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About this document

This installation information describes Release 4.4 of the IBM® Common Cryptographic Architecture (CCA)
Support Program (hereafter referred to as Support Program) for the IBM 4765 PCIe Cryptographic
Coprocessor. The Support Program includes device drivers, utilities, and the CCA coprocessor code.

Use this information to help with the following tasks:

• Obtain the Support Program through the Internet
• Load the software onto a host computer and into the coprocessors.
• Use the utilities supplied with the Support Program to:

– Load the coprocessor function-control vector (FCV)
– Initialize one or more coprocessors
– Create and manage access-control data
– Create a master key and primary key-encrypting keys (KEKs)
– Manage keystore at the cryptographic node
– Create node-initialization file lists to set up and configure other cryptographic nodes

• Link your application software to the CCA libraries
• Obtain guidance for security considerations in application development and operational practices

Audience
The audience for this publication includes:

• System administrators who install the software
• Security officers responsible for the coprocessor access-control system
• System programmers and application programmers who determine how the software is to be used

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and
other items whose names are predefined by the system. Also identifies graphical
objects such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you
might see displayed, examples of portions of program code similar to what you
might write as a programmer, messages from the system, or information you
should actually type.

Case-sensitivity in AIX
Everything in the AIX® operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS,
the system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three
distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be
performed, always ensure that you use the correct case.
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ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related publications
Publications for the PCIe Cryptographic Coprocessor and commercial cryptographic applications in
general follow:

Cryptographic hardware publications are available at the CryptoCards website at http://www.ibm.com/
security/cryptocards:

• IBM CCA Basic Services Reference and Guide for the IBM 4765 PCIe and the IBM 4764 PCI-X
Cryptographic Coprocessors

vi  AIX Version 7.2: 4765 PCIe Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

http://www.ibm.com/security/cryptocards
http://www.ibm.com/security/cryptocards


4765 PCIe Cryptographic Coprocessor AIX CCA
Support Program Installation 4.4

To use the information effectively, you must be familiar with commands, system calls, subroutines, file
formats, and special files.

Support Program installation process overview
This overview of AIX CCA explains the procedure to install and operate the IBM Cryptographic
Coprocessor Support Program on a host computer.
Related information
“Installing the Support Program” on page 2
Procedure to install the IBM Common Cryptographic Architecture (CCA) Support Program on the
coprocessor host computer.

Obtaining coprocessor hardware and software
Information about selecting, installing, and ordering the coprocessor hardware, and to download the
software.

The following sections describe how to:

• Order coprocessors
• Placing orders for IBM 4765 coprocessor
• Installing the IBM 4765 hardware
• Obtaining the coprocessor software

Ordering coprocessors
The IBM 4765-001 is ordered from IBM as a machine type and model. The coprocessor requires a PCIe
slot that accepts a 2/3 length PCIe adapter.

The software supports up to eight coprocessors per system, depending on the number of PCIe slots
available.

Placing orders for IBM 4765 coprocessor
To order the coprocessor hardware, contact your local IBM representative or your IBM Business Partner,
and order the model and features you have selected.

Customers in the U.S.A. can also contact IBM Direct at 1-800-IBM-CALL. Specifically mention IBM 4765
with your order to be directed to the group that processes IBM 4765 orders.

Installing the IBM 4765 hardware
The IBM 4765 is installed in a manner similar to other PCIe adapters. Follow the process described in the
IBM 4765 PCIe Cryptographic Coprocessor Installation 4.4 for detailed information.

Obtaining the coprocessor software
The software can be obtained by downloading it from the website: http://www.ibm.com/security/
cryptocards/pciecc/ordersoftware.shtml.
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Installing the Support Program
Procedure to install the IBM Common Cryptographic Architecture (CCA) Support Program on the
coprocessor host computer.

The IBM Common Cryptographic Architecture (CCA) Support Program consists of several components,
including:

• Device drivers and an operating system for the PCIe cryptographic coprocessor hardware
• Support for the IBM Common Cryptographic Architecture (CCA) application program interface (API)
• A function-control vector (FCV)

Note: An FCV is a signed value provided by IBM. It enables the CCA application within the coprocessor
to yield a level of cryptographic service consistent with applicable cryptographic implementation import
and export regulations.

• Utility applications where the coprocessor must be installed that runs on the host machine

To install and configure the IBM Common Cryptographic Architecture (CCA) Support Program, complete
these steps:

1. Choose the platform support packages that are appropriate to your setup:

 AIX 6.1 or later.

See “Obtaining coprocessor hardware and software” on page 1 for details.
2. Place an order for the hardware with IBM or your IBM Business Partner. See “Obtaining coprocessor

hardware and software” on page 1 describes how to order and receive the coprocessor hardware from
IBM.

3. Download the Support Program for your operating system. See “Obtaining coprocessor hardware and
software” on page 1 describes how to install the embedded operating system, and the CCA application
program into the PCIe Cryptographic Coprocessor.

4. Install the Support Program onto the coprocessor host computer.
5. Install the coprocessor hardware. See “Obtaining coprocessor hardware and software” on page 1 for

details.
6. Load the coprocessor software. See “Loading and Unloading software into the coprocessor” on page

6 for details.
7. Set up a CCA test node. You can establish a CCA cryptographic node by using the utilities provided with

the Support Program, or link your application programs to the CCA API. Also verify the access control
and other setup requirements imposed by the application software you plan to use with the IBM 4765.
The CCA Node Management (CNM) utility, described in “Managing the cryptographic node by using the
CNM and CNI utilities” on page 15, includes setup and management functions needed to:

• Load the FCV
• Create and edit the access control data
• Manage the coprocessor master key
• Manage primary key encrypting keys (KEKs)
• Manage the storage of data keys
• Create lists (scripts) for the CCA Node Initialization (CNI) utility

8. Run test programs that utilize the CCA libraries. See “Building applications to use with the CCA API” on
page 36 for details.

Related information
“Obtaining coprocessor hardware and software” on page 1
Information about selecting, installing, and ordering the coprocessor hardware, and to download the
software.
“Loading and Unloading software into the coprocessor” on page 6
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After installing the IBM Common Cryptographic Architecture (CCA) Support Program on the host
computer, use the Coprocessor Load Utility (CLU) to load the coprocessor operating system and CCA
application into the coprocessor.
“Managing the cryptographic node by using the CNM and CNI utilities” on page 15
A computer that provides cryptographic services, such as key generation and digital signature support, is
defined here as a cryptographic node.

Installing the Support Program base release 4.4
Instructions for installing the Support Program on the coprocessor host computer.

Prerequisites
Before you begin the installation choose the platform support packages that are appropriate to your
setup. See “Obtaining coprocessor hardware and software” on page 1 for details on software and
hardware requirements for AIX.

Note: If you are not installing the program for the first time, back up your key storage files.

To install the Support Program:

1. Enter the smitty install_all command.
2. Enter the location of the installation images that you obtained by using the procedure described in

Obtaining the coprocessor software section under“Obtaining coprocessor hardware and software” on
page 1. Press Enter.

3. Enter csufx.4765.cca csufx.4765.man in the SOFTWARE install field or press F4 (Display) to
select from the list. Verify that AUTOMATICALLY install requisite software is set to yes and that
ACCEPT new license agreements is set to yes. Use the tab key to toggle or the F4 (Display) key to list.
Press Enter and press Enter again to continue when prompted ARE YOU SURE.

4. Exit from smitty using the F10 (Exit) key.
5. Read the /usr/lpp/csufx.4765/README file. This file contains the latest information about the

Support Program product.
6. Use the configuration utilities to configure the software as described in “Configuring the Support

Program” on page 3.

Configuring the Support Program
This section describes the utilities and system command used to configure the CCA Cryptographic
Coprocessor Support Program software.

csufadmin

Specifies the system-access permissions that are associated with the csufkeys, csufappl, csufclu
(Coprocessor Load Utility), csufcnm (Cryptographic Node Management), and csufcni (Cryptographic
Node Initialization) utilities.

Default permissions restrict the use of these utilities to the root user and to users in the system group.
Use the csufadmin utility to modify these permissions.

csufappl

Specifies the system-access permissions that are associated with the CCA libraries.

The default permissions restrict the use of the CCA libraries to the root user and members of the
system group. Use the csufappl utility to permit other groups to use the services furnished by the CCA
API.
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csufkeys

Creates and identifies the file and directory names of the locations wherein the cryptographic keys
and key lists are stored. The installation program defines, in the AIX object data manager (ODM), the
following default directories:

• AES key-record-list directory: /usr/lpp/csufx.4765/csufkeys/aeslist
• AES key-storage file: /usr/lpp/csufx.4765/csufkeys/aes.keys
• DES key-record-list directory: /usr/lpp/csufx.4765/csufkeys/deslist
• DES key-storage file: /usr/lpp/csufx.4765/csufkeys/des.keys
• PKA key-record-list directory: /usr/lpp/csufx.4765/csufkeys/pkalist
• PKA key-storage file: /usr/lpp/csufx.4765/csufkeys/pka.keys

Use the csufkeys utility to change the storage locations.

Note: When you initialize key storage by using the Cryptographic Node Management utility, ensure
that you specify the ODM directories that are defined by this utility.

odmget
Verifies key-storage file names with the odmget system command. You can verify the key-storage
names used by the CCA Support Program by entering the odmget csufodm command. The four
parameter name attributes specify the following values:

• csuaesds: The file containing the AES key-records
• csuaesld: The directory containing the AES key-record-list files
• csudesds: The file containing the DES key-records
• csudesld: The directory containing the DES key-record-list files
• csupkads: The file containing the PKA key-records
• csupkald: The directory containing the PKA key-record-list files

When initializing CCA key-storage with either the CNM utility or with the csnbksi CCA verb, you must use
the file names that are returned from the ODM. Use the csufkeys utility to change these file names.

The DES_Key_Record_List verb, PKA_Key_Record_List verb, and the AES_Key_Record_List verb produce
list files in the /usr/lpp/csufx.4765/csufkeys/deslist, /usr/lpp/csufx.4765/csufkeys/
pkalist, and /usr/lpp/csufx.4765/csufkeys/aeslist directories respectively. These are the
default directory names. You can modify the directory names when you install the software. The list files
are created under your ownership, if you request the list service. Make sure that the files are created
under the group ID as required by the installation. This can also be achieved by setting the set-group-id-
on-execution bit on in these three directories. See the g+s flags in the chmod command for more
information. If this procedure is not followed, errors are returned on key-record-list verbs.

To assign a default CCA Coprocessor, use the EXPORT command to set the environment variable
CSU_DEFAULT_ADAPTER to CRP0n, where n = 1, 2, 3, 4, 5, 6, 7, or 8, depending on which installed CCA
Coprocessor you want as the default. If this environment variable is not set when the first CCA verb of a
process is called, the CCA software uses Coprocessor CRP01 as the default. If this environment variable is
set to an invalid value, you will get an error until the environment variable is set to a valid value.

Related information
“Creating a key label” on page 34

CCA Support Program and AIX file permissions
The CCA Support Program relies on file permissions at the group level to function accurately.

The users and administrators of the Support Program must have the correct group file permissions on the
CCA shared libraries, utilities, key-storage files, and directories to be fully functional and to run without
errors.
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Note: Key-storage files and directories are defined as those files and directories that are contained in the
key-storage directory. This directory includes the top-level key-storage directory, that is, in the default
configuration, all the files and directories under the /usr/lpp/csufx.4765/csufkeys/deslist
directory, and the /usr/lpp/csufx.4765/csufkeys directory itself.

To operate the key-storage files and directories must have a group ID of the application user group, that
is, the groupname parameter that is used when the csufappl utility was run.

Also, as a rule, all key-storage directories must have file permissions of 2770 (drwxrws---) and be owned
by the root. All key-storage files must have file permissions of 660 (-rw-rw----).

The 4765 CCA software and keystore cannot exist concurrently with the 4764 CCA software and keystore
because of conflicts in the libraries and ODM databases.

Reviewing coprocessor hardware errors
Errors occurring in the IBM Power Systems coprocessor hardware is recorded in the AIX error log.

To process and view the log, enter the following command:

errpt -a -N Cryptn,libxcrypt.a | more

Where n is 0, 1, 2, 3, 4, 5, 6 or 7 (for example, Crypt 0), depending on which CCA Coprocessor log you
want to view.

Related information
“Loading and Unloading software into the coprocessor” on page 6
After installing the IBM Common Cryptographic Architecture (CCA) Support Program on the host
computer, use the Coprocessor Load Utility (CLU) to load the coprocessor operating system and CCA
application into the coprocessor.

Removing the Support Program
If your key-storage files are in the default directories, back them up or save them before you remove the
IBM Cryptographic Coprocessor (CCA) Support Program. Removing the software deletes the key-storage
files in the default directories.

To remove the IBM Cryptographic Coprocessor Support Program, follow these steps:

1. Log on as root.
2. Enter the rmdev -dl Crypt0 command. The coprocessor device driver and other related

information are removed. You can use this command for each CCA coprocessor that you plan to
remove or relocate.

3. Enter the smitty install_remove command.

Note: When prompted, enter the csufx.4765.com and devices.pciex.14107a0314107b03.rte
product names.

4. Verify that the REMOVE dependent software value is set to NO. Also, verify that the Preview Only
value is set to NO.

5. Press the Enter key.

AIX hardware and software requirements
The prerequisites that are required to install CCA.

Hardware
Install an IBM Power Systems server with an available 4765 PCIe cryptographic coprocessor.

During installation of the software, the driver interacts with the coprocessor to arbitrate interrupt settings,
DMA channels, and other system resources. For installation instructions about the coprocessor hardware
and device driver, see “Obtaining coprocessor hardware and software” on page 1.
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Software
1. IBM AIX 6.1 and later.
2. Java Runtime Environment (JRE) 1.6.0, or later, that is required to run the CCA Node Management

(CNM) utility.
3. The software package csufx.4765 must be downloaded from the http://www.ibm.com/security/

cryptocards/pcixcc/ordersoftware.shtml website. The software package contains the following
filesets:

• csufx.4765.com - 4765 CCA Support Program
• csufx.4765.cca - 4765 Support Program - Common Utilities
• csufx.4765.man - Support Program man pages

File permissions
Manage the file permission by using the CCA Node Management (CNM) utility.

The CCA Node Management (CNM) utility provides a way to manage access control points. To help protect
against accidental or intentional corruption of the CNM utility's executable file, set the file permission of
the CNM.jar file to read and execute only. Similarly, to protect the data file of access control points, set
the file permission of the csuap.def file to read only.

Loading and Unloading software into the coprocessor
After installing the IBM Common Cryptographic Architecture (CCA) Support Program on the host
computer, use the Coprocessor Load Utility (CLU) to load the coprocessor operating system and CCA
application into the coprocessor.

If you obtain updates to the Support Program, use the CLU to reload the necessary program segments.
You can also load vendor software by using the CLU.

This section includes:

• Instructions for using the CLU to understand which coprocessors are installed and their status, and to
install and uninstall the software that runs within the coprocessor

• A reference section that describes:

– The coprocessor memory segments
– Validation of the coprocessor status
– The syntax used to start the CLU utility
– CLU return codes

For a deeper understanding of the code-loading controls and the security considerations implemented by
the coprocessor, see the research paper Building a High-Performance, Programmable Secure Coprocessor
that is available on the product website library page at http://www.ibm.com/security/cryptocards.

Notes:

1. The file locations referred to in this section are the default directory paths.
2. The error codes returned by the coprocessor device driver are presented in the form of a hexadecimal

number, such as X'8040xxxx'. You might encounter the errors, especially when you first use the CLU
utility and are less familiar with the product and its procedures.

3. The coprocessor function-control vector (FCV) is loaded by the CCA Node Management (CNM) utility.

Related information
“Device driver error codes” on page 42
The coprocessor device driver monitors the status of its communication with the coprocessor and the
coprocessor hardware-status registers.
“Managing the cryptographic node by using the CNM and CNI utilities” on page 15
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A computer that provides cryptographic services, such as key generation and digital signature support, is
defined here as a cryptographic node.

Loading coprocessor software
Find the procedures to load software into the coprocessor in this section.

See the README file that accompanies the software distribution that you are installing for specific .clu
file names. The README file might also provide additional information that enhances or modifies these
general procedures.

Use the following subtopics, follow this sequence of tasks:

1. At a command prompt, change to the directory with the Coprocessor Load Utility (CLU) files and run
the CLU.

2. Determine the software that is currently resident within the coprocessor.
3. Change the contents of software segments 1, 2, and 3, as appropriate.
4. Validate the final contents of the software segments.

Changing the default directory and running the CLU
To change the default directory, you must locate the directory that contains the coprocessor code files
(*.clu) and the Coprocessor Load Utility (CLU).

Changing the default directory
At a command prompt, change to the default directory coprocessor code directory /usr/lpp/
csufx.4765/clu to access the code files. If the CLU is not in the default directory, ensure that your
operating system can locate the CLU.

Running the CLU
Note: When using CLU, applications that use CCA must not be running.

To run the CLU utility, enter the csufclu program name at the command prompt .

You can provide parameters interactively to the CLU utility, or you can include these on the command line.
Each time you use CLU you must specify a log file name. This is the first parameter and can be included on
the command line. In general, when working with a specific coprocessor, it is best to use the coprocessor
serial number as the log file name. You can obtain the serial number from the label on the bracket at the
end of the coprocessor.

CLU will append information to two log files. If the log files do not exist, they are created. One log file
contains the same information that is normally displayed on your console. The other log file, to which CLU
will assign MRL as the file name extension, contains a machine-readable log. The MRL file is used with an
analysis utility.

Note: Subsequent instructions in this section assume that you use CLU interactively. Change to the
directory that contains the coprocessor code files. Start CLU with the name appropriate to your operating
system. Respond to the prompts as requested.

