
AIX Version 7.2

Coherent Accelerator Processor Interface
(CAPI) programming

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
29.

This edition applies to AIX Version 7.2 and to all subsequent releases and modifications until otherwise indicated in new
editions.
© Copyright International Business Machines Corporation 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..v
Highlighting...v
Case sensitivity in AIX.. v
ISO 9000...v

CAPI programming.. 1
CAPI Flash adapter.. 1

CAPI Flash block library... 1
CAPI Flash key-value library.. 16

Notices..29
Privacy policy considerations.. 30
Trademarks.. 31

Index.. 33

 iii

iv

About this document

You can use the Coherent Accelerator Processor Interface (CAPI) to allow Field Programmable Gate Array
(FPGA) based accelerators to access applications (user space) memory directly.

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Bold highlighting also identifies
graphical objects, such as buttons, labels, and icons that the you select.

Italics Identifies parameters for actual names or values that you supply.

Monospace
Identifies examples of specific data values, examples of text similar to what you
might see displayed, examples of portions of program code similar to what you might
write as a programmer, messages from the system, or text that you must type.

Case sensitivity in AIX
Everything in the AIX® operating system is case sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS,
the system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three
distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be
performed, always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2015 v

vi AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

CAPI programming
You can use the Coherent Accelerator Processor Interface (CAPI) to allow Field Programmable Gate Array
(FPGA) based accelerators to access applications (user space) memory directly.

Traditional FPGA-based accelerators perform direct memory access (DMA) transfers in a Peripheral
Component Interconnect (PCI) stack to move data between the accelerators and the applications. CAPI
provides a general-purpose framework that has a CAPI-based accelerator that can transfer data back and
forth from the application memory without the requirement of DMA.

CAPI Flash adapter
Coherent Accelerator Processor Interface (CAPI) provides a high bandwidth, low latency path between
external devices, the POWER8® core, and the system’s open memory architecture. CAPI adapters are
placed in the PCI Express (PCIe) x16 slots, and use the PCIe Gen3 adapter as an underlying transport
mechanism.

The CAPI-capable devices can replace either application programs that can run programs running on
a POWER8 core or provide custom acceleration implementations. CAPI Flash adapters remove the
complexity of the I/O subsystem, so that an accelerator can operate as part of an application. It results in
a code path reduction, because applications can interact with the Flash accelerator directly without using
the operating system kernel.

CAPI Flash block library
The block library for the Coherent Accelerator Processor Interface (CAPI) Flash adapter provides user
space interfaces to CAPI Flash disk at the block or sector level, bypassing the kernel for read and write
I/O requests. The block library for the CAPI Flash adapter creates an interface for applications so that the
applications need not access the low-level CAPI Flash adapter details.

In AIX operating system, the block library for the CAPI Flash adapter is libcflsh_block.a. On Linux®

platform, this library is libcflsh_block.so.

cblk_init API

Purpose
Initializes the block library for the Coherent Accelerator Processor Interface (CAPI) Flash adapter.

Syntax

#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX

int rc = cblk_int(void *arg, int flags)

Description
The cblk_init API initializes the block library for the CAPI Flash adapter. You must call the cblk_init
API before you use any other API in the block library for the CAPI Flash adapter.

Parameters
arg

This parameter is not used currently. It is set to NULL.
flags

Specifies flags for initialization. The default value is 0.

© Copyright IBM Corp. 2015 1

Return values
0

The API completed successfully.
Nonzero value

An error occurred.

cblk_term API

Purpose
Cleans up the resources for the Coherent Accelerator Processor Interface (CAPI) Flash block library when
the library is no longer used.

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX
int rc = cblk_term(void *arg, int flags)

Description
The cblk_term API removes the block library for the CAPI Flash adapter when it is not used.

Parameters
arg

This parameter is not used currently (set to NULL).
flags

Specifies flags for initialization. The default value is 0.

Return values
0

The API completed successfully.
Nonzero value

An error occurred.

cblk_open API

Purpose
Opens a collection of contiguous blocks that are called a chunk on a Coherent Accelerator Processor
Interface (CAPI) Flash device that can complete I/O (read and write) operations. A chunk can be
considered as a logical unit number (LUN) that provides access to sectors 0 - n-1, where n is the size
of the chunk in sectors. If virtual LUNs are specified, the chunk is a subset of sectors on a physical LUN.

Syntax

#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX

chunk_id_t chunk_id = cblk_open(const char *path, int max_num_requests, int mode,
uint64_t ext_arg, int flags)

Description
The cblk_open API creates a chunk on a CAPI Flash LUN. This chunk is used for I/O (cblk_read
or cblk_write) requests. The returned chunk_id value is assigned to a specific path from a specific

2 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

adapter to the calling process. The underlying physical sectors that are used by a chunk are not directly
visible to the users of the block layer when the CBLK_OPN_VIRT_LUN flag is set.

When the cblk_open API call completes successfully, a chunk ID that represents the created chunk
instance is returned to the calling process that is used for future API calls.

Parameters
path

This parameter identifies the special file name for the CAPI disk. For example, /dev/hdisk1 (AIX)
and /dev/sg0 (Linux).

max_num_requests
This parameter indicates the maximum number of commands that can be queued to the adapter for a
specific chunk at a specific time. If this value is 0, the block layer chooses a default size. If the value
that is specified is too large, the cblk_open request fails with an ENOMEM error value.

mode
This parameter specifies the access mode (O_RDONLY, O_WRONLY, or O_RDWR).

ext_arg
This parameter is not used currently.

flags
This parameter is a collection of the following bit flags:
CBLK_OPN_VIRT_LUN

This flag indicates that a virtual LUN is provisioned on a physical LUN. If this flag is not specified,
direct access to the complete physical LUN is provided. This flag is valid only for temporary
storage. When the cblk_close API is called, all data sectors for this chunk are released to be
used by other operations.

CBLK_OPN_NO_INTRP_THREADS
This flag indicates that the cflash block library does not start any background threads for
processing and extracting information about asynchronous completion of I/O requests from the
CAPI adapter. The process that uses this library must either call the cblk_aresult library or the
cblk_listio library to poll for completion of the I/O operations.

CBLK_OPN_SCRUB_DATA
This flag is valid only when the CBLK_OPN_VIRT_LUN flag is specified. This flag indicates that
data on a virtual LUN must be cleared before the LUN can be reused by other operations. This flag
is not currently supported for the AIX operating system.

CBLK_OPN_MPIO_FO
This flag is valid only for the AIX operating system. This flag indicates that the cflash block
library uses Multipath I/O (MPIO) failover. One path is used for all I/O requests, unless path-
specific errors are encountered. If these path errors occur, an alternative path is used, if available.
To identify the paths for a CAPI Flash disk, run the lspath -l hdiskN command. This flag is not
valid if the CBLK_OPN_VIRT_LUN, CBLK_OPN_RESERVE, or CBLK_OPN_FORCED_RESERVE flag is
specified.

