status codes are defined:
RDS_RDMA_SUCCESS

The RDMA operation succeeded.
RDS_RDMA_REMOTE_ERROR

The RDMA operation failed due to a remote access error. This error is because of an invalid R_key,
offset, or transfer size.

RDS_RDMA_CANCELED
The RDMA operation was canceled by the application.

RDS_RDMA_DROPPED
RDMA operations was discarded after the connection failed and was reestablished. The RDMA
operation is processed partially.

RDS_RDMA_OTHER_ERROR
Any other failure.

RDMA setsockopt arguments

When you use the RDS_GET_MR socket option to register a memory range, the application passes
a pointer to a struct rds_get_mr_args variable. The RDS_FREE_MR call accepts an argument of type
rds_free_mr_args struct:

struct rds_free_mr_args {
 rds_rdma_cookie_t cookie;
 u_int64_t flags;
};

Where cookie specifies the RDMA cookie to be released. RDMA access to the memory range is
not received instantly because the operation is costly. However, if the flags argument contains
RDS_RDMA_INVALIDATE, RDS invalidates the mapping immediately. If the cookie argument is 0, and
RDS_RDMA_INVALIDATE is set, RDS invalidates old memory mappings on all devices.

Technical Reference: Communication subroutines 227

Errors
In addition to the usual error codes returned by sendmsg, recvmsg and setsockopt system calls, RDS
returns the following error codes:
EAGAIN

RDS was unable to map a memory range because the limit exceeded (returned by
RDS_CMSG_RDMA_MAP and RDS_GET_MR) .

EINVAL
When a message is sent, there were conflicting control messages (For example, two RDMA_MAP
messages, or a RDMA_MAP and a RDMA_DEST message). In a RDS_CMSG_RDMA_MAP or RDS_GET_MR
operation, the application that is specified by the memory range is greater than the maximum size
supported. The size of the local memory specified in the rds_iovec call does not match the size of
the remote memory range when an RDMA operation with the RDS_CMSG_RDMA_ARGS was set up.

EBUSY
RDS was unable to obtain a DMA mapping for the indicated memory.

ReadFile Subroutine

Purpose
Reads data from a socket.

Syntax
#include <iocp.h>
boolean_t ReadFile (FileDescriptor, Buffer, ReadCount, AmountRead, Overlapped)
HANDLE FileDescriptor;
LPVOID Buffer;
DWORD ReadCount;
LPDWORD AmountRead;
LPOVERLAPPED Overlapped;

Description
The ReadFile subroutine reads the number of bytes specified by the ReadCount parameter from the
FileDescriptor parameter into the buffer indicated by the Buffer parameter. The number of bytes read is
saved in the AmountRead parameter. The Overlapped parameter indicates whether or not the operation
can be handled asynchronously.

The ReadFile subroutine returns a boolean (an integer) indicating whether or not the request has been
completed.

The ReadFile subroutine is part of the I/O Completion Port (IOCP) kernel extension.

Note: This subroutine only works to a socket file descriptor. It does not work with files or other file
descriptors.

Parameters
Item Description

FileDescriptor Specifies a valid file descriptor obtained from a call to the socket or accept
subroutines.

Buffer Specifies the buffer from which the data will be read.

ReadCount Specifies the maximum number of bytes to read.

AmountRead Specifies the number of bytes read. The parameter is set by the subroutine.

228 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

Overlapped Specifies an overlapped structure indicating whether or not the request can
be handled asynchronously.

Return Values
Upon successful completion, the ReadFile subroutine returns a boolean indicating the request has been
completed.

If the ReadFile subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of 0 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable, see the link in the Related Information section of this document.

Error Codes
The subroutine is unsuccessful if any of the following errors occur:

Item Description

EINPROGRESS The read request can not be immediately satisfied and will be handled
asynchronously. A completion packet will be sent to the associated
completion port upon completion.

EAGAIN The read request cannot be immediately satisfied and cannot be handled
asynchronously.

EINVAL The FileDescriptor parameter is invalid.

Examples
The following program fragment illustrates the use of the ReadFile subroutine to synchronously read data
from a socket:

void buffer;
int amount_read;
b = ReadFile (34, &buffer, 128, &amount_read, NULL);

The following program fragment illustrates the use of the ReadFile subroutine to asynchronously read
data from a socket:

void buffer;
int amount_read;
LPOVERLAPPED overlapped;
b = ReadFile (34, &buffer, 128, &amount_read, overlapped);

Note: The request will only be handled asynchronously if it cannot be immediately satisfied.

Related information
Error Notification Object Class

recv Subroutine

Purpose
Receives messages from connected sockets.

Library
Standard C Library (libc.a)

Technical Reference: Communication subroutines 229

Syntax

#include <sys/socket.h>

int recv (Socket,
Buffer, Length, Flags)
int Socket;
void * Buffer;
size_t Length;
int Flags;

Description
The recv subroutine receives messages from a connected socket. The recvfrom and recvmsg subroutines
receive messages from both connected and unconnected sockets. However, they are usually used for
unconnected sockets only.

The recv subroutine returns the length of the message. If a message is too long to fit in the supplied
buffer, excess bytes may be truncated depending on the type of socket that issued the message.

If no messages are available at the socket, the recv subroutine waits for a message to arrive, unless the
socket is nonblocking. If a socket is nonblocking, the system returns an error.

Use the select subroutine to determine when more data arrives.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure
BSD 4.3 compatible. For more details refer to socket.h.

Parameters

Item Description

Socket Specifies the socket descriptor.

Buffer Specifies an address where the message should be placed.

Length Specifies the size of the Buffer parameter.

Flags Points to a value controlling the message reception. The /usr/include/sys/socket.h file
defines the Flags parameter. The argument to receive a call is formed by logically ORing
one or more of the following values:
MSG_OOB

Processes out-of-band data. The significance of out-of-band data is protocol-dependent.
MSG_PEEK

Peeks at incoming data. The data continues to be treated as unread and will be read by
the next call to recv() or a similar function.

MSG_WAITALL
Requests that the function not return until the requested number of bytes have been
read. The function can return fewer than the requested number of bytes only if a signal is
caught, the connection is terminated, or an error is pending for the socket.

Return Values
Upon successful completion, the recv subroutine returns the length of the message in bytes.

If the recv subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Returns a 0 if the connection disconnects.
• Moves an error code, indicating the specific error, into the errno global variable.

230 AIX Version 7.2: Technical Reference: Communication Subroutines

Error Codes
The recv subroutine is unsuccessful if any of the following errors occurs:

Error Description

EBADF The Socket parameter is not valid.

ECONNRESET The remote peer forces the connection to be closed.

EFAULT The data was directed to be received into a nonexistent or protected part of the
process address space. The Buffer parameter is not valid.

EINTR A signal interrupted the recv subroutine before any data was available.

EINVAL The MSG_OOB flag is set and no out-of-band data is available.

ENOBUF Insufficient resources are available in the system to perform the operation.

ENOTCONN A receive is attempted on a SOCK_STREAM socket that is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP MSG_OOB flag is set for a SOCK_DGRAM socket, or MSG_OOB flag is set for any
AF_UNIX socket.

ETIMEDOUT The connection timed out during connection establishment, or there was a
transmission timeout on an active connection.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.

Related reference
recvmsg Subroutine
recvfrom Subroutine
shutdown Subroutine
Related information
fgets subroutine
read subroutine
Sockets Overview

recvfrom Subroutine

Purpose
Receives messages from sockets.

Library
Standard C Library (libc.a)

Syntax
#include <sys/socket.h>

ssize_t recvfrom
(Socket, Buffer, Length, Flags, From, FromLength)
int Socket;
void * Buffer;
size_t Length,
int Flags;
struct sockaddr * From;
socklen_t * FromLength;

Technical Reference: Communication subroutines 231

Description
The recvfrom subroutine allows an application program to receive messages from unconnected sockets.
The recvfrom subroutine is normally applied to unconnected sockets as it includes parameters that allow
the calling program to specify the source point of the data to be received.

To return the source address of the message, specify a nonnull value for the From parameter. The
FromLength parameter is a value-result parameter, initialized to the size of the buffer associated with
the From parameter. On return, the recvfrom subroutine modifies the FromLength parameter to indicate
the actual size of the stored address. The recvfrom subroutine returns the length of the message. If a
message is too long to fit in the supplied buffer, excess bytes may be truncated depending on the type of
socket that issued the message.

If no messages are available at the socket, the recvfrom subroutine waits for a message to arrive, unless
the socket is nonblocking. If the socket is nonblocking, the system returns an error.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure
BSD 4.3 compatible. For more details refer to socket.h.

Parameters

Item Description

Socket Specifies the socket descriptor.

Buffer Specifies an address where the message should be placed.

Length Specifies the size of the Buffer parameter.

Flags Points to a value controlling the message reception. The argument to receive a call is
formed by logically ORing one or more of the values shown in the following list:
MSG_OOB

Processes out-of-band data. The significance of out-of-band data is protocol-
dependent.

MSG_PEEK
Peeks at incoming data. The data continues to be treated as unread and will be
read by the next call to recv() or a similar function.

MSG_WAITALL
Requests that the function not return until the requested number of bytes have
been read. The function can return fewer than the requested number of bytes only
if a signal is caught, the connection is terminated, or an error is pending for the
socket.

From Points to a socket structure, filled in with the source's address.

FromLength Specifies the length of the sender's or source's address.

Return Values
If the recvfrom subroutine is successful, the subroutine returns the length of the message in bytes.

If the call is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
The recvfrom subroutine is unsuccessful if any of the following errors occurs:

232 AIX Version 7.2: Technical Reference: Communication Subroutines

Error Description

EBADF The Socket parameter is not valid.

ECONNRESET The remote peer forces the connection to be closed.

EFAULT The data was directed to be received into a nonexistent or protected part of the
process address space. The buffer is not valid.

EINTR The receive is interrupted by a signal delivery before any data is available.

EINVAL The MSG_OOB flag is set but no out-of-band data is available.

ENOBUF Insufficient resources are available in the system to perform the operation.

ENOPROTOOPT The protocol is not 64-bit supported.

ENOTCONN A receive is attempted on a SOCK_STREAM socket that is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP MSG_OOB flag is set for a SOCK_DGRAM socket, or MSG_OOB flag is set for any
AF_UNIX socket.

ETIMEDOUT The connection timed out during connection establishment, or there was a
transmission timeout on an active connection.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.

Related reference
recv Subroutine
Related information
fgets subroutine
select subroutine
Sockets Overview
Understanding Socket Data Transfer

recvmsg Subroutine

Purpose
Receives a message from any socket.

Library
Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int recvmsg (Socket, Message, Flags)
int Socket;
struct msghdr Message [];
int Flags;

int recvmmsg (Socket, MessageVec, Num_msg, Flags, Timeout)
int Socket;
struct mmsghdr MessageVec [];
unsigned int Num_msg ;
int Flags;
struct timespec *Timeout

Technical Reference: Communication subroutines 233

Description
The recvmsg subroutine receives messages from unconnected or connected sockets. The recvmsg
subroutine returns the length of the message. If a message is too long to fit in the supplied buffer, excess
bytes may be truncated depending on the type of socket that issued the message.

If no messages are available at the socket, the recvmsg subroutine waits for a message to arrive. If the
socket is nonblocking and no messages are available, the recvmsg subroutine is unsuccessful.

Use the select subroutine to determine when more data arrives.

The recvmsg subroutine uses a msghdr structure to decrease the number of directly supplied
parameters. The msghdr structure is defined in thesys/socket.h file. In BSD 4.3 Reno, the size and
members of the msghdr structure have been modified. Applications wanting to start the old structure
need to compile with COMPAT_43 defined. The default behavior is that of BSD 4.4.

All applications containing the recvmsg subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

The recvmmsg subroutine is an extension of the recvmsg subroutine that receives multiple messages
from a socket to the caller socket. This subroutine has performance benefits for some applications. The
recvmmsg subroutine supports timeout for wait during the receive operation.

The sockfd argument is the file descriptor of the socket from which data is received. The msgvec
argument is a pointer to an array of mmsghdr structures. These arguments are defined in the sys/
socket.h file.

On return from the recvmmsg subroutine, successive elements of the msgvec structure are updated to
contain information about each received message. The msg_len field contains the size of the received
message. The sub fields of the msg_hdr field are updated as described in the recvmsg subroutine. The
return value of the recvmsg call indicates the number of elements of the msgvec field that are updated.

Parameters

Item Description

Socket Specifies the unique name of the socket.

Message Points to the address of the msghdr structure, which contains both the address for the
incoming message and the space for the sender address.

Flags Permits the subroutine to exercise control over the reception of messages. The Flags
parameter that is used to receive a call is formed by logically ORing one or more of the
values which are shown in the following list:
MSG_OOB

Processes out-of-band data. The significance of out-of-band data is protocol-
dependent.

MSG_PEEK
Peeks at incoming data. The data continues to be treated as unread and will be read by
the next call to recv() or a similar function.

MSG_WAITALL
Requests that the function not return until the requested number of bytes have been
read. The function can return fewer than the requested number of bytes only if a signal
is caught, the connection is terminated, or an error is pending for the socket.

MSG_WAITFORONE
Turns on the MSG_DONTWAIT flag after the first message is received.

The /sys/socket.h file contains the possible values for the Flags parameter.

234 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

MessageV
ec

Points to an array of mmsghdr structures, which contain msghdr structures for incoming
messages, space for the sender address and a value that represents the total number of
elements in the array.

Num_msg Defines the number of messages to receive before the control is returned to the calling
socket.

Timeout The timeout argument points to a timespec structure that defines a timeout
value(specified in seconds plus nanoseconds) for the receive operation. If the timeout value
is NULL a call to the recvmmsg subroutine is blocked until the vlen messages are received
or until the timeout value expires. A nonblocking call to the recvmmsg subroutine reads all
messages that are available (the limit is specified by the vlen parameter) at the sender
socket and returns from the subroutine to the calling function immediately.

Return Values
Upon successful completion of recvmsg subroutine, the length of the message in bytes is returned and
for the recvmmsg subroutine, the number of received messages is returned.

If the recvmsg or the recvmmsg subroutine is unsuccessful, the subroutine handler performs the
following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
The recvmsg subroutine is unsuccessful if any of the following error codes occurs:

Error Description

EBADF The Socket parameter is not valid.

ECONNRESET The remote peer forces the connection to be closed.

EFAULT The Address parameter is not in a writable part of the user address space.

EINTR The recvmsg subroutine was interrupted by delivery of a signal before any data was
available for the receive.

EINVAL The length of the msghdr structure is invalid, or the MSG_OOB flag is set and no
out-of-band data is available.

EMSGSIZE The msg_iovlen member of the msghdr structure pointed to by Message is less than
or equal to 0, or is greater than IOV_MAX.

ENOBUF Insufficient resources are available in the system to perform the operation.

ENOPROTOOPT The protocol is not 64-bit supported.

ENOTCONN A receive is attempted on a SOCK_STREAM socket that is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP MSG_OOB flag is set for a SOCK_DGRAM socket, or MSG_OOB flag is set for any
AF_UNIX socket.

ETIMEDOUT The connection timed out during connection establishment, or there was a
transmission timeout on an active connection.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.

Technical Reference: Communication subroutines 235

Related reference
recv Subroutine
Related information
no subroutine
select subroutine
Sockets Overview

res_init Subroutine

Purpose

Searches for a default domain name and Internet address.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

void res_init ()

Description
The res_init subroutine reads the /etc/resolv.conf file for the default domain name and the Internet
address of the initial hosts running the name server.

Note: If the /etc/resolv.conf file does not exist, the res_init subroutine attempts name resolution using
the local /etc/hosts file. If the system is not using a domain name server, the /etc/resolv.conf file should
not exist. The /etc/hosts file should be present on the system even if the system is using a name server.
In this instance, the file should contain the host IDs that the system requires to function even if the name
server is not functioning.

The res_init subroutine is one of a set of subroutines that form the resolver, a set of functions that
translate domain names to Internet addresses. All resolver subroutines use the /usr/include/resolv.h
file, which defines the _res structure. The res_init subroutine stores domain name information in the _res
structure. Three environment variables, LOCALDOMAIN, RES_TIMEOUT, and RES_RETRY, affect default
values related to the _res structure.

All applications containing the res_init subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

For more information on the _res structure, see "Understanding Domain Name Resolution" in
Communications Programming Concepts.

Files

Item Description

 /etc/
resolv.conf

Contains the name server and domain name.

236 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

 /etc/hosts Contains host names and their addresses for hosts in a network. This file is
used to resolve a host name into an Internet address.

Related information
Sockets Overview
Understanding Domain Name Resolution

res_mkquery Subroutine

Purpose
Makes query messages for name servers.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int res_mkquery (Operation, DomName, Class, Type, Data, DataLength)
int res_mkquery (Reserved, Buffer, BufferLength)
int Operation;
char * DomName;
int Class, Type;
char * Data;
int DataLength;
struct rrec * Reserved;
char * Buffer;
int BufferLength;

Description
The res_mkquery subroutine creates packets for name servers in the Internet domain. The subroutine
also creates a standard query message. The Buffer parameter determines the location of this message.

The res_mkquery subroutine is one of a set of subroutines that form the resolver, a set of functions
that resolve domain names. Global information used by the resolver subroutines is kept in the _res data
structure. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the res_mkquery subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

Operation Specifies a query type. The usual type is QUERY, but the parameter can be set to
any of the query types defined in the arpa/nameser.h file.

Technical Reference: Communication subroutines 237

Item Description

DomName Points to the name of the domain. If the DomName parameter points to a single
label and the RES_DEFNAMES structure is set, as it is by default, the subroutine
appends the DomName parameter to the current domain name. The current
domain name is defined by the name server in use or in the /etc/resolv.conf file.

Class Specifies one of the following parameters:
C_IN

Specifies the ARPA Internet.
C_CHAOS

Specifies the Chaos network at MIT.

Type Requires one of the following values:
T_A

Host address
T_NS

Authoritative server
T_MD

Mail destination
T_MF

Mail forwarder
T_CNAME

Canonical name
T_SOA

Start-of-authority zone
T_MB

Mailbox-domain name
T_MG

Mail-group member
T_MR

Mail-rename name
T_NULL

Null resource record
T_WKS

Well-known service
T_PTR

Domain name pointer
T_HINFO

Host information
T_MINFO

Mailbox information
T_MX

Mail-routing information
T_UINFO

User (finger command) information
T_UID

User ID
T_GID

Group ID

238 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

Data Points to the data that is sent to the name server as a search key. The data is stored
as a character array.

DataLength Defines the size of the array pointed to by the Data parameter.

Reserved Specifies a reserved and currently unused parameter.

Buffer Points to a location containing the query message.

BufferLength Specifies the length of the message pointed to by the Buffer parameter.

Return Values
Upon successful completion, the res_mkquery subroutine returns the size of the query. If the query is
larger than the value of the BufferLength parameter, the subroutine is unsuccessful and returns a value of
-1.

Files

Item Description

 /etc/
resolv.conf

Contains the name server and domain name.

Related information
finger subroutine
Sockets Overview
Understanding Domain Name Resolution

res_ninit Subroutine

Purpose
Sets the default values for the members of the _res structure.

Library
Standard C Library (libc.a)

Syntax
#include <resolv.h>

int res_ninit (statp)
res_state statp;

Description
Reads the /etc/resolv.conf configuration file to get the default domain name, search list, and internet
address of the local name server(s). It does this in order to re-initialize the resolver context for a given
thread in a multi-threaded environment.

The res_ninit subroutine sets the default values for the members of the _res structure (defined in
the /usr/include/resolv.h file) after reading the /etc/resolv.conf configuration file to get default domain
name, search list, Internet address of the local name server(s), sort list, and options (for details,
please refer to the /etc/resolv.conf file). If no name server is configured, the server address is set
to INADDR_ANY and the default domain name is obtained from the gethostname subroutine. It also

Technical Reference: Communication subroutines 239

allows the user to override retrans, retry, and local domain definition using three environment variables
RES_TIMEOUT, RES_RETRY, and LOCALDOMAIN, respectively.

Using this subroutine, each thread can have unique local resolver context. Since the configuration file is
read each time the subroutine is called, it is capable of tracking dynamic changes to the resolver state
file. Changes include, addition or removal of the configuration file or any other modifications to this file
and reflect the same for a given thread. The res_ninit subroutine can also be used in single-threaded
applications to detect dynamic changes to the resolver file even while the program is running (See the
example section below). For more information on the _res structure, see Understanding Domain Name
Resolution in AIX Version 6.1 Communications Programming Concepts.

Parameters
Item Description

statp Specifies the state to be initialized.

Examples
cat /etc/resolv.conf
domain in.ibm.com
nameserver 9.184.192.240

The following two examples use the gethostbyname system call to retrieve the host address of a system
(florida.in.ibm.com) continuously. In the first example, gethostbyname is called (by a thread 'resolver')
in a multi-threaded environment. The second example is not. Before each call to gethostbyname, the
res_ninit subroutine is called to reflect dynamic changes to the configuration file.

1) #include <stdio.h>
 #include <netdb.h>
 #include <resolv.h>
 #include <pthread.h>

 void *resolver (void *arg);
 main() {
 pthread_t thid;
 if (pthread_create(&thid, NULL, resolver, NULL)) {
 printf("error in thread creation\n");
 exit(); }
 pthread_exit(NULL);
 }

 void *resolver (void *arg) {
 struct hostent *hp;
 struct sockaddr_in client;
 while(1) {
 res_ninit(&_res); /* res_init() with RES_INIT unset would NOT work
here */

 hp = (struct hostent *) gethostbyname("florida.in.ibm.com");
 bcopy(hp->h_addr_list[0],&client.sin_addr,sizeof(client.sin_addr));
 printf("hostname: %s\n",inet_ntoa(client.sin_addr));
 }
 }

If the /etc/resolv.conf file is present when the thread 'resolver' is invoked, the hostname will be
resolved for that thread (using the nameserver 9.184.192.210) and the output will be hostname:
9.182.21.151.

If /etc/resolv.conf is not present, the output will be hostname: 0.0.0.0.

2) The changes to /etc/resolv.conf file are reflected even while the program is running

 #include <stdio.h>
 #include <resolv.h>
 #include <sys.h>
 #include <netdb.h>
 #include <string.h>

240 AIX Version 7.2: Technical Reference: Communication Subroutines

 main() {
 struct hostent *hp;
 struct sockaddr_in client;

 while (1) {
 res_ninit(&_res);

 hp = (struct hostent *) gethostbyname("florida.in.ibm.com");
 bcopy(hp->h_addr_list[0],&client.sin_addr,sizeof(client.sin_addr));
 printf("hostname: %s\n",inet_ntoa(client.sin_addr));
 }
 }

If /etc/resolv.conf is present while the program is running, the hostname will be resolved (using the
nameserver 9.184.192.240) and the output will be hostname: 9.182.21.151.

If the /etc/resolv.conf file is not present, the output of the program will be hostname: 0.0.0.0.

Note: In the second example, the res_init subroutine with _res.options = ~RES_INIT can be used
instead of the res_ninit subroutine.

Files
The /etc/resolv.conf and /etc/hosts files.

Related information
Understanding Domain Name Resolution

res_query Subroutine

Purpose
Provides an interface to the server query mechanism.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int res_query (DomName, Class, Type, Answer, AnswerLength)
char * DomName;
int Class;
int Type;
u_char * Answer;
int AnswerLength;

Description
The res_query subroutine provides an interface to the server query mechanism. It constructs a query,
sends it to the local server, awaits a response, and makes preliminary checks on the reply. The query
requests information of the specified type and class for the fully-qualified domain name specified in
the DomName parameter. The reply message is left in the answer buffer whose size is specified by the
AnswerLength parameter, which is supplied by the caller.

The res_query subroutine is one of a set of subroutines that form the resolver, a set of functions
that resolve domain names. The _res data structure contains global information used by the resolver
subroutines. The /usr/include/resolv.h file contains the _res structure definition.

Technical Reference: Communication subroutines 241

All applications containing the res_query subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

DomName Points to the name of the domain. If the DomName
parameter points to a single-component name and
the RES_DEFNAMES structure is set, as it is by
default, the subroutine appends the default domain
name to the single-component name. The current
domain name is defined by the name server in use
or is specified in the /etc/resolv.conf file.

Class Specifies one of the following values:
C_IN

Specifies the ARPA Internet.
C_CHAOS

Specifies the Chaos network at MIT.

242 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

Type Requires one of the following values:
T_A

Host address
T_NS

Authoritative server
T_MD

Mail destination
T_MF

Mail forwarder
T_CNAME

Canonical name
T_SOA

Start-of-authority zone
T_MB

Mailbox-domain name
T_MG

Mail-group member
T_MR

Mail-rename name
T_NULL

Null resource record
T_WKS

Well-known service
T_PTR

Domain name pointer
T_HINFO

Host information
T_MINFO

Mailbox information
T_MX

Mail-routing information
T_UINFO

User (finger command) information
T_UID

User ID
T_GID

Group ID

Answer Points to an address where the response is stored.

AnswerLength Specifies the size of the answer buffer.

Return Values
Upon successful completion, the res_query subroutine returns the size of the response. Upon
unsuccessful completion, the res_query subroutine returns a value of -1 and sets the h_errno value
to the appropriate error.

Technical Reference: Communication subroutines 243

Files

Item Description

/etc/resolv.conf Contains the name server and domain name.

Related information
finger subroutine
Sockets Overview
Understanding Domain Name Resolution

res_search Subroutine

Purpose
Makes a query and awaits a response.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int res_search (DomName, Class, Type, Answer, AnswerLength)
char * DomName;
int Class;
int Type;
u_char * Answer;
int AnswerLength;

Description
The res_search subroutine makes a query and awaits a response like the res_query subroutine. However,
it also implements the default and search rules controlled by the RES_DEFNAMES and RES_DNSRCH
options.

The res_search subroutine is one of a set of subroutines that form the resolver, a set of functions
that resolve domain names. The _res data structure contains global information used by the resolver
subroutines. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the res_search subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

244 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

DomName Points to the name of the domain. If the DomName
parameter points to a single-component name and
the RES_DEFNAMES structure is set, as it is by
default, the subroutine appends the default domain
name to the single-component name. The current
domain name is defined by the name server in use
or is specified in the /etc/resolv.conf file.

If the RES_DNSRCH bit is set, as it is by default,
the res_search subroutine searches for host names
in both the current domain and in parent domains.

Class Specifies one of the following values:
C_IN

Specifies the ARPA Internet.
C_CHAOS

Specifies the Chaos network at MIT.

Technical Reference: Communication subroutines 245

Item Description

Type Requires one of the following values:
T_A

Host address
T_NS

Authoritative server
T_MD

Mail destination
T_MF

Mail forwarder
T_CNAME

Canonical name
T_SOA

Start-of-authority zone
T_MB

Mailbox-domain name
T_MG

Mail-group member
T_MR

Mail-rename name
T_NULL

Null resource record
T_WKS

Well-known service
T_PTR

Domain name pointer
T_HINFO

Host information
T_MINFO

Mailbox information
T_MX

Mail-routing information
T_UINFO

User (finger command) information
T_UID

User ID
T_GID

Group ID

Answer Points to an address where the response is stored.

AnswerLength Specifies the size of the answer buffer.

Return Values
Upon successful completion, the res_search subroutine returns the size of the response. Upon
unsuccessful completion, the res_search subroutine returns a value of -1 and sets the h_errno value
to the appropriate error.

246 AIX Version 7.2: Technical Reference: Communication Subroutines

Files

Item Description

/etc/resolv.conf Contains the name server and domain name.

Related information
finger subroutine
Sockets Overview
Understanding Domain Name Resolution

res_send Subroutine

Purpose
Sends a query to a name server and retrieves a response.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int res_send (MessagePtr, MessageLength, Answer, AnswerLength)
char * MsgPtr;
int MsgLength;
char * Answer;
int AnswerLength;

Description
The res_send subroutine sends a query to name servers and calls the res_init subroutine if the RES_INIT
option of the _res structure is not set. This subroutine sends the query to the local name server and
handles time outs and retries.

The res_send subroutine is one of a set of subroutines that form the resolver, a set of functions that
resolve domain names. Global information used by the resolver subroutines is kept in the _res structure.
The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the res_send subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

MessagePtr Points to the beginning of a message.

MessageLength Specifies the length of the message.

Answer Points to an address where the response is stored.

AnswerLength Specifies the size of the answer area.

Technical Reference: Communication subroutines 247

Return Values
Upon successful completion, the res_send subroutine returns the length of the message.

If the res_send subroutine is unsuccessful, the subroutine returns a -1.

Files

Item Description

 /etc/
resolv.conf

Contains general name server and domain name information.

Related information
Sockets Overview
Understanding Domain Name Resolution

rexec Subroutine

Purpose
Allows command execution on a remote host.

Library
Standard C Library (libc.a)

Syntax
int rexec (Host, Port, User, Passwd, Command, ErrFileDescParam)
char **Host;
int Port;
char *User, *Passwd,
*Command;
int *ErrFileDescParam;

Description
The rexec subroutine allows the calling process to start commands on a remote host.

If the rexec connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to
the calling process and is given to the remote command as standard input and standard output.

All applications containing the rexec subroutine must be compiled with the _BSD macro set to a specific
value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

Parameters

Item Description

Host Contains the name of a remote host that is listed in the /etc/hosts file
or /etc/resolv.config file. If the name of the host is not found in either file,
the rexec subroutine is unsuccessful.

248 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

Port Specifies the well-known DARPA Internet port to use for the connection. A
pointer to the structure that contains the necessary port can be obtained by
issuing the following library call:

getservbyname("exec","tcp")

User and Passwd Points to a user ID and password valid at the host. If these parameters are
not supplied, the rexec subroutine takes the following actions until finding a
user ID and password to send to the remote host:

1. Searches the current environment for the user ID and password on the
remote host.

2. Searches the user's home directory for a file called $HOME/.netrc that
contains a user ID and password.

3. Prompts the user for a user ID and password.

Command Points to the name of the command to be executed at the remote host.

ErrFileDescParam Specifies one of the following values:
Non-zero

Indicates an auxiliary channel to a control process is set up, and
a descriptor for it is placed in the ErrFileDescParam parameter. The
control process provides diagnostic output from the remote command
on this channel and also accepts bytes as signal numbers to be
forwarded to the process group of the command. This diagnostic
information does not include remote authorization failure, since this
connection is set up after authorization has been verified.

0
Indicates the standard error of the remote command is the same as
standard output, and no provision is made for sending arbitrary signals
to the remote process. In this case, however, it may be possible to send
out-of-band data to the remote command.

Return Values
Upon successful completion, the system returns a socket to the remote command.

If the rexec subroutine is unsuccessful, the system returns a -1 indicating that the specified host name
does not exist.

Files

Item Description

/etc/hosts Contains host names and their addresses for
hosts in a network. This file is used to resolve a
host name into an Internet address.

/etc/resolv.conf Contains the name server and domain name.

$HOME/.netrc Contains automatic login information.

Related information
Transmission Control Protocol/Internet Protocol
Sockets Overview

Technical Reference: Communication subroutines 249

rexec_af Subroutine

Purpose
Allows command execution on a remote host.

Syntax
int rexec_af(char **ahost, unsigned short rport, const char *name,
 const char *pass, const char *cmd, int *fd2p, int af)

Description
The rexec_af subroutine allows the calling process to start commands on a remote host. It behaves the
same as the existing rexec() function, but instead of creating only an AF_INET TCP socket, it can also
create an AF_INET6 TCP socket.

The rexec_af subroutine is useful because the existing rexec() function cannot transparently use
AF_INET6 sockets. This is because an application would not be prepared to handle AF_INET6 addresses
returned by functions such as getpeername() on the file descriptor created by rexec().

If the rexec_af connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned
to the calling process and is given to the remote command as standard input and standard output.

All applications containing the rexec_af subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters
Item Description

ahost Contains the name of a remote host that is listed in the /etc/hosts file or /etc/
resolv.config file. If the name of the host is not found in either file, the rexec
subroutine is unsuccessful.

rport Specifies the well-known DARPA Internet port to use for the connection. A pointer
to the structure that contains the necessary port can be obtained by issuing the
following library call:

getservbyname("exec","tcp")

name and pass Points to a valid user ID and password at the host. If these parameters are not
supplied, the rexec_af subroutine takes the following actions until it finds a user ID
and password to send to the remote host:

1. Searches the current environment for the user ID and password on the remote
host.

2. Searches the user's home directory for a file called $HOME/.netrc that contains a
user ID and password.

3. Prompts the user for a user ID and password.

cmd Points to the name of the command to be executed at the remote host.

250 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

fd2p Specifies one of the following values:
Non-zero

Indicates that an auxiliary channel to a control process is set up, and a descriptor
for it is placed in the fd2p parameter. The control process provides diagnostic
output from the remote command on this channel and also accepts bytes as
signal numbers to be forwarded to the process group of the command. This
diagnostic information does not include remote authorization failure, since this
connection is set up after authorization has been verified.

0
Indicates that the standard error of the remote command is the same as standard
output, and no provision is made for sending arbitrary signals to the remote
process. In this case, however, it might be possible to send out-of-band data to
the remote command.

af The family argument is AF_INET, AF_INET6, or AF_UNSPEC. When either AF_INET or
AF_INET6 is specified, this subroutine will create a socket of the specified address
family. When AF_UNSPEC is specified, it will try all possible address families until
a connection can be established, and will return the associated socket of the
connection.

Return Values
Upon successful completion, the system returns a socket to the remote command. If the rexec_af
subroutine is unsuccessful, the system returns a –1, indicating that the specified host name does not
exist.

Files

Item Description

/etc/hosts Contains host names and their addresses for
hosts in a network. This file is used to resolve a
host name into an Internet address.

/etc/resolv.conf Contains the name server and domain name.

$HOME/.netrc Contains automatic login information.

rresvport Subroutine

Purpose
Retrieves a socket with a privileged address.

Library
Standard C Library (libc.a)

Syntax
int rresvport (Port)
int *Port;

Technical Reference: Communication subroutines 251

Description
The rresvport subroutine obtains a socket with a privileged address bound to the socket. A privileged
Internet port is one that falls in a range between 0 and 1023.

Only processes with an effective user ID of root user can use the rresvport subroutine. An authentication
scheme based on remote port numbers is used to verify permissions.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to the
calling process.

All applications containing the rresvport subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

Port Specifies the port to use for the connection.

Return Values
Upon successful completion, the rresvport subroutine returns a valid, bound socket descriptor.

If the rresvport subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
The rresvport subroutine is unsuccessful if any of the following errors occurs:

Error Description

EAGAIN All network ports are in use.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EMFILE Two hundred file descriptors are currently open.

ENFILE The system file table is full.

ENOBUFS Insufficient buffers are available in the system to complete the subroutine.

Files

Item Description

/etc/services Contains the service names.

Related information
Sockets Overview

rresvport_af Subroutine

Purpose
Retrieves a socket with a privileged address.

252 AIX Version 7.2: Technical Reference: Communication Subroutines

Syntax
 int rresvport_af(int *port, int family);

Description
The rresvport_af subroutine obtains a socket with a privileged address bound to the socket. A privileged
Internet port is one that falls in a range between 0 and 1023.

This subroutine is similar to the existing rresvport() subroutine, except that rresvport_af also takes
and address family as an argument. This function is capable of creating either an AF_INET/TCP or an
AF_INET6/TCP socket.

Only processes with an effective user ID of root user can use the rresvport subroutine. An authentication
scheme based on remote port numbers is used to verify permissions.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to the
calling process.

All applications containing the rresvport subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters
Item Description

port Specifies the port to use for the connection.

family Specifies either AF_INET or AF_INET6 to accommodate the appropriate
version.

Return Values
Upon successful completion, the rresvport_af subroutine returns a valid, bound socket descriptor.

If the rresvport_af subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
Item Description

EAFNOSUPPORT The address family is not supported.

EAGAIN All network ports are in use.

EMFILE Two hundred file descriptors are currently open.

ENFILE The system file table is full.

ENOBUFS Insufficient buffers are available in the system to complete the
subroutine.

Files

Item Description

/etc/services Contains the service names.

Technical Reference: Communication subroutines 253

ruserok Subroutine

Purpose
Allows servers to authenticate clients.

Library
Standard C Library (libc.a)

Syntax
int ruserok (Host, RootUser, RemoteUser, LocalUser)
char * Host;
int RootUser;
char * RemoteUser,
* LocalUser;

Description
The ruserok subroutine allows servers to authenticate clients requesting services.

Always specify the host name. If the local domain and remote domain are the same, specifying the
domain parts is optional. To determine the domain of the host, use the gethostname subroutine.

All applications containing the ruserok subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

Host Specifies the name of a remote host. The ruserok subroutine checks for this host in
the /etc/host.equiv file. Then, if necessary, the subroutine checks a file in the user's
home directory at the server called /$HOME/.rhosts for a host and remote user ID.

RootUser Specifies a value to indicate whether the effective user ID of the calling process is a
root user. A value of 0 indicates the process does not have a root user ID. A value of 1
indicates that the process has local root user privileges, and the /etc/hosts.equiv file
is not checked.

RemoteUser Points to a user name that is valid at the remote host. Any valid user name can be
specified.

LocalUser Points to a user name that is valid at the local host. Any valid user name can be
specified.

Return Values
The ruserok subroutine returns a 0, if the subroutine successfully locates the name specified by the Host
parameter in the /etc/hosts.equiv file or the IDs specified by the Host and RemoteUser parameters are
found in the /$HOME/.rhosts file.

If the name specified by the Host parameter was not found, the ruserok subroutine returns a -1.

254 AIX Version 7.2: Technical Reference: Communication Subroutines

Files

Item Description

/etc/services Contains service names.

/etc/host.equiv Specifies foreign host names.

/$HOME/.rhosts Specifies the remote users of a local user account.

Related information
Sockets Overview

s
AIX runtime services beginning with the letter s.

sctp_opt_info Subroutine

Purpose
Passes information both into and out of SCTP stack.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/sctp.h>

int sctp_opt_info(sd, id, opt, *arg_size, *size);
int sd;
sctp_assoc_t id;
int opt;
void *arg_size;
size_t *size;

Description
Applications use the sctp_opt_info subroutine to get information about various SCTP socket options from
the stack. For the sockets with multiple associations, the association ID can be specified to apply the
operation on any particular association of a socket. Because an SCTP association supports multihoming,
this operation can be used to specify any particular peer address using a sockaddr_storage structure. In
this case, the result of the operation will be applied to only that particular peer address.