CLU obtains the number of installed coprocessors from the device driver. If you have more than one
installed coprocessor, CLU requests the number of the coprocessor with which you intend to interact. The
numbers (coprocessor_number) can be 0 - 2. To correlate these numbers to a particular coprocessor, use
the System Status (SS) command to learn the number for each of the installed coprocessors. (For an
example of the output, see Figure 2 on page 15 in the Coprocessor Load Utility commands topic.)

Note: The CLU utility can operate with a coprocessor when it obtains exclusive control of the coprocessor.
If any other application such as a thread is running and has performed the CCA verb calls, the
coprocessors that are loaded with CCA will be "busy" and unusable by CLU.
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Related information
“Coprocessor Load Utility syntax” on page 12

Determining coprocessor software segment contents
The coprocessor has three segments: segment 1, segment 2, and segment 3. Each segment has a status,
holds software and a validation public key, and an identifier of the owner (except for segment 1).

See Table 1 on page 8 for information about the segments of the coprocessor.

Table 1. Software segment contents

Segment Content

1 Miniboot contains diagnostics and code loading controls

2 Embedded control program

3 CCA or another application

You determine the current content and status of the coprocessor segments by using the ST command.
Figure 1 on page 8 shows a typical ST response. 

======================================================================
CSUFCLU V4.1.1 st.log ST    begun Tue Sep 13 09:30:25 2011
*********** Command ST started. ---- Tue Sep 13 09:30:25 2011

 *** VPD data;  PartNum = 45D5117
 *** VPD data;  EC Num = 0G43192
 *** VPD data;  Ser Num = 99000543
 *** VPD data;  Description = IBM 4765-001 PCI-e Cryptographic Coprocessor
 *** VPD data;  Mfg. Loc. = 91
 *** ROM Status; POST0 Version 1, Release 27
 *** ROM Status; MiniBoot0 Version 1, Release 20
 *** ROM Status; INIT: INITIALIZED
 *** ROM Status; SEG2: RUNNABLE , OWNER2: 2
 *** ROM Status; SEG3: RUNNABLE , OWNER3: 2
 *** Page 1 Certified: YES
 *** Segment 1 Image: S0103 P1v0607 M1v011B P2v0706 F5180 201104151205401A000022000000000000
 *** Segment 1 Revision: 40105
 *** Segment 1 Hash: 177C AF13 C601 2276 90AA 8E20 D3BB BA58 79A6 7EBA 6C2A D68B 0A34 33E0 802C 
4EA7
 *** Segment 1 Hash: 177C AF13
 *** Segment 2 Image: 4.1.7    y4_12-lnx-2011-03-04-16    201108111338401A000000000100010900
 *** Segment 2 Revision: 40107
 *** Segment 2 Hash: 698A 29DC EF8A 44D8 A025 3117 491B C552 45DA EC6F 0D0C 6671 BABE 7ABF 41E7 
2FF5
 *** Segment 2 Hash: 698A 29DC
 *** Segment 3 Image: 4.1.7    CCA                        201108121155401A000000000000000000
 *** Segment 3 Revision: 40107
 *** Segment 3 Hash: EC02 B93A 309F 882A D859 031D 1F22 839D 2233 4D6A C58D D93C E43F 4A4C 1234 
9F48
 *** Segment 3 Hash: EC02 B93A
 *** Query Adapter Status successful ***
Obtain Status ended successfully!
*********** Command ST ended. ---- Tue Sep 13 09:31:26 2011

  ...finishing up...
*********** Command ST exited. ---- Tue Sep 13 09:31:46 2011

Figure 1. Typical CLU status response

Definitions of the fields on the ST response follow:
Field

Description
PartNum

The part number (P/N) of the coprocessor.
EC Num

The engineering change number of the coprocessor.
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Ser Num
The manufacturer's serial number of the coprocessor. This number is not the IBM tracking serial
number that is used for warranty verification and download authorization.

Description
A statement that describes the type of coprocessor in general terms. Auditors must review this and
other status information to confirm that an appropriate coprocessor is in use.

ROM Status
The coprocessor must always be in an INITIALIZED state. If the status is ZEROIZED, the coprocessor
detected a possible tamper event and is in an unrecoverable, nonfunctional state. (Unintended tamper
events are created if the coprocessor is not handled properly. Only remove the batteries when you
follow the recommended procedure to change the battery, maintain the coprocessor in the safe
temperature range, and follow the instruction.

ROM Status SEG2 / SEG3
Several status conditions for Segment 2 and Segment 3 exist, which includes:

• UNOWNED: Currently not in use, no content
• RUNNABLE: Contains code and is in an usable state

Owner identifiers are also shown. The standard CCA Support Program is assigned identifier 2 for both
Segment 2 and Segment 3. Any other owner identifier indicates that the software is not the standard
IBM CCA product code. In all cases, ensure that the software is loaded in your coprocessor.
Unauthorized or unknown software can represent a security risk to your installation.

Segment 1 Image
The name and description of the software content of Segment 1. For a factory shipped coprocessor,
the name includes Factory. This image and the associated validation key must be changed.

For a previously loaded coprocessor, the Segment 1 name probably includes CCA. Ensure that you
observe the revision level.

Segment 2 and Segment 3 Images
If these segments have Owned status, observe the image name and the revision level. IBM
incorporates CCA in the image name to indicate that the image is provided as part of the CCA Support
Program. Be sure to observe the revision level.

Segment Hash values
The hash values for each segment must match the values that are shown in Figure 1 on page 8.

Changing software segment contents
Generally, the software within the coprocessor must be at the same release level as the CCA software in
the hosting system.

Do not attempt to use various different release levels except with specific instructions from IBM.

Start the Coprocessor Load Utility (CLU) and enter the parameters interactively. For instructions, see
“Changing the default directory and running the CLU” on page 7.

1. Enter the log file name (nnnnnnnn.LOG, where nnnnnnnn is the serial number of the coprocessor).
2. Enter the command, PL.
3. If you have multiple coprocessors, enter the coprocessor number.
4. Enter the CLU file name as indicated in the README file.

Repeat as required so that the appropriate software is loaded for Segments 1, 2, and 3.

Validating the coprocessor segment contents
The procedure to be followed to validate the contents of the coprocessor segments.

After you have loaded or replaced the code in Segments 1, 2, and 3, use the CLU VA command to confirm
the segment contents and to validate the digital signature on the response created by the coprocessor.
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Depending on the IBM 4765 coprocessor (PartNum) in use,1 issue the following command, and substitute
the class key certificate file name from Table 2 on page 10 for the data file name. Note that the data file
name v.clu is appended to the coprocessor part number, all in lowercase characters.

csuxclu nnnnnnnn.log VA [coprocessor_n] datafile

The part number can be obtained by using the Coprocessor Load Utility (CLU) ST command. 

Table 2. Class-key file for use with the CLU VA command

PartNum Class-key certificate file

12R8565 12r8565v.clu

41U0441 41u0441v.clu

The [coprocessor_n] parameter is the optional designator for a particular coprocessor and defaults to
zero.

Unloading coprocessor software and zeroize the CCA node
The steps to unload the coprocessor software and to zeroize the CCA node to surrender the ownership of
the segments are described here.

When you use Coprocessor Load Utility (CLU) to process a file that surrenders ownership of Segment 2,
both Segment 2 and the subordinate Segment 3 are cleared, and the code is removed. The validating
public key for the segment is cleared, the security-relevant data items that are held within the
coprocessor for the segment are zeroized. The owner identifiers are cleared, and the segment's status is
set to UNOWNED.

See the README file that accompanies the software distribution you are using for the specific .clu file
name that is used to surrender ownership of Segments 2 and 3. The README file might also provide
additional information that amplifies or modifies this general procedure.

Perform these actions:

• Change to the directory that contains the CLU files.
• Start the CLU utility.
• Respond to the prompts and use the serial number of the coprocessor in the log file name.
• Use the PL command to surrender Segment 2 as indicated in the README file for your platform.

Notes:

1. You can also zeroize CCA without removing the software by using the CCA reinitialize process.
2. IBM does not normally make available a file to restore the factory Segment 1 validating key to put the

coprocessor into a condition similar to a factory-ready product. Segment 1 can be changed to a limited
number of times before the available Device Key certificate space is used and the coprocessor is
potentially rendered unusable. If you require the capability to restore the validating key of Segment 1,
and are willing to display your coprocessor to a possible lock-up condition, you can obtain the required
file from IBM by submitting a query by using the Support Form on the product website, http://
www.ibm.com/security/cryptocards. It is important to note that certificate space is a nonrenewable
resource. After it is used, it cannot be recovered.

Related information
“Initializing the node” on page 23

1 You can refer to the IBM product website (http://www.ibm.com/security/cryptocards) FAQ section for the
procedure to validate coprocessor integrity. That topic carries the current list of class key certificate files.
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The procedure to initialize the CCA node to its initial state.

Coprocessor Load Utility (CLU) reference
The coprocessor memory segments to which you load the software is described here. The approach the
coprocessor uses to validate the software loads, the syntax used to start the CLU, and the CLU return
codes.

If you do not need the details in this section, skip to “Managing the cryptographic node by using the CNM
and CNI utilities” on page 15.

Coprocessor memory segments
Coprocessor memory segments are organized into different segments.

The organization of memory segments and its function follows:

Table 3. Organization of memory segments

Segment Description

0 Basic code

The basic code manages coprocessor initialization and the hardware component
interfaces. This code cannot be changed after the coprocessor leaves the factory.

1 Software administration and cryptographic routines

Software in this segment:

• Administers the replacement of software already loaded to Segment 1.
• Administers the loading of data and software to segments 2 and 3.
• Is loaded at the factory, but can be replaced using the CLU utility.

2 Embedded operating system

The coprocessor Support Program includes the operating system. The operating
system supports applications loaded into Segment 3. Segment 2 is empty when
the coprocessor is shipped from the factory.

3 Application software

The coprocessor Support Program includes a CCA application program that can
be installed into Segment 3. The application functions according to the IBM CCA
and performs access control, key management, and cryptographic operations.
Segment 3 is empty when the coprocessor is shipped from the factory.

Validating the coprocessor software loads
When the coprocessor is shipped from the factory, it has within it the public key that is needed to validate
replacement software for Segment 1.

To load code into coprocessor Segment 2 and Segment 3, for each segment follow these steps:

1. Identify an owner for the segment by using an Establish Owner command. The owner identifier is
only accepted if the digital signature associated with this identifier can be validated by the public key
that is residing with the immediately lower segment. Once established, ownership remains in effect
until a Surrender Owner command is processed by the coprocessor.

2. Load the segment to the code. Two different commands are available.

a. Initially use the Load command. The Load command data includes a public key certificate that
must be validated by the public key that is present on the next lower segment. The coprocessor
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accepts the code and retains the validated public key for the segment if one of the condition is
satisfied:

• The certificate is validated.
• The data of the owner identifier in the Load command matches the current ownership that is held

by the coprocessor for the segment.
• The complete data in the Load command can be validated by the public key in the certificate that

was used for validation.
b. If a segment already has a public key, a Reload command can be used to replace the code in a

segment. The coprocessor actions are the same as for a Load command, except that the included
certificate must be validated by the public key associated with the target segment rather than the
key associated with the next lower segment.

The embedded operating system, working with the coprocessor hardware, can store security-relevant
data items (SRDIs) on behalf of itself and an application in Segment 3. The SRDIs are zeroized upon
tamper detection, loading of segment software, or processing a Surrender Owner command of a
segment. The SRDIs for a segment are not zeroized when the Reload command is used. The CCA
application stores the master keys, the function control vector (FCV), the access control tables, and the
retained RSA private keys as SRDI information that is associated with Segment 3.

IBM signs its own software. If another vendor intends to supply software for the coprocessor, that
vendor's Establish Owner command and the code-signing public key certificate must be signed by
IBM under a suitable contract. These restrictions make sure that the following conditions are satisfied:

• Only authorized code can be loaded into the coprocessor.
• Government restrictions are met relating to the import and export of cryptographic implementations.

Coprocessor Load Utility syntax
The syntax that is used to start the Coprocessor Load Utility (CLU), and the functions of the utility are
described.

CLU must be used for the following functions:

• Ensure that the coprocessors are not busy by ending any application that has used a coprocessor. For
example, end all applications that use the CCA API.

• Obtain the release level and the status of software that is installed in the coprocessor memory
segments.

• Confirm the validity of digitally signed messages that are returned by the coprocessor.
• Load and reload portions of the coprocessor software.
• Reset the coprocessor.

To start the utility, follow these steps:

1. Log on as required by your operating system.
2. At the command line, change directory to the directory that contains the CLU files. The default

directory is /usr/lpp/csufx.4765/clu.
3. Enter the csufclu utility name followed by the applicable parameters.

If you do not supply the necessary parameters, the utility prompts when the information is required.
Optional parameters are enclosed in brackets. The syntax for the parameters that follow the utility name
is

[log_filecmd[coprocessor _#][data_file][-Q]]

2 In this publication, the terms load and reload are used. Other documentation might refer to these
operations as emergency burn (EmBurn), and regular burn or remote burn (RemBurn).
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Where:
log_file

Identifies the log file name. The utility appends entries to this ASCII text file as it performs the
operations that are requested. A second machine-readable log file, with a file name of logfile_name.
MRL, is also created. This log file can be processed by a program and contains the binary-encoded
responses from the coprocessor.

cmd
Specifies a two-letter abbreviation that represents the loader command to be run.

coprocessor _number
Provides the coprocessor number as established by the device driver. This parameter defaults to 0.
Coprocessors are designated to the device driver as numbers 0, 1, and 2. You can use the serial
number information that you obtain with the ST or VA commands and the serial number that is printed
on the end-bracket of the coprocessor to correlate a particular coprocessor to the coprocessor
_number. The utility supports up to eight coprocessors per system.

data_file
Identifies the data file (drive, directory, and file name) that is used for the requested operation. To
identify the data_file name, use one of the following methods:

• For software loads and reloads, the data_file name is the file name of the software image that you
are loading into the coprocessor. The Support Program README file provides the data_file name.

• For the coprocessor, the coprocessor status is obtained with the VA command. The data_file name
is the class-key certificate file name that used to validate the coprocessor response. The FAQ
section of the product website (http://www.ibm.com/security/cryptocards) contains a description of
the procedure for validating the coprocessor and its code. This description also contains a list of the
current class-key certificate file names. You can download the required certificate file from the
website.

-Q
Suppresses (quiets) the CLU program output to the standard output device. The status information is
still appended to the log files.

Example: To obtain the coprocessor status and save the results to the log file, enter:

csufclu nnnnnnnn.log va datafile_name.clu

It is suggested that you make nnnnnnnn the serial number of the coprocessor. It is not mandatory to use
the serial number, but it is used to retain a history of all software changes made to each specific
coprocessor.

Related information
“Machine-readable log contents” on page 42
The CLU utility creates two log files, one intended for reading and the other for possible input to a
program.
“Coprocessor Load Utility commands” on page 13
The Coprocessor Load Utility (CLU) supports multiple loader commands.

Coprocessor Load Utility commands
The Coprocessor Load Utility (CLU) supports multiple loader commands.

The loader commands and its functions that are supported by CLU are as following:
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Table 4. CLU loader commands

Loader command Description

PL: Load microcode into coprocessor

Commands R1, E2, L2, R2, S2, E3, L3, R3, and S3
are inferred from information contained in the data
files that you use with the PL command. A single
"PL" file can incorporate information for multiple
ownership and loading commands.

Processes a series of commands as directed by the
contents of the data file to establish segment
ownership and to load or reload segment software.

RS: Reset the coprocessor Resets the coprocessor. Generally you will not use
this command. The command causes the
coprocessor to perform a power-on reset. You
might find this command helpful should the
coprocessor and the host-system software lose
synchronization. You should end all host-system
software processes that are operating with the
coprocessor prior to issuing this command to
enable the complete cryptographic subsystem to
get to a reset state.

SS: Obtain system status Obtains the part number, serial number, and a
portion of the Segment 3 software image name for
each of the installed coprocessors, provided that
these are not being used by some application such
as CCA. See Figure 2 on page 15.

ST: Obtain coprocessor status Obtains the status of loaded software and the
release level of other components. The status is
appended to the log files.

VA: Validate coprocessor status Obtains the status of loaded software and the
release level of other components. The data is
transmitted in a message signed by the
coprocessor device key, and then stored in the
utility log file.

The utility uses its built-in public key to validate the
one-or-more class-key certificates contained in
data_file name parameter. One of these
certificates should validate the public key, or chain
of public keys, obtained from the coprocessor, and
confirm that the coprocessor has not been
tampered with.

In general, the utility can be called by a script file or a command file. When you create a script file or a
command file to start the utility on an unattended system, add the "quiet" syntax, the -q (or -Q, /q,
or /Q) parameter, to request that no output be sent the display. By default, the utility returns prompts and
messages to the display. 
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The Typical CLU system status response figure shows the response of a CLU system.

======================================================================
CSUFCLU V4.00 ss.log SS    begun Tue Sep 28 10:49:36 2010
*********** Command SS started. ---- Tue Sep 28 10:49:36 2010

 Card #    P/N        S/N         Segment 3 Description
 ------    -------    --------    ------------------------------------
   0       45D6045    99000627    4.1.0    CCA
 *** Query System Status successful ***
System Status ended successfully!
*********** Command SS ended. ---- Tue Sep 28 10:50:37 2010

  ...finishing up...
*********** Command SS exited. ---- Tue Sep 28 10:50:57 2010

Figure 2. Typical CLU system status response

Coprocessor Load Utility return codes
This section specifies the returned code values from CLU.

When CLU finishes processing, it returns a value that can be tested in a script file or in a command file.
Each of the returned values have their implications.
0

OK. This implies that the CLU finished processing properly.
1

Command line parameters are not valid.
2

Cannot access the coprocessor. In this case, ensure that the coprocessor and its driver have been
properly installed.