CBLK_OPN_RESERVE
This flag is valid only for the AIX operating system. This flag indicates that the cflash block
library uses reserve policy attribute that is associated with the disk that establishes disk
reservations. You cannot use this flag with the CBLK_OPN_MPIO_FO flag.

CBLK_OPN_FORCED_RESERVE
This flag is valid only for the AIX operating system. The behavior of this flag is the same as the
CBLK_OPEN_RESERVE flag, except that when the device is opened for the first time, it breaks any
unresolved disk reservations. You cannot use this flag with the CBLK_OPN_MPIO_FO flag.

Return values
NULL_CHUNK_ID

An error occurred.

CAPI programming 3

cblk_close API

Purpose
Closes a collection of contiguous blocks that are called a chunk on a Coherent Accelerator Processor
Interface (CAPI) Flash memory device that can complete I/O (read and write) operations.

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX
int rc = cblk_close(chunk_id_t chunk_id, int flags))

Description
The cblk_close API releases the blocks that are associated with a chunk to be reused by other
operations. Before the blocks can be reused by other operations, the data blocks must be cleared to
remove any user data if the CBLK_OPN_SCRUB_DATA flag was set in the corresponding cblk_open API
that returned this chunk_id value.

Parameters
chunk_id

Handle for the chunk that is being closed and released for reuse.
flags

Collection of bit flags.

Return values
0

The API completed successfully.
Nonzero value

An error occurred.

cblk_get_lun_size API

Purpose
Returns the size (number of blocks) of the physical logical unit number (LUN) to which a specific chunk is
associated.

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX
int rc = cblk_get_lun_size(chunk_id_t chunk_id, size_t *size, int flags))

Description
The cblk_get_lun_size API returns the number of blocks of the physical LUN that is associated with
this chunk. To use the cblk_get_lun_size service, you must have completed the cblk_open API to
receive a valid chunk_id value.

Parameters
chunk_id

Handle for the chunk for which physical LUN size must be returned.

4 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

size
Specifies the total number of 4K blocks for the physical LUN that is associated a specific chunk.

flags
Collection of bit flags.

Return values
0

The API completed successfully.
>0

An error occurred.

cblk_get_size API

Purpose
Returns the size (number of blocks) that is assigned to a specific chunk ID, which is a virtual logical unit
number (LUN). That is, the CBLK_OPN_VIRT_LUN flag is specified for the cblk_open call that returned
this chunk ID. This service is not valid for LUNs for which the CBLK_OPN_VIRT_LUN flag was not set when
the chunks were opened by using the cblk_open API.

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX
int rc = cblk_get_size(chunk_id_t chunk_id, size_t *size, int flags))

Description
The cblk_get_size service returns the number of blocks allocated to a specific chunk. To use the
cblk_get_size service, you must have completed the cblk_open API to receive a valid chunk_id
value.

Parameters
chunk_id

Handle for the chunk for which the LUN size must be changed.
size

Specifies the number of 4K blocks for the LUN that is associated with a specific chunk.
flags

Collection of bit flags.

Return values
0

The API completed successfully.
>0

An error occurred.

cblk_set_size API

Purpose
Assigns size (number of blocks) to a specific chunk ID that is a virtual logical unit number (LUN). That
is, the CBLK_OPN_VIRT_LUN flag is specified for the cblk_open call that returned this chunk ID. If the
blocks are already assigned to this chunk ID, you can increase or decrease the size by specifying a larger

CAPI programming 5

or smaller size. This service is not valid for LUNs for which the CBLK_OPN_VIRT_LUN flag was not set
when the chunks were opened by using the cblk_open API.

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX
int rc = cblk_set_size(chunk_id_t chunk_id, size_t size, int flags))

Description
When you use the virtual LUNs, the cblk_set_size service allocates a number of blocks to a specific
chunk. The cblk_set_size API must be called before the cblk_read or cblk_write calls this chunk.
To use the cblk_set_size service and to receive a valid chunk_id value, the cblk_open call must be
completed.

If blocks were originally assigned to this chunk, which were not reused after the cblk_set_size
API allocates the new blocks to the same chunk, and if the CBLK_SCRUB_DATA_FLG flag is set in the
flags parameter, the original blocks are cleared before they can be reused by other cblk_set_size
operations.

After successful completion of the cblk_set_size API, the chunk can have logical block address (LBA)
size, in the range 0 - 1, that can be read or written.

Parameters
chunk_id

Handle for the chunk for which the LUN size must be set.
size

Specifies the number of 4K blocks for the LUN that is associated a specific chunk.
flags

Collection of bit flags.

Return values
0

The API completed successfully.
>0

An error occurred.

cblk_get_stats API

Purpose
Returns statistics for a specific chunk ID.

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX
typedef struct chunk_stats_s {
uint64_t max_transfer_size; /* Maximum transfer size in */
 /* blocks of this chunk. */
uint64_t num_reads; /* Total number of reads issued */
 /* via cblk_read interface */
uint64_t num_writes; /* Total number of writes issued */
 /* via cblk_write interface */
uint64_t num_areads; /* Total number of async reads */
 /* issued via cblk_aread interface */
uint64_t num_awrites; /* Total number of async writes */
 /* issued via cblk_awrite interface*/
uint32_t num_act_reads; /* Current number of reads active */
 /* via cblk_read interface */