Implementation Specifics
The sctp_opt_info subroutine is part of Base Operating System (BOS) Runtime.

Parameters
Item Description

sd Specifies the UDP style socket descriptor returned from the socket system call.

id Specifies the identifier of the association to query.

Technical Reference: Communication subroutines 255

Item Description

opt Specifies the socket option to get.

arg_size Specifies an option specific structure buffer provided by the caller.

size Specifies the size of the option returned.

Return Values
Upon successful completion, the sctp_opt_info subroutine returns 0.

If the sctp_opt_info subroutine is unsuccessful, the subroutine handler returns a value of -1 to the calling
program and sets errno to the appropriate error code.

Error Codes
The sctp_opt_info subroutine is unsuccessful if any of the following errors occurs:

Item Description

EFAULT Indicates that the user has insufficient authority to access the data, or
the address specified in the uaddr parameter is not valid.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates insufficient memory for the required paging operation.

ENOSPC Indicates insufficient file system or paging space.

ENOBUFS Insufficient resources were available in the system to complete the
call.

ENOPROTOOPT Protocol not available.

ENOTSOCK Indicates that the user has tried to do a socket operation on a non-
socket.

Related information
Stream Control Transmission Protocol

sctp_peeloff Subroutine

Purpose
Branches off an association into a separate socket.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/sctp.h>

int sctp_peeloff(sd, *assoc_id);
int sd;
sctp_assoc_t *assoc_id;

256 AIX Version 7.2: Technical Reference: Communication Subroutines

Description
An application uses the sctp_peeloff subroutine when it wants to branch-off an existing association into
a separate socket/file descriptor. It returns a new socket descriptor, which in turn can be used to send
and receive subsequent SCTP packets. After it has been branched off, an association becomes completely
independent of the original socket. Any subsequent data or control operations to that association must be
passed using the new socket descriptor. Also, a close on the original socket descriptor will not close the
new socket descriptor branched out of the association.

All the associations under the same socket share the same socket buffer space of the socket that they
belong to. If an association gets branched off to a new socket using sctp_peeloff, then it inherits the
socket buffer space associated with the new socket descriptor. This way, the association that got peeled
off keeps more buffer space.

Implementation Specifics
The sctp_peeloff subroutine is part of Base Operating System (BOS) Runtime.

Parameters
Item Description

sd Specifies the UDP style socket descriptor returned from the socket system call.

assoc_id Specifies the identifier of the association that is to be branched-off to a separate
socket descriptor.

Return Values
Upon successful completion, the sctp_peeloff subroutine returns the nonnegative socket descriptor of
the branched-off socket.

If the sctp_peeloff subroutine is unsuccessful, the subroutine handler returns a value of -1 to the calling
program and moves an error code to the errno global variable.

Error Codes
The sctp_peeloff subroutine is unsuccessful if any of the following errors occurs:

Item Description

EINVAL Invalid argument.

EBADF Bad file descriptor.

EAFNOSUPPORT The addresses in the specified address family cannot be used
with this socket.

ESOCKTNOSUPPORT The socket in the specified address family is not supported.

EMFILE The per-process descriptor table is full.

ENOBUFS Insufficient resources were available in the system to complete
the call.

ECONNABORTED The client aborted the connection.

Related information
Stream Control Transmission Protocol

Technical Reference: Communication subroutines 257

send Subroutine

Purpose
Sends messages from a connected socket.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>

int send (Socket,
Message, Length, Flags)
int Socket;
const void * Message;
size_t Length;
int Flags;

Description
The send subroutine sends a message only when the socket is connected. This subroutine on a socket
is not thread safe. The sendto and sendmsg subroutines can be used with unconnected or connected
sockets.

To broadcast on a socket, first issue a setsockopt subroutine using the SO_BROADCAST option to gain
broadcast permissions.

Specify the length of the message with the Length parameter. If the message is too long to pass through
the underlying protocol, the system returns an error and does not transmit the message.

No indication of failure to deliver is implied in a send subroutine. A return value of -1 indicates some
locally detected errors.

If no space for messages is available at the sending socket to hold the message to be transmitted, the
send subroutine blocks unless the socket is in a nonblocking I/O mode. Use the select subroutine to
determine when it is possible to send more data.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure
BSD 4.3 compatible. For more details refer to socket.h.

Parameters

Item Description

Socket Specifies the unique name for the socket.

Message Points to the address of the message to send.

Length Specifies the length of the message in bytes.

258 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

Flags Allows the sender to control the transmission of the message. The Flags parameter used to
send a call is formed by logically ORing one or both of the values shown in the following list:
MSG_OOB

Processes out-of-band data on sockets that support SOCK_STREAM communication.
MSG_DONTROUTE

Sends without using routing tables.
MSG_MPEG2

Indicates that this block is a MPEG2 block. This flag is valid SOCK_CONN_DGRAM types
of sockets only.

Return Values
Upon successful completion, the send subroutine returns the number of characters sent.

If the send subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
The subroutine is unsuccessful if any of the following errors occurs:

Error Description

EACCES Write access to the named socket is denied, or the socket trying to send a broadcast
packet does not have broadcast capability.

EADDRNOTAVAI
L

The specified address is not a valid address.

EAFNOSUPPORT The specified address is not a valid address for the address family of this socket.

EBADF The Socket parameter is not valid.

ECONNRESET A connection was forcibly closed by a peer.

EDESTADDRREQ The socket is not in connection-mode and no peer address is set.

EFAULT The Address parameter is not in a writable part of the user address space.

EHOSTUNREACH The destination host cannot be reached.

EINTR A signal interrupted send before any data was transmitted.

EINVAL The Length parameter is invalid.

EISCONN A SOCK_DGRAM socket is already connected.

EMSGSIZE The message is too large to be sent all at once, as the socket requires.

ENETUNREACH The destination network is not reachable.

ENOBUFS Insufficient resources were available in the system to perform the operation.

ENOENT The path name does not name an existing file, or the path name is an empty string.

ENOMEM The available data space in memory is not large enough to hold group/ACL
information.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The socket argument is associated with a socket that does not support one or more
of the values set in Flags.

Technical Reference: Communication subroutines 259

Error Description

EPIPE An attempt was made to send on a socket that was connected, but the connection
has been shut down either by the remote peer or by this side of the connection. If
the socket is of type SOCK_STREAM, the SIGPIPE signal is generated to the calling
process.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.

Related reference
sendmsg Subroutine
setsockopt Subroutine
Related information
select subroutine
Sockets Overview

sendmsg Subroutine

Purpose
Sends a message from a socket using a message structure.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>

int sendmsg (Socket, Message, Flags)
int Socket;
const struct msghdr Message [];
int Flags;

Description
The sendmsg subroutine sends messages through connected or unconnected sockets using the msghdr
message structure. The /usr/include/sys/socket.h file contains the msghdr structure and defines the
structure members. In BSD 4.4, the size and members of the msghdr message structure have been
modified. Applications wanting to start the old structure need to compile with COMPAT_43 defined. The
default behaviour is that of BSD 4.4.

To broadcast on a socket, the application program must first issue a setsockopt subroutine using the
SO_BROADCAST option to gain broadcast permissions.

The sendmsg subroutine supports only 15 message elements.

All applications containing the sendmsg subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

The sendmsg routine supports IPv6 ancillary data elements as defined in the Advanced Sockets API for
IPv6.

260 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

Socket Specifies the socket descriptor.

Message Points to the msghdr message structure containing the message to be sent.

Flags Allows the sender to control the message transmission. The sys/socket.h file contains the
Flags parameter. The Flags parameter used to send a call is formed by logically ORing one or
both of the following values:
MSG_OOB

Processes out-of-band data on sockets that support SOCK_STREAM.

Note: The following value is not for general use. It is an administrative tool used for
debugging or for routing programs.

MSG_DONTROUTE
Sends without using routing tables.

MSG_MPEG2
Indicates that this block is a MPEG2 block. It only applies to SOCK_CONN_DGRAM
types of sockets only.

Return Values
Upon successful completion, the sendmsg subroutine returns the number of characters sent.

If the sendmsg subroutine is unsuccessful, the system handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
The sendmsg subroutine is unsuccessful if any of the following errors occurs:

Error Description

EACCES Write access to the named socket is denied, or the socket trying to send a broadcast
packet does not have broadcast capability.

EADDRNOTAVAI
L

The specified address is not a valid address.

EAFNOSUPPORT The specified address is not a valid address for the address family of this socket.

EBADF The Socket parameter is not valid.

ECONNRESET A connection was forcibly closed by a peer.

EDESTADDRREQ The socket is not in connection-mode and does not have its peer address set.

EFAULT The Address parameter is not in a writable part of the user address space.

EHOSTUNREACH The destination host cannot be reached.

EINTR A signal interrupted the sendmsg subroutine before any data was transmitted.

EINVAL The length of the msghdr structure is invalid.

EISCONN A SOCK_DGRAM socket is already connected.

EMSGSIZE The message is too large to be sent all at once (as the socket requires), or
the msg_iovlen member of the msghdr structure pointed to by the Messages
parameter is less than or equal to 0 or is greater than IOV_MAX.

Technical Reference: Communication subroutines 261

Error Description

ENOENT The path name does not point an existing file, or the path name is an empty string.

ENETUNREACH The destination network is not reachable.

ENOBUFS The system ran out of memory for an internal data structure.

ENOMEM The available data space in memory is not large enough to hold group or access
control list (ACL) information.

ENOPROTOOPT The protocol is not 64-bit supported.

ENOTCONN The socket is in connection-mode but is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The socket argument is associated with a socket that does not support one or more
of the values set in flags.

EPIPE An attempt was made to send on a socket that was connected, but the connection is
shut down either by the remote peer or by this side of the connection. If the socket is
of type SOCK_STREAM, the SIGPIPE signal is generated to the calling process.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.

Related reference
send Subroutine
setsockopt Subroutine
Related information
select subroutine
Sockets Overview

sendmmsg Subroutine

Purpose
Sends multiple messages from a socket by using a message structure.

Syntax
 #include <sys/types.h>
 #include <sys/socketvar.h>
 #include <sys/socket.h>

 int sendmmsg (Socket, Messages, Flags)

 int Socket;

 struct mmsghdr Message [];

 int Flags;

Description
The sendmmsg subroutine sends messages through the connected or unconnected sockets by using the
mmsghdr message structure. The /usr/include/sys/socket.h file contains the mmsghdr message
structure and defines the structure members. This subroutine is an extension to the sendmsg subroutine.

Parameters
Socket

Specifies the socket descriptor.

262 AIX Version 7.2: Technical Reference: Communication Subroutines

Messages
Points to an array of mmsghdr message structures that contain the messages to be sent.

Flags
Allows the sender to control the message transmission. The Flags parameter that is used to send
a call is formed by logically ORing the flag values. The sendmmsg subroutine accepts the same flag
values as the sendmsg subroutine. The sys/socket.h file contains the Flags parameter.

Return values
Upon successful completion, the sendmmsg subroutine returns the number of sent messages.

The sendmmsg subroutine updates the msg_len attribute of each mmsghdr structure to indicate the
number of bytes that are sent from the corresponding message.

If the sendmmsg subroutine is unsuccessful, the system handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, which indicates the specific error, into the errno global variable.

Error codes
The sendmmsg subroutine is unsuccessful if any of the following errors occur:

Error Description

EACCES Write access to the named socket is denied, or the socket that is trying to send a
broadcast packet does not have the broadcast capability.

EADDRNOTAVAI
L

The specified address is not a valid address.

EAFNOSUPPORT The specified address is not a valid address for the address family of the socket.

EBADF The Socket parameter is not valid.

ECONNRESET A connection was forcibly closed by a peer.

EDESTADDRREQ The socket is not in connection-mode and does not have its peer address set.

EFAULT The Address parameter is not in a writable part of the user address space.

EHOSTUNREACH The destination host cannot be reached.

EINTR A signal interrupted the sendmmsg subroutine before any data was transmitted.

EINVAL The length of the msghdr structure is invalid.

EISCONN The SOCK_DGRAM socket is already connected.

EMSGSIZE The message is too large to be sent together (as per the socket requirement), or
the msg_iovlen member of the msghdr structure pointed to by the Messages
parameter is less than or equal to 0 or is greater than the IOV_MAX value.

ENOENT The path name does not point an existing file, or the path name is an empty string.

ENETUNREACH The destination network is not reachable.

ENOBUFS The system ran out of memory for an internal data structure.

ENOMEM The available data space in memory is not large enough to hold group information or
access control list (ACL) information.

ENOPROTOOPT The protocol does not support 64 bits.

ENOTCONN The socket is in connection-mode but is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

Technical Reference: Communication subroutines 263

Error Description

EOPNOTSUPP The Socket argument is associated with a socket that does not support one or more
of the values that are set in the Flags parameter.

EPIPE An attempt was made to send on a socket that was connected, but the connection
is shut down either by the remote peer or by the socket side of the connection. If
the socket is of type SOCK_STREAM, the SIGPIPE signal is generated to the calling
process.

EWOULDBLOCK The socket is marked as nonblocking, and no connections are present to be
accepted.

sendto Subroutine

Purpose
Sends messages through a socket.

Library
Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int sendto
(Socket, Message, Length,
Flags, To, ToLength)
int Socket;
const void * Message;
size_t Length;
int Flags;
const struct sockaddr * To;
socklen_t ToLength;

Description
The sendto subroutine allows an application program to send messages through an unconnected socket
by specifying a destination address.

To broadcast on a socket, first issue a setsockopt subroutine using the SO_BROADCAST option to gain
broadcast permissions.

Provide the address of the target using the To parameter. Specify the length of the message with the
Length parameter. If the message is too long to pass through the underlying protocol, the error EMSGSIZE
is returned and the message is not transmitted.

If the sending socket has no space to hold the message to be transmitted, the sendto subroutine blocks
the message unless the socket is in a nonblocking I/O mode.

Use the select subroutine to determine when it is possible to send more data.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure
BSD 4.3 compatible. For more details refer to socket.h.

264 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

Socket Specifies the unique name for the socket.

Message Specifies the address containing the message to be sent.

Length Specifies the size of the message in bytes.

Flags Allows the sender to control the message transmission. The Flags parameter used to send
a call is formed by logically ORing one or both of the following values:
MSG_OOB

Processes out-of-band data on sockets that support SOCK_STREAM.

Note:

MSG_DONTROUTE
Sends without using routing tables.

The /usr/include/sys/socket.h file defines the Flags parameter.

To Specifies the destination address for the message. The destination address is a sockaddr
structure defined in the /usr/include/sys/socket.h file.

ToLength Specifies the size of the destination address.

Return Values
Upon successful completion, the sendto subroutine returns the number of characters sent.

If the sendto subroutine is unsuccessful, the system returns a value of -1, and the errno global variable is
set to indicate the error.

Error Codes
The subroutine is unsuccessful if any of the following errors occurs:

Error Description

EACCES Write access to the named socket is denied, or the socket trying to send a broadcast
packet does not have broadcast capability.

EADDRNOTAVAI
L

The specified address is not a valid address.

EAFNOSUPPORT The specified address is not a valid address for the address family of this socket.

EBADF The Socket parameter is not valid.

ECONNRESET A connection was forcibly closed by a peer.

EDESTADDRREQ The socket is not in connection-mode and no peer address is set.

EFAULT The Address parameter is not in a writable part of the user address space.

EHOSTUNREACH The destination host cannot be reached.

EINTR A signal interrupted sendto before any data was transmitted.

EINVAL The Length or ToLength parameter is invalid.

EISCONN A SOCK_DGRAM socket is already connected.

EMSGSIZE The message is too large to be sent all at once as the socket requires.

ENETUNREACH The destination network is not reachable.

ENOBUFS The system ran out of memory for an internal data structure.

Technical Reference: Communication subroutines 265

Error Description

ENOENT The path name does not name an existing file, or the path name is an empty string.

ENOMEM The available data space in memory is not large enough to hold group/ACL
information.

ENOPROTOOPT The protocol is not 64-bit supported.

ENOTCONN The socket is in connection-mode but is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The socket argument is associated with a socket that does not support one or more
of the values set in Flags.

EPIPE An attempt was made to send on a socket that was connected, but the connection
has been shut down either by the remote peer or by this side of the connection. If
the socket is of type SOCK_STREAM, the SIGPIPE signal is generated to the calling
process.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.

Related reference
setsockopt Subroutine
Related information
select subroutine
Sending Datagrams Example Program

send_file Subroutine

Purpose
Sends the contents of a file through a socket.

Library
Standard C Library (libc.a)

Syntax
#include < sys/socket.h >

ssize_t send_file(Socket_p, sf_iobuf, flags)

int * Socket_p;
struct sf_parms * sf_iobuf;
uint_t flags;

Description
The send_file subroutine sends data from the opened file specified in the sf_iobuf parameter, over the
connected socket pointed to by the Socket_p parameter.

Note: Currently, the send_file only supports the TCP/IP protocol (SOCK_STREAM socket in AF_INET). An
error will be returned when this function is used on any other types of sockets.

Parameters

266 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

Socket_p Points to the socket descriptor of the socket which the file will be sent to.

Note: This is different from most of the socket functions.

sf_iobuf Points to a sf_parms structure defined as follows:

/*
 * Structure for the send_file system call
 */
#ifdef __64BIT__
#define SF_INT64(x) int64_t x;
#define SF_UINT64(x) uint64_t x;
#else
#ifdef _LONG_LONG
#define SF_INT64(x) int64_t x;
#define SF_UINT64(x) uint64_t x;
#else
#define SF_INT64(x) int filler_##x; int x;
#define SF_UINT64(x) int filler_##x; uint_t x;
#endif
#endif

struct sf_parms {
 /* --------- header parms ---------- */
 void *header_data; /* Input/Output. Points to header buf */
 uint_t header_length; /* Input/Output. Length of the header */
 /* --------- file parms ------------ */
 int file_descriptor; /* Input. File descriptor of the file */
 SF_UINT64(file_size) /* Output. Size of the file */
 SF_UINT64(file_offset) /* Input/Output. Starting offset */
 SF_INT64(file_bytes) /* Input/Output. number of bytes to send */
 /* --------- trailer parms --------- */
 void *trailer_data; /* Input/Output. Points to trailer buf */
 uint_t trailer_length; /* Input/Output. Length of the trailer */
 /* --------- return info ----------- */
 SF_UINT64(bytes_sent) /* Output. number of bytes sent */
};

header_data
Points to a buffer that contains header data which is to be sent before the file data. May
be a NULL pointer if header_length is 0. This field will be updated by send_file when
header is transmitted - that is, header_data + number of bytes of the header sent.

header_length
Specifies the number of bytes in the header_data. This field must be set to 0 to indicate
that header data is not to be sent. This field will be updated by send_file when header is
transmitted - that is, header_length - number of bytes of the header sent.

file_descriptor
Specifies the file descriptor for a file that has been opened and is readable. This is the
descriptor for the file that contains the data to be transmitted. The file_descriptor is
ignored when file_bytes = 0. This field is not updated by send_file.

file_size
Contains the byte size of the file specified by file_descriptor. This field is filled in by the
kernel.

file_offset
Specifies the byte offset into the file from which to start sending data. This field is updated
by the send_file when file data is transmitted - that is, file_offset + number of bytes
of the file data sent.

Technical Reference: Communication subroutines 267

Item Description

file_bytes
Specifies the number of bytes from the file to be transmitted. Setting file_bytes to -1
transmits the entire file from the file_offset. When this field is not set to -1, it is updated by
send_file when file data is transmitted - that is, file_bytes - number of bytes of the file
data sent.

trailer_data
Points to a buffer that contains trailer data which is to be sent after the file data. May be
a NULL pointer if trailer_length is 0. This field will be updated by send_file when trailer is
transmitted - that is, trailer_data + number of bytes of the trailer sent.

trailer_length
Specifies the number of bytes in the trailer_data. This field must be set to 0 to indicate
that trailer data is not to be sent. This field will be updated by send_file when trailer is
transmitted - that is, trailer_length - number of bytes of the trailer sent.

bytes_sent
Contains number of bytes that were actually sent in this call to send_file. This field is
filled in by the kernel.

All fields marked with Input in the sf_parms structure requires setup by an application prior
to the send_file calls. All fields marked with Output in the sf_parms structure adjusts by
send_file when it successfully transmitted data, that is, either the specified data transmission
is partially or completely done.

The send_file subroutine attempts to write header_length bytes from the buffer pointed to by
header_data, followed by file_bytes from the file associated with file_descriptor, followed by
trailer_length bytes from the buffer pointed to by trailer_data, over the connection associated
with the socket pointed to by Socket_p.

As the data is sent, the kernel updates the parameters pointed by sf_iobuf so that if the
send_file has to be called multiple times (either due to interruptions by signals, or due to
non-blocking I/O mode) in order to complete a file data transmission, the application can
reissue the send_file command without setting or re-adjusting the parameters over and over
again.

If the application sets file_offset greater than the actual file size, or file_bytes greater than (the
actual file size - file_offset), the return value will be -1 with errno EINVAL.

268 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

flags Specifies the following attributes:
SF_CLOSE

Closes the socket pointed to by Socket_p after the data has been successfully sent or
queued for transmission.

SF_REUSE
Prepares the socket for reuse after the data has been successfully sent or queued for
transmission and the existing connection closed.

Note: This option is currently not supported on this operating system.

SF_DONT_CACHE
Does not put the specified file in the Network Buffer Cache.

SF_SYNC_CACHE
Verifies/Updates the Network Buffer Cache for the specified file before transmission.

When the SF_CLOSE flag is set, the connected socket specified by Socket_p will be
disconnected and closed by send_file after the requested transmission has been successfully
done. The socket descriptor pointed to by Socket_p will be set to -1. This flag won't take
effect if send_file returns non-0.

The flag SF_REUSE currently is not supported by AIX. When this flag is specified, the socket
pointed by Socket_p will be closed and returned as -1. A new socket needs to be created for
the next connection.

send_file will take advantage of a Network Buffer Cache in kernel memory to dynamically
cache the output file data. This will help to improve the send_file performance for files which
are:

1. accessed repetitively through network and
2. not changed frequently.

Applications can exclude the specified file from being cached by using the SF_DONT_CACHE
flag. send_file will update the cache every so often to make sure that the file data in
cache is valid for a certain time period. The network option parameter "send_file_duration"
controlled by the no command can be modified to configure the interval of the send_file
cache validation, the default is 300 (in seconds). Applications can use the SF_SYNC_CACHE
flag to ensure that a cache validation of the specified file will occur before the file is sent
by send_file, regardless the value of the "send_file_duration". Other Network Buffer Cache
related parameters are "nbc_limit", nbc_max_cache", and nbc_min_cache". For additional
infromation, see the no command.

Return Value
There are three possible return values from send_file:

Val
ue

Description

-1 an error has occurred, errno contains the error code.

0 the command has completed successfully.

1 the command was completed partially, some data has been transmitted but the command has to
return for some reason, for example, the command was interrupted by signals.

The fields marked with Output in the sf_parms structure (pointed to by sf_iobuf) is updated by send_file
when the return value is either 0 or 1. The bytes_sent field contains the total number of bytes that were
sent in this call. It is always true that bytes_sent (Output) <= header_length(Input) + file_bytes(Input) +
trailer_length (Input).

Technical Reference: Communication subroutines 269

The send_file supports the blocking I/O mode and the non-blocking I/O mode. In the blocking I/O mode,
send_file blocks until all file data (plus the header and the trailer) is sent. It adjusts the sf_iobuf to reflect
the transmission results, and return 0. It is possible that send_file can be interrupted before the request
is fully done, in that case, it adjusts the sf_iobuf to reflect the transmission progress, and return 1.

In the non-blocking I/O mode, the send_file transmits as much as the socket space allows, adjusts the
sf_iobuf to reflect the transmission progress, and returns either 0 or 1. When there is no socket space in
the system to buffer any of the data, the send_file returns -1 and sets errno to EWOULDBLOCK. select or
poll can be used to determine when it is possible to send more data.

Possible errno returned:

EBADF Either the socket or the file descriptor parameter is not
valid.

ENOTSOCK The socket parameter refers to a file, not a socket.

EPROTONOSUPPORT Protocol not supported.

EFAULT The addresses specified in the HeaderTailer parameter is
not in a writable part of the user-address space.

EINTR The operation was interrupted by a signal before any data
was sent. (If some data was sent, send_file returns the
number of bytes sent before the signal, and EINTR is not
set).

EINVAL The offset, length of the HeaderTrailer, or flags parameter is
invalid.

ENOTCONN A send_file on a socket that is not connected, a send_file
on a socket that has not completed the connect sequence
with its peer, or is no longer connected to its peer.

EWOULDBLOCK The socket is marked non-blocking and the requested
operation would block.

ENOMEM No memory is available in the system to perform the
operation.

PerformanceNote

By taking advantage of the Network Buffer Cache, send_file provides better performance and network
throughput for file transmission. It is recommanded for files bigger than 4K bytes.

Related information
select subroutine
Sockets Overview
Understanding Socket Data Transfer

set_auth_method Subroutine

Purpose
Sets the authentication methods for the rcmds for this system.

Library
Authentication Methods Library (libauthm.a)

270 AIX Version 7.2: Technical Reference: Communication Subroutines

Syntax

int set_auth_method (uint ** authm)

Description
This method configures the authentication methods for the system. The authentication methods should
be passed to the function in the order in which they should be attempted in the unsigned integer pointer
in which the user passed.

The list is an array of unsigned integers terminated by a zero. Each integer identifies an authentication
method. The order that a client should attempt to authenticate is defined by the order of the list.

The flags identifying the authentication methods are defined in the /usr/include/authm.h file.

Any undefined bits in the input parameter invalidate the entire command. If the same authentication
method is specified twice or if any authentication method is specified after Standard AIX, the command
fails.

The user must have root authority or this method fails.

Parameter

Item Description

authm Points to an array of unsigned integers. The list of authentication methods to be set is
terminated by a zero.

Return Values
Upon successful completion, the set_auth_method subroutine returns a zero.

Upon unsuccessful completion, the set_auth_method subroutine returns an errno.

Related information
Communications and networks
Authentication and the secure rcmds

setdomainname Subroutine

Purpose
Sets the name of the current domain.

Library
Standard C Library (libc.a)

Syntax
int setdomainname (Name, Namelen)
char *Name;
int Namelen;

Description
The setdomainname subroutine sets the name of the domain for the host machine. It is normally used
when the system is bootstrapped. You must have root user authority to run this subroutine.

Technical Reference: Communication subroutines 271

The purpose of domains is to enable two distinct networks that may have host names in common to
merge. Each network would be distinguished by having a different domain name. At the current time, only
Network Information Service (NIS) makes use of domains set by this subroutine.

All applications containing the setdomainname subroutine must be compiled with the _BSD macro set
to a specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the
BSD libbsd.a library.

Note: Domain names are restricted to 256 characters.

Parameters

Item Description

Name Specifies the domain name to be set.

Namelen Specifies the size of the array pointed to by the Name parameter.

Return Values
If the call succeeds, a value of 0 is returned. If the call is unsuccessful, a value of -1 is returned and an
error code is placed in the errno global variable.

Error Codes
The following errors may be returned by this subroutine:

Error Description

EFAULT The Name parameter gave an invalid address.

EPERM The caller was not the root user.

Related reference
getdomainname Subroutine
Related information
Sockets Overview

sethostent Subroutine

Purpose
Opens network host file.

Library

Standard C Library (libc.a)
(libbind)
libnis)
(liblocal)

Syntax
#include <netdb.h>

sethostent (StayOpen)
int StayOpen;

272 AIX Version 7.2: Technical Reference: Communication Subroutines

Description
When using the sethostent subroutine in DNS/BIND name service resolution, sethostent allows a request
for the use of a connected socket using TCP for queries. If the StayOpen parameter is non-zero, this sets
the option to send all queries to the name server using TCP and to retain the connection after each call to
gethostbyname or gethostbyaddr.

When using the sethostent subroutine to search the /etc/hosts file, sethostent opens and rewinds
the /etc/hosts file. If the StayOpen parameter is non-zero, the hosts database is not closed after each call
to gethostbyname or gethostbyaddr.

Parameters

Item Description

StayOpen When used in NIS name resolution and to search the local /etc/hosts file, it contains a
value used to indicate whether to close the host file after each call to gethostbyname and
gethostbyaddr. A non-zero value indicates not to close the host file after each call and a
zero value allows the file to be closed.

 When used in DNS/BIND name resolution, a non-zero value retains the TCP connection
after each call to gethostbyname and gethostbyaddr . A value of zero allows the
connection to be closed.

Files

Item Description

/etc/hosts Contains the host name database.

/etc/netsvc.conf Contains the name services ordering.

/etc/include/netdb.h Contains the network database structure.

Related reference
endhostent Subroutine
Related information
Sockets Overview
Network Address Translation

sethostent_r Subroutine

Purpose
Opens network host file.

Library
Standard C Library (libc.a)
(libbind)
libnis)
(liblocal)

Syntax
#include <netdb.h>
sethostent_r (StayOpenflag, ht_data)

int StayOpenflag;
struct hostent_data *ht_data;

Technical Reference: Communication subroutines 273

Description
When using the sethostent_r subroutine in DNS/BIND name service resolution, sethostent_r allows a
request for the use of a connected socket using TCP for queries. If the StayOpen parameter is non-zero,
this sets the option to send all queries to the name server using TCP and to retain the connection after
each call to gethostbyname_r or gethostbyaddr_r.

When using the sethostent_r subroutine to search the /etc/hosts file, sethostent_r opens and rewinds
the /etc/hosts file. If the StayOpen parameter is non-zero, the hosts database is not closed after each call
to gethostbyname_r or gethostbyaddr_r. It internally runs the sethostent command.

Parameters
Item Description

StayOpenflag When used in NIS name resolution and to search the local /etc/hosts file, it contains
a value used to indicate whether to close the host file after each call to the
gethostbyname and gethostbyaddr subroutines. A non-zero value indicates not to
close the host file after each call, and a zero value allows the file to be closed.

When used in DNS/BIND name resolution, a non-zero value retains the TCP
connection after each call to gethostbyname and gethostbyaddr. A value of zero
allows the connection to be closed.

ht_data Points to the hostent_data structure.

Files
Item Description

/etc/hosts Contains the host name database.

/etc/netsvc.conf Contains the name services ordering.

/etc/include/netdb.h Contains the network database structure.

sethostid Subroutine

Purpose
Sets the unique identifier of the current host.

Library
Standard C Library (libc.a)

Syntax
int sethostid (HostID)
int HostID;

Description
The sethostid subroutine allows a calling process with a root user ID to set a new 32-bit identifier for the
current host. The sethostid subroutine enables an application program to reset the host ID.

All applications containing the sethostid subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

274 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

HostID Specifies the unique 32-bit identifier for the current host.

Return Values
Upon successful completion, the sethostid subroutine returns a value of 0.

If the sethostid subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable see Error Notification Object Class in Communications Programming Concepts.

Error Codes
The sethostid subroutine is unsuccessful if the following is true:

Error Description

EPER
M

The calling process did not have an effective user ID of root user.

Related information
Sockets Overview

sethostname Subroutine

Purpose
Sets the name of the current host.

Library
Standard C Library (libc.a)

Syntax
int sethostname (Name, NameLength)
char *Name;
int NameLength;

Description
The sethostname subroutine sets the name of a host machine. Only programs with a root user ID can use
this subroutine.

The sethostname subroutine allows a calling process with root user authority to set the internal host
name of a machine on a network.

All applications containing the sethostname subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Technical Reference: Communication subroutines 275

Parameters

Item Description

Name Specifies the name of the host machine.

NameLength Specifies the length of the Name array.

Return Values
Upon successful completion, the system returns a value of 0.

If the sethostname subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable see Error Notification Object Class in General Programming Concepts: Writing and
Debugging Programs.

Error Codes
The sethostname subroutine is unsuccessful if any of the following errors occurs:

Error Description

EFAULT The Name parameter or NameLength parameter gives an address that is not valid.

EPERM The calling process did not have an effective root user ID.

Related reference
gethostname Subroutine
gethostid Subroutine
Related information
Sockets Overview
Understanding Network Address Translation

setnetent Subroutine

Purpose
Opens the /etc/networks file and sets the file marker.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>
void setnetent (StayOpen)
int StayOpen;

Description
The setnetent subroutine is threadsafe. However, the return value points to static data that is overwritten
by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The setnetent subroutine opens the /etc/networks file and sets the file marker at the beginning of the
file.

276 AIX Version 7.2: Technical Reference: Communication Subroutines

All applications containing the setnetent subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

StayOpen Contains a value used to indicate when to close the /etc/networks file.

Specifying a value of 0 closes the /etc/networks file after each call to the getnetent
subroutine.

Specifying a nonzero value leaves the /etc/networks file open after each call.

Return Values
If an error occurs or the end of the file is reached, the setnetent subroutine returns a null pointer.

Files

Item Description

/etc/networks Contains official network names.

Related reference
endnetent Subroutine
getnetent Subroutine
getnetbyaddr Subroutine
Related information
Sockets Overview

setnetent_r Subroutine

Purpose
Opens the /etc/networks file and sets the file marker.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>
int setnetent_r(StayOpenflag, net_data)
struct netent_data *net_data;
int StayOpenflag;

Description
The setnetent_r subroutine opens the /etc/networks file and sets the file marker at the beginning of the
file.

Technical Reference: Communication subroutines 277

Parameters

Item Description

StayOpenflag Contains a value used to indicate when to close the /etc/networks file.

Specifying a value of 0 closes the /etc/networks file after each call to
the getnetent subroutine. Specifying a nonzero value leaves the /etc/
networks file open after each call.

net_data Points to the netent_data structure.

Files

Item Description

/etc/networks Contains official network names.

setnetgrent_r Subroutine

Purpose
Handles the group network entries.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>
int setnetgrent_r(NetGroup,ptr)
char *NetGroup;
void **ptr;

Description
The setnetgrent_r subroutine functions the same as the setnetgrent subroutine.

The setnetgrent_r subroutine establishes the network group from which the getnetgrent_r subroutine
will obtain members. This subroutine also restarts calls to the getnetgrent_r subroutine from the
beginnning of the list. If the previous setnetgrent_r call was to a different network group, an
endnetgrent_r call is implied. The endnetgrent_r subroutine frees the space allocated during the
getnetgrent_r calls.

Parameters
Item Description

NetGroup Points to a network group.

ptr Keeps the function threadsafe.

Return Values
The setnetgrent_r subroutine returns a 0 if successful and a -1 if unsuccessful.

278 AIX Version 7.2: Technical Reference: Communication Subroutines

Files

Item Description

/etc/netgroup Contains network groups recognized by the system.

/usr/include/netdb.h Contains the network database structures.

setprotoent Subroutine

Purpose
Opens the /etc/protocols file and sets the file marker.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>

void setprotoent (StayOpen)
int StayOpen;

Description
The setprotoent subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The setprotoent subroutine opens the /etc/protocols file and sets the file marker to the beginning of the
file.

All applications containing the setprotoent subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

StayOpen Indicates when to close the /etc/protocols file.

Specifying a value of 0 closes the file after each call to getprotoent.

Specifying a nonzero value allows the /etc/protocols file to remain open after each
subroutine.

Return Values
The return value points to static data that is overwritten by subsequent calls.

Files
Item Description

/etc/protocols Contains the protocol names.

Related reference
endprotoent Subroutine

Technical Reference: Communication subroutines 279

getprotobyname Subroutine
Related information
Sockets Overview

setprotoent_r Subroutine

Purpose
Opens the /etc/protocols file and sets the file marker.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>

int setprotoent_r(StayOpenflag, proto_data);
int StayOpenflag;
struct protoent_data *proto_data;

Description
The setprotoent_r subroutine opens the /etc/protocols file and sets the file marker to the beginning of
the file.

Parameters

Item Description

StayOpenflag Indicates when to close the /etc/protocols file.

Specifying a value of 0 closes the file after each call to getprotoent. Specifying a
nonzero value allows the /etc/protocols file to remain open after each subroutine.

Files
Item Description

/etc/protocols Contains the protocol names.

setservent Subroutine

Purpose
Opens /etc/services file and sets the file marker.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>

void setservent (StayOpen)
int StayOpen;

280 AIX Version 7.2: Technical Reference: Communication Subroutines

Description
The setservent subroutine is threadsafe. However, the return value points to static data that is
overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The setservent subroutine opens the /etc/services file and sets the file marker at the beginning of the
file.

All applications containing the setservent subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

StayOpen Indicates when to close the /etc/services file.

Specifying a value of 0 closes the file after each call to the getservent subroutine.

Specifying a nonzero value allows the file to remain open after each call.

Return Values
If an error occurs or the end of the file is reached, the setservent subroutine returns a null pointer.

Files

Item Description

/etc/services Contains service names.

Related reference
endprotoent Subroutine
getprotobyname Subroutine
Related information
Sockets Overview

setservent_r Subroutine

Purpose
Opens /etc/services file and sets the file marker.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>

int setservent_r(StayOpenflag, serv_data)
int StayOpenflag;
struct servent_data serv_data;

Description
The setservent_r subroutine opens the /etc/services file and sets the file marker at the beginning of the
file.

Technical Reference: Communication subroutines 281

Parameters
Item Description

StayOpenflag Indicates when to close the /etc/services file.

Specifying a value of 0 closes the file after each call to the getservent subroutine.
Specifying a nonzero value allows the file to remain open after each call.

serv_data Points to the servent_data structure.

Files

Item Description

/etc/services Contains service names.

setsockopt Subroutine

Purpose
Sets socket options.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/atmsock.h> /*Needed for SOCK_CONN_DGRAM socket type
only*/

int setsockopt
(Socket, Level, OptionName, OptionValue, OptionLength)
int Socket, Level, OptionName;
const void * OptionValue;
socklen_t OptionLength;

Description
The setsockopt subroutine sets options associated with a socket. Options can exist at multiple protocol
levels. The options are always present at the uppermost socket level.

The setsockopt subroutine provides an application program with the means to control a socket
communication. An application program can use the setsockopt subroutine to enable debugging at
the protocol level, allocate buffer space, control time outs, or permit socket data broadcasts. The /usr/
include/sys/socket.h file defines all the options available to the setsockopt subroutine.

When setting socket options, specify the protocol level at which the option resides and the name of the
option.

Use the parameters OptionValue and OptionLength to access option values for the setsockopt subroutine.
These parameters identify a buffer in which the value for the requested option or options is returned.