3
Check the utility log file for an abnormal condition report.

4
No coprocessor is installed. In this case, ensure that the coprocessor and its driver have been
properly installed.

5
An Invalid coprocessor number is specified.

6
A data file is required with this command.

7
The data file specified with this command is incorrect or invalid.

Managing the cryptographic node by using the CNM and CNI
utilities

A computer that provides cryptographic services, such as key generation and digital signature support, is
defined here as a cryptographic node.

The CCA Node Management (CNM) utility and the CCA Node Initialization (CNI) utility that are provided
with the Support Program are tools to set up and manage the CCA cryptographic services provided by a
node.

This section includes:

• Utilities and description on how to start them.
• Sample scenarios for using the utilities that you might consider.
• How to use the CNM utility administrative functions: Review this material after working through the

topic “Scenario: Creating a test node” on page 17.
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• How to create and manage access control data: Read details about the access control portion of the
CNM utility.

• How to manage cryptographic keys: Read about some of the key management tasks that you can
accomplish with the CNM utility.

• How to establish other nodes by using the CNI utility: You can automate use of the CNM utility by using
encapsulated procedures.

These utilities are written in Java™ and require the use of a Java runtime environment (JRE). You can also
use the Java Development Kit (JDK).

CNM and CNI overview
Typical users of the CCA Node Management (CNM) utility and the CCA Node Initialization (CNI) utility are
security administration personnel, application developers, system administrators, and, in some cases,
production-mode operators.

Notes:

1. The CNM utility furnishes a limited set of the CCA API services. After becoming familiar with the utility,
you can determine whether it meets your needs or whether you require a custom application to
achieve more comprehensive administrative control and key management.

2. Files that you create through use of the CNM utility might be dependent on the release of the Java
Runtime Environment (JRE). If you change the release of the Java Runtime Environment (JRE) that you
use, files that you have created with the CNM utility might not function correctly with the new release.

3. The CNM utility has been designed for use with a mouse. Use the mouse instead of the Enter key for
consistent results.

4. No help panels are provided for the Master-Key Cloning portion of the utility.
5. These utilities use the IBM Common Cryptographic Architecture (CCA) Support Program API to request

services from the coprocessor. The IBM CCA Basic Services Reference and Guide for the IBM 4765 PCIe
and 4764 PCI-X Cryptographic Coprocessors manual contains a comprehensive list of the verbs (also
known as callable services or procedure calls) provided by the CCA API. Refer to this book and the
individual services described therein to understand which commands might require authorization in
the various roles that you define by using the procedures described in this section.

CCA node management utility overview
The CCA Node Management utility is a Java application that provides a graphical interface to use in the
setup and configuration of IBM 4765 CCA cryptographic nodes. The utility functions primarily to set up a
node, create and manage access-control data, and manage the CCA master-keys that are necessary to
administer a cryptographic node.

You can load data objects directly into the coprocessor or save them to disk. The data objects are usable
at other IBM 4765 CCA nodes that use the same operating system and a compatible level of the Java
application.

Note: Starting the CCA Node Management Utility: To start the CCA Node Management utility enter the
csufcnm command The CNM utility logo and then the main window are displayed.

CCA node initialization utility overview
The CCA Node Initialization utility runs scripts that you create by using the CNI Editor within the CNM
utility. These scripts are known as CNI lists. The CNI utility can run the CNM utility functions that are
necessary to set up a node; for example, it can be used to load access-control roles and profiles.

As you create a CNI list, you specify the disk location of the data objects that the CNI utility will load into
the target nodes. After creating a CNI list, you can distribute the CNI list and any accompanying data files
(for roles, profiles, and so on) to nodes where the CNI utility will be used for an automated setup. The
source node and all nodes running the distributed CNI list must employ the same operating system and a
compatible level of the Java application.
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Note: Starting the CCA Node Management Utility: To start the CCA Node Management utility enter the
csufcnm command The CNM utility logo and then the main window are displayed.

Related information
“Scenario: Cloning a DES or PKA master key” on page 20
The steps to clone a data encryption standard (DES) or public key algorithm (PKA) master key from one
coprocessor to another.
“Creating other nodes by using the CNI utility” on page 35
Creating a CNI list for the CCA Node Initialization (CNI) utility, allows to load keys and access control data
stored on disk into other cryptographic nodes without running the CNM utility on those target nodes.

Scenarios: Using the CNM and the CNI utilities
This section describes using the CCA Node Management (CNM) utility and the CCA Node Initialization
(CNI) utility to create a node and clone it to another coprocessor.

The usage of the utilities is illustrated in the scenarios, which includes:

1. Creating a test node to be used to develop applications or establish procedures for using the CNM
utility. First time users should follow this procedure to begin experimentation with the utility and the
coprocessor.

2. Creating nodes for a production environment using key parts. This scenario employs CNI lists to
automate establishment of target production nodes.

3. Cloning a master key from one coprocessor to another coprocessor. This is a procedure of interest to
high security installations that employ multiple coprocessors.

The purpose of the scenarios is to illustrate how the procedures described here can be used. Where
appropriate, a scenario refers to other sections of this topic collection with more detailed information.

If you are not familiar with the coprocessors's CCA access control system, see “Access control overview”
on page 25 and “Initial state of the access control system” on page 25. Here you can find an
explanation of terms such as role initial DEFAULT role, and user profile. The scenarios assume that the
access-control system is in its initial state.

Note: These scenarios are instructional only. You are encouraged to determine the procedures best suited
for your specific environment. Refer to the appendix about secure operations in the IBM CCA Basic
Services Reference and Guide for the IBM 4765 PCIe and 4764 PCI-X Cryptographic Coprocessors.

Scenario: Creating a test node
In this scenario, a single programmer sets up a node to allow unlimited access to cryptographic services.

Important: The resulting cryptographic node must not be considered secure because under this scenario
many sensitive commands are permitted with unrestricted use.

Prerequisites: You must have already installed an appropriate level of the Java Runtime Environment
(JRE) or the Java Development Kit (JDK).

To create a test node, complete the following steps:

1. Install the coprocessor and the IBM Cryptographic Coprocessor Support Program as described in
Installing the Support Program.

2. Start the CCA Node Management utility by entering the csufcnm command. The CNM utility logo and
the main panel displays.

3. If you have more than one coprocessor with CCA installed, specify to the CNM utility which
coprocessor you want to use. From the Crypto Node menu, select Select Adapter. A list of available
adapter numbers (1 - 8) is displayed. Select an adapter (coprocessor) from the list. If you do not use
the Select Adapter list to select an adapter, the default adapter (coprocessor) is used.

4. Synchronize the clock within the coprocessor and host computer. From the Crypto Node menu, click
Time. From the resulting submenu, click Set. The clocks are synchronized.
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5. Use the CNM utility to permit all commands in the DEFAULT role:

a. From the Access Control menu, click Roles.
b. Highlight the DEFAULT entry and click Edit. A window displays the commands that are enabled and

those that are not enabled by the DEFAULT role.
c. Click Permit All.
d. Load the modified role back into the coprocessor by clicking Load, select OK.
e. Save a copy of the role by clicking the Save button and name the role.

6. Load the function-control vector (FCV) into the coprocessor. From the Crypto Node menu, click
Authorization. From the resulting submenu, click Load to specify and load the FCV.

The FCV file is the one that was placed on your server during the installation process. FCVs usually
have file names such as fcv_td4kECC521.crt and is searched using the file search utility available
with your operating system.

7. Install a master key from the Master Key menu, click either DES / PKA Master Keys or AES Master
Keys, and click Yes. The coprocessor generates and sets a random master key.

The master key that was installed with the Auto Set option has actually passed through the main
memory of your system processor as key parts. For production purposes, use a more secure method of
establishing a master key, such as random generation or installation of known key parts entered by
two or more individuals. These options are also accessed from the menus mentioned previously.

8. Initialize the key storage files. For information on initializing the key storage files, see “Creating or
initializing key storage” on page 33

Key storage is a CCA term that describes a place where the Support Program can store Data Encryption
Standard (DES), Rivest-Shamir-Adleman algorithm (RSA), and Advanced Encryption Standard (AES)
cryptographic keys under names that you (or your applications) define. If you intend to use key
storage, you must initialize the key storage file or files that correspond to the type of keys that you are
using: DES, RSA (PKA), or AES. For example, if you intend to use only DES keys, you must initialize the
DES key storage file but not the others. If you intend to use DES and PKA keys, you must initialize the
DES and PKA key storage files but not the AES key storage file. If you intend to use all three, you must
initialize all three.

Related Links
“Creating a role” on page 26

“Loading the master key automatically” on page 31

Scenario: Creating nodes in a production environment
In this scenario, the responsibility for creating cryptographic nodes is divided among three individuals,
namely, an access control administrator and two key management officers.

The administrator sets up the node and its access control system. Then, the key management officers
load a master key and any required key encrypting keys (KEKs). The KEKs can be used as transport keys
to convey other keys between nodes.

This scenario is focused on installing master keys and high level, internode data encryption standard
(DES) KEKs from key parts. The CCA implementation supports alternatives to the key part technique such
as random master-key generation and distribution of DES keys by using techniques that are based on
Rivest-Shamir-Adleman (RSA) public key technology. The key part technique assumes that there are two
key management officers who can be trusted to perform their tasks and to not share their key part
information. This technology implements a split knowledge policy. The access control system is set up to
enforce dual control by separating the tasks of the first and second officers.

In this scenario, the access-control administrator uses the cryptographic node management (CNM) utility
to prepare coprocessor node initialization (CNI) lists for the target nodes. The CNI lists automate the
process of using the CNM utility at the target node. The administrator prepares a CNI list for the tasks that
are performed by the target node access control administrator and the two key management officers. The
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administrator must know the commands require authorization in the target node under different
conditions, which includes:

• Normal, limited operation (when the default role is used)
• When the access control administrator tasks are run
• When each of the key management officer tasks are run
• Under any other special circumstances by using additional roles and profiles

Note: The CNM and CNI utilities are tools that are used to set up and manage the CCA cryptographic
services that are provided by a node.

The administrator authorizes commands in the various roles to ensure that only required commands are
enabled. Sensitive commands, such as loading a first key part or loading subsequent key parts, are only
enabled in roles for users with the responsibility and authority to use those commands. It is important to
separate the responsibilities so that policies such as split knowledge and dual control are enforceable by
the coprocessor's access control system.

Related information
“Creating and managing access control data” on page 24

Scenario: Preparing CNI lists for target nodes
In this task, the access control administrator uses the CCA Node Management (CNM) utility to prepare
CCA Node Initialization (CNI) lists for the target nodes.

To set up the node and create its access control data, the access control administrator can:

1. On an established node, start the CNM utility.
2. Create and save to disk the access control data for the target node, which includes:

• Supervisory roles and user profiles for the access control administrator and the key management
officers

• A default role to replace the initial default role

a. To create a CNI list to synchronize the clock and calendar within the coprocessor and host
computer.

i) Load the access control data.
ii) Log on as an access control administrator.

iii) Load the replacement default role.
iv) Load the function control vector (FCV).
v) Log off.

b. Create a CNI list for the first key-management officer:

i) Log on as the first key management officer.
ii) Load a first master key of the key part.

iii) Load the first part key encrypting key information.
iv) Log off.

c. Create a CNI list for the second key management officer:

i) Log on as the second key management officer.
ii) Load a second master key of the key part.

iii) Load the second part key encrypting key information.
iv) Log off.

3. Install the coprocessor and the IBM Common Cryptographic Architecture (CCA) Support Program onto
the target nodes.

4. Transport to the target nodes the access control data and the FCV specified in the CNI list.
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5. With the involvement of the key management officers, on each target node run the CNI lists that you
created in steps “2.a” on page 19, “2.b” on page 19, and “2.c” on page 19.

The target nodes are now ready to provide cryptographic service.

Related information
“Creating and managing access control data” on page 24
“Creating other nodes by using the CNI utility” on page 35
Creating a CNI list for the CCA Node Initialization (CNI) utility, allows to load keys and access control data
stored on disk into other cryptographic nodes without running the CNM utility on those target nodes.

Scenario: Preparing and loading key parts
This section describes the procedure to prepare, load and transport the key parts.

The key management officers prepare the key parts for use at the target nodes and load the key parts at
the target nodes.

Decide the method to transport the key parts from the point of generation to the point of installation.
Following are a few possibilities:

• Generate the key parts at a central place and transfer these on diskettes.
• Generate the key parts at a central place and transfer these on paper forms.
• Generate the key parts at the point and time of (first) installation. If the key parts are required after the

installation, to reload or to share with another node, then you must decide on the method to transport
the key parts.

Review the specific capabilities of the CNM utility by working with the utility. Then review the specific
approach that you select and test the CCA Node Initialization utility (CNI) list that was prepared in
conjunction with the access control administrator.

Scenario: Cloning a DES or PKA master key
The steps to clone a data encryption standard (DES) or public key algorithm (PKA) master key from one
coprocessor to another.

The term cloning is used rather than copying because the master key is split into shares for transporting
between the coprocessors. The technique is explained under the topic "Understanding and managing
master keys" in the IBM CCA Basic Services Reference and Guide for the IBM 4765 PCIe and 4764 PCI-X
Cryptographic Coprocessors manual. The section “Cloning a master key” on page 43 provides a step-by-
step procedure that you can follow. The background information that allows to vary the procedure is
described in this section.

Note: Cloning of an AES master key is not supported.

Cloning of the master key involves two or three nodes:

• The master key source node.
• The master key target node.
• The share administration (SA) node. The SA node can either be the source or the target node.

The CNM utility can store various data items that are involved in this process in a database that you can
carry (diskette) or transfer (FTP) between the different nodes. One database issa.db that is the default,
and contains the information about the SA key and keys that is certified. The target node where the
master key is cloned also has a database that is known by default as the csr.db.

You can accomplish these tasks by using the CNM utility:

1. Start the CCA Node Management utility by entering the csufcnm command. The CNM utility logo and
the main window are displayed.

2. Set up the nodes in a secure manner with access control roles, user profiles, and master keys.

You need a role and one or more user profiles at the source and target nodes for each user who
obtains or store shares. Processing of shares is done by a separate command so that, if you want,
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your roles can ensure that independent individuals are involved with obtaining and installing the
different shares.

Consider the use of random master key generation and roles that enforce a dual control security
policy. For example, allow one individual or role to register a hash and another individual or role to
register a public key. Select different individual or role for obtaining and installing the individual
shares of the master key.

See the guidance section in the IBM CCA Basic Services Reference and Guide for the IBM 4765 PCIe
and 4764 PCI-X Cryptographic Coprocessors manual for the description of the Master_Key_Process
and the Master_Key_Distribute verbs.

3. Install a unique 1 - 16 byte environment ID (EID) of your choice into each node.

From the Crypto Node menu, click Set Environment ID, enter the identifier, and click Load. Use only
these characters in an EID: A - Z, a - z, 0 - 9, and @, (X'40'), space character (X'20'), &, (X'26'), and =,
(X'3D').

You must enter a full 16-character identifier. For short identifiers, complete the entry with space
characters.

4. Initialize the master key sharing m and n values in the source and target nodes. These values must be
the same in the source and the target nodes. The value n is the maximum number of shares while m
is the minimum number of shares that must be installed to reconstitute the master key in the target
node.

From the Crypto Node menu, click Share Administration > Set number of shares, enter the
values, and click Load.

5. At the different nodes, generate these keys and have each public key that is certified by the SA key.
You can use the utility's sa.db database to transport the keys and the certificates.
Share administration (SA)

This key is used to certify itself and the following keys. You must register the hash of the SA public
key, and the public key itself, in the SA, source, and target nodes.

After the SA key is created, the utility supplies an 8 byte or 16-hexadecimal character value that
is a portion of the hash of the SA key. Be sure to retain a copy of this value. You need this value to
confirm the hash value that is recorded in the database to register the SA public key at the source
and target nodes.

Coprocessor Share Signing (CSS)
This key is used to sign shares that are distributed from the source node. The private key is
retained within the source node.

Coprocessor Share Receiving (CSR)
This key is used to receive a share-encrypting key into the target node. The SA certified public
CSR key is used at the source node to wrap (encrypt) the share encrypting key that is unique for
each share. The private key is retained within the target node.

Generate the Key Pairs: SA, CSS, and CSR
From the Crypto Node menu, click Share Administration > Create Keys. Click the Share
Administration Keys, CSS key, or CSR key. Click Create.

You must supply key labels for the CSS and CSR keys that are retained in the source and target
nodes, for example, IBM4765.CLONING.CSS.KEY and IBM4765.CLONING.CSR.KEY. The
labels that you use must not conflict with other key labels that are used in your applications.

To generate the CSR key at the share-receiving node, you must obtain the serial number of the
coprocessor. From the Crypto Node, click Status. You must enter the serial number value to
certify the CSR key.

6. Register the SA public key in the coprocessor at the SA, source, and target nodes. This process is a
two-step process that must be done under a dual control security policy.
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One individual installs the SA public key hash. From the Crypto Node menu, click Share
Administration > Register Share Administration , and click SA Key hash. You must enter the hash
value that is obtained during SA key creation.

The other individual installs the actual SA public key. From the Crypto Nodemenu, click Share
Administration > Register Share Administration , and click SA Key. By default, the public key
information is in the sa.db file.

7. Take the CSS key and the CSR key to the SA node and have the keys that are certified.

From the Crypto Node drop-down menu, select Share Administration Keys, Certify KeysCSS key,
or CSR key.

For the CSR key, you must supply the serial number of the target coprocessor as a procedural check
that an appropriate key is being certified. Your procedures must include communicating this
information in a reliable manner.

8. At the source node, the authorized individuals must sign on to the role that allows them to obtain
their shares. At least m shares must be obtained. These shares are of the current master-key.