6 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

uint32_t num_act_writes; /* Current number of writes active */
 /* via cblk_write interface */
uint32_t num_act_areads; /* Current number of async reads */
 /* active via cblk_aread interface */
uint32_t num_act_awrites; /* Current number of async writes */
 /* active via cblk_awrite interface*/
uint32_t max_num_act_writes; /* High water mark on the maximum */
 /* number of writes active at once */
uint32_t max_num_act_reads; /* High water mark on the maximum */
 /* number of reads active at once */
uint32_t max_num_act_awrites; /* High water mark on the maximum */
 /* number of asyync writes active */
 /* at once. */
uint32_t max_num_act_areads; /* High water mark on the maximum */
 /* number of asyync reads active */
 /* at once. */
uint64_t num_blocks_read; /* Total number of blocks read */
uint64_t num_blocks_written; /* Total number of blocks written */
uint64_t num_errors; /* Total number of all error */
 /* responses seen */
uint64_t num_aresult_no_cmplt; /* Number of times cblk_aresult */
 /* returned with no command */
 /* completion */
uint64_t num_retries; /* Total number of all commmand */
 /* retries. */
uint64_t num_timeouts; /* Total number of all commmand */
 /* time-outs. */
uint64_t num_fail_timeouts; /* Total number of all commmand */
 /* time-outs that led to a command */
 /* failure. */
uint64_t num_no_cmds_free; /* Total number of times we didm't */
 /* have free command available */
uint64_t num_no_cmd_room ; /* Total number of times we didm't */
 /* have room to issue a command to */
 /* the AFU. */
uint64_t num_no_cmds_free_fail; /* Total number of times we didn't */
 /* have free command available and */
 /* failed a request because of this*/
uint64_t num_fc_errors; /* Total number of all FC */
 /* error responses seen */
uint64_t num_port0_linkdowns; /* Total number of all link downs */
 /* seen on port 0. */
uint64_t num_port1_linkdowns; /* Total number of all link downs */
 /* seen on port 1. */
uint64_t num_port0_no_logins; /* Total number of all no logins */
 /* seen on port 0. */
uint64_t num_port1_no_logins; /* Total number of all no logins */
 /* seen on port 1. */
uint64_t num_port0_fc_errors; /* Total number of all general FC */
 /* errors seen on port 0. */
uint64_t num_port1_fc_errors; /* Total number of all general FC */
 /* errors seen on port 1. */
uint64_t num_cc_errors; /* Total number of all check */
 /* condition responses seen */
uint64_t num_afu_errors; /* Total number of all AFU error */
 /* responses seen */
uint64_t num_capi_false_reads; /* Total number of all times */
 /* poll indicated a read was ready */
 /* but there was nothing to read. */
uint64_t num_capi_adap_resets; /* Total number of all adapter */
 /* reset errors. */
uint64_t num_capi_afu_errors; /* Total number of all */
 /* CAPI error responses seen */
uint64_t num_capi_afu_intrpts; /* Total number of all */
 /* CAPI AFU interrupts for command */
 /* responses seen. */
uint64_t num_capi_unexp_afu_intrpts; /* Total number of all of */
 /* unexpected AFU interrupts */
uint64_t num_active_threads; /* Current number of threads */
 /* running. */
uint64_t max_num_act_threads; /* Maximum number of threads */
 /* running simultaneously. */
uint64_t num_cache_hits; /* Total number of cache hits */
 /* seen on all reads */
} chunk_stats_t;
int rc = cblk_get_stats(chunk_id_t chunk_id, chunk_stats_t *stats, int flags))

CAPI programming 7

Description
The cblk_get_stats service returns statistics for a specific chunk ID.

Parameters
chunk_id

Handle for the chunk for which the statistics must be determined.
stats

Specifies the address of the chunk_stats_t structure.
flags

Collection of bit flags.

Return values
0

The API completed successfully.
>0

An error occurred.

cblk_read API

Purpose
Reads 4K blocks from the chunk at the specified logical block address (LBA) into the specified buffer.
When you use virtual logical unit numbers (LUNs), this LBA is not the same as the LUN's LBA because the
chunk does not always start at the LUN's LBA, 0.

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX
int rc = cblk_read(chunk_id_t chunk_id, void *buf, off_t lba, size_t nblocks, int flags));

Description
The cblk_read service reads data from the chunk and places that data into the supplied buffer. This
call is blocked until the read operation completes with success or error. It means that this call will not
return until the read operation completes. In case of a virtual LUN, you must call the cblk_set_size API
before the cblk_read, cblk_write, cblk_aread, or cblk_awrite calls to a specific chunk.

Parameters
chunk_id

Handle for the chunk that is being read.
buf

Specifies the buffer to which data is read into from the chunk.
lba

Specifies the LBA (4K offset) inside the chunk.
nblocks

Specifies the size of the transfer in 4K sectors. For a physical LUN, the higher limit is 16 MB. For a
virtual LUN, the higher limit is 4K.

flags
Collection of bit flags.

8 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

Return values
-1

Indicates an error. An error number is set for more details.
0

Indicates that no data was read.
n > 0

Indicates that the read operation is successful, where n is the number of blocks read.

cblk_write API

Purpose
Writes 4K blocks to the chunk at the specified logical block address (LBA) by using the data from the
specified buffer. When you use virtual logical unit numbers (LUNs), this LBA is not the same as the LUN's
LBA because the chunk does not start at LBA 0.

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX
int rc = cblk_write(chunk_id_t chunk_id, void *buf, off_t lba, size_t nblocks, int flags));

Description
The cblk_write API writes data from the specified buffer to the chunk at the specified LBA. The
cblk_write call is blocked until the write operation completes with success or an error. It means that
this call will not return until the write operation completes. In case of a virtual LUN, you must call the
cblk_set_size API before you call the cblk_write API to a specific chunk.

Parameters
chunk_id

Handle for the chunk that is being written.
buf

Specifies the buffer of data that is written to the chunk.
lba

Specifies the LBA (4K offset) inside the chunk.
nblocks

Specifies the size of the transfer in 4K sectors. For a physical LUN, the higher limit is 16 MB. For a
virtual LUN, the higher limit is 4K.

flags
Collection of bit flags.

Return values
-1

Indicates an error. An error number is set for more details.
0

Indicates that no data was written.
n > 0

Indicates that the write operation is successful, where n is the number of blocks written.

CAPI programming 9

cblk_aread API

Purpose
Reads 4K blocks from the chunk at the specified logical block address (LBA) into the specified buffer.
When you use virtual logical unit numbers (LUNs), this LBA is not the same as the LUN's LBA because the
chunk does not start at LBA 0.

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX

typedef enum {
 CBLK_ARW_STATUS_PENDING = 0, /* Command has not completed */
 CBLK_ARW_STATUS_SUCCESS = 1 /* Command completed successfully */
 CBLK_ARW_STATUS_INVALID = 2 /* Caller's request is invalid */
 CBLK_ARW_STATUS_FAIL = 3 /* Command completed with an error */
} cblk_status_type_t;

typedef struct cblk_arw_status_s {
 cblk_status_type_t status; /* Status of the command */
 /* See errno field for additional */
 /* details about the failure */
 size_t blocks_transferred; /* Number of block transferred by */
 /* this reqeuest. */
 int errno; /* Errno when status indicates */
 /* CBLK_ARW_STAT_FAIL */
} cblk_arw_status_t;

int rc = cblk_aread(chunk_id_t chunk_id, void *buf, off_t lba, size_t nblocks, int
*tag, cblk_arw_status_t *status, int flags));

Description
The cblk_aread service reads data from the chunk and places that data into the supplied buffer. This
call is not blocked until the read operation is completed. It means that this call returns immediately after
the request is issued, before the read operation might be complete. A subsequent cblk_aresult call
must be invoked to poll on completion. In case of a virtual LUN, you must call the cblk_set_size API
before you call the cblk_aread API.