All applications containing the setsockopt subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

282 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters
Item Description

Socket Specifies the unique socket name.

Level Specifies the protocol level at which the option resides. To set options at:

Socket level
Specifies the Level parameter as SOL_SOCKET.

Other levels
Supplies the appropriate protocol number for the protocol controlling the option. For example, to
indicate that an option will be interpreted by the TCP protocol, set the Level parameter to the protocol
number of TCP, as defined in the netinet/in.h file. Similarly, to indicate that an option will be interpreted
by ATM protocol, set the Level parameter to NDDPROTO_ATM, as defined in sys/atmsock.h.

OptionName Specifies the option to set. The OptionName parameter and any specified options are passed uninterpreted
to the appropriate protocol module for interpretation. The sys/socket.h file defines the socket protocol
level options. The netinet/tcp.h file defines the TCP protocol level options. The socket level options can be
enabled or disabled; they operate in a toggle fashion.

The following list defines socket protocol level options found in the sys/socket.h file:

SO_DEBUG
Turns on recording of debugging information. This option enables or disables debugging in the
underlying protocol modules. Set this option in one of the following ways at the command level:

• Use the sodebug command, which turns on or off this option for existing sockets.

• Specify |DEBUG[=level] in the wait/nowait field of a service in inetd.conf in order to turn on
this option for the specific service.

• Set the sodebug_env parameter to no, and specify SODEBUG=level in the process environment.
This turns on or off this option for all subsequent sockets created by the process.

The value for level can be either min, normal, or detail.

SO_REUSEADDR
Specifies that the rules used in validating addresses supplied by a bind subroutine should allow reuse
of a local port.

SO_REUSEADDR allows an application to explicitly deny subsequent bind subroutine to the port/
address of the socket with SO_REUSEADDR set. This allows an application to block other applications
from binding with the bind subroutine.

SO_REUSEPORT
Specifies that the rules used in validating addresses supplied by a bind subroutine should allow reuse
of a local port/address combination. Each binding of the port/address combination must specify the
SO_REUSEPORT socket option

SO_CKSUMREV
Enables performance enhancements in the protocol layers. If the protocol supports this option,
enabling causes the protocol to defer checksum verification until the user's data is moved into
the user's buffer (on recv, recvfrom, read, or recvmsg thread). This can cause applications to be
awakened when no data is available, in the case of a checksum error. In this case, EAGAIN is returned.
Applications that set this option must handle the EAGAIN error code rturned from a receive call.

SO_KEEPALIVE
Monitors the activity of a connection by enabling or disabling the periodic transmission of ACK
messages on a connected socket. The idle interval time can be designated using the TCP/IP no
command. Broken connections are discussed in "Understanding Socket Types and Protocols" in
Communications Programming Concepts.

Technical Reference: Communication subroutines 283

Item Description

OptionName SO_DONTROUTE
Does not apply routing on outgoing messages. Indicates that outgoing messages should bypass the
standard routing facilities. Instead, they are directed to the appropriate network interface according to
the network portion of the destination address.

SO_BROADCAST
Permits sending of broadcast messages.

SO_LINGER
Lingers on a close subroutine if data is present. This option controls the action taken when an unsent
messages queue exists for a socket, and a process performs a close subroutine on the socket.

If SO_LINGER is set, the system blocks the process during the close subroutine until it can transmit
the data or until the time expires. If SO_LINGER is not specified and a close subroutine is issued, the
system handles the call in a way that allows the process to continue as quickly as possible.

The sys/socket.h file defines the linger structure that contains the l_linger member for specifying
linger time interval. If linger time is set to anything but 0, the system tries to send any messages
queued on the socket. The maximum value that the l_linger member can be set to is 65535. If the
application has requested SPEC1170 compliant behavior by exporting the XPG_SUS_ENV environment
variable , the linger time is n seconds; otherwise, the linger time is n/100 seconds (ticks), where n is the
value of the l_linger member.

SO_OOBINLINE
Leaves received out-of-band data (data marked urgent) in line.

SO_SNDBUF
Sets send buffer size.

SO_RCVBUF
Sets receive buffer size.

SO_SNDLOWAT
Sets send low-water mark.

SO_RCVLOWAT
Sets receive low-water mark.

SO_SNDTIMEO
Sets send time out. This option is setable, but currently not used.

SO_RCVTIMEO
Sets receive time out. This option is setable, but currently not used.

SO_ERROR
Sets the retrieval of error status and clear.

SO_TYPE
Sets the retrieval of a socket type.

284 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

OptionName The following list defines TCP protocol level options found in the netinet/tcp.h file:

TCP_CWND_IF
Increases the factor of the TCP congestion window (cwnd) during the congestion avoidance. The value
must be in the range 0 - 100 (0 is disable). The tcp_cwnd_modified network tunable option must be
enabled.

TCP_CWND_DF
Decrease the factor of the TCP cwnd during the congestion avoidance. The value must be in the range 0
- 100 (0 is disable). The tcp_cwnd_modified network tunable option must be enabled.

TCP_NOTENTER_SSTART
Avoids reentering the slow start after the retransmit timeout, which might reset the cwnd to the initial
window size, instead of the size of the current slow-start threshold (ss_threshold) value or half of the
maximum cwnd (max cwnd/2). The values are 1 for enable and 0 for disable. The tcp_cwnd_modified
network tunable option must be enabled.

TCP_ NOREDUCE_CWND_IN_FRXMT
Not decrease the cwnd size when in the fast retransmit phrase. The values are 1 for enable and 0 for
disable. The tcp_cwnd_modified network tunable option must be enabled.

TCP_ NOREDUCE_CWND_EXIT_FRXMT
Not decrease the cwnd size when exits the fast retransmit phrase. The values are 1 for enable and 0 for
disable. The tcp_cwnd_modified network tunable option must be enabled.

TCP_KEEPCNT
Specifies the maximum number of keepalive packets to be sent to validate a connection. This socket
option value is inherited from the parent socket. The default is 8.

TCP_KEEPIDLE
Specifies the number of seconds of idle time on a connection after which TCP sends a keepalive packet.
This socket option value is inherited from the parent socket from the accept system call. The default
value is 7200 seconds (14400 half seconds).

TCP_KEEPINTVL
Specifies the interval of time between keepalive packets. It is measured in seconds. This socket option
value is inherited from the parent socket from the accept system call. The default value is 75 seconds
(150 half seconds).

TCP_NODELAY
Specifies whether TCP should follow the Nagle algorithm for deciding when to send data. By default,
TCP will follow the Nagle algorithm. To disable this behavior, applications can enable TCP_NODELAY to
force TCP to always send data immediately. For example, TCP_NODELAY should be used when there is
an application using TCP for a request/response.

Technical Reference: Communication subroutines 285

Item Description

OptionName TCP_RFC1323
Enables or disables RFC 1323 enhancements on the specified TCP socket. An application might contain
the following lines to enable RFC 1323:

int on=1;
setsockopt(s,IPPROTO_TCP,TCP_RFC1323,&on,
 sizeof(on));

TCP_STDURG
Enables or disables RFC 1122 compliant urgent point handling. By default, TCP implements urgent
pointer behavior compliant with the 4.2 BSD operating system, i.e., this option defaults to 0.

TCP_NODELAYACK
Specifies if TCP needs to send immediate acknowledgement packets to the sender. If this option
is not set, TCP delays sending the acknowledgement packets by up to 200 ms. This allows the
acknowledgements to be sent along with the data on a response and minimizes system overhead.
Setting this TCP option might cause a slight increase in system overhead, but can result in higher
performance for network transfers if the sender is waiting on the receiver's acknowledgements.

TCP protocol level socket options are inherited from listening sockets to new sockets.

The following list defines ATM protocol level options found in the sys/atmsock.h file:

SO_ATM_PARAM
Sets all ATM parameters. This socket option can be used instead of using individual sockets options
described below. It uses the connect_ie structure defined in sys/call_ie.h file.

SO_ATM_AAL_PARM
Sets ATM AAL(Adaptation Layer) parameters. It uses the aal_parm structure defined in sys/call_ie.h
file.

SO_ATM_TRAFFIC_DES
Sets ATM Traffic Descriptor values. It uses the traffic structure defined in sys/call_ie.h file.

SO_ATM_BEARER
Sets ATM Bearer capability. It uses the bearer structure defined in sys/call_ie.h file.

SO_ATM_BHLI
Sets ATM Broadband High Layer Information. It uses the bhli structure defined in sys/call_ie.h file.

SO_ATM_BLLI
Sets ATM Broadband Low Layer Information. It uses the blli structure defined in sys/call_ie.h file.

SO_ATM_QOS
Sets ATM Quality Of Service values. It uses the qos_parm structure defined in sys/call_ie.h file.

SO_ATM_TRANSIT_SEL
Sets ATM Transit Selector Carrier. It uses the transit_sel structure defined in sys/call_ie.h file.

OptionName SO_ATM_ACCEPT
Indicates acceptance of an incoming ATM call, which was indicated to the application via ACCEPT
system call. This must be issues for the incoming connection to be fully established. This allows
negotiation of ATM parameters.

SO_ATM_MAX_PEND
Sets the number of outstanding transmit buffers that are permitted before an error indication is
returned to applications as a result of a transmit operation. This option is only valid for non best effort
types of virtual circuits. OptionValue/OptionLength point to a byte which contains the value that this
parameter will be set to.

The following list defines IPPROTO_TCP protocol level options found in the netinet/sctp.h file:

SCTP_PEER_ADDR_PARAMS
Enables or disables heartbeats for an association and modifies the heartbeat interval of the association.
This option uses the sctp_paddrparams structure defined in the netinet/sctp.h file. For spp_address
field, AIX only supports wildcard address now. The SPP_HB_ENABLE, SPP_HB_DISABLE, and
SPP_HB_TIME_ISZERO flags are supported for the spp_flags field. The spp_hbinterval field can be
set to a minimum value of 50 milliseconds.

SCTP_MAXSEG
Sets the maximum size of any outgoing SCTP DATA chunk. If the message is larger than the specified
size, the message is fragmented by SCTP into the specified size. It uses the sctp_assoc_value structure
that is defined in the netinet/sctp.h file.

286 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

OptionValue The OptionValue parameter takes an Int parameter. To enable a Boolean option, set the OptionValue
parameter to a nonzero value. To disable an option, set the OptionValue parameter to 0.

The following options enable and disable in the same manner:

• SO_DEBUG
• SO_REUSEADDR
• SO_KEEPALIVE
• SO_DONTROUTE
• SO_BROADCAST
• SO_OOBINLINE
• SO_LINGER
• TCP_RFC1323

OptionLength The OptionLength parameter contains the size of the buffer pointed to by the OptionValue parameter.

Options at other protocol levels vary in format and name.

Item Description

IP_DONTFRAG Sets DF bit from now on for every packet in the IP header. To detect
decreases in Path MTU, UDP applications use the IP_DONTFRAG
option.

IP_FINDPMTU Sets enable/disable PMTU discovery for this path. Protocol level path
MTU discovery should be enabled for the discovery to happen.

IP_PMTUAGE Sets the age of PMTU. Specifies the frequency of PMT reductions
discovery for the session. Setting it to 0 (zero) implies infinite age
and PMTU reduction discovery will not be attempted. This will replace
the previously set PMTU age. The new PMTU age is effective after
the currently set timer expires. Currently, this option is unused
because UDP applications must set the IP_DONTFRAG socket to
detect decreases in PMTU immediately.

IP_TTL Sets the time-to-live field in the IP header for every packet. However,
for raw sockets, the default MAXTTL value will be used while sending
the messages irrespective of the value set using the setsockopt
subroutine.

IP_HDRINCL This option allows users to build their own IP header. It indicates that
the complete IP header is included with the data and can be used only
for raw sockets.

IP_ADD_MEMBERSHIP Joins a multicast group as specified in the OptionValue parameter of
the ip_mreq structure type.

IP_DROP_MEMBERSHIP Leaves a multicast group as specified in the OptionValue parameter of
the ip_mreq structure type.

IP_MULTICAST_IF Permits sending of multicast messages on an interface as specified in
the OptionValue parameter of the ip_addr structure type. An address
of INADDR_ANY (0x000000000) removes the previous selection of
an interface in the multicast options. If no interface is specified, the
interface leading to the default route is used.

IP_MULTICAST_LOOP Sets multicast loopback, determining whether or not transmitted
messages are delivered to the sending host. An OptionValue parameter
of the char type controls the loopback to be on or off.

IP_MULTICAST_TTL Sets the time-to-live (TTL) for multicast packets. An OptionValue
parameter of the char type sets the value of TTL ranging from 0
through 255.

IP_BLOCK_SOURCE Blocks data from a given source to a given group.

IP_UNBLOCK_SOURCE Unblocks a blocked source (to undo the IP_BLOCK_SOURCE
operation).

IP_ADD_SOURCE_MEMBERSHIP Joins a source-specific multicast group. If the host is a member of
the group, accept data from the source; otherwise, join the group and
accept data from the given source.

Technical Reference: Communication subroutines 287

Item Description

IP_DROP_SOURCE_MEMBERSHIP Leaves a source-specific multicast group. Drops the source from the
given multicast group list. To drop all sources of a given group, use the
IP_DROP_MEMBERSHIP socket option.

Item Description Value

IPPROTO_IPV6 Restricts AF_INET6 sockets to IPv6 communications
only.

Option Type:
int (Boolean interpretation)

Allows the user to set the outgoing hop limit for unicast
IPv6 packets.

Option Type:
int (x)

Option Value:
x < -1 Error EINVAL

x == -1 Use kernel default

0 <= x <= 255 Use

x x >= 256 Error EINVAL

Allows the user to set the outgoing hop limit for
multicast IPv6 packets.

Option Type:
int (x)

Option Value:
Interpretation is same as IPV6_UNICAST_HOPS
(listed above).

Allows the user to specify the interface being used for
outgoing multicast packets. If specified as 0, the system
selects the outgoing interface.

Option Type:
unsigned int (index of interface to use)

If a multicast datagram is sent to a group that the
sending host belongs to, a copy of the datagram is
looped back by the IP layer for local delivery (if the
option is set to 1). If the option is set to 0, a copy is
not looped back.

Option Type:
unsigned int

Joins a multicast group on a specified local interface. If
the interface index is specified as 0, the kernel chooses
the local interface.

Option Type:
struct ipv6_mreq as defined in the netinet/in.h
file

Leaves a multicast group on a specified interface. Option Type:
struct ipv6_mreq as defined in the netinet/in.h
file

Specifies that the kernel computes checksums over the
data and the pseudo-IPv6 header for a raw socket. The
kernel will compute the checksums for outgoing packets
as well as verify checksums for incoming packets on that
socket. Incoming packets with incorrect checksums will
be discarded. This option is disabled by default.

Option Type:
int

Option Value:
Offsets into the user data where the checksum
result must be stored. This must be a positive
even value. Setting the value to -1 will disable the
option.

Causes the destination IPv6 address and arriving
interface index of incoming IPv6 packets to be received
as ancillary data on UDP and raw sockets.

Option Type:
int (Boolean interpretation)

Causes the hop limit of incoming IPv6 packets to be
received as ancillary data on UDP and raw sockets.

Option Type:
int (Boolean interpretation)

Causes the traffic class of incoming IPv6 packets to be
received as ancillary data on UDP and raw sockets.

Option Type:
int (Boolean interpretation)

Causes the routing header (if any) of incoming IPv6
packets to be received as ancillary data on UDP and raw
sockets.

Option Type:
int (Boolean interpretation)

Causes the hop-by-hop options header (if any) of
incoming IPv6 packets to be received as ancillary data
on UDP and raw sockets.

Option Type:
int (Boolean interpretation)

Causes the destination options header (if any) of
incoming IPv6 packets to be received as ancillary data
on UDP and raw sockets.

Option Type:
int (Boolean interpretation)

Sets the source IPv6 address and outgoing interface
index for all IPv6 packets being sent on this socket. This
option can be cleared by doing a regular setsockopt with
ipi6_addr being in6addr_any and ipi6_ifindex being 0.

Option Type:
struct in6_pktinfo defined in the netinet/in.h
file.

Sets the next hop for outgoing IPv6 datagrams on this
socket. This option can be cleared by doing a regular
setsockopt with a 0 length. Note that a memory pointer
must still be supplied for the option value in this case.

Option Type:
struct sockaddr_in6 defined in the netinet/in.h
file.

288 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description Value

Sets the traffic class for outgoing IPv6 datagrams on this
socket. To clear this option, the application can specify
-1 as the value.

Option Type:
int (x)

Option Value:
x < -1 Error EINVAL

x == -1 Use kernel default

0 <= x <= 255 Use

x x >= 256 Error EINVAL

Sets the routing header to be used for outgoing IPv6
datagrams on this socket. This option can be cleared by
doing a regular setsockopt with a 0 length. Note that
a memory pointer must still be supplied for the option
value in this case.

Option Type:
struct ip6_rthdr defined in the netinet/ip6.h file.

Sets the hop-by-hop options header to be used for
outgoing IPv6 datagrams on this socket. This option can
be cleared by doing a regular setsockopt with a 0 length.
Note that a memory pointer must still be supplied for the
option value in this case.

Option Type:
struct ip6_hbh defined in the netinet/ip6.h file.

Sets the destination options header to be used for
outgoing IPv6 datagrams on this socket. This header
will follow a routing header (if present) and will also be
used when there is no routing header specified. This
option can be cleared by doing a regular setsockopt with
a 0 length. Note that a memory pointer must still be
supplied for the option value in this case.

Option Type:
struct ip6_dest defined in the netinet/ip6.h file.

Sets the destination options header to be used for
outgoing IPv6 datagrams on this socket. This header
will precede a routing header (if present). If no routing
header is specified, this option will be silently ignored.
This option can be cleared by doing a regular setsockopt
with a 0 length. Note that a memory pointer must still be
supplied for the option value in this case.

Option Type:
struct ip6_dest defined in the netinet/ip6.h file.

Sets this option to control IPv6 path MTU discovery. Option Type:
int

Option Type:
-1 Performs path MTU discovery for unicast
destinations, but does not perform it for
multicast destinations.0 Always performs path
MTU discovery.1 Always disables path MTU
discovery and sends packets at the minimum
MTU.

Setting this option prevents fragmentation of outgoing
IPv6 packets on this socket. If a packet is being sent
that is larger than the outgoing interface MTU, the packet
will be discarded.

Option Type:
int (Boolean interpretation)

Enables the receipt of IPV6_PATHMTU ancillary data
items by setting this option.

Option Type:
int (Boolean interpretation)

Sets the address selection preferences for this socket. Option Type:
int

Option Value:
Combination of the IPV6_PREFER_SRC_* flags
defined in netinet/in.h

Joins the multicast group as specified in the OptionValue
parameter of the group_req structure. If the specified
interface index is 0, the kernel chooses the default
interface.

Option Type:
struct group_req as defined in the netinet/in.h
file

Leaves the multicast group as specified in the
OptionValue parameter of the group_req structure.

Option Type:
struct group_req as defined in the netinet/in.h
file

Blocks data from the specified source to the specified
multicast group.

Option Type:
struct group_source_req as defined in the
netinet/in.h file

Unblocks data from the specified source to the specified
multicast group. The option is used to undo the
MCAST_BLOCK_SOURCE operation.

Option Type:
struct group_source_req as defined in the
netinet/in.h file

Joins a source-specific multicast group. If the host is
already a member of the group, accept data from the
specified source; otherwise, join the group and accept
data from the specified source.

Option Type:
struct group_source_req as defined in the
netinet/in.h file

Technical Reference: Communication subroutines 289

Item Description Value

Leaves a source-specific multicast group. Leaves the
specified source from the specified multicast group.
To leave all sources of the multicast group, use the
IPV6_LEAVE_GROUP or MCAST_LEAVE_GROUP socket
option.

Option Type:
struct group_source_req as defined in the
netinet/in.h file

Item Description Value

IPPROTO_ICMPV6 Allows the user to filter ICMPV6
messages by the ICMPV6 type
field. In order to clear an existing
filter, issue a setsockopt call with
zero length.

Option Type:
The icmp6_filter structure
defined in the netinet/
icmp6.h file.

The following values (defined in the /usr/include/netint/tcp.h file) are used by the setsockopt
subroutine to configure the dacinet functions.

Note: The DACinet facility is available only in a CAPP/EAL4+ configured AIX system.

tcp.h:#define TCP_ACLFLUSH 0x21 /* clear all DACinet ACLs */
tcp.h:#define TCP_ACLCLEAR 0x22 /* clear DACinet ACL */
tcp.h:#define TCP_ACLADD 0x23 /* Add to DACinet ACL */
tcp.h:#define TCP_ACLDEL 0x24 /* Delete from DACinet ACL */
tcp.h:#define TCP_ACLLS 0x25 /* List DACinet ACL */
tcp.h:#define TCP_ACLBIND 0x26 /* Set port number for TCP_ACLLS */
tcp.h:#define TCP_ACLGID 0x01 /* ID being added to ACL is a GID */
tcp.h:#define TCP_ACLUID 0x02 /* ID being added to ACL is a GID */
tcp.h:#define TCP_ACLSUBNET 0x04 /* address being added to ACL is a subnet */
tcp.h:#define TCP_ACLDENY 0x08 /* this ACL entry is for denying access */

Return Values
Upon successful completion, a value of 0 is returned.

If the setsockopt subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
Item Description

EBADF The Socket parameter is not valid.

EFAULT The Address parameter is not in a writable part of the user address space.

EINVAL The OptionValue parameter or the OptionLength parameter is invalid or the
socket has been shutdown.

ENOBUFS There is insufficient memory for an internal data structure.

ENOTSOCK The Socket parameter refers to a file, not a socket.

ENOPROTOOPT The option is unknown.

EOPNOTSUPP The option is not supported by the socket family or socket type.

EPERM The user application does not have the permission to get or to set this socket
option. Check the network tunable option

Examples
• To mark a socket for broadcasting:

int on=1;
setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on));

290 AIX Version 7.2: Technical Reference: Communication Subroutines

• To turn on the TCP_NODELAYACK option, run the following:

int on=1;
setsockopt(s, IPPROTO_TCP, TCP_NODELAYACK, &on, sizeof(on));

Related reference
sendto Subroutine
bind Subroutine
Related information
no subroutine

setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter
Subroutine

Purpose
Manage IP multicast source filters.

Library
Library (libc.a)

Syntax

#include <netinet/in.h>
int setsourcefilter(int socket, uint32_t interface,
 struct sockaddr *group, socklen_t grouplen,
 uint32_t fmode, uint_t numsrc,
 struct sockaddr_storage *slist);

 int getsourcefilter(int socket, uint32_t interface,
 struct sockaddr *group, socklen_t grouplen,
 uint32_t *fmode, uint_t *numsrc,
 struct sockaddr_storage *slist);

 int setipv4sourcefilter(int socket, struct in_addr interface,
 struct in_addr group, uint32_t fmode,
 uint32_t numsrc, struct in_addr *slist);

 int getipv4sourcefilter(int socket, struct in_addr interface,
 struct in_addr group, uint32_t *fmode,
 uint32_t *numsrc, struct in_addr *slist);

Description
The setsourcefilter and setipv4sourcefilter subroutines allow a socket to join a multicast group on an
interface while excluding (fmode = MCAST_EXCLUDE) messages or accepting (fmode = MCAST_INCLUDE)
messages from a number of senders listed in the slist table. The number of elements in the slist is
specified by numsrc.

The getsourcefilter and getipv4sourcefilter subroutines provide information on existing source filter for
a socket on a given interface and for a given multicast group. fmode, numsrc and slist are pointers to
parameters which will contain the information returned by the subroutine. fmode will point to the type of
filter returned: MCAST_EXCLUDE or MCAST_INCLUDE. On input, numsrc points to the maximum number
of senders that the application is expecting. If there are more sources than requested, the subroutine
returns only the first numsrc sources in slist and numsrc is set to indicate the total number of sources.
slist contains the table of excluded or included senders depending on the type of the filter. Memory
pointed by fmode, numsrc and slist must be allocated by the application. In particular, slist must point to
a memory zone able to contain numsrc elements.

The setipv4sourcefilter and getipv4sourcefilter can only be used for AF_INET sockets.

Technical Reference: Communication subroutines 291

The setsourcefilter and getsourcefilter can be used for AF_INET and AF_INET6 sockets.

Parameters
For setsourcefilter and setipv4sourcefilter:

Item Description

socket Specifies the unique socket name

interface Specifies the local interface. For setipv4sourcefilter and getipv4sourcefilter an
address configured on the interface must be specified. For setsourcefilter and
getsourcefilter, the interface must be specified by its interface index.

group Specifies the multicast group

fmode Specifies if the elements contained in the slist must be excluded (MCAST_EXCLUDE) or
included (MCAST_INCLUDE)

numsrc Specifies the number of elements in slist

slist Specifies the list of elements to exclude or include.

For getsourcefilter and getipv4sourcefilter:

Item Description

socket Specifies the unique socket name

interface Specifies the local interface. For setipv4sourcefilter and getipv4sourcefilter an
address configured on the interface must be specified. For setsourcefilter and
getsourcefilter the interface must be specified by its interface index.

group Specifies the multicast group

fmode Specifies a pointer to the type of element returned in slist. MCAST_EXCLUDE for a list of
excluded elements MCAST_INCLUDE for a list of excluded elements.

numsrc On input, specifies the number of elements that can be returned in slist. On output,
contains the total number of sources for this filter

slist Contains the list of elements returned.

Return Values
Upon successful completion, the subroutine returns 0.

If unsuccessful, the subroutine returns -1 and errno is set accordingly.

shutdown Subroutine

Purpose
Shuts down all socket send and receive operations.

Library
Standard C Library (libc.a)

Syntax
#include <sys/socket.h>

292 AIX Version 7.2: Technical Reference: Communication Subroutines

int shutdown (Socket, How)
int Socket, How;

Description
The shutdown subroutine disables all receive and send operations on the specified socket.

All applications containing the shutdown subroutine must be compiled with the _BSD macro set to a
specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD
libbsd.a library.

Parameters

Item Description

Socket Specifies the unique name of the socket.

How Specifies the type of subroutine shutdown. Use the following values:
0

Disables further receive operations.
1

Disables further send operations.
2

Disables further send operations and receive operations.

Return Values
Upon successful completion, a value of 0 is returned.

If the shutdown subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable see Error Notification Object Class in General Programming Concepts: Writing and
Debugging Programs.

Error Codes
The shutdown subroutine is unsuccessful if any of the following errors occurs:

Error Description

EBADF The Socket parameter is not valid.

EINVAL The How parameter is invalid.

ENOTCONN The socket is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

Files

Item Description

/usr/include/sys/socket.h Contains socket definitions.

/usr/include/sys/types.h Contains definitions of unsigned data types.

Related reference
getsockopt Subroutine
recv Subroutine

Technical Reference: Communication subroutines 293

Related information
read subroutine
Sockets Overview

SLPAttrCallback Subroutine

Purpose
Returns the same callback type as the SLPFindAttrs() function.

Syntax
 typedef SLPBoolean SLPAttrCallback(SLPHandle hSLP,
 const char* pcAttrList,
 SLPError errCode,
 void *pvCookie);

Description
The SLPAttrCallback type is the type of the callback function parameter to the SLPFindAttrs() function.

The pcAttrList parameter contains the requested attributes as a comma-separated list (or is empty if no
attributes matched the original tag list).

Parameters
Item Description

hSLP The SLPHandle used to initiate the operation.

pcAttrList A character buffer containing a comma-separated, null-terminated list of
attribute ID/value assignments, in SLP wire format: "(attr-id=attr-
value-list)"

errCode An error code indicating if an error occurred during the operation. The
callback should check this error code before processing the parameters.
If the error code is other than SLP_OK, then the API library can choose to
terminate the outstanding operation.

pvCookie Memory passed down from the client code that called the original API
function, starting the operation. Can be NULL.

Return Values
The client code should return SLP_TRUE if more data is desired; otherwise SLP_FALSE is returned.

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

SLPClose Subroutine

Purpose
Frees all resources associated with the handle.

294 AIX Version 7.2: Technical Reference: Communication Subroutines

Syntax
void SLPClose(SLPHandle hSLP);

Description
The SLPClose subroutine frees all resources associated with the handle. If the handle was invalid, the
function returns silently. Any outstanding synchronous or asynchronous operations are cancelled so that
their callback functions will not be called any further.

Parameters
Item Description

hSLP The SLPHandle handle returned from a call to SLPOpen().

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

SLPDereg Subroutine

Purpose
Deregisters the advertisement for URL in all scopes and locales.

Syntax
SLPError SLPReg(hSLP, pcURL, callback, pvCookie)
SLPHandle hSLP;
const char *pcURL;
SLPRegReport callback;
void *pvCookie;

Description
The SLPDereg subroutine deregisters the advertisement for the URL specified by the pcURL parameter in
all scopes where the service is registered and in all language locales. The deregistration is not confined to
the SLPHandle locale. Deregistration takes place in all locales.

Parameters
Item Description

hSLP The language-specific SLPHandle handle used for deregistration of services.

pcURL The URL that needs to be deregistered.

callback A callback function through which the results of the operation are reported.

pvCookie The memory passed to callback code from the client. The parameter can be
set to NULL.

Return Values
Item Description

SLP_OK The subroutine has run successfully.

Technical Reference: Communication subroutines 295

Item Description

SLPError An error occurred.

Related information
/etc/slp.conf subroutine
Service Location Protocol (SLP) APIs

SLPEscape Subroutine

Purpose
Processes an input string and escapes any characters reserved for SLP.

Syntax
SLPError SLPEscape(const char* pcInbuf,
 char** ppcOutBuf,
 SLPBoolean isTag);

Description
The SLPEscape subroutine processes the input string in pcInbuf and escapes any characters reserved for
SLP. If the isTag parameter is SLPTrue, SLPEscape looks for bad tag characters and signals an error if any
are found by returning the SLP_PARSE_ERROR code. The results are put into a buffer allocated by the
API library and returned in the ppcOutBuf parameter. This buffer should be deallocated using SLPFree()
when the memory is no longer needed.

Parameters
Item Description

pcInbuf Pointer to the input buffer to process for escape characters.

ppcOutBuf Pointer to a pointer for the output buffer with the characters reserved
for SLP escaped. Must be freed using SLPFree() when the memory is no
longer needed.

isTag When true, the input buffer is checked for bad tag characters.

Return Values
The SLPEscape subroutine returns SLP_PARSE_ERROR if any characters are bad tag characters and the
isTag flag is true; otherwise, it returns SLP_OK, or the appropriate error code if another error occurs.

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

SLPFindAttrs Subroutine

Purpose
Returns service attributes that match the attribute IDs for the indicated service URL or service type.

296 AIX Version 7.2: Technical Reference: Communication Subroutines

Syntax
SLPError SLPFindAttrs(SLPHandle hSLP,
 const char *pcURLOrServiceType,
 const char *pcScopeList,
 const char *pcAttrIds,
 SLPAttrCallback callback,
 void *pvCookie);

Description
The SLPFindAttrs subroutine returns service attributes matching the attribute IDs for the indicated
service URL or service type. If pcURLOrServiceType is a service URL, the attribute information returned is
for that particular advertisement in the language locale of the SLPHandle.

If pcURLOrServiceType is a service type name (including naming authority if any), then the attributes for
all advertisements of that service type are returned regardless of the language of registration. Results are
returned through the callback.

The result is filtered with an SLP attribute request filter string parameter. If the filter string is the empty
string (""), all attributes are returned.

Parameters
Item Description

hSLP The SLPHandle on which to search for attributes.

pcURLOrServiceType The service URL or service type. Cannot be the empty string.

pcScopeList A pointer to a char containing a comma-separated list of scope names.
Cannot be the empty string, "".

pcAttrIds The filter string indicating which attribute values to return. Use the empty
string ("") to indicate all values. Wildcards matching all attribute IDs
having a particular prefix or suffix are also possible.

callback A callback function through which the results of the operation are
reported.

pvCookie Memory passed to the callback code from the client. Can be NULL.

Return Values
If SLPFindAttrs is successful, it returns SLP_OK. If an error occurs in starting the operation, one of the
SLPError codes is returned.

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

SLPFindScopes Subroutine

Purpose
Sets the ppcScopeList parameter to point to a comma-separated list that includes all available scope
values.

Syntax
SLPError SLPFindScopes(SLPHandle hSLP,
 char** ppcScopeList);

Technical Reference: Communication subroutines 297

Description
The SLPFindScopes subroutine sets the ppcScopeList parameter to point to a comma-separated list that
includes all available scope values. If there is any order to the scopes, preferred scopes are listed before
less desirable scopes. There is always at least one name in the list, the default scope, DEFAULT.

Parameters
Item Description

hSLP The SLPHandle on which to search for scopes.

ppcScopeList A pointer to a char pointer into which the buffer pointer is placed upon
return. The buffer is null terminated. The memory should be freed by
calling SLPFree().

Return Values
If no error occurs, SLPFindScopes returns SLP_OK; otherwise, it returns the appropriate error code.

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

SLPFindSrvs Subroutine

Purpose
Issues the query for services on the language-specific SLPHandle and returns the results through the
callback.

Syntax
SLPError SLPFindSrvs(SLPHandle hSLP,
 const char *pcServiceType,
 const char *pcScopeList,
 const char *pcSearchFilter,
 SLPSrvURLCallback callback,
 void *pvCookie);

Description
The SLPFindSrvs subroutine issues the query for services on the language-specific SLPHandle and
returns the results through the callback. The parameters determine the results

Parameters
Item Description

hSLP The language-specific SLPHandle on which to search for services.

pcServiceType The Service Type String, including authority string if any, for the request,
which can be discovered using SLPSrvTypes(). This could be, for example,
"service:printer:lpr" or "service:nfs". This cannot be the
empty string ("").

pcScopeList A pointer to a char containing a comma-separated list of scope names.
This cannot be the empty string ("").

298 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

pcSearchFilter A query formulated of attribute pattern matching expressions in the form
of a LDAPv3 Search Filter. If this filter is empty (""), all services of the
requested type in the specified scopes are returned.

callback A callback function through which the results of the operation are
reported.

pvCookie Memory passed to the callback code from the client. Can be NULL.

Return Values
If SLPFindSrvs is successful, it returns SLP_OK. If an error occurs in starting the operation, one of the
SLPError codes is returned.

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

SLPFindSrvTypes Subroutine

Purpose
Issues an SLP service type request.

Syntax
SLPError SLPFindSrvTypes(SLPHandle hSLP,
 const char *pcNamingAuthority,
 const char *pcScopeList,
 SLPSrvTypeCallback callback,
 void *pvCookie);

Description
The SLPFindSrvType() subroutine issues an SLP service type request for service types in the scopes
indicated by the pcScopeList. The results are returned through the callback parameter. The service types
are independent of language locale, but only for services registered in one of the scopes and for the
naming authority indicated by pcNamingAuthority.

If the naming authority is "*", then results are returned for all naming authorities. If the naming
authority is the empty string, "", then the default naming authority, "IANA", is used. "IANA" is not a
valid naming authority name, and it returns a PARAMETER_BAD error when it is included explicitly.

The service type names are returned with the naming authority intact. If the naming authority is the
default (that is, the empty string), then it is omitted, as is the separating ".". Service type names from
URLs of the service: scheme are returned with the "service:" prefix intact.

Parameters
Item Description

hSLP The SLPHandle on which to search for types.

pcNamingAuthority The naming authority to search. Use "*" for all naming authorities and the
empty string, "", for the default naming authority.

pcScopeList A pointer to a char containing a comma-separated list of scope names to
search for service types. Cannot be the empty string, "".

Technical Reference: Communication subroutines 299

Item Description

callback A callback function through which the results of the operation are
reported.

pvCookie Memory passed to the callback code from the client. Can be NULL.

Return Values
If SLPFindSrvTypes is successful, it returns SLP_OK. If an error occurs in starting the operation, one of
the SLPError codes is returned.

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

SLPFree Subroutine

Purpose
Frees memory returned from SLPParseSrvURL(), SLPFindScopes(), SLPEscape(), and SLPUnescape().

Syntax
void SLPFree(void* pvMem);

Description
The SLPFree subroutine frees memory returned from SLPParseSrvURL(), SLPFindScopes(),
SLPEscape(), and SLPUnescape().

Parameters
Item Description

pvMem A pointer to the storage allocated by the SLPParseSrvURL(), SLPEscape(),
SLPUnescape(), or SLPFindScopes() function. Ignored if NULL.

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

SLPGetProperty Subroutine

Purpose
Returns the value of the corresponding SLP property name.

Syntax
const char* SLPGetProperty(const char* pcName);

300 AIX Version 7.2: Technical Reference: Communication Subroutines

Description
The SLPGetProperty subroutine returns the value of the corresponding SLP property name. The returned
string is owned by the library and must not be freed.

Parameters
Item Description

pcName Null-terminated string with the property name.

Return Values
If no error, the SLPGetProperty subroutine returns a pointer to a character buffer containing the property
value. If the property was not set, the subroutine returns the default value. If an error occurs, it returns
NULL. The returned string must not be freed.

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

SLPOpen Subroutine

Purpose
Returns an SLPHandle handle that encapsulates the language locale for SLP requests.

Syntax
SLPError SLPOpen(const char *pcLang, SLPBoolean isAsync, SLPHandle
 *phSLP);

Description
The SLPOpen subroutine returns an SLPHandle handle in the phSLP parameter for the language locale
passed in as the pcLang parameter. The client indicates if operations on the handle are to be synchronous
or asynchronous through the isAsync parameter. The handle encapsulates the language locale for SLP
requests issued through the handle, and any other resources required by the implementation. However,
SLP properties are not encapsulated by the handle; they are global. The return value of the function is an
SLPError code indicating the status of the operation. Upon failure, the phSLP parameter is NULL.

Implementation Specifics
An SLPHandle can only be used for one SLP API operation at a time. If the original operation was started
asynchronously, any attempt to start an additional operation on the handle while the original operation
is pending results in the return of an SLP_HANDLE_IN_USE error from the API function. The SLPClose()
API function terminates any outstanding calls on the handle. If an implementation is unable to support
an asynchronous (resp. synchronous) operation, because of memory constraints or lack of threading
support, the SLP_NOT_IMPLEMENTED flag might be returned when the isAsync flag is SLP_TRUE (resp.
SLP_FALSE).

Parameters
Item Description

pcLang A pointer to an array of characters (AIX supports "en" only).