From the Crypto Node menu, click Share Administration > Get Share, and enter the share number
to be obtained. Observe the serial numbers and database identifiers. When these shares are in
agreement, click Get Share. The share information must be placed by default into the csr.db file and
obtains the CSR key certificate, by default, from the sa.db file.

Obtain current-master-key validation information for use later at the target node. From the Master
Key menu, click DES/PKA Master Keys > Verify. Click Current.

9. At the target node, the authorized individuals must sign on to the role that allows each of them to
install their share. At least m shares must be installed to reconstitute the master key into the new
master-key register.

From the Crypto Nodemenu, click Share Administration > Load Share, and select the share
number to be installed. Verify that the serial numbers and database identifiers are correct and then
click Observe the serial numbers and database identifiers. When these shares are agreed to be
correct, click Get Share. At the target node, the authorized individuals must sign on to the role that
allows the individuals to install their share. The share information is obtained by default from the
csr.db file and the CSS key certificate is obtained by default from the sa.db file. If your server has
multiple cryptographic coprocessors that are loaded with CCA, the coprocessors must have identical
master keys that are installed for the functioning of key storage.

When m shares are loaded, verify that the key in the new master-key register is the same as the
current master key in the source node when the shares were obtained. On the target node, from the
Master Key menu, click DES/PKA Master Keys > New.

10. When it is confirmed through master key verification that the master key is cloned, an authorized
individual can set the master key. This action deletes any old master key and moves the current
master key to the old master key register. Application programs that use keys encrypted by the
master key can be impacted by this change, so ensure that setting of the master key is coordinated
with the needs of your application programs.

11. From the Master Keymenu, click DES/PKA Master Keys > Set.

Using the CNM utility functions
This section describes the procedure to use the various functions of the CNM utility.

Selecting a specific coprocessor
The procedure to choose a coprocessor from the multiple coprocessors available on the system.

If your system has multiple coprocessors loaded with the CCA code, you need to select the specific
coprocessor to work on. If you do not make a selection, you will operate with the default coprocessor.
After you make a coprocessor selection, that selection remains in effect for the current utility session or
until you make a different selection within the utility session.
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To select a coprocessor, click Select Adapter from the Crypto Node menu. If you do not select an
adapter, the default adapter is used.

Note:

1. When using the CLU utility, coprocessors are referred to as 0, 1, and 2. Any particular coprocessor
might or might not have the CCA application installed. With the CNM utility (and other applications that
use the CCA API), the coprocessors loaded with the CCA application are designated as 1, 2, and 3.
These new identifiers are assigned by CCA while it scans all of the installed coprocessors for those
loaded with the CCA application.

2. When coding a CCA application, keywords CRP01, CRP02, and CRP03 are used to allocate a
coprocessor. These correspond to the numbers 1, 2, and 3 that are used in the CNM utility menu.

Initializing the node
The procedure to initialize the CCA node to its initial state.

You can restore the CCA node to its initial state, provided that the role you are operating under (the
default role or a logged-on role) permits use of the Reinitialize Device command (offset X'0111').

Use of the Reinitialize Device command causes the following actions to occur:

• Clearing Master-key registers
• Clearing retained Public Key Algorithm (PKA) and registered PKA public keys
• Clearing roles and profiles and restoring the access control to its initial state.

To initialize the CCA node, select Initialize from the Crypto Node menu. You will be asked to confirm your
action.

Related information
“Initial state of the access control system” on page 25
The initial state has an initial default role.

Logging on and logging off the node
A user must log on to the coprocessor in order to activate a user profile and the associated role. This is the
only way to use a role other than the default role.

To log on, select Passphrase Logon from the File menu.

To log off, select Logoff from the File menu.

Note: With the exception of the DEFAULT role, access to the coprocessor is restricted by passphrase
authentication.

Loading the function-control vector
The procedure to load the coprocessor FCV.

A function-control vector (FCV) is a signed value provided by IBM to enable the CCA application in the
coprocessor to provide a level of cryptographic service consistent with applicable import and export
regulations. Under the current regulations all users are entitled to the same level of cryptographic
functionality. Therefore, IBM now supplies a single FCV with the IBM Common Cryptographic Architecture
(CCA) Support Program.

You use the CNM utility to load the FCV into the coprocessor. The FCV file is named
fcv_td4kECC521.crt.

To load the FCV:

1. From the Crypto Node menu, select Authorization.
2. From the resulting submenu, click Load to specify the FCV file on disk. Specify the file name and click

Update. The utility loads the FCV.
3. Click OK.
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Configuring the CCA Node Management utility
The procedure to configure the default values for the CNM utility.

The configuration panel of the CNM utility allows you to indicate directory paths for the files you create
with the utility. However, the utility generally does not use the paths that you store in the configuration
panel. Instead, the default paths are stored in the Windows environment variables. You might find the
configuration panel a useful place to record where you intend to keep the various classes of data items.

Synchronizing the clock and calendars
The procedure to synchronize the clock and calendars within the coprocessor and the host computer.

The coprocessor uses its clock and calendar to record the time and date and to prevent replay attacks in
the passphrase-based profile authentication. After installing the coprocessor, synchronize its clock and
calendar with that of the host system.

To synchronize the clock and calendars:

1. From the Crypto Node menu, click Time.
2. From the resulting submenu, click Set.
3. Type Yes to synchronize the clock and calendars with the host.
4. Click OK.

Obtaining status information of the CCA application
You can use the CNM utility coprocessor to obtain the status of the CCA application.

The supported status panels on the CNM utility coprocessor are:
CCA Application:

Displays the version and the build date of the application, and also displays the status of the master-
key registers.

Adapter:
Displays the coprocessor serial number, ID, and hardware level.

Command History:
Displays the five most recent commands and sub commands sent to the coprocessor.

Diagnostics:
Indicates whether any of the coprocessor tamper-sensors have been triggered, whether any errors
have been logged, and reflects the status of the coprocessor batteries. 

Export Control:
Displays the maximum strength of the cryptographic keys used by the node, as defined by the
function-control vector (FCV) that is resident within the coprocessor.

To view the status panels:

1. From the Crypto Node menu, click Status. The CCA application status is displayed.
2. To select other status information, use the buttons at the bottom.
3. Click Cancel.

Related information
“Managing the master keys” on page 30
A master key is used to encrypt local-node working keys while they are stored external to the
coprocessor.

Creating and managing access control data
The access control system of the IBM CCA Cryptographic Coprocessor Support Program defines the
circumstances under which the coprocessor can be used. It does this by restricting the use of CCA
commands.
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For a list of these CCA commands, see the IBM CCA Basic Services Reference and Guide for the IBM 4765
PCIe and 4764 PCI-X Cryptographic Coprocessors. Also, see the "Required commands" section at the end
of each verb description.

An administrator can give users differing authority so that some users can use CCA services not available
to others. This section includes an overview of the access control system and instructions for managing
your access control data. You need to know the commands that are required and under what
circumstances. Consider that some commands should be authorized only for trusted individuals or for
certain programs that operate at specific times. Generally, you authorize only those commands that are
required, so as not to inadvertently enable a capability that could be used to weaken the security of your
installation.

You will obtain the information about command use from the documentation for the applications that you
intend to support. For additional guidance, see IBM CCA Basic Services Reference and Guide for the IBM
4765 PCIe and 4764 PCI-X Cryptographic Coprocessors.

Access control overview
The access control system restricts or permits the use of commands based on roles and user profiles.

Use the CNM utility to create roles that correspond to the needs and privileges of assigned users.

To access the privileges assigned to a role that are not authorized for a default role, a user must log on to
the coprocessor by using a unique user profile. Each user profile is associated with a role and multiple
profiles can use the same role. The coprocessor authenticates logons by using the passphrase that is
associated with the profile that identifies the user.

Note: The term user applies to both humans and programs.

The coprocessor always has at least one role, the default role. Use of the default role does not require a
user profile. Any user can use the services permitted by the default role without logging on to or being
authenticated by the coprocessor.

For example, a basic system might include the following roles:

• Access control administrator: Can create new user profiles and modify the access rights of current
users.

• Key management officer: Can change the cryptographic keys. This responsibility is best shared by two
or more individuals making use of rights to enter the first or subsequent key parts.

• General user: Can use cryptographic services to protect their work, but has no administrative privileges.
If your security plan does not require logon authentication for general users, address their requirements
in the default role.

Note: Few individuals would be assigned the roles of key-management officer or access control
administrator. Generally, the larger population would not log on and thus would have rights granted in the
default role.

Initial state of the access control system
The initial state has an initial default role.

After you have loaded the CCA software support into Segment 3 of the coprocessor, or after the access
control system is initialized, no access control data exists except for an initial default role that allows
unauthenticated users to create and load access control data.

After creating the roles and profiles needed for your environment, including the supervisory roles
necessary to load access control data and to manage cryptographic keys, remove all permissions that are
assigned to the default role. Then, add only those permissions you want to grant to unauthenticated
users.

Important: The cryptographic node and the data it protects are not secure while the default role is
permitted to load access control data.
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Related information
“Initial default-role commands” on page 41
The characteristics of the default role after the coprocessor is initialized and when no other access control
data exists are described. Also, the enabled access control commands are listed.

Creating a role
A role defines permissions and other characteristics of the users assigned to that role.

To create a role, complete the following steps:

1. From the Access Control menu, click Roles. A list of currently defined roles is displayed.
2. Select New to display the Role Management window. At any time in the process, click List to return to

the list of currently defined roles. 

Figure 3. Role Management window
3. Define the role by using the following parameters:

Role ID
A character string that defines the name of the role. This name is contained in each user profile
that is associated with this role.

Comment
An optional character string to describe the role.

Required authentication strength
When a user logs on, the strength of the authentication provided is compared to the strength level
required for the role. If the authentication strength is less than that required, the user cannot log
on. Currently only the passphrase authentication method is supported. Use a strength of 50.

Valid times and valid days
When the user can log on. Note that these times are Coordinated Universal Time. If you are not
already familiar with the access control system, see the chapter about access control system of the
IBM CCA Basic Services Reference and Guide for the IBM 4765 PCIe and 4764 PCI-X Cryptographic
Coprocessors manual.

Restricted operations and permitted operations
A list defining the commands the role is allowed to use.
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Each CCA API verb might require one or more commands to obtain service from the coprocessor.
The user requesting service must be assigned to a role that permits those commands needed to
run the verb.

For more information about CCA verb calls and commands, refer to the IBM CCA Basic Services
Reference and Guide for the IBM 4765 PCIe and 4764 PCI-X Cryptographic Coprocessors manual.

4. Click Save to save the role to disk.
5. Click Load to load the role into the coprocessor.

Modifying existing roles
You can use the CNM utility to edit a disk stored and coprocessor stored role and delete a coprocessor
stored role.

Note: Any existing role can be used as a template to create a new role. When you open a saved role, the
existing information is displayed in the Role Definition window. You need only modify or enter information
specific to the new role, give it a new role ID, and load or save it.

Editing a disk-stored role
This section describes the procedure to edit an existing role stored in the disk.

To edit a role stored on disk, complete the following steps:

1. From the Access Control menu, click Roles. A list of currently defined roles is displayed.
2. Click Open. You are prompted to select a file.
3. Open a file. Data is displayed in the Role Definition window.
4. Edit the role.
5. Click Save to save the role to disk.
6. Optional: Click Load to load the role into the coprocessor.

Editing a coprocessor-stored role
This section describes the procedure to edit the role stored in the CCA coprocessor.

To edit a role stored in the coprocessor, complete the following steps:

1. From the Access Control menu, click Roles. A list of currently defined roles is displayed.
2. Highlight the role you want to edit.
3. Click Edit. Data in the Role Definition panel is displayed .
4. Edit the role.
5. Click Save. To save the role to disk.
6. Optional: Click Load. To load the role into the coprocessor

Deleting a coprocessor-stored role
This section describes the procedure to delete the role from the CCA coprocessor.

Important: When you delete a role, the CNM utility does not automatically delete or reassign the user
profiles associated with that role. You must delete or reassign the user profiles that are associated with a
role before you delete the role.

To delete a role stored in the coprocessor, complete the following steps:

1. From the Access Control menu, click Roles. A list of currently defined roles is displayed.
2. Highlight the role you want to delete.
3. Click Delete. The role is deleted.
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Creating a user profile
A user profile identifies a specific user to the coprocessor.

To create a user profile, complete the following steps:

1. From the Access Control menu, click Profiles. A list of currently defined profiles is displayed.
2. Select New to display the Profile Management window. See Figure 4 on page 28, to view the fields of

the Profile Management window. 

Figure 4. Profile Management panel
3. Define the user profile.

The fields of the user profile follows:

User ID
The name given to a user profile of the cryptographic coprocessor.

Comment
An optional character string to describe the user profile.

Activation Date and Expiration Date
The first and last dates that the user can log on to the user profile.

Role
The name of the role that defines the permissions granted to the user profile.

Passphrase and Confirm Passphrase
The character string that the user must enter to gain access to the cryptographic node.

Passphrase Expiration Date
The expiration date for the passphrase. The utility will set this by default to 90 days from the
current date. You can change the expiration date. Every passphrase contains an expiration date,
which defines the lifetime of that passphrase. This is different from the expiration date of the
profile itself.

4. Click Save, to save the profile to disk.
5. Optional: Click Load, to load the profile into the coprocessor.
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Modifying existing profile
You can use the CNM utility to edit a disk stored and coprocessor stored profile and delete a coprocessor
stored profile.

Note: Any existing profile can be used as a template to create a new profile. When you open a saved
profile, the existing information is displayed in the Profile Definition window. You need only modify or
enter information specific to the new profile, give it a new profile ID, and load or save it.

Editing a disk-stored user profile
This section describes the procedure to edit a user profile stored on a disk.

To edit a user profile stored on disk, complete the following steps:

1. From the Access Control menu, select Profiles. A list of currently defined profiles is displayed.
2. Click Open. You are prompted to select a file.
3. Open a file. Data is displayed in the User Profile Definition window.
4. Edit the profile.
5. Click Save to save the profile to disk.
6. Optional: Click Load to load the profile into the coprocessor.

Editing a coprocessor-stored user profile
This section describes the procedure to edit the user profile in the CCA coprocessor.

To edit a user profile stored in the coprocessor, complete the following steps:

1. From the Access Control menu, click Profiles. A list of currently defined profiles is displayed.
2. Highlight the user profile you want to edit.
3. Click Edit. Data in the Profile Definition window is displayed .
4. Edit the user profile.
5. Click Save. To save the profile to disk.
6. Optional: Click Load. To load the profile into the coprocessor

Deleting a coprocessor-stored user profile
This section describes the procedure to delete the user profile that is stored in the CCA coprocessor.

To delete a profile stored in the coprocessor, complete the following steps:

1. From the Access Control menu, click Profiles. A list of currently defined user profiles is displayed.
2. Highlight the user profile you want to delete.
3. Click Delete. The user profile is deleted.

Resetting the user-profile failure count
To prevent unauthorized logons, the access-control system maintains a logon-attempt failure count for
each user profile. If the number of failed attempts for a user profile exceeds the limit defined in the
profile, the offending profile is disabled.

To reset the failure count, complete the following steps:

1. From the Access Control menu, click Profiles. A list of currently defined user profiles is displayed.
2. Highlight the user profile.
3. Click Reset FC. A confirmation window is displayed.
4. Click Yes to confirm. The logon-attempt failure count is set to 0.
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Initializing the access control system
When you initialize the access control system, the CNM utility clears the access control data in the
coprocessor and furnishes the default role with the commands required to load access control data.

Important: The cryptographic node and the data it protects are not secure while the default role is
permitted to load access control data.

Successfully performing this action removes installed access controls and keys and is therefore a
sensitive operation that could render your node inoperable for production. Some installations might
choose to remove authorization for this function from their coprocessor's roles. In this event, if you want
to initialize the CCA cryptographic node, you must remove the CCA software from the coprocessor and
reinstall the CCA software.

To initialize the access control system:

1. From the Access Control menu, click Initialize. A confirmation window is displayed.
2. Select Yes to confirm. The utility initializes the access control system.

Note: To start the CCA Node Management utility enter the csufcnm command. The CNM utility logo and
the main window are displayed.

Managing cryptographic keys
You can use the CNM utility to manage the master keys, to manage primary key-encrypting keys (KEKs), to
reset and manage data encryption standard (DES), public key algorithm (PKA), and advanced encryption
standard (AES) key-stores. Key types are defined as follows:

A master key is a special KEK stored in clear text (not enciphered) and kept within the coprocessor
secure module. Three kinds of master keys are supported: DES, PKA, and AES. They are used to wrap
other keys so that those keys can be stored outside of the secure module. DES and PKA master keys
are 168-bit keys formed from three 56-bit DES keys. AES master keys are 256-bit keys.
Primary KEKs are DES keys shared by cryptographic nodes and are sometimes referred to as
transport keys. They are used to encipher other keys shared by the nodes. Primary KEKs, like the
master key, are installed from key parts. Knowledge of the key parts can be shared in part by two
people to effect a split-knowledge, dual-control security policy.
Other DES keys, PKA keys, and AES keys are enciphered keys that are used to provide cryptographic
services, such as media access control (MAC) keys, DATA keys, and private PKA keys.

Note: When exchanging clear key parts, ensure that each party understands how the exchanged data is to
be used, because the management of key parts varies among different manufacturers and different
encryption products.

Managing the master keys
A master key is used to encrypt local-node working keys while they are stored external to the
coprocessor.

CCA defines three master-key registers:

• The current-master-key register stores the master key currently used by the coprocessor to encrypt
and decrypt local keys.

• The old-master-key register stores the previous master key and is used to decrypt keys enciphered by
that master key.

• The new-master-key register is an interim location that is used to store master-key information as
accumulated to form a new master key.

The IBM Common Cryptographic Architecture (CCA) Support Program uses three sets of master key
registers, one set for ciphering DES (symmetric) keys, one set for ciphering PKA private (asymmetric)
keys, and one set for ciphering AES (symmetric) keys.