Parameters
chunk_id

Handle for the chunk that is being read.
buf

Specifies the buffer to which data is read into from the chunk.
lba

Specifies the LBA (4K offset) inside the chunk.
nblocks

Specifies the size of the transfer in 4K sectors. For a physical LUN, the higher limit is 16 MB. For a
virtual LUN, the higher limit is 4K.

tag
Specifies the returned identifier so that you can uniquely identify each command that was issued.

status
Specifies the address that is provided by the calling process, which is updated by the capiblock
library when the cblk_aread API completes. Applications can use the polling process for the
status argument instead of using the cblk_aresult service.
The CAPI adapter cannot update this field directly. Software threads are required to update the
status parameter. This field is not used if the CBLK_OPN_NO_INTRP_THREADS flag was specified for
the cblk_open API that returned this chunk_id value.

10 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

flags
Collection of the following bit flags:
CBLK_ARW_WAIT_CMD_FLAGS

Blocks the cblk_aread service until a free command is available to issue the request. Otherwise,
this service can return a value of -1 with an error value of EWOULDBLOCK (if there is no free
command currently available).

CBLK_ARW_USER_TAG_FLAGS
Indicates that the calling process is specifying a user-defined tag for this request. Then, the caller
must use this tag with the cblk_aresult API and set its CBLK_ARESULT_USER_TAG flag.

CBLK_ARW_USER_STATUS_FLAG
Indicates that the calling process set the status parameter that will be updated when the
command completes.

Return values
-1

Indicates an error. An error number is set for more details.
0

Indicates that this API is successful.
n > 0

Indicates that the read operation is complete (possibly from cache), where n is the number of blocks
read.

cblk_awrite API

Purpose
Writes 4K blocks to the chunk at the specified logical block address (LBA) by using the data from the
specified buffer. When you use virtual logical unit numbers (LUNs), this LBA is not the same as the LUN's
LBA because the chunk does not start at LBA 0.

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX

typedef enum {
 CBLK_ARW_STAT_NOT_ISSUED = 0 /* Command has not been issued */
 CBLK_ARW_STAT_PENDING = 1 /* Command has not completed */
 CBLK_ARW_STAT_SUCCESS = 2 /* Command completed successfully */
 CBLK_ARW_STAT_FAIL = 3 /* Command completed with error */
} cblk_status_type_t;

typedef struct cblk_arw_status_s {
 cblk_status_type_t status; /* Status of command */
 /* See errno field for additional */
 /* details about the failure */
 size_t blocks_transferred; /* Number of block transferred by */
 /* this reqeuest. */
 int errno; /* Errno when status indicates */
 /* CBLK_ARW_STAT_FAIL */
} cblk_arw_status_t;

int rc = cblk_awrite(chunk_id_t chunk_id, void *buf, off_t lba, size_t nblocks, int
*tag, cblk_arw_status_t *status, int flags));

Description
The cblk_awrite API writes data from the specified buffer to the chunk at the specified LBA. This call
is not blocked until the write operation is completed. It means that this call returns immediately after the
request is issued, before the write operation might be complete. A subsequent cblk_aresult call must

CAPI programming 11

be invoked to poll on completion. In case of a virtual LUN, you must call the cblk_set_size API before
you call the cblk_awrite API.

Parameters
chunk_id

Handle for the chunk that is being written.
buf

Specifies the buffer of data that is written to the chunk.
lba

Specifies the LBA (4K offset) inside the chunk.
nblocks

Specifies the size of the transfer in 4K sectors. For a physical LUN, the highest limit is 16 MB. For a
virtual LUN, the highest limit is 4K.

tag
Specifies the returned identifier so that you can uniquely identify each command that was issued.

status
Specifies the address that is provided by the calling process, which the capiblock library updates
when the cblk_aread API completes. The cblk_aread API can be used by an application in place
of using the cblk_aresult service.
The CAPI adapter cannot update this field directly. It requires software threads to update the
status region. This field is not used if the CBLK_OPN_NO_INTRP_THREADS flag was specified for
the cblk_open API that returned this chunk_id value.

flags
Collection of the following bit flags:
CBLK_ARW_WAIT_CMD_FLAGS

Blocks the cblk_aread service to wait for a free command to issue the request. Otherwise, this
service can return a value of -1 with an error value of EWOULDBLOCK (if there is no free command
currently available).

CBLK_ARW_USER_TAG_FLAGS
Indicates that the calling process is specifying a user-defined tag for this request. Then, the calling
process must use this tag with the cblk_aresult API and set its CBLK_ARESULT_USER_TAG
flag.

CBLK_ARW_USER_STATUS_FLAG
Indicates that the calling process set the status parameter that will be updated when the
command completes.

Return values
-1

Indicates an error. An error number is set for more details.
0

Indicates that this API is successfully issued.
n > 0

Indicates that the read operation is complete, where n is the number of blocks written.

cblk_aresult API

Purpose
Returns status and completion information for asynchronous requests.

12 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX
rc = cblk_aresult(chunk_id_t chunk_id, int *tag, uint64_t *status, int flags);

Description
The cblk_aresult API returns the status of the pending requests that are issued by using the
cblk_aread or cblk_awrite APIs. If these pending requests are complete, this API returns the
completion information.

Parameters
chunk_id

Handle for the chunk that is being written.
tag

Pointer to tag the calling process that it is waiting for the request completion. If the
CBLK_ARESULT_NEXT_TAG flag is set, this field returns the tag for the next asynchronous request
completion.

status
The pointer to the status. The status is returned when a request completes.

flags
Specifies the following flags to the cblk_aresult API:
CBLK_ARESULT_BLOCKING

Specify this flag if you want the cblk_aresult API to be blocked until a command completes
(provided active commands exist). If the CBLK_ARESULT_NEXT_TAG flag is specified, this call
returns after any asynchronous I/O request completes.

CBLK_ARESULT_USER_TAG
Specify this flag to check the status of an asynchronous request that was issued with a user-
specified tag.

CBLK_ARESULT_NEXT_TAG
Specify this flag if you want the cblk_aresult API to return when the next active asynchronous
command completes.

Return values
-1

Indicates an error. An error number is set for more details.
0

Indicates that this API is successfully issued.
n > 0

Indicates that the request is complete, where n is the number of blocks that are read or written.

cblk_clone_after_fork API

Purpose
Designates a child process to access the same virtual logical unit number (LUN) as the parent process.
This service is valid only for the Linux platform.

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX
rc = cblk_clone_after_fork(chunk_id_t chunk_id, int mode, int flags);

CAPI programming 13

Description
The cblk_clone_after_fork service designates a child process to access data from the parent
process. The child process must perform this operation immediately after the fork() system call by
using the parent's chunk ID to access that storage. If the child process does not perform this operation,
the child process will not have any access to the parent's chunk IDs. This service is not valid for physical
LUNs.

Note: This service is valid only for the Linux platform.