Technical Reference: Communication subroutines 301

Item Description

isAsync An SLPBoolean indicating whether the SLPHandle should be opened for
asynchronous operation or not. AIX supports synchronous operation only.

phSLP A pointer to an SLPHandle, in which the open SLPHandle is returned. If
an error occurs, the value upon return is NULL.

Return Values
If SLPOpen is successful, it returns SLP_OK and an SLPHandle handle in the phSLP parameter for the
language locale passed in as the pcLang parameter.

Error Codes
Item Description

SLPError Indicates the status of the operation

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

SLPParseSrvURL Subroutine

Purpose
Parses the URL passed in as the argument into a service URL structure and returns it in the ppSrvURL
pointer.

Syntax
SLPError SLPParseSrvURL(char *pcSrvURL
 SLPSrvURL** ppSrvURL);

Description
The SLPParseSrvURL subroutine parses the URL passed in as the argument into a service URL structure
and returns it in the ppSrvURL pointer. If a parse error occurs, returns SLP_PARSE_ERROR. The input
buffer pcSrvURL is destructively modified during the parse and used to fill in the fields of the return
structure. The structure returned in ppSrvURL should be freed with SLPFreeURL(). If the URL has no
service part, the s_pcSrvPart string is the empty string (""), not NULL. If pcSrvURL is not a service:
URL, then the s_pcSrvType field in the returned data structure is the URL's scheme, which might
not be the same as the service type under which the URL was registered. If the transport is IP, the
s_pcTransport field is the empty string. If the transport is not IP or there is no port number, the s_iPort
field is 0.

Parameters
Item Description

pcSrvURL A pointer to a character buffer containing the null-terminated URL string to
parse. It is destructively modified to produce the output structure.

ppSrvURL A pointer to a pointer for the SLPSrvURL structure to receive the parsed
URL. The memory should be freed by a call to SLPFree() when no longer
needed.

302 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
If no error occurs, the return value is SLP_OK. Otherwise, the appropriate error code is returned.

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

SLPReg Subroutine

Purpose
Registers the services on the language-specific SLPHandle handle and returns the results through the
callback.

Syntax
SLPError SLPReg (hSLP, pcSrvURL,
usLifetime, pcSrvType,
 pcAttrs, fresh,
callback, pvCookie)
SLPHandle hSLP;
const char *pcSrvURL;
const unsigned short usLifetime;
const char *pcSrvType;
const char *pcAttrs;
SLPBoolean fresh;
SLPRegReport callback;
void *pvCookie;

Description
The SLPReg subroutine registers the URL specified by the pcSrvURL parameter having the usLifeTime
lifetime with the attribute list specified by the pcAttrs parameter. The attribute list is a comma-separated
list of attributes. The pcSrvType parameter is the service type name and can be included in the scheme
service URL that are not in the service. In the case of the scheme service URL with service, the pcSrvType
parameter is ignored. The fresh flag specifies that this registration is a new or an update-only registration.
If the fresh parameter is set to SLP_TRUE, the registration replaces existing registrations. If the fresh
parameter is set to SLP_FALSE, the registration only updates existing registrations. The usLifeTime
parameter must be nonzero and less than or equal to SLP_LIFETIME_MAXIMUM. The registration takes
place in the language locale of hhSLP handle.

Parameters
Item Description

hSLP The language-specific SLPHandle handle on which to register the services.

pcSrvURL The URL that needs to be registered.

usLifetime The time after which the registered URL will expire.

pcSrvType Specifies the service type name that can be included in the service URL, which
is not in the scheme service.

pcAttrs The comma-separated list of attributes to be registered along with the service
URL.

fresh If the fresh parameter is set to SLP_TRUE, the registration is new; if the fresh
parameter is set to SLP_FALSE, this registration updates an existing registration.

callback A callback function through which the results of the operation are reported.

Technical Reference: Communication subroutines 303

Item Description

pvCookie The memory passed to callback code from the client. The parameter can be set
to NULL.

Return Values
Item Description

SLP_OK The subroutine has run successfully.

SLPError An error occurred.

Related information
/etc/slp.conf subroutine
Service Location Protocol (SLP) APIs

SLPRegReport Callback Subroutine

Introduction
Returns the same callback type as the SLPReg and SLPDereg subroutines.

Syntax
typedef void SLPRegReport (hSLP, errCode, pvCookie)
SLPHandle hSLP;
SLPError errCode;
void *pvCookie;

Description
The SLPSrvURLCallback type is the type of the callback subroutine parameter to the SLPFindSrvs
subroutine.

Parameters
Item Description

hSLP The SLPHandle handle used to initiate the operation.

errCode An error code indicating that an error occurred during the operation. The callback
must check this error code before processing the parameters. If the error code is
not SLP_OK, the API library can choose to terminate the outstanding operation.

pvCookie The memory passed down from the client code that calls the original API
function at the start of the operation. The parameter can be set to NULL.

Return Values
Item Description

SLP_TRUE More data is necessary.

SLP_FALSE No additional data is necessary.

SLPSrvTypeCallback Subroutine

304 AIX Version 7.2: Technical Reference: Communication Subroutines

Purpose
Returns the same callback type as the SLPFindSrvTypes() function.

Syntax
typedef SLPBoolean SLPSrvTypeCallback(SLPHandle hSLP,
 const char* pcSrvTypes,
 SLPError errCode,
 void *pvCookie);

Description
The SLPSrvTypeCallback type is the type of the callback function parameter to the SLPFindSrvTypes()
function.

Parameters
Item Description

hSLP The SLPHandle used to initiate the operation.

pcSrvTypes A character buffer containing a comma-separated, null-terminated list of
service types.

errCode An error code indicating if an error occurred during the operation. The
callback should check this error code before processing the parameters.
If the error code is other than SLP_OK, then the API library can choose to
terminate the outstanding operation.

pvCookie Memory passed down from the client code that called the original API
function, starting the operation. Can be NULL.

Return Values
The client code should return SLP_TRUE if more data is desired; otherwise SLP_FALSE is returned.

SLPSrvURLCallback Subroutine

Purpose
Returns the same callback type as the SLPFindSrvs() function.

Syntax
typedef SLPBoolean SLPSrvURLCallback(SLPHandle hSLP,
 const char* pcSrvURL,
 unsigned short sLifetime,
 SLPError errCode,
 void *pvCookie);

Description
The SLPSrvURLCallback type is the type of the callback function parameter to the SLPFindSrvs()
function.

Technical Reference: Communication subroutines 305

Parameters
Item Description

hSLP The SLPHandle used to initiate the operation.

pcSrvURL A character buffer containing the returned service URL.

sLifetime An unsigned short giving the lifetime of the service advertisement, in
seconds. The value must be an unsigned integer less than or equal to
SLP_LIFETIME_MAXIMUM.

errCode An error code indicating if an error occurred during the operation. The
callback should check this error code before processing the parameters.
If the error code is other than SLP_OK, then the API library can choose to
terminate the outstanding operation.

pvCookie Memory passed down from the client code that called the original API
function, starting the operation. Can be NULL.

Return Values
The client code should return SLP_TRUE if more data is desired; otherwise SLP_FALSE is returned.

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

SLPUnescape Subroutine

Purpose
Processes an input string and unescapes any characters reserved for SLP.

Syntax
SLPError SLPUnescape(const char* pcInbuf,
 char** ppcOutBuf,
 SLPBoolean isTag);

Description
The SLPUnescape subroutine processes the input string in pcInbuf and unescapes any characters
reserved for SLP. If the isTag parameter is SLPTrue, SLPUnescape looks for bad tag characters and
signals an error if any are found by returning the SLP_PARSE_ERROR code. No transformation is
performed if the input string is opaque. The results are put into a buffer allocated by the API library
and returned in the ppcOutBuf parameter. This buffer should be deallocated using SLPFree() when the
memory is no longer needed.

Parameters
Item Description

pcInbuf Pointer to the input buffer to process for escape characters.

ppcOutBuf Pointer to a pointer for the output buffer with the characters reserved
for SLP escaped. Must be freed using SLPFree() when the memory is no
longer needed.

isTag When true, the input buffer is checked for bad tag characters.

306 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
The SLPUnescape subroutine returns SLP_PARSE_ERROR if any characters are bad tag characters and
the isTag flag is true; otherwise, it returns SLP_OK, or the appropriate error code if another error occurs.

Related information
/etc/slp.conf File
Service Location Protocol (SLP) API

socket Subroutine

Purpose
Creates an end point for communication and returns a descriptor.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
int socket (AddressFamily, Type, Protocol)
int AddressFamily, Type, Protocol;

Description
The socket subroutine creates a socket in the specified AddressFamily and of the specified type. A
protocol can be specified or assigned by the system. If the protocol is left unspecified (a value of 0), the
system selects an appropriate protocol from those protocols in the address family that can be used to
support the requested socket type.

The socket subroutine returns a descriptor (an integer) that can be used in later subroutines that operate
on sockets.

Socket level options control socket operations. The getsockopt and setsockopt subroutines are used to
get and set these options, which are defined in the /usr/include/sys/socket.h file.

Technical Reference: Communication subroutines 307

Parameters

Item Description

AddressFamily Specifies an address family with which addresses specified in later socket
operations should be interpreted. The /usr/include/sys/socket.h file contains
the definitions of the address families. Commonly used families are:
AF_UNIX

Denotes the operating system path names.
AF_INET

Denotes the ARPA Internet addresses.
AF_INET6

Denotes the IPv6 and IPv4 addresses.
AF_NS

Denotes the XEROX Network Systems protocol.
AF_BYPASS

Denotes the kernel-bypass protocol domain (for example, the protocols that
operate on the InfiniBand domain).

Type Specifies the semantics of communication. The /usr/include/sys/socket.h file
defines the socket types. The operating system supports the following types:
SOCK_STREAM

Provides sequenced, two-way byte streams with a transmission mechanism
for out-of-band data.

SOCK_DGRAM
Provides datagrams, which are connectionless messages of a fixed maximum
length (usually short).

SOCK_RAW
Provides access to internal network protocols and interfaces. This type of
socket is available only to the root user, or to non-root users who have
the CAP_NUMA_ATTACH capability. (For non-root raw socket access, the
CAP_NUMA_ATTACH capability, along with CAP_PROPAGATE, is assigned
using the chuser Command) .

SOCK_SEQPACKET
Provides sequenced, reliable, and unduplicated flow of information. This type
of socket is used for UDP-style socket creation in case of Stream Control
Transmission Protocol and Reliable Datagram Sockets (RDS) Protocol.

Protocol Specifies a particular protocol to be used with the socket. Specifying the
Protocol parameter of 0 causes the socket subroutine to default to the typical
protocol for the requested type of returned socket. For SCTP sockets, the
protocol parameter is IPPROTO_SCTP. For RDS sockets, the Protocol parameter is
BYPASSPROTO_RDS.

Return Values
Upon successful completion, the socket subroutine returns an integer (the socket descriptor).

If the socket subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable see Error Notification Object Class.

308 AIX Version 7.2: Technical Reference: Communication Subroutines

Error Codes
The socket subroutine is unsuccessful if any of the following errors occurs:

Error Description

EAFNOSUPPORT The addresses in the specified address family cannot be used with this
socket.

EMFILE The per-process descriptor table is full.

ENOBUFS Insufficient resources were available in the system to complete the call.

ESOCKTNOSUPPORT The socket in the specified address family is not supported.

Examples
The following program fragment illustrates the use of the socket subroutine to create a datagram socket
for on-machine use:

s = socket(AF_UNIX, SOCK_DGRAM,0);

Implementation Specifics
The socket subroutine is part of Base Operating System (BOS) Runtime.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure
BSD 4.3 compatible. For more details refer to socket.h.

Related reference
accept Subroutine
bind Subroutine
getsockname Subroutine
Related information
ioctl subroutine
Initiating Internet Stream Connections Example Program

socketpair Subroutine

Purpose
Creates a pair of connected sockets.

Library
Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int socketpair (Domain, Type, Protocol, SocketVector[0])
int Domain, Type, Protocol;
int SocketVector[2];

Description
The socketpair subroutine creates an unnamed pair of connected sockets in a specified domain, of a
specified type, and using the optionally specified protocol. The two sockets are identical.

Technical Reference: Communication subroutines 309

Note: Create sockets with this subroutine only in the AF_UNIX protocol family.

The descriptors used in referencing the new sockets are returned in the SocketVector[0] and
SocketVector[1] parameters.

The /usr/include/sys/socket.h file contains the definitions for socket domains, types, and protocols.

All applications containing the socketpair subroutine must be compiled with the _BSD macro set to a
value of 43 or 44. Socket applications must include the BSD libbsd.a library.

Parameters

Item Description

Domain Specifies the communications domain within which the sockets are created. This
subroutine does not create sockets in the Internet domain.

Type Specifies the communications method, whether SOCK_DGRAM or SOCK_STREAM,
that the socket uses.

Protocol Points to an optional identifier used to specify which standard set of rules (such as
UDP/IP and TCP/IP) governs the transfer of data.

SocketVector Points to a two-element vector that contains the integer descriptors of a pair of
created sockets.

Return Values
Upon successful completion, the socketpair subroutine returns a value of 0.

If the socketpair subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable.

Error Codes
If the socketpair subroutine is unsuccessful, it returns one of the following errors codes:

Error Description

EAFNOSUPPORT The addresses in the specified address family cannot be used with this
socket.

EFAULT The SocketVector parameter is not in a writable part of the user address
space.

EMFILE This process has too many descriptors in use.

ENFILE The maximum number of files allowed are currently open.

ENOBUFS Insufficient resources were available in the system to perform the operation.

EOPNOTSUPP The specified protocol does not allow the creation of socket pairs.

EPROTONOSUPPORT The specified protocol cannot be used on this system.

EPROTOTYPE The socket type is not supported by the protocol.

Related information
Socketpair Communication Example Program,
Sockets Overview,

socks5_getserv Subroutine

310 AIX Version 7.2: Technical Reference: Communication Subroutines

Purpose
Return the address of the SOCKSv5 server (if any) to use when connecting to a given destination.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>
#include <netinet/in.h>
#include <sys/socket.h>

struct sockaddr * socks5_getserv (Dst, DstLen)
struct sockaddr *Dst;
size_t DstLen;

Description
The socks5_getserv subroutine determines which (if any) SOCKSv5 server should be used as an
intermediary when connecting to the address specified in Dst.

The address returned in Dst may be IPv4 or IPv6 or some other family. The user should check the
address family before using the returned data.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure
BSD 4.3 compatible. For more details refer to socket.h.

Parameters

Item Description

Dst Specifies the external address of the target socket to use as a key for looking up the
appropriate SOCKSv5 server.

DstLength Specifies the length of the address structure in Dst.

Return Values
• Upon successful lookup, the socks_getserv subroutine returns a reference to a sockaddr struct.
• If the socks5tcp_connect subroutine is unsuccessful in finding a server, for any reason, a value of NULL

is returned. If an error occurred, an error code, indicating the generic system error, is moved into the
errno global variable.

Error Codes (placed in errno)
The socks5_getserv subroutine is unsuccessful if no server is indicated or if any of the following errors
occurs:

Error Description

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EFAULT The Dst parameter is not in a writable part of the user address space.

EINVAL One or more of the specified arguments is invalid.

ENOMEM The Dst parameter is not large enough to hold the server address.

Technical Reference: Communication subroutines 311

Examples
The following program fragment illustrates the use of the socks5_getserv subroutine by a client to
request a connection from a server's socket.

struct sockaddr_in6 dst;

struct sockaddr *srv;
.
.
.
srv = socks5_getserv((struct sockaddr*)&dst, sizeof(dst));

if (srv !=NULL) {

 /* Success: srv should be used as the socks5 server */

} else {
 /* Failure: no server could be returned. check errno */

}

Related reference
connect Subroutine
Related information
Sockets Overview
SOCKS5C_CONFIG Environment Variable

/etc/socks5c.conf File

Purpose
Contains mappings between network destinations and SOCKSv5 servers.

Description
The /etc/socks5c.conf file contains basic mappings between network destinations (hosts or networks)
and SOCKSv5 servers to use when accessing those destinations. This is an ASCII file that contains records
for server mappings. Text following a pound character ('#') is ignored until the end of line. Each record
appears on a single line and is the following format:

<destination>[/<prefixlength>] <server>[:<port>]

You must separate fields with whitespace. Records are separated by new-line characters. The fields and
modifiers in a record have the following values:

Item Description

destination Specifies a network destination; destination may be either a name fragment or a
numeric address (with optional prefixlength). If destination is an address, it may be
either IPv4 or IPv6.

prefixlength If specified, indicates the number of leftmost (network order) bits of an address to
use when comparing to this record. Only valid if destination is an address. If not
specified, all bits are used in comparisons.

server Specifies the SOCKSv5 server associated with destination. If server is "NONE"
(must be all uppercase), this record indicates that target addresses matching
destination should not use any SOCKSv5 server, but rather be contacted directly.

 port If specified, indicates the port to use when contacting server. If not specified, the
default of 1080 is assumed.

Note: Server address in IPv6 format must be followed by a port number.

312 AIX Version 7.2: Technical Reference: Communication Subroutines

If a name fragment destination is present in /etc/socks5c.conf, all target addresses is SOCKSv5
operations will be converted into hostnames for name comparison (in addition to numeric comparisons
with numeric records). The resulting hostname is considered to match if the last characters in the
hostname match the specified name fragment.

When using this configuration information to determine the address of the appropriate SOCKSv5 server
for a target destination, the "best" match is used. The "best" match is defined as:

Item Description

destination is numeric Most bits in comparison (i.e. largest prefixlength)

destination is a name fragment Most characters in name fragment.

When both name fragment and numeric addresses are present, all name fragment entries are "better"
than numeric address entries.

Two implicit records:

0.0.0.0/0 NONE #All IPv4 destinations; no associated server.

::/0 NONE #All IPv6 destinations; no associated server.

are assumed as defaults for all destinations not specified in /etc/socks5c.conf.

Security
Access Control: This file should grant read (r) access to all users and grant write (w) access only to the
root user.

Examples

#Sample socks5c.conf file

9.0.0.0/8 NONE #Direct communication with all hosts in the 9 network.

129.35.0.0/16 sox1.austin.ibm.com

ibm.com NONE #Direct communication will all hosts matching "ibm.com" (e.g.
"aguila.austin.ibm.com")

Related reference
connect Subroutine

socks5tcp_accept Subroutine

Purpose
Awaits an incoming connection to a socket from a previous socks5tcp_bind() call.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>
#include <netinet/in.h>
#include <sys/socket.h>

Technical Reference: Communication subroutines 313

int socks5tcp_accept(Socket, Dst, DstLen, Svr, SvrLen)
int Socket;
struct sockaddr *Dst;
size_t DstLen;
struct sockaddr *Svr;
size_t SrvLen;

Description
The socks5tcp_accept subroutine blocks until an incoming connection is established on a listening
socket that was requested in a previous call to socks5tcp_bind. Upon success, subsequent writes to and
reads from Socket will be relayed through Svr.

Socket must be an open socket descriptor of type SOCK_STREAM.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure
BSD 4.3 compatible. For more details refer to socket.h.

Parameters

Item Description

Socket Specifies the unique name of the socket.

Dst If non-NULL, buffer for receiving the address of the remote client which initiated an
incoming connection

DstLength Specifies the length of the address structure in Dst.

Svr If non-NULL, specifies the address of the SOCKSv5 server to use to request the relayed
connection; on success, this space will be overwritten with the server-side address of
the incoming connection.

SvrLength Specifies the length of the address structure in Svr.

Return Values
Upon successful completion, the socks5tcp_accept subroutine returns a value of 0, and modifies Dst and
Svr to reflect the actual endpoints of the incoming external socket.

If the socks5tcp_accept subroutine is unsuccessful, the system handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the generic system error, into the errno global variable.
• Moves an error code, indicating the specific SOCKSv5 error, into the socks5_errno global variable.

Error Codes (placed in errno; inherited from underlying call to connect())
The socks5tcp_bindaccept subroutine is unsuccessful if any of the following errors occurs:

Error Description

EBADF The Socket parameter is not valid.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

ENETUNREACH No route to the network or host is present.

EFAULT The Dst or Svr parameter is not in a writable part of the user address space.

EINVAL One or more of the specified arguments is invalid.

ENETDOWN The specified physical network is down.

ENOSPC There is no space left on a device or system table.

314 AIX Version 7.2: Technical Reference: Communication Subroutines

Error Description

ENOTCONN The socket could not be connected.

Error Codes (placed in socks5_errno; SOCKSv5-specific errors)
The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

Error Description

S5_ESRVFAIL General SOCKSv5 server failure.

S5_EPERM SOCKSv5 server ruleset rejection.

S5_ENETUNREACH SOCKSv5 server could not reach target network.

S5_EHOSTUNREACH SOCKSv5 server could not reach target host.

S5_ECONNREFUSED SOCKSv5 server connection request refused by target host.

S5_ETIMEDOUT SOCKSv5 server connection failure due to TTL expiry.

S5_EOPNOTSUPP Command not supported by SOCKSv5 server.

S5_EAFNOSUPPORT Address family not supported by SOCKSv5 server.

S5_EADDRINUSE Requested bind address is already in use (at the SOCKSv5 server).

S5_ENOSERV No server found.

Examples
The following program fragment illustrates the use of the socks5tcp_accept and socks5tcp_bind
subroutines by a client to request a listening socket from a server and wait for an incoming connection on
the server side.

struct sockaddr_in svr;
struct sockaddr_in dst;
.
.
.
socks5tcp_bind(s,(struct sockaddr*)&dst, sizeof(dst), (struct sockaddr *)&svr, sizeof(svr), &res,
sizeof(svr));
.
.
.
socks5tcp_accept(s, (struct sockaddr *)&dst, sizeof(dst), (struct sockaddr *)&svr, sizeof(svr));

Related information
Initiating Stream Connections Example Program
Sockets Overview

socks5tcp_bind Subroutine

Purpose
Connect to a SOCKSv5 server and request a listening socket for incoming remote connections.

Library
Standard C Library (libc.a)

Technical Reference: Communication subroutines 315

Syntax

#include <stdlib.h>
#include <netinet/in.h>
#include <sys/socket.h>

int socks5tcp_bind(Socket, Dst, DstLen, Svr, SvrLen)
Int Socket;
struct sockaddr *Dst;
size_t DstLen;
struct sockaddr *Svr;
size_t SrvLen;

Description
The socks5tcp_bind subroutine requests a listening socket on the SOCKSv5 server specified in Svr, in
preparation for an incoming connection from a remote destination, specified by Dst. Upon success, Svr
will be overwritten with the actual address of the newly bound listening socket, and Socket may be used in
a subsequent call to socks5tcp_accept.

Socket must be an open socket descriptor of type SOCK_STREAM.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure
BSD 4.3 compatible. For more details refer to socket.h.

Parameters

Item Description

Socket Specifies the unique name of the socket.

Dst Specifies the address of the SOCKSv5 server to use to request the relayed connection;
on success, this space will be overwritten with the actual bound address on the server.

DstLength Specifies the length of the address structure in Dst.

Svr If non-NULL, specifies the address of the SOCKSv5 server to use to request the relayed
connection; on success, this space will be overwritten with the actual bound address on
the server.

SvrLength Specifies the length of the address structure in Svr.

Return Values
Upon successful completion, the socks5tcp_bind subroutine returns a value of 0, and modifies Svr to
reflect the actual address of the newly bound listener socket.

If the socks5tcp_bind subroutine is unsuccessful, the system handler performs the following functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the generic system error, into the errno global variable.
• Moves an error code, indicating the specific SOCKSv5 error, into the socks5_errno global variable.

Error Codes (placed in errno; inherited from underlying call to connect())
The socks5tcp_bindaccept subroutine is unsuccessful if any of the following errors occurs:

Error Description

EBADF The Socket parameter is not valid.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EADDRNOTAVAIL The specified address is not available from the local machine.

316 AIX Version 7.2: Technical Reference: Communication Subroutines

Error Description

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EISCONN The socket is already connected.

ETIMEDOUT The establishment of a connection timed out before a connection was made.

ECONNREFUSED The attempt to connect was rejected.

ENETUNREACH No route to the network or host is present.

EADDRINUSE The specified address is already in use.

EFAULT The Address parameter is not in a writable part of the user address space.

EINPROGRESS The socket is marked as nonblocking. The connection cannot be immediately
completed. The application program can select the socket for writing during the
connection process.

EINVAL One or more of the specified arguments is invalid.

ENETDOWN The specified physical network is down.

ENOSPC There is no space left on a device or system table.

ENOTCONN The socket could not be connected.

Error Codes (placed in socks5_errno; SOCKSv5-specific errors)
The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

Error Description

S5_ESRVFAIL General SOCKSv5 server failure.

S5_EPERM SOCKSv5 server ruleset rejection.

S5_ENETUNREACH SOCKSv5 server could not reach target network.

S5_EHOSTUNREACH SOCKSv5 server could not reach target host.

S5_ECONNREFUSED SOCKSv5 server connection request refused by target host.

S5_ETIMEDOUT SOCKSv5 server connection failure due to TTL expiry.

S5_EOPNOTSUPP Command not supported by SOCKSv5 server.

S5_EAFNOSUPPORT Address family not supported by SOCKSv5 server.

S5_EADDRINUSE Requested bind address is already in use (at the SOCKSv5 server).

S5_ENOERV No server found.

Examples
The following program fragment illustrates the use of the socks5tcp_bind subroutine by a client to
request a listening socket from a server.

struct sockaddr_in svr;
struct sockaddr_in dst;
.
.
.
socks5tcp_bind(s, (struct sockaddr *)&dst, sizeof(dst), (structsockaddr *)&svr, sizeof(svr));

Related reference
getsockname Subroutine

Technical Reference: Communication subroutines 317

Related information
Sockets Overview

socks5tcp_connect Subroutine

Purpose
Connect to a SOCKSv5 server and request a connection to an external destination.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>
#include <netinet/in.h>
#include <sys/socket.h>

int socks5tcp_connect (Socket, Dst, DstLen, Svr, SvrLen)
int Socket;
struct sockaddr *Dst;
size_t DstLen;
struct sockaddr *Svr;
size_t SrvLen;

Description
The socks5tcp_connect subroutine requests a connection to Dst from the SOCKSv5 server specified in
Svr. If successful, Dst and Svr will be overwritten with the actual addresses of the external connection and
subsequent writes to and reads from Socket will be relayed through Svr.

Socket must be an open socket descriptor of type SOCK_STREAM; Dst and Svr may be either IPv4 or IPv6
addresses.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure
BSD 4.3 compatible. For more details refer to socket.h.

Parameters

Item Description

Socket Specifies the unique name of the socket.

Dst Specifies the external address of the target socket to which the SOCKSv5 server will
attempt to connect.

DstLength Specifies the length of the address structure in Dst.

Svr If non-NULL, specifies the address of the SOCKSv5 server to use to request the relayed
connection.

SvrLength Specifies the length of the address structure in Svr.

Return Values
Upon successful completion, the socks5tcp_connect subroutine returns a value of 0, and modifies Dst
and Svr to reflect the actual endpoints of the created external socket.

If the socks5tcp_connect subroutine is unsuccessful, the system handler performs the following
functions:

318 AIX Version 7.2: Technical Reference: Communication Subroutines

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the generic system error, into the errno global variable.
• Moves an error code, indicating the specific SOCKSv5 error, into the socks5_errno global variable.
• Dst and Svr are left unmodified.

Error Codes (placed in errno; inherited from underlying call to connect())
The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

Error Description

EBADF The Socket parameter is not valid.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EISCONN The socket is already connected.

ETIMEDOUT The establishment of a connection timed out before a connection was made.

ECONNREFUSED The attempt to connect was rejected.

ENETUNREACH No route to the network or host is present.

EADDRINUSE The specified address is already in use.

EFAULT The Address parameter is not in a writable part of the user address space.

EINPROGRESS The socket is marked as nonblocking. The connection cannot be immediately
completed. The application program can select the socket for writing during the
connection process.

EINVAL One or more of the specified arguments is invalid.

ENETDOWN The specified physical network is down.

ENOSPC There is no space left on a device or system table.

ENOTCONN The socket could not be connected.

Error Codes (placed in socks5_errno; SOCKSv5-specific errors)
The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

Error Description

S5_ESRVFAIL General SOCKSv5 server failure.

S5_EPERM SOCKSv5 server ruleset rejection.

S5_ENETUNREACH SOCKSv5 server could not reach target network.

S5_EHOSTUNREACH SOCKSv5 server could not reach target host.

S5_ECONNREFUSED SOCKSv5 server connection request refused by target host.

S5_ETIMEDOUT SOCKSv5 server connection failure due to TTL expiry.

S5_EOPNOTSUPP Command not supported by SOCKSv5 server.

S5_EAFNOSUPPORT Address family not supported by SOCKSv5 server.

S5_ENOSERV No server found.

Technical Reference: Communication subroutines 319

Examples
The following program fragment illustrates the use of the socks5tcp_connect subroutine by a client to
request a connection from a server's socket.

struct sockaddr_in svr;
struct sockaddr_in6 dst;
.
.
.
socks5tcp_connect(s,(struct sockaddr*)&dst, sizeof(dst), (struct sockaddr *)&svr, sizeof(svr));

Related reference
getsockname Subroutine
Related information
Initiating Stream Connections Example Program

socks5udp_associate Subroutine

Purpose
Connects to a SOCKSv5 server, and requests a UDP association for subsequent UDP socket
communications.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>
#include <netinet/in.h>
#include <sys/socket.h>

int socks5udp_associate (Socket, Dst, DstLen, Svr, SvrLen)
int Socket;
const struct sockaddr *Dst;
size_t DstLen;
const struct sockaddr *Svr;
size_t SrvLen;

Description
The socks5udp_associate subroutine requests a UDP association for Dst on the SOCKSv5 server
specified in Svr. Upon success, Dst is overwritten with a rendezvous address to which subsequent UDP
packets should be sent for relay by Svr.

 Socket must be an open socket descriptor of type SOCK_STREAM; Dst and Svr may be either IPv4 or IPv6
addresses.

Note that Socket cannot be used to send subsequent UDP packets (a second socket of type
SOCK_DGRAM must be created).

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure
BSD 4.3 compatible. For more details refer to socket.h.

Parameters

Item Description

Socket Specifies the unique name of the socket.

320 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

Dst Specifies the external address of the target socket to which the SOCKSv5 client expects
to send UDP packets.

DstLength Specifies the length of the address structure in Dst.

Svr Specifies the address of the SOCKSv5 server to use to request the association.

SvrLength Specifies the length of the address structure in Svr.

Return Values
Upon successful completion, the socks5udp_associate subroutine returns a value of 0 and overwrites Dst
with the rendezvous address.

If the socks5udp_associate subroutine is unsuccessful, the system handler performs the following
functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the generic system error, into the errno global variable.
• Moves an error code, indicating the specific SOCKSv5 error, into the socks5_errno global variable.

Error Codes (placed in errno; inherited from underlying call to connect())
The socks5udp_associate subroutine is unsuccessful if any of the following errors occurs:

Error Description

EBADF The Socket parameter is not valid.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EISCONN The socket is already connected.

ETIMEDOUT The establishment of a connection timed out before a connection was made.

ECONNREFUSED The attempt to connect was rejected.

ENETUNREACH No route to the network or host is present.

EADDRINUSE The specified address is already in use.

EFAULT The Address parameter is not in a writable part of the user address space.

EINPROGRESS The socket is marked as nonblocking. The connection cannot be immediately
completed. The application program can select the socket for writing during the
connection process.

EINVAL One or more of the specified arguments is invalid.

ENETDOWN The specified physical network is down.

ENOSPC There is no space left on a device or system table.

ENOTCONN The socket could not be connected.

Error Codes (placed in socks5_errno; SOCKSv5-specific errors)
The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

Technical Reference: Communication subroutines 321

Error Description

S5_ESRVFAIL General SOCKSv5 server failure.

S5_EPERM SOCKSv5 server ruleset rejection.

S5_ENETUNREACH SOCKSv5 server could not reach target network.

S5_EHOSTUNREACH SOCKSv5 server could not reach target host.

S5_ECONNREFUSED SOCKSv5 server connection request refused by target host.

S5_ETIMEDOUT SOCKSv5 server connection failure due to TTL expiry.

S5_EOPNOTSUPP Command not supported by SOCKSv5 server.

S5_EAFNOSUPPORT Address family not supported by SOCKSv5 server.

S5_ENOSERV No server found.

Examples
The following program fragment illustrates the use of the socks5udp_associate subroutine by a client to
request an association on a server.

struct sockaddr_in svr;
struct sockaddr_in6 dst;
.
.
.
socks5udp_associate(s,(struct sockaddr*)&dst, sizeof(dst), (struct sockaddr *)&svr,
sizeof(svr));

Related information
Initiating Stream Connections Example Program
SOCKS5C_CONFIG Environment Variable

socks5udp_sendto Subroutine

Purpose
Send UDP packets through a SOCKSv5 server.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>
#include <netinet/in.h>
#include <sys/socket.h>

int socks5udp_sendto (Socket, Message, MsgLen, Flags, Dst, DstLen, Svr, SvrLen)
int Socket;
void *Message;
size_t MsgLen;
int Flags;
struct sockaddr *Dst;
size_t DstLen;
struct sockaddr *Svr;
size_t SrvLen;

322 AIX Version 7.2: Technical Reference: Communication Subroutines

Description
The socks5udp_sendto subroutine sends a UDP packet to Svr for relay to Dst. Svr must be the
rendezvous address returned from a previous call to socks5udp_associate.

 Socket must be an open socket descriptor of type SOCK_DGRAM; Dst and Svr may be either IPv4 or IPv6
addresses.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure
BSD 4.3 compatible. For more details refer to socket.h.

Parameters

Item Description

Socket Specifies the unique name of the socket.

Message Specifies the address containing the message to be sent.

MsgLen Specifies the size of the message in bytes.

Flags Allows the sender to control the message transmission. See the description in the
sendto subroutine for more specific details.

Dst Specifies the external address to which the SOCKSv5 server will attempt to relay the
UDP packet.

DstLength Specifies the length of the address structure in Dst.

Svr Specifies the address of the SOCKSv5 server to send the UDP packet for relay.

SvrLength Specifies the length of the address structure in Svr.

Return Values
Upon successful completion, the socks5udp_sendto subroutine returns a value of 0.

If the socks5udp_sendto subroutine is unsuccessful, the system handler performs the following
functions:

• Returns a value of -1 to the calling program.
• Moves an error code, indicating the generic system error, into the errno global variable.
• Moves an error code, indicating the specific SOCKSv5 error, into the socks5_errno global variable.

Error Codes (placed in errno; inherited from underlying call to sendto())
The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

Error Description

EBADF The Socket parameter is not valid.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

ENETUNREACH No route to the network or host is present.

EINVAL One or more of the specified arguments is invalid.

ENETDOWN The specified physical network is down.

ENOSPC There is no space left on a device or system table.

Technical Reference: Communication subroutines 323

Error Codes (placed in socks5_errno; SOCKSv5-specific errors)
The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

Error Description

S5_ESRVFAIL General SOCKSv5 server failure.

S5_EPERM SOCKSv5 server ruleset rejection.

S5_ENETUNREACH SOCKSv5 server could not reach target network.

S5_EHOSTUNREACH SOCKSv5 server could not reach target host.

S5_ECONNREFUSED SOCKSv5 server connection request refused by target host.

S5_ETIMEDOUT SOCKSv5 server connection failure due to TTL expiry.

S5_EOPNOTSUPP Command not supported by SOCKSv5 server.

S5_EAFNOSUPPORT Address family not supported by SOCKSv5 server.

S5_ENOSERV No server found.

Examples
The following program fragment illustrates the use of the socks5udp_sendto subroutine by a client to
request a connection from a server's socket.

void *message;
size_t msglen;
int flags;
struct sockaddr_in svr;
struct sockaddr_in6 dst;
.
.
.
socks5udp_associate(s,(struct sockaddr*)&dst, sizeof(dst), (struct sockaddr *)&svr, sizeof(svr));
.
.
.
socks5udp_sendto(s, message, msglen, flags (struct sockaddr*)&dst, sizeof(dst), (struct sockaddr *)&svr, sizeof(svr));

Related information
Sockets Overview

splice Subroutine

Purpose
Lets the protocol stack manage two sockets that use TCP.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int splice(socket1, socket2, flags)
 int socket1, socket2;
 int flags;

Description
The splice subroutine will let TCP manage two sockets that are in connected state thus relieving the caller
from moving data from one socket to another. After the splice subroutine returns successfully, the caller
needs to close the two sockets.

The two sockets should be of type SOCK_STREAM and protocol IPPROTO_TCP. Specifying a protocol of
zero will also work.

324 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

socket1, socket2 Specifies a socket that had gone through a successful connect() or
accept().

flags Set to zero. Currently ignored.

Return Values

Item Description

0 Indicates a successful completion.

-1 Indicates an error. The specific error is indicated by errno.

Error Codes

Item Description

EBADF socket1 or socket2 is not valid.

ENOTSOCK socket1 or socket2 refers to a file, not a socket.

EOPNOTSUPP socket1 or socket2 is not of type SOCK_STREAM.

EINVAL The parameters are invalid.

EEXIST socket1 or socket2 is already spliced.

ENOTCONN socket1 or socket2 is not in connected state.

EAFNOSUPPORT socket1 or socket2 address family is not supported for this subroutine.

WriteFile Subroutine

Purpose
Writes data to a socket.

Syntax
#include <iocp.h>
boolean_t WriteFile (FileDescriptor, Buffer, WriteCount, AmountWritten, Overlapped)
HANDLE FileDescriptor;
LPVOID Buffer;
DWORD WriteCount;
LPDWORD AmountWritten;
LPOVERLAPPED Overlapped;

Description
The WriteFile subroutine writes the number of bytes specified by the WriteCount parameter from the
buffer indicated by the Buffer parameter to the FileDescriptor parameter. The number of bytes written is
saved in the AmountWritten parameter. The Overlapped parameter indicates whether or not the operation
can be handled asynchronously.

The WriteFile subroutine returns a boolean (an integer) indicating whether or not the request has been
completed.

The WriteFile subroutine is part of the I/O Completion Port (IOCP) kernel extension.

Technical Reference: Communication subroutines 325

Note: This subroutine only works to a socket file descriptor. It does not work with files or other file
descriptors.

Parameters
Item Description

FileDescriptor Specifies a valid file descriptor obtained from a call to the socket or accept
subroutines.

Buffer Specifies the buffer from which the data will be written.