Notes:
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1. The Master_Key_Distribution master-key-administration verb does not support AES master keys.
Programs that use the CCA Master_Key_Process and Master_Key_Distribution, master-key-
administration verbs can use the ASYM-MK keyword to steer operations to the PKA asymmetric
master-key registers, the SYM-MK keyword to steer to the DES symmetric master-key registers, or
both the DES symmetric and PKA asymmetric sets of master-key registers. The CNM utility uses the
BOTH option. If you use another program to load master keys and if this program specifically operates
on either the SYM-MK or ASYM-MK master-key registers, in general, you will no longer be able to use
the CNM utility to administer these master keys. Note that AES master keys work independently from
DES and PKA master keys.

2. If your installation has multiple cryptographic coprocessors loaded with CCA, you need to
independently administer the master keys in each coprocessor.

3. If your installation has a server with multiple cryptographic coprocessors that are loaded with CCA,
those coprocessors need to be installed with identical master keys.

Related information
“Obtaining status information of the CCA application” on page 24
You can use the CNM utility coprocessor to obtain the status of the CCA application.

Verifying an existing master key
The CNM utility generates a verification number for each master key that is stored in the master-key
registers. This number identifies the key, but does not reveal information about the actual key value.

To view a master-key verification number, follow these steps:

1. From the Load Master Key window, click Master Key.
2. From the Master Key menu, select either DES/PKA Master Keys or AES Master Key, and then click
Verify; a submenu is displayed.

3. From the resulting submenu, select a master-key register. The verification number for the key stored in
that register is displayed.

Loading the master key automatically
The CNM utility can automatically set a master key in the coprocessor. The master key value cannot be
viewed from the utility.

Important: If a master key of unknown value is lost, you cannot decipher the key attached to it.

To automatically load the master key, follow these steps:

1. From the Load Master Key window, click Master Key.
2. From the Master Key menu, select either DES/PKA Master Keys or AES Master Key.
3. Select Auto Set or Random. You are prompted to verify the command.
4. Click Yes. The coprocessor generates and sets a master key.

Note:

1. The Random option is preferred because the Auto Set option passes clear key parts through host-
system memory.

2. When you set or automatically set a master key, you must reeincipher all keys that were enciphered
under the former key.

Related information
“Re-encipher the stored keys” on page 33

Loading a new master key from key parts
To set a new master key in the coprocessor, enter any part of the key in the new master-key register, and
set the new master key.

To set the new master key, follow these steps:
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1. From the Master Key menu, select either DES/PKA Master Keys or AES Master Key, and then click
Parts. The Load Master Key window is displayed as shown in Figure 5 on page 32. 

Figure 5. Load Master Key window
2. Select the radio button for the key part you are editing (First Part, Middle Part, or Last Part).
3. Enter data by doing one of the following actions:

• Click New to clear data entered in error.
• Click Open to retrieve preexisting data.
• Click Generate to fill the fields with coprocessor-generated random numbers.
• Manually enter data into the Master Key Part fields. Each field accepts 4 hexadecimal digits.

4. Click Load to load the key part into the new master-key register.
5. Click Save to save the key part to disk.

Important: Key parts saved to disk are not enciphered. Consider keeping a disk with key parts on it
stored in a safe or vault.

Note: When you create a key from parts, you must have both the first and last parts. The middle part is
optional.

6. Repeat the preceding steps to load the remaining key parts to the new master-key register.

Note: For the split-knowledge security policy, different people must enter the separate key parts. To
enforce a dual control security policy, the access control system must assign the right to enter the first
key to one role and the right to enter subsequent key parts to another role. Then, authorized users can
log on and enter their respective key part.

7. From the Master Key menu, select either DES/PKA Master Keys or AES Master Key.
8. Click Set for the utility to transfer the data:

a. From the current master-key register to the old master-key register, and to delete the old master
key

b. From the new master-key register to the current master-key register

After setting a new master key, reencipher the keys that are currently in storage.

Related links

“Re-encipher the stored keys” on page 33
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Managing key storage
The CNM utility enables basic key storage management functions for keys. These utility functions do not
form a comprehensive key management system

Application programs are better suited to perform repetitive key management tasks.

Key storage is a repository of keys that you access by key label using labels that you or your applications
define. Data Encryption Standard (DES) keys, Public Key Algorithm (PKA) Rivest-Shamir-Adleman (RSA)
keys, and Advanced Encryption Standard (AES) keys are held in separate storage systems. Also the key
storage has limited internal storage for PKA keys. The coprocessor stored keys are not considered part of
key storage in this discussion.

Notes:

1. If your server has multiple cryptographic coprocessors that are loaded with CCA, those coprocessors
must have identical master keys installed for key storage to work properly.

2. The CNM utility displays a maximum of 1,000 key labels. If you have more than 1,000 key labels in key
storage, use an application program to manage them.

Creating or initializing key storage
To create or initialize key storage for your Data Encryption Standard (DES) keys, Public-Key Algorithm
(PKA) or Advanced Encryption Standard (AES) keys, complete the following steps:

1. From the Key Storage menu, select DES Key Storage, PKA Key Storage, or AES Key Storage.
2. From the resulting submenu, click Initialize. The Initialize DES Key Storage, Initialize PKA Key Storage,

or Initialize AES Key Storage window is displayed.
3. Enter a description for the key-storage file.
4. Click Initialize. You are prompted to enter a name for the key-storage data set.
5. Enter a name for the file and save it. The key-storage file is created on the host.

Note: If a file with the same name exists, you are prompted to verify your choice because initializing
the key storage modifies the file; therefore, if the file had any keys, they would be erased.

Re-encipher the stored keys
To re-encipher the keys in storage under a new master key, complete the following steps:

1. From the Key Storage menu, select DES Key Storage, PKA Key Storage, or AES Key Storage.
2. From the resulting submenu, click Manage; the DES Key Storage Management, PKA Key Storage

Management, or AES Key Storage Management window is displayed. This window panel lists the labels
of the keys in storage.

3. Click Reencipher. The keys are re-enciphered under the key in the current master-key register.

Deleting a stored key
To delete a stored key, complete the following steps:

1. From the Key Storage, click DES Key Storage, PKA Key Storage, or AES Key Storage.
2. From the resulting submenu, click Manage. The DES Key Storage Management, PKA Key Storage

Management, or AES Key Storage Management window is displayed. This window lists the labels of the
keys in storage.

You can set the filter criteria to list a subset of keys within storage. For example, if you enter *.mac as
the filter criterion and refresh the list, the subset is limited to keys with labels that end in .mac. (The
asterisk is a wildcard character.)

3. Highlight the key label for the key to be deleted.
4. Click Delete. A confirmation message is displayed.
5. Click Yes. To confirm that the stored key is deleted.
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Creating a key label
To create a key label, complete the following steps:

1. From the Key Storage menu, click DES Key Storage, PKA Key Storage, or AES Key Storage.
2. From the resulting submenu, click Manage. The DES Key Storage Management, PKA Key Storage

Management, or AES Key Storage Management window is displayed. This window lists the labels of the
keys in storage.

You can set the filter criteria to list a subset of keys within storage. For example, if you enter *.mac as
the filter criterion and refresh the list, the subset is limited to keys that have labels that end in .mac.
(The asterisk is a wildcard character.)

3. Click New. You are prompted to enter a key label.
4. Click Load. The key label is loaded into storage.

Creating and storing primary DES KEKs
Key encrypting keys (KEKs) are encrypted under the Data Encryption Standard (DES) master key and
stored in DES key storage for local use.

Key parts used to create a KEK can be randomly generated or entered as clear text information. The parts
can also be saved to disk or diskette in clear text for transporting to other nodes or for re-creating the
local KEK.

Note: The Cryptographic Node Management (CNM) utility supports only DES KEKs for the transport of
keys between nodes. Applications can use the CCA API to furnish the services needed for public-key-
based or Advanced Encryption Standard (AES)-based key distribution.

To create and store a primary DES KEK (or other double-length operational key), complete the following
steps:

1. From the Keys menu, click Primary DES Key-encrypting keys. The Primary DES Key-encrypting keys
window is displayed.

At any time, you can click New to clear all data fields and reset all the radio buttons to their default
settings.

2. Select the radio button for the desired key part to be entered: First Part, Middle Part, or Last Part.
3. Enter data in the Key Part fields by doing one of the following actions:

• Click Open to retrieve pre-existing Key Part, Control Vector, and Key Label data that was previously
stored on disk by using the Save command.

• Click Generate to fill the Key Part fields with coprocessor generated random numbers.
• Manually enter data into the Key Part fields. Each of the Key Part fields accepts 4 hexadecimal

digits.
4. Select a control vector for the key:

• To use a default KEK control vector, select the appropriate Default Importer or Default Exporter
radio button.

• To use a custom control vector, select the Custom radio button. In the Control Vector fields, enter
the left or right half of a control vector for any double-length key. Note that the key part bit (bit 44)
must be on and that each byte of the control vector must have even parity.

For detailed information about control vectors, see IBM CCA Basic Services Reference and Guide for
the IBM 4765 PCIe and 4764 PCI-X Cryptographic Coprocessors manual.

5. Enter a key label to identify the key token in key storage.
6. Click Load to load the key part into the coprocessor and store the resulting key token into key storage.
7. Click Save to save the unencrypted key part and its associated control vector and key label values to

disk.
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8. Save to disk or Load to key storage. the remaining key part information by following steps “2” on page
34 - “7” on page 34. Be sure to use the same key label for each part of a single key.

Creating other nodes by using the CNI utility
Creating a CNI list for the CCA Node Initialization (CNI) utility, allows to load keys and access control data
stored on disk into other cryptographic nodes without running the CNM utility on those target nodes.

To set up a node using the CNI utility, complete the following steps:

1. Start the CCA Node Management utility by entering the csufcnm command. The CNM utility logo and
the main panel displays.

2. Save to the host or portable media like a diskette the access control data and keys you want to install
on other nodes. When you run the CNI utility on the target node, it searches the identical directory
path for each file. For example:

• If you save a user profile to the established node directory c:\IBM4764\profiles, the CNI utility
searches the target node directory c:\IBM4764\profiles.

• If you save a user profile to the diskette directory a:\profiles, the CNI utility will search the
target node directory a:\profiles.

3. From the File menu, click CNI Editor. The CCA Node Initialization Editor window displays as shown in
Figure 6 on page 35. 

Figure 6. CCA Node Initialization Editor window

The list in the top pane of the window displays the functions that can be added to the CNI list. The
bottom pane lists the functions included in the current CNI list. References to master keys in the list
refer to the DES and PKA master keys.

4. Add the functions you want. To add a function to the CNI list:

a. Highlight a function.
b. Click Add. The function is added to the CNI list.

Note: If the function you choose loads a data object, such as a key part, key-storage file, user
profile, or role, you are prompted to enter the file name or the ID of the object to be loaded.

5. Using the Move Up and Move Down buttons, organize the functions to reflect the same order you
follow when using the CNM utility. For example, if you are loading access control data.

4765 PCIe Cryptographic Coprocessor AIX CCA Support Program Installation 4.4  35



6. Click Verify to confirm that objects have been created correctly.
7. Click Save. You are prompted to select a name and directory location for the CNI list file.
8. Save the CNI list file. The list file does not contain the data objects specified in the CNI list.
9. Copy the files needed by the CNI utility to target host directory locations that mirror their locations on

the source host. If you saved the files to portable media, insert the media into the target node.
10. From the target node, run the list using the CNI utility by entering the csufcni command.

If the CNI list includes a logon, enter csulcni or csuncni on the command line (without specifying
a file name). The CNI utility help information describes the syntax for entering an ID and passphrase.

The CNI utility loads files to the coprocessor from the host or portable media, as specified by the CNI
list.

Building applications to use with the CCA API
An application can be build which can be used with the Common Cryptographic Architecture (CCA) API.

Source code for the sample routine is included with the software. You can use the sample included to test
the coprocessor and the Support Program.

Note: The file locations referred to in this section are the default directory paths.

Overview of CCA verbs
Application and utility programs issue service requests to the cryptographic coprocessor by calling the
CCA verbs. The term verb implies an action that an application program can initiate. The operating system
code in turn calls the coprocessor physical device driver (PDD). The hardware and software accessed
through the API are themselves an integrated subsystem.

Verb calls are written in the standard syntax of the C programming language, and include an entry-point
name, verb parameters, and the variables for those parameters.

For a detailed listing of the verbs, variables, and parameters you can use when programming for the CCA
security application programming interface (API), see the IBM CCA Basic Services Reference and Guide for
the IBM 4765 PCIe and 4764 PCI-X Cryptographic Coprocessors manual.

Calling CCA verbs in C program syntax
In every operating system environment, you can code CCA API verb calls using standard C programming
language syntax.

Function call prototypes for all CCA security API verbs are contained in a header file. The files and their
default distribution locations are:
AIX

/usr/include/

To include these verb declarations, use the following compiler directive in your program:
AIX

#include "csufincl.h"

To issue a call to a CCA security API verb, code the verb entry-point name in uppercase characters.
Separate the parameter identifiers with commas and enclose them in parentheses. End the call with a
semicolon character. For example:

      CSNBCKI (&return_code,
               &reason_code,
               &exit_data_length,    /* exit_data_length */
               exit_data,            /* exit_data        */
               clear_key,
               key_token);
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Note: The third and fourth parameters of a CCA call, exit_data_length and exit_data, are not currently
supported by the CCA Cryptographic Coprocessor Support Program. Although it is permissible to code null
address pointers for these parameters, it is preferred that you specify a long integer valued to 0 with the
exit_data_length parameter.

Compiling and linking CCA application programs
The CCA Cryptographic Coprocessor Support Program includes the C Language source code and the
makefile for a sample program.

The file and its default distribution location follows:

AIX
/usr/lpp/csufx.4765/samples/c.

Compile application programs that use CCA and link the compiled programs to the CCA library. The library
and its default distribution location follows:

AIX
/usr/lib/libcsufcca.a.

Sample C routine: Generating a MAC
To illustrate the practical application of CCA verb calls, this topic describes the sample C programming
language routine included with the CCA Cryptographic Coprocessor Support Program.

There is also a sample program on the product Web site. That sample program can help you understand
the performance of the CCA implementation.

The sample routine generates a message authentication code (MAC) on a text string and then verifies the
MAC. To generate and verify the MAC, the routine:

1. Calls the Key_Generate (CSNBKGN) verb to create a MAC and MACVER key pair.
2. Calls the MAC_Generate (CSNBMGN) verb to generate a MAC on a text string with the MAC key.
3. Calls the MAC_Verify (CSNBMVR) verb to verify the text string MAC with the MACVER key.

A sample routine is shown in Figure 7 on page 37, see the IBM CCA Basic Services Reference and Guide
for the IBM 4765 PCIe and 4764 PCI-X Cryptographic Coprocessors manual for the descriptions of the
verbs and their parameters. These verbs are listed in the following table.

Table 5. Verbs called by the sample routine

Verb Entry-point name

Key_Generate CSNBKGN

MAC_Generate CSNBMGN

MAC_Verify CSNBMVR

Figure 7. Sample C routine: generating a MAC,

/*********************************************************************/
/*                                                                   */
/* Module Name: mac.c                                                */
/*                                                                   */
/* DESCRIPTIVE NAME: Cryptographic Coprocessor Support Program       */
/*                   C language source code example                  */
/*                                                                   */
/*-------------------------------------------------------------------*/
/*                                                                   */
/* Licensed Materials - Property of IBM                              */
/*                                                                   */
/* (C) Copyright IBM Corp. 1997-2010 All Rights Reserved             */
/*                                                                   */
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/* US Government Users Restricted Rights - Use duplication or        */
/* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. */
/*                                                                   */
/*-------------------------------------------------------------------*/
/*                                                                   */
/*        NOTICE TO USERS OF THE SOURCE CODE EXAMPLES                */
/*                                                                   */
/* The source code examples provided by IBM are only intended to     */
/* assist in the development of a working software program. The      */
/* source code examples do not function as written: additional       */
/* code is required. In addition, the source code examples may       */
/* not compile and/or bind successfully as written.                  */
/*                                                                   */
/* International Business Machines Corporation provides the source   */
/* code examples, both individually and as one or more groups,       */
/* "as is" without warranty of any kind, either expressed or         */
/* implied, including, but not limited to the implied warranties of  */
/* merchantability and fitness for a particular purpose. The entire  */
/* risk as to the quality and performance of the source code         */
/* examples, both individually and as one or more groups, is with    */
/* you. Should any part of the source code examples prove defective, */
/* you (and not IBM or an authorized dealer) assume the entire cost  */
/* of all necessary servicing, repair or correction.                 */
/*                                                                   */
/* IBM does not warrant that the contents of the source code         */
/* examples, whether individually or as one or more groups, will     */
/* meet your requirements or that the source code examples are       */
/* error-free.                                                       */
/*                                                                   */
/* IBM may make improvements and/or changes in the source code       */
/* examples at any time.                                             */
/*                                                                   */
/* Changes may be made periodically to the information in the        */
/* source code examples; these changes may be reported, for the      */
/* sample code included herein, in new editions of the examples.     */
/*                                                                   */
/* References in the source code examples to IBM products, programs, */
/* or services do not imply that IBM intends to make these           */
/* available in all countries in which IBM operates. Any reference   */
/* to the IBM licensed program in the source code examples is not    */
/* intended to state or imply that IBM's licensed program must be    */
/* used. Any functionally equivalent program may be used.            */
/*                                                                   */