Parameters
chunk_id

Handle for the chunk that is in use by the parent process. If this call returns successfully, this chunk
ID can also be used by the child process.

mode
Specifies the access mode for the child process (O_RDONLY, O_WRONLY, or O_RDWR).

Note: The child processes cannot have greater access than the parent process. The descendant
processes can have less access.

flags
This parameter is a bit flag that is specified by the calling process.

Return values
0

Indicates that the request completed successfully.
-1

Indicates an error. An error number is set for more details.

cblk_listio API

Purpose
Issues multiple I/O requests to Coherent Accelerator Processor Interface (CAPI) Flash disk with a single
call and waits for the completion of multiple I/O requests from a CAPI Flash disk.

Syntax
#include <capiblock.h> for Linux or <sys/capiblock.h> for AIX

typedef struct cblk_io {
 uchar version; /* Version of the structure */
#define CBLK_IO_VERSION_0 "I" /* Initial version 0 */
 int flags; /* Flags for request */
#define CBLK_IO_USER_TAG 0x0001 /* Caller is specifying a user defined */
 /* tag. */
#define CBLK_IO_USER_STATUS 0x0002 /* Caller is specifying a status location */
 /* to be updated */
#define CBLK_IO_PRIORITY_REQ 0x0004 /* This is (high) priority request that */
 /* must be expediated vs non-priority */
 /* requests */
 uchar request_type; /* Type of request */
#define CBLK_IO_TYPE_READ 0x01 /* Read data request */
#define CBLK_IO_TYPE_WRITE 0x02 /* Write data request */
 void *buf; /* Data buffer for the request */
 offset_t lba; /* Starting Logical block address for */
 /* the request. */
 size_t nblocks; /* Size of request based on number of */
 /* blocks. */
 int tag; /* Tag for the request. */
 cblk_arw_status_t stat; /* Status of the request */
} cblk_io_t

int rc = cblk_listio(chunk_id_t chunk_id,cblk_io_t *issue_io_list[],int

14 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

issue_io_items,cblk_io_t *pending_io_list[],int pending_io_items, cblk_io_t
*wait_io_list[], int wait_items, cblk_io_t *completion_io_list[],int
*completion_items, uint64_t timeout, int flags));

Description
The cblk_listio service provides an interface to issue multiple I/O requests with a single call and poll
for completion of multiple I/O requests by using a single call. The individual requests are specified by the
cblk_io_t type, which includes a data buffer, starting logical block address (LBA), and a transfer size in
4K blocks.

This service can update the I/O requests that are associated with the cblk_io_t type (that is, update
status, tags, and flags based on disposition of the I/O request).

This service cannot be used to check for the completion of I/O requests issued through the cblk_aread
or cblk_awrite APIs.

Parameters
chunk_id

Handle for the chunk that is associated with the I/O requests.
issue_io_list

This parameter specifies an array of I/O requests to issue to CAPI Flash disks. Each individual
array element of type cblk_io_t specifies an individual I/O request that contains the data buffer,
starting LBA, and a transfer size in 4K blocks. These array elements can be updated by this API to
indicate completion status and tags. The status field of the individual cblk_io_t array elements
are initialized by this API. If the issue_io_list parameter is null, this API can be used to wait
for completion of other requests that are issued by the previous cblk_listio calls by setting the
pending_io_list parameter.

issue_io_items
Specifies the number of array elements in the issue_io_list array.

pending_io_list
Specifies an array of I/O requests that were issued through a previous cblk_listio request. You
can use the pending_io_list parameter to poll for I/O request completion, without waiting for
completion of all the requests (that is, setting the completion_io_list parameter).

pending_io_items
Specifies the number of array elements in the pending_io_list array.

wait_io_list
Specifies the array of I/O requests, for which the cblk_listio service is blocked until the I/O
requests complete. These I/O requests must also be specified in either the issue_io_list
parameter or the pending_io_list parameter. If an I/O request in the issue_io_list array
fails to be issued because of invalid settings by the calling process or no resources, that
I/O request's elements in the io_list is updated to indicate this failure (status is set as
CBLK_ARW_STAT_NOT_ISSUED) and the cblk_listio API does not wait for that I/O request
completion. Thus, all I/O requests in the wait_io_list array that completed will have a status
of CBLK_ARW_STAT_SUCCESS or CBLK_ARW_STAT_FAIL. The status is not updated for I/O requests
that are not complete.

wait_items
Specifies the number of array elements in the wait_io_list array.

completion_io_list
This parameter is set by the calling process to an initialized (zeroed) array of I/O requests and
the completion_items parameter is set to the number of array elements in the array. When the
cblk_listio API returns, the array contains I/O requests that are specified in the issue_io_list
and pending_io_list parameters that were completed by the CAPI device but not specified in
the wait_io_list parameter. If an I/O request in the io_list array fails to be issued because of
invalid settings by the calling process or no resources, that I/O request's element is not copied to
the completion_io_list parameter and its status in the io_list array is updated to indicate this

CAPI programming 15

failure (status is set as CBLK_ARW_STAT_NOT_ISSUED). Thus, all I/O requests that are returned in
this list will have a status of CBLK_ARW_STAT_SUCCESS or CBLK_ARW_STAT_FAIL.

completion_items
This parameter is set by the calling process to the address of the number of array elements that
this API placed in the completion_io_list parameter. When this API returns, the value of this
parameter is updated to the number of I/O requests that is placed in the completion_io_list
parameter.

timeout
Specifies the timeout value in microseconds to wait for all I/O requests in the wait_io_list
parameter. This parameter is valid only if the wait_io_list parameter is not null. If any of the
I/O requests in the wait_io_list parameter do not complete within the timeout value, this API
returns a value of -1 and sets the error number to a value ETIMEDOUT (when this error occurs, some
commands might have completed in the wait_io_list parameter). Thus, the calling process must
check each request in the wait_io_list parameter to determine which requests are completed.
The calling process must remove the completed items from the pending_io_list parameter before
the next invocation of this API. A timeout value of 0 indicates that this API is blocked until requests in
the wait_io_list parameter are completed.

flags
Specifies the following bit flag:
CBLK_LISTIO_WAIT_ISSUE_CMD

Blocks the cblk_listio API until a free command is available to issue all requests even if the
timeout value is exceeded and the CBLK_LISTIO_WAIT_CMD_FLAG flag is set. Otherwise, this
service can return a value of -1 with an error value of EWOULDBLOCK if free commands are
currently not available (for this situation, some commands might have successfully queued to the
issued list. The calling process must examine the individual I/O requests in the issue_io_list
parameter to determine which requests failed.)

Return values
-1

Error and error number are set for more details.
0

This API completed successfully without any errors.

CAPI Flash key-value library
The key-value library provides an interface to Coherent Accelerator Processor Interface (CAPI) Flash
devices to store, retrieve, and manage arrays. The key-value library maps the key-value semantics to the
CAPI Flash block library.