WriteCount Specifies the maximum number of bytes to write.

AmountWritten Specifies the number of bytes written. The parameter is set by the
subroutine.

Overlapped Specifies an overlapped structure indicating whether or not the request can
be handled asynchronously.

Return Values
Upon successful completion, the WriteFile subroutine returns a boolean indicating the request has been
completed.

If the WriteFile subroutine is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of 0 to the calling program.
• Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable, see the link in the Related Information section of this document.

Error Codes
Item Description

EINPROGRESS The write request can not be immediately satisfied and will be handled
asynchronously. A completion packet will be sent to the associated completion
port upon completion.

EAGAIN The write request cannot be immediately satisfied and cannot be handled
asynchronously.

EINVAL The FileDescriptor is invalid.

Examples
The following program fragment illustrates the use of the WriteFile subroutine to synchronously write
data to a socket:

void buffer;
int amount_written;
b=WriteFile (34, &buffer, 128, &amount_written, NULL);

The following program fragment illustrates the use of the WriteFile subroutine to asynchronously write
data to a socket:

void buffer;
int amount_written;
LPOVERLAPPED overlapped;
b = ReadFile (34, &buffer, 128, &amount_written, overlapped);

Note: The request will only be handled asynchronously if it cannot be immediately satisfied.

326 AIX Version 7.2: Technical Reference: Communication Subroutines

Related information
Error Notification Object Class

Packet Capture
The packet capture library contains subroutines that allow users to communicate with the packet capture
facility provided by the operating system to read unprocessed network traffic. Applications using these
subroutines must be run as root. These subroutines are maintained in the libpcap.a library:
Related information
pcap_close
pcap_strerror

ioctl BPF Control Operations

Purpose
Performs packet-capture-related control operations.

Syntax
#include <sys/ioctl.h>

int ioctl (int fd, int cmd[, arg])

Description
The Berkeley Packet Filter (BPF) ioctl commands perform a variety of packet-capture-related control. The
fd argument is a BPF device descriptor. For non-packet-capture descriptors, functions performed by this
call are unspecified.

The cmd parameter and an optional third parameter (with varying types) are passed to and interpreted by
the BPF ioctl function to perform an appropriate control operation that is specified by the user.

Parameters
Item Description

fd Specifies an open file descriptor that refers to a BPF device created using
the open call.

cmd Selects the control function to be performed.

arg Represents additional information that is needed to perform the requested
function. The type of the arg parameter is either an integer or a pointer to a
BPF-specific data structure, depending on the particular control request.

BPF Control Operations
In addition to the FIONREAD ioctl command, the following commands can be applied to any open BPF
device. The arg parameter is a pointer to the indicated type.

ioctl command Type of the arg
parameter

Description

BIOCGBLEN u_int Returns the buffer length for reads on BPF devices.

Technical Reference: Communication subroutines 327

ioctl command Type of the arg
parameter

Description

BIOCSBLEN u_int Sets the buffer length for reads on BPF devices. The
buffer parameter must be set before the device is
attached to an interface with the BIOCSETIF command.
If the requested buffer size cannot be accommodated,
the closest allowable size is set and returned in the arg
parameter.

BIOCGDLT u_int Returns the type of the data link layer underlying the
attached interface.

BIOCPROMISC N/A Forces the interface into promiscuous mode. All packets,
not just those destined for the local host, are processed.
A listener that opened its interface nonpromiscuously can
receive packets promiscuously, because more than one
device can be listening on a given interface. The problem
can be remedied with an appropriate filter.

BIOCFLUSH N/A Flushes the buffer of incoming packets, and resets
the statistics that are returned by the BIOCGSTATS
command.

BIOCGETIF struct ifreq Returns the name of the hardware interface that the
device is listening on. The name is returned in the
ifr_name field of the ifreq structure. All other fields are
undefined.

BIOCSETIF struct ifreq Sets the hardware interface associate with the device.
This command must be performed before any pack-
packets can be read. The device is indicated by the
name using the ifr_name field of the ifreq structure.
Additionally, the command performs the actions of the
BIOCFLUSH command.

BIOCGRTIMEOUT struct timeval Gets the read timeout value. The arg parameter specifies
the length of time to wait before a read request times out.
This parameter is initialized to zero by an open, indicating
no timeout.

BIOCSRTIMEOUT struct timeval Sets the read timeout value described in the
BIOCGRTIMEOUT command.

BIOCGSTATS struct bpf_stat Returns the a structure of packet statistics. The structure
is defined in the net/bpf.h file.

BIOCIMMEDIATE u_int Enables or disables the immediate mode, based on the
truth value of the arg parameter. When the immediate
mode is enabled, reads return immediately upon packet
reception. Otherwise, a read will be blocked until either
the kernel buffer becomes full or a timeout occurs.

BIOCSETF struct bpf_program Sets the filter program used by the kernel to discard
uninteresting packets. The bpf_program structure is
defined in the net/bpf.h file.

328 AIX Version 7.2: Technical Reference: Communication Subroutines

ioctl command Type of the arg
parameter

Description

BIOCVERSION struct bpf_version Returns the major and minor version numbers of the
filter language currently recognized by the kernel. Before
installing a filter, applications must check that the current
version is compatible with the running kernel. The current
version numbers are given by the BPF_MAJOR_VERSION
and BPF_MINOR_VERSION variables from the net/bpf.h
file. An incompatible filter might result in undefined
behavior.

Return Values
Upon successful completion, ioctl returns a value of 0. Otherwise, it returns a value of -1 and sets errno
to indicate the error.

Error Codes
The ioctl commands fail under the following general conditions:

Item Description

EINVAL A command or argument, which is not valid, was specified.

ENETDOWN The underlying interface or network is down.

ENXIO The underlying interface is not found.

ENOBUFS Insufficient memory was available to process the request.

EEXIST The BPF device already exists.

ENODEV The BPF device could not be set up.

EINTR A signal was caught during an ioctl operation.

EACCES The permission was denied for the specified operation.

EADDRNOTAVAIL The specified address is not available for interface.

ENOMEM The available memory is not enough.

ESRCH Such a process does not exist.

Related information
Packet Capture Library Overview

Librdmacm Library
The librdmacm library provides the connection management (CM) functionality and the CM interfaces for
remote direct memory access (RDMA).

The API user space is described in the /usr/include/rdma/rdma_cma.h file.

The manual pages are created to describe the various interfaces and test programs that are available. For
a full list of interfaces and test programs, refer to the rdma_cm manual page.

Returned error rules
The librdmacm functions return 0 to indicate success, and a negative value to indicate failure.

If a function operates asynchronously, a return value of 0 means that the operation was successfully
started. The operation might still return an error. You must check the status of the related event. If the
return value is -1, the errno can be examined for additional information of the failure.

Technical Reference: Communication subroutines 329

Item Description

=0 Success

= -1 Error . See the errno for details of the error message.

Supported verbs
You can find a list of verbs supported by the librdmacm library.

Event channel operations
Lists the event channel operations that are handled for the library verbs.

rdma_create_event_channel
Opens a channel that is used to report communication events.

Syntax

#include <rdma/rdma_cma.h>
struct rdma_event_channel *rdma_create_event_channel(void);

Description
The rdma_create_event_channel function reports the asynchronous events through event channels.
Each event channel maps to a file descriptor.

Note:

• Event channels are used to direct all events on an rdma_cm_id identifier. You might require multiple
event channels when you are managing a large number of connections or connection manager (CM)
ID's.

• All event channels that are created must be destroyed by calling the rdma_destroy_event_channel
function. You must call the rdma_get_cm_event function to retrieve events on an event channel.

Parameters
Item Description

void No arguments.

Return Value
The rdma_create_event_channel function returns 0 on success, and NULL if the request fails. On failure,
errno indicates the reason for failure.

rdma_destroy_event_channel
Closes an event communication channel.

Syntax

#include <rdma/rdma_cma.h>
void rdma_destroy_event_channel(struct rdma_event_channel *channel);

Description
The rdma_destroy_event_channel function releases all resources that are associated with an event
channel and closes the associated file descriptor.

330 AIX Version 7.2: Technical Reference: Communication Subroutines

Note: The rdma_cm_id identifiers that are associated with the event channel must be destroyed, and all
returned events must be acknowledged before calling the rdma_destroy_event_channel function.

Parameters
Item Description

channel Specifies the communication channel to be destroyed.

Return Value
The rdma_destroy_event_channel function returns 0 on success, or -1 on error. If an error occurs, errno
indicates the reason for failure.

Connection Manager (CM) ID operations
The Connection Manager (CM) ID operation is used for ID related operations such as to create, destroy,
migrate, resolve address, establish connection, listen to the request, reject request, and to provide the
address information.

rdma_cm
Establishes communication over RDMA transports.

Syntax
#include <rdma/rdma_cma.h>

Description
Establishes communication over RDMA transports.

Notes:

• The RDMA CM is a communication manager (CM) used to set up reliable, connected, and unreliable
datagram data transfers. It provides an RDMA transport neutral interface for establishing connections.
The API concepts are based on sockets, but adapted for queue pair (QP) based semantics. The
communication for QP must be over a specific RDMA device, and data transfers are message-based.

• The RDMA CM can control both the QP and communication management (that is connection setup or
teardown) functions of an RDMA API, or only the communication management. It works in conjunction
with the verbs API that is defined by the libibverbs library. The libibverbs library provides the underlying
interfaces needed to send and receive data.

• The RDMA CM can operate asynchronously or synchronously. The mode of operation is controlled by
using the rdma_cm event channel parameter in specific calls. If an event channel is provided, an
rdma_cm identifier reports its event data (that is results of establishing a connection, for example),
on that channel. If a channel is not provided, then all rdma_cm operation for the selected rdma_cm
identifier is blocked until the channel completes.

RDMA verbs
The rdma_cm manager supports the verbs that are available in the libibverbs library and interfaces.
However, it also provides wrapper functions for the commonly used verbs. The set of abstracted verb call
are:

rdma_reg_msgs
Registers an array of buffers for sending and receiving.

rdma_reg_read
Registers a buffer for RDMA read operations.

Technical Reference: Communication subroutines 331

rdma_reg_write
Registers a buffer for RDMA write operations.

rdma_dereg_m
Reregisters a memory region.

rdma_post_recv
Posts a buffer to receive a message.

rdma_post_send
Posts a buffer to send a message.

rdma_post_read
Posts an RDMA to read data into a buffer.

rdma_post_write
Posts an RDMA to send data from a buffer.

rdma_post_recvv
Posts a vector of buffers to receive a message.

rdma_post_sendv
Posts a vector of buffers to send a message.

rdma_post_readv
Posts a vector of buffers to receive an RDMA read.

rdma_post_writev
Posts a vector of buffers to send an RDMA write.

rdma_post_ud_send
Posts a buffer to send a message on a UD QP.

rdma_get_send_comp
Gets completion status for a send or RDMA operation.

rdma_get_recv_comp
Gets information about a completed receive.

Examples

1. CLIENT operation

An overview of the basic operation for the active, or client, side of communication is described in
this section. This flow is for asynchronous operation with low-level call details. For synchronous
operation, calls to rdma_create_event_channel, rdma_get_cm_event, rdma_ack_cm_event, and
rdma_destroy_event_channel is eliminated. Abstracted calls, such as rdma_create_ep contains
several calls under a single API. A general connection flow includes the following calls:
rdma_getaddrinfo

Retrieves address information of the destination.
rdma_create_event_channel

Creates channel to receive events.
rdma_create_id

Allocates an rdma_cm_id identifier, this call is similar in function to a socket.
rdma_resolve_addr

Obtains a local RDMA device to reach the remote address.
rdma_get_cm_event

Waits for RDMA_CM_EVENT_ADDR_RESOLVED event.
rdma_ack_cm_event

Acknowledges an event.
rdma_create_qp

Allocates a queue pair (QP) for the communication.
rdma_resolve_route

Determines the route to the remote address.

332 AIX Version 7.2: Technical Reference: Communication Subroutines

rdma_get_cm_event
Waits for theRDMA_CM_EVENT_ROUTE_RESOLVED event.

rdma_ack_cm_event
Acknowledges an event.

rdma_connect
Connects to the remote server.

rdma_get_cm_event
Waits for the RDMA_CM_EVENT_ESTABLISHED event

rdma_ack_cm_event
Acknowledges an event.

To perform data transfers over connection, follow these steps:
rdma_disconnect

Tears-down a connection.
rdma_get_cm_event

Waits for an RDMA_CM_EVENT_DISCONNECTED event.
rdma_ack_cm_event

Acknowledges an event.
rdma_destroy_qp

Destroys the QP.
rdma_destroy_id

Releases the rdma_cm_id identifier.
rdma_destroy_event_channel

Releases the event channel.

An identical process is used to set up unreliable datagram (UD) communication between nodes. No
actual connection is formed between the queue pairs, so disconnection is not required. This example
shows initiating the client for disconnect, either side of a connection can initiate the disconnect.

2. Server connection

A general overview of the basic operation for the passive, or server, side of communication is
explained. A general connection flow includes the following events:
rdma_create_event_channel

Creates channel to receive events.
rdma_create_id

Allocates an rdma_cm_id identifier, this call is similar in function to a socket.
rdma_bind_addr

Sets the local port number to listen.
rdma_listen

Begins to listen for connection requests.
rdma_get_cm_event

Waits for RDMA_CM_EVENT_CONNECT_REQUEST event with a new rdma_cm_id identifier.
rdma_create_qp

Allocates a QP for the communication on the new rdma_cm_id identifier.
rdma_accept

Accepts the connection request.
rdma_ack_cm_event

Acknowledges an event.
rdma_get_cm_event

Waits for RDMA_CM_EVENT_ESTABLISHED event.

Technical Reference: Communication subroutines 333

rdma_ack_cm_event
Acknowledges an event.

To perform data transfers over connection, follow these steps:
rdma_get_cm_event

Waits for an RDMA_CM_EVENT_DISCONNECTED event.
rdma_ack_cm_event

Acknowledges an event.
rdma_disconnect

Tears-down a connection.
rdma_destroy_qp

Destroys the QP.
rdma_destroy_id

Releases the connectedrdma_cm_id identifier.
rdma_destroy_id

Releases the listening rdma_cm_id identifier.
rdma_destroy_event_channel

Releases the event channel.

Exit Status
= 0

Success
= -1

Error. See errno for more details.

Most librdmacm functions return 0 to indicate success, and a -1 return value to indicate failure. If a
function operates asynchronously, a return value of 0 means that the operation started successfully. The
operation can complete in error, and you must check the status of the related event. If the return value is
-1, then errno contains additional information for the failure.

Note: The earlier versions of the library would return -errno and is not set to errno for some cases related
to ENOMEM, ENODEV, ENODATA, EINVAL, and EADDRNOTAVAIL codes. Applications that require to
verify the earlier version of the codes and that are compatible must manually set errno to negative of the
return code, if it is < -1.

rdma_create_id
Allocates a communication identifier.

Syntax

#include <rdma/rdma_cma.h>
int rdma_create_id(struct rdma_event_channel *channel, struct rdma_cm_id **id, void *context,
enum rdma_port_space ps);

Description
The rdma_create_id function creates an identifier that is used to track communication information.
The communication channel that the events are associated with the allocated rdma_cm_id identifier is
communicated. This may be NULL.

Notes:

• The rdma_cm_id identifiers are equivalent to that of a socket in RDMA communication. The difference
is that the RDMA communication requires explicit binding to a specified Remote Direct Memory
Access (RDMA) device before communicating, and most operations are asynchronous in nature. The
asynchronous communication events on an rdma_cm_id identifier are reported through the associated

334 AIX Version 7.2: Technical Reference: Communication Subroutines

event channel. If the channel parameter is NULL, the rdma_cm_id is placed into synchronous
operation. While operating synchronously, calls that result in an event cause a block until the operation
completes. The event is returned to the user through the rdma_cm_id structure, and is available for
access until the next rdma_cm call is made.

• You must release the rdma_cm_id identifier by calling the rdma_destroy_id function.

Port Spaces: RDMA_PS_TCP provides reliable, connection-oriented queue pair (QP). Unlike TCP, the
RDMA port space provides stream-based communication.

Parameters
Item Description

channel Specifies the communication channel for the allocated rdma_cm_id identifier to
report the associated events.

context Indicates the user-specified context that is associated with the communication
identifier.

id Specifies a reference identifier to return the allocated communication identifier.

ps Specifies the RDMA port space.

Return Values
The rdma_destroy_event_channel function returns 0 on success, or -1 on error. If an error occurs, the
errno indicates the reason for failure.

rdma_destroy_id
Releases a communication identifier.

Syntax

#include <rdma/rdma_cma.h>
int rdma_destroy_id(struct rdma_cm_id *id);

Description
The rdma_destroy_id function destroys the specified rdma_cm_id identifier and cancels any outstanding
asynchronous operation.

Note: You must release any queue pair (QP) that is associated with the rdma_cm_id identifier before you
call the rdma_destroy_id function and acknowledge all the related events.

Parameters
Item Description

id Specifies the communication identifier to destroy.

Return Values
The rdma_destroy_event_channel function returns 0 on success, or -1 on error. If an error occurs, errno
indicates the reason for failure.

Technical Reference: Communication subroutines 335

rdma_migrate_id
Moves a communication identifier to another event channel.

Syntax

#include <rdma/rdma_cma.h>
int rdma_migrate_id(struct rdma_cm_id *id, struct rdma_event_channel *channel);

Description
The rdma_migrate_id function migrates a communication identifier to a different event channel and
moves the pending events associated with the rdma_cm_id identifier to the new channel.

Notes:

• You must not poll for current event channel on the rdma_cm_id identifiers or run any other routines on
therdma_cm_id identifier when migrating between channels.

• The rdma_migrate_id operation stops if any unacknowledged events are on the current event channel.
• If the channel parameter is NULL, the specified rdma_cm_id identifier is placed into synchronous

operation mode. All calls on the ID is blocked until the operation completes.

Parameters
Item Description

id Specifies the existing communication identifier to migrate.

channel Specifies the communication channel that the events associated with the allocated
rdma_cm_id identifier reports. This parameter may be NULL.

Return Values
The rdma_migrate_id function returns 0 on success, or -1 on error. If an error occurs, errno indicates the
reason for failure.

rdma_bind_addr
Binds an remote direct memory access (RDMA) identifier to a source address.

Syntax

#include <rdma/rdma_cma.h>
int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr);

Description
The rdma_bind_addr function associates a source address with an rdma_cm_id identifier. The address
can be a wildcard value. If an rdma_cm_id identifier has a local address, the identifier also has a local
RDMA device.

Notes:

• The rdma_bind_addr operation is run before the rdma_listen operation to bind to a specific port
number. The rdma_bind_addr operation is run on the active side of a connection before the
rdma_resolve_addr routine runs to bind to a specific address.

• If the rdma_bind_addr operation is used to bind to port 0, the rdma_cm function selects an available
port that can be retrieved with the rdma_get_src_port operation.

336 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters
Item Description

id Specifies the RDMA identifier.

addr Specifies the local address information. Wildcard values are permitted.

Return Values
The rdma_bind_addr function returns the following values:

Item Description

0 On success.

-1 Error, see errno.

rdma_resolve_addr
Resolves the destination and optional source addresses.

Syntax

#include <rdma/rdma_cma.h>
int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, struct sockaddr
*dst_addr,
 int timeout_ms);

Description
The rdma_resolve_addr function resolves the destination and optional source addresses from an IP
address to an Remote Direct Memory Access (RDMA) address. If successful, the specified rdma_cm_id
identifier is associated with a local device.

Notes:

• The rdma_resolve_addr operation is used to map a specified destination IP address to a usable RDMA
address. The IP- RDMA address mapping is done by using the local routing table, or by using ARP.

• If the source address is specified, the rdma_cm_id identifier is associated with the source address, and
the situation is similar to running the rdma_bind_addr operation. If no source address is specified, the
rdma_cm_id identifier is not associated with a device, and the identifier gets associated with a source
address based on the local routing tables.

• The rdma_resolve_addr operation is run from the active side of a connection, before running the
rdma_resolve_route and rdma_connect operations.

Parameters
Item Description

id Specifies the RDMA identifier.

src_addr Specifies the source address information, and this parameter can be NULL.

dst_addr Specifies the destination address information.

timeout_ms Specifies the time of resolution.

Return Values
The rdma_resolve_addr function returns 0 on success, or -1 on error. If an error occurs, errno indicates
the reason for failure.

Technical Reference: Communication subroutines 337

rdma_resolve_route
Resolves the route information that is required to establish a connection.

Syntax

#include <rdma/rdma_cma.h>
int rdma_resolve_route(struct rdma_cm_id *id, int timeout_ms);

Description
The rdma_resolve_route function resolves an RDMA route to the destination address to establish a
connection. The destination address must be resolved by running the rdma_resolve_addr subroutine.

Note: The rdma_resolve_route operation is called on the client side of a connection after running the
rdma_resolve_addr operation, but before the rdma_connect operation.

Parameters
Item Description

id Specifies the RDMA identifier.

timeout_ms Specifies the time of resolution.

Return Values
The rdma_resolve_route function returns 0 on success, or -1 on error. If an error occurs, errno indicates
the reason for failure.

rdma_connect
Initiates an active connection request.

Syntax

#include <rdma/rdma_cma.h>
int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param);

Description
The rdma_connect function initiates a connection request to a remote destination.

Note: The route to the destination address must be resolved by running the rdma_resolve_route call or
by running the rdma_create_ep call before the rdma_connect operation.

Connection Properties
The following properties are used to configure the communication that is specified by the conn_param
parameter when connecting or establishing a datagram communication.
private_data

References a user-controlled data buffer. The contents of the buffer are copied and transparently
passed to the remote side as part of the communication request. This property can be NULL if it is not
required.

private_data_len:
Specifies the size of the user-controlled data buffer.

responder_resources:
Specifies the maximum number of outstanding Remote Direct Memory Access (RDMA) read
operations that the local side accepts from the remote side. This property applies only to the

338 AIX Version 7.2: Technical Reference: Communication Subroutines

RDMA_PS_TCP event. The responder_resources value must be less than or equal to the local RDMA
device attribute max_qp_rd_atom and to the remote RDMA device attribute max_qp_init_rd_atom.
The remote endpoint can adjust this value when accepting the connection.

initiator_depth:
Specifies the maximum number of outstanding RDMA read operations that the local side must read
to the remote side. This property applies only to the RDMA_PS_TCP event. The initiator_depth value
must be less than or equal to the local RDMA device attribute max_qp_init_rd_atom and to the
remote RDMA device attribute max_qp_rd_atom. The remote endpoint can adjust to this value when
accepting the connection.

flow_control:
Specifies if the hardware flow control is available. The flow_control value is exchanged with the
remote peer and is not used to configure the queue pair (QP). This property applies only to the
RDMA_PS_TCP event , and is specific to the InfiniBand architecture.

retry_count:
Specifies the maximum number of times the data transfer operation must be tried on the connection
when an error occurs. The retry_count setting controls the number of times to retry sending the data
transmission to RDMA, and atomic operations when time outs occur. This property applies only to the
RDMA_PS_TCP event, and is specific to the InfiniBand architecture.

rnr_retry_count:
Specifies the maximum number of times that a send operation from the remote peer is tried on a
connection after receiving a receiver not ready (RNR) error. RNR errors are generated when a send
request arrives before a buffer is posted to receive the incoming data. This property applies only to
the RDMA_PS_TCP event., and is specific to the InfiniBand architecture.

srq:
Specifies whether the QP that is associated with the connection is using a shared receive queue. The
srq field is ignored by the library if a QP is created on the rdma_cm_id identifier. This property applies
only to the RDMA_PS_TCP event, and is currently not supported.

qp_num:
Specifies whether the QP number is associated with the connection. The qp_num field is ignored
by the library if a QP is created on the rdma_cm_id identifier. This property applies only to the
RDMA_PS_TCP event.

iWARP specific:
Specifies the connections established over Internet Wide Area RDMA Protocol (iWARP RDMA) devices
that currently require the active side of the connection to send the first message.

Parameters
Item Description

id Specifies the RDMA identifier.

conn_param Specifies the connection parameters.

Return Values
The rdma_connect function returns the following values:

Item Description

0 On success.

-1 Error, see errno.

Technical Reference: Communication subroutines 339

rdma_listen
Listens to the incoming connection requests.

Syntax

#include <rdma/rdma_cma.h>
int rdma_listen(struct rdma_cm_id *id, int backlog);

Description
The rdma_listen function initiates a listen operation for the incoming connection requests. The listen
operation is restricted to the locally bound source addresses.

Notes:

• You must have bound and associated the rdma_cm_id identifier with a local address by the
rdma_bind_addr operation before the rdma_listen operation.

• If the rdma_cm_id identifier is bound to a specific IP address, the listen operation is restricted to that
address and the associated RDMA device.

• If the rdma_cm_id identifier is bound to an RDMA port number, the listen operation occurs across all
RDMA devices.

Parameters
Item Description

id Specifies the RDMA identifier.

backlog Specifies the backlog of incoming connection requests.

Return Values
The rdma_listen function returns 0 on success, or -1 on error. If an error occurs, errno indicates the
reason for failure.

rdma_accept
Accepts a connection request.

Syntax

#include <rdma/rdma_cma.h>
int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param);

Description
The rdma_accept function is used to accept a connection lookup request.

Notes:

• The rdma_accept operation is not called on a listening rdma_cm_id identifier. After the rdma_listen
operation is run, you must wait for a connection request event to occur.

• The rdma_cm_id identifier is created by the connection request events similar to a new socket, but the
rdma_cm_id identifier is associated to a specific RDMA device. The rdma_accept operation is called on
the new rdma_cm_id identifier.

Connection Properties
Refer to the rdma_connect routine for details on establishing a connection with the identifier.

340 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters
Item Description

id Specifies the connection identifier that is associated with the request.

conn_param Specifies the information required to establish the connection.

Return Values
The rdma_accept function returns the following values:

Item Description

0 On success.

-1 Error, see errno.

InfiniBand specific
The InfiniBand QPs are configured with minimum RNR NAK timer and local ACK timeout values. The
minimum RNR NAK timer value is set to 0, for a delay of 655 ms. The local ACK timeout is calculated
based on the packet lifetime and local HCA ACK delay. The packet lifetime is determined by the
InfiniBand Subnet Administrator and is part of the route (path record) information that is obtained from
the active side of the connection. The HCA ACK delay is a property of the locally used HCA.

The RNR retry count is a 3-bit value.

rdma_reject
Rejects a connection request.

Syntax

#include <rdma/rdma_cma.h>
int rdma_reject(struct rdma_cm_id *id, const void *private_data, uint8_t private_data_len);

Description
The rdma_reject function is run from the listening side of the connection to reject a connection lookup
request.

Note: You can run the rdma_reject operation after receiving a connection request event. If the underlying
RDMA transport function supports private data in the rejection message, the specified data is passed to
the remote side.

Parameters
Item Description

id Specifies the connection identifier that is associated with the request.

private_data Specifies the optional private data to send with the rejection message.

private_data_len Specifies the size of the private_data parameter that can be sent, in bytes.

Return Values
The rdma_reject function returns 0 on success, or -1 on error. If an error occurs, errno indicates the
reason for failure.

Technical Reference: Communication subroutines 341

rdma_disconnect
Disconnects a connection.

Syntax

#include <rdma/rdma_cma.h>
int rdma_disconnect(struct rdma_cm_id *id);

Description
The rdma_disconnect function disconnects a connection and transitions any associated queue
pair (QP) with the error state. The error state moves the work requests that are posted to the
completion queue. This routing can be run by the client and server side of a connection. An
RDMA_CM_EVENT_DISCONNECTED event is generated on both sides of the connection after successful
disconnection.

Parameters
Item Description

id Specifies the connection identifier that is associated with the request.

Return Values
The rdma_destroy_event_channel function returns 0 on success, or -1 on error. If an error occurs, errno
indicates the reason for failure.

rdma_get_src_port
Returns the local port number of the associated communication identifier.

Syntax

#include <rdma/rdma_cma.h>
uint16_t rdma_get_src_port(struct rdma_cm_id *id)

Description
The rdma_get_src_port function returns the local port number for an rdma_cm_id identifier that is
associated with a local address.

Parameters
Item Description

id Specifies the connection identifier that is associated with the request.

Return Values
The rdma_get_src_port function returns the 16-bit port identifier associated with the local endpoint. If
the rdma_cm_id is not bound to a port, the returned value is 0.

342 AIX Version 7.2: Technical Reference: Communication Subroutines

rdma_get_dst_port
Returns the remote port number of the associated identifier.

Syntax

#include <rdma/rdma_cma.h>
uint16_t rdma_get_dst_port(struct rdma_cm_id *id)

Description
The rdma_get_dst_port function returns the remote port number for an rdma_cm_id identifier that is
associated with a remote address.

Parameters
Item Description

id Specifies the connection identifier that is associated with the request.

Return Values
The rdma_get_dst_port function returns the 16-bit port identifier associated with the peer endpoint. If
the rdma_cm_id is not connected, the returned value is 0.

rdma_get_local_addr
Returns the local IP address of the associated identifier.

Syntax

#include <rdma/rdma_cma.h>
struct sockaddr *rdma_get_local_addr(struct rdma_cm_id *id)

Description
The rdma_get_local_addr function returns the local IP address for an rdma_cm_id identifier that is
associated with a local device.

Parameters
Item Description

id Specifies the RDMA identifier.

Return Values
The rdma_get_local_addr function returns the local IP address for an rdma_cm_id identifier that has
been bound with a local device.

rdma_get_peer_addr
Returns the remote IP address of the associated communication identifier.

Syntax

#include <rdma/rdma_cma.h>
struct sockaddr *rdma_get_peer_addr(struct rdma_cm_id *id)

Technical Reference: Communication subroutines 343

Description
The rdma_get_peer_addr function returns the remote IP address that is associated with an rdma_cm_id
identifier.

Parameters
Item Description

id Specifies the RDMA identifier.

Return Values
The rdma_get_peer_addr function returns a pointer to the sockaddr address of the connected peer. If
the rdma_cm_id identifier is not connected, the contents of the sockaddr structure is set to zero.

rdma_create_ep
Creates an identifier (rdma_cm_id) to track information about communication.

Syntax

#include <rdma/rdma_cma.h>
int rdma_create_ep [struct rdma_cm_id **id,struct rdma_addrinfo *res,
struct ibv_pd *pd, struct ibv_qp_init_attr *qp_init_attr,];

Description
The rdma_cm_id identifier allocates a communication identifier and an optional queue pair (QP). The
rdma_cm_id identifier is used in one of the following methods:

• If the rdma_cm_id identifier is used on the active side of a connection, the RAI_PASSIVE option
is not set on the res->ai_flag flag. The rdma_create_ep function automatically creates a QP on
the rdma_cm_id identifier if the qp_init_attr value is not NULL. If the domain is provided, the QP is
associated with the specified protection domain; otherwise, a default protection domain is used. After
calling the rdma_create_ep function, the rdma_cm_id identifier that is returned can be connected
by calling the rdma_connect function. The active side calls the rdma_resolve_addr function, and the
rdma_resolve_route function is not necessary.

• If the rdma_cm_id identifer is used on the passive side of a connection, the RAI_PASSIVE option
is set on the res->ai_flag flag. This function call saves the value of the pd and qp_init_attr
parameters. A new connection request is retrieved by calling the rdma_get_request function. The
rdma_cm_id identifier associated with the new connection is automatically associated with a QP by
using the pd and qp_init_attr parameters. After calling the rdma_create_ep function, the rdma_cm_id
identifier can be placed into a listening state by calling the rdma_listen function. The passive side call
the rdma_bind_addr is not necessary. The rdma_get_request function can be used to retrieve the
connection. The rdma_cm_id identifier that is created is used for synchronous operation. To choose the
asynchronous operation you must move the rdma_cm_id identifier to a user-created event channel by
using the rdma_migrate_id function.

Parameters

Item Description

id Specifies a reference by which the allocated communication
identifier must be returned .

res Specifies the address information that is associated with
the rdma_cm_id identifier that is returned from the
rdma_getaddrinfo function.

344 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

pd Specifies the optional protection domain if a QP is associated
with the rdma_cm_id identifier.

qp_init_attr Specifies the optional initial, QP attributes.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, the errno is set to indicate the reason for failure.

rdma_destroy_ep
Destroys the specified communication identifier and its associated resources.

Syntax

#include <rdma/rdma_cma.h>
int rdma_destroy_ep (struct rdma_cm_id *id)

Description
The rdma_destroy_ep function destroys the specified rdma_cm_id identifier and all its associated
resources. The rdma_destroy_ep function automatically destroys any queue pair (QP) that is associated
with the rdma_cm_id identifier.

Parameters

Item Description

id Specifies the communication identifier to destroy.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, then errno is set to indicate the reason for failure.

rdma_getaddrinfo
Translates the transport independent address to establish communication.

Syntax

#include <rdma/rdma_cma.h>
int rdma_getaddrinfo (char *node, char *service, struct rdma_addrinfo *hints, struct
rdma_addrinfo **res);

Description
The rdma_getaddrinfo function resolves the destination node and service address and returns
information that is required to establish communication. The function provides the RDMA functional
equivalent to getaddrinfo.

Notes:

You must specify either node or service parameters for the translation. If hints are provided, the operation
is controlled by the hints.ai_flags flag. If the RAI_PASSIVE flag is specified, the call resolves the
address information that is used on the passive side of a connection.

Technical Reference: Communication subroutines 345

Item Description

ai_flags Specifies the hint flags that control the operation. The
following flags are supported:

• RAI_PASSIVE: Indicates that the results are used on the
passive or listening side of a connection.

• RAI_NUMERICHOST: Indicates that if the flag is specified
and if the node parameter is provided, the network address
must be a numerical value. This flag suppresses any lengthy
address resolution.

• RAI_NOROUTE: Indicates that if the flag is set, the flag
suppresses any lengthy route resolution.

ai_family Specifies the address family for the source and destination
address. The supported families are AF_IB, AF_INET, and
AF_INET6.

ai_qp_type Indicates the type of RDMA QP used for communication. The
types that are supported are IBV_UD (unreliable datagram)
and IBV_RC (reliable connected).

ai_port_space Indicates the RDMA port space that is in use. The supported
values are RDMA_PS_UDP and RDMA_PS_TCP.

ai_src_len Indicates the length of the source address that is referenced
by the ai_src_addr flag. If an appropriate source address
for a given destination is not discovered the value of the
ai_src_len flag is 0.

ai_dst_len Indicates the length of the destination address that is
referenced by ai_src_addr flag. This flag is set to 0, if the
RAI_PASSIVE flag was specified as part of the hints.

ai_src_addr Specifies the address for the local RDMA device, if the RDMA
device is provided.

ai_dst_addr Specifies the destination address for the RDMA device, if the
RDMA device is provided.

ai_src_canonname Specifies the canonical for the source.

ai_dst_canonname Specifies the canonical for the destination.

ai_route_len Specifies the size of the routing information buffer that is
referenced by the ai_route flag. If the transport does not
require routing data or none of the address could be resolved,
the ai_route flag is 0.

ai_connect_len Specifies the routing information for RDMA transports that
require routing data for establishing the connection. The
format of the routing data depends on the underlying
transport. If InfiniBand transports are used, the ai_route
flag references an array of ibv_path_data structures.

ai_connect Specifies the size of connection information referenced
by ai_route flag. If the underlying transport does not
require any additional information to establish connection, the
ai_connect flag is set to 0.

ai_next Specifies the pointer to the next rdma_addrinfo structure in
the list. The ai_next flag is NULL if no structures exist.

346 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

hints Specifies a reference to a rdma_addrinfo structure
containing hints about the type of service the caller supports.

node Specifies the optional name, dotted-decimal IPv4 or IPv6
hexadecimal address that must be resolved.

res Specifies a pointer to a linked list of rdma_addrinfo
structures that contains the response information.

service Specifies the service name or port number of the address.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, then errno is set to indicate the reason for failure.

rdma_notify
Notifies the asynchronous events that occurred on a queue pair (QP).

Syntax
#include <rdma/rdma_cma.h>
int rdma_notify (struct rdma_cm_id *id, enum ibv_event_type event);

Description
Notifies the librdmacm of asynchronous events that occurred on a queue pair (QP) associated with the
rdma_cm_id identifier.

Note: Asynchronous events that occur on a QP are reported through the device of the user event
handler. This routine is used to notify the librdmacm of communication events. In most cases, use
of this routine is not necessary. However if connection establishment is done out of band (such as
InfiniBand), it is possible to receive data on a QP that is not yet considered connected. This routine force
the connection into an established state in order to handle situations where the connection never forms
on its own. Calling this routine ensures the delivery of the RDMA_CM_EVENT_ESTABLISHED event to the
application. Events to be reported to the communication manager (CM) are IB_EVENT_COMM_EST.

Parameters
id

RDMA identifier.
event

Asynchronous event.

Exit Status
= 0

Success.
= -1

Error. See errno for more details on the error.

Technical Reference: Communication subroutines 347

Event Handling Operations
Lists the event handling operations for the library verbs such as to get an event channel, acknowledge an
event channel, and providing a string representation of the event channel.

rdma_get_cm_event
Retrieves the next pending communication event.

Syntax

#include <rdma/rdma_cma.h>
int rdma_get_cm_event(struct rdma_event_channel *channel, struct rdma_cm_event **event);

Description
The rdma_get_cm_event function retrieves a communication event. If no events are pending, the call is
blocked until an event is received.

Notes:

• You can change the file descriptor that is associated with the channel and change the default
synchronous behavior of the rdma_get_cm_event operation.

• All events that are reported must be acknowledged by running the rdma_ack_cm_event operation.
• The rdma_cm_id identifier is not destroyed until the related events are acknowledged.

Parameters
Item Description

channel Specifies the event channel to check for events.

event Specifies the allocated information about the next communication event.

Return Values
Item Description

0 On success.

-1 Error, see errno. If an error occurs, the errno indicates the reason for failure.

Event Data
The details of the communication event are returned to the rdma_cm_event function. This structure
is allocated by the rdma_cm identifier and released by the rdma_ack_cm_event operation. The
rdma_cm_event function has the following parameters:

Item Description

id Specifies the rdma_cm identifier that is associated with the event. If
RDMA_CM_EVENT_CONNECT_REQUEST is the event type, then for communication a new ID
is referenced by the function.

listen_id Specifies the corresponding listening request identifier for the
RDMA_CM_EVENT_CONNECT_REQUEST event type.

event Specifies the type of communication event that occurred.