/*-------------------------------------------------------------------*/
/*                                                                   */
/* This example program:                                             */
/*                                                                   */
/* 1) Calls the Key_Generate verb (CSNBKGN) to create a MAC (message */
/*    authentication code) key token and a MACVER key token.         */
/*                                                                   */
/* 2) Calls the MAC_Generate verb (CSNBMGN) using the MAC key token  */
/*    from step 1 to generate a MAC on the supplied text string      */
/*    (INPUT_TEXT).                                                  */
/*                                                                   */
/* 3) Calls the MAC_Verify verb (CSNBMVR) to verify the MAC for the  */
/*    same text string, using the MACVER key token created in        */
/*    step 1.                                                        */
/*                                                                   */
/*********************************************************************/
#include <stdio.h>
#include <string.h>

#ifdef _AIX
  #include <csufincl.h>
#elif __WINDOWS__
  #include "csunincl.h"
#else
  #include "csulincl.h"     /* else linux */
#endif

/* Defines */
#define KEY_FORM            "OPOP"
#define KEY_LENGTH          "SINGLE  "
#define KEY_TYPE_1          "MAC     "
#define KEY_TYPE_2          "MACVER  "
#define INPUT_TEXT          "abcdefghijklmn0987654321"
#define MAC_PROCESSING_RULE "X9.9-1  "
#define SEGMENT_FLAG        "ONLY    "
#define MAC_LENGTH          "HEX-9   "
#define MAC_BUFFER_LENGTH   10
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void main()
{
  static long          return_code;
  static long          reason_code;
  static unsigned char key_form[4];
  static unsigned char key_length[8];
  static unsigned char mac_key_type[8];
  static unsigned char macver_key_type[8];
  static unsigned char kek_key_id_1[64];
  static unsigned char kek_key_id_2[64];
  static unsigned char mac_key_id[64];
  static unsigned char macver_key_id[64];
  static long          text_length;
  static unsigned char text[26];
  static long          rule_array_count;
  static unsigned char rule_array[3][8];       /* Max 3 rule array elements  */
  static unsigned char chaining_vector[18];
  static unsigned char mac_value[MAC_BUFFER_LENGTH];

  /* Print a banner */
  printf("Cryptographic Coprocessor Support Program example program.\n");

  /* Set up initial values for Key_Generate call */
  return_code = 0;
  reason_code = 0;
  memcpy (key_form,        KEY_FORM,   4);     /* OPOP key pair              */
  memcpy (key_length,      KEY_LENGTH, 8);     /* Single-length keys         */
  memcpy (mac_key_type,    KEY_TYPE_1, 8);     /* 1st token, MAC key type    */
  memcpy (macver_key_type, KEY_TYPE_2, 8);     /* 2nd token, MACVER key type */
  memset (kek_key_id_1,  0x00, sizeof(kek_key_id_1));  /* 1st KEK not used   */
  memset (kek_key_id_2,  0x00, sizeof(kek_key_id_2));  /* 2nd KEK not used   */
  memset (mac_key_id,    0x00, sizeof(mac_key_id));    /* Init 1st key token */
  memset (macver_key_id, 0x00, sizeof(macver_key_id)); /* Init 2nd key token */

  /* Generate a MAC/MACVER operational key pair */
  CSNBKGN(&return_code,
          &reason_code,
          NULL,                                /* exit_data_length           */
          NULL,                                /* exit_data                  */
          key_form,
          key_length,
          mac_key_type,
          macver_key_type,
          kek_key_id_1,
          kek_key_id_2,
          mac_key_id,
          macver_key_id);

  /* Check the return/reason codes. Terminate if there is an error.          */
  if (return_code != 0 || reason_code != 0) {
    printf ("Key_Generate failed: ");             /* Print failing verb      */
    printf ("return_code = %ld, ",  return_code); /* Print return code       */
    printf ("reason_code = %ld.\n", reason_code); /* Print reason code       */
    return;
  }
  else
    printf ("Key_Generate successful.\n");

  /* Set up initial values for MAC_Generate call */
  return_code = 0;
  reason_code = 0;
  text_length = sizeof (INPUT_TEXT) - 1;          /* Length of MAC text      */
  memcpy (text, INPUT_TEXT, text_length);         /* Define MAC input text   */
  rule_array_count = 3;                           /* 3 rule array elements   */
  memset (rule_array, ' ', sizeof(rule_array));   /* Clear rule array        */
  memcpy (rule_array[0], MAC_PROCESSING_RULE, 8); /* 1st rule array element  */
  memcpy (rule_array[1], SEGMENT_FLAG,        8); /* 2nd rule array element  */
  memcpy (rule_array[2], MAC_LENGTH,          8); /* 3rd rule array element  */
  memset (chaining_vector, 0x00, 18);             /* Clear chaining vector   */
  memset (mac_value, 0x00, sizeof(mac_value));    /* Clear MAC value         */

  /* Generate a MAC based on input text */
  CSNBMGN ( &return_code,
           &reason_code,
           NULL,                               /* exit_data_length           */
           NULL,                               /* exit_data                  */
           mac_key_id,                         /* Output from Key_Generate   */
           &text_length,
           text,
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           &rule_array_count,
           &rule_array[0][0],
           chaining_vector,
           mac_value);

  /* Check the return/reason codes. Terminate if there is an error.          */
  if (return_code != 0 || reason_code != 0) {
    printf ("MAC Generate Failed: ");             /* Print failing verb      */
    printf ("return_code = %ld, ",  return_code); /* Print return code       */
    printf ("reason_code = %ld.\n", reason_code); /* Print reason code       */
    return;
  }
  else {
    printf ("MAC_Generate successful.\n");
    printf ("MAC_value = %s\n", mac_value);    /* Print MAC value (HEX-9)    */
  }

  /* Set up initial values for MAC_Verify call */
  return_code = 0;
  reason_code = 0;
  rule_array_count = 1;                        /* 1 rule array element       */
  memset (rule_array, ' ', sizeof(rule_array));/* Clear rule array           */
  memcpy (rule_array[0], MAC_LENGTH, 8);       /* Rule array element         */
                                               /*  (use default Ciphering    */
                                               /*  Method and Segmenting     */
                                               /*  Control)                  */
  memset (chaining_vector, 0x00, 18);          /* Clear the chaining vector  */

  /* Verify MAC value */
  CSNBMVR (&return_code,
           &reason_code,
           NULL,                               /* exit_data_length           */
           NULL,                               /* exit_data                  */
           macver_key_id,                      /* Output from Key_Generate   */
           &text_length,                       /* Same as for MAC_Generate   */
           text,                               /* Same as for MAC_Generate   */
           &rule_array_count,
           &rule_array[0][0],
           chaining_vector,
           mac_value);                         /* Output from MAC_Generate   */

  /* Check the return/reason codes. Terminate if there is an error.          */
  if (return_code != 0 || reason_code != 0) {
    printf ("MAC_Verify failed: ");               /* Print failing verb      */
    printf ("return_code = %ld, ", return_code);  /* Print return code       */
    printf ("reason_code = %ld.\n", reason_code); /* Print reason code       */
    return;
  }
  else                                         /* No error occurred          */
    printf ("MAC_Verify successful.\n");
}

Enhancing throughput with CCA and the 4765 coprocessor
When you use the CCA API, the characteristics of your host application program will affect performance
and throughput of the 4765. For best performance on the 4765 coprocessor, evaluate and design your
application based on multithreading and multiprocessing, and based on caching Data Encryption
Standard (DES), Public-Key Algorithm (PKA), and Advanced Encryption Standard (AES) keys.

Multithreading and multiprocessing
The CCA application running inside the 4765 can process several CCA requests simultaneously. The
coprocessor contains several independent hardware elements, including the Rivest-Shamir-Adleman
algorithm (RSA) engine, Data Encryption Standard (DES) engine, CPU, random-number generator, and
Peripheral Component Interconnect-X (PCI-X) communications interface. These elements can all be
working at the same time, processing parts of different CCA verbs. By working on several verbs at the
same time, the coprocessor can keep all of its hardware elements busy, maximizing the overall system
throughput.

To take advantage of this capability, your host system must send multiple CCA requests to the
coprocessor without waiting for each one to finish before sending the next one. The best way to send
multiple requests is to design a multithreaded host application program, in which each thread can
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independently send CCA requests to the coprocessor. For example, a web server can start a new thread
for each request it receives over the network. Each of these threads will send the required cryptographic
requests to the coprocessor, independent of what the other threads are doing. The multithreaded model
guarantees that the coprocessor is not under used. Another option is to have several independent host
application programs all using the coprocessor at the same time.

Caching DES, PKA, and AES keys
The CCA software for the 4765 keeps copies of recently used DES, PKA, and encrypted (not clear text)
AES keys in caches inside the secure module. The keys are stored in a form that has been decrypted and
validated, and is ready for use. If the same key is reused in a later CCA request, the 4765 can use the
cached copy and avoid the overhead associated with decrypting and validating the key token. In addition,
for retained PKA keys, the cache eliminates the overhead of retrieving the key from the internal flash
Erasable Programmable Read Only Memory (EPROM) memory.

As a result, applications that reuse a common set of keys can run much faster than those that use
different keys for each transaction. Most common applications use a common set of DES keys, PKA
private keys, and encrypted AES keys, and the caching is effective in improving throughput. PKA public
keys and AES clear keys, which have little processing overhead, are not cached.

Initial default-role commands
The characteristics of the default role after the coprocessor is initialized and when no other access control
data exists are described. Also, the enabled access control commands are listed.

For the initial default role commands, the role ID is the default and the authentication strength is zero.
The default role is valid at all times of the day and on all days of the week. The only functions permitted
are those necessary to load access control data.

Important: The cryptographic mode is not secure when unauthenticated users can load access control
data by using the default role. Restrict these commands to selected supervisory roles.

Table 6 on page 41 lists the access control commands that are enabled in the default role when the CCA
software is initially loaded and when the CCA node is initialized.

Table 6. Initial default-role commands

Code Command name

X'0107' One-Way Hash, SHA-1

X'0110' Set Clock

X'0111' Reinitialize Device

X'0112' Initialize Access Control System

X'0113' Change User Profile Expiration Date

X'0114' Change User Profile Authentication Data

X'0115' Reset User Profile Logon-Attempt-Failure Count

X'0116' Read Public Access Control Information

X'0117' Delete User Profile

X'0118' Delete Role

X'0119' Load Function-Control Vector

X'011A' Clear Function-Control Vector
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Machine-readable log contents
The CLU utility creates two log files, one intended for reading and the other for possible input to a
program.

The machine-readable (MRL) log file, contains the binary outputs from the coprocessor in response to
various commands submitted to the coprocessor.

Detailed information about the contents of the MRL is available from IBM 4764 and IBM 4765
development. Contact IBM by using the Support and downloads tab in the IBM product website at http://
www.ibm.com/security/cryptocards.

Device driver error codes
The coprocessor device driver monitors the status of its communication with the coprocessor and the
coprocessor hardware-status registers.

Each time that the coprocessor is reset and the reset is not caused by a fault or tamper event, the
coprocessor runs through a miniboot, its power-on self-test (POST), code loading, and status routines.
During this process, the coprocessor attempts to coordinate with a host-system device driver.
Coprocessor reset operations can occur because of power-on, a reset command sent from the device
driver, or because of coprocessor internal activity such as completion of code updates.

The coprocessor fault or tamper-detection circuitry can also reset the coprocessor.

Programs such as the Coprocessor Load Utility (CLU) and the CCA Support Program can receive unusual
status in the form of a 4-byte return code from the device driver.

The possible 4-byte codes, are of the form X'8xxxxxxx'. The codes that are frequently obtained are
described in Table 7 on page 42. If you encounter codes of the form XX'8340xxxx' or X'8440xxxx', and
the code is not in the table,contact the IBM cryptographic team through email from the Support page on
the IBM product website at http://www.ibm.com/security/cryptocards.

Table 7. Device-class driver error codes in X'8xxxxxxx' class

4-byte 
return code
(hex)

Reason Descriptions

8040FFBF External intrusion The intrusion arises due to optional electrical connection to the
coprocessor. This condition can be reset.

8040FFDA Dead battery The batteries have been allowed to run out of sufficient power or
have been removed. The coprocessor is zeroized and is no
longer functional.

8040FFDB X-ray tamper or dead battery The coprocessor is zeroized and is no longer functional.

8040FFDF X-ray or dead battery The coprocessor is zeroized and is no longer functional.

8040FFEB Temperature tamper The high or low temperature limit has been exceeded. The
coprocessor is zeroized and is no longer functional.

8040FFF3 Voltage tamper The coprocessor is zeroized and is no longer functional.

V8040FFF9 Mesh tamper The coprocessor is zeroized and is no longer functional.

8040FFFB Reset bit is on Low voltage was detected, the internal operating temperature of
the coprocessor went out of limits, or the host driver sent a reset
command. Try removing and reinserting the coprocessor into the
PCI-X bus.
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Table 7. Device-class driver error codes in X'8xxxxxxx' class (continued)

4-byte 
return code
(hex)

Reason Descriptions

8040FFFE Battery warning The battery power is marginal. For the procedure to be followed
to replace the batteries, see the IBM 4764 PCI-X Cryptographic
Coprocessor Installation Manual.

804xxxxx
(for
example,
80400005)

General communication
problem

Except for the prior X'8040xxxx' codes, additional conditions
arose in host-coprocessor communication. Determine that the
host system in fact has a coprocessor. Try removing and
reinserting the coprocessor into the PCI-X bus. Run the CLU
status command (ST). If problem persists, contact contact the
IBM cryptographic team through email from the Support page on
the IBM product website at http://www.ibm.com/security/
cryptocards.

8340xxxx Miniboot-0 codes This class of return code arises from the lowest-level of reset
testing. If codes in this class occur, contact the IBM
cryptographic team through email from the Support page on the
IBM product website at http://www.ibm.com/security/
cryptocards.

8340038F Random-number generation
fault

Continuous monitoring of the random-number generator has
detected a possible problem. There is a small statistical
probability of this event occurring without indicating an actual
ongoing problem.

Run the CLU status (ST) command at least twice to determine
whether the condition can be cleared.

8440xxxx Miniboot-1 codes This class of return code arises from the replaceable POST and
code-loading code.

844006B2 Invalid signature The signature on the data sent from the CLU utility to miniboot
could not be validated by the miniboot. Be sure that you are
using an appropriate file (for example, CR1 xxxxx.clu versus CE1
xxxxx.clu). If the problem persists, obtain the output of a CLU
status report and forward the report with a description of the
task you want to achieve to the IBM cryptographic team through
email from the Support page on the IBM product website at
http://www.ibm.com/security/cryptocards.

Cloning a master key
This section provides instructions for cloning a master key and provides access control considerations
while cloning.

Overview of cloning a master key
The cloning procedure outlines how to clone a master key from one coprocessor to another coprocessor
by using the Cryptographic Node Management (CNM) utility.

Note: Ensure that the CNM utility is at the same level on all systems involved in the cloning procedure.

The master-key cloning procedure makes no assumption about which server contains the coprocessors
used for:

• Share administration (SA node)
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• Master-key source (CSS coprocessor share-signing node)
• Master-key target (CSR coprocessor share-receiving node)

Note: Cloning of AES master keys is not supported.

The SA key can reside in the same coprocessor as either the CSS or the CSR key, or it can reside in a
separate coprocessor node. Any of the coprocessors can reside together in the same sever if multiple
coprocessors with CCA are available.

The procedure ignores operator actions to log on and log off, because these steps depend on the specific
roles in use at your installation. You can switch between coprocessors when you are using more than one
coprocessor within a server.

The procedure is divided into several phases as outlined in Table 8 on page 44.

Table 8. Master-key cloning procedure phase overview

Phase Node Task

1 SA Establish the share administration node. Create the SA database, generate the SA
key, and store its public key and hash into the SA database.

2a Source Establish the source node. Generate the CSS key and add the public key to the SA
database. Install the SA public key.

2b SA Certify the CSS key and store the certificate into the SA database.

For each
target
node,
repeat
phase 3
procedure
s.

3a Target Establish the target node. Create a CSR database, generate a CSR key, and add the
public key to the CSR database for this node. Install the SA public key.

3b SA Certify the CSR key and store the certificate into the CSR database for the target
node.

3c Source Obtain shares and the current master-key verification information.

3d Target Install shares and confirm the new master-key. Set the master key.

Before starting the master-key cloning procedure, it is suggested that you complete the forms found in
table Table 9 on page 44 and Figure Figure 8 on page 46.

Table 9. Cloning responsibilities, profiles, and roles

Task Node Profile Role Responsible individual

Audit access controls SA

Generate SA key SA

Register SA-key hash SA

Register SA key SA

Audit access controls CSS

Generate CSS key CSS

Obtain CSS master key CSS

Register SA-key hash CSS
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Table 9. Cloning responsibilities, profiles, and roles (continued)

Task Node Profile Role Responsible individual

Register SA key CSS

Certify CSS key SA

Audit access controls CSR1

Generate CSR key CSR1

Register SA-key hash CSR1

Register SA key CSR1

Certify CSR1 key SA

Obtain shares CSS

Install shares CSR1

Verify CSR new CSR1

Set CSR master key CSR1

Audit access controls CSR2

Generate CSR key CSR2

Register SA-key hash CSR2

Register SA key CSR2

Certify CSR2 key SA

Obtain shares CSS

Install shares CSR2

Verify CSR new CSR2

Set CSR master key CSR2

4765 PCIe Cryptographic Coprocessor AIX CCA Support Program Installation 4.4  45



Figure 8. Cloning information worksheet

Phase 1 for cloning a master key: Establishing the share administration node
To use the coprocessor as the share administration (SA) node, follow the steps from cloning the master
key mentioned in Table 10 on page 46. This coprocessor can also serve as the master key source node
or a master key target node.

Prerequisites: Before running this procedure, familiarize yourself with the steps described in the section
“Scenario: Cloning a DES or PKA master key” on page 20 and the chapter about understanding and
managing master keys in the IBM CCA Basic Services Reference and Guide for the IBM 4765 PCIe and
4764 PCI-X Cryptographic Coprocessors manual.