In the AIX operating system, the key-value library is libarkdb.a. On the Linux platform, this library is
libarkdb.so.

ark_create API

Purpose
Creates a key-value store instance.

Syntax
int ark_create(path, ark, flags)
char * file;
ARK ** handle;
uint64_t flags;

16 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

Description
The ark_create API creates a key-value store instance on the host system.

The path parameter can be used to specify the special file (for example, the /dev/sdx file for the Linux
platform or the /dev/hdiskx file for AIX operating system) that represents the physical logical unit
number (LUN) created on the Flash storage. If the path parameter is not a special file, the API assumes
that the file must be used for the key-value store. If the file does not exist, the file is created. If the path
parameter is NULL, memory is used for the key-value store.

The flags parameter indicates the properties of the key-value store. If you want to specify a special file
for the physical LUN, you can specify whether to use the existing key-value store in the physical LUN or
to create the key-value store in a virtual LUN. By default, the entire physical LUN is used for the key-value
store. If a virtual LUN is required, the ARK_KV_VIRTUAL_LUN bit flag must be set in the flags parameter.

A key-value store that is configured to use the entire physical LUN can be persisted. You can shut down a
key-value store instance by using the persistence (that is, saving the current state as data) of a key-value
store, and then you can open the same physical LUN and load the previous key-value store instance in
the same state as it was when it closed. To configure a key-value store instance to be persisted when the
key-value store instance is shut down (ark_delete), set the ARK_KV_PERSIST_STORE bit in the flags
parameter. By default, a key-value store instance is not configured to be persisted. To load the persisted
key-value store instance that is stored on the physical LUN, set the ARK_KV_PERSIST_LOAD bit in the
flags parameter. By default, the persisted instance, if present, is not loaded and is overwritten by any
new persisted data.

Only those key-value stores can be persisted that are stored on physical LUNs.

Upon successful completion, the handle parameter represents the newly created key-value store
instance that is used for future API calls.

Parameters
path

Specifies the CAPI adapter, file, or memory for the key-value store.
ark

Specifies the handle representing the key-value store.
flags

Collection of the following bit flags to determine the properties of the key-value store:
ARK_KV_VIRTUAL_LUN

Specifies the key-value store to use a virtual LUN created from the physical LUN represented by
the special file.

ARK_KV_PERSIST_STORE
Configures the key-value store instance to be persisted upon shutdown of the key-value store
instance. You can shut down or delete a key-value store instance by using the ark_delete API.

ARK_KV_PERSIST_LOAD
Loads the stored configuration if persistence data is present on the physical LUN.

Return values
0

Indicates successful completion. The handle parameter points to the newly created key-value store
instance.

EINVAL
Invalid value for one of the parameters.

ENOSPC
Not enough memory or Flash storage.

ENOTREADY
System is not ready for key-value store configuration.

CAPI programming 17

ark_delete API

Purpose
Deletes a key-value store instance.

Syntax
int ark_delete(ark)
ARK *ark;

Description
The ark_delete API deletes a key-value store instance that is specified by the ark parameter on the
host system. On successful completion, all associated memory and storage resources are released. And, if
the ARK instance is configured to persist, the configuration is persisted so that the instance can be loaded
later.

Parameters
ark

A handle that represents the key-value store instance.

Return values
Upon successful completion, the ark_delete API will clean and remove all resources associated with
the key-value store instance and return 0. If unsuccessful, the ark_delete API will return one of the
following non-zero error code:

0
The API completed successfully. All resources associated with the key-value store instance are
removed.

EINVAL
Key-value store handle is not valid.

Nonzero value
An error occurred and the API did not complete successfully.

ark_set, ark_set_async_cb API

Purpose
Writes a key-value pair.

Syntax
int ark_set(ark, klen, key, vlen, val, res)
int ark_set_async_cb(ark, klen, key, vlen, val, callback, dt)

ARK * ark;
uint64_t klen;
void * key;
uint64_t vlen;
void * val;
void *(*callback)(int errcode, uint64_t dt, uint64_t res);
uint64_t dt;

Description
The ark_set API stores the key and value into the store for the key-value store instance that is
represented by the ark parameter. The ark_set_async_cb API operates in an asynchronous mode, in

18 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

which the API immediately returns to the calling process and the operation is scheduled to run. After the
operation is performed, the callback function is called to notify the calling process about the operation
completion.

For a key-value store instance, if the key is present, the stored value is replaced with the val value.

On successful completion, the key-value pair is written in the store and the number of bytes written to the
key-value store is returned to the calling process through the res parameter.

Parameters
ark

Indicates a handle that represents the connection for the key-value store instance.
key

Specifies the key for the key-value pair.
klen

Indicates the length of the key in bytes.
val

Specifies the value for the key-value pair.
vlen

Indicates the length of the value in bytes.
res

Indicates the number of bytes that are written to the key-value store on successful completion of the
I/O operation.

callback
Specifies the function to call on completion of the I/O operation.

dt
Indicates a 64-bit value to tag an asynchronous API call.

Return values
On successful completion, the ark_set and ark_set_async_cb APIs write the key-value in the store
associated with the key-value store instance and return the number of bytes written. The return value
of the ark_set API indicates the status of the operation. The return value of the ark_set_async_cb
API indicates whether the asynchronous operation was accepted or rejected. The status is stored in the
errcode parameter when the callback function is run. If the API is unsuccessful, the ark_set and
ark_set_async_cb APIs return one of the following nonzero error codes:

EINVAL
Invalid parameters.

ENOSPC
Not enough space is remaining in the key-value store.

ark_get, ark_get_async_cb API

Purpose
Retrieves a value for a specific key.

Syntax
int ark_get(ark, klen, key, vbuflen, vbuf, voff, res)
int ark_get_async_cb(ark, klen, key, vbuflen, vbuf, voff, callback, dt)

ARK * ark;
uint64_t klen;
void * key;
uint64_t vbuflen;
void * vbuf;

CAPI programming 19

uint64_t voff;
void *(*callback)(int errcode, uint64_t dt, uint64_t res);
uint64_t dt;

Description
The ark_get and ark_get_async_cb APIs query the key-value store associated with the ark
parameter for a specific key parameter. If the key is found, the key's value is returned in the vbuf
parameter with a maximum of vbuflen bytes written in the key-value store starting at the voff offset
parameter in the key's value. The ark_get_async_cb API operates in an asynchronous mode, in which
the API immediately returns to the calling process and the retrieval operation is scheduled to run. After
the operation is completed, the callback function is called to notify the calling process about the
completion of the operation.

If the API is successful, the length of the key's value is stored in the res parameter of the callback
function.