348 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

status Returns asynchronous error information associated with an event. The status is zero if the
operation was successful, otherwise the status value is non-zero and is either set to an errno
or a transport specific value. For details on transport specific status values, see the event type
information below.

param Provides additional details based on the type of event. You must select the conn subfield
based on the rdma_port_space function of the rdma_cm_id identifier that is associated with
the event.

Connection Event Data
The event parameters are related to the connected queue pair (QP) services and the RDMA_PS_TCP
event type. The connection related event data is valid for RDMA_CM_EVENT_CONNECT_REQUEST and
RDMA_CM_EVENT_ESTABLISHED event types.

Item Description

private_data References any user-specified data that is associated with the event. The data
referenced by this field matches the value specified by the remote side when running
the rdma_connect or rdma_accept functions. If the event does not include any
private data, the private_data field is NULL. The buffer referenced by this pointer is
deallocated when running the rdma_ack_cm_event function.

private_data_len Specifies the size of the private data buffer.

Note: The size of the private data buffer might be larger than the amount of private
data sent by the remote side. Any additional space in the buffer is zeroed out.

responder_resou
rces

Specifies the number of responder resources that is requested by the recipient. The
responder_resources field must match the initiator depth specified by the remote node
when running the rdma_connect and rdma_accept functions.

initiator_dept Specifies the maximum number of outstanding RDMA read operations that the
recipient holds. The initiator_dept field must match the responder resources specified
by the remote node when running the rdma_connect and rdma_accept functions.

flow_control Indicates whether the hardware level flow control is provided by the sender. This
value is specific to the InfiniBand architecture.

retry_count Indicates the number of times that the recipient must retry a send operation specific
to the RDMA_CM_EVENT_CONNECT_REQUEST events. This value is specific to the
InfiniBand architecture.

rnr_retry_count Indicates the number of times that the recipient must retry receiver not ready (RNR)
NACK errors. This value is specific to the InfiniBand architecture.

srq Specifies whether the sender is using a shared-receive queue. Currently, the field is
not supported.

qp_num Indicates the remote QP number for the connection.

Event Types
The following types of communication events are reported.

Item Description

RDMA_CM_EVENT_ADDR_RESOLVE
D

Indicates that the address resolution (rdma_resolve_addr)
completed successfully.

RDMA_CM_EVENT_ADDR_ERROR Indicates that the address resolution (rdma_resolve_addr)
failed.

Technical Reference: Communication subroutines 349

Item Description

RDMA_CM_EVENT_ROUTE_RESOLV
ED

Indicates that the route resolution (rdma_resolve_route)
completed successfully.

RDMA_CM_EVENT_ROUTE_ERROR Indicates that the route resolution (rdma_resolve_route) failed.

RDMA_CM_EVENT_CONNECT_REQU
EST

Indicates that there is a new connection request on the passive
side.

RDMA_CM_EVENT_CONNECT_RESP
ONSE

Indicates that the there is a successful response to a connection
request on the active side. It is generated on rdma_cm_id
identifiers without a QP associated with them.

RDMA_CM_EVENT_CONNECT_ERRO
R

Indicates that an error has occurred trying to establish a
connection. this event type can be generated on the active or
passive side of a connection.

RDMA_CM_EVENT_UNREACHABLE Indicates that the remote server is not reachable or unable to
respond to a connection request on the active side. This option is
generated on the active side to notify the user that the remote
server is not reachable or unable to respond to a connection
request. If this event is generated in response to a UD QP
resolution request over InfiniBand, the event status field contains
an errno, if negative, or the status result carried in the IB CM SIDR
REP message.

RDMA_CM_EVENT_REJECTED Indicates that a connection request or response was rejected by
the remote end point. The event status field contains the transport
specific reject reason if available. For InfiniBand, this event carries
the reason for rejection in the IB CM REJ message.

RDMA_CM_EVENT_ESTABLISHED Indicates that a connection is established with the remote end
point.

RDMA_CM_EVENT_DISCONNECTED Indicates that the connection is disconnected.

RDMA_CM_EVENT_DEVICE_REMOV
AL

Indicates that the local RDMA device associated with the
rdma_cm_id identifier is removed. When you receive this event,
you must destroy the associatedrdma_cm_id identifier.

RDMA_CM_EVENT_TIMEWAIT_EXI
T

Indicates that the QP associated with a connection has exited
its timewait state and is ready to be reused. After a QP is
disconnected, it is maintained in a timewait state to allow any
in flight packets to exit the network. After the timewait state is
complete, the rdma_cm identifier reports this event.

rdma_ack_cm_event
Frees a communication event.

Syntax

#include <rdma/rdma_cma.h>
int rdma_ack_cm_event(struct rdma_cm_event *event);

Description
All events that are allocated by the rdma_get_cm_event function must be released. There must be a one-
to-one correspondence between the events that are retrieved from a queue and events being released.
The rdma_ack_cm_event function releases the event structure and any memory that it references.

350 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters
Item Description

event Specifies the event to be released.

Return Values
The rdma_ack_cm_event function returns the following values:

Item Description

0 On success.

-1 If an error occurs, errno specifies the reason for failure.

rdma_event_str
Returns a string representation of an RDMA CM event.

Syntax

#include <rdma/rdma_cma.h>
const char *rdma_event_str(enum rdma_cm_event_type event);

Description
The rdma_event_str function returns a string representation of an asynchronous event.

Parameters
Item Description

event Specifies an asynchronous event.

Return Values
The rdma_event_str function returns a pointer to a static character string that corresponds to the event.

Data transfer operations
Lists the verbs that are used in data transfer operations such to retrieve the work request, send and
receive work request, post the status of the request.

rdma_get_recv_comp
Retrieves a completed work request for the receive operation.

Syntax

#include <rdma/rdma_cma.h>
int rdma_get_recv_comp (struct rdma_cm_id *id, struct ibv_wc *wc);

Description
The rdma_get_recv_comp operation specifies the information about the completed request. The
operation returns the information by using the wc parameter, and uses the wr_id identifier to set the
context of the request.

Notes: The rdma_get_recv_comp operation polls the receive completion queue that is associated with
an rdma_cm_id identifier. If the queue is not complete, the call is blocked until the request is completed.

Technical Reference: Communication subroutines 351

This call must be used on the rdma_cm_id identifiers that do not share change queues (CQs) with other
rdma_cm_id identifiers, and must maintain separate CQs to send and receive completed work request.

Parameters

Item Description

id Specifies a reference to a communication identifier to check
the completion of the request.

wc Specifies a reference to a work completion structure that
must be filled.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, then errno is set to indicate the reason for failure.

rdma_get_request
Retrieves the connection request event that is pending.

Syntax

#include <rdma/rdma_cma.h>
int rdma_get_request (struct rdma_cm_id *listen, struct rdma_cm_id **id);

Description
Retrieves a connection request event that is in pending state. If no requests are in a pending state, the call
is blocked until an event is received.

Notes: The rdma_get_request call must be used on the listening rdma_cm_id communication
identifiers that are operating synchronously. You receive a new rdma_cm_id identifier that represents
the connection request on successful completion of the call. The new rdma_cm_id identifier is related to
event information that is associated with the request until one of the following requisites is satisfied:

• The rdma_reject and rdma_accept operations are called.
• The rdma_destroy_id identifier is called on the newly created identifier.

If queue pair (QP) attributes are associated with the listening endpoint, the rdma_cm_id identifier that is
returned is related an allocated to queue pair (QP).

Parameters

Item Description

id Specifies the communication identifier that is associated to
the new connection.

listen Specifies the communication identifier that is listening.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, the errno is set to indicate the reason for failure.

352 AIX Version 7.2: Technical Reference: Communication Subroutines

rdma_get_send_comp
Retrieves a completed request for send, read, or write operation.

Syntax

#include <rdma/rdma_cma.h>
int rdma_get_send_comp (struct rdma_cm_id *id, struct ibv_wc *wc);

Description
Retrieves a completed work request for a send, RDMA read, or RDMA write operation. Information about
the completed request is returned by using the wc parameter, which has the wr_id identifier set to the
context of the request.

Notes: The rdma_get_send_comp operation polls the send completion queue that is associated with
an rdma_cm_id identifier. If a completion request is not found, the rdma_get_send_comp call blocks
the queue until a request is completed. The rdma_get_send_comp call must be used on rdma_cm_id
identifiers that do not share change queues (CQs) with other rdma_cm_id identifiers, and the function
maintains separate CQs for send and receive completion requests.

Parameters

Item Description

id Specifies a reference to a communication identifier to check
for completions.

wc Specifies a reference to a work completion structure that
must be filled.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, then errno is set to indicate the reason for failure.

rdma_post_read
Posts a work request for RDMA read operation.

Syntax

#include <rdma/rdma_cma.h>
int rdma_post_read (struct rdma_cm_id *id, void *context, void *addr, size_t length,struct
ibv_mr *mr,
int flags, uint64_t remote_addr, uint32_t rkey);

Description
Posts a work request to the send queue of the queue pair that is associated with the rdma_cm_id
identifier. The contents of the remote memory region are read into the local data buffer.

Notes: The remote and local data buffers must be registered before running the read operation, and the
buffers must be registered until the read operation is completed. The read operation does not post the
work request to an rdma_cm_id identifier or to the corresponding queue pair until it is connected. The
user-defined context that is associated with the read request is returned by using the work completion
wr_id identifier and the work request identifier field.

Technical Reference: Communication subroutines 353

Parameters

Item Description

addr Specifies the address of the local destination of the read
request.

context Specifies the user-defined context that is associated with the
request.

flags Specifies the optional flags that are used to control the read
operation.

id Specifies a reference to a communication identifier where the
request is posted.

rkey Specifies the registered memory key that is associated with
the remote address.

length Specifies the length of the read operation.

mr Specifies the registered memory region that is associated with
the local buffer.

remote_addr Specifies the address of the remote registered memory to
read the address.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, the errno is set to indicate the reason for failure.

rdma_post_readv
Posts a work request to the send queue for RDMA read operation.

Syntax

#include <rdma/rdma_cma.h>
int rdma_post_readv (struct rdma_cm_id *id, void *context, struct ibv_sge *sgl, int nsge, int
flags,
uint64_t remote_addr, uint32_t rkey);

Description
Posts a work request to the send queue of the queue pair that is associated with the rdma_cm_id
identifier. The contents of the remote memory region are read into the local data buffer.

Notes: The remote and local data buffers must be registered before running the read operation and
the buffers must be registered until the read operation is completed. The read operation does not post
the work request to anrdma_cm_id identifier or the corresponding queue pair until the connection is
established. The user-defined context that is associated with the read request is returned by using the
work completion wr_id identifier, the work request identifier, and the work request identifier field.

Parameters

Item Description

context Specifies the user-defined context that is associated with the
request.

flags Specifies the optional flags that is used to control the read
operation.

354 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

id Specifies a reference to a communication identifier where the
request is posted.

nsge Specifies the number of scatter-gather array entries that are
present.

rkey Specifies the registered memory key that is associated with
the remote address.

remote_addr Specifies the address of the remote registered memory to
read the address.

sgl Specifies a scatter-gather list of the destination buffers that is
associated with the read operation.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, then errno is set to indicate the reason for failure.

rdma_post_recv
Posts a work request to receive an incoming message.

Syntax

#include <rdma/rdma_cma.h>
int rdma_post_recv (struct rdma_cm_id *id, void *context, void *addr, size_t length,
struct ibv_mr *mr);

Description
Posts a work request to the receive queue of the queue pair that is associated with the rdma_cm_id
identifier. The posted buffer is queued to receive an incoming message that is sent by the remote peer.

Notes: You must make sure that a receive buffer is posted. The receive buffer must be large enough to
contain all the sent data before the peer posts the corresponding send message. You must register the
message buffer before it is posted by using the mr parameter specifying the registration. The buffer must
be registered until the receive operation is completed. The messages can be posted to an rdma_cm_id
identifier after a queue pair is associated with the message. If the rdma_cm_id identifier is allocated
by using the rdma_create_id identifier, a queue pair is bound to an rdma_cm_id identifier after
calling therdma_create_ep operation or rdma_create_qp operation. The user-defined context that is
associated with the receive request is returned by using the work completion wr_id identifier, the work
request identifier, and the work request identifier field.

Parameters

Item Description

addr Specifies the address of the memory buffer to post the work request.

context Specifies the user-defined context that is associated with the request.

id Specifies a reference to a communication identifier where the message buffer is
posted.

length Specifies the length of the memory buffer.

mr Specifies the registered memory region that is associated with the posted buffer.

Technical Reference: Communication subroutines 355

Return Values
Returns 0 on success, or -1 on error. If an error occurs, then errno is set to indicate the reason for failure.

rdma_post_recvv
Posts a work request to the send queue for RDMA read operation.

Syntax

#include <rdma/rdma_cma.h>
int rdma_post_recvv (struct rdma_cm_id *id, void *context, struct ibv_sge *sgl, int nsge);

Description
Posts a work request to the send queue of the queue pair that is associated with the rdma_cm_id
identifier. The contents of the remote memory region is read into the local data buffer.

Notes: You must make sure that a receive buffer is posted. The receive buffer must be large enough
to contain all the sent data before the peer posts the corresponding send message. You must register
the message buffer before it is posted by using the mr parameter by specifying the registration. The
buffer must be registered until the receive operation is completed. The messages can be posted to an
rdma_cm_id identifier after a queue pair is associated with the message. A queue pair is bound to
an rdma_cm_id identifier after calling therdma_create_ep operation or rdma_create_qp operation,
if the rdma_cm_id identifier is allocated by using the rdma_create_id identifier. The user-defined
context that is associated with the receive request is returned by using the work completion wr_id
identifier, the work request identifier, and the work request identifier field.

Parameters

Item Description

context Specifies the user-defined context that is associated with the
request.

id Specifies a reference to a communication identifier where the
request is posted.

nsge Specifies the number of scatter-gather array entries that are
present.

sgl Specifies a scatter-gather list of the destination buffers that is
associated with the read operation.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, the errno is set to indicate the reason for failure.

rdma_post_send
Posts a work request to send a message.

Syntax

#include <rdma/rdma_cma.h>
int rdma_post_send (struct rdma_cm_id *id, void *context, void *addr, size_t length, struct
ibv_mr *mr,
int flags);

356 AIX Version 7.2: Technical Reference: Communication Subroutines

Description
Posts a work request to the send queue of the queue pair that is associated with the rdma_cm_id
identifier. The contents of the posted buffer are sent to the remote peer of a connection.

Notes: You must make sure that the remote peer posts a receive request before processing the send
operations. If the send request is using inline data, the message buffer must be registered before being
posted with the mr parameter by specifying the registration. The buffer must remain registered until
the send operation is completed. The send operation cannot be posted to an rdma_cm_id identifier or
the corresponding queue pair until the send operation is connected. The user-defined context that is
associated with the send request is returned to the user by using the work completion wr_id identifier,
the work request identifier, and the work request identifier field.

Parameters

Item Description

addr Specifies the address of the memory buffer to post the work
request.

context Specifies the user-defined context that is associated with the
request.

flags Specifies the optional flags that are used to control the send
operation.

id Specifies a reference to a communication identifier where the
message buffer is posted.

length Specifies the length of the memory buffer.

mr Specifies the optional registered memory region that is
associated with the posted buffer.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, the errno is set to indicate the reason for failure.

rdma_post_sendv
Posts a work request to send a message.

Syntax

#include <rdma/rdma_cma.h>
int rdma_post_sendv (struct rdma_cm_id *id, void *context, struct ibv_sge *slg, int nsge,
int flags);

Description
Posts a work request to the send queue of the queue pair that is associated with the rdma_cm_id
identified. The contents of the posted buffer are sent to the remote peer of a connection.

Notes: You must make sure that the remote peer posts a receive request before processing the send
operations. If the send request is using inline data, the message buffer must be registered before being
posted with themr parameter by specifying the registration. The buffer must remain registered until
the send operation is completed. The send operation cannot be posted to an rdma_cm_id identifier or
the corresponding queue pair until the send operation is connected. The user-defined context that is
associated with the send request is returned to the user by using the work completionwr_id identifier,
the work request identifier, and the work request identifier field.

Technical Reference: Communication subroutines 357

Parameters

Item Description

context Specifies the user-defined context that is associated with the
request.

flags Specifies the optional flags that are used to control the send
operation.

id Specifies a reference to a communication identifier where the
message buffer is posted.

nsge Specifies the number of scatter-gather entries in the slg array.

slg Specifies a scatter-gather list of memory buffers that is
posted as a single request.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, the errno is set to indicate the reason for failure.

rdma_post_ud_send
Posts a work request to send a datagram.

Syntax

#include <rdma/rdma_cma.h>
int rdma_post_ud_send (struct rdma_cm_id *id, void *context, void *addr, size_t length,
struct ibv_mr *mr, int flags, struct ibv_ah *ah, uint32_t remote_qpn);

Description
Posts a work request to the send queue of the queue pair that is associated with the rdma_cm_id
identified. The contents of the posted buffer is sent to the specified destination of the queue pair.

Notes: You must make sure that the remote peer posts a receive request before processing the send
operations. If the send request is using inline data, the message buffer must be registered before being
posted with the mr parameter by specifying the registration. The buffer must remain registered until
the send operation is completed. The send operation cannot be posted to an rdma_cm_id identifier or
the corresponding queue pair until the send operation is connected. The user-defined context that is
associated with the send request is returned to the user by using the work completionwr_id identifier,
work request identifier, and field.

Parameters

Item Description

addr Specifies the address of the memory buffer to post the work
request.

ah Specifies an address handle that describes the address of the
remote node.

context Specifies the user-defined context that is associated with the
request.

flags Specifies the optional flags that are used to control the send
operation.

id Specifies a reference to a communication identifier where the
message buffer is posted.

358 AIX Version 7.2: Technical Reference: Communication Subroutines

Item Description

length Specifies the length of the memory buffer.

mr Specifies the optional registered memory region that is
associated with the posted buffer.

remote_qpn Specifies the number of the destination queue pair.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, then errno is set to indicate the reason for failure.

rdma_post_write
Posts a work request for RDMA write operation.

Syntax

#include <rdma/rdma_cma.h>
int rdma_post_write (struct rdma_cm_id *id, void *context, void *addr, size_t length, struct
ibv_mr *mr,
int flags, uint64_t remote_addr, uint32_t rkey);

Description
Posts a work request to the send queue of the queue pair that is associated with the rdma_cm_id
identifier. The contents of the local data buffer are written into the remote memory region.

Notes: The remote and local data buffers must be registered before you run the write operation. The
buffers must be registered until the write operation is complete. The write operation does not post the
work request to an rdma_cm_id identifier or the corresponding queue pair until it is connected. The
user-defined context that is associated with the write request is returned by using the work completion
wr_id identifier, the work request identifier, and the work request identifier field.

Parameters

Item Description

addr Specifies the local address of the source that is related to the
write request.

context Specifies the user-defined context that is associated with the
request.

flags Specifies the optional flags that are used to control the write
operation.

id Specifies a reference to a communication identifier where the
request is posted.

rkey Specifies the registered memory key that is associated with
the remote address.

length Specifies the length of the write operation.

mr Specifies the optional memory region that is associated with
the local buffer.

remote_addr Specifies the address of the remote registered memory to
write the data.

Technical Reference: Communication subroutines 359

Return Values
Returns 0 on success, or -1 on error. If an error occurs, the errno is set to indicate the reason for failure.

rdma_post_writev
Posts a work request for RDMA write operation.

Syntax

#include <rdma/rdma_cma.h>
int rdma_post_writev (struct rdma_cm_id *id, void *context, struct ibv_sge *sgl, int nsge,
int flags, uint64_t remote_addr, uint32_t rkey);

Description
Posts a work request to the send queue of the queue pair that is associated with the rdma_cm_id
identifier. The contents of the local data buffer are written into the remote memory region.

Notes: The remote and local data buffers must be registered before you run the write operation. The
remote and local data buffers must be registered until the write operation is completed. The write
operation does not post the work request to an rdma_cm_id identifier or the corresponding queue pair
until it is connected. The user-defined context that is associated with the write request is returned by
using the work completion wr_id identifier, the work request identifier, and the work request identifier
field.

Parameters

Item Description

context Specifies the user-defined context that is associated with the
request.

flags Specifies the optional flags that are used to control the write
operation.

id Specifies a reference to a communication identifier where the
request is posted.

nsge Specifies the number of scatter-gather array entries.

remote_addr Specifies the address of the remote registered memory to
write the data.

rkey Specifies the registered memory key that is associated with
the remote address.

sgl Specifies a scatter-gather list of the source buffer that is
related to the write operation.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, the errno is set to indicate the reason for failure.

360 AIX Version 7.2: Technical Reference: Communication Subroutines

Queue Pair Management
Lists the functions that help to manage queue pair (QP) such as to create QP, and to destroy QP.

rdma_create_qp
Allocates a queue pair (QP).

Syntax

#include <rdma/rdma_cma.h>
int rdma_create_qp(struct rdma_cm_id *id, struct ibv_pd *pd, struct ibv_qp_init_attr
*qp_init_attr);

Description
The rdma_create_qp function allocates a queue pair (QP) that is associated with a specified rdma_cm_id
identifier, and transitions it for sending and receiving.

Notes:

• The rdma_cm_id identifier must be associated with a local RDMA device before running the
rdma_create_qp function, and the protection domain must be for the same device.

• QPs that are allocated to an rdma_cm_id identifier are automatically transitioned by the librdmacm
library through their states. The QP is ready to handle posting of received data after the QP is allocated.
If the QP is not connected, it is ready to post send data.

• If a protection domain is not specified then the - pd parameter is NULL, then the rdma_cm_id
identifer is created by using a default protection domain. One default protection domain is allocated
per RDMA device. The initial QP attributes are specified by using theqp_init_attr parameter. The
send_cq and recv_cq fields in the ibv_qp_init_attr are optional. If a send or receive completion
queue (CQ) is not specified, then a CQ is allocated by the rdma_cm for the QP, along with corresponding
completion channels. Completion channels and CQ data created by the rdma_cm can be accessed
by user by using the rdma_cm_id structure. The actual capabilities and properties of the QP that is
created is returned to the user through the qp_init_attr parameter.

Parameters
Item Description

id Specifies the communication identifier to create.

pd Specifies the optional protection domain for the QP.

qp_init_attr Specifies the initial QP attributes.

Return Values
The rdma_destroy_event_channel function returns 0 on success, or -1 on error. If an error occurs, errno
indicates the reason for failure.

rdma_destroy_qp
Releases a queue pair (QP).

Syntax

#include <rdma/rdma_cma.h>
void rdma_destroy_qp(struct rdma_cm_id *id);

Technical Reference: Communication subroutines 361

Description
The rdma_destroy_qp function destroys a QP that is allocated to an rdma_cm_id identifier.

Note: You must destroy any QP that is associated with an rdma_cm_id identifier before deleting the ID.

Parameters
Item Description

id Specifies the RDMA identifier.

Return Value
The rdma_destroy_event_channel function returns 0 on success, or -1 on error. If an error occurs, errno
indicates the reason for failure.

Device Management
Lists the functions that is used to manage devices, which includes to get devices, and free devices.

rdma_get_devices
Gets a list of RDMA devices that are available.

Syntax

#include <rdma/rdma_cma.h>
struct ibv_context **rdma_get_devices(int *num_devices);

Description
The rdma_get_devices function returns a NULL-terminated array of open RDMA devices. You can use
this routine to allocate resources on specific RDMA devices that is shared with multiple rdma_cm_id
identifiers.

Note: The returned array must be released by running the rdma_free_devices function. Devices remain
opened when the librdmacm library is loaded.

Parameters
Item Description

num_devices Specifies the number of devices that are returned if the value is not NULL.

Return Values
The rdma_get_devices function returns an array of available RDMA devices, or NULL if the request fails. If
an error occurs, errno indicates the reason for failure.

rdma_free_devices
Frees the list of devices that are returned by the rdma_get_devices function.

Syntax

#include <rdma/rdma_cma.h>
void rdma_free_devices(struct ibv_context **list);

362 AIX Version 7.2: Technical Reference: Communication Subroutines

Description
The rdma_free_devices function frees the device array that is returned by the rdma_get_devices
function.

Parameters
Item Description

list Specifies the list of devices that are returned from the rdma_get_devices function.

Return Value
There is no return value.

Memory region management
Lists the functions that is used to manage memory, which includes to register memory, to provide read
and write access to memory, and to register the buffer for sending and receiving messages.

rdma_dereg_mr
Deregisters a memory region that is registered.

Syntax

#include <rdma/rdma_cma.h>
struct ibv_mr * rdma_dereg_mr (struct ibv_mr *mr);

Description
Deregisters a memory buffer that is registered for RDMA or message operations. You must run the
rdma_dereg_mr call for all registered memory that is associated with an rdma_cm_id identifier before
you destroy the rdma_cm_id identifier.

Note: All memory buffers that is registered with an rdma_cm_id identifier are associated with the
protection domain that is associated with the ID. You must deregister all registered memory before the
protection domain can be destroyed.

Parameters

Item Description

mr Specifies a reference to a registered memory buffer.

Return Values
Returns 0 on success, or -1 on error. If an error occurs, the errno is set to indicate the reason for failure.

rdma_reg_msgs
Registers the data buffer for sending or receiving messages.

Syntax

#include <rdma/rdma_cma.h>
struct ibv_mr * rdma_reg_msgs (struct rdma_cm_id *id, void *addr, size_t length);

Technical Reference: Communication subroutines 363

Description
Registers an array of memory buffers that are used for sending and receiving messages or for RDMA
operations. Memory buffers that are registered by using the rdma_reg_msgs function can be posted to
an rdma_cm_id identifier by using one of the following operations:

• Run the rdma_post_send operation
• Run the rdma_post_recv operation
• Specify the buffer as the target of an RDMA read operation
• Specify the buffer as the source of an RDMA write request

Note: The rdma_reg_msgs operation registers an array of data buffers that are used to send and
receive messages on a queue pair that is associated with an rdma_cm_id identifier. The memory buffer
is registered with the protection domain that is associated with the identifier. The start of the data
buffer array is specified by using the addr parameter, and the total size of the array is specified by the
length parameter. All data buffers must be registered before being posted as a work request. You must
unregister all the registered memory by using the rdma_dereg_mr operation.

Parameters

Item Description

addr Specifies the address of the memory buffer to register.

id Specifies a reference to a communication identifier where the
message buffer must be used.

length Specifies the total length of the memory to register.

Return Values
Returns a reference to the registered memory region on success, or NULL on error. If an error occurs,
errno is set to indicate the reason for failure.

rdma_reg_read
Registers the data buffer for remote direct memory access (RDMA) read access.

Syntax

#include <rdma/rdma_cma.h>
struct ibv_mr * rdma_reg_read (struct rdma_cm_id *id, void *addr, size_t length);

Description
Registers a memory buffer that is accessed by a remote direct memory access (RDMA) read operation.
Memory buffers that are registered by using the rdma_reg_read operation can be targeted in an
RDMA read request. The memory buffer is specified on the remote side of an RDMA connection as the
remote_addr parameter of rdma_post_read operation, or a similar operation.

Notes: The rdma_reg_read operation registers a data buffer that is the target of an RDMA read operation
on a queue pair that is associated with an rdma_cm_id identifier. The memory buffer is registered with
the protection domain that is associated with the identifier. The start of the data buffer array is specified
by using the addr parameter, and the total size of the array is specified by the length parameter. All data
buffers must be registered before being posted as a work request. You must unregister all the registered
memory by using the rdma_dereg_mr operation.

364 AIX Version 7.2: Technical Reference: Communication Subroutines

Parameters

Item Description

addr Specifies the address of the memory buffer to register.

id Specifies a reference to a communication identifier where the
message buffer must be used.

length Specifies the total length of the memory to register.

Return Values
Returns a reference to the registered memory region on success, or NULL on error. If an error occurs, the
errno is set to indicate the reason for failure.

rdma_reg_write
Registers the data buffer for remote direct memory access (RDMA) write access.

Purpose

Syntax

#include <rdma/rdma_cma.h>
truct ibv_mr * rdma_reg_write (struct rdma_cm_id *id, void *addr, size_t length);

Description
Registers a memory buffer that is accessed by a remote RDMA write operation. Memory buffers that
are registered by using the rdma_reg_write operation can be targeted in an RDMA write request. The
memory buffer is specified on the remote side of an RDMA connection as the remote_addr parameter of
rdma_post_write operation, or a similar operation.

Notes: The rdma_reg_write operation registers a data buffer that is the target of an RDMA write
operation on a queue pair that is associated with an rdma_cm_id identifier. The memory buffer is
registered with the protection domain that is associated with the identifier. The start of the data buffer
array is specified by using the addr parameter, and the total size of the array is specified by the
length parameter. All data buffers must be registered before being posted as a work request. You must
unregister all the registered memory by using the rdma_dereg_mr operation.

Parameters

Item Description

addr Specifies the address of the memory buffer to register.

id Specifies a reference to a communication identifier where the
message buffer must be used.

length Specifies the total length of the memory to register.

Return Values
Returns a reference to the registered memory region on success, or NULL on error. If an error occurs, the
errno is set to indicate the reason for failure.

Technical Reference: Communication subroutines 365

Libibverbs Library
The libibverbs library enables user-space processes to use remote direct memory access (RDMA) verbs as
described in the InfiniBand Architecture Specification.

You can find information about the libibverbs library in the /usr/include/rdma/verbs.h file that
is delivered with the libibverbs library sources.

Man pages are created to describe the various interfaces and test programs. For a full list, you can refer to
the verbs man page.

Returned error rules
Lists the errors returned by the Libibverbs library.

The values returned by the commands and their interpretation are as follows:

• The commands return 0 on success.
• The commands return NULL, -1, or the value errno that indicates the reason of failure.
• The commands return ENOSYS when the verb is not supported.

Supported Verbs
Lists the supported verbs and their functions for the Libibverbs library.

Device management
Lists the functions that manage devices for the libibverbs library.

ibv_get_device_list, ibv_free_device_list
Obtains and releases the list of available RDMA devices.

Syntax

#include <rdma/verbs.h>
struct ibv_device **ibv_get_device_list(int *num_devices);
void ibv_free_device_list(struct ibv_device **list);

Description
The ibv_get_device_list() function returns a NULL-terminated array of RDMA devices that are available.
The argument num_devices is optional and if it is NULL, it is set to the number of devices returned in the
array.

The ibv_free_device_list() function frees the array of devices list that is returned by the
ibv_get_device_list() function.

Note: The client code must open all the devices it intends to use with the ibv_open_device() operation
before running the ibv_free_device_list() function. When the ibv_free_device_list() function frees the
array, the system can use the open devices, and the pointers to unopened devices is no longer valid.

Errors
Error Descriptor

EPERM Permission denied.

ENOSYS No kernel support for RDMA.

ENOMEM Insufficient memory to complete the operation.

366 AIX Version 7.2: Technical Reference: Communication Subroutines

Output Parameters
Item Description

num_devices (Optional) If not null, the number of devices returned in the array is stored in this
parameter.

Return Value
The ibv_get_device_list() function returns the array of available RDMA devices, or NULL if the request
fails. If no devices are found then num_devices is set to 0, and a non-NULL is returned.

The ibv_free_device_list() function returns no value.

ibv_get_device_name
Obtains the name of the RDMA device.

Syntax

#include <rdma/verbs.h>
const char *ibv_get_device_name(struct ibv_device *device);

Description
The ibv_get_device_name function returns a pointer to the device name that is contained within the
struct ibv_device.

Parameters
Item Description

device Specifies the struct ibv_device for the required device.

Return Value
The ibv_get_device_list() function returns a pointer to the device name on success, and NULL if the
request fails.

ibv_get_device_guid
Returns the string that describes the event_type, node_type, and port_state for the enum values.

Syntax

#include <rdma/verbs.h>
uint64_t ibv_get_device_guid(struct ibv_device *device);

Description
The ibv_get_device_guid function returns a 64-bit global unique identifier (GUID) for the devices in the
network byte order.

Parameters
Item Description

device Specifies the struct ibv_device for the device.

Technical Reference: Communication subroutines 367

Return Value
The ibv_get_device_guid function returns uint64_t on success, and 0 on failure.

If the device is NULL, the open or write operation failed on the/dev/rdma/ofed_adm administrator
device.

ibv_open_device, ibv_close_device
Opens and closes an remote device memory access (RDMA) device context.

Syntax

#include <rdma/verbs.h>
struct ibv_context *ibv_open_device(struct ibv_device *device);
int ibv_close_device(struct ibv_context *context);

Description
The ibv_open_device() function opens the devicedevice, and creates a context for further use.

The ibv_close_device() function closes the device contextcontext.

Note: The ibv_close_device() function does not release all the resources that are allocated by using the
parameter context. To avoid resource leaks, you must release all the associated resources before closing a
context.

Parameter
Item Description

devices Specifies the struct ibv_device for the required device.

Return Value
The ibv_open_deviceand ibv_close_device functions return a verb context that can be used for future
operations on the device on successful completion. The function returns NULL if the device is NULL, or if
the open operation fails.

ibv_query_device
Queries the attributes of an RDMA device.

Syntax

#include <rdma/verbs.h>
int ibv_query_device(struct ibv_context *context, struct ibv_device_attr *device_attr)

Description
The ibv_query_device() function returns the attributes of the device with context context. The parameter
device_attr is a pointer to an ibv_device_attr struct as defined in the <rdma/verbs.h> file.

Note: The maximum values that are returned by the ibv_query_device() function are the upper limits of
the supported resources by the device. It is not possible to use these maximum values because the actual
number of any resource that can be created is limited by the system configuration, the amount of host
memory, user permissions, and the amount of resources in use.

368 AIX Version 7.2: Technical Reference: Communication Subroutines

Input Parameter
Item Description

context Specifies the struct ibv_context from the ibv_open_device function.

Output Parameter
Item Description

device_attr Specifies the struct ibv_device_attr that contains the device attributes.

Return Values
Item Description

0 On success.

errno On failure.

ibv_query_port
Queries the attributes of an RDMA port.

Syntax

#include <rdma/verbs.h>
int ibv_query_port(struct ibv_context *context, uint8_t port_num, struct ibv_port_attr
*port_attr)

Description
The ibv_query_port() function returns the attributes of port port_num for device context context through
the pointer port_attr. The parameter port_attr is an ibv_port_attr struct, as defined in the <rdma/
verbs.h> file.

The struct ibv_port_attr is as follows:

struct ibv_port_attr {
enum ibv_port_state state; /* Logical port state */
enum ibv_mtu max_mtu; /* Max MTU supported by port */
enum ibv_mtu active_mtu; /* Actual MTU */
int gid_tbl_len; /* Length of source GID table */
uint32_t port_cap_flags; /* Port capabilities */
uint32_t max_msg_sz; /* Maximum message size */
uint32_t bad_pkey_cntr; /* Bad P_Key counter */
uint32_t qkey_viol_cntr; /* Q_Key violation counter */
uint16_t pkey_tbl_len; /* Length of partition table */
uint16_t lid; /* Base port LID */
uint16_t sm_lid; /* SM LID */
uint8_t lmc; /* LMC of LID */
uint8_t max_vl_num; /* Maximum number of VLs */
uint8_t sm_sl; /* SM service level */
uint8_t subnet_timeout; /* Subnet propagation delay */
uint8_t init_type_reply;/* Type of initialization performed by SM */
uint8_t active_width; /* Currently active link width */
uint8_t active_speed; /* Currently active link speed */
uint8_t phys_state; /* Physical port state */
uint8_t link_layer; /* link layer protocol of the port */
};

Input Parameters
Item Description

context Specifies the struct ibv_context from the ibv_open_device function.

Technical Reference: Communication subroutines 369

Item Description

port_num Specifies the physical port number (1 is the first port).

Output Parameter
Item Description

port_attr Specifies the struct ibv_port_attr that contains the port attributes.

Return Values
Item Description

0 On success.

errno On failure.

ibv_query_pkey
Queries the P_Key table of an remote direct memory access (RDMA) port.

Syntax

#include <rdma/verbs.h>
int ibv_query_pkey(struct ibv_context *context, uint8_t port_num, int index, uint16_t *pkey)

Description
The ibv_query_pkey() function returns the P_Key value in the entry index of port port_num for device
context context through the pointer pkey.

Input Parameters
Item Description

context Specifies the valid context pointer that is returned by the ibv_open_device() function.

port_num Specifies the valid port number for the device that is returned by the
ibv_query_device() function.

index Specifies the valid index for the port_num parameter from attributes that are returned
by the ibv_query_port() function.

Output Parameter
Item Description

pkey Specifies the valid pointer to store protection key.

Return Values
Item Description

0 On success.

-1 The request fails because of the following reasons:

• The context or pkey parameter is NULL
• The open or write operation failed on the /dev/rdma/ofed_adm administrator

device.

370 AIX Version 7.2: Technical Reference: Communication Subroutines

ibv_query_gid
Gets the group ID (GID) that is the network interface controller (NIC)'s Media Control Access (MAC)
address.

Syntax

#include <rdma/verbs.h>
int ibv_query_gid(struct ibv_context *context, uint8_t port_num, int index, union ibv_gid *gid)

Description
The ibv_query_gid() function returns the MAC address of the NIC in the subnet_prefix parameter and
0 in the interface_id identifier.

Input Parameters
Item Description

context Specifies the context pointer that is returned by the ibv_open_device() function.

port_num Specifies the port number for the device that is returned by the ibv_query_device()
function.

index Specifies the index for the port_num parameter that is derived from the attributes
that are returned by the ibv_query_port() function.

Output Parameter
Item Description

gid Specifies the pointer where the group ID (GID) can be stored.

Return Values
Item Description

0 On success.

-1 The request fails because of one of the following reasons:

• The context or gid parameter is NULL.
• The open or write operation failed on the /dev/rdma/ofed_adm administrator

device.

ibv_gid
union ibv_gid
{
 uint8_t raw[16];
 struct
 {
 uint64_t subnet_prefix;
 uint64_t interface_id;
 } global;
};

Technical Reference: Communication subroutines 371

Queue pair management
Lists the functions that are used to manage the queue.

ibv_create_qp, ibv_destroy_qp
Creates or destroys a queue pair (QP).

Syntax

#include <rdma/verbs.h>
struct ibv_qp *ibv_create_qp(struct ibv_pd *pd,
struct ibv_qp_init_attr *qp_init_attr);int ibv_destroy_qp(struct ibv_qp *
qp)

Description
The ibv_create_qp() function creates a queue pair (QP) that is associated with the pd protection domain.
The qp_init_attr argument is an ibv_qp_init_attr struct that is defined in the <rdma/verbs.h> file.