To establish the SA node, complete the steps in the following table:

Table 10. Cloning the master key procedure: Establishing the SA node

Phase Task ✓

1.1 Audit the appropriateness of the access controls.

1.2 Perform time synchronization and ensure that the authorization
(fcv_td4kECC521.crt) is installed.

1.3 Confirm (or install) the master key.

1.4 Using the facilities of your operating system, erase any prior SA database from
the SA database media.
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Table 10. Cloning the master key procedure: Establishing the SA node (continued)

Phase Task ✓

1.5 If not already established, enter the environment ID (EID) by completing the
following steps:

• Click Crypto Node >Set environment ID.
• Enter the EID, click Load.

1.6 Generate the SA key:

• Click Crypto Node >Share Administration >Create Keys >Share
Administration Key.

• Accept the default SA public key and private key labels, and enter the location
and name of the SA database (sa.db).

• Click Create.
• Record the SA-key hash value for use later in the procedure.

1.7 Register the SA public key hash:

• Click Crypto Node >Share Administration >Create Keys >Share
Administration Key >Register Share Administration Key > SA-Key Hash.

• Enter the SA database file name and location, click Next.
• Enter the SA public key label (or accept the default).
• Enter the SA-key hash, click Register.

1.8 Register the SA public key:

• Click Crypto Node >Share Administration >Create Keys >Share
Administration Key >Register Share Administration Key > SA-Key Hash.

• Enter the SA database file name and location, click Next.
• Enter the SA public key label (or accept the default), click Register.

Phase 2 for cloning a master key: Establishing the source node
Using the coprocessor designated as the master key source node, follow the steps for cloning the master
key mentioned in the Table 11 on page 47. This coprocessor can also serve as the SA node.

Table 11. Cloning the master key: Establishing the source (CSS) node

Phase Task ✓

2a.1 Audit the appropriateness of the access controls.

2a.2 Perform time synchronization and ensure that the
fcv_td4kECC521.crtauthorization is installed.

2a.3 Confirm the coprocessor serial number:

• Click Crypto Node >Status.
• Click Adapter.
• Note the coprocessor serial number, click Cancel.

2a.4 Confirm (or install) the master key.

4765 PCIe Cryptographic Coprocessor AIX CCA Support Program Installation 4.4  47



Table 11. Cloning the master key: Establishing the source (CSS) node (continued)

Phase Task ✓

2a.5 Obtain the current master key verification information:

• Click Master Key > Verify > Current.
• Click Save to transport media, click Cancel.

2a.6 If not already established, enter the environment ID (EID):

• Click Crypto Node > Set environment ID.
• Enter the EID, click Load.

2a.7 If not already established, set the number m and n shared values:

• Click Crypto Node > Share Administration > Set Number of Shares.
• Set the maximum and minimum number of required shares, click Load.

2a.8 Generate the CSS key:

• Click Crypto Node > Share Administration > Create Keys > CSS Key.
• Enter the CSS key label (for example, CSS.KEY).
• Confirm the coprocessor serial number.
• Confirm or enter the SA database name and location.
• Click Create.

2a.9 Register the SA public-key hash:

• Click Crypto Node > Share Administration > Register Share Administration
Key > SA-Key Hash.

• Enter the SA database file name and location, click Next.
• Enter the SA public key label (or accept the default).
• Enter the SA key hash, click Register.

2a.10 Register the SA public-key:

• Click Crypto Node > Share Administration > Register Share Administration
Key > SA Key.

• Enter the SA database file name and location, click Next.
• Enter the SA public key label (or accept the default), click Register.

Phase 3 for cloning a master key: Establishing the target node and cloning a
master key
Using the designated nodes, establish the target node and clone the master key following the steps for
cloning the master key mentioned in Table 12 on page 49. This coprocessor can also serve as the SA
node.
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Table 12. Cloning a master key: Establishing the CSR node, and cloning a master key

Phas
e

Node Task ✓

At
the
targe
t
node

3a.1 Target Audit the appropriateness of the access controls.

3a.2 Target Perform time synchronization and ensure that the fcv_td2k.crt
authorization is installed.

3a.3 Target Confirm the coprocessor serial number:

• Click Crypto Node > Status.
• Click Adapter.
• Note the coprocessor serial number, click Cancel.

3a.4 Target Ensure the existence of a (temporary) master key.

3a.5 Target If not already established, enter the environment ID (EID):

• Click Crypto Node > Set environment ID > Crypto Node.
• Enter the EID (for example, CSR1 NODE and extend with spaces to 16

entered characters).
• Click Load.

3a.6 Target If not already established, set the number m and n shares values:

• Click Crypto Node > Share Administration > Set Number of Shares.
• Set the maximum and minimum number of required shares.
• Click Load.

3a.7 Target Using the facilities of your operating system, erase the csr.db data file.

3a.8 Target Generate the CSR key:

• Click Crypto Node > Share Administration > Create Keys > CSR Key.
• Enter the CSR key label (for example, CSR1.KEY).
• Confirm the coprocessor serial number.
• Select the key size.
• Provide the CSR database name and location (for example, CSR1.DB).
• Click Create.

3a.9 Target Register the SA public-key hash:

• Click Crypto Node > Share Administration > Register Share
Administration > SA-Key Hash.

• Enter the SA database file name and location, click Next.
• Enter the SA public key label (or accept the default).
• Enter the SA key hash, click Register.
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Table 12. Cloning a master key: Establishing the CSR node, and cloning a master key (continued)

Phas
e

Node Task ✓

3a.1
0

Target Register the SA public-key:

• Click Crypto Node > Share Administration > Register Share
Administration > SA Key.

• Enter the SA database file name and location, click Next.
• Enter the SA public key label (or accept the default), click Register.

At
the
SA
node

3b.1 SA Certify the CSS key (as required):

• Click Crypto Node > Share Administration > Certify Keys > CSS Key.
• Enter the name and path for the SA database, click Next.
• Confirm the CSS key label, the coprocessor serial number, and the SA

environment ID.
• Click Certify.

3b.2 SA Certify the CSR key:

• Click Crypto Node > Share Administration > Certify Keys > CSS Key.
• Enter the name and path for the SA and CSR databases, click Next.
• Confirm the SA key label, CSR key label, and the SA environment ID.
• Enter the CSR serial number.
• Click Certify.

At
the
sourc
e
node

3c.1 Source Obtain at least the number of m and n shares. Perform the following substep
for each share. Note that logon and logoff might be required to obtain each
share.

• Click Crypto Node > Share Administration > Get Share.
• Select the share. Note that if you are obtaining an additional set(s) of

shares, the Distributed messages might not be meaningful.
• Enter the name and path for the SA and CSR databases, click Next.
• Confirm the CSS key label, CSS coprocessor serial number, and the CSR

coprocessor serial number.
• Click Get Share.

Repeat as required.
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Table 12. Cloning a master key: Establishing the CSR node, and cloning a master key (continued)

Phas
e

Node Task ✓

At
the
targe
t
node

3d.1 Target Install the number of m and n shares. Perform the following for each share
and observe the response. The response indicates when enough shares have
been installed to form the new master key. Note that logon and logoff might
be required to install each share.

• Click Crypto Node > Share Administration > Load Share.
• Select the share.
• Enter the name and path for the CSR and SA databases, click Next.
• Confirm the CSS key label, the CSS coprocessor serial number, and the CSR

coprocessor serial number.
• Click Load Share.

Observe the response. Loading sufficient shares completes the new master-
key.

Repeat as required.

3d.2 Target Confirm the new master key:

• Click Master Key > Verify > New.
• Click Compare or select the file or click OK or click Cancel

3d.3 Target Erase the csr.db data file. This is not a security problem but rather to avoid
complications while doing master key cloning operation.

3d.4 Target As appropriate, set the master key:

• Click Master Key > Set.
• Click OK.

Access control considerations when cloning
There are three classes of roles to consider for cloning operations.

• Roles at the share administration (SA) node.
• Roles at the source node: coprocessor share signing (CSS) node
• Roles at the target node: coprocessor share signing (CSS) node

Your security policy must define who will have the authority to:

• Generate a random master key at the source node.
• Set the master key, the action which brings a new master key into operation. When the master key

changes, the keys enciphered by the master key must be updated.
• Generate the retained Rivest-Shamir-Adleman (RSA) keys to certify the public keys of the source and

target nodes (the SA key), and to generate the retained keys at the source (CSS) and target (CSR) nodes.
• Register the SA key and its hash and determine whether it will be a split responsibility.

In addition, you must decide how many nodes must cooperate to clone a master key. Of course, this must
be selected to avoid collusion.
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In deciding the m and n values, consider when the cloning will take place and whether you need to
reconstitute the master key from a fewer number of shares than the total number obtained from the
source node (perhaps because of share corruption or the unavailability of one or more individuals who can
obtain or install a share).

Note: The cryptographic node management (CNM) utility places all of the shares from a node in the
csr.db file. Each share is encrypted under a unique, triple-length data encryption standard (DES) key
which itself is encrypted by the CSR public key of the target node.

Table 13 on page 52 provides guidance for selecting the permissions applicable to the roles that are
related to cloning.

Table 13. CCA commands related to master key cloning

Code Command name Verb name Consideration

X'001A' Set Master Key Master_Key_Process Critical. This role must have
knowledge of the contents of the
new master key register and the
implications of a master key
change.

X'001D' Compute Verification
Pattern

Many All

X'0020' Generate Random
Master Key

Master_Key_Process Not critical except that it fills the
new master key register.

X'0032' Clear New Master Key
Register

Master_Key_Process This role is assigned to the role
that can set the master key. The
role can override the collected
shares. It must be mutually
exclusive with the Generate
Random Master Key command.

X'0033' Clear Old Master Key
Register

Master_Key_Process Generally not used.

X'008E' Generate Key Key_Generate
Random_Number_Generate

All

X'0090' Reencipher to Current
Master Key

Key_Token_Change This role depends on who will
update the working keys
encrypted by the master key.

X'0100' PKA96 Digital
Signature Generate

Digital_Signature_Generate This role certifies the SA, CSS, and
CSR keys.

X'0101' PKA96 Digital
Signature Verify

Digital_Signature_Verify All

X'0102' PKA96 Key Token
Change

PKA_Key_Token_Change This role depends on who will
update the working keys
encrypted by the master key.

X'0103' PKA96 PKA Key
Generate

PKA_Key_Generate This role is required to generate
the SA, CSS, and CSR keys.

X'0107' One-Way Hash, SHA-1 One_Way_Hash All

X'0114' Change User Profile
Authentication Data

Access_Control_Initialization This role allows to change the
passphrase in any profile. Use with
discretion.
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Table 13. CCA commands related to master key cloning (continued)

Code Command name Verb name Consideration

X'0116' Read Public access
control Information

Access_Control_Maintenance All

X'011C' Set EID Cryptographic_Facility_Control This role is required to set up the
CSS and CSR nodes.

X'011D' Initialize Master Key
Cloning

Cryptographic_Facility_Control This role is required to set up the
m of n values at the CSS and CSR
nodes.

X'0200' PKA Register Public
Key Hash

PKA_Public_Key_Hash_Register This role must be used at the CSS
and CSR nodes to ensure the SA
key can be recognized. Split
responsibility with X'0201'.

X'0201' PKA Public Key
Register

PKA_Public_Key_Register This role must be used at the CSS
and CSR nodes to ensure the SA
key can be recognized. Split
responsibility with X'0200'.

X'0203' Delete Retained Key Retained_Key_Delete This role is used to remove
obsolete SA, CSS, and CSR keys.
Be careful about denial of service.

X'0204' PKA Clone Key
Generate

PKA_Key_Generate This role is required to generate
the CSS and CSR keys.

X'0211' -
X'021F'

Clone-info (Share)
Obtain

Master_Key_Distribution This role is assigns a profile and
role for each share to enforce split
responsibility.

X'0221' -
X'022F'

Clone-info (Share)
Install

Master_Key_Distribution This role is assigns a profile and
role for each share to enforce split
responsibility.

X'0230' List Retained Key Retained_Key_List All

Threat considerations for a digital-signing server
Consider various threats when you deploy the IBM 4765 with the IBM Common Cryptographic
Architecture (CCA) Support Program in a digital-signing application. Much of the discussion is applicable
to other environments in which you might apply the coprocessor.

An organization placing a certification authority (CA), registration authority (RA), Online Certificate Status
Protocol (OCSP) responder, or time-stamping service into operation needs to consider how its installation
will address various threats. Table 14 on page 54 lists potential threats and presents product design and
implementation solutions to many of these threats. Notes describe steps that you need to consider to
further mitigate your exposure to problems.

See IBM CCA Basic Services Reference and Guide for the IBM 4765 PCIe and 4764 PCI-X Cryptographic
Coprocessors manual describes actions you can use in deploying the coprocessor, policies to consider,
application functions to be included.

Read the contents of Table 14 on page 54 after you have made initial decisions about your installation.
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Table 14. Threat considerations for a digital-signing server

Threat discussion Threat mitigation

Threats associated with physical attack on the
coprocessor

Physical probing of the coprocessor

An adversary might perform physical probing of the
coprocessor to reveal design information and
operational contents. Such probing might include
electrical functions but is referred to here as physical
because it requires direct contact with the
coprocessor internal functions. Physical probing might
entail reading data from the coprocessor through
techniques commonly employed in IC failure analysis
and IC reverse-engineering efforts. The goal of the
adversary is to identify such design details as
hardware security mechanisms, access control
mechanisms, authentication systems, data-protection
systems, memory partitioning, or cryptographic
programs. Determination of software design, including
initialization data, passwords, PINs, or cryptographic
keys might also be a goal.

The coprocessor electronics incorporate a
sophisticated set of active tamper-detection sensors
and response mechanisms. High and low temperature,
voltage levels and sequencing, radiation, and physical
penetration sensors are designed to detect unusual
environmental situations.

All of the sensitive electronics are enclosed in a
physically shielded package. Upon detecting a
potential tamper event, the coprocessor immediately
clears all internal RAM memory, which also zeroizes
keys used to recover sensitive, persistent data from
flash memory. An independent state controller is also
reset, which indicates that the coprocessor is no
longer in a factory-certified condition.

The various tamper sensors are powered from the
time of coprocessor manufacture through the end of
life of the coprocessor. The coprocessor digitally signs
a query response that you can verify to confirm that
the coprocessor is genuine and is not tampered with.

Almost all of the software that runs on the main
processor within the coprocessor is available on the
web and is therefore subject to reverse engineering.
However, the coprocessor validates the digital
signatures on code it is requested to accept so that the
code modified by an adversary cannot be loaded into
the coprocessor. The public keys used to validate
offered code is destroyed when a tamper event is
recognized.

The design and implementation is being
independently evaluated and certified by the USA
NIST under the FIPS PUB 140-2 Level 4 standard.

Note: You must validate the condition of the
coprocessor and the code content.

Physical modification of the coprocessor

An adversary might physically modify the coprocessor
to reveal design or security-related information. This
modification might be achieved through techniques
commonly employed in hardware failure analysis and
reverse engineering efforts. The goal is to identify such
design details as hardware-security mechanisms,
access control mechanisms, authentication systems,
data protection systems, memory partitioning, or
cryptographic programs. Determination of software
design, including initialization data, passwords, or
cryptographic keys, might also be a goal.

The sensitive electronics are all packaged within the
tamper responding package mounted on the
coprocessor. In the process of altering the sensitive
electronics, the coprocessor factory certification
would be destroyed, rendering the device useless.

Note: Confirm that a specific, serial numbered
coprocessor is in use and audit its status-query
response to confirm that it remains an unaltered IBM
coprocessor loaded with appropriate software.
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Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion Threat mitigation

Environmental manipulation of the coprocessor

An adversary might use environmental conditions
beyond those of the coprocessor specification to
obtain or modify data or program flow for fraudulent
coprocessor use. This modification might include
manipulation of power lines, clock rates, or exposure
to high and low temperatures and radiation. As a
result, the coprocessor might get into a situation
where instructions are not correctly executed. As a
result, security-critical data might get modified or
disclosed in contradiction to the security requirements
for the coprocessor.

The coprocessor has sensors to detect environmental
stresses that might induce erroneous operation.
Abnormal conditions can cause the unit to zeroize.

Substituted process

Requests to, and responses from, the coprocessor
might be directed to an alternative implementation
enabling an adversary to influence results. An
alternative implementation might be substituted with
differing security features. For example, private key
generation and the production of digital signatures
might be performed in an alternative implementation
that would enable exposure of the private key.

Notes:

1. Auditors need to complete the processes described
for them to ensure that the signing key is indeed
retained within the appropriate coprocessor.

2. Access to the host system should be supervised so
that host system security measures and correct
operation can be relied on.

Threats associated with logical attack on the
coprocessor

Insertion of faults

An adversary might determine security critical
information through observation of the results of
repetitive insertion of selected data. Insertion of
selected input followed by monitoring the output for
changes is a relatively well-known attack method for
cryptographic devices. The intent is to determine
information based on how the coprocessor responds
to the selected input. This threat is distinguished by
the deliberate and repetitive choice and manipulation
of input data as opposed to random selection or
manipulation of the physical characteristics involved in
input or output operations.

The electronic design of the coprocessor renders
classical approaches to smart card attacks infeasible.

Note: Supervision of the host system and controlling
access to the system, both logically and physically, are
important security steps to be taken by an
organization.

Forced reset

An adversary might force the coprocessor into a
nonsecure state through inappropriate ending of
selected operations. Attempts to generate a
nonsecure state in the coprocessor might be made
through premature ending of transactions or
communications between the coprocessor and the
host, by insertion of interrupt function, or by
inappropriate use of interface functions.