Parameters
ark

Indicates a handle that represents the connection for the key-value store instance.
key

Specifies the key for the key-value pair.
klen

Indicates the length of the key in bytes.
vbuf

Specifies the buffer to store the key's value for the key-value pair.
vbuflen

Specifies the length of the vbuf buffer.
voff

Specifies the offset value in the key to start the read operation.
res

Stores the size of the key in bytes if the ark_get API completes successfully.
callback

Specifies the callback function to be called when the I/O operation completes.
dt

Specifies a 64-bit value to tag an asynchronous API call.

Return values
On successful completion, the ark_get and ark_get_async_cb APIs return 0. The return value of
the ark_get API indicates the status of the operation. The return value of the ark_get_async_cb API
indicates whether the asynchronous operation was accepted or rejected. The status of the asynchronous
API is stored in the errcode parameter of the callback function. If unsuccessful, the ark_get and
ark_get_async_cb APIs return one of the following nonzero error codes:

EINVAL
Invalid parameters.

ENOENT
Key not found.

ENOSPC
Not enough space in the memory buffer to store the key's value.

20 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

ark_del, ark_del_async_cb API

Purpose
Deletes the value associated with a specific key.

Syntax
int ark_del(ark, klen, key, res)
int ark_del_async_cb(ark, klen, key, callback, dt)

ARK * ark
uint64_t klen;
void * key;
void *(*callback)(int errcode, uint64_t dt, uint64_t res);
uint64_t dt;

Description
The ark_del and ark_del_async_cb APIs query the key-value store associated with the handle
parameter for a specific key parameter. If the key is found, the ark_del API deletes the value from
the key-value store. The ark_del_async_cb API operates in an asynchronous mode, in which the API
immediately returns to the calling process and the removal operation is scheduled to run. After the
operation is completed, the callback function is called to notify the calling process about the operation
completion.

If the API is successful, the length of the key's value is returned to the calling process in the res
parameter of the callback function.

Parameters
ark

Indicates a handle that represents the connection for the key-value store instance.
key

Specifies the key for a key-value pair.
klen

Indicates the length of the key in bytes.
res

Stores the size of the key in bytes if this API completes successfully.
callback

Specifies the callback function to be called when the I/O operation is completed.
dt

Specifies a 64-bit value to tag an asynchronous API call.

Return values
On successful completion, the ark_del and ark_del_async_cb APIs return the value of 0. The
return value of the ark_del API indicates the status of the operation. The return value of the
ark_del_async_cb API indicates whether the asynchronous operation was accepted or rejected. The
status of the asynchronous API is stored in the errcode parameter of the callback function. If
unsuccessful, the ark_del and ark_del_async_cb APIs return one of the following non-zero error
codes:

EINVAL
Invalid parameters.

ENOENT
Key not found.

CAPI programming 21

ark_exists, ark_exists_async_cb API

Purpose
Queries the key-value store to check whether a specific key is present.

Syntax
int ark_exist(ark, klen, key, res)
int ark_exist_async_cb(ark, klen, key, callback, dt)

ARK * ark
uint64_t klen;
void * key;
void *(*callback)(int errcode, uint64_t dt, uint64_t res);
uint64_t dt;

Description
The ark_exists and ark_exists_async_cb APIs query the key-value store associated with the ark
parameter for a specific key parameter. If the key is found, the ark_exist API returns the size of the
value in bytes in the res parameter. The key and its value are not altered. The ark_exists_async_cb
API operates in an asynchronous mode, in which the API immediately returns to the calling process and
the querying operation is scheduled to run. After the operation is run, the callback function is called to
notify the calling process about the operation completion.

Parameters
ark

Indicates a handle that represents the connection for the key-value store instance.
key

Specifies the key for a key-value pair.
klen

Indicates the length of the key in bytes.
res

Stores the size of the key in bytes if the API completes successfully.
callback

Specifies the callback function to be called on completion of the I/O operation.
dt

Specifies a 64-bit value to tag an asynchronous API call.

Return values
On successful completion, the ark_exists and ark_exists_async_cb APIs return the value of 0.
The return value of the ark_exists API indicates the status of the operation. The return value of the
ark_exists_async_cb API indicates whether the asynchronous operation was accepted or rejected.
The status of the asynchronous API is stored in the errcode parameter of the callback function. If
unsuccessful, the ark_exists and ark_exists_async_cb APIs return one of the following non-zero
error codes:

EINVAL
Invalid parameters.

ENOENT
Key not found.

22 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

ark_first API

Purpose
Returns the first key that is found in the key-value store and returns the handle to iterate through the
key-value store.

Syntax
ARI*ark_first(ark, kbuflen, klen, kbuf)
ARK * ark
uint64_t buflen;
int64_t *klen;
void * kbuf;

Description
The ark_first API returns the first key found in the key-value store in the kbuf buffer and the size of
the key in the klen parameter, when the key size (klen) is less than the kbuf size (kbuflen).

If this API completes successfully, an iterator handle is returned to the calling process that must be used
to retrieve the next key in the key-value store by calling the ark_next API.

Parameters
ark

Indicates a handle that represents the connection for the key-value store instance.
kbuflen

Indicates the length of the kbuf parameter.
klen

Specifies the size of the key returned in the kbuf parameter.
kbuf

Specifies the buffer to hold the key.

Return values
On successful completion, the ark_first API returns a handle that must be used to iterate through the
key-value store on subsequent calls by using the ark_next API. If unsuccessful, the ark_first API
returns NULL with error number set to one of the following values:

EINVAL
Invalid parameters.

ENOSPC
The kbuf parameter has insufficient space to store the key.

ark_next API

Purpose
Returns the next found key in the key-value store.

Syntax
int ark_next(iter, kbuflen, klen, kbuf)
ARK * iter
uint64_t buflen;
int64_t *klen;
void *kbuf;

CAPI programming 23

Description
The ark_next API returns the next key found in the key-value store based on the iterator handle, iter,
in the kbuf buffer, and the size of the key in the klen parameter, while the key size (klen) is less than the
kbuf size (kbuflen).

If successful, a handle is returned to the calling process that must be used to retrieve the next key in the
key-value store by calling the ark_next API. If the end of the key-value store is reached, the ENOENT
error code is returned.

Note: Because of the dynamic nature of the store, some of the written keys might not be returned.

Parameters
iter

Specifies the iterator handle where to begin the search in the key-value store.
kbuf

Specifies the buffer to hold the key.
kbuflen

Indicates the length of the kbuf parameter.
klen

Specifies the size of the key returned in the kbuf parameter.

Return values
On successful completion, the ark_next API returns a handle that must be used to iterate through the
key-value store on subsequent calls by using the ark_next API. If unsuccessful, the ark_next API
returns one of the following values:

EINVAL
Invalid parameter.