Name of the Struct Item File name Description

struct ibv_qp_init_attr {

void *qp_context; /*Associated context of the
QP*/

struct ibv_cq *send_cq; /*CQ to be associated with the
Send Queue (SQ)*/

struct ibv_cq *recv_cq; /*CQ to be associated with the
Receive Queue (RQ)*/

struct ibv_srq *srq; /*Not Supported*/

struct ibv_qp_cap cap; /*QP capabilities*/

enum ibv_qp_type qp_type; /* QP Transport Service
Type: IBV_QPT_RC, IBV_QPT_UC,
IBV_QPT_UD, IBV_QPT_XRC or
IBV_QPT_RAW_PACKET */

int sq_sig_all; /*If set, each Work Request
(WR) submitted to the SQ
generates a completion entry*/

struct ibv_xrc_domain xrc_domain; /*Not supported*/

struct ibv_qp_cap {

uint32_t max_send_wr; /*Requested maximum number of
outstanding WRs in the SQ*/

uint32_t max_recv_wr; /*Requested maximum number of
outstanding WRs in the RQ*/

uint32_t max_send_sge; /*Requested maximum number of
Scatter-gather elements in a WR
in the SQ*/

uint32_t max_recv_sge; /*Requested maximum number of
Scatter-gather elements in a WR
in the SQ*/

uint32_t max_inline_data; /*Requested max number of data
(bytes)that can be posted
inline to the SQ, otherwise 0*/

Input Parameters
Item Descriptor

pd struct ibv_pd from ibv_alloc_pd.

qp_init_attr Initial attributes of queue pair.

372 AIX Version 7.2: Technical Reference: Communication Subroutines

Output Parameters
Item Description

qp_init_attr Actual values that are entered.

Return Value
The ibv_create_qp() function returns a pointer to the created QP on success, or NULL if the request fails.

The ibv_destroy_qp() function returns 0 on success, or errno on failure that indicates the reason for
failure.

ibv_modify_qp
Modifies the attributes of a queue pair (QP).

Syntax

#include <rdma/verbs.h>

int ibv_modify_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr, int ibv_qp_attr_mask attr_mask)

Queue pairs (QP) must be taken through an incremental sequence of states before using QP for
communication.

The following table indicates the QP states:

Item Descriptor

RESET Newly created queues that are empty.

INIT The basic information required for the queue is set and the queue is ready for
posting to receive queue.

RTR The queue is ready to receive. The remote address information is set for the
connected QPs, and the QP can receive packets.

RTS The queue is ready to send. The timeout and retry parameters are set. The QP can
send packets.

The state transitions are used with ibv_modify_qp function.

Description
The ibv_modify_qp() function modifies the attributes of a QP qp with the attributes in attr parameter
according to the attr_mask mask . The attr parameter is an ibv_qp_attr struct, as defined in the<rdma/
verbs.h> file.

struct ibv_qp_attr {
enum ibv_qp_state qp_state; /* Move the QP to this state */
enum ibv_qp_state cur_qp_state; /* Assume this is the current QP state */
enum ibv_mtu path_mtu; /* Path MTU (valid only for RC/UC QPs) */
enum ibv_mig_state path_mig_state; /* Path migration state (valid if HCA supports APM) */
uint32_t qkey; /* Q_Key for the QP (valid only for UD QPs) */
uint32_t rq_psn; /* PSN for receive queue (valid only for RC/UC QPs) */
uint32_t sq_psn; /* PSN for send queue (valid only for RC/UC QPs) */
uint32_t dest_qp_num; /* Destination QP number (valid only for RC/UC QPs) */
int qp_access_flags; /* Mask of enabled remote access operations (valid only
 for RC/UC QPs) */
struct ibv_qp_cap cap; /* QP capabilities (valid if HCA supports QP resizing) */
struct ibv_ah_attr ah_attr; /* Primary path address vector (valid only
 for RC/UC QPs) */
struct ibv_ah_attr alt_ah_attr; /* Alternate path address vector (valid only
 for RC/UC QPs) */
uint16_t pkey_index; /* Primary P_Key index */
uint16_t alt_pkey_index; /* Alternate P_Key index */
uint8_t en_sqd_async_notify; /* Enable SQD.drained async notification (Valid only
 if qp_state is SQD) */
uint8_t sq_draining; /* Is the QP draining? Irrelevant for ibv_modify_qp() */
uint8_t max_rd_atomic; /* Number of outstanding RDMA reads & atomic operations
 on the destination QP (valid only for RC QPs) */
uint8_t max_dest_rd_atomic; /* Number of responder resources for handling incoming
 RDMA reads & atomic operations (valid only
 for RC QPs)*/
uint8_t min_rnr_timer; /* Minimum RNR NAK timer (valid only for RC QPs) */

Technical Reference: Communication subroutines 373

uint8_t port_num; /* Primary port number */
uint8_t timeout; /* Local ack timeout for primary path (valid only
 for RC QPs) */
uint8_t retry_cnt; /* Retry count (valid only for RC QPs) */
uint8_t rnr_retry; /* RNR retry (valid only for RC QPs) */
uint8_t alt_port_num; /* Alternate port number */
uint8_t alt_timeout; /* Local ack timeout for alternate path (valid only
 for RC QPs) */
};

The attr_mask parameter specifies the QP attributes to be modified. The argument is either 0 or bitwise
OR of one or more of the following flags:
IBV_QP_STATE

Modify qp_state
IBV_QP_CUR_STATE

Set cur_qp_state
IBV_QP_EN_SQD_ASYNC_NOTIFY

Set en_sqd_async_notify
IBV_QP_ACCESS_FLAGS

Set qp_access_flags
IBV_QP_PKEY_INDEX

Set pkey_index
IBV_QP_PORT

Set port_num
IBV_QP_QKEY

Set qkey
IBV_QP_AV

Set ah_attr
IBV_QP_PATH_MTU

Set path_mtu
IBV_QP_TIMEOUT

Set timeout
IBV_QP_RETRY_CNT

Set retry_cnt
IBV_QP_RNR_RETRY

Set rnr_retry
IBV_QP_RQ_PSN

Set rq_psn
IBV_QP_MAX_QP_RD_ATOMIC

Set max_rd_atomic
IBV_QP_ALT_PATH

Set the alternative path through alt_ah_attr, alt_pkey_index, alt_port_num, alt_timeout
IBV_QP_MIN_RNR_TIMER

Set min_rnr_timer
IBV_QP_SQ_PSN

Set sq_psn
IBV_QP_MAX_DEST_RD_ATOMIC

Set max_dest_rd_atomic
IBV_QP_PATH_MIG_STATE

Set path_mig_state
IBV_QP_CAP

Set cap
IBV_QP_DEST_QPN

Set dest_qp_num

374 AIX Version 7.2: Technical Reference: Communication Subroutines

Notes:

• If any of the modify attributes or the modify mask is invalid, none of the attributes are modified
(including the QP state).

• Not all devices support resizing QPs. To determine whether a device supports resizing of the QP, check
whether the IBV_DEVICE_RESIZE_MAX_WR bit is set in the device capabilities flags.

• Not all devices support alternate paths. To determine whether a device supports alternate paths, check
whether the IBV_DEVICE_AUTO_PATH_MIG bit is set in the device capabilities flags.

• The following tables indicate the type of the QP transport service, the minimum list of attributes that
must be changed after changing the QP state from Reset to Init to RTR to RTS state.

The types of QP transport service for the IBV_QPT_UD type, follow:

Next state Required attributes
---------- --
Init IBV_QP_STATE, IBV_QP_PKEY_INDEX, IBV_QP_PORT,
 IBV_QP_QKEY
RTR IBV_QP_STATE
RTS IBV_QP_STATE, IBV_QP_SQ_PSN

The types of QP transport service for the IBV_QPT_UC type, follow:

Next state Required attributes
---------- --
Init IBV_QP_STATE, IBV_QP_PKEY_INDEX, IBV_QP_PORT,
 IBV_QP_ACCESS_FLAGS
RTR IBV_QP_STATE, IBV_QP_AV, IBV_QP_PATH_MTU,
 IBV_QP_DEST_QPN, IBV_QP_RQ_PSN
RTS IBV_QP_STATE, IBV_QP_SQ_PSN

The types of QP transport service for the IBV_QPT_RC type, follow:

Next state Required attributes
---------- --
Init IBV_QP_STATE, IBV_QP_PKEY_INDEX, IBV_QP_PORT,
 IBV_QP_ACCESS_FLAGS
RTR IBV_QP_STATE, IBV_QP_AV, IBV_QP_PATH_MTU,
 IBV_QP_DEST_QPN, IBV_QP_RQ_PSN,
 IBV_QP_MAX_DEST_RD_ATOMIC, IBV_QP_MIN_RNR_TIMER
RTS IBV_QP_STATE, IBV_QP_SQ_PSN, IBV_QP_MAX_QP_RD_ATOMIC,
 IBV_QP_RETRY_CNT, IBV_QP_RNR_RETRY, IBV_QP_TIMEOUT

The types of QP transport service for the IBV_QPT_RAW_PACKET type, follow:

Next state Required attributes
---------- --
Init IBV_QP_STATE, IBV_QP_PORT
RTR IBV_QP_STATE
RTS IBV_QP_STATE

Indicates the QP transport service types:

Next state Required attributes

Init IBV_QP_STATE, IBV_QP_PKEY_INDEX, IBV_QP_PORT, IBV_QP_ACCESS_FLAGS

RTR IBV_QP_STATE, IBV_QP_AV, IBV_QP_PATH_MTU, IBV_QP_DEST_QPN, IBV_QP_RQ_PSN,
IBV_QP_MAX_DEST_RD_ATOMIC, IBV_QP_MIN_RNR_TIMER

RTS IBV_QP_STATE, IBV_QP_SQ_PSN, IBV_QP_MAX_QP_RD_ATOMIC, IBV_QP_RETRY_CNT,
IBV_QP_RNR_RETRY, IBV_QP_TIMEOUT

Input Parameters
Item Descriptor

qp Specifies the ibv_qp struct for the ibv_create_qp function.

attr Specifies the QP attributes.

Technical Reference: Communication subroutines 375

Item Descriptor

attr_mask Specifies the bit mask. The bit mask defines the attributes within the attr parameter that is
set for a call.

Return Values
Item Descriptor

0 On success.

errno On failure.

ibv_post_recv
Posts a list of work requests (WRs) to a receive queue.

Syntax

#include <rdma/verbs.h>
int ibv_post_recv(struct ibv_qp *qp, struct ibv_recv_wr *wr, struct ibv_recv_wr **bad_wr)

Description
The ibv_post_recv() function posts the linked list of work requests (WRs) starting with the wr parameter
to the receive queue of the queue pair. The function stops processing WRs from the list at the first failure
that can be detected immediately while requests are being posted, and returns the failing WR through the
bad_wr parameter.

The wr argument is an ibv_recv_wr struct, as defined in the<rdma/verbs.h> file.

struct ibv_recv_wr {
 uint64_t wr_id; /* User defined WR ID */
 struct ibv_recv_wr *next; /* Pointer to next WR in list, NULL if last
WR */
 struct ibv_sge *sg_list; /* Pointer to the scatter-gather array */
 int num_sge; /* Size of the scatter-gather array
*/
};

struct ibv_sge {
 uint64_t addr; /* Start address of the local memory
buffer */
 uint32_t length; /* Length of the buffer */
 uint32_t lkey; /* Key of the local memory region */
};

Note: The buffers that is used by a WR can be safely reused after the request is completed, and a work
completion is retrieved from the corresponding completion queue (CQ).

Input Parameters
Item Descriptor

qp Specifies the ibv_qp struct for the ibv_create_qp
function.

wr Specifies the first work request (WR) that contains
the receive buffers.

Output Parameter
Item Descriptor

bad_wr Specifies the pointer to the first rejected WR.

376 AIX Version 7.2: Technical Reference: Communication Subroutines

Return Values
Item Descriptor

0 On success.

errno On failure.

ibv_post_send
Posts a list of work requests (WR) to a send queue.

Syntax

#include <rdma/verbs.h>
int ibv_post_send(struct ibv_qp *qp, struct ibv_send_wr *wr, struct ibv_send_wr **bad_wr)

Description
The ibv_post_send() function posts the linked list of work requests (WR) starting with the wr parameter
to the send queue of the queue pair qp. The function stops processing the WRs from the list after
detecting the first failure while requests are being posted, and returns the failing WR by using the bad_wr
parameter.

The wr argument is an ibv_send_wr struct that is defined in the <rdma/verbs.h> file.

The transport service types for the operation codes that RC supports, follow:

OPCODE IBV_QPT_RC

IBV_WR_SEND Supported

IBV_WR_SEND_WITH_IMM Supported

IBV_WR_RDMA_WRITE Supported

IBV_WR_RDMA_WRITE_WITH_I
MM

Supported

IBV_WR_RDMA_READ Supported

IBV_WR_ATOMIC_CMP_AND_S
WP

Not supported

IBV_WR_ATOMIC_FETCH_AND_
ADD

Not supported

The attribute send_flags describes the properties of the WR. It is either 0 or the bitwise OR of one or
more of the following flags:
IBV_SEND_FENCE

Sets the fence indicator. The IBV_SEND_FENCE flag is valid only for QPs with the transport service
type IBV_QPT_RC.

IBV_SEND_SIGNALED
Sets the completion notification indicator. The IBV_SEND_SIGNALED flag is relevant only if QP is
created with the sq_sig_all parameter equal to 0.

IBV_SEND_SOLICITED
Sets the solicited event indicator. The IBV_SEND_SOLICITED flag is valid only for send and remote
device memory access (RDMA) write functions with immediate effect.

IBV_SEND_INLINE
Sends data in given gather list as inline data in a send WQE. The IBV_SEND_INLINE flag is valid only
for send and RDMA write functions. The L_Key parameter is not verified.

Technical Reference: Communication subroutines 377

Note: The buffers used by a WR can be safely reused after the request is complete. A work completion is
retrieved from the corresponding completion queue (CQ).

Input Parameters
Item Descriptor

qp Specifies the ibv_qp struct for the ibv_create_qp function.

wr Specifies the first work request (WR).

Output Parameter
Item Descriptor

bad_wr Specifies the pointer to the first rejected WR.

Return Values
Item Descriptor

0 On success.

errno On failure.

ibv_query_qp
Gets the attributes of a queue pair (QP).

Syntax

#include <rdma/verbs.h>
int ibv_query_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr,
 int attr_mask,
 struct ibv_qp_init_attr *init_attr);

Description
The ibv_query_qp() gets the attributes specified in attr_mask for the QP and returns them through
the pointers attr and init_attr. The argument attr is an ibv_qp_attr struct, as defined in <rdma/
verbs.h>.

struct ibv_qp_attr {
enum ibv_qp_state qp_state; /* Current QP state */
enum ibv_qp_state cur_qp_state; /* Current QP state - irrelevant for ibv_query_qp */
enum ibv_mtu path_mtu; /* Path MTU (valid only for RC/UC QPs) */
enum ibv_mig_state path_mig_state; /* Path migration state (valid if HCA supports APM) */
uint32_t qkey; /* Q_Key of the QP (valid only for UD QPs) */
uint32_t rq_psn; /* PSN for receive queue (valid only for RC/UC QPs) */
uint32_t sq_psn; /* PSN for send queue (valid only for RC/UC QPs) */
uint32_t dest_qp_num; /* Destination QP number (valid only for RC/UC QPs) */
int qp_access_flags; /* Mask of enabled remote access operations (valid only
 for RC/UC QPs) */
struct ibv_qp_cap cap; /* QP capabilities */
struct ibv_ah_attr ah_attr; /* Primary path address vector (valid only for RC/UC QPs) */
struct ibv_ah_attr alt_ah_attr; /* Alternate path address vector (valid only for RC/UC QPs) */
uint16_t pkey_index; /* Primary P_Key index */
uint16_t alt_pkey_index; /* Alternate P_Key index */
uint8_t en_sqd_async_notify; /* Enable SQD.drained async notification - irrelevant for
 ibv_query_qp */
uint8_t sq_draining; /* Is the QP draining? (Valid only if qp_state is SQD) */
uint8_t max_rd_atomic; /* Number of outstanding RDMA reads & atomic operations
 on the destination QP (valid only for RC QPs) */
uint8_t max_dest_rd_atomic; /* Number of responder resources for handling incoming
 RDMA reads & atomic operations (valid only for
 RC QPs) */
uint8_t min_rnr_timer; /* Minimum RNR NAK timer (valid only for RC QPs) */
uint8_t port_num; /* Primary port number */
uint8_t timeout; /* Local ack timeout for primary path (valid only
 for RC QPs) */
uint8_t retry_cnt; /* Retry count (valid only for RC QPs) */
uint8_t rnr_retry; /* RNR retry (valid only for RC QPs) */
uint8_t alt_port_num; /* Alternate port number */
uint8_t alt_timeout; /* Local ack timeout for alternate path (valid only
 for RC QPs) */
};

378 AIX Version 7.2: Technical Reference: Communication Subroutines

For details on struct ibv_qp_cap(), see the description of ibv_create_qp function. For details on struct
ibv_ah_attr, see the description of ibv_create_ah() function.

Return Values
On success, the ibv_query_qp() function returns 0, or the errno on failure that indicates the reason for
failure.

ibv_attach_mcast
Attaches and detaches a queue pair (QPs) to or from a multicast group

Syntax
#include <rdma/verbs.h>
int ibv_attach_mcast(struct ibv_qp *qp, const union ibv_gid *gid,
 uint16_t lid);
int ibv_detach_mcast(struct ibv_qp *qp, const union ibv_gid *gid,
 uint16_t lid);

Description
The ibv_attach_mcast function attaches the queue pair (QP) to the multicast group that has the MGID gid
and MLID lid. The ibv_detach_mcast function detaches the QP to the multicast group that has the MGID
gid and MLID lid.

Note:

• QPs of Transport Service Type IBV_QPT_UD or IBV_QPT_RAW_PACKET can be attached to multicast
groups.

• If a QP is attached to the same multicast group multiple times, the QP receives a single copy of a
multicast message.

• To receive multicast messages, a join request for the multicast group must be sent to the subnet
administrator (SA). The fabric's multicast routing is configured on receiving the join request to deliver
messages to the local port.

Return Values
0

The ibv_attach_mcast and ibv_detach_mcast functions returns 0 on success.
errno

The ibv_attach_mcast and ibv_detach_mcast functions returns 0 on failure. errno also specifies the
reason for failure.

Examples

To use ibv_attach_mcast function with RAW ETH QP, use the following program:

union ibv_gid mgid;

 memset(&mgid, 0, sizeof(union ibv_gid));
 memcpy(&mgid.raw[10], mmac, 6);
 if (ibv_attach_mcast(qp, &mgid, 0)) {
 printf ("Failed to attach qp to mcast. Errno: %d\n",errno);
 return 1;
 }

Technical Reference: Communication subroutines 379

Completion queue management
Lists the functions that is used to manage the completion queue for the libibverbs library.

ibv_create_cq, ibv_destroy_cq
Creates or destroys a completion queue (CQ).

Syntax

#include <rdma/verbs.h>
struct ibv_cq *ibv_create_cq(struct ibv_context *context, int cqe, void *cq_context,
struct ibv_comp_channel *channel, int comp_vector)
int ibv_destroy_cq(struct ibv_cq *cq)

Description
The ibv_create_cq() function creates a completion queue (CQ). A completion queue holds completion
queue events (CQE). Each queue pair (QP) has an associated send and receive CQ. A single CQ can be
shared for sending, receiving, and sharing across multiple QPs.

The cqe parameter defines the minimum size of the queue. The actual size of the queue might be larger
than the specified value.

The cq_context parameter is a user-defined value. If the value is specified during CQ creation, this value is
returned as a parameter in the ibv_get_cq_event() function when using a completion channel (CC).

The channel parameter is used to specify a CC. A CQ is merely a queue that does not have a built-in
notification mechanism. When using a polling paradigm for CQ processing, a CC is not required. Poll the
CQ at regular intervals. However, if you want to use a pend paradigm, a CC is required. The CC is a
mechanism that allows the user to be notified that a new CQE is on the CQ.

The CQ uses the comp_vector parameter for signaling completion events. It must be at least zero and less
than the context->num_comp_vectors parameter.

The ibv_destroy_cq() function destroys the CQ cq.

Notes:

• The ibv_create_cq() function can create a CQ with a size greater than or equal to the requested size. You
can determine the actual size of the function from the cqe attribute in the returned CQ.

• The ibv_destroy_cq() function fails if any queue pair is still associated with the CQ.

Parameters
Item Descriptor

context The ibv_context struct for the ibv_open_device()
function.

cqe Minimum number of entries that CQ supports.

cq_context (Optional) Specifies a user-defined value that is
returned with completion events.

channel (Optional) Specifies the completion channel.

comp_vector (Optional) Specifies the completion vector.

Return Value
The ibv_create_cq() function returns a pointer to the CQ, or NULL if the request fails.

The ibv_destroy_cq() function returns 0 on success, or the value errno on failure, which indicates the
reason for failure.

380 AIX Version 7.2: Technical Reference: Communication Subroutines

ibv_req_notify_cq
Requests the completion notification on a completion queue (CQ).

Syntax

#include <rdma/verbs.h>
int ibv_req_notify_cq(struct ibv_cq *cq, int solicited_only);

Description
The ibv_req_notify_cq() function requests a completion notification on the completion queue (CQ) cq
parameter.

When a new CQ entry (CQE) is added to a cq parameter, a completion event is added to the completion
channel that is associated with the CQ. If the solicited_only argument is zero, a completion event is
generated for any new CQE. If solicited_only parameter is nonzero, an event is generated for a new CQE
that is considered solicited. A CQE is solicited if it receives completion for a message that has the solicited
event header bit set, or if the status is not successful.

All other successful receive completions or any successful send completion is unsolicited.

Note: The request for a notification is sent once. One completion event is generated for each call that is
made to the ibv_req_notify_cq() function.

Parameters
Item Descriptor

cq Specifies the ibv_cq struct for the ibv_create_cq function.

solicited_only Notifies only if the WR is flagged as solicited.

Return Values
Item Descriptor

0 On success.

errno On failure.

ibv_poll_cq
Polls a completion queue (CQ).

Syntax

#include <rdma/verbs.h>
int ibv_poll_cq(struct ibv_cq *cq, int num_entries, struct ibv_wc *wc)

Description
The ibv_poll_cq() function polls the change queue (CQ) for work completions and returns the first
num_entries parameter with completions (or all available completions if the CQ contains less than this
number) in the wc array. The wc argument is a pointer to an array of ibv_wc struct that is defined in the
<rdma/verbs.h> file.

struct ibv_wc {
uint64_t wr_id; /* ID of the completed Work Request (WR) */
enum ibv_wc_status status; /* Status of the operation */
enum ibv_wc_opcode opcode; /* Operation type specified in the completed WR */
uint32_t vendor_err; /* Vendor error syndrome */
uint32_t byte_len; /* Number of bytes transferred */
uint32_t imm_data; /* Immediate data (in network byte order) */
uint32_t qp_num; /* Local QP number of completed WR */
uint32_t src_qp; /* Source QP number (remote QP number) of completed

Technical Reference: Communication subroutines 381

 WR (valid only for UD QPs) */
int wc_flags; /* Flags of the completed WR */
uint16_t pkey_index; /* P_Key index (valid only for GSI QPs) */
uint16_t slid; /* Source LID */
uint8_t sl; /* Service Level */
uint8_t dlid_path_bits; /* DLID path bits (not applicable for multicast
 messages) */
};

The wc_flags attribute describes the properties of the work completion. The flag is either 0 or the bitwise
OR of one or more of the following flags:
IBV_WC_GRH

GRH is present.
IBV_WC_WITH_IMM

Immediate data value is valid.
Not all wc attributes are always valid. If the completion status is other than IBV_WC_SUCCESS, only the
wr_id, status, qp_num, and vendor_err attributes are valid.

Note: Each polled completion is removed from the CQ and cannot be returned to it. You must
consume work completions at a rate that prevents a CQ overrun from occurrence. In a CQ overrun, the
asynchronous IBV_EVENT_CQ_ERR event is triggered, and the CQ cannot be used.

Input Parameters
Item Descriptor

cq Specifies the ibv_cq struct from the
ibv_create_cq function.

num_entries Specifies the maximum number of completion
queue entries (CQE) to return.

Output Parameters
Item Descriptor

wc Specifies the CQE array.

Return Values
On success, the ibv_poll_cq() function returns a non-negative value equal to the number of completions
found. On failure, a negative value is returned.

ibv_get_cq_event, ibv_ack_cq_events
Gets and acknowledges the completion queue (CQ) events.

Syntax

#include <rdma/verbs.h>
int ibv_get_cq_event(struct ibv_comp_channel *channel, struct ibv_cq **cq, void **cq_context);
void ibv_ack_cq_events(struct ibv_cq *cq, unsigned int nevents);

Description
The ibv_get_cq_event() function waits for the next completion event in the completion event channel.
The cq argument is used to return the CQ that caused the event and the cq_context parameter is used to
return the context of the CQ.

The ibv_ack_cq_events() function acknowledges the nevents events on the CQ cq parameter.

Notes:

382 AIX Version 7.2: Technical Reference: Communication Subroutines

• All completion events that the ibv_get_cq_event() function returns must be acknowledged by using the
ibv_ack_cq_events() function.

• To avoid competiiton, when you destroy a CQ, the CQ waits for the completion of the events. This action
guarantees a one-to-one correspondence between acknowledgements and successful get operation.

• When you call the ibv_ack_cq_events() function, it is expensive in the datapath because it must
take a mutex. To reduce the cost, a count of the number of events requesting acknowledgement
and acknowledging several completion events in one call to the ibv_ack_cq_events() function are
performed.

Input Parameters
Item Descriptor

channel The ibv_comp_channel struct for the ibv_create_comp_channel()
function.

Output Parameters
Item Descriptor

cq A pointer to the completion queue (CQ) that is
associated with the event.

cq_context The user-supplied context that is set in the
ibv_create_cq() function.

Return Value
The ibv_get_cq_event() and ibv_ack_cq_events() functions return 0 on success, and -1 if the request
fails.

Examples
1. The following code example demonstrates one possible way to work with completion events. It

performs the following steps:

a. Preparation:

i) Creates a CQ.
ii) Requests notification after creation of a new (first) completion event.

b. Completion handling routine:

i) Waits for the completion event and acknowledges it.
ii) Requests notification for the next completion event.

iii) Empties the CQ.

Note: An extra event can be triggered without having a corresponding completion entry in the
CQ. This occurs if a completion entry is added to the CQ between requesting for notification and
emptying the CQ. Then, the CQ is emptied.

 cq = ibv_create_cq(ctx, 1, ev_ctx, channel, 0);
 if (!cq) {
 fprintf(stderr, "Failed to create CQ\n");
 return 1;
 }

 /* Request notification before any completion can be created */
 if (ibv_req_notify_cq(cq, 0)) {
 fprintf(stderr, "Could not request CQ notification\n");
 return 1;
 }

Technical Reference: Communication subroutines 383

 .
 .
 .
 /* Wait for the completion event */
 if (ibv_get_cq_event(channel, &ev_cq, &ev_ctx)) {
 fprintf(stderr, "Failed to get cq_event\n");
 return 1;
 }

 /* Ack the event */
 ibv_ack_cq_events(ev_cq, 1);

 /* Request notification upon the next completion event */
 if (ibv_req_notify_cq(cq, 0)) {
 fprintf(stderr, "Could not request CQ notification\n");
 return 1;
 }

 /* Empty the CQ: poll all of the completions from the CQ (if any exist) */
 do {
 ne = ibv_poll_cq(cq, 1, &wc);
 if (ne < 0) {
 fprintf(stderr, "Failed to poll completions from the CQ\n");
 return 1;
 }
 if (wc.status != IBV_WC_SUCCESS) {
 fprintf(stderr, "Completion with status 0x%x was found\n",
wc.status);
 return 1;
 }
 } while (ne);

2. The following code example demonstrates a possible way to work with completion events in
nonblocking mode. The code performs the following steps:

a. Sets the completion event channel in nonblocked mode.
b. Polls the channel until it has a completion event.
c. Gets the completion event and acknowledges it.

/* change the blocking mode of the completion channel */
flags = fcntl(channel->fd, F_GETFL);
rc = fcntl(channel->fd, F_SETFL, flags | O_NONBLOCK);
if (rc < 0) {
 fprintf(stderr, "Failed to change file descriptor of completion event channel\n");
 return 1;
}
/*
* poll the channel until it has an event and sleep ms_timeout
* milliseconds between any iteration
*/
my_pollfd.fd = channel->fd;
my_pollfd.events = POLLIN;
my_pollfd.revents = 0;

do {

rc = poll(&my_polfd;, 1, ms_timeout);
 } while (rc == 0);
 if (rc < 0){ fprintf(stderr, "poll failed\n");
 return 1;
 }
 ev_cq = cq;
 /* Wait for the completion event */
 if (ibv_get_cq_event(channel, &ev_cq, &ev_ctx)) {
 fprintf(stderr, "Failed to get cq_event\n");
 return 1;
 }
 /* Ack the event */
 ibv_ack_cq_events(ev_cq, 1);

384 AIX Version 7.2: Technical Reference: Communication Subroutines

Protection domain management
Lists the functions to be used for managing a protection domain for the libibverb library.

ibv_alloc_pd, ibv_dealloc_pd
Allocates or deallocates a protection domain (PD).

Syntax

#include <rdma/verbs.h>
struct ibv_pd *ibv_alloc_pd(struct ibv_context *context)
int ibv_dealloc_pd(struct ibv_pd *pd)

Description
The ibv_alloc_pd() function allocates a PD for the remote device memory access (RDMA) device context,
the context parameter. The ibv_dealloc_pd() function deallocates PD, the pd parameter.

Note: The ibv_dealloc_pd() function fails if any other RDMA resource is still associated with the PD that
must be freed.

Parameters
Item Descriptor

context The ibv_context struct for the ibv_open_device() function.

Return Value
The ibv_alloc_pd() function returns a pointer to the allocated PD, or NULL if the request fails. The
ibv_dealloc_pd() function returns 0 on success, or the value of errno on failure (which indicates the
reason for failure).

Memory region management
Lists the functions to be used for memory region management for the libibverb library.

ibv_reg_mr
Registers or releases a memory region (MR).

Syntax

#include <rdma/verbs.h>
struct ibv_mr *ibv_reg_mr(struct ibv_pd *pd, void *addr,size_t length,int ibv_access_flags
access);
int ibv_dereg_mr(struct ibv_mr *mr);

Description
The ibv_reg_mr() function registers a memory region (MR) that is associated with the protection domain,
the pd parameter. The starting address of the MR is specified by using the addr parameter and its size is
specified by using the length parameter. The access parameter describes the required memory protection
attributes that are either 0 or the bitwise OR of one or more of the following flags:
IBV_ACCESS_LOCAL_WRITE

Enables local write access
IBV_ACCESS_REMOTE_WRITE

Enable remote write access

Technical Reference: Communication subroutines 385

IBV_ACCESS_REMOTE_READ
Enable remote read access

IBV_ACCESS_REMOTE_ATOMIC
Enable remote atomic operation access (not supported)

IBV_ACCESS_MW_BIND
Enable memory window binding (not supported)

If the IBV_ACCESS_REMOTE_WRITE or IBV_ACCESS_REMOTE_ATOMIC flag is set, the
IBV_ACCESS_LOCAL_WRITE flag must also be set.

Note: Local read access is always enabled for the MR.

The ibv_dereg_mr() function release the MR.

Parameters
Item Descriptor

pd Specifies the ibv_pd struct for the ibv_alloc_pd() function.

addr Specifies the memory base address.

length Specifies the length of memory region in bytes.

access Specifies the access flags.

Return Values
The ibv_reg_mr() function returns a pointer to the registered MR on success, and NULL if the request
fails. The local key (L_Key) lkey field is used by the ibv_sge struct when posting buffers with ibv_post_*
verbs, and the remote key (R_Key) rkey field is used by remote processes to run the remote device
memory access (RDMA) operations. The remote process places the rkey field in the ibv_send_wr struct
that is sent to the ibv_post_send() function.

The ibv_dereg_mr() function returns 0 on success, and the value of errno on failure, which indicates the
reason for failure.

Event Management
Lists the functions that is used to manage an event for the libibverbs library.

ibv_create_comp_channel, ibv_destroy_comp_channel
Creates or destroys a completion event channel.

Syntax

#include <rdma/verbs.h>
struct ibv_comp_channel *ibv_create_comp_channel(struct ibv_context *context)
int ibv_destroy_comp_channel(struct ibv_comp_channel *channel)

Description
The ibv_create_comp_channel() function creates a completion event channel for the remote direct
memory access (RDMA) device context, the context parameter. A completion channel is a mechanism
to receive notifications when a new completion queue event (CQE) is placed on a completion queue (CQ).

The ibv_destroy_comp_channel() function destroys the completion event channe.

Notes:

• A completion channel is an abstraction introduced by the libibverbs library that does not exist in the
InfiniBand architecture verbs specification. A completion channel is essentially a file descriptor that is

386 AIX Version 7.2: Technical Reference: Communication Subroutines

used to deliver completion notifications to a userspace process. When a completion event is generated
for a completion queue (CQ), the event is delivered through the completion channel attached to that
CQ. This process might be useful to send completion events to different threads by using multiple
completion channels.

• The ibv_destroy_comp_channel() function fails if any CQs are still associated with the completion event
channel that is being destroyed.

Parameters
Item Descriptor

context The ibv_context struct for the ibv_open_device()
function.

Return Value
The ibv_create_comp_channel() function returns a pointer to the created completion event channel, or
NULL if the request fails.

The ibv_destroy_comp_channel() function returns 0 on success, or the value of errno on failure (which
indicates the reason for failure).

ibv_get_async_event, ibv_ack_async_event
Gets or acknowledges the asynchronous events.

Syntax

#include <rdma/verbs.h>
int ibv_get_async_event(struct ibv_context *context,
struct ibv_async_event *event);void ibv_ack_async_event
(struct ibv_async_event *event);

Description
The ibv_get_async_event() function waits for the next async event of the remote direct memory access
(RDMA) device context and returns it through theevent pointer, which is an ibv_async_event struct, as
defined in the <rdma/verbs.h> file.

struct ibv_async_event {
 union {
 struct ibv_cq *cq; /* CQ that got the event */
 struct ibv_qp *qp; /* QP that got the event */
 struct ibv_srq *srq; /* SRQ that got the event(Not Supported)*/
 int port_num; /* port number that got the event */
 } element;
 enum ibv_event_type event_type; /* type of the event */
};

The ibv_create_qp() function updates the qp_init_attr parameter in the cap struct with the actual QP
values of the QP that was created. The values are greater than or equal to the values requested. The
ibv_destroy_qp() function destroys the QP by using the qp parameter.

One member of the element union is valid, depending on the event_type member of the structure. The
event_type member can be one of the following events:

Item Descriptor

QP events

IBV_EVENT_QP_FATAL Error occurred on a QP and it transitions to error state.

IBV_EVENT_QP_REQ_ERR Invalid request that causes a local work queue error.

IBV_EVENT_QP_ACCESS_ERR Local access violation error.

IBV_EVENT_COMM_EST Communication is established on a QP.

Technical Reference: Communication subroutines 387

Item Descriptor

IBV_EVENT_SQ_DRAINED Send queue is drained of outstanding messages in progress.

IBV_EVENT_PATH_MIG A connection is moved to an alternative path.

IBV_EVENT_PATH_MIG_ERR A connection failed to moved to the alternative path.

CQ events

IBV_EVENT_CQ_ERR CQ is in error (CQ overrun).

Port events

IBV_EVENT_PORT_ACTIVE Link became active on a port.

IBV_EVENT_PORT_ERR Link became unavailable on a port.

IBV_EVENT_LID_CHANGE Link ID (LID) is changed on a port.

IBV_EVENT_PKEY_CHANGE The P_Key table is changed on a port.

CA events

IBV_EVENT_DEVICE_FATAL CA is in FATAL state.

The ibv_ack_async_event() function acknowledges the asynchronous event.

Notes:

• All asynchronous events that the ibv_get_async_event() function returns must be acknowledged by
using the ibv_ack_async_event() event. To avoid competition, destroying an object (CQ or QP) waits
for all affiliated events for the object to be acknowledged. This process avoids an application from
retrieving an affiliated event after the corresponding object is destroyed.

• The ibv_get_async_event() function is a blocking function. If multiple threads call this function
simultaneously, then when an async event occurs, only one thread will receive this function. It is not
possible to predict the thread that receives the function.

Input Data
Item Descriptor

struct ibv_context *context The ibv_context struct for the ibv_open_device
function.

struct ibv_async_event *event The event pointer.

Return Value
The ibv_get_async_event() function returns 0 on success, and -1 if the request fails.

The ibv_ack_async_event() function returns no value.

Example
The following code example demonstrates one possible way to work with async events in nonblocking
mode. The event executes the following steps:

1. Sets the async events queue in the nonblocked work mode.
2. Polls the queue until it has an asynchronous event.
3. Gets the asynchronous event and acknowledges it.

/* change the blocking mode of the async event queue */
flags = fcntl(ctx->async_fd, F_GETFL);
rc = fcntl(ctx->async_fd, F_SETFL, flags | O_NONBLOCK);
if (rc < 0) {
 fprintf(stderr, "Failed to change file descriptor of async event queue\n");
 return 1;
}
/*
 * poll the queue until it has an event and sleep ms_timeout
 * milliseconds between any iteration

388 AIX Version 7.2: Technical Reference: Communication Subroutines

 */
my_pollfd.fd = ctx->async_fd;
my_pollfd.events = POLLIN;
my_pollfd.revents = 0;

do {
 rc = poll(&my_pollfd;,1, ms_timeout);
} while (rc == 0);
if (rc < 0) {
 fprintf(stderr, "poll failed\n");
 return 1;
 }

/* Get the async event */
if (ibv_get_async_event(ctx, &async_event)) {
 fprintf(stderr, "Failed to get async_event\n");
 return 1;
 }
 /* Ack the event */
ibv_ack_async_event(&async_event);

ibv_event_type_str()
Returns the string that describes the event_type, node_type, and port_state enum values.