The coprocessor is designed to always run through its
initial power on sequence in the event of trap and
reset conditions. Each application level request is
treated as a separate unit of work and processed from
a single defined set of initial conditions.
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Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion Threat mitigation

Invalid input

An adversary or authorized user of the coprocessor
might compromise the security features of the
coprocessor through the introduction of invalid input.
Invalid input might take the form of operations that
are not formatted correctly, requests for information
beyond register limits, or attempts to find and execute
undocumented commands. The result of such an
attack might be a compromise in the security
functions, a generation of exploitable errors in
operation, or the release of protected data.

Transaction requests carry authentication information
applied in the caller's domain and validated by the
coprocessor. Each request is processed from a single,
known state with predefined conditions. The
coprocessor software validates the characteristics of
each request to address misuse scenarios.

Data loading malfunction

An adversary might maliciously generate errors in
setup data to compromise the security functions of the
coprocessor. During the stages of coprocessor
preparation, which involve loading the coprocessor
with special keys, identification of roles, and so forth,
the data itself might be changed from the intended
information or might be corrupted. Either event could
be an attempt to penetrate the coprocessor security
functions or to expose the security in an unauthorized
manner.

Note: As outlined in auditor procedures, the access
control setup should be verified along with confirming
the installed coprocessor software.

Unauthorized program loading

An adversary might use unauthorized programs to
penetrate or modify the security functions of the
coprocessor. Unauthorized programs might include
the execution of legitimate programs not intended for
use during normal operation or the unauthorized
loading of programs specifically targeted at
penetration or modification of the security functions.

The coprocessor only accepts digitally signed software
after the signature has been validated. An
independent evaluation of IBM's software build and
signing procedures and the coprocessor design affirms
the trust that can be placed in the identity of loaded
software.

Note: An auditor should follow procedures to affirm
that specified software is in use.

Threats associated with control of access

Invalid access

A user or an adversary of the coprocessor might
access information or services without having
permission as defined in the role profile. Each role has
defined privileges that allow access only to selected
services of the coprocessor. Access beyond those
specified services could result in exposure of secure
information.

An auditor can confirm the permissions granted in
each established role and the set of user profiles
associated with each role. An independent evaluation
of the coprocessor software implementation and
testing has reviewed the integrity of the access control
implementation.
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Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion Threat mitigation

Fraud on first use

An adversary might gain access to coprocessor
information by unauthorized use of a new, not yet
installed, coprocessor. An adversary might try to get
access to a coprocessor during or directly after the
manufacturing process and load fraudulent software
into the coprocessor or modify critical data stored
within the coprocessor during the manufacturing and
factory initialization process before it is shipped to the
customer.

IBM's manufacturing and distribution practice ensures
that prior to factory certification the end user of a
coprocessor is unknown and unassigned.

Factory installed software is validated through
checking of digital signatures.

Notes:

1. The standard installation bring up process replaces
all of the runtime coprocessor software.

2. You should ensure that Segments 2 and 3 are
unowned prior to loading coprocessor software for
production. This action ensures that no residual
data remains to influence subsequent operations.

Impersonation

An adversary might gain access to coprocessor
information or services by impersonating an
authorized user of the coprocessor. The coprocessor is
required to define certain roles including the required
authentication mechanism and the services the role is
allowed to use. An adversary might try to impersonate
an authorized user, operating within a defined, to get
access to information or perform services allowed for
the authorized user.

The two user classes follow:

1. (IBM) Coprocessor code signer: An independent
evaluation of IBM's procedure for building and
signing code assures that legitimate code can be
identified by a user's auditor.

2. The CCA access control design protects the
integrity and confidentiality of a user access control
passphrase from the domain of the user process
into the coprocessor. The correct passphrase and
profile identification grant use of a role.

Note: Host system security, host system
application design, and administrative policies are
required to assure that a designated user's
passphrase is secure.

Threats associated with unanticipated interactions
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Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion Threat mitigation

Use of disallowed application functions

An adversary might exploit interactions between
applications to expose sensitive coprocessor or user
data. Interactions might include the execution of
commands that are not required or allowed in the
specific application being performed. Examples
include the use of functions related to master key
management or functions related to symmetric
encryption or financial services. Those functions
should not have any negative impact on the
coprocessor functions required for the digital signing
application.

The coprocessor design requires you to configure the
access control setup. The CCA software has been
examined to ensure that functions are disallowed
when required commands are not enabled.

Notes:

1. Your access control configuration should follow the
principles discussed in Appendix H of the IBM CCA
Basic Services Reference and Guide for the IBM
4765 PCIe and 4764 PCI-X Cryptographic
Coprocessors Redbooks publication such that only
the functions needed for the operational phase can
be invoked in this phase.

2. For the digital signing application, establish
guidelines for a set of roles with very limited
capabilities and a setup sequence that restricts the
coprocessor functionality to that essential for
digital signing.

In some installations, it might be desirable to
accommodate a different approach to roles or to
consider the functions of additional applications, or
both. In these cases, ensure that you review the
guidelines and observations in Appendix H of the
IBM CCA Basic Services Reference and Guide for the
IBM 4765 PCIe and 4764 PCI-X Cryptographic
Coprocessors Redbooks publication for applicability
to your circumstances.

Threats regarding cryptographic functions

Cryptographic attack

An adversary might defeat security functions through
a cryptographic attack against the algorithm or
through a brute force attack. This attack might include
either signature generation and verification functions
or random number generators.

The coprocessor implements well established and
standardized cryptographic functions.

The random-number generation implementation has
been subjected to extensive evaluation under criteria
published by the USA NIST and the German
Information Security Agency (German Bundesamt fur
f³r Sicherhert in der Informations Technik or German
BSI).

The secrecy afforded retained private keys is the
subject of an independent evaluation. These design
and implementation steps provide assurance against
cryptographic attack.

Note: For a digital signing server, see the guidelines in
Appendix H of the IBM CCA Basic Services Reference
and Guide for the IBM 4765 PCIe and 4764 PCI-X
Cryptographic Coprocessors Redbooks publication.

Threats regarding digital signatures

58  AIX Version 7.2: 4765 PCIe Cryptographic Coprocessor AIX CCA Support Program Installation 4.4



Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion Threat mitigation

Forging signed data

An adversary might modify data digitally signed by the
coprocessor such that this modification is not
detectable by the signatory nor a third party. This
attack might use weaknesses in the secure hash
function, weaknesses in the signature encoding, or
weaknesses in the cryptographic algorithm used to
generate a forged signature.

The coprocessor implements well established and
standardized cryptographic functions.

Notes:

1. Precautions in the use of CCA should be observed
as documented in Appendix H of the IBM CCA Basic
Services Reference and Guide for the IBM 4765
PCIe and 4764 PCI-X Cryptographic Coprocessors
Redbooks publication.

2. Users should maintain an awareness of
vulnerabilities discussed in (open) forums
regarding the strength of cryptographic algorithms
and processes they employ.

Forging data before it is signed

An adversary might modify data to be digitally signed
by the coprocessor before the signature is generated
within the coprocessor. This attack might use
weaknesses in the implementation that allow an
adversary to modify data transmitted for signature to
the coprocessor before the coprocessor actually
calculates the signature.

Requests from user host-application process memory
carry an integrity check value that the coprocessor
confirms prior to incorporating the hash in a digital
signature.

Note: Users must review host-system and host-
application program security to ensure that
authenticated hash values received into the
coprocessor have not been compromised and are
representative of the data to be protected.

Misuse of signature function

An adversary might misuse the coprocessor signature
creation function to sign data that the coprocessor is
not supposed to sign.

The adversary might try to submit data to the
coprocessor and get it signed without passing the
authorization checks of the coprocessor that perform
before generating a digital signature.

As an alternative, an adversary might try to modify
data within the coprocessor through the use of
coprocessor functions or by trying to influence the
coprocessor such that the data in the coprocessor gets
modified.

An independent review of the coprocessor software is
expected to affirm that:

• The digital signature generation service requires an
appropriate permission in a role.

• The processing of requests and the integrity of the
design prevent data alteration.

Notes:

1. The integrity of the coprocessor and its code must
be affirmed by an auditor who reviews a
coprocessor status query.

2. An auditor must confirm that appropriate access
control roles and profiles have been established
that exclude unauthorized users from use of the
digital signing function.
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Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion Threat mitigation

Forging signature-verification function

An adversary might modify the function for signature
verification such that a false signature is accepted as
valid. This attack might try to modify the signature
verification function or signed data to be verified such
that the coprocessor returns a success message when
this false signature is presented for verification.

The signature-verification function of primary interest
here occurs in the coprocessor's code loading process
(in Miniboot). With this product:

• Miniboot code, like the control program and (CCA)
application program code, is only accepted into the
coprocessor when the coprocessor validates the
signature on the signed code.

• The initial Miniboot code loaded in the factory is also
subject to digital signature verification.

• Standardized cryptographic processes are used
(SHA-1, RSA, ISO 9796) for the signature.

• The code building and signing process are the
subject of an independent review.

Disclosure of a private RSA signature key

An adversary might use functions that disclose a
private RSA signature key.

An independent evaluation is expected to affirm that
the CCA Support Program does not contain any
function to output or reveal the value of a retained
private key. Certified evaluations are expected to
demonstrate that the control program does not output
data retained in coprocessor persistent storage nor is
there any lower-level function to read such storage.

Deleting a private RSA signature key

An adversary might use a function that deletes a
private RSA signature key without being authorized to
do so and without physically tampering with the
coprocessor.

Independent evaluations are expected to affirm that a
retained private key is only deleted in the following
circumstances:

1. Under CCA control with the Retained_Key_Delete
verb

2. By loading the coprocessor CCA software*
3. By removing the coprocessor CCA software
4. By causing a tamper event

Notes: To address these exposures takes these
actions:

1. Selectively enable the Delete Retained Key
command, X'0203'.

2. Use host system access controls to manage use of
the CLU.

3. Manage physical access to the coprocessor.

* Reloading the coprocessor software with a file such
as CEXxxxxx.clu does not zeroize the contents of
persistent storage. The file CNWxxxxx.clu will zeroize
persistent storage. See “Loading and Unloading
software into the coprocessor” on page 6.

Threats that monitor information
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Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion Threat mitigation

Information leakage

An adversary might make use of information that is
leaked from the coprocessor during normal use.
Information leakage might occur through emanations,
variations in power consumption, I/O characteristics,
clock frequency, or by changes in processing time
requirements. This leakage might be interpreted as a
covert channel transmission but is more closely
related to measurement of operating parameters,
which might be derived either from direct (contact)
measurements or measurement of emanations and
can then be related to the specific operation being
performed.

Practical means to interpret information leakage are
the subject of ongoing research in commercial and
governmental laboratories. An in-depth defense
should include limiting access to the cryptographic
environment and restrictions on the use of specialized
equipment in and near the cryptographic environment.

Linkage of multiple observations

An adversary might observe multiple uses of
resources or services and, by linking these
observations, deduce information that would reveal
critical security information. The combination of
observations over a period of many uses of the
coprocessor, or the integration of knowledge gained
from observing different operations, might reveal
information that allows an adversary to either learn
information directly or to formulate an attack that
could further reveal information that the coprocessor
is required to keep secret.

Notes:

1. Use of the cryptographic equipment should be
controlled, including following the guidelines in
Appendix H of the IBM CCA Basic Services
Reference and Guide for the IBM 4765 PCIe and
4764 PCI-X Cryptographic Coprocessors Redbooks
publication.

2. An adversary might well have access to the signed
data and signatures, so controls should be put in
place to limit a user's ability to submit arbitrary
signing requests.

3. The use of standardized cryptographic procedures
and monitoring of the cryptographic community's
understanding of the vulnerabilities of these
processes (SHA-1, RSA, ISO 9796, X9.31, HMAC,
and triple-DES) can provide assurance of secure
operation.

Miscellaneous threats

Linked attacks

An adversary might perform successive attacks with
the result that the coprocessor becomes unstable or
some aspect of the security functions is degraded. A
following attack might then be successfully executed.
Monitoring outputs while manipulating inputs in the
presence of environmental stress is an example of a
linked attack.

Notes:

1. Use of the cryptographic system should be limited
to authorized situations enforced through the
coprocessor access controls and through use of
host system controls.

2. Host-system controls and organizational policies
should restrict the access to the system for
monitoring and the submission of arbitrary
requests.
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Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion Threat mitigation

Repetitive attack

An adversary might utilize repetitive undetected
attempts at penetration to expose memory contents
or to change security critical elements in the
coprocessor. Repetitive attempts related to some or
all of the other threats discussed herein might be used
to iteratively develop an effective penetration of the
coprocessor security. If these attacks can, in all cases,
remain undetected, there will be no warning of
increased vulnerability.

Note: Use of the cryptographic system should be
limited to authorized situations enforced through the
coprocessor access controls and through use of host
system controls. Host system controls and
organizational policies should restrict the access to
the system for monitoring and the submission of
arbitrary requests.

Cloning

An adversary might clone part or all of a functional
coprocessor to develop further attacks. The
information necessary to successfully clone part or all
of a coprocessor might derive from a detailed
inspection of the coprocessor itself or from illicit
appropriation of design information.

Note: Auditors must confirm that the digital signing
key, appropriate code, and access control regime is
resident in the authorized coprocessor.

Threats addressed by the operating environment

Coprocessor modification and reuse

An adversary might use a modified coprocessor to
masquerade as an original coprocessor so that
information assets can be fraudulently accessed.
Removal, modification, and re-insertion of that
coprocessor into a host system could be used to pass
such a combination as an original. This might then be
used to access or change the private signature keys or
other security critical information to be protected.

Notes:

1. An auditor must confirm through examination of a
coprocessor signed query response that the device
is genuine and that the appropriate code is loaded.

2. The auditor must also confirm that the digital
signing key is a retained key in the coprocessor.

Abuse by privileged users

A careless, willfully negligent, or hostile administrator
or other privileged user might create a compromise of
the coprocessor assets through execution of actions
that expose the security functions or the protected
data. A privileged user or administrator could directly
implement or facilitate attacks based on any of the
threats described here.

Note: An organization must establish, enforce, and
audit policies that limit the access that a single
individual has to the cryptographic system. The setup
procedure must ensure that a single user does not
have the opportunity to bring an inappropriate system
into production.

Data modification

Data to be signed by the coprocessor might be
modified by an adversary or by faults in the
operational environment after it has been approved by
the legitimate user, but before the data is submitted to
the coprocessor to be signed. Data that has been
approved by the legitimate user to be signed might be
modified by an adversary, by false or malicious
programs, or by environmental errors (for example,
transmission errors) after the data has been approved
by the legitimate user and before the data is
transferred to the coprocessor to be signed.

Note: Host system security precautions and
organization policies must be defined, enforced, and
audited to thwart such attacks.
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Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion Threat mitigation

Data verification

Signed data to be verified by the coprocessor might be
modified by an adversary or by faults in the
operational environment before it is submitted to the
coprocessor for signature verification such that the
response of the coprocessor does not reflect the
validity of the signature. Signed data submitted by a
user might be modified within the coprocessor
environment before it is passed to the coprocessor for
verification. This might result in a response from the
coprocessor that does not reflect the actual validity of
the digital signature that should be verified.

There is also the possibility that the response of the
coprocessor is modified in the coprocessor
environment before it is passed to the user that
requested the signature verification.

The coprocessor verifies the signature on code and
certain code loading commands. An independent
evaluation is expected to confirm that this cannot be
bypassed.

The CCA design supports validation of the integrity of
requests and responses between the coprocessor and
the top layer of CCA code in the host system.

Note: Host-system security measures must address
blocking the modification of request inputs and
outputs.

IBM Cryptographic Coprocessor notices
IBM Cryptographic Coprocessor notices includes 3 notices that provide guidelines for safe disposal of
electronic components.

Product recycling and disposal
This unit contains materials such as circuit boards, cables, electromagnetic compatibility gaskets and
connectors that might contain lead and copper/beryllium alloys that require special handling and disposal
at end of life. Before this unit is disposed of, these materials must be removed and recycled or discarded
according to applicable regulations. IBM offers product-return programs in several countries. Information
on product recycling offerings can be found on IBM Internet site at http://www.ibm.com/ibm/
environment/products/prp.shtml IBM encourages owners of information technology (IT) equipment to
responsibly recycle their equipment when it is no longer needed. IBM offers a variety of programs and
services to assist equipment owners in recycling their IT products. Information on product recycling
offerings can be found on IBM's Internet site at:

http://www.ibm.com/ibm/environment/products/prp.shtml

Notice: This mark applies only to countries within the European Union (EU) and Norway. Appliances are
labeled in accordance with European Directive 2002/96/EC concerning waste electrical and electronic
equipment (WEEE). The Directive determines the framework for the return and recycling of used
appliances as applicable throughout the European Union. This label is applied to various products to
indicate that the product is not to be thrown away, but rather reclaimed upon end of life per this Directive.

Battery return program
This product may contain sealed lead acid, nickel cadmium, nickel metal hydride, lithium, or lithium ion
battery. Consult your user manual or service manual for specific battery information. The battery must be
recycled or disposed of properly. Recycling facilities may not be available in your area. For information on
disposal of batteries outside the United States, go to http://www.ibm.com/ibm/environment/products/
batteryrecycle.shtml or contact your local waste disposal facility. In the United States, IBM has
established a return process for reuse, recycling, or proper disposal of used IBM sealed lead acid, nickel
cadmium, nickel metal hydride, and other battery packs from IBM Equipment. For information on proper
disposal of these batteries, contact IBM at 1-800-426-4333. Please have the IBM part number listed on
the battery available prior to your call.
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For Taiwan: Please recycle batteries.

IBM Cryptographic Coprocessor card return program
This machine may contain an optional feature, the cryptographic coprocessor card which includes a
polyurethane material that contains mercury. Please follow Local Ordinances or regulations for disposal of
this card. IBM has established a return program for certain IBM Cryptographic Coprocessor cards. More
information can be found at:

http:/www.ibm.com/ibm/environment/products/prp.shtml
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Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2015, 2016 65



The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows:
© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.
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For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Windows is a trademark of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.
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