ENOENT
End of the store is reached.

ark_allocated API

Purpose
Returns the number of bytes that are allocated to the store.

Syntax
int ark_allocated(ark, size)
ARK * ark;
uint64_t *size;

Description
The ark_allocated API returns the number of bytes allocated to the key-value store through the size
parameter.

Parameters
ark

Specifies the handle that represents the key-value store.
size

Holds the size of blocks allocated to the key-value store in bytes.

24 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

Return values
0

Indicates successful completion.
EINVAL

Indicates failure because of an invalid parameter.

ark_inuse API

Purpose
Returns the number of bytes that are in use in the key-value store.

Syntax
int ark_inuse(ark, size)
ARK * ark;
uint64_t *size;

Description
The ark_inuse API returns the number of bytes in use in the key-value store through the size
parameter.

Parameters
ark

Specifies the handle that represents the key-value store.
size

Holds the size of the store that is in use in bytes.

Return values
0

Indicates successful completion.
EINVAL

Indicates failure because of an invalid parameter.

ark_actual API

Purpose
Returns the number of bytes that are in use in the key-value store.

Syntax
int ark_actual(ark, size)
ARK * ark;
uint64 * size;

Description
The ark_actual API returns the number of bytes that are in use in the key-value store through the
size parameter. This API differs from the ark_inuse API such that this API uses the actual size of the
individual keys and their values instead of generic block allocations to store these values.

CAPI programming 25

Parameters
ark

Specifies the handle that represents the key-value store.
size

Holds the size of blocks that are in use in bytes.

Return values
0

Indicates successful completion. The handle parameter points to the newly created key-value store
instance.

EINVAL
Indicates failure because of an invalid parameter.

ark_fork, ark_fork_done API

Purpose
Forks a key-value store for archiving purposes. This service is valid only for the Linux platform.

Syntax
int ark_fork(ark)
int ark_fork_done(ark)
ARK * handle;

Description
The ark_fork and ark_fork_done APIs are called by the parent key-value store process to prepare the
key-value store to be forked (split into multiple processes), fork the child process, and to clean up the call
state after the child process exits. The ark_fork API forks a child process, and after completion, the API
returns the process ID of the child process to the parent process, and returns 0 to the child process. After
the parent process detects that the child process exited, the ark_fork_done API is called to clean up
any state from the ark_fork call.

Note: The ark_fork API fails if any outstanding asynchronous commands exist. The ark_fork service
is valid only for the Linux platform.

Parameters
ark

Specifies the handle that represents the key-value store.

Return values
0

Indicates successful completion.
EINVAL

Indicates failure because of an invalid parameter.
EBUSY

Indicates failure because of outstanding asynchronous operations.
ENOMEM

Indicates failure because of insufficient space to clone the store.

26 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

ark_random API

Purpose
Returns a random key from the key-value store.

Syntax
int ark_random(ark, kbuflen, klen, kbuf)
ARK * ark;
uint64_t kbuflen
int64_t *klen;
void * kbuf;

Description
The ark_random API returns a random key from the key-value store based on the ark handle in the
kbuf buffer, and the size of the key in the klen parameter, while the key size (klen) is less than the kbuf
size (kbuflen).

Parameters
ark

Specifies the handle that represents the key-value store.
kbuflen

Holds the size of the key-value store in bytes.
klen

Specifies the size of the key that is returned in the kbuf parameter.
kbuf

Specifies the buffer to hold the key.

Return values
0

Indicates successful completion.
EINVAL

Indicates failure because of an invalid parameter.

ark_count API

Purpose
Returns the count of the number of keys that are found in the key-value store.

Syntax
int ark_count(ark, count)
ARK * ark;
int * count;

Description
The ark_count API returns a the total number of keys in the key-value store based on the ark handle
and stores the result in the count parameter.

CAPI programming 27

Parameters
ark

Specifies the handle that represents the key-value store.
count

Specifies the number of keys that are found in the key-value store.

Return values
0

Indicates successful completion.
EINVAL

Indicates failure because of an invalid parameter.

ark_stats API

Purpose
Return the number of key-value I/O operations and block I/O operations.

Syntax
#include <arkdb.h>

int ark_stats(ARK *ark, uint64_t *ops, uint64_t *ios);

Description
The ark_stats API returns the total number of key-value I/O operations through the ops parameter,
and the total number of block I/O operations through the ios parameter.

Parameters
ark

Specifies the handle that represents the key-value store.
ops

Indicates the total number of key-value I/O operations.
ios

Indicates the total number of block I/O operations.

Return values
0

Indicates successful completion.
EINVAL

Indicates that an error was encountered.
Related information
Batfile

28 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2015 29

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows:
© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Privacy policy considerations
IBM® Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

30 Notices

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Notices 31

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

32 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

Index

A
ark_actual API 25
ark_allocated API 24
ark_count API 27
ark_create API 16
ark_del API 21
ark_del_async_cb API 21
ark_delete API 18
ark_exists API 22
ark_exists_async_cb API 22
ark_first API 23
ark_fork API 26
ark_fork_done API 26
ark_get API 19
ark_get_async_cb API 19
ark_inuse API 25
ark_next API 23
ark_random API 27
ark_set API 18
ark_set_async_cb API 18
ark_stats API 28

C
CAPI

CAPI flash key-value library
16
Flash block library 1

cblk_aread API 10
cblk_awrite API 11, 12
cblk_clone_after_fork API 13
cblk_close API 4
cblk_get_lun_size API 4
cblk_get_size API 5
cblk_get_stats API 6
cblk_init API 1
cblk_listio API 14
cblk_open API 2
cblk_read API 8
cblk_set_size API 5
cblk_term API 2
cblk_write API 9

Index 33

34 AIX Version 7.2: Coherent Accelerator Processor Interface (CAPI) programming

IBM®

	Contents
	About this document
	Highlighting
	Case sensitivity in AIX
	ISO 9000

	CAPI programming
	CAPI Flash adapter
	CAPI Flash block library
	cblk_init API
	cblk_term API
	cblk_open API
	cblk_close API
	cblk_get_lun_size API
	cblk_get_size API
	cblk_set_size API
	cblk_get_stats API
	cblk_read API
	cblk_write API
	cblk_aread API
	cblk_awrite API
	cblk_aresult API
	cblk_clone_after_fork API
	cblk_listio API

	CAPI Flash key-value library
	ark_create API
	ark_delete API
	ark_set, ark_set_async_cb API
	ark_get, ark_get_async_cb API
	ark_del, ark_del_async_cb API
	ark_exists, ark_exists_async_cb API
	ark_first API
	ark_next API
	ark_allocated API
	ark_inuse API
	ark_actual API
	ark_fork, ark_fork_done API
	ark_random API
	ark_count API
	ark_stats API

	Notices
	Privacy policy considerations
	Trademarks

	Index