Syntax

const char *ibv_event_type_str(enum ibv_event_type event_type);
const char *ibv_node_type_str(enum ibv_node_type node_type);
const char *ibv_port_state_str(enum ibv_port_state port_state);

Description
The ibv_node_type_str() function returns a string that describes the node_type enum value.

The ibv_port_state_str() function returns a string that describes the port_state enum value.

The ibv_event_type_str() function returns a string that describes the event_type enum value.

Return Value
The ibv_node_type_str(), ibv_port_state_str(), and ibv_event_type_str() functions return a constant
string that describes the enum value passed as their argument.

The <<unknown>> string is passed if the enum value is not known.

Verbs not supported by the libibverbs library
You can find the list of verbs that are not supported by the libibverbs library.

Item Descriptor

Shared Receive Queues (SRQ)

ibv_create_srq Creates a shared receive queue.

ibv_modify_srq Modifies attributes of a shared receive queue.

ibv_query_srq Gets the attributes of a shared receive queue.

ibv_destroy_srq Destroys a shared receive queue.

ibv_post_srq_recv Posts a list of work requests to a shared receive
queue.

Extended Reliable Connection (XRC)

ibv_create_xrc_srq Creates an XRC shared receive queue

ibv_open_xrc_domain Opens an eXtended Reliable Connection domain.

Technical Reference: Communication subroutines 389

Item Descriptor

ibv_close_xrc_domain Closes an eXtended Reliable Connection domain.

ibv_create_xrc_rcv_qp Creates an XRC queue pair for serving as a receive-
side only queue pair (QP).

ibv_modify_xrc_rcv_qp Modifies the attributes of an XRC receive QP.

ibv_query_xrc_rcv_qp Gets the attributes of an XRC receive QP.

ibv_reg_xrc_rcv_qp Registers a user process with an XRC receive QP.

ibv_unreg_xrc_rcv_qp Unregister a user process with an XRC receive QP.

ibv_fork_init Initializes the libibverbs library to support the fork
() function.

390 AIX Version 7.2: Technical Reference: Communication Subroutines

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2015, 2018 391

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows:
© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Privacy policy considerations
IBM® Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

392 Notices

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 393

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

394 AIX Version 7.2: Technical Reference: Communication Subroutines

Index

Special Characters
_ 69
_getlong subroutine 69
_getshort subroutine 70
_ll_log subroutine 47
_putlong subroutine 71
_putshort 72
_putshort subroutine 72
/etc/hosts file

closing 92
opening 272, 273
retrieving host entries 123, 124, 126, 128
setting file markers 272, 273

/etc/networks file
closing 93–95
opening 276, 277
retrieving network entries 137, 140, 141
setting file markers 276, 277

/etc/protocols file
closing 96
opening 279, 280
setting file markers 279, 280

/etc/resolv.conf file
retrieving host entries 123, 124, 126, 128
searching for domain names 236
searching for Internet addresses 236

/etc/services file
closing 97, 98
opening 158, 280, 281
reading 158
retrieving service entries 154, 156
setting file markers 280, 281

/etc/socks5c.conf File 312

A
a 72
accept subroutine 72
acknowledges asynchronous events 387
adjusting the values of entries 54
arp subroutines

arpresolve_common 74
arpupdate 76

arpresolve_common subroutine 74
arpupdate subroutine 76
arrays

translating into external representations 2, 3, 25
ASCII strings

converting to Internet addresses 191
authentication messages 13
authentication methods 270

B
b 77
bind subroutine 77

bind2addrsel subroutine 79
binds RDMA identifier 336
Booleans

translating 2
buffers

checking for end of file 31
byte streams

placing long byte quantities 71

C
c 80
C language, translating

characters 5
discriminated unions 24
enumerations 7
floats 7
integers 2, 11
long integers 12
numbers 27
short integers 19
strings 20, 26
unsigned characters 21
unsigned integers 21
unsigned long integers 22, 23

call header messages 4
call messages 5
clients

server authentication 254
closing 95
communicating with the SNMP agent 62
Communication Manager (CM) ID operations

rdma_bind_addr 336
rdma_connect 338
rdma_destroy_id 335
rdma_resolve_addr 337
rdma_resolve_route 338

communications kernel service subroutines
res_ninit 239

Completion queue management 380
Completion Queue management

completion notification 381
completion queue event 382
ibv_get_cq_event 382
ibv_poll_cq 381
ibv_req_notify_cq 381
polls a completion queue 381

compressed domain names
expanding 86

connect 80
connect subroutine 80
connected sockets

creating pairs 309
receiving messages 229
sending messages 258, 260

connecting 80
Connection Manager (CM)

Index 395

Connection Manager (CM) (continued)
ID operations 331

Connection Manager (CM) ID operations
rdma_create_ep 344
rdma_destroy_ep 345
rdma_get_dst_port 343
rdma_get_local_addr 343
rdma_get_peer_addr 343
rdma_get_src_port 342
rdma_getaddrinfo 345
rdma_migrate_id 336
rdma_notify 347
rdma_reject 341

converter subroutines
inet_net_ntop 186
inet_net_pton 187
inet_ntop 192
inet_pton 193

Create event channel
open channel 330

CreateIoCompletionPort Subroutine 83
creates a completion event channel 386
current domain names

returning 122
setting 271

current host identifiers
retrieving 131

D
d 84
data

marking outgoing as records 30
data streams

getting position of 9
Data transfer operations

rdma_get_recv_comp 351
rdma_get_request 352
rdma_get_send_comp 353
rdma_post_read 353
rdma_post_readv 354
rdma_post_recv 355
rdma_post_recvv 356
rdma_post_send 356
rdma_post_sendv 357
rdma_post_ud_send 358
rdma_post_write 359
rdma_post_writev 360

DCE principal mapping 208
default domains

getting 37
searching names 236

Destroying event channel
closes event channel 330

destroys a completion event channel 386
Device management

attributes of an RDMA port 369
ibv_get_device_list 366
ibv_get_device_name 367
ibv_open_device 368
ibv_query_device 368
ibv_query_gid 371
ibv_query_pkey 370
ibv_query_port 369

Device management (continued)
Libibverbs library 366
NIC MAC address 371
P_key table 370
rdma_free_devices 362
rdma_get_devices 362

Device Management 362
Device mangement

ibv_get_device_guid 367
discriminated unions

translating 24
dn_comp subroutine 84
dn_expand subroutine 86
domain names

compressing 84

E
e 87
eaccept subroutine 87
ebind subroutine 88
econnect subroutine 90
encoding values from 50
endhostent subroutine 92
endhostent_r subroutine 92
ending SNMP communications 57
endnetent subroutine 93
endnetent_r subroutine 94
endnetgrent subroutine 194
endnetgrent_r subroutine 95
endprotoent 95
endprotoent subroutine 95
endprotoent_r subroutine 96
endservent subroutine 97
endservent_r subroutine 98
enrecvfrom subroutine 99
enrecvmsg subroutine 99
entries in the 142, 194
enum values 389
erecv subroutine 99
erecvfrom subroutine 99
erecvmsg subroutine 99
error codes

using as input to NIS subroutines 44
error strings

returning pointer 43
esend subroutine 101
esendmsg subroutine 101
esendto subroutine 101
ether_aton subroutine 103
ether_hostton subroutine 103
ether_line subroutine 103
ether_ntoa subroutine 103
ether_ntohost subroutine 103
Event channel operations 330
Event handling operations 348
Event Handling Operations

RDMA CM event 351
rdma_ack_cm_event 350
rdma_event_str 351
rdma_get_cm_event 348

Event management
Libibverbs library 386

extending base subroutines 54

396 AIX Version 7.2: Technical Reference: Communication Subroutines

extending number of entries in 54
eXternal Data Representation 1
external representations, translating from

arrays 2, 3, 25
Booleans 2
C language characters 5, 21
C language enumerations 7
C language floats 7
C language integers 11
C language long integers 12
C language numbers 27
C language short integers 19
C language strings 20
C language unsigned integers 21
C language unsigned long integers 22
C language unsigned short integers 23
discriminated unions 24
opaque data 12

F
f 105
FrcaCacheCreate subroutine 105
FrcaCacheDelete subroutine 106
FrcaCacheLoadFile Subroutine 107
FrcaCacheUnloadFile Subroutine 110
FrcaCtrlCreate Subroutine 111
FrcaCtrlDelete Subroutine 114
FrcaCtrlLog Subroutine 115
FrcaCtrlStart Subroutine 116
FrcaCtrlStop Subroutine 117
freeaddrinfo subroutine 118
freeing 59
from host byte order 165

G
g 118
get_auth_method subroutine

authentication methods 121
getaddrinfo subroutine 118
getdomainname subroutine 122
gethostbyaddr subroutine 123
gethostbyaddr_r subroutine 124
gethostbyname subroutine 126
gethostbyname_r subroutine 128
gethostent 129
gethostent subroutine 129
gethostent_r 130
gethostent_r subroutine 130
gethostid subroutine 131
gethostname subroutine 131
getipv4sourcefilter Subroutine 291
GetMultipleCompletionStatus Subroutine 132
getnameinfo subroutine 136
getnetbyaddr subroutine 137
getnetbyaddr_r 138
getnetbyaddr_r subroutine 138
getnetbyname 139
getnetbyname subroutine 139
getnetbyname_r subroutine 140
getnetent subroutine 141
getnetent_r 142

getnetent_r subroutine 142
getnetgrent subroutine 194
getnetgrent_r subroutine 142
getpeername subroutine 143
getprotobyname 145
getprotobyname subroutine 145
getprotobyname_r subroutine 146
getprotobynumber 147
getprotobynumber subroutine 147
getprotobynumber_r 148
getprotobynumber_r subroutine 148
getprotoent subroutine 149
getprotoent_r 150
getprotoent_r subroutine 150
GetQueuedCompletionStatus Subroutine 151
gets asynchronous events 387
getservbyname 152
getservbyname subroutine 152
getservbyname_r subroutine 154
getservbyport 155
getservbyport subroutine 155
getservbyport_r 156
getservbyport_r subroutine 156
getservent 157
getservent subroutine 157
getservent_r subroutine 158
getsmuxEntrybyidentity subroutine 45
getsmuxEntrybyname subroutine 45
getsockname subroutine 159
getsockopt subroutine 160
getsourcefilter 291
group network

entries in the
handling 278

H
h 165
handling 142, 194
host machines

setting names 275
setting unique identifiers 274

htonl 165
htonl subroutine 165
htonll 166
htonll subroutine 166
htons 167
htons subroutine 167

I
i 168
I/O Completion Port (IOCP) Kernel

Extension
CreateCompletionPort 83
GetMultipleCompletionStatus 132
GetQueuedCompletionStatus 151
PostQueuedCompletionStatus 213
ReadFile 228
WriteFile 325

ibv_ack_async_event 387
ibv_attach_mcast 379
ibv_create_comp_channel 386

Index 397

ibv_create_cq 380
ibv_destroy_comp_channel 386
ibv_destroy_cq 380
ibv_detach_mcast 379
ibv_event_type_str 389
ibv_get_async_event 387
ibv_reg_mr 385
if_freenameindex 168
if_freenameindex subroutine 168
if_indextoname subroutine 168
if_nameindex subroutine 169
if_nametoindex subroutine 170
incoming connections

limiting backlog 209
incoming messages alert 63
inet_addr subroutine 182
inet_Inaof subroutine 184
inet_makeaddr subroutine 185
inet_net_ntop subroutine 186
inet_net_pton subroutine 187
inet_netof subroutine 188
inet_network subroutine 189
inet_ntoa subroutine 191
inet_ntop subroutine 192
inet_ntop6_zone 170
inet_ntop6_zone subroutine 170
inet_pton subroutine 193
inet_pton6_zone 171
inet_pton6_zone subroutine 171
inet6_is_srcaddr Subroutine 172
inet6_opt_append Subroutine 173
inet6_opt_find Subroutine 174
inet6_opt_finish Subroutine 175
inet6_opt_get_val 175
inet6_opt_get_val Subroutine 175
inet6_opt_init 176
inet6_opt_init Subroutine 176
inet6_opt_next Subroutine 177
inet6_opt_set_val Subroutine 177
inet6_rth_add Subroutine 178
inet6_rth_getaddr Subroutine 178
inet6_rth_init Subroutine 179
inet6_rth_reverse Subroutine 180
inet6_rth_segments Subroutine 180
inet6_rth_space Subroutine 181
initializing logging facility variables 46
initiating SMUX peers 60
innetgr subroutine 194
Internet addresses

converting 182
converting to ASCII strings 191
returning network addresses 184
searching 236

Internet numbers
converting Internet addresses 182
converting network addresses 189

ioctl BPF Control Operations 327
ioctl commands 195
ioctl socket control operations 195
IP addresses

constructing 185
isinet_addr Subroutine 206
ISODE library

logging subroutines 47

isodetailor subroutine 46

K
key-value pairs

returning first 36
keys

searching for associated values 38
kvalid_user subroutine 208

L
Libibverb library 385
Libibverbs library 380
list of 270
listen subroutine 209
ll_dbinit subroutine 47
ll_hdinit subroutine 47
ll_log subroutine 47
local host names

retrieving 131
long byte quantities

retrieving 69
long integers, converting

from host byte order 166
from network byte order 210, 211
to host byte order 210, 211
to network byte order 166

M
Management Information Base (MIB)

registering a section 61
manipulating entries 54
manipulating the 52
mapping

Ethernet number 103
master servers

returning machine names 37
memory

freeing 8
memory management subroutines

getaddrinfo 118
getnameinfo 136

memory region 385
Memory region management

rdma_dereg_mr 363
rdma_reg_msgs 363
rdma_reg_read 364
rdma_reg_write 365

message replies 1, 17, 18
MIB list 59
MIB variables 50, 56

N
n 210
name servers

creating packets 237
creating query messages 237
retrieving responses 247
sending queries 247

name2inst subroutine 67

398 AIX Version 7.2: Technical Reference: Communication Subroutines

names
binding to sockets 77

network addresses
converting 189
returning 184
returning network numbers 188

network entries
retrieving 141
retrieving by address 137
retrieving by name 140

network host entries
retrieving by address 123, 124
retrieving by name 126, 128

network host files
opening 272, 273

Network Information Service 33
Network Information Services+ (NIS) 33
next2inst subroutine 67
nextot2inst subroutine 67
NIS maps

changing 42
returning order number 41

NIS master servers
returning machine names 37

NIS subroutines
yp_all 33
yp_bind 35
yp_first 36
yp_get_default_domain 37
yp_master 37
yp_match 38
yp_next 39
yp_order 41
yp_unbind 41
yp_update 42
yperr_string 43
ypprot_err 44

ntohl subroutine 210
ntohll subroutine 211
ntohs subroutine 212

O
o_ subroutines 50
o_generic subroutine 50
o_igeneric subroutine 50
o_integer subroutine 50
o_ipaddr subroutine 50
o_number subroutine 50
o_specific subroutine 50
o_string subroutine 50
object identifier data structure 52
object tree (OT) 59
ode2oid subroutine 52
OID

converting text strings to 68
OID (object identifier data structure) 52
oid_cmp subroutine 52
oid_cpy subroutine 52
oid_extend subroutine 54
oid_free subroutine 52
oid_normalize subroutine 54
oid2ode subroutine 52
oid2ode_aux subroutine 52

oid2prim subroutine 52
opaque data

translating 12
opening 157

P
Packet Capture 327
peer entries 45
peer responsibility level 61
peer socket names

retrieving 143
placing short byte quantities 72
port mappings

describing 15
portmap procedures

describing parameters 14
PostQueuedCompletionStatus Subroutine 213
prim2oid 52
processes

managing socket descriptors 41
Protection domain management

ibv_alloc_pd 385
ibv_dealloc_pd 385

protocol data unit (PDU) 57, 62, 63
protocol entries

retrieving 149
retrieving by name 146

psap.h file 53

Q
queries

awaiting response 244
querying 160
Queue pair (QP) management

rdma_create_qp 361
rdma_destroy_qp 361
releases QP 361

Queue pair management
ibv_create_qp 372
ibv_destroy_qp 372
ibv_modify_qp 373
ibv_post_recv 376
ibv_post_send 377
Libibverbs library 372
work requests 376

Queue Pair management
ibv_query_qp 378

R
r 214
rcmd subroutine 214
rcmd_af Subroutine 216
rdma_accept 340
rdma_cm 331
rdma_create_id 334
rdma_disconnect 342
rdma_listen 340
ReadFile Subroutine 228
reading 157
reading a MIB variable structure into 55

Index 399

reading the smux_errno variable 58
readobjects subroutine 55
records

input streams
moving position 31

marking outgoing data as 30
skipping 31

recv subroutine 229
recvfrom subroutine 231
recvmsg subroutine 233
registering an MIB tree for 61
remote hosts

executing commands 214
starting command execution 248

reporting errors to log files 47
res_init subroutine 236
res_mkquery subroutine 237
res_ninit subroutine 239
res_query subroutine 241
res_search subroutine 244
res_send subroutine 247
retrieving 129, 130, 142, 150
retrieving by address 138
retrieving by name 139, 145, 152, 154
retrieving by number 147, 148
retrieving by port 156
retrieving host entries 129, 130
retrieving network entries 138, 139, 142
retrieving protocol entries 145–150
retrieving service entries 152, 155
retrieving variables 67
Returned error rules

Libibverbs library 366
rexec subroutine 248
rexec_af Subroutine 250
RPC authentication messages 13
RPC authentication subroutines

xdr_authunix_parms 27
RPC call header messages 4
RPC call messages 5
RPC message replies 1, 17, 18
RPC reply messages

encoding 1
RPC subroutines

receiving XDR subroutines 25
xdr_accepted_reply 1
xdr_callhdr 4
xdr_callmsg 5
xdr_opaque_auth 13
xdr_pmap 14
xdr_pmaplist 15
xdr_rejected_reply 17
xdr_replymsg 18

rresvport subroutine 251
rresvport_af Subroutine 252
ruserok subroutine 254

S
s 255
s_generic subroutine 56
SCTP subroutines

sctp_opt_info 255
sctp_peeloff 256

sctp_opt_info subroutine 255
sctp_peeloff subroutine 256
send subroutine 258
send_file

send the contents of file through a socket 266
send_file subroutine

socket options 266
sending 62
sending an open 63
sending an open PDU 63
sending traps to SNMP 64
sendmsg subroutine 260
sendto subroutine 264
server query mechanisms

providing interfaces to 241
service entries

retrieving by port 155
service file entries

retrieving 157, 158
set_auth_method subroutine 270
setdomainname subroutine 271
sethostent subroutine 272
sethostent_r subroutine 273
sethostid subroutine 274
sethostname subroutine 275
setipv4sourcefilter 291
setnetent subroutine 276
setnetent_r subroutine 277
setnetgrent subroutine 194
setnetgrent_r subroutine 278
setprotoent subroutine 279
setprotoent_r subroutine 280
setservent subroutine 280
setservent_r subroutine 281
setsockopt subroutine 282
setsourcefilter 291
setting variable values 56
short byte quantities

retrieving 70
short integers, converting

from host byte order 167
from network byte order 212
to host byte order 212
to network byte order 167

shutdown subroutine 292
Simple Network Management Protocol (SNMP) 45
SLP subroutines

SLPAttrCallback 294
SLPClose 294
SLPEscape 296
SLPFindAttrs 296
SLPFindScopes 297
SLPFindSrvs 298
SLPFindSrvTypes 299
SLPFree 300
SLPGetProperty 300
SLPOpen 301
SLPParseSrvURL 302
SLPSrvTypeCallback 304
SLPSrvURLCallback 305
SLPUnescape 306

SLPAttrCallback subroutine 294
SLPClose subroutine 294
SLPDereg subroutine 295

400 AIX Version 7.2: Technical Reference: Communication Subroutines

SLPEscape subroutine 296
SLPFindAttrs subroutine 296
SLPFindScopes subroutine 297
SLPFindSrvs subroutine 298
SLPFindSrvTypes subroutine 299
SLPFree subroutine 300
SLPGetProperty subroutine 300
SLPOpen subroutine 301
SLPParseSrvURL subroutine 302
SLPReg subroutine 303
SLPRegReport callback subroutine 304
SLPSrvTypeCallback subroutine 304
SLPSrvURLCallback subroutine 305
SLPUnescape subroutine 306
SMUX

communicating with the snmpd daemon 60
initiating transmission control protocol (TCP) 60
retreiving peer entries 45
setting debug level for subroutines 60

smux_close subroutine 57
smux_error subroutine 58
smux_free_tree subroutine 59
smux_init subroutine 60
smux_register subroutine 61
smux_response subroutine 62
smux_simple_open subroutine 63
smux_trap subroutine 64
smux_wait subroutine 66
smux.h file 58
SNMP multiplexing peers 45
snmpd daemon 63
snmpd.peers file 45
socket connections

accepting 72
listening 209

socket names
retrieving 159

socket options
setting 282

socket receive operations
disabling 292

socket send operations
disabling 292

socket subroutine 307
socket subroutines

freeaddrinfo subroutine 118
if_indextoname subroutine 168
if_nameindex subroutine 169
if_nametoindex subroutine 170
inet6_opt_append 173
inet6_opt_find 174
inet6_opt_finish 175
inet6_opt_next 177
inet6_opt_set_val 177
inet6_rth_add 178
inet6_rth_getaddr 178
inet6_rth_init 179
inet6_rth_reverse 180
inet6_rth_segments 180
inet6_rth_space 181
rcmd_af 216
rexec_af 250
rresvport_af 252

socketpair subroutine 309

sockets
creating 307
initiating TCP for SMUX peers 60
managing 324
retrieving with privileged addresses 251

Sockets 69
sockets kernel service subroutines

accept 72
bind 77
dn_comp 84
getdomainname 122
gethostid 131
gethostname 131
getpeername 143
getsockname 159
getsockopt 160
listen 209
recv 229
recvfrom 231
recvmsg 233
send 258
sendmsg 260
sendto 264
setdomainname 271
sethostid 274
sethostname 275
setsockopt 282
shutdown 292
socket 307
socketpair 309

sockets messages
receiving from connected sockets 229
receiving from sockets 231, 233
sending through any socket 260

sockets network library subroutines
_getlong 69
_getshort 70
_putlong 71
dn_expand 86
endhostent 92
endhostent_r 92
endnetent 93
endnetent_r 94
endnetgrent_r 95
endprotoent_r 96
endservent 97
endservent_r 98
gethostbyaddr 123
gethostbyaddr_r 124
gethostbyname 126
gethostbyname_r 128
getnetbyaddr 137
getnetbyname_r 140
getnetent 141
getprotobyname_r 146
getprotoent 149
getservbyname_r 154
getservent_r 158
inet_addr 182
inet_Inaof 184
inet_makeaddr 185
inet_netof 188
inet_network 189
inet_ntoa 191

Index 401

sockets network library subroutines (continued)
ntohl 210
ntohll 211
ntohs 212
rcmd 214
rds 217
rds-info 221
rds-ping 224
rds-rdma 224
res_init 236
res_mkquery 237
res_query 241
res_search 244
res_send 247
rexec 248
rresvport 251
ruserok 254
sethostent 272
sethostent_r 273
setnetent 276
setnetent_r 277
setprotoent 279
setprotoent_r 280
setservent 280
setservent_r 281

socks5_getserv Subroutine 310
socks5tcp_accept Subroutine 313
socks5tcp_bind Subroutine 315
socks5tcp_connect Subroutine 318
socks5udp_associate Subroutine 320
socks5udp_sendto Subroutine 322
splice subroutine 324
sprintoid subroutine 52
str2oid subroutine 52
string conversions 68
structures

providing pointer chasing 15, 16
serializing null pointers 15

Supported verbs 330
Supported Verbs

Libibverbs library 366

T
text2inst subroutine 67
text2obj subroutine 68
text2oid subroutine 68
to network byte order 165
traps 64

U
unconnected sockets

receiving messages 231
sending messages 260, 264

unions
translating 24

unique identifiers
retrieving 131

UNIX credentials
generating 27

unregistered trees 59

V
variable bindings 50
variable initialization 46

W
waiting for a message 66
WriteFile Subroutine 325

X
XDR library filter primitives

xdr_array 2
xdr_bool 2
xdr_bytes 3
xdr_char 5
xdr_double 27
xdr_enum 7
xdr_float 7
xdr_int 11
xdr_long 12
xdr_opaque 12
xdr_reference 16
xdr_short 19
xdr_string 20
xdr_u_char 21
xdr_u_int 21
xdr_u_long 22
xdr_u_short 23
xdr_union 24
xdr_vector 25
xdr_void 25
xdr_wrapstring 26

XDR library non-filter primitives
xdrrec_endofrecord 30
xdrrec_skiprecord 31
xdrstdio_create 32

XDR streams
changing current position 18
containing long sequences of records 29
destroying 6
initializing 32
initializing local memory 28
returning pointer to buffer 10

XDR subroutines
supplying to RPC system 25

xdr_accepted_reply subroutine 1
xdr_array subroutine 2
xdr_authunix_parms subroutine 27
xdr_bool subroutine 2
xdr_bytes subroutine 3
xdr_callhdr subroutine 4
xdr_callmsg subroutine 5
xdr_char subroutine 5
xdr_destroy macro 6
xdr_double subroutine 27
xdr_enum subroutine 7
xdr_float subroutine 7
xdr_free subroutine 8
xdr_getpos macro 9
xdr_hyper subroutine 10
xdr_inline macro 10

402 AIX Version 7.2: Technical Reference: Communication Subroutines

xdr_int subroutine 11
xdr_long subroutine 12
xdr_opaque subroutine 12
xdr_opaque_auth subroutine 13
xdr_pmap subroutine 14
xdr_pmaplist subroutine 15
xdr_pointer subroutine 15
xdr_reference subroutine 16
xdr_rejected_reply subroutine 17
xdr_replymsg subroutine 18
xdr_setpos macro 18
xdr_short subroutine 19
xdr_string subroutine 20, 26
xdr_u_char subroutine 21
xdr_u_int subroutine 21
xdr_u_long subroutine 22
xdr_u_short subroutine 23
xdr_union subroutine 24
xdr_vector subroutine 25
xdr_void subroutine 25
xdr_wrapstring subroutine 26
xdrmem_create subroutine 28
xdrrec_create subroutine 29
xdrrec_endofrecord subroutine 30
xdrrec_eof subroutine 31
xdrrec_skiprecord subroutine 31
xdrstdio_create subroutine 32

Y
yp_all subroutine 33
yp_bind subroutine 35
yp_first subroutine 36
yp_get_default_domain subroutine 37
yp_master subroutine 37
yp_match subroutine 38
yp_next subroutine 39
yp_order subroutine 41
yp_unbind subroutine 41
yp_update subroutine 42
ypbind daemon

calling 35
yperr_string subroutine 43
ypprot_err subroutine 44

Index 403

404 AIX Version 7.2: Technical Reference: Communication Subroutines

IBM®

	Contents
	About this document
	Highlighting
	Case-sensitivity in AIX
	ISO 9000

	Communication subroutines
	eXternal Data Representation
	xdr_accepted_reply Subroutine
	xdr_array Subroutine
	xdr_bool Subroutine
	xdr_bytes Subroutine
	xdr_callhdr Subroutine
	xdr_callmsg Subroutine
	xdr_char Subroutine
	xdr_destroy Macro
	xdr_enum Subroutine
	xdr_float Subroutine
	xdr_free Subroutine
	xdr_getpos Macro
	xdr_hyper Subroutine
	xdr_inline Macro
	xdr_int Subroutine
	xdr_long Subroutine
	xdr_opaque Subroutine
	xdr_opaque_auth Subroutine
	xdr_pmap Subroutine
	xdr_pmaplist Subroutine
	xdr_pointer Subroutine
	xdr_reference Subroutine
	xdr_rejected_reply Subroutine
	xdr_replymsg Subroutine
	xdr_setpos Macro
	xdr_short Subroutine
	xdr_string Subroutine
	xdr_u_char Subroutine
	xdr_u_int Subroutine
	xdr_u_long Subroutine
	xdr_u_short Subroutine
	xdr_union Subroutine
	xdr_vector Subroutine
	xdr_void Subroutine
	xdr_wrapstring Subroutine
	xdr_authunix_parms Subroutine
	xdr_double Subroutine
	xdrmem_create Subroutine
	xdrrec_create Subroutine
	xdrrec_endofrecord Subroutine
	xdrrec_eof Subroutine
	xdrrec_skiprecord Subroutine
	xdrstdio_create Subroutine

	Network Information Services
	yp_all Subroutine
	yp_bind Subroutine
	yp_first Subroutine
	yp_get_default_domain Subroutine
	yp_master Subroutine
	yp_match Subroutine
	yp_next Subroutine
	yp_order Subroutine
	yp_unbind Subroutine
	yp_update Subroutine
	yperr_string Subroutine
	ypprot_err Subroutine

	Simple Network Management Protocol (SNMP)
	getsmuxEntrybyname or getsmuxEntrybyidentity Subroutine
	isodetailor Subroutine
	ll_hdinit, ll_dbinit, _ll_log, or ll_log Subroutine
	o_number, o_integer, o_string, o_igeneric, o_generic, o_specific, or o_ipaddr Subroutine
	oid_cmp, oid_cpy, oid_free, sprintoid, str2oid, ode2oid, oid2ode, oid2ode_aux, prim2oid, or oid2prim Subroutine
	oid_extend or oid_normalize Subroutine
	readobjects Subroutine
	s_generic Subroutine
	smux_close Subroutine
	smux_error Subroutine
	smux_free_tree Subroutine
	smux_init Subroutine
	smux_register Subroutine
	smux_response Subroutine
	smux_simple_open Subroutine
	smux_trap Subroutine
	smux_wait Subroutine
	text2inst, name2inst, next2inst, or nextot2inst Subroutine
	text2oid or text2obj Subroutine

	Sockets
	_
	_getlong Subroutine
	_getshort Subroutine
	_putlong Subroutine
	_putshort Subroutine

	a
	accept Subroutine
	arpresolve_common Subroutine
	arpupdate Subroutine

	b
	bind Subroutine
	bind2addrsel Subroutine

	c
	connect Subroutine
	CreateIoCompletionPort Subroutine

	d
	dn_comp Subroutine
	dn_expand Subroutine

	e
	eaccept Subroutine
	ebind Subroutine
	econnect Subroutine
	endhostent Subroutine
	endhostent_r Subroutine
	endnetent Subroutine
	endnetent_r Subroutine
	endnetgrent_r Subroutine
	endprotoent Subroutine
	endprotoent_r Subroutine
	endservent Subroutine
	endservent_r Subroutine
	erecv, erecvmsg, erecvfrom, enrecvmsg, or enrecvfrom Subroutine
	esend, esendto, or esendmsg Subroutine
	ether_ntoa, ether_aton, ether_ntohost, ether_hostton, or ether_line Subroutine

	f
	FrcaCacheCreate Subroutine
	FrcaCacheDelete Subroutine
	FrcaCacheLoadFile Subroutine
	FrcaCacheUnloadFile Subroutine
	FrcaCtrlCreate Subroutine
	FrcaCtrlDelete Subroutine
	FrcaCtrlLog Subroutine
	FrcaCtrlStart Subroutine
	FrcaCtrlStop Subroutine
	freeaddrinfo Subroutine

	g
	getaddrinfo Subroutine
	get_auth_method Subroutine
	getdomainname Subroutine
	gethostbyaddr Subroutine
	gethostbyaddr_r Subroutine
	gethostbyname Subroutine
	gethostbyname_r Subroutine
	gethostent Subroutine
	gethostent_r Subroutine
	gethostid Subroutine
	gethostname Subroutine
	GetMultipleCompletionStatus Subroutine
	getnameinfo Subroutine
	getnetbyaddr Subroutine
	getnetbyaddr_r Subroutine
	getnetbyname Subroutine
	getnetbyname_r Subroutine
	getnetent Subroutine
	getnetent_r Subroutine
	getnetgrent_r Subroutine
	getpeername Subroutine
	getprotobyname Subroutine
	getprotobyname_r Subroutine
	getprotobynumber Subroutine
	getprotobynumber_r Subroutine
	getprotoent Subroutine
	getprotoent_r Subroutine
	GetQueuedCompletionStatus Subroutine
	getservbyname Subroutine
	getservbyname_r Subroutine
	getservbyport Subroutine
	getservbyport_r Subroutine
	getservent Subroutine
	getservent_r Subroutine
	getsockname Subroutine
	getsockopt Subroutine

	h
	htonl Subroutine
	htonll Subroutine
	htons Subroutine

	i
	if_freenameindex Subroutine
	if_indextoname Subroutine
	if_nameindex Subroutine
	if_nametoindex Subroutine
	inet_ntop6_zone Subroutine
	inet_pton6_zone Subroutine
	inet6_is_srcaddr Subroutine
	inet6_opt_append Subroutine
	inet6_opt_find Subroutine
	inet6_opt_finish Subroutine
	inet6_opt_get_val Subroutine
	inet6_opt_init Subroutine
	inet6_opt_next Subroutine
	inet6_opt_set_val Subroutine
	inet6_rth_add Subroutine
	inet6_rth_getaddr Subroutine
	inet6_rth_init Subroutine
	inet6_rth_reverse Subroutine
	inet6_rth_segments Subroutine
	inet6_rth_space Subroutine
	inet_addr Subroutine
	inet_lnaof Subroutine
	inet_makeaddr Subroutine
	inet_net_ntop Subroutine
	inet_net_pton Subroutine
	inet_netof Subroutine
	inet_network Subroutine
	inet_ntoa Subroutine
	inet_ntop Subroutine
	inet_pton Subroutine
	innetgr, getnetgrent, setnetgrent, or endnetgrent Subroutine
	ioctl Socket Control Operations
	isinet_addr Subroutine

	kvalid_user Subroutine
	listen Subroutine
	n
	ntohl Subroutine
	ntohll Subroutine
	ntohs Subroutine

	PostQueuedCompletionStatus Subroutine
	r
	rcmd Subroutine
	rcmd_af Subroutine
	rds Subroutine
	rds-info Subroutine
	rds-ping Subroutine
	rds-rdma Subroutine
	ReadFile Subroutine
	recv Subroutine
	recvfrom Subroutine
	recvmsg Subroutine
	res_init Subroutine
	res_mkquery Subroutine
	res_ninit Subroutine
	res_query Subroutine
	res_search Subroutine
	res_send Subroutine
	rexec Subroutine
	rexec_af Subroutine
	rresvport Subroutine
	rresvport_af Subroutine
	ruserok Subroutine

	s
	sctp_opt_info Subroutine
	sctp_peeloff Subroutine
	send Subroutine
	sendmsg Subroutine
	sendmmsg Subroutine
	sendto Subroutine
	send_file Subroutine
	set_auth_method Subroutine
	setdomainname Subroutine
	sethostent Subroutine
	sethostent_r Subroutine
	sethostid Subroutine
	sethostname Subroutine
	setnetent Subroutine
	setnetent_r Subroutine
	setnetgrent_r Subroutine
	setprotoent Subroutine
	setprotoent_r Subroutine
	setservent Subroutine
	setservent_r Subroutine
	setsockopt Subroutine
	setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter Subroutine
	shutdown Subroutine
	SLPAttrCallback Subroutine
	SLPClose Subroutine
	SLPDereg Subroutine
	SLPEscape Subroutine
	SLPFindAttrs Subroutine
	SLPFindScopes Subroutine
	SLPFindSrvs Subroutine
	SLPFindSrvTypes Subroutine
	SLPFree Subroutine
	SLPGetProperty Subroutine
	SLPOpen Subroutine
	SLPParseSrvURL Subroutine
	SLPReg Subroutine
	SLPRegReport Callback Subroutine
	SLPSrvTypeCallback Subroutine
	SLPSrvURLCallback Subroutine
	SLPUnescape Subroutine
	socket Subroutine
	socketpair Subroutine
	socks5_getserv Subroutine
	/etc/socks5c.conf File
	socks5tcp_accept Subroutine
	socks5tcp_bind Subroutine
	socks5tcp_connect Subroutine
	socks5udp_associate Subroutine
	socks5udp_sendto Subroutine
	splice Subroutine

	WriteFile Subroutine

	Packet Capture
	ioctl BPF Control Operations

	Librdmacm Library
	Returned error rules
	Supported verbs
	Event channel operations
	rdma_create_event_channel
	rdma_destroy_event_channel

	Connection Manager (CM) ID operations
	rdma_cm
	rdma_create_id
	rdma_destroy_id
	rdma_migrate_id
	rdma_bind_addr
	rdma_resolve_addr
	rdma_resolve_route
	rdma_connect
	rdma_listen
	rdma_accept
	rdma_reject
	rdma_disconnect
	rdma_get_src_port
	rdma_get_dst_port
	rdma_get_local_addr
	rdma_get_peer_addr
	rdma_create_ep
	rdma_destroy_ep
	rdma_getaddrinfo
	rdma_notify

	Event Handling Operations
	rdma_get_cm_event
	rdma_ack_cm_event
	rdma_event_str

	Data transfer operations
	rdma_get_recv_comp
	rdma_get_request
	rdma_get_send_comp
	rdma_post_read
	rdma_post_readv
	rdma_post_recv
	rdma_post_recvv
	rdma_post_send
	rdma_post_sendv
	rdma_post_ud_send
	rdma_post_write
	rdma_post_writev

	Queue Pair Management
	rdma_create_qp
	rdma_destroy_qp

	Device Management
	rdma_get_devices
	rdma_free_devices

	Memory region management
	rdma_dereg_mr
	rdma_reg_msgs
	rdma_reg_read
	rdma_reg_write

	Libibverbs Library
	Returned error rules
	Supported Verbs
	Device management
	ibv_get_device_list, ibv_free_device_list
	ibv_get_device_name
	ibv_get_device_guid
	ibv_open_device, ibv_close_device
	ibv_query_device
	ibv_query_port
	ibv_query_pkey
	ibv_query_gid

	Queue pair management
	ibv_create_qp, ibv_destroy_qp
	ibv_modify_qp
	ibv_post_recv
	ibv_post_send
	ibv_query_qp
	ibv_attach_mcast

	Completion queue management
	ibv_create_cq, ibv_destroy_cq
	ibv_req_notify_cq
	ibv_poll_cq
	ibv_get_cq_event, ibv_ack_cq_events

	Protection domain management
	ibv_alloc_pd, ibv_dealloc_pd

	Memory region management
	ibv_reg_mr

	Event Management
	ibv_create_comp_channel, ibv_destroy_comp_channel
	ibv_get_async_event, ibv_ack_async_event
	ibv_event_type_str()

	Verbs not supported by the libibverbs library

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